NASA Astrophysics Data System (ADS)
Zhu, Jian; Li, Jian-Jun; Zhao, Jun-Wu
2013-06-01
The separate layer refractive index sensitivity of a coaxial-cable type three-layered gold nanotube has been studied. Theoretical calculation results based on quasi-static model show that the coaxial-cable type gold nanostructure has higher refractive index sensitivity than that of single-layered gold nanotube. This sensitivity could be improved by increasing the inner wire radius or decreasing the total radius of the tube, and the maximum sensitivity may exceed 1,000 nm per refractive index unit. The physical origin was also investigated based on the coupling of the dielectric media induced polarizations and the local electric fields in separate layer and outer surrounding. These separate layer refractive index sensing properties of coaxial-cable type gold nanostructure present well potential for plasmonic biosensing applications.
Selenium Interlayer for High-Efficiency Multijunction Solar Cell
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A (Inventor)
2015-01-01
A multi junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.
Selenium Interlayer for High-Efficiency Multijunction Solar Cell
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A. (Inventor)
2016-01-01
A multi-junction solar cell is provided and includes multiple semiconducting layers and an interface layer disposed between the multiple semiconducting layers. The interface layer is made from an interface bonding material that has a refractive index such that a ratio of a refractive index of each of the multiple semiconducting layers to the refractive index of the interface bonding material is less than or equal to 1.5.
Manipulating Refractive Index in Organic Light-Emitting Diodes.
Salehi, Amin; Chen, Ying; Fu, Xiangyu; Peng, Cheng; So, Franky
2018-03-21
In a conventional organic light-emitting diode (OLED), only a fraction of light can escape to the glass substrate and air. Most radiation is lost to two major channels: waveguide modes and surface plasmon polaritons. It is known that reducing the refractive indices of the constituent layers in an OLED can enhance light extraction. Among all of the layers, the refractive index of the electron transport layer (ETL) has the largest impact on light extraction because it is the layer adjacent to the metallic cathode. Oblique angle deposition (OAD) provides a way to manipulate the refractive index of a thin film by creating an ordered columnar void structure. In this work, using OAD, the refractive index of tris(8-hydroxyquinoline)aluminum (Alq3) can be tuned from 1.75 to 1.45. With this low-index ETL deposited by OAD, the resulting phosphorescent OLED shows nearly 30% increase in light extraction efficiency.
NASA Astrophysics Data System (ADS)
Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas
2016-11-01
In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.
Cover-layer with High Refractive Index for Near-Field Recording Media
NASA Astrophysics Data System (ADS)
Kim, Jin-Hong; Lee, Jun-Seok
2007-06-01
TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.
Cover-Layer with High Refractive Index for Near-Field Recording Media
NASA Astrophysics Data System (ADS)
Kim, Jin-Hong; Lee, Jun-Seok
2007-06-01
TiO2 nanoparticles are added into UV-curable resin to increase the refractive index of the cover-layer laminated for cover-layer incident near-field recording media. A high refractive index is required for the cover-layer operating with an optical head with a high numerical aperture. The eye pattern from a cover-layer coated 20 GB read-only memory disc in which the refractive index of the cover-layer is 1.75 is achieved, but the gap servo is unstable owing to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is negligible, a rough microstructure is developed by adding the nanoparticles into an organic binder material. To achieve a smooth surface for a stable gap servo, the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1992-01-01
The effect of the index of refraction on the temperature distribution and radiative heat flux in semitransparent materials, such as some ceramics, is investigated analytically. In the case considered here, a plane layer of a ceramic material is subjected to external radiative heating incident on each of its surfaces; the material emits, absorbs, and isotropically scatters radiation. It is shown that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained in a simple manner from the results for an index of refraction of unity.
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Toutian, Golnoosh
This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Gadomskaya, I. V.
2015-02-15
We have derived formulas for the amplitudes of light reflection and refraction at an inhomogeneous interface between two media and in a nanostructured layer with a quasi-zero refractive index. These formulas are applied to explain the experimental spectra of nonspecular light reflection using a nanostructured (PMMA + Ag) layer with silver nanoparticles on a silicon surface as an example. We show that a surface wave is formed in the nanostructured layer at various angles of light incidence and the layer with a quasi-zero refractive index is an antireflection coating that provides uniform 5% silicon antireflection in the wavelength range frommore » 450 to 1000 nm.« less
NASA Astrophysics Data System (ADS)
Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas
2016-04-01
The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.
Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Kim, Jong Kyu; Schubert, E. F.; Ye, Dexian; Lu, T.-M.; Lin, Shawn-Yu; Juneja, Jasbir S.
2006-03-01
The refractive-index contrast in dielectric multilayer structures, optical resonators, and photonic crystals is an important figure of merit that creates a strong demand for high-quality thin films with a low refractive index. A SiO2 nanorod layer with low refractive index of n=1.08, to our knowledge the lowest ever reported in thin-film materials, is grown by oblique-angle electron-beam deposition of SiO2. A single-pair distributed Bragg reflector employing a SiO2 nanorod layer is demonstrated to have enhanced reflectivity, showing the great potential of low-refractive-index films for applications in photonic structures and devices.
Omnidirectional optical waveguide
Bora, Mihail; Bond, Tiziana C.
2016-08-02
In one embodiment, a system includes a scintillator material; a detector coupled to the scintillator material; and an omnidirectional waveguide coupled to the scintillator material, the omnidirectional waveguide comprising: a plurality of first layers comprising one or more materials having a refractive index in a first range; and a plurality of second layers comprising one or more materials having a refractive index in a second range, the second range being lower than the first range, a plurality of interfaces being defined between alternating ones of the first and second layers. In another embodiment, a method includes depositing alternating layers of a material having a relatively high refractive index and a material having a relatively low refractive index on a substrate to form an omnidirectional waveguide; and coupling the omnidirectional waveguide to at least one surface of a scintillator material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Shchukarev, I. A., E-mail: blacxpress@gmail.com
2016-08-15
It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1992-01-01
The index of refraction can considerably influence the temperature distribution and radiative heat flow in semitransparent materials such as some ceramics. For external radiant heating, the refractive index influences the amount of energy transmitted into the interior of the material. Emission within a material depends on the square of its refractive index, and hence this emission can be many times that for a biackbody radiating into a vacuum. Since radiation exiting through an interface into a vacuum cannot exceed that of a blackbody, there is extensive reflection at the internal surface of an interface, mostly by total internal reflection. This redistributes energy within the layer and tends to make its temperature distribution more uniform. The purpose of the present analysis is to show that, for radiative equilibrium in a gray layer with diffuse interfaces, the temperature distribution and radiative heat flux for any index of refraction can be obtained very simply from the results for an index of refraction of unity. For the situation studied here, the layer is subjected to external radiative heating incident on each of its surfaces. The material emits, absorbs, and isotropically scatters radiation. For simplicity the index of refraction is unity in the medium surrounding the layer. The surfaces of the layer are assumed diffuse. This is probably a reasonable approximation for a ceramic layer that has not been polished. When transmitted radiation or radiation emitted from the interior reaches the inner surface of an interface, the radiation is diffused and some of it thereby placed into angular directions for which there is total internal reflection. This provides a trapping effect for retaining energy within the layer and tends to equalize its temperature distribution. An analysis of temperature distributions in absorbing-emitting layers, including index of refraction effects, was developed by Gardon (1958) to predict cooling and heat treating of glass plates. The interfaces were optically smooth; the resulting specular reflections were computed from the Fresnel reflection laws. This provides a somewhat different behavior than for diffuse interfaces. A similar application was for heating that occurs in a window of a re-entry vehicle (Fowle et al., 1969). A number of recent papers (Rokhsaz and Dougherty, 1989; Ping and Lallemand, 1989; Crosbie and Shieh, 1990) further examined the effects of Fresnel boundary reflections and nonunity refractive index. Other examples of analyses of both steady and transient heat transfer to single or multiple plane layers (Amlin and Korpela, 1979; Tarshis et al., 1969) have used diffuse assumptions at the interfaces as in the present study
Refractive Index and Scattering Effects on Radiative Behavior of a Semitransparent Layer
NASA Technical Reports Server (NTRS)
Spuckler, C. M.; Siegel, R.
1993-01-01
Heat transfer characteristics are analyzed for a plane layer of semitransparent material with refractive index not less than 1. Energy transfer in the material is by conduction, emission, absorption, and isotropic scattering. Each side of the layer is heated by radiation and convection. For a refractive index larger than unity, there is internal reflection of some of the energy within the layer. This, coupled with scattering, has a substantial effect on distributing energy across the layer and altering the temperature distribution from when the refractive index is unity. The effect of scattering is examined by comparisons with results from an earlier paper for an absorbing layer. Results are given for a gray medium with a scattering albedo up to 0.999, and for a two-band spectral variation of the albedo with one band having low absorption. Radiant energy leaving the surface as a result of emission and scattering was examined to determine if it could be used to accurately indicate the surface temperature.
Chow, Robert; Loomis, Gary E.; Thomas, Ian M.
1999-01-01
Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (.about.1.10-1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm.
NASA Astrophysics Data System (ADS)
Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.
2018-02-01
Hybrid inorganic/organic one dimensional photonic crystal based on alternating layers of Si/HMDSO is elaborated. The inorganic silicon is deposited by radiofrequency magnetron sputtering and the organic HMDSO is deposited by PECVD technique. As the Si refractive index is n = 3.4, and the refractive index of HMDSO layer depend on the deposition conditions, to get a photonic crystal with high and low refractive index presenting a good contrast, we have varied the radiofrequency power of PECVD process to obtain HMDSO layer with low refractive index (n = 1.45). Photonic band gap of this hybrid structure is obtained from the transmission and reflection spectra and appears after 9 alternative layers of Si/HMDSO. The introduction of defects in our photonic crystal leads to the emergence of localized modes within the photonic band gap. Our results are interpreted by using a theoretical model based on transfer matrix.
Nonintrusive measurement of the liquid refractive index by using properties of the cuvette wall.
Xu, Ming; Ren, Junpeng; Miao, Runcai; Zhang, Zongquan
2016-10-01
We present a method of nonintrusive measurement of the refractive index of a liquid in a glass cuvette, which uses some optical properties of the cuvette wall and the principle of total internal reflection. By coating a transmission-scattering paint layer on the outer surface of the cuvette, we transform an incident laser beam into a transmitted scattered light. When the transmitted scattered light reaches the interface between the container wall and the liquid inside, the light beams satisfying the condition of total internal reflection are reflected to the coating layer, automatically forming a circular dark pattern that is related to the refractive index of the liquid. Based on an analytic relation between the diameter of the circular dark pattern and the refractive index of the liquid, we devised a method of in situ nonintrusive refractive index measurement. We tested the effect of several parameters on the measuring accuracy and found that the optimal thickness of the transmission-scattering layer is in the range of 50-70 μm, and the aperture of the diaphragm should be in the range of 0.7-1.0 mm. We measured the refractive indices of ethanol, Coca Cola, and red wine, and achieved an accuracy of ±3×10-4 RIU (refractive index unit).
Chow, R.; Loomis, G.E.; Thomas, I.M.
1999-03-16
Variable index optical single-layers, optical multilayer, and laser-resistant coatings were made from a perfluorinated amorphous polymer material by physical vapor deposition. This was accomplished by physically vapor depositing a polymer material, such as bulk Teflon AF2400, for example, to form thin layers that have a very low refractive index (ca. 1.10--1.31) and are highly transparent from the ultra-violet through the near infrared regime, and maintain the low refractive index of the bulk material. The refractive index can be varied by simply varying one process parameter, either the deposition rate or the substrate temperature. The thus forming coatings may be utilized in anti-reflectors and graded anti-reflection coatings, as well as in optical layers for laser-resistant coatings at optical wavelengths of less than about 2000 nm. 2 figs.
Variation of refractive index in strained In(x)Ga(1-x)As-GaAs heterostructures
NASA Technical Reports Server (NTRS)
Das, U.; Bhattacharya, P. K.
1986-01-01
In(x)Ga(1-x)As-GaAs heterostructures and strained-layer superlattices can be used as optical waveguides. For such applications it is important to know explicitly the refractive index variation with mismatch strain and with alloying in the ternary layer. Starting from the Kramers-Kronig integral dispersion relations, a model has been developed from which the refractive index change in the ternary layer of In(x)Ga(1-x)As-GaAs heterojunctions can be calculated. The results are presented and discussed. The expected changes in a superlattice have been qualitatively predicted.
NASA Astrophysics Data System (ADS)
Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay
2016-04-01
Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).
Manufacturing method of photonic crystal
Park, In Sung; Lee, Tae Ho; Ahn, Jin Ho; Biswas, Rana; Constant, Kristen P.; Ho, Kai-Ming; Lee, Jae-Hwang
2013-01-29
A manufacturing method of a photonic crystal is provided. In the method, a high-refractive-index material is conformally deposited on an exposed portion of a periodic template composed of a low-refractive-index material by an atomic layer deposition process so that a difference in refractive indices or dielectric constants between the template and adjacent air becomes greater, which makes it possible to form a three-dimensional photonic crystal having a superior photonic bandgap. Herein, the three-dimensional structure may be prepared by a layer-by-layer method.
Measurement method for the refractive index of thick solid and liquid layers.
Santić, Branko; Gracin, Davor; Juraić, Krunoslav
2009-08-01
A simple method is proposed for the refractive index measurement of thick solid and liquid layers. In contrast to interferometric methods, no mirrors are used, and the experimental setup is undemanding and simple. The method is based on the variation of transmission caused by optical interference within the layer as a function of incidence angle. A new equation is derived for the positions of the interference extrema versus incidence angle. Scattering at the surfaces and within the sample, as well as weak absorption, do not play important roles. The method is illustrated by the refractive index measurements of sapphire, window glass, and water.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Dong, Yanhua; Wang, Tingyun
2015-06-01
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractive index sensor based on an adiabatic tapered optical fiber. Different thickness of Al2O3 nanofilm is coated around fiber taper precisely and uniformly under different deposition cycles. Attributed to the high refractive index of the Al2O3 nanofilm, an asymmetry Fabry-Perot like interferometer is constructed along the fiber taper. Based on the ray-optic analysis, total internal reflection happens on the nanofilm-surrounding interface. With the ambient refractive index changing, the phase delay induced by the Goos-Hänchen shift is changed. Correspondingly, the transmission resonant spectrum shifts, which can be utilized for realizing high sensitivity sensor. The high sensitivity sensor with 6008 nm/RIU is demonstrated by depositing 3000 layers Al2O3 nanofilm as the ambient refractive index is close to 1.33. This high sensitivity refractive index sensor is expected to have wide applications in biochemical sensors.
Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V; Fleischer, Karsten
2016-09-13
We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales.
Numerical study on refractive index sensor based on hybrid-plasmonic mode
NASA Astrophysics Data System (ADS)
Yun, Jeong-Geun; Kim, Joonsoo; Lee, Kyookeun; Lee, Yohan; Lee, Byoungho
2017-04-01
We propose a highly sensitive hybrid-plasmonic sensor based on thin-gold nanoslit arrays. The transmission characteristics of gold nanoslit arrays are analyzed as changing the thickness of gold layer. The surface plasmon polariton mode excited on the sensing medium, which is sensitive to refractive index change of the sensing medium, is strengthened by reducing the thickness of the gold layer. A design rule is suggested that steeper dispersion curve of the surface plasmon polariton mode leads to higher sensitivity. For the dispersion engineering, hybrid-plasmonic structure, which consists of thin-gold nanoslit arrays, sensing region and high refractive index dielectric space is introduced. The proposed sensor structure with period of 700 nm shows the improved sensitivity up to 1080 nm/RIU (refractive index unit), and the surface sensitivity is extremely enhanced.
Emittance of a finite scattering medium with refractive index greater than unity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crosbie, A.L.
1980-01-01
Refractive index and scattering can significantly influence the transfer of radiation in a semitransparent medium such as water, glass, plastics, or ceramics. In a recent article (1979), the author presented exact numerical results for the emittance of a semiinfinite scattering medium with a refractive index greater than unity. The present investigation extends the analysis to a finite medium. The physical situation consists of a finite planar layer. The isothermal layer emits, absorbs, and isotropically scatters thermal radiation. It is characterized by single scattering albedo, optical thickness, refractive index, and temperature. A formula for the directional emittance is derived, the directionalmore » emittance being the emittance of the medium multiplied by the interface transmittance. The ratio of hemispherical to normal emittance is tabulated and discussed.« less
Optical Coatings With Graded Index Layers For High Power Laser Applications: Design
NASA Astrophysics Data System (ADS)
Zukic, Muamer; Guenther, Karl H.
1988-06-01
Graded index layers provide a greater flexibility for the design of optical coatings than "homogeneous" layers. A graded index layer can replace the whole or a part of a traditional multilayer stack of alternating thin films of high and low refractive index. This paper presents design examples for broadband antireflection coatings, narrowband high reflectors (also referred to as minus filters or rejection line filters), and non-polarizing beam splitters. Optimized refractive index profiles are derived for broadband antireflection coatings for various combinations of incident medium and substrate. The rejection line filter example uses a sinusoidal (rugate) index profile. The non-polarizing beamsplitter summarizes the topical contents of a paper presented in another conference at the same symposium.
Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1993-01-01
A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, expressions provide the temperature distribution and heat flow for a diffusing medium with a continually varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.
Variable Refractive Index Effects on Radiation in Semitransparent Scattering Multilayered Regions
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1993-01-01
A simple set of equations is derived for predicting the temperature distribution and radiative energy flow in a semitransparent layer consisting of an arbitrary number of laminated sublayers that absorb, emit, and scatter radiation. Each sublayer can have a different refractive index and optical thickness. The plane composite region is heated on each exterior side by a different amount of incident radiation. The results are for the limiting case where heat conduction within the layers is very small relative to radiative transfer, and is neglected. The interfaces are assumed diffuse, and all interface reflections are included in the analysis. The thermal behavior is readily calculated from the analytical expressions that are obtained. By using many sublayers, the analytical expressions provide the temperature distribution and heat flow for a diffusing medium with a continuously varying refractive index, including internal reflection effects caused by refractive index gradients. Temperature and heat flux results are given to show the effect of variations in refractive index and optical thickness through the multilayer laminate.
Stenzel, O; Wilbrandt, S; Wolf, J; Schürmann, M; Kaiser, N; Ristau, D; Ehlers, H; Carstens, F; Schippel, S; Mechold, L; Rauhut, R; Kennedy, M; Bischoff, M; Nowitzki, T; Zöller, A; Hagedorn, H; Reus, H; Hegemann, T; Starke, K; Harhausen, J; Foest, R; Schumacher, J
2017-02-01
Random effects in the repeatability of refractive index and absorption edge position of tantalum pentoxide layers prepared by plasma-ion-assisted electron-beam evaporation, ion beam sputtering, and magnetron sputtering are investigated and quantified. Standard deviations in refractive index between 4*10-4 and 4*10-3 have been obtained. Here, lowest standard deviations in refractive index close to our detection threshold could be achieved by both ion beam sputtering and plasma-ion-assisted deposition. In relation to the corresponding mean values, the standard deviations in band-edge position and refractive index are of similar order.
Two-Flux Method for Transient Radiative Transfer in a Semitransparent Layer
NASA Technical Reports Server (NTRS)
Siegel, Robert
1996-01-01
The two-flux method was used to obtain transient solutions for a plane layer including internal reflections and scattering. The layer was initially at uniform temperature, and was heated or cooled by external radiation and convection. The two-flux equations were examined as a means for evaluating the radiative flux gradient in the transient energy equation. Comparisons of transient temperature distributions using the two-flux method were made with results where the radiative flux gradient was evaluated from the exact radiative transfer equations. Good agreement was obtained for optical thicknesses from 0.5 to 5 and for refractive indices of 1 and 2. Illustrative results obtained with the two-flux method demonstrate the effect of isotropic scattering coupled with changing the refractive index. For small absorption with large scattering the maximum layer temperature is increased when the refractive index is increased. For larger absorption the effect is opposite, and the maximum temperature decreases with increased refractive index .
Silicon Nitride Antireflection Coatings for Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Johnson, C.; Wydeven, T.; Donohoe, K.
1984-01-01
Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.
Analysis of interferograms of refractive index inhomogeneities produced in optical materials
NASA Astrophysics Data System (ADS)
Tarjányi, N.
2014-12-01
Optical homogeneity of materials intended for optical applications is one of the criterions which decide on an appropriate application method for the material. The existence of a refractive index inhomogeneity inside a material may disqualify it from utilization or by contrary, provide an advantage. For observation of a refractive index inhomogeneity, even a weak one, it is convenient to use any of interferometric methods. They are very sensitive and provide information on spatial distribution of the refractive index, immediately. One can use them also in case when the inhomogeneity evolves in time, usually due to action of some external fields. Then, the stream of interferograms provides a dynamic evolution of a spatial distribution of the inhomogeneity. In the contribution, there are presented results of the analysis of interferograms obtained by observing the creation of a refractive index inhomogeneity due to illumination of thin layers of a polyvinyl-alcohol/acrylamide photopolymer and a plate of photorefractive crystal, lithium niobate, by light and a refractive index inhomogeneity originated at the boundary of two layers of polydimethylsiloxane. The obtained dependences can be used for studying of the mechanisms responsible for the inhomogeneity creation, designing various technical applications or for diagnostics of fabricated components.
NASA Astrophysics Data System (ADS)
Park, Hee K.; Schriver, Kenneth E.; Haglund, Richard F.
2011-11-01
Polymers find a number of potentially useful applications in optoelectronic devices. These include both active layers, such as light-emitting polymers and hole-transport layers, and passive layers, such as polymer barrier coatings and light-management films. This paper reports the experimental results for polymer films deposited by resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) and resonant infrared pulsed laser deposition (RIR-PLD) for commercial optoelectronic device applications. In particular, light-management films, such as anti-reflection coatings, require refractive-index engineering of a material. However, refractive indices of polymers fall within a relatively narrow range, leading to major efforts to develop both low- and high-refractive-index polymers. Polymer nanocomposites can expand the range of refractive indices by incorporating low- or high-refractive-index nanoscale materials. RIR-MAPLE is an excellent technique for depositing polymer-nanocomposite films in multilayer structures, which are essential to light-management coatings. In this paper, we report our efforts to engineer the refractive index of a barrier polymer by combining RIR-MAPLE of nanomaterials (for example, high refractive-index TiO2 nanoparticles) and RIR-PLD of host polymer. In addition, we report on the properties of organic and polymer films deposited by RIR-MAPLE and/or RIR-PLD, such as Alq3 [tris(8-hydroxyquinoline) aluminum] and PEDOT:PSS [poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)]. Finally, the challenges and potential for commercializing RIR-MAPLE/PLD, such as industrial scale-up issues, are discussed.
Caffrey, David; Norton, Emma; Coileáin, Cormac Ó; Smith, Christopher M.; Bulfin, Brendan; Farrell, Leo; Shvets, Igor V.; Fleischer, Karsten
2016-01-01
We demonstrate an alternative approach to tuning the refractive index of materials. Current methodologies for tuning the refractive index of a material often result in undesirable changes to the structural or optoelectronic properties. By artificially layering a transparent conducting oxide with a lower refractive index material the overall film retains a desirable conductivity and mobility while acting optically as an effective medium with a modified refractive index. Calculations indicate that, with our refractive index change of 0.2, a significant reduction of reflective losses could be obtained by the utilisation of these structures in optoelectronic devices. Beyond this, periodic superlattice structures present a solution to decouple physical properties where the underlying electronic interaction is governed by different length scales. PMID:27623228
Refractive index sensing by Brillouin scattering in side-polished optical fibers.
Bernini, Romeo; Persichetti, Gianluca; Catalano, Ester; Zeni, Luigi; Minardo, Aldo
2018-05-15
In this Letter, we demonstrate the possibility to measure the refractive index of a liquid, using the stimulating Brillouin scattering in a 3-cm-long side-polished optical fiber. In addition, we show that by depositing a high-refractive index layer on the polished surface the sensitivity of the Brillouin frequency shift (BFS) can be increased due to a higher penetration of the evanescent field in the outer medium. Experiments show a maximum BFS change of about 11 MHz when varying the refractive index of the external medium from 1 (air) to 1.402, and a BFS sensitivity to refractive index of about 293 MHz/RIU around 1.40.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Bui, Hao, E-mail: H.VanBui@utwente.nl; Wiggers, Frank B.; Gupta, Anubha
2015-01-01
The authors have studied and compared the initial growth and properties of AlN films deposited on Si(111) by thermal and plasma-enhanced atomic layer deposition (ALD) using trimethylaluminum and either ammonia or a N{sub 2}-H{sub 2} mixture as precursors. In-situ spectroscopic ellipsometry was employed to monitor the growth and measure the refractive index of the films during the deposition. The authors found that an incubation stage only occurred for thermal ALD. The linear growth for plasma-enhanced ALD (PEALD) started instantly from the beginning due to the higher nuclei density provided by the presence of plasma. The authors observed the evolution ofmore » the refractive index of AlN during the growth, which showed a rapid increase up to a thickness of about 30 nm followed by a saturation. Below this thickness, higher refractive index values were obtained for AlN films grown by PEALD, whereas above that the refractive index was slightly higher for thermal ALD films. X-ray diffraction characterization showed a wurtzite crystalline structure with a (101{sup ¯}0) preferential orientation obtained for all the layers with a slightly better crystallinity for films grown by PEALD.« less
NASA Astrophysics Data System (ADS)
Rosenberger, M.; Girschikofsky, M.; Förthner, M.; Belle, S.; Rommel, M.; Frey, L.; Schmauss, B.; Hellmann, R.
2018-01-01
We demonstrate the applicability of a planar waveguide Bragg grating in cyclo-olefin copolymer (COC) for refractive index sensing. The polymer planar waveguide Bragg grating fabricated using a single writing step technique is coated with a high-index layer of titanium dioxide (TiO2) leading to a distinct birefringence. This in turn results in the splitting of the Bragg reflection into two distinct Bragg wavelengths, which strongly differ regarding their refractive index sensitivities. Where one wavelength is only slightly affected by the ambient refractive index, the second Bragg peak shows a strong sensitivity. Furthermore, we investigate the temperature behaviour of the functionalized sensor and discuss it with respect to applications in refractive index sensing.
Ogata, Tomonari; Yagi, Ryohei; Nakamura, Nozomi; Kuwahara, Yutaka; Kurihara, Seiji
2012-08-01
Modulation of the refractive index of a polymer was achieved by combining it with diamond nanoparticles (NDs). The increase in the refractive index was controlled by the amount of NDs added, according to the Lorentz-Lorenz equation. The refractive index of poly(vinyl alcohol) (PVA), which was used as the base polymer, increased from 1.52 to 1.88. A multilayer film consisting of alternating layers of ND-PVA composite and poly(methyl methacrylate) exhibited ca. 80% reflectance with 10 bilayers.
A single-layer wide-angle negative-index metamaterial at visible frequencies.
Burgos, Stanley P; de Waele, Rene; Polman, Albert; Atwater, Harry A
2010-05-01
Metamaterials are materials with artificial electromagnetic properties defined by their sub-wavelength structure rather than their chemical composition. Negative-index materials (NIMs) are a special class of metamaterials characterized by an effective negative index that gives rise to such unusual wave behaviour as backwards phase propagation and negative refraction. These extraordinary properties lead to many interesting functions such as sub-diffraction imaging and invisibility cloaking. So far, NIMs have been realized through layering of resonant structures, such as split-ring resonators, and have been demonstrated at microwave to infrared frequencies over a narrow range of angles-of-incidence and polarization. However, resonant-element NIM designs suffer from the limitations of not being scalable to operate at visible frequencies because of intrinsic fabrication limitations, require multiple functional layers to achieve strong scattering and have refractive indices that are highly dependent on angle of incidence and polarization. Here we report a metamaterial composed of a single layer of coupled plasmonic coaxial waveguides that exhibits an effective refractive index of -2 in the blue spectral region with a figure-of-merit larger than 8. The resulting NIM refractive index is insensitive to both polarization and angle-of-incidence over a +/-50 degree angular range, yielding a wide-angle NIM at visible frequencies.
Experimental determination of refractive index of condensed reflectin in squid iridocytes.
Ghoshal, Amitabh; DeMartini, Daniel G; Eck, Elizabeth; Morse, Daniel E
2014-06-06
Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs.
Experimental determination of refractive index of condensed reflectin in squid iridocytes
Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.
2014-01-01
Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs. PMID:24694894
Refraction index sensor based on phase resonances in a subwavelength structure with double period.
Skigin, Diana C; Lester, Marcelo
2016-10-01
In this paper, we numerically demonstrate a refraction index sensor based on phase resonance excitation in a subwavelength-slit structure with a double period. The sensor consists of a metal layer with subwavelength slots arranged in a bi-periodic form, separated from a high refraction index medium. Between the metallic structure and the incident medium, a dielectric waveguide is formed whose refraction index is going to be determined. Variations in the refraction index of the waveguide are detected as shifts in the peaks of transmitted intensity originated by resonant modes supported by the compound metallic structure. At normal incidence, the spectral position of these resonant peaks exhibits a linear or a quadratic dependence with the refraction index, which permits us to obtain the unknown refraction index value with a high precision for a wide range of wavelengths. Since the operating principle of the sensor is due to the morphological resonances of the slits' structure, this device can be scaled to operate in different wavelength ranges while keeping similar characteristics.
Fiber-integrated refractive index sensor based on a diced Fabry-Perot micro-resonator.
Suntsov, Sergiy; Rüter, Christian E; Schipkowski, Tom; Kip, Detlef
2017-11-20
We report on a fiber-integrated refractive index sensor based on a Fabry-Perot micro-resonator fabricated using simple diamond blade dicing of a single-mode step-index fiber. The performance of the device has been tested for the refractive index measurements of sucrose solutions as well as in air. The device shows a sensitivity of 1160 nm/RIU (refractive index unit) at a wavelength of 1.55 μm and a temperature cross-sensitivity of less than 10 -7 RIU/°C. Based on evaluation of the broadband reflection spectra, refractive index steps of 10 -5 of the solutions were accurately measured. The conducted coating of the resonator sidewalls with layers of a high-index material with real-time reflection spectrum monitoring could help to significantly improve the sensor performance.
Optical parameters of the tunable Bragg reflectors in squid.
Ghoshal, Amitabh; Demartini, Daniel G; Eck, Elizabeth; Morse, Daniel E
2013-08-06
Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.
Optical parameters of the tunable Bragg reflectors in squid
Ghoshal, Amitabh; DeMartini, Daniel G.; Eck, Elizabeth; Morse, Daniel E.
2013-01-01
Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack—the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures. PMID:23740489
Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance.
Wu, JunJun; Li, Shuguang; Wang, Xinyu; Shi, Min; Feng, Xinxing; Liu, Yundong
2018-05-20
We propose a D-shaped photonic crystal fiber (PCF) refractive index sensor with ultrahigh sensitivity and a wide detection range. The gold layer is deposited on the polished surface, avoiding filling or coating inside the air holes of the PCF. The influences of the gold layer thickness and the diameter of the larger air holes are investigated. The sensing characteristics of the proposed sensor are analyzed by the finite element method. The maximum sensitivity can reach 31,000 nm/RIU, and the refractive index detection range is from 1.32 to 1.40. Our proposed PCF has excellent sensing characteristics and is competitive in sensing devices.
NASA Astrophysics Data System (ADS)
Wu, Linzhang; Tian, Wei; Gao, Feng
2004-09-01
This paper presents a self-consistent method to directly determine the effective refractive-index spectrum of a semiconductor quantum-well (QW) laser diode from the measured modal gain spectrum for a given current. The dispersion spectra of the optical waveguide confinement factor and the strongly carrier-density-dependent refractive index of the QW active layer of the test laser are also accurately obtained. The experimental result from a single QW GaInP/AlGaInP laser diode, which has 6 nm thick compressively strained Ga0.4InP active layer sandwiched by two 80 nm thick Al0.33GaInP, is presented.
Remote Boundary Layer Sensing - RO3571
1997-09-30
refractive index. However, the new availability of GPS-measured total precipitable water vapor, ( pwv ), (and total refractive index) allows radar-sensed...provide pwv with a moving shipboard receiver, it would presently be necessary to get the equivalent information with a shipboard microwave radiometer
NASA Astrophysics Data System (ADS)
Little, Douglas J.; Kane, Deb M.
2017-01-01
The transverse optical structure of two orb-weaver (family Araneidae) spider dragline silks was investigated using a variant of the inverse-scattering technique. Immersing the silks in a closely refractive index-matched liquid, the minimum achievable image contrast was greater than expected for an optically homogeneous silk, given what is currently known about the optical absorption of these silks. This "excess contrast" indicated the presence of transverse optical structure within the spider silk. Applying electromagnetic scattering theory to a transparent double cylinder, the minimum achievable irradiance contrast for the Plebs eburnus and Argiope keyserlingi dragline silks was determined to be consistent with step index refractive index contrasts of 1-4×10-4 and 6-7×10-4, respectively, supposing outer-layer thicknesses consistent with previous TEM studies (50 nm and 100 nm, respectively). The possibility of graded index refractive index contrasts within the spider silks is also discussed. This is the strongest evidence, to date, that there is a refractive index contrast associated with the layered morphology of spider silks and/or variation of proportion of nanocrystalline components within the spider silk structure. The method is more generally applicable to optical micro-fibers, including those with refractive index variations on a sub-wavelength scale.
Technique for forming ITO films with a controlled refractive index
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.
2016-07-15
A new method for fabricating transparent conducting coatings based on indium-tin oxide (ITO) with a controlled refractive index is proposed. This method implies the successive deposition of material by electron-beam evaporation and magnetron sputtering. Sputtered coatings with different densities (and, correspondingly, different refractive indices) can be obtained by varying the ratio of the mass fractions of material deposited by different methods. As an example, films with effective refractive indices of 1.2, 1.4, and 1.7 in the wavelength range of 440–460 nm are fabricated. Two-layer ITO coatings with controlled refractive indices of the layers are also formed by the proposed method.more » Thus, multilayer transparent conducting coatings with desired optical parameters can be produced.« less
Long-distance transmission of light in a scintillator-based radiation detector
Dowell, Jonathan L.; Talbott, Dale V.; Hehlen, Markus P.
2017-07-11
Scintillator-based radiation detectors capable of transmitting light indicating the presence of radiation for long distances are disclosed herein. A radiation detector can include a scintillator layer and a light-guide layer. The scintillator layer is configured to produce light upon receiving incident radiation. The light-guide layer is configured to receive light produced by the scintillator layer and either propagate the received light through the radiation detector or absorb the received light and emit light, through fluorescence, that is propagated through the radiation detector. A radiation detector can also include an outer layer partially surrounding the scintillator layer and light-guide layer. The index of refraction of the light-guide layer can be greater than the index of refraction of adjacent layers.
Hilfiker, James N.; Stadermann, Michael; Sun, Jianing; ...
2016-08-27
It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less
Mariani, Stefano; Strambini, Lucanos Marsilio; Barillaro, Giuseppe
2018-03-23
Herein, we provide the first experimental evidence on the use of electrical double layer (EDL)-induced accumulation of charged ions (using both Na + and K + ions in water as the model) onto a negatively charged nanostructured surface (e.g., thermally growth SiO 2 )-Ion Surface Accumulation, ISA-as a means of improving performance of nanostructured porous silicon (PSi) interferometers for optical refractometric applications. Nanostructured PSi interferometers are very promising optical platforms for refractive index sensing due to PSi huge specific surface (hundreds of m 2 per gram) and low preparation cost (less than $0.01 per 8 in. silicon wafer), though they have shown poor resolution ( R) and detection limit (DL) (on the order of 10 -4 -10 -5 RIU) compared to other plasmonic and photonic platforms ( R and DL on the order of 10 -7 -10 -8 RIU). This can be ascribed to both low sensitivity and high noise floor of PSi interferometers when bulk refractive index variation of the solution infiltrating the nanopores either approaches or is below 10 -4 RIU. Electrical double layer-induced ion surface accumulation (EDL-ISA) on oxidized PSi interferometers allows the interferometer output signal (spectral interferogram) to be impressively amplified at bulk refractive index variation below 10 -4 RIU, increasing, in turn, sensitivity up to 2 orders of magnitude and allowing reliable measurement of refractive index variations to be carried out with both DL and R of 10 -7 RIU. This represents a 250-fold-improvement (at least) with respect to the state-of-the-art literature on PSi refractometers and pushes PSi interferometer performance to that of state-of-the-art ultrasensitive photonics/plasmonics refractive index platforms.
Multi-parameter optimization of monolithic high-index contrast grating reflectors
NASA Astrophysics Data System (ADS)
Marciniak, Magdalena; Gebski, Marcin; Dems, Maciej; Wasiak, Michał; Czyszanowski, Tomasz
2016-03-01
Conventional High-index Contrast Gratings (HCG) consist of periodically distributed high refractive index stripes surrounded by low index media. Practically, such low/high index stack can be fabricated in several ways however low refractive index layers are electrical insulators of poor thermal conductivities. Monolithic High-index Contrast Gratings (MHCGs) overcome those limitations since they can be implemented in any material with a real refractive index larger than 1.75 without the need of the combination of low and high refractive index materials. The freedom of use of various materials allows to provide more efficient current injection and better heat flow through the mirror, in contrary to the conventional HCGs. MHCGs can simplify the construction of VCSELs, reducing their epitaxial design to monolithic wafer with carrier confinement and active region inside and etched stripes on both surfaces in post processing. We present numerical analysis of MHCGs using a three-dimensional, fully vectorial optical model. We investigate possible designs of MHCGs using multidimensional optimization of grating parameters for different refractive indices.
Enhancement of graphene visibility on transparent substrates by refractive index optimization.
Gonçalves, Hugo; Alves, Luís; Moura, Cacilda; Belsley, Michael; Stauber, Tobias; Schellenberg, Peter
2013-05-20
Optical reflection microscopy is one of the main imaging tools to visualize graphene microstructures. Here is reported a novel method that employs refractive index optimization in an optical reflection microscope, which greatly improves the visibility of graphene flakes. To this end, an immersion liquid with a refractive index that is close to that of the glass support is used in-between the microscope lens and the support improving the contrast and resolution of the sample image. Results show that the contrast of single and few layer graphene crystals and structures can be enhanced by a factor of 4 compared to values commonly achieved with transparent substrates using optical reflection microscopy lacking refractive index optimization.
A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.
Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng
2015-03-26
We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.
NASA Astrophysics Data System (ADS)
Probostova, Jana; Slanicka, Jiri; Mrazek, Jan; Podrazky, Ondrej; Benda, Adam; Peterka, Pavel
2016-04-01
Refractive index profile measurement is a key instrument for characterization of optical properties of preforms, which are used for drawing of high-quality optical fibers. Common industrial optical preform analyzers have been designed for measurement of simple symmetric structures such as step-index or graded-index preforms with refractive index close to the silica (n=1.457 at 633 nm). However, these conditions are usually far from more complex structures used in fiber lasers or in fiber sensor area. Preforms for the drawing of advanced optical fibers, such as Bragg, microstructure or photonic crystal fibers, are usually constituted from stacks with non-symmetric internal structure or composed of alternating layers with high refractive index contrasts. In this paper we present comparison of refractive index profile measurements of simple as well as complex structures with high refractive index differences simulating the Bragg structures. Commercial Photon Kinetics 2600 preform analyzer was used for the refractive index profile measurements. A set of concentrically arranged silica tubes was welded to form a complex preforms. Free space between the tubes was filled by immersion with varying refractive indices to simulate the Bragg structure. Up to three tubes were used for the analysis and the refractive indices of immersion were changed from 1.4 to 1.5. When refractive index of immersion was independently measured the structure of preform was defined. Profiles of these "known" structures were compared to measured data processed by originally proposed algorithm. The work provides an extension of issues of refractive index profile measurements in non-symmetric complex silica structures by a commercial preform analyzer and proposes more convenient methods of numeric data processing.
MOCVD-Grown InGaAsP Double Heterostructure Diode Lasers
1993-08-01
assuming refractive index and its dispersion for InGaAsP and InGaP corresponding to the known values for AIGaAs compounds with the same bandgap [13...in the refractive index between the waveguide and cladding layers provides light confinement within the optical cavity. Separate optical and
Phase Modulator with Terahertz Optical Bandwidth Formed by Multi-Layered Dielectric Stack
NASA Technical Reports Server (NTRS)
Keys, Andrew S. (Inventor); Fork, Richard L. (Inventor)
2005-01-01
An optical phase modulator includes a bandpass multilayer stack, formed by a plurality of dielectric layers, preferably of GaAs and AlAs, and having a transmission function related to the refractive index of the layers of the stack, for receiving an optical input signal to be phase modulated. A phase modulator device produces a nonmechanical change in the refractive index of each layer of the stack by, e.g., the injection of free carrier, to provide shifting of the transmission function so as to produce phase modulation of the optical input signal and to thereby produce a phase modulated output signal.
Low-loss single-layer metamaterial with negative index of refraction at visible wavelengths.
García-Meca, C; Ortuño, R; Salvador, R; Martínez, A; Martí, J
2007-07-23
We present a structure exhibiting a negative index of refraction at visible or near infrared frequencies using a single metal layer. This contrasts with recently developed structures based on metal-dielectric-metal composites. The proposed metamaterial consists of periodically arranged thick stripes interacting with each other to give rise to a negative permeability. Improved designs that allow for a negative index for both polarizations are also presented. The structures are numerically analyzed and it is shown that the dimensions can be engineered to shift the negative index band within a region ranging from telecommunication wavelengths down to blue light.
Simplified design of thin-film polarizing beam splitter using embedded symmetric trilayer stack.
Azzam, R M A
2011-07-01
An analytically tractable design procedure is presented for a polarizing beam splitter (PBS) that uses frustrated total internal reflection and optical tunneling by a symmetric LHL trilayer thin-film stack embedded in a high-index prism. Considerable simplification arises when the refractive index of the high-index center layer H matches the refractive index of the prism and its thickness is quarter-wave. This leads to a cube design in which zero reflection for the p polarization is achieved at a 45° angle of incidence independent of the thicknesses of the identical symmetric low-index tunnel layers L and L. Arbitrarily high reflectance for the s polarization is obtained at subwavelength thicknesses of the tunnel layers. This is illustrated by an IR Si-cube PBS that uses an embedded ZnS-Si-ZnS trilayer stack.
Engineering the Complex-Valued Constitutive Parameters of Metamaterials for Perfect Absorption
NASA Astrophysics Data System (ADS)
Wang, Pengwei; Chen, Naibo; Tang, Chaojun; Chen, Jing; Liu, Fanxin; Sheng, Saiqian; Yan, Bo; Sui, Chenghua
2017-04-01
We theoretically studied how to directly engineer the constitutive parameters of metamaterials for perfect absorbers of electromagnetic waves. As an example, we numerically investigated the necessary refractive index n and extinction coefficient k and the relative permittivity ɛ and permeability μ of a metamaterial anti-reflection layer, which could cancel the reflection from a hydrogenated amorphous silicon (α-Si:H) thin film on a metal substrate, within the visible wavelength range from 300 to 800 nm. We found that the metamaterial anti-reflection layer should have a negative refractive index ( n < 0) for short-wavelength visible light but have a positive refractive index ( n > 0) for long-wavelength visible light. The relative permittivity ɛ and permeability μ could be fitted by the Lorentz model, which exhibited electric and magnetic resonances, respectively.
NASA Technical Reports Server (NTRS)
Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.
2000-01-01
The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time a complete set of vertically resolved aerosol size distribution and refractive index data, yielding the vertical distribution of aerosol optical properties required for the determination of aersol-induced radiative flux changes
NASA Technical Reports Server (NTRS)
Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.;
2000-01-01
The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study provides, for the first time, a complete set of vertically resolved aerosol size distribution and refractive index data. yielding the vertical distribution of aerosol optical properties required for the determination of aerosol-induced radiative flux changes.
NASA Astrophysics Data System (ADS)
Fathollahi Khalkhali, T.; Bananej, A.
2017-10-01
In this paper, we investigate the transmission of a 10-femtosecond pulse through an ordinary and graded index coupled-cavity waveguide, using finite-difference time-domain and transfer matrix method. The ordinary structure is composed of dielectric/liquid crystal layers in which four defect layers are placed symmetrically. Next, we introduce a graded structure based on the ordinary system in which dielectric refractive index slightly increases with a constant step value from the beginning to the end of the structure while liquid crystal layers are maintained unchanged. Simulation results reveal that by applying an external static electric field and controlling liquid crystal refractive index in graded structure, it is possible to transmit an ultrashort pulse with negligible distortion and attenuation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilfiker, James N.; Stadermann, Michael; Sun, Jianing
It is a well-known challenge to determine refractive index (n) from ultra-thin films where the thickness is less than about 10 nm. In this paper, we discovered an interesting exception to this issue while characterizing spectroscopic ellipsometry (SE) data from isotropic, free-standing polymer films. Ellipsometry analysis shows that both thickness and refractive index can be independently determined for free-standing films as thin as 5 nm. Simulations further confirm an orthogonal separation between thickness and index effects on the experimental SE data. Effects of angle of incidence and wavelength on the data and sensitivity are discussed. Finally, while others have demonstratedmore » methods to determine refractive index from ultra-thin films, our analysis provides the first results to demonstrate high-sensitivity to the refractive index from ultra-thin layers.« less
NASA Astrophysics Data System (ADS)
Paramonov, P. V.; Vorontsov, A. M.; Kunitsyn, V. E.
2015-10-01
Numerical modeling of optical wave propagation in atmospheric turbulence is traditionally performed with using the so-called "split"-operator method, when the influence of the propagation medium's refractive index inhomogeneities is accounted for only within a system of infinitely narrow layers (phase screens) where phase is distorted. Commonly, under certain assumptions, such phase screens are considered as mutually statistically uncorrelated. However, in several important applications including laser target tracking, remote sensing, and atmospheric imaging, accurate optical field propagation modeling assumes upper limitations on interscreen spacing. The latter situation can be observed, for instance, in the presence of large-scale turbulent inhomogeneities or in deep turbulence conditions, where interscreen distances become comparable with turbulence outer scale and, hence, corresponding phase screens cannot be statistically uncorrelated. In this paper, we discuss correlated phase screens. The statistical characteristics of screens are calculated based on a representation of turbulent fluctuations of three-dimensional (3D) refractive index random field as a set of sequentially correlated 3D layers displaced in the wave propagation direction. The statistical characteristics of refractive index fluctuations are described in terms of the von Karman power spectrum density. In the representation of these 3D layers by corresponding phase screens, the geometrical optics approximation is used.
NASA Astrophysics Data System (ADS)
Ju, Yao; Ning, Shougui; Sun, Huijin; Mo, Jun; Yang, Chao; Feng, Guoying; Zhou, Hao; Zhou, Shouhuan
2018-07-01
We propose and demonstrate a coating-enhanced dual-microspheric structure fiber sensor that measures temperature and refractive index simultaneously. The claddings of the two microspheric structured fibers are spliced together and the ends of the fibers are coated with a layer of gold film to increase reflection, thereby forming a dual-microspheric structure sensor head. Our experimental results show that the temperature sensitivity and the refractive index can reach 65.77 pm °C‑1 and ‑19.7879 nm RIU‑1, respectively. Compared with the uncoated sensor, the refractive index sensitivity is significantly improved by the gold film. This work suggests a low-cost, high-resolution and convenient fiber-based method to achieve multifunctional sensing applications.
Bao, Lei; Ji, Zihan; Wang, Hongning; Chen, Ruoyu
2017-06-27
Antireflective coatings with superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength have important practical value. In this research, hollow nanorod-like MgF 2 sols with different void volumes were prepared by a template-free solvothermal method to further obtain hollow nanorod-like MgF 2 crystals with an ultralow refractive index of 1.14. Besides, a MgF 2 coating with an adjustable refractive index of 1.10-1.35 was also prepared by the template-free solvothermal method. Then through the combination of base/acid two-step-catalyzed TEOS and hydroxyl modification on the surface of nanosilica spheres, the SiO 2 coating with good mechanical strength, a flat surface, and a refractive index of 1.30-1.45 was obtained. Double-layer broadband antireflective coatings with an average transmittance of 99.6% at 400-1400 nm were designed using the relevant optical theory. After the coating thickness was optimized by the dip-coating method, the double-layer antireflective coatings, whose parameters were consistent with those designed by the theory, were obtained. The bottom layer was a SiO 2 coating with a refractive index of 1.34 and a thickness of 155 nm, and the top layer was a hollow rodlike MgF 2 coating with a refractive index of 1.10 and a thickness of 165 nm. The average transmittance of the obtained MgF 2 -SiO 2 antireflective coatings was 99.1% at 400-1400 nm, which was close to the theoretical value. The hydrophobic angle of the coating surface reached 119° at first, and the angle further reached 152° after conducting surface modification by PFOTES. In addition, because the porosity of the coating surface was only 10.7%, the pencil hardness of the coating surface was 5 H and the critical load Lc was 27.05 N. In summary, the obtained antireflective coatings possessed superhydrophobic, self-cleaning, and wide-spectrum high-transmittance properties and good mechanical strength.
Resonant optical tunneling-induced enhancement of the photonic spin Hall effect
NASA Astrophysics Data System (ADS)
Jiang, Xing; Wang, Qingkai; Guo, Jun; Zhang, Jin; Chen, Shuqing; Dai, Xiaoyu; Xiang, Yuanjiang
2018-04-01
Due to the quantum analogy with optics, the resonant optical tunneling effect (ROTE) has been proposed to investigate both the fundamental physics and the practical applications of optical switches and liquid refractive index sensors. In this paper, the ROTE is used to enhance the spin Hall effect (SHE) of transmitted light. It is demonstrated that sandwiching a layer of a high-refractive-index medium (boron nitride crystal) between two low-refractive-index layers (silica) can effectively enhance the photonic SHE due to the increased refractive index gradient and an enhanced evanescent field near the interface between silica and boron nitride. A maximum transverse shift of the horizontal polarization state in the ROTE structure of about 22.25 µm has been obtained, which is at least three orders of magnitude greater than the transverse shift in the frustrated total internal reflection structure. Moreover, the SHE can be manipulated by controlling the component materials and the thickness of the ROTE structure. These findings open the possibility for future applications of photonic SHE in precision metrology and spin-based photonics.
Yang, Wei; Lei, Xiangyang; Hui, Haohao; Zhang, Qinghua; Deng, Xueran
2018-05-07
Moisture-resistant silicone coatings were prepared on the surface of potassium dihydrogen phosphate (KDP) crystal by means of spin-coating, in which hydrophobic-modified SiO₂ nanoparticles were embedded in a certain proportion. The refractive index of such coating can be tuned arbitrarily in the range of 1.21⁻1.44, which endows the KDP optical component with excellent transmission capability as well as the moisture proof effect. A dual-layer anti-reflective coating system was obtained by covering this silicone coating with a porous SiO₂ coating which is specially treated to enhance the moisture resistance. Transmittance of such a dual-layer coating system could reach 99.60% and 99.62% at 1064 nm and 532 nm, respectively, by precisely matching the refractive index of both layers. Furthermore, the long-term stability of this coating system has been verified at high humidity ambient of 80% RH for 27 weeks.
NASA Astrophysics Data System (ADS)
Cennamo, Nunzio; Zuppella, Paola; Bacco, Davide; Corso, Alain J.; Pelizzo, Maria G.; Pesavento, Maria; Zeni, Luigi
2016-05-01
A novel sensing platform based on thin metal bilayer for surface plasmon resonance (SPR) in a D-shaped plastic optical fiber (POF) has been designed, implemented and tested. The experimental results are congruent with the numerical studies. This platform has been properly optimized to work in the 1.38 -1.42 refractive index range and it exhibits excellent sensitivity. This refractive index range is very interesting for bio-chemical applications, where the polymer layer are used as receptors (e.g. molecularly imprinted polymer) or to immobilize the bio-receptor on the metal surface. The proposed metallic bilayer is based on palladium and gold films and replaces the traditional gold by exhibiting higher performances. Furthermore, the deposition of the thin bilayer is a single process and no further manufacturing step is required. In fact, in this case the photoresist buffer layer between the POF core and the metal layer, usually required to increase the refractive index range, is no longer necessary.
NASA Astrophysics Data System (ADS)
Seo, Dong-Ju; Lee, Dong-Seon
2016-08-01
GaN-based blue LEDs were fabricated and studied with porous, dense, and dual-layer indium tin oxide (ITO) structures as transparent top electrodes to enhance light extraction. The electroluminescence intensity of the LED with a thickness-optimized and refractive-index-tuned ITO dual layer at I = 20 mA was higher by 19.7% than that of the conventional LED with a 200 nm planar ITO. This study confirmed that an ITO dual layer can be made with a single material by optimizing the thickness and tuning the refractive index, which improves the power output without any electrical property degradation.
NASA Technical Reports Server (NTRS)
Sinyuk, Alexander; Torres, Omar; Dubovik, Oleg; Bhartia, P. K. (Technical Monitor)
2002-01-01
We present a method for retrieval of imaginary part of refractive index of desert dust aerosol in UV part of spectrum along with aerosol layer height above the ground. The method uses Total Ozone Mapping Spectrometer' (TOMS) measurements of the top of atmosphere radiances (331 nm, 360 nm) and aerosol optical depth provided by Aerosol Robotic Network (AERONET) (440 nm). Obtained values of imaginary part of refractive index retrieved for Saharan dust aerosol at 360 nm are significantly lower than previously reported values. The average retrieved values vary between 0.0054 and 0.0066 for different geographical locations. Our findings are in good agreement with the results of several recent investigations. The time variability of retrieved values for aerosol layer height is consistent with the predictions of dust transport model.
A simple radiative transfer model of the high latitude mesospheric scattering layer
NASA Technical Reports Server (NTRS)
Hummel, J. R.
1974-01-01
A simple radiative transfer model of the particle layer found at 85 km over the summer poles is presented. The effects of the layer on the global radiative temperature, the polar region temperature, and the greenhouse effect are discussed. The estimated magnitude of the global radiative temperature change is 3.5 x .001 K to 2.2 x .01 K, depending on the value of the imaginary part of the particle index of refraction. The layer is shown to have a possible secondary influence on the temperature of the polar region while the contribution which the layer makes to the greenhouse effect is shown to be negligible. The imaginary part of the particle index of refraction is shown to be important in determining the attenuation properties of the layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito
Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less
Ghamsari, Behnood G.; Tosado, Jacob; Yamamoto, Mahito; ...
2016-09-29
Here, we have experimentally studied the optical refractive index of few-layer graphene through reflection spectroscopy at visible wavelengths. A laser scanning microscope (LSM) with a coherent supercontinuum laser source measured the reflectivity of an exfoliated graphene flake on a Si/SiO 2 substrate, containing monolayer, bilayer and trilayer areas, as the wavelength of the laser was varied from 545nm to 710nm. The complex refractive index of few-layer graphene, n-ik, was extracted from the reflectivity contrast to the bare substrate and the Fresnel reflection theory. Since the SiO 2 thickness enters to the modeling as a parameter, it was precisely measured atmore » the location of the sample. It was found that a common constant optical index cannot explain the wavelength-dependent reflectivity data for single-, double- and three-layer graphene simultaneously, but rather each individual few-layer graphene possesses a unique optical index whose complex values were precisely and accurately determined from the experimental data.« less
Direct-patterned optical waveguides on amorphous silicon films
Vernon, Steve; Bond, Tiziana C.; Bond, Steven W.; Pocha, Michael D.; Hau-Riege, Stefan
2005-08-02
An optical waveguide structure is formed by embedding a core material within a medium of lower refractive index, i.e. the cladding. The optical index of refraction of amorphous silicon (a-Si) and polycrystalline silicon (p-Si), in the wavelength range between about 1.2 and about 1.6 micrometers, differ by up to about 20%, with the amorphous phase having the larger index. Spatially selective laser crystallization of amorphous silicon provides a mechanism for controlling the spatial variation of the refractive index and for surrounding the amorphous regions with crystalline material. In cases where an amorphous silicon film is interposed between layers of low refractive index, for example, a structure comprised of a SiO.sub.2 substrate, a Si film and an SiO.sub.2 film, the formation of guided wave structures is particularly simple.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alshehri, Bandar; Dogheche, Elhadj, E-mail: elhadj.dogheche@univ-valenciennes.fr; Lee, Seung-Min
2014-08-04
In order to modulate the refractive index and the birefringence of Gallium Nitride (GaN), we have developed a chemical etching method to perform porous structures. The aim of this research is to demonstrate that optical properties of GaN can be tuned by controlling the pores density. GaN films are prepared on sapphire by metal organic chemical vapor deposition and the microstructure is characterized by transmission electron microscopy, and scanning electron microscope analysis. Optical waveguide experiment is demonstrated here to determine the key properties as the ordinary (n{sub 0}) and extraordinary (n{sub e}) refractive indices of etched structures. We report heremore » the dispersion of refractive index for porous GaN and compare it to the bulk material. We observe that the refractive index decreases when the porous density p is increased: results obtained at 0.975 μm have shown that the ordinary index n{sub 0} is 2.293 for a bulk layer and n{sub 0} is 2.285 for a pores density of 20%. This value corresponds to GaN layer with a pore size of 30 nm and inter-distance of 100 nm. The control of the refractive index into GaN is therefore fundamental for the design of active and passive optical devices.« less
Dynamically tunable dendritic graphene-based absorber with thermal stability at infrared regions
NASA Astrophysics Data System (ADS)
Huang, Hailong; Xia, Hui; Guo, Zhibo; Xie, Ding; Li, Hongjian
2018-06-01
The infrared polarization-insensitive absorber, which is composed of dendritic metal, graphene layer, silicon dioxides layer, gallium arsenide substrate, and metal plate, is investigated theoretically and numerically. The tunability can be realized by loading a graphene layer into the structure. The position of absorption peak can be tuned by manipulating the graphene's Fermi energy. Compared with the previously reported graphene-based absorbers, the system has the advantage of temperature-independent high absorption. The results indicate that the proposed absorber can be used in the applications of the refractive index sensor with a sensitivity of 587.8 nm/refractive index unit and temperature-insensitive infrared absorber.
NASA Technical Reports Server (NTRS)
Siegel, Robert
1996-01-01
Surface convection and refractive index are examined during transient radiative heating or cooling of a grey semitransparent layer with internal absorption, emission and conduction. Each side of the layer is exposed to hot or cold radiative surroundings, while each boundary is heated or cooled by convection. Emission within the layer and internal reflections depend on the layer refractive index. The reflected energy and heat conduction distribute energy across the layer and partially equalize the transient temperature distributions. Solutions are given to demonstrate the effect of radiative heating for layers with various optical thicknesses, the behavior of the layer heated by radiation on one side and convectively cooled on the other, and a layer heated by convection while being cooled by radiation. The numerical method is an implicit finite difference procedure with non-uniform space and time increments. The basic method developed in earlier work is expanded to include external convection and incident radiation.
Index of refraction of GaAs-Al(x)Ga(1-x)As superlattices and multiple quantum wells
NASA Technical Reports Server (NTRS)
Kahen, K. B.; Leburton, J. P.
1987-01-01
A theoretical study of the index of refraction of superlattices and its variation as a function of frequency and the superlattice parameters, i.e., layer width and AlAs composition, is presented. Gamma-region exciton and valence-band mixing effects are included in the model. It is found that these two effects have an important influence on the value of the index of refraction and that superstructure effects rapidly decrease for energies greater than the superlattice potential barriers. Because of the quasi-two-dimensional character of the Gamma-region excitons, the results indicate that the superlattice index of refraction can vary by about two percent at the quantized, bound-exciton, transition energies. Overall, the theoretical results are in good agreement with the experimental data.
Beléndez, Augusto; Beléndez, Tarsicio; Neipp, Cristian; Pascual, Inmaculada
2002-11-10
A method to determine the refractive index and thickness of silver halide emulsions used in holography is presented. The emulsions are in the form of a layer of film deposited on a thick glass plate. The experimental reflectances of p-polarized light are measured as a function of the incident angles, and the values of refractive index, thickness, and extinction coefficient of the emulsion are obtained by using the theoretical equation for reflectance. As examples, five commercial holographic silver halide emulsions are analyzed. The procedure to obtain the measurements and the numerical analysis of the experimental data are simple, and agreement of the calculated reflectances, by use of the thickness and refractive index obtained, with the measured reflectances is satisfactory.
Invited Article: Refractive index matched scanning of dense granular materials
NASA Astrophysics Data System (ADS)
Dijksman, Joshua A.; Rietz, Frank; Lőrincz, Kinga A.; van Hecke, Martin; Losert, Wolfgang
2012-01-01
We review an experimental method that allows to probe the time-dependent structure of fully three-dimensional densely packed granular materials and suspensions by means of particle recognition. The method relies on submersing a granular medium in a refractive index matched fluid. This makes the resulting suspension transparent. The granular medium is then visualized by exciting, layer by layer, the fluorescent dye in the fluid phase. We collect references and unreported experimental know-how to provide a solid background for future development of the technique, both for new and experienced users.
Integrated optical silicon IC compatible nanodevices for biosensing applications
NASA Astrophysics Data System (ADS)
Lechuga, Laura M.; Sepulveda, Borja; Llobera, Andreu; Calle, Ana; Dominguez, Carlos M.
2003-04-01
Biological and chemical sensing is one of the application fields where integrated optical nanodevices can play an important role [1]. We present a Silicon Integrated Mach-Zehnder Interferometer Nanodevice using a Total Internal Refraction waveguide configuration. The induced changes due to a biomolecular interactions in the effective refractive index of the waveguide,is monitored by the measurement of the change in the properties of the propagating light. For using this device as a biosensor, the waveguides of the structure must verify two conditions: work in the monomode regime and to have a Surface Sensivity as high as possible in the sensing arm. The MZI device structure is: (i) a Si wafer with a 500 mm thickness (ii) a 2 mm thick thermal Silicon-Oxide layer with a refractive index of 1.46 (iii) a LPCVD Silicon Nitride layer of 100 nm thickness and a refractive index of 2.00, which is used as the guiding layer. To achieve monomode behavior is needed to define a rib structure, with a depth of only 3 nm, on the Silicon Nitride layer by a lithographic step. This rib structure is performed by RIE and is the most critical step in the microfabrication of the device. Over the structure a protective layer of LPCVD SiO2 is deposited, with a 2 mm thickness and a refractive index of 1.46, which is patterned (photolithography) and etched (RIE) to define the sensing arm. The high sensivity of these devices makes them quite suitable for biosensing applications. For that, without loosing their activity the receptors biomolecules are covanlently immobilized, at nanometer scale , on the sensor area surface. Biospecific molecular recognition takes places when the complementary analyte to the receptor is flowed over the receptor using a flow system. Several biosensing applications have been performed with this device as enviromental pollutant control, immunosensing or genetic detection.
The eye lens: age-related trends and individual variations in refractive index and shape parameters.
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-10-13
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height.
The eye lens: age-related trends and individual variations in refractive index and shape parameters
Pierscionek, Barbara; Bahrami, Mehdi; Hoshino, Masato; Uesugi, Kentaro; Regini, Justyn; Yagi, Naoto
2015-01-01
The eye lens grows throughout life by cell accrual on its surface and can change shape to adjust the focussing power of the eye. Varying concentrations of proteins in successive cell layers create a refractive index gradient. The continued growth of the lens and age-related changes in proteins render it less able to alter shape with loss of capacity by the end of the sixth decade of life. Growth and protein ageing alter the refractive index but as accurate measurement of this parameter is difficult, the nature of such alterations remains uncertain. The most accurate method to date for measuring refractive index in intact lenses has been developed at the SPring-8 synchrotron. The technique, based on Talbot interferometry, has an X-ray source and was used to measure refractive index in sixty-six human lenses, aged from 16 to 91 years. Height and width were measured for forty-five lenses. Refractive index contours show decentration in some older lenses but individual variations mask age-related trends. Refractive index profiles along the optic axis have relatively flat central sections with distinct micro-fluctuations and a steep gradient in the cortex but do not exhibit an age-related trend. The refractive index profiles in the equatorial aspect show statistical significance with age, particularly for lenses below the age of sixty that had capacity to alter shape in vivo. The maximum refractive index in the lens centre decreases slightly with age with considerable scatter in the data and there are age-related variations in sagittal thickness and equatorial height. PMID:26416418
Giannios, Panagiotis; Koutsoumpos, Spyridon; Toutouzas, Konstantinos G; Matiatou, Maria; Zografos, George C; Moutzouris, Konstantinos
2017-02-01
A multi-wavelength prism coupling refractometer is utilized to measure the angular reflectance of freshly excised human intestinal tissue specimens. Based on reflectance data, the real and imaginary part of the refractive index is calculated via Fresnel analysis for three visible (blue, green, red) and two near-infrared (963 nm and 1551 nm) wavelengths. Averaged values of the complex refractive index and corresponding Cauchy dispersion fits are given for the mucosa, submucosa and serosa layers of the colorectal wall at the normal state. The refractive constants of tumorous and normal mucosa are then cross-compared for the indicative cases of one patient diagnosed with a benign polyp and three patients diagnosed with adenocarcinomas of different phenotype. Significant index contrast exists between the normal and diseased states, indicating the potential use of refractive index as a marker of colorectal dysplasia. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain
NASA Astrophysics Data System (ADS)
Mishra, Akhilesh Kumar; Mishra, Satyendra Kumar
2017-04-01
A theoretical study of a noble surface plasmon resonance (SPR) based sensing probe has been carried out. The sensing probe consists of a magnesium fluoride (MgF2) prism with its base coated with rarely used noble metal rhodium (Rh) and a bio-compatible layer of graphene. The refractive indices (RIs) of the sensing medium vary from 1.33 to 1.36 refractive index unit (RIU). The thickness of Rh and the number of graphene layers have been optimized for maximum sensitivity in a constraint set by the detection accuracy (DA). For the operating wavelength of 632 nm, the optimized sensing probe Rh (12 nm)/graphene (single layer) demonstrates sensitivity of ~259 degree/RIU with corresponding DA of ~0.32 degree-1 while for 532 nm of excitation, the optimized sensing probe Rh (12 nm)/graphene (three layer) exhibits sensitivity of ~240 degree/RIU and DA of ~0.27 degree-1.
MgF2 prism/rhodium/graphene: efficient refractive index sensing structure in optical domain.
Mishra, Akhilesh Kumar; Mishra, Satyendra Kumar
2017-04-12
A theoretical study of a noble surface plasmon resonance (SPR) based sensing probe has been carried out. The sensing probe consists of a magnesium fluoride (MgF 2 ) prism with its base coated with rarely used noble metal rhodium (Rh) and a bio-compatible layer of graphene. The refractive indices (RIs) of the sensing medium vary from 1.33 to 1.36 refractive index unit (RIU). The thickness of Rh and the number of graphene layers have been optimized for maximum sensitivity in a constraint set by the detection accuracy (DA). For the operating wavelength of 632 nm, the optimized sensing probe Rh (12 nm)/graphene (single layer) demonstrates sensitivity of ~259 degree/RIU with corresponding DA of ~0.32 degree -1 while for 532 nm of excitation, the optimized sensing probe Rh (12 nm)/graphene (three layer) exhibits sensitivity of ~240 degree/RIU and DA of ~0.27 degree -1 .
Fabrication of artificially stacked ultrathin ZnS/MgF2 multilayer dielectric optical filters.
Kedawat, Garima; Srivastava, Subodh; Jain, Vipin Kumar; Kumar, Pawan; Kataria, Vanjula; Agrawal, Yogyata; Gupta, Bipin Kumar; Vijay, Yogesh K
2013-06-12
We report a design and fabrication strategy for creating an artificially stacked multilayered optical filters using a thermal evaporation technique. We have selectively chosen a zinc sulphide (ZnS) lattice for the high refractive index (n = 2.35) layer and a magnesium fluoride (MgF2) lattice as the low refractive index (n = 1.38) layer. Furthermore, the microstructures of the ZnS/MgF2 multilayer films are also investigated through TEM and HRTEM imaging. The fabricated filters consist of high and low refractive 7 and 13 alternating layers, which exhibit a reflectance of 89.60% and 99%, respectively. The optical microcavity achieved an average transmittance of 85.13% within the visible range. The obtained results suggest that these filters could be an exceptional choice for next-generation antireflection coatings, high-reflection mirrors, and polarized interference filters.
Positive-Negative Birefringence in Multiferroic Layered Metasurfaces.
Khomeriki, R; Chotorlishvili, L; Tralle, I; Berakdar, J
2016-11-09
We uncover and identify the regime for a magnetically and ferroelectrically controllable negative refraction of a light-traversing multiferroic, oxide-based metastructure consisting of alternating nanoscopic ferroelectric (SrTiO 3 ) and ferromagnetic (Y 3 Fe 2 (FeO 4 ) 3 , YIG) layers. We perform analytical and numerical simulations based on discretized, coupled equations for the self-consistent Maxwell/ferroelectric/ferromagnetic dynamics and obtain a biquadratic relation for the refractive index. Various scenarios of ordinary and negative refraction in different frequency ranges are analyzed and quantified by simple analytical formula that are confirmed by full-fledge numerical simulations. Electromagnetic waves injected at the edges of the sample are propagated exactly numerically. We discovered that, for particular GHz frequencies, waves with different polarizations are characterized by different signs of the refractive index, giving rise to novel types of phenomena such as a positive-negative birefringence effect and magnetically controlled light trapping and accelerations.
Refractive Index Effects on Radiation in an Absorbing, Emitting, and Scattering Laminated Layer
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1993-01-01
A simple set of equations is derived for predicting temperature radiative energy flow in a two-region semitransparent laminated layer in the limit of zero heat conduction. The composite is heated on its two sides by unequal amounts of incident radiation. The two layers of the composite have different refractive indices, and each material absorbs, emits, and isotropically scatters radiation. The interfaces are diffuse, and all interface reflections are included. To illustrate the thermal behavior that is readily calculated from the equations, typical results an given for various optical thicknesses and refractive indices of the layers. Internal reflections have a substantial effect on the temperature distribution and radiative heat flow.
Macroscale Transformation Optics Enabled by Photoelectrochemical Etching.
Barth, David S; Gladden, Christopher; Salandrino, Alessandro; O'Brien, Kevin; Ye, Ziliang; Mrejen, Michael; Wang, Yuan; Zhang, Xiang
2015-10-28
Photoelectrochemical etching of silicon can be used to form lateral refractive index gradients for transformation optical devices. This technique allows the fabrication of macroscale devices with large refractive index gradients. Patterned porous layers can also be lifted from the substrate and transferred to other materials, creating more possibilities for novel devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor
NASA Astrophysics Data System (ADS)
Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, Abdelhamid A.; El Deeb, Walid S.; Obayya, Salah S. A.
2016-10-01
A design of a highly sensitive multichannel biosensor based on photonic crystal fiber is proposed and analyzed. The suggested design has a silver layer as a plasmonic material coated by a gold layer to protect silver oxidation. The reported sensor is based on detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes, which offers the possibility of multichannel/multianalyte sensing. The numerical results are obtained using a finite element method with perfect matched layer boundary conditions. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High-refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained according to the quasi TM and quasi TE modes of the proposed sensor, respectively. Further, the reported design can be used as a self-calibration biosensor within an unknown analyte refractive index ranging from 1.33 to 1.35 with high linearity and high accuracy. Moreover, the suggested biosensor has advantages in terms of compactness and better integration of microfluidics setup, waveguide, and metallic layers into a single structure.
Manabe, Kengo; Tanaka, Chie; Moriyama, Yukari; Tenjimbayashi, Mizuki; Nakamura, Chiaki; Tokura, Yuki; Matsubayashi, Takeshi; Kyung, Kyu-Hong; Shiratori, Seimei
2016-11-23
Reflection from various surfaces of many optical systems, such as photovoltaics and displays, is a critical issue for their performance, and antireflection coatings play a pivotal role in a wide variety of optical technologies, reducing light reflectance loss and hence maximizing light transmission. With the current movement toward optically transparent polymeric media and coatings for antireflection technology, the need for economical and environmentally friendly materials and methods without dependence on shape or size has clearly been apparent. Herein, we demonstrate novel antireflection coatings composed of chitin nanofibers (CHINFs), extracted from crab shell as a biomass material through an aqueous-based layer-by-layer self-assembly process to control the porosity. Increasing the number of air spaces inside the membrane led low refractive index, and precise control of refractive index derived from the stacking of the CHINFs achieved the highest transmittance with investigating the surface structure and the refractive index depending on the solution pH. At a wavelength of 550 nm, the transmittance of the coatings was 96.4%, which was 4.8% higher than that of a glass substrate, and their refractive index was 1.30. Further critical properties of the films were the durability and the antifogging performance derived from the mechanical stability and hydrophilicity of CHINFs, respectively. The present study may contribute to a development of systematically designed nanofibrous films which are suitable for optical applications operating at a broadband visible wavelength with durability and antifog surfaces.
Measuring Diffusion of Liquids by Common-Path Interferometry
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser
2003-01-01
A method of observing the interdiffusion of a pair of miscible liquids is based on the use of a common-path interferometer (CPI) to measure the spatially varying gradient of the index refraction in the interfacial region in which the interdiffusion takes place. Assuming that the indices of refraction of the two liquids are different and that the gradient of the index of refraction of the liquid is proportional to the gradient in the relative concentrations of either liquid, the diffusivity of the pair of liquids can be calculated from the temporal variation of the spatial variation of the index of refraction. This method yields robust measurements and does not require precise knowledge of the indices of refraction of the pure liquids. Moreover, the CPI instrumentation is compact and is optomechanically robust by virtue of its common- path design. The two liquids are placed in a transparent rectangular parallelepiped test cell. Initially, the interface between the liquids is a horizontal plane, above which lies pure liquid 2 (the less-dense liquid) and below which lies pure liquid 1 (the denser liquid). The subsequent interdiffusion of the liquids gives rise to a gradient of concentration and a corresponding gradient of the index of refraction in a mixing layer. For the purpose of observing the interdiffusion, the test cell is placed in the test section of the CPI, in which a collimated, polarized beam of light from a low-power laser is projected horizontally through a region that contains the mixing layer.
Electro-refractive photonic device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zortman, William A.; Watts, Michael R.
2015-06-09
The various technologies presented herein relate to phase shifting light to facilitate any of light switching, modulation, amplification, etc. Structures are presented where a second layer is juxtaposed between a first layer and a third layer with respective doping facilitating formation of p-n junctions at the interface between the first layer and the second layer, and between the second layer and the third layer. Application of a bias causes a carrier concentration change to occur at the p-n junctions which causes a shift in the effective refractive index per incremental change in an applied bias voltage. The effective refractive indexmore » enhancement can occur in both reverse bias and forward bias. The structure can be incorporated into a waveguide, an optical resonator, a vertical junction device, a horizontal junction device, a Mach-Zehnder interferometer, a tuneable optical filter, etc.« less
Fabrication of optical filters using multilayered porous silicon
NASA Astrophysics Data System (ADS)
Gaber, Noha; Khalil, Diaa; Shaarawi, Amr
2011-02-01
In this work we describe a method for fabricating optical filters using multilayered porous silicon 1D photonic structure. An electrochemical cell is constructed to control the porosity of variable layers in p-type Si wafers. Porous silicon multilayered structures are formed of λ/4 (or multiples) thin films that construct optical interference filters. By changing the anodizing current density of the cell during fabrication, different porosities can be obtained as the optical refractive index is a direct function of the layer porosity. To determine the morphology, the wavelength dependent refractive index n and absorption coefficient α, first, porous silicon free standing mono-layers have been fabricated at different conditions and characterized in the near infrared region (from 1000 to 2500nm). Large difference in refractive index (between 1.6 and 2.6) is obtained. Subsequently, multilayer structures have been fabricated and tested. Their spectral response has been measured and it shows good agreement with numerical simulations. A technique based on inserting etching breaks is adopted to ensure the depth homogeneity. The effect of differing etching/break times on the reproducibility of the filters is studied.
The Density and Refractive Index of Adsorbing Protein Layers
Vörös, Janos
2004-01-01
The structure of the adsorbing layers of native and denatured proteins (fibrinogen, γ-immunoglobulin, albumin, and lysozyme) was studied on hydrophilic TiO2 and hydrophobic Teflon-AF surfaces using the quartz crystal microbalance with dissipation and optical waveguide lightmode spectroscopy techniques. The density and the refractive index of the adsorbing protein layers could be determined from the complementary information provided by the two in situ instruments. The observed density and refractive index changes during the protein-adsorption process indicated the presence of conformational changes (e.g., partial unfolding) in general, especially upon contact with the hydrophobic surface. The structure of the formed layers was found to depend on the size of the proteins and on the experimental conditions. On the TiO2 surface smaller proteins formed a denser layer than larger ones and the layer of unfolded proteins was less dense than that adsorbed from the native conformation. The hydrophobic surface induced denaturation and resulted in the formation of thin compact protein films of albumin and lysozyme. A linear correlation was found between the quartz crystal microbalance measured dissipation factor and the total water content of the layer, suggesting the existence of a dissipative process that is related to the solvent molecules present inside the adsorbed protein layer. Our measurements indicated that water and solvent molecules not only influence the 3D structure of proteins in solution but also play a crucial role in their adsorption onto surfaces. PMID:15240488
NASA Technical Reports Server (NTRS)
Botez, D.
1982-01-01
A highly accurate analytical expression for the effective refractive index in In GaAsP/InP DH lasers emitting in the 1.2-1.6 micron range is presented. This closed-form expression is used to derive simple wavelength-independent expressions for the first-order mode cutoff conditions of various lateral waveguides. The effective refractive index is a function of emission wavelength and active layer thickness, and the mode cutoff conditions are compared to experimental data from mode-stabilized 1.3 and 1.55 micron DH lasers.
Amorphous silicon solar cell allowing infrared transmission
Carlson, David E.
1979-01-01
An amorphous silicon solar cell with a layer of high index of refraction material or a series of layers having high and low indices of refraction material deposited upon a transparent substrate to reflect light of energies greater than the bandgap energy of the amorphous silicon back into the solar cell and transmit solar radiation having an energy less than the bandgap energy of the amorphous silicon.
Optical Phased Array Using Guided Resonance with Backside Reflectors
NASA Technical Reports Server (NTRS)
Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2016-01-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical phased array using guided resonance with backside reflectors
Horie, Yu; Arbabi, Amir; Faraon, Andrei
2016-11-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical phased array using guided resonance with backside reflectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horie, Yu; Arbabi, Amir; Faraon, Andrei
2018-03-13
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Optical Phased Array Using Guided Resonance with Backside Reflectors
NASA Technical Reports Server (NTRS)
Horie, Yu (Inventor); Arbabi, Amir (Inventor); Faraon, Andrei (Inventor)
2018-01-01
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Chemical Sensors Based on Optical Ring Resonators
NASA Technical Reports Server (NTRS)
Homer, Margie; Manfreda, Allison; Mansour, Kamjou; Lin, Ying; Ksendzov, Alexander
2005-01-01
Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring Chemical sensors based on optical ring resonators are undergoing development. A ring resonator according to this concept is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, is a made of a polymer that (1) has an index of refraction lower than that of the waveguide core and (2) absorbs chemicals from the surrounding air. The index of refraction of the polymer changes with the concentration of absorbed chemical( s). The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer polymer layer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in index of refraction of the polymer causes a measurable shift in the resonance peaks of the ring. In a prototype that has been used to demonstrate the feasibility of this sensor concept, the ring resonator is a dielectric optical waveguide laid out along a closed path resembling a racetrack (see Figure 1). The prototype was fabricated on a silicon substrate by use of standard techniques of thermal oxidation, chemical vapor deposition, photolithography, etching, and spin coating. The prototype resonator waveguide features an inner cladding of SiO2, a core of SixNy, and a chemical-sensing outer cladding of ethyl cellulose. In addition to the ring res
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Diana; Guha, Supratik; Lee, Byeongdu
Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less
Berman, Diana; Guha, Supratik; Lee, Byeongdu; ...
2017-01-31
Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition and selective swelling of the of the polymer template. We show that the refractive index of Al 2O 3 can be lowered from 1.76more » down to 1.1 using this method. The thickness of the Al 2O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband anti-reflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berman, Diana; Guha, Supratik; Lee, Byeongdu
Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al2O3 can be lowered from 1.76 down tomore » 1.1 using this method. The thickness of the Al2O3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.« less
Berman, Diana; Guha, Supratik; Lee, Byeongdu; Elam, Jeffrey W; Darling, Seth B; Shevchenko, Elena V
2017-03-28
Control over refractive index and thickness of surface coatings is central to the design of low refraction films used in applications ranging from optical computing to antireflective coatings. Here, we introduce gas-phase sequential infiltration synthesis (SIS) as a robust, powerful, and efficient approach to deposit conformal coatings with very low refractive indices. We demonstrate that the refractive indices of inorganic coatings can be efficiently tuned by the number of cycles used in the SIS process, composition, and selective swelling of the of the polymer template. We show that the refractive index of Al 2 O 3 can be lowered from 1.76 down to 1.1 using this method. The thickness of the Al 2 O 3 coating can be efficiently controlled by the swelling of the block copolymer template in ethanol at elevated temperature, thereby enabling deposition of both single-layer and graded-index broadband antireflective coatings. Using this technique, Fresnel reflections of glass can be reduced to as low as 0.1% under normal illumination over a broad spectral range.
Ferraris, Federico; Diamantopoulou, Sofia; Acunzo, Raffaele; Alcidi, Renato
2014-01-01
To evaluate the influence of thickness on the optical properties of two enamel shade composites, one with a high refractive index and one traditional. A medium value enamel shade was selected from the resin composites Enamel Plus HRi (UE2) and Enamel Plus HFO (GE2). Enamel Plus HRi is a high refractive index composite. Samples were fabricated in five different thicknesses: 0.3, 0.5, 1, 1.5 and 2 mm. Three specimens per material and thickness were fabricated. Three measurements per sample, over white, black and dentin composite background were generated with a spectrophotometer (Spectroshade Micro, MHT). Value, chroma, translucency and color differences (ΔE) of the specimens were calculated. RESULTS were analyzed by the Pearson correlation test, ANOVA and a post-hoc Tukey test. Increasing the thickness of the enamel layers decreased the translucency and the chroma of the substrate for both materials tested. For HRi the increase of the thickness resulted in an increase of the value, whereas for HFO it resulted in a reduction of the value. The two composites showed a significant difference in value for each thickness, but not in translucency and chroma. Color difference between them was perceptible in layers equal or higher than 0.5 mm. The high refractive index enamel (HRi) composite exhibits different optical behavior compared to the traditional one (HFO). HRi enamel composite behaves more like natural enamel as by increasing the thickness of the enamel layer, the value also increases.
About complex refractive index of black Si
NASA Astrophysics Data System (ADS)
Pinčík, Emil; Brunner, Robert; Kobayashi, Hikaru; Mikula, Milan
2017-12-01
The paper deals with the complex refractive index in the IR light region of two types of samples (i) as prepared black silicon, and (ii) thermally oxidized black silicon (BSi) nano-crystalline specimens produced both by the surface structure chemical transfer method using catalytic Ag evaporated spots (as prepared sample) and by the catalytic Pt catalytic mesh (thermally oxidized sample). We present, compare, and discuss the values of the IR complex refractive index obtained by calculation using the Kramers-Krönig transformation. Results indicate that small differences between optical properties of as prepared black Si and thermally oxidized BSi are given by: (i) - oxidation procedure, (ii) - thickness of the formed black Si layer, mainly, not by utilization of different catalytic metals, and by iii) the different thickness. Contamination of the surface by different catalytic metals contributes almost equally to the calculated values of the corresponding complex refractive index.
Bourke, Levi; Blaikie, Richard J
2017-12-01
Dielectric waveguide resonant underlayers are employed in ultra-high NA interference photolithography to effectively double the depth of field. Generally a single high refractive index waveguiding layer is employed. Here multilayer Herpin effective medium methods are explored to develop equivalent multilayer waveguiding layers. Herpin equivalent resonant underlayers are shown to be suitable replacements provided at least one layer within the Herpin trilayer supports propagating fields. In addition, a method of increasing the intensity incident upon the photoresist using resonant overlayers is also developed. This method is shown to greatly enhance the intensity within the photoresist making the use of thicker, safer, non-absorbing, low refractive index matching liquids potentially suitable for large-scale applications.
Muth, Marco; Schmid, Reiner P; Schnitzlein, Klaus
2016-04-01
Ellipsometric studies of very thin organic films suffer from the low refractive index contrast between layer and bulk substrate. We demonstrate that null ellipsometry can not only provide detailed information about the adsorption kinetics and surface excess values, but in addition on layer thicknesses with submonolayer resolution of a lipase from Thermomyces lanuginosus at the air-water interface. While measuring very close to the Brewster angle, refractive indices and layer-thicknesses can both be determined with a precision that is sufficiently high to make conclusions on the density and orientation of the molecules at the interface. The orientation was found to be concentration- and pH value-dependent. At the isoelectric point, the lipase was almost vertically oriented with respect to the surface, while for pure distilled water and low lipase concentration a rather horizontal alignment was found. Further experiments, varying the size of the interfacial area in a Langmuir trough, confirm the different layer structures. Copyright © 2015 Elsevier B.V. All rights reserved.
Solid state radiative heat pump
Berdahl, P.H.
1984-09-28
A solid state radiative heat pump operable at room temperature (300 K) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of change carriers as compared equilibrium. In one form of the invention an infrared semiconductor photodiode is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention, a homogenous semiconductor is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation the active surface of the semiconductor are disclosed. In one method, an anti-refection layer is coated into the active surface of the semiconductor, the anti-reflection layer having an index of refraction equal to the square root of that of the semiconductor. In the second method, a passive layer is speaced trom the active surface of the semiconductor by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler with a paraboloid reflecting surface surface is in contact with the active surface of the semiconductor, the coupler having an index of refraction about the same as that of the semiconductor.
Golick, V A; Kadygrob, D V; Yampol'skii, V A; Rakhmanov, A L; Ivanov, B A; Nori, Franco
2010-05-07
We predict a new branch of surface Josephson plasma waves (SJPWs) in layered superconductors for frequencies higher than the Josephson plasma frequency. In this frequency range, the permittivity tensor components along and transverse to the layers have different signs, which is usually associated with negative refraction. However, for these frequencies, the bulk Josephson plasma waves cannot be matched with the incident and reflected waves in the vacuum, and, instead of the negative-refractive properties, abnormal surface modes appear within the frequency band expected for bulk modes. We also discuss the excitation of high-frequency SJPWs by means of the attenuated-total-reflection method.
Amorphous silicon as high index photonic material
NASA Astrophysics Data System (ADS)
Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.
2009-05-01
Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.
Compact Hybrid Laser Rod and Laser System
NASA Technical Reports Server (NTRS)
Pierrottet, Diego F. (Inventor); Busch, George E. (Inventor); Amzajerdian, Farzin (Inventor)
2017-01-01
A hybrid fiber rod includes a fiber core and inner and outer cladding layers. The core is doped with an active element. The inner cladding layer surrounds the core, and has a refractive index substantially equal to that of the core. The outer cladding layer surrounds the inner cladding layer, and has a refractive index less than that of the core and inner cladding layer. The core length is about 30 to 2000 times the core diameter. A hybrid fiber rod laser system includes an oscillator laser, modulating device, the rod, and pump laser diode(s) energizing the rod from opposite ends. The rod acts as a waveguide for pump radiation but allows for free-space propagation of laser radiation. The rod may be used in a laser resonator. The core length is less than about twice the Rayleigh range. Degradation from single-mode to multi-mode beam propagation is thus avoided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singaravelu, S.; Mayo, D. C.; Park, H-. K.
2014-07-01
Design of polymer anti-reflective (AR) optical coatings for plastic substrates is challenging because polymers exhibit a relatively narrow range of refractive indices. Here, we report synthesis of a four-layer AR stack using hybrid polymer: nanoparticle materials deposited by resonant infrared matrix-assisted pulsed laser evaporation. An Er: YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and poly(methylmethacrylate) (PMMA), alternating with a layer of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with transmission over 97 %, scattering <3 %, and a reflection coefficient below 0.5 % across the visiblemore » range, with a much smaller number of layers than would be predicted by a standard thin film calculation. The TiO2 nanoparticles contribute more to the enhanced refractive index of the high-index layers than can be accounted for by an effective medium model of the nanocomposite.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
Azzam, R M A
2017-08-10
A quarter-wave layer (QWL) of high refractive index, which is deposited on a transparent prism of low refractive index, can be designed to split an incident p-polarized light beam at the Brewster angle (BA) of the air-substrate interface into p-polarized reflected and transmitted beams of equal intensity (50% each) that travel in orthogonal directions. For reflection of p-polarized light at the BA, the supported QWL functions as a free-standing (unsupported) pellicle. An exemplary design is presented that uses Si x Ge 1-x QWL deposited on an IRTRAN1 prism for applications (such as Michelson and Mach-Zehnder interferometry) with a variable compositional fraction x in the 2-6 μm mid-IR spectral range.
Ray tracing matrix approach for refractive index mismatch aberrations in confocal microscopy.
Nastyshyn, S Yu; Bolesta, I M; Lychkovskyy, E; Vankevych, P I; Yakovlev, M Yu; Pansu, B; Nastishin, Yu A
2017-03-20
The 2×2 ray tracing matrix (RTM) method is employed for the description of optical aberrations caused by the refractive index mismatch (RIM) in fluorescent confocal polarization microscopy. We predict and experimentally confirm that due to the RIM a liquid crystal layer with highly non-uniform director distribution appears to be imaged as a layer with non-uniform thickness, which shows up in the roughness of the rear surface. For the off-axial focusing of the probing beam in a droplet dispersed in an immiscible liquid, we have developed an extended method still keeping the 2×2 dimensionality of the RTM.
Signal Enhancement Strategies for Refractive Index-Sensitive Nanobiosensor.
Syahir, Amir; Kajikawa, Kotaro; Mihara, Hisakazu
2018-01-01
Direct bio-monitoring essentially involves optical means since photon has insignificant effects over biomolecules. Over the years, laser induced surface Plasmon resonance method with various modifications as well as versatile localized Plasmon excited by incoherent light have facilitated in recording many nanobiological activities. Yet, monitoring interactions of small molecules including drugs requires signal amplification and improvement on signal-to-noise ratio. This paper focused on how the refractive index based nanobio-sensoring gold platform can produce more efficient, adaptable and more practical detection techniques to observe molecular interactions at high degree of sensitivity. It discusses surface chemistry approach, optimisation of the refractive index of gold platform and manipulation of gold geometry augmenting signal quality. In a normal-incidence reflectivity, r0 can be calculated using the Fresnel equation. Particularly at λ = 470 nm the ratio of r / r0 showed significant amplitude reduction mainly stemmed from the imaginary part of the Au refractive index. Hence, the fraction of reduction, Δr = 1 - r / r0. Experimentally, in a common reference frame reflectivity of a bare gold surface, R0 is compared with the reflectivity of gold surface in the presence of biolayer, R. The reduction rate (%) of reflectivity, ΔR = 1 - R / R0 is denoted as the AR signal. The method therefore enables quantitative measurement of the surface-bound protein by converting ΔR to the thickness, d, and subsequently the protein mass. We discussed four strategies to improve the AR signal by changing the effective refractive index of the biosensing platform. They are; a) Thickness optimisation of Au thin layer, b) Au / Ag bimetallic layer, c) composing alloy or Au composite, and d) Au thinlayer with nano or micro holes. As the result we successfully 'move' the refractive index, ε of the AR platform (gold only) to ε = -0.948 + 3.455i, a higher sensitivity platform. This was done by composing Au-Ag2O composite with ratio = 1:1. The results were compared to the potential sensitivity improvement of the AR substrate using other that could be done by further tailoring the ε advanced method. We suggested four strategies in order to realize this purpose. It is apparent that sensitivity has been improved through Au/Ag bimetallic layer or Au-Ag2O composite thin layer, This study is an important step towards fabrication of sensitive surface for detection of biomolecular interactions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Characterization of human scalp hairs by optical low-coherence reflectometry
NASA Astrophysics Data System (ADS)
Wang, X. J.; Milner, T. E.; Dhond, R. P.; Sorin, W. V.; Newton, S. A.; Nelson, J. S.
1995-03-01
Optical low-coherence reflectometry is used to investigate the internal structure and optical properties of human scalp hair. Regardless of hair color, the refractive index of the cortical region remains within the range of 1.56-1.59. The amplitude of the backscattered infrared light coupled into different-colored hair confirms the relative melanin content. Discontinuities in the refractive index permit identification of distinct structural layers within the hair shaft.
2010-01-01
of refraction for a vacuum/matter transition are often called the optical constants of the material . In the optical wavelength range, for instance...thick, can also be applied to GI mirrors, thereby extending the photon energy range out to about 100 keV. The index of refraction or the optical constants...consists of alternating layers of two materials with high contrast in the optical constants δ and β, where 1 − δ is the real part of the index of
Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths.
García-Meca, Carlos; Hurtado, Juan; Martí, Javier; Martínez, Alejandro; Dickson, Wayne; Zayats, Anatoly V
2011-02-11
We experimentally demonstrate a low-loss multilayered metamaterial exhibiting a double-negative refractive index in the visible spectral range. To this end, we exploit a second-order magnetic resonance of the so-called fishnet structure. The low-loss nature of the employed magnetic resonance, together with the effect of the interacting adjacent layers, results in a figure of merit as high as 3.34. A wide spectral range of negative index is achieved, covering the wavelength region between 620 and 806 nm with only two different designs.
TE and TM guided modes in an air waveguide with negative-index-material cladding.
D'Aguanno, G; Mattiucci, N; Scalora, M; Bloemer, M J
2005-04-01
We numerically demonstrate that a planar waveguide in which the inner layer is a gas with refractive index n0 = 1, sandwiched between two identical semi-infinite layers of a negative index material, can support both transverse electric and transverse magnetic guided modes with low losses. Recent developments in the design of metamaterials with an effective negative index suggest that this waveguide could operate in the infrared region of the spectrum.
Estimation of photonic band gap in the hollow core cylindrical multilayer structure
NASA Astrophysics Data System (ADS)
Chourasia, Ritesh Kumar; Singh, Vivek
2018-04-01
The propagation characteristic of two hollow core cylindrical multilayer structures having high and low refractive index contrast of cladding regions have been studied and compared at two design wavelengths i.e. 1550 nm and 632.8 nm. With the help of transfer matrix method a relation between the incoming light wave and outgoing light wave has been developed using the boundary matching technique. In high refractive index contrast, small numbers of layers are sufficient to provide perfect band gap in both design wavelengths. The spectral position and width of band gap is highly depending on the optical path of incident light in all considered cases. For sensing application, the sensitivity of waveguide can be obtained either by monitoring the width of photonic band gap or by monitoring the spectral shift of photonic band gap. Change in the width of photonic band gap with the core refractive index is larger in high refractive index contrast of cladding materials. However, in the case of monitoring the spectral shift of band gap, the obtained sensitivity is large for low refractive index contrast of cladding materials and further it increases with increase of design wavelength.
Semiconductor laser devices having lateral refractive index tailoring
Ashby, Carol I. H.; Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert
1990-01-01
A broad-area semiconductor laser diode includes an active lasing region interposed between an upper and a lower cladding layer, the laser diode further comprising structure for controllably varying a lateral refractive index profile of the diode to substantially compensate for an effect of junction heating during operation. In embodiments disclosed the controlling structure comprises resistive heating strips or non-radiative linear junctions disposed parallel to the active region. Another embodiment discloses a multi-layered upper cladding region selectively disordered by implanted or diffused dopant impurities. Still another embodiment discloses an upper cladding layer of variable thickness that is convex in shape and symmetrically disposed about a central axis of the active region. The teaching of the invention is also shown to be applicable to arrays of semiconductor laser diodes.
NASA Astrophysics Data System (ADS)
Xu, Nuo; Zhu, Meiping; Sun, Jian; Chai, Yingjie; Kui, Yi; Zhao, Yuanan; Shao, Jianda
2018-02-01
Two kinds of polarizer coatings were prepared by electron beam evaporation, using HfO2-SiO2 mixture and HfO2 as the high-refractive-index materials, respectively. The HfO2-SiO2 mixture layer was implemented by coevaporating SiO2 and metal Hf, the materials were deposited at an oxygen atmosphere to achieve stoichiometric coatings. The certain HfO2 and SiO2 content ratio is controlled by adjusting the deposition rate of HfO2 and SiO2 using individual quartz crystal monitor. The spectral performance, surface and interfacial properties, as well as the laser-induced damage performance were studied and compared. Comparing with polarizer coating using HfO2 as high-refractive-index material, the polarizer coating using HfO2-SiO2 mixture as high-refractive-index material shows better performance with broader polarizing bandwidth, lower surface roughness, better interfacial property while maintaining high laser-induced damage threshold.
Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.
Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen
2017-08-16
A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.
Fundamental limits of ultrathin metasurfaces
Arbabi, Amir; Faraon, Andrei
2017-01-01
We present a set of universal relations which relate the local transmission, reflection, and polarization conversion coefficients of a general class of non-magnetic passive ultrathin metasurfaces. We show that these relations are a result of equal forward and backward scattering by single layer ultrathin metasurfaces, and they lead to confinement of the transmission, reflection, and polarization conversion coefficients to limited regions of the complex plane. Using these relations, we investigate the effect of the presence of a substrate, and show that the maximum polarization conversion efficiency for a transmissive metasurface decreases as the refractive index contrast between the substrate and cladding layer increases. Furthermore, we demonstrate that a single layer reflective metasurface can achieve full 2π phase shift coverage without altering the polarization if it is illuminated from the higher refractive index material. We also discuss two approaches for achieving asymmetric scattering from metasurfaces, and realizing metasurfaces which overcome the performance limitations of single layer ultrathin metasurfaces. PMID:28262739
NASA Astrophysics Data System (ADS)
Onishi, Toshikazu; Imafuji, Osamu; Fukuhisa, Toshiya; Mochida, Atsunori; Kobayashi, Yasuhiro; Yuri, Masaaki; Itoh, Kunio; Shimizu, Hirokazu
2001-11-01
Monolithically integrated 780-nm-band and 650-nm-band self-sustained pulsating (SSP) lasers, which are desirable for simplified optical pickups in digital versatile disk (DVD) systems, have been developed for the first time. The real refractive index guided self-aligned (RISA) waveguide structure is adapted to reduce absorption loss in the current blocking layers. In order to obtain stable SSP, a saturable absorber formed in the active layer outside the current stripe, and a saturable absorbing layer above the active layer are utilized for the 780-nm-band and 650-nm-band laser diodes (LDs), respectively. Relative intensity noise less than -130 dB/Hz is maintained at temperatures of up to 80°C at an output power of 7 mW for the 650 nm band and 10 mW for the 780 nm band, which suggests that stable SSP operations have been realized.
Reflective coating for near-infrared immersion gratings
NASA Astrophysics Data System (ADS)
Kuzmenko, Paul J.; Ikeda, Yuji; Kobayashi, Naoto; Mirkarimi, Paul B.; Alameda, Jennifer B.
2012-09-01
Achieving high reflectivity from an immersed grating facet can be challenging in the near infrared. The reflectivity of metallic coatings in common use, such as Al and Cr/Au, decrease with decreasing wavelength in the near IR. A layer of copper on ZnSe or ZnS should have a high, immersed reflectivity based on tabulated values of refractive index, but in fact performs poorly. We attribute this to a chemical reaction between the copper and the selenium or sulfur. A non-reactive intermediate layer can prevent this problem. Since reflectivity at an interface increases with increasing difference in refractive index, it is beneficial to choose an intermediate layer of low index. A further improvement is gained by adjusting the layer thickness so that reflections from the two interfaces of the intermediate layer add constructively. We sputtered 130 nm of SiO2 onto ZnSe and ZnS substrates followed by 200 nm of Cu. The copper was then coated with 5 nm of SiC as a protective capping layer. Immersed reflectivity measured shortly after coating exceeded 95% between 1500 and 1100 nm and exceeded 90% down to 850 nm. A repeat measurement after long term exposure to high humidity conditions showed no changes.
NASA Astrophysics Data System (ADS)
Liu, Yao; Li, Qing Xuan; Wan, Ling Yu; Kucukgok, Bahadir; Ghafari, Ehsan; Ferguson, Ian T.; Zhang, Xiong; Wang, Shuchang; Feng, Zhe Chuan; Lu, Na
2017-11-01
A series of AlxGa1-xN/AlN/Sapphire films with x = 0.35-0.75 and different thickness of epi-layer were prepared by metalorganic chemical vapor deposition (MOCVD). Spectroscopic ellipsometry (SE) was used to study the temperature-dependent refractive indices and optical bandgaps of the AlxGa1-xN films ranging from 300 to 823 K. Parametric semiconductor (PSEMI) models were used to describe the dielectric functions of AlGaN/AlN layers. The fitting results of refractive index, energy bandgap, thickness and surface roughness at 300 K are in good agreement with photoluminescence (PL), scanning electron microscopy (SEM) measurements and the existing literature. Our finding indicates that the crystal quality of the samples with x = 0.47 and 0.60 are better than those with x = 0.35 and 0.75. As the temperature rises, the increasing of refractive index for the low Al content AlxGa1-xN layers is stronger than that of high Al content in the transparent region, and the reduction of bandgap with high Al content is larger than that of low Al content. For all the samples (x = 0.35-0.75), an analytical expression for temperature-dependent refractive index in the wavelength range of 195-1650 nm was obtained using the Sellmeier law, and the quantitative analysis of the SE-derived temperature-dependent bandgap was conducted by using the Bose-Einstein equation.
NASA Astrophysics Data System (ADS)
Diener, J.; Künzner, N.; Kovalev, D.; Gross, E.; Koch, F.; Fujii, M.
2003-05-01
Electro-chemical etching of heavily doped, (110) oriented, p+ (boron) doped silicon wafers results in porous silicon (PSi) layers which exhibit a strong in-plane anisotropy of the refractive index (birefringence). Single- and multiple layers of anisotropically nanostructured silicon (Si) have been fabricated and studied by polarization-resolved reflection and transmission measurements. Dielectric stacks of birefringent PSi acting as distributed Bragg reflectors have two distinct reflection bands depending on the polarization of the incident linearly polarized light. This effect is caused by a three-dimensional (in plane and in-depth) variation of the refraction index. The possibility of fine tuning the two orthogonally polarized reflection bands and their spectral splitting is demonstrated.
Band gap and refractive index tunability in thallium based layered mixed crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gasanly, N. M., E-mail: nizami@metu.edu.tr; Virtual International Scientific Research Centre, Baku State University, Baku 1148
2015-07-21
Compositional variation of the band gap energy and refractive index of TlMeX{sub 2}-type (Me = Ga or In and X = S or Se) layered mixed crystals have been studied by the transmission and reflection measurements in the wavelength range of 400–1100 nm. The analysis of absorption data of TlGa{sub 1-x}In{sub x}Se{sub 2}, TlGa(S{sub 1−x}Se{sub x}){sub 2}, TlGa{sub 1−x}In{sub x}S{sub 2}, and TlIn(Se{sub 1−x}S{sub x}){sub 2} mixed crystals revealed the presence of both optical indirect and direct transitions. It was found that the energy band gaps of mixed crystals decrease at the replacing of gallium atoms by indium and of sulfur atoms by selenium ones.more » Through the similar replacing of atoms (smaller atoms by larger ones) in the studied mixed crystals, the refractive index shows the quite opposite behavior.« less
Optical Thin Film Coating Having High Damage Resistance in Near-Stoichiometric MgO-Doped LiTaO3
NASA Astrophysics Data System (ADS)
Tateno, Ryo; Kashiwagi, Kunihiro
2008-08-01
Currently, High power and compact red, green, and blue (RGB) lasers are being considered for use in large screen laser televisions and reception-lobby projectors. Among these three laser sources, green semiconductor lasers are expensive and exhibit inferior performance in terms of the semiconductor material used, making it difficult to achieve a high output. In this study, we examined the use of our coating on MgO-doped LiTaO3, using a mirror coated with a multilayer film. Over a substrate, a Ta2O5 film was used to coat a high-refractive-index film layer, and a SiO2 film was used to coat a low-refractive-index film layer. To improve reflectivity, we designed the peak of the electric field intensity to be in the film layer with the low refractive index. As a result, the film endurance of 100 J/cm2 was obtained by one-on-one testing. With the nonlinear crystal material, the mirror without our coating exhibited a damage threshold of 33 J/cm2; however, after coating, this mirror demonstrated a higher damage threshold of 47 J/cm2. Thus, the film we fabricated using this technique is useful for improving the strength and durability of laser mirrors.
NASA Technical Reports Server (NTRS)
Pain, Bedabrata (Inventor)
2012-01-01
An apparatus and associated method are provided. A first silicon layer having at least one of an associated passivation layer and barrier is included. Also included is a composite anti-reflection layer including a stack of layers each with a different thickness and refractive index. Such composite anti-reflection layer is disposed adjacent to the first silicon layer.
Refractive index sensing in the visible/NIR spectrum using silicon nanopillar arrays.
Visser, D; Choudhury, B Dev; Krasovska, I; Anand, S
2017-05-29
Si nanopillar (NP) arrays are investigated as refractive index sensors in the visible/NIR wavelength range, suitable for Si photodetector responsivity. The NP arrays are fabricated by nanoimprint lithography and dry etching, and coated with thin dielectric layers. The reflectivity peaks obtained by finite-difference time-domain (FDTD) simulations show a linear shift with coating layer thickness. At 730 nm wavelength, sensitivities of ~0.3 and ~0.9 nm/nm of SiO 2 and Si 3 N 4 , respectively, are obtained; and the optical thicknesses of the deposited surface coatings are determined by comparing the experimental and simulated data. The results show that NP arrays can be used for sensing surface bio-layers. The proposed method could be useful to determine the optical thickness of surface coatings, conformal and non-conformal, in NP-based optical devices.
A numerical procedure for solving the inverse scattering problem for stratified dielectric media
NASA Astrophysics Data System (ADS)
Vogelzang, E.; Yevick, D.; Ferwerda, H. A.
1983-05-01
In this paper the refractive index profile of a dielectric stratified medium, terminated by a perfect conductor, is calculated from the complex reflection coefficient for monochromatic plane waves, incident from different directions. The advantage of this approach is that the dispersion of the refractive index does not enter the calculations. The calculation is based on the Marchenko and Gelfand-Levitan equations taking into account the bound modes of the layer. Some illustrative numerical examples are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jellison, G. E.; Aytug, T.; Lupini, A. R.
Nanostructured glass films, which are fabricated using spinodally phase-separated low-alkali glasses, have several interesting and useful characteristics, including being robust, non-wetting and antireflective. Spectroscopic ellipsometry measurements have been performed on one such film and its optical properties were analyzed using a 5-layer structural model of the near-surface region. Since the glass and the film are transparent over the spectral region of the measurement, the Sellmeier model is used to parameterize the dispersion in the refractive index. To simulate the variation of the optical properties of the film over the spot size of the ellipsometer (~ 3 × 5 mm), themore » Sellmeier amplitude is convoluted using a Gaussian distribution. The transition layers between the ambient and the film and between the film and the substrate are modeled as graded layers, where the refractive index varies as a function of depth. These layers are modeled using a two-component Bruggeman effective medium approximation where the two components are the layer above and the layer below. Lastly, the fraction is continuous through the transition layer and is modelled using the incomplete beta function.« less
Gain enhancement with near-zero-index metamaterial superstrate
NASA Astrophysics Data System (ADS)
Bouzouad, M.; Chaker, S. M.; Bensafielddine, D.; Laamari, E. M.
2015-11-01
The objective of this paper was to use a near-zero-index ( n) metamaterial as a single- or a double-layer superstrate suspended above a microstrip patch antenna, operating at 43 GHz, for the gain enhancement. The single metamaterial layer superstrate consists of a periodic arrangement of Jerusalem cross unit cells and behaves as an homogeneous medium characterized by a refractive index close to zero. This metamaterial property allows gathering radiated waves from the antenna and collimates them toward the superstrate normal direction. The proposed design improves the antenna gain by 5.1 dB with the single-layer superstrate and 7 dB with the double-layer superstrate.
Ray tracing simulation of aero-optical effect using multiple gradient index layer
NASA Astrophysics Data System (ADS)
Yang, Seul Ki; Seong, Sehyun; Ryu, Dongok; Kim, Sug-Whan; Kwon, Hyeuknam; Jin, Sang-Hun; Jeong, Ho; Kong, Hyun Bae; Lim, Jae Wan; Choi, Jong Hwa
2016-10-01
We present a new ray tracing simulation of aero-optical effect through anisotropic inhomogeneous media as supersonic flow field surrounds a projectile. The new method uses multiple gradient-index (GRIN) layers for construction of the anisotropic inhomogeneous media and ray tracing simulation. The cone-shaped projectile studied has 19° semi-vertical angle; a sapphire window is parallel to the cone angle; and an optical system of the projectile was assumed via paraxial optics and infrared image detector. The condition for the steady-state solver conducted through computational fluid dynamics (CFD) included Mach numbers 4 and 6 in speed, 25 km altitude, and 0° angle of attack (AoA). The grid refractive index of the flow field via CFD analysis and Gladstone-Dale relation was discretized into equally spaced layers which are parallel with the projectile's window. Each layer was modeled as a form of 2D polynomial by fitting the refractive index distribution. The light source of ray set generated 3,228 rays for varying line of sight (LOS) from 10° to 40°. Ray tracing simulation adopted the Snell's law in 3D to compute the paths of skew rays in the GRIN layers. The results show that optical path difference (OPD) and boresight error (BSE) decreases exponentially as LOS increases. The variation of refractive index decreases, as the speed of flow field increases the OPD and its rate of decay at Mach number 6 in speed has somewhat larger value than at Mach number 4 in speed. Compared with the ray equation method, at Mach number 4 and 10° LOS, the new method shows good agreement, generated 0.33% of relative root-mean-square (RMS) OPD difference and 0.22% of relative BSE difference. Moreover, the simulation time of the new method was more than 20,000 times faster than the conventional ray equation method. The technical detail of the new method and simulation is presented with results and implication.
Method of preparing a tunable-focus liquid-crystal (LC) lens
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zhou, Zuowei; Ren, Hongwen
2018-02-01
A liquid crystal (LC) lens is prepared by controlling the alignment of a LC using a homogeneous polyimide (PI) layer and a homeotropic PI layer. The rubbed homogeneous PI layer has a concave surface and the homeotropic PI layer is flat. The LC sandwiched between the two PI layers obtains a hybrid alignment which has the largest gradient of refractive index (GRIN) distribution. The LC layer exhibits a lens character because of its convex shape. Since the effective refractive index of the LC is larger than that of the homogeneous PI, the LC lens can focus a light with the shortest focal length in the voltage-off state. By applying an external voltage, the LC molecules can be reoriented along the electric field. As a result, the focal length of the LC lens is reduced. The focal length of the LC lens can be tuned from 30 to 120 μm when the voltage is changed from 0 to 7 Vrms. This LC lens has the advantages of no threshold, low operating voltage, and simple fabrication.
NASA Astrophysics Data System (ADS)
Wu, F. P.; Zhang, B.; Liu, Z. L.; Tang, Y.; Zhang, N.
2017-12-01
We calculate the trapping forces exerted by a highly focused Bessel-Gaussian beam on a double-layered sphere by means of vector diffraction integral, T-matrix method and Maxwell stress tensor integral. The Bessel-Gaussian beam is azimuthally polarized. Numerical results predicate that the double-layered sphere with air core can be stably trapped in three-dimensions. The trapping forces and efficiencies are dependent on the refraction index and size of the inner core. The trapping efficiency can be optimized by choosing the refraction indices of the inner core and outer layer. Our computational method can be easily modified for other laser beams and particles with arbitrary geometries and multilayers.
NASA Astrophysics Data System (ADS)
Chen, Jiangwei; Liu, Jun; Xu, Weidong
2017-09-01
In this paper, refraction behaviors of light in both metal single-layered film and metal-dielectric-metal multilayered films are investigated based on the generalized formulas of reflection and refraction. The obtained results, especially, dependence of power refractive index on incident angles for a light beam traveling through a metal-dielectric-metal multilayered structure, are well consistent with the experimental observations. Our work may offer a new angle of view to understand the all-angle negative refraction of light in metal-dielectric-metal multilayered structures, and provide a convenient approach to optimize the devised design and address the issue on making the perfect lens.
Solid state radiative heat pump
Berdahl, Paul H.
1986-01-01
A solid state radiative heat pump (10, 50, 70) operable at room temperature (300.degree. K.) utilizes a semiconductor having a gap energy in the range of 0.03-0.25 eV and operated reversibly to produce an excess or deficit of charge carriers as compared to thermal equilibrium. In one form of the invention (10, 70) an infrared semiconductor photodiode (21, 71) is used, with forward or reverse bias, to emit an excess or deficit of infrared radiation. In another form of the invention (50), a homogeneous semiconductor (51) is subjected to orthogonal magnetic and electric fields to emit an excess or deficit of infrared radiation. Three methods of enhancing transmission of radiation through the active surface of the semiconductor are disclosed. In one method, an anti-reflection layer (19) is coated into the active surface (13) of the semiconductor (11), the anti-reflection layer (19) having an index of refraction equal to the square root of that of the semiconductor (11). In the second method, a passive layer (75) is spaced from the active surface (73) of the semiconductor (71) by a submicron vacuum gap, the passive layer having an index of refractive equal to that of the semiconductor. In the third method, a coupler (91) with a paraboloid reflecting surface (92) is in contact with the active surface (13, 53) of the semiconductor (11, 51), the coupler having an index of refraction about the same as that of the semiconductor.
Antireflection coatings with SiOx-TiO2 multilayer structures
NASA Astrophysics Data System (ADS)
Lu, Jong-Hong; Luo, Jen-Wei; Chuang, Shiou-Ruei; Chen, Bo-Ying
2014-11-01
In this study, we used SiOx-TiO2 multilayer antireflective coatings to achieve optical average transmittances of 94.93 and 98.07% for one-sided and double-sided coatings on a glass substrate, respectively. A SiOx film was employed as the material with a low refractive index and a TiO2 film as the material with a high refractive index. Results showed that when any layer thickness of the SiOx-TiO2 nano-multilayer (NML) structure is much less than the wavelength of visible light, the SiOx-TiO2 thickness ratio can be used to adjust the optical refractive index of the entire NML film. In this study, we produced dense antireflective coatings of three layers (SiOx, TiO2, and SiOx-TiO2 NML/glass substrate) and four layers (SiOx, TiO2, SiOx, and TiO2/glass substrate) with film thicknesses and refractive indices controlled by reactive magnetron sputtering. Thermal treatment at 600 °C in an air atmosphere was also shown to reduce the absorption of visible light, resolving the issue of degraded transparency caused by increasing sputtering speed. The microhardness of the antireflective film was 8.44 GPa, similar to that of the glass substrate. Process window analysis demonstrated the feasibility of the antireflective coating process window from an engineering standpoint. The thickness of the film deviated by less than 10% from the ideal thickness, corresponding to a 98% transmittance range, and the simulation and experimental results were relatively consistent.
NASA Astrophysics Data System (ADS)
Shepherd, Rosalie H.; King, Martin D.; Marks, Amelia A.; Brough, Neil; Ward, Andrew D.
2018-04-01
Optical trapping combined with Mie spectroscopy is a new technique used to record the refractive index of insoluble organic material extracted from atmospheric aerosol samples over a wide wavelength range. The refractive index of the insoluble organic extracts was shown to follow a Cauchy equation between 460 and 700 nm for organic aerosol extracts collected from urban (London) and remote (Antarctica) locations. Cauchy coefficients for the remote sample were for the Austral summer and gave the Cauchy coefficients of A = 1.467 and B = 1000 nm2 with a real refractive index of 1.489 at a wavelength of 589 nm. Cauchy coefficients for the urban samples varied with season, with extracts collected during summer having Cauchy coefficients of A = 1.465 ± 0.005 and B = 4625 ± 1200 nm2 with a representative real refractive index of 1.478 at a wavelength of 589 nm, whilst samples extracted during autumn had larger Cauchy coefficients of A = 1.505 and B = 600 nm2 with a representative real refractive index of 1.522 at a wavelength of 589 nm. The refractive index of absorbing aerosol was also recorded. The absorption Ångström exponent was determined for woodsmoke and humic acid aerosol extract. Typical values of the Cauchy coefficient for the woodsmoke aerosol extract were A = 1.541 ± 0.03 and B = 14 800 ± 2900 nm2, resulting in a real refractive index of 1.584 ± 0.007 at a wavelength of 589 nm and an absorption Ångström exponent of 8.0. The measured values of refractive index compare well with previous monochromatic or very small wavelength range measurements of refractive index. In general, the real component of the refractive index increases from remote to urban to woodsmoke. A one-dimensional radiative-transfer calculation of the top-of-the-atmosphere albedo was applied to model an atmosphere containing a 3 km thick layer of aerosol comprising pure water, pure insoluble organic aerosol, or an aerosol consisting of an aqueous core with an insoluble organic shell. The calculation demonstrated that the top-of-the-atmosphere albedo increases by 0.01 to 0.04 for pure organic particles relative to water particles of the same size and that the top-of-the-atmosphere albedo increases by 0.03 for aqueous core-shell particles as volume fraction of the shell material increases to 25 %.
Fibre optic chemical sensor based on graphene oxide-coated long period grating
NASA Astrophysics Data System (ADS)
Liu, Chen; Cai, Qi; Sun, Zhongyuan; Xu, Baojian; Zhao, Jianlong; Zhang, Lin; Chen, Xianfeng
2016-05-01
In this work, a graphene oxide-coated long period fibre grating (GO-LPG) is proposed for chemical sensing application. Graphene oxide (GO) has been deposited on the surface of long period grating to form a sensing layer which significantly enhances the interaction between LPG propagating light and the surrounding-medium. The sensing mechanism of GO-LPG relies on the change of grating resonance intensity against surrounding-medium refractive index (SRI). The proposed GO-LPG has been used to measure the concentrations of sugar aqueous solutions. The refractive index sensitivities with 99.5 dB/RIU in low refractive index region (1.33-1.35) and 320.6 dB/RIU in high index region (1.42-1.44) have been achieved, showing an enhancement by a factor of 3.2 and 6.8 for low and high index regions, respectively. The proposed GO-LPG can be further extended to the development of optical biochemical sensor with advantages of high sensitivity, real-time and label-free sensing.
Tumbleston, John R; Ko, Doo-Hyun; Samulski, Edward T; Lopez, Rene
2009-04-27
We analyze optical absorption enhancements and quasiguided mode properties of organic solar cells with highly ordered nanostructured photoactive layers comprised of the bulk heterojunction blend, poly-3-hexylthiophene/[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) and a low index of refraction conducting material (LICM). This photonic crystal geometry is capable of enhancing spectral absorption by approximately 17% in part due to the excitation of quasiguided modes near the band edge of P3HT:PCBM. A nanostructure thickness between 200 nm and 300 nm is determined to be optimal, while the LICM must have an index of refraction approximately 0.3 lower than P3HT:PCBM to produce absorption enhancements. Quasiguided modes that differ in lifetime by an order of magnitude are also identified and yield absorption that is concentrated in the P3HT:PCBM flash layer.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Sankhyabrata; Basumallick, Nandini; Bysakh, Sandip; Dey, Tanoy Kumar; Biswas, Palas; Bandyopadhyay, Somnath
2018-06-01
In this paper studies on the design and fabrication of a long period fiber grating (LPFG) with a self mono layer of gold nanoparticle (AuNP) has been presented. Refractive index (RI) sensitivity of a dispersed cladding mode (DCM) near turn around point (TAP) of its phase matching curve (PMC) has been investigated with and also without AuNP coated LPFG. The typical role played by the intermediate layer of AuNP on the effective index and thus on the sensitivity of the cladding mode to the surrounding RI has also been explored by carrying out coupled mode analysis of the requisite multilayer waveguide. Deposition of AuNP enhanced the sensitivity by more than a factor of 2. Measured sensitivity was found to be ∼3928 nm/refractive index unit (RIU) in the range of 1.3333-1.3428.
An optical wavefront sensor based on a double layer microlens array.
Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John
2011-01-01
In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution.
Modern quantitative schlieren techniques
NASA Astrophysics Data System (ADS)
Hargather, Michael; Settles, Gary
2010-11-01
Schlieren optical techniques have traditionally been used to qualitatively visualize refractive flowfields in transparent media. Modern schlieren optics, however, are increasingly focused on obtaining quantitative information such as temperature and density fields in a flow -- once the sole purview of interferometry -- without the need for coherent illumination. Quantitative data are obtained from schlieren images by integrating the measured refractive index gradient to obtain the refractive index field in an image. Ultimately this is converted to a density or temperature field using the Gladstone-Dale relationship, an equation of state, and geometry assumptions for the flowfield of interest. Several quantitative schlieren methods are reviewed here, including background-oriented schlieren (BOS), schlieren using a weak lens as a "standard," and "rainbow schlieren." Results are presented for the application of these techniques to measure density and temperature fields across a supersonic turbulent boundary layer and a low-speed free-convection boundary layer in air. Modern equipment, including digital cameras, LED light sources, and computer software that make this possible are also discussed.
Two-dimensional simulation of holographic data storage medium for multiplexed recording.
Toishi, Mitsuru; Takeda, Takahiro; Tanaka, Kenji; Tanaka, Tomiji; Fukumoto, Atsushi; Watanabe, Kenjiro
2008-02-18
In this paper, we propose a new analysis model for photopolymer recording processes that calculate the two-dimensional refractive index distribution of multiplexed holograms. For the simulation of the photopolymer medium, time evolution of monomer diffusion and polymerization need to be calculated simultaneously. The distribution of the refractive index inside the medium is induced by these processes. By evaluating the refractive index pattern on each layer, the diffraction beams from the multiplexed hologram can be read out by beam propagation method (BPM). This is the first paper to determine the diffraction beam from a multiplexed hologram in a simulated photopolymer medium process. We analyze the time response of the multiplexed hologram recording processes in the photopolymer, and estimate the degradation of diffraction efficiency with multiplexed recording. This work can greatly contribute to understanding the process of hologram recording.
Third-order optical nonlinearity studies of bilayer Au/Ag metallic films
NASA Astrophysics Data System (ADS)
Mezher, M. H.; Chong, W. Y.; Zakaria, R.
2016-05-01
This paper presents nonlinear optical studies of bilayer metallic films of gold (Au) and silver (Ag) on glass substrate prepared using electron beam evaporation. The preparation of Au and Ag nanoparticles (NPs) on the substrate involved the use of electron beam deposition, then thermal annealing at 600 °C and 270 °C, respectively, to produce a randomly distributed layer of Au and a layer of Ag NPs. Observation of field-effect scanning electron microscope images indicated the size of the NPs. Details of the optical properties related to peak absorption of surface plasmon resonance of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear absorption and nonlinear refraction of the fabricated NP layers. The third-order nonlinear refractive index coefficients for Au and Ag are (-9.34 and -1.61) × 10-11 cm2 W-1 given lower n 2, in comparison with bilayer (Au and Ag) NPs at -1.24 × 10-10 cm2 W-1. The results show bilayer NPs have higher refractive index coefficients thus enhance the nonlinearity effects.
Spectral Behavior of Weakly Compressible Aero-Optical Distortions
NASA Astrophysics Data System (ADS)
Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric
2016-11-01
In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.
Optical properties of a nanostructured glass-based film using spectroscopic ellipsometry
Jellison, G. E.; Aytug, T.; Lupini, A. R.; ...
2015-12-22
Nanostructured glass films, which are fabricated using spinodally phase-separated low-alkali glasses, have several interesting and useful characteristics, including being robust, non-wetting and antireflective. Spectroscopic ellipsometry measurements have been performed on one such film and its optical properties were analyzed using a 5-layer structural model of the near-surface region. Since the glass and the film are transparent over the spectral region of the measurement, the Sellmeier model is used to parameterize the dispersion in the refractive index. To simulate the variation of the optical properties of the film over the spot size of the ellipsometer (~ 3 × 5 mm), themore » Sellmeier amplitude is convoluted using a Gaussian distribution. The transition layers between the ambient and the film and between the film and the substrate are modeled as graded layers, where the refractive index varies as a function of depth. These layers are modeled using a two-component Bruggeman effective medium approximation where the two components are the layer above and the layer below. Lastly, the fraction is continuous through the transition layer and is modelled using the incomplete beta function.« less
NASA Astrophysics Data System (ADS)
Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas
2016-09-01
This work presents different polymer diffusing films for optical components. In optical applications it is sometimes important to have a film with an adjusted refractive index, scattering properties and a low surface roughness. These diffusing films can be used to increase the efficiency of optical components like organic light emitting diodes (OLEDs). In this study three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol a glycerolate dimethacrylate, Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved with a chemical doping by 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. To prevent sedimentation and agglomeration of these nanoparticles, a stabilization agent [2-(2-methoxyethoxy)ethoxy]acetic acid is added to the mixture. Other ingredients are a UV-starter and thermal starter for the radical polymerization. A high power stirrer (ultraturrax) is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and gets characterized. After the mixing, the monomer mixture is applied on glass substrates by blade coating or screen printing. To initiate the chain growing (polymerization) the produced films are irradiated for 10 minutes long with UV light (UV LED Spot Hönle, 405 nm). After this step a final post bake from the layers in the oven (150°C, 30 min.) is operated. Light transmission measurements (UV-Vis) of the polymer matrix and roughness measurements complement the characterization.
NASA Astrophysics Data System (ADS)
Patel, H. S.; Kushwaha, P. K.; Swami, M. K.
2018-05-01
Photonic nanojets (PNJs) owing to their sub-wavelength near-field features have found many interesting applications like nanoscopy, nano photolithography, high density optical storage, enhancement of Raman signal and single molecule spectroscopy etc. More recently, the focus of research has been on tailoring of PNJs either for better confinement and thus higher peak intensity or for elongation of nanojet for high resolution far field applications. In this paper, we show that crescent-shape refractive index profile (CSRP) of microspheres can be used to generate highly confined PNJ. By optimizing the refractive index of different layers in CSRP microsphere, we show a free space confinement down to ∼ λ / 4 . 5 (FWHM ∼ 110 nm for excitation with 500 nm wavelength). Further, it was observed that the optical properties of substrates also modulate the PNJ characteristics and lead to a further improvement in the transverse confinement to ∼ λ / 6 . 7.
Ward, Keeran; Stuckey, David C
2016-06-01
Refractive index matching was used to create optically transparent polyaphrons to enable proteins adsorbed to the aphron surface to be characterized. Due to the significant light scattering created by polyaphrons, refractive index matching allowed for representative circular dichroism (CD) spectra and acceptable structural characterization. The method utilized n-hexane as the solvent phase, a mixture of glycerol and phosphate buffer (30% [w/v]) as the aqueous phase, and the non-ionic surfactants, Laureth-4 and Kolliphor P-188. Deconvolution of CD spectra revealed that the immobilized protein adapted its native conformation, showing that the adsorbed protein interacted only with the bound water layer ("soapy shell") of the aphron. Isothermal calorimetry further demonstrated that non-ionic surfactant interactions were virtually non-existent, even at the high concentrations used (5% [w/v]), proving that non-ionic surfactants can preserve protein conformation. Copyright © 2016 Elsevier B.V. All rights reserved.
High refractive index nanocomposite fluids for immersion lithography.
Bremer, L; Tuinier, R; Jahromi, S
2009-02-17
The concept of using dispersions of nanoparticles as high refractive index fluids in immersion lithography is examined both from a theoretical and experimental point of view. In the theoretical part we show that gelation and demixing can be controlled in high solid dispersions, needed to achieve a high (refractive) index, by using short stabilizing brushes. We considered both fluid-fluid demixing by using statistical thermodynamics and percolation, computed using liquid-state approaches. Whenever demixing or percolation takes place, the nanoparticle dispersion is unsuited for immersion lithography. The minimum thickness of the stabilizer layer of a stable suspension is estimated assuming particles plus steric stabilizer to act as hard spheres with van der Waals attraction between the cores. Since the van der Waals attraction can be related to the optical properties of the particles and dispersion medium, it is also possible to estimate the refractive index that can be attained with composite immersion fluids. Using materials that are known to be highly transparent in the bulk at a wavelength of 193 nm, indices above 1.8 can be attained. Other materials with higher indices are expected to be transparent at 193 nm due to a blue shift of the UV absorption and enable much higher indices. In the experiment, we show that it is possible to prepare suspensions with particles of about 4 nm diameter that increase the refractive index of the continuous phase with 0.2 at a wavelength of 193 nm. The refractive index and density of such dispersions are proportional to the volume fraction of the disperse phase, and it is shown that the refractive index of the composite fluid can be predicted very well from the optical properties of the components. Furthermore, successful imaging experiments were performed through a dispersion of silica nanoparticles. These findings lead to the conclusion that immersion lithography using nanoparticle dispersions is indeed possible.
Kushner, Douglas I; Hickner, Michael A
2017-05-30
Spectroscopic ellipsometry (SE) and quartz crystal microbalance (QCM) measurements are two critical characterization techniques routinely employed for hydration studies of polymer thin films. Water uptake by thin polymer films is an important area of study to investigate antifouling surfaces, to probe the swelling of thin water-containing ionomer films, and to conduct fundamental studies of polymer brush hydration and swelling. SiO 2 -coated QCM crystals, employed as substrates in many of these hydration studies, show porosity in the thin electron-beam (e-beam) evaporated SiO 2 layer. The water sorption into this porous SiO 2 layer requires correction of the optical and mass characterization of the hydrated polymer due to changes in the SiO 2 layer as it sorbs water. This correction is especially important when experiments on SiO 2 -coated QCM crystals are compared to measurements on Si wafers with dense native SiO 2 layers. Water adsorption filling void space during hydration in ∼200-260 nm thick SiO 2 layers deposited on a QCM crystal resulted in increased refractive index of the layer during water uptake experiments. The increased refractive index led to artificially higher polymer swelling in the optical modeling of the hydration experiments. The SiO 2 -coated QCM crystals showed between 6 and 8% void as measured by QCM and SE, accounting for 60%-85% of the measured polymer swelling in the low humidity regime (<20% RH) and 25%-40% of the polymer swelling in the high humidity regime (>70% RH) from optical modeling for 105 and 47 nm thick sulfonated polymer films. Correcting the refractive index of the SiO 2 layer for its water content resulted in polymer swelling that successfully resembled swelling measured on a silicon wafer with nonporous native oxide.
Effects of Refractive Index and Diffuse or Specular Boundaries on a Radiating Isothermal Layer
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Equilibrium temperatures of an absorbing-emitting layer were obtained for exposure to incident radiation and with the layer boundaries either specular or diffuse. For high refractive indices the surface condition can influence the radiative heat balance if the layer optical thickness is small. Hence for a spectrally varying absorption coefficient the layer temperature is affected if there is significant radiative energy in the spectral range with a small absorption coefficient. Similar behavior was obtained for transient radiative cooling of a layer where the results are affected by the initial temperature and hence the fraction of energy radiated in the short wavelength region where the absorption coefficient is small. The results are a layer without internal scattering. If internal scattering is significant, the radiation reaching the internal surface of a boundary is diffused and the effect of the two different surface conditions would become small.
NASA Astrophysics Data System (ADS)
Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas
2017-03-01
Several polymer films for improved optical properties in optoelectronic devices are presented. In such optical applications, it is sometimes important to have a film with an adjusted refractive index, scattering properties, and a low surface roughness. These diffusing films can be used to increase the efficiency of optoelectronic components, such as organic light-emitting diodes. Three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol A glycerolate dimethacrylate, and Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved by chemical doping using 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. A high-power stirrer is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and, therefore, the viscosity measurement results are presented. After the mixing, the monomer mixture is applied on glass substrates by screen printing. To initiate polymerization, the produced films are irradiated for 10 min with ultraviolet radiation and heat. Transmission measurements of the polymer matrix and roughness measurements complement the characterization.
Analyzing refractive index profiles of confined fluids by interferometry.
Kienle, Daniel F; Kuhl, Tonya L
2014-12-02
This work describes an interferometry data analysis method for determining the optical thickness of thin films or any variation in the refractive index of a fluid or film near a surface. In particular, the method described is applied to the analysis of interferometry data taken with a surface force apparatus (SFA). The technique does not require contacting or confining the fluid or film. By analyzing interferometry data taken at many intersurface separation distances out to at least 300 nm, the properties of a film can be quantitatively determined. The film can consist of material deposited on the surface, like a polymer brush, or variation in a fluid's refractive index near a surface resulting from, for example, a concentration gradient, depletion in density, or surface roughness. The method is demonstrated with aqueous polyethylenimine (PEI) adsorbed onto mica substrates, which has a large concentration and therefore refractive index gradient near the mica surface. The PEI layer thickness determined by the proposed method is consistent with the thickness measured by conventional SFA methods. Additionally, a thorough investigation of the effects of random and systematic error in SFA data analysis and modeling via simulations of interferometry is described in detail.
NASA Astrophysics Data System (ADS)
McDonough, Richard T.; Zheng, Hewen; Alila, Mercy A.; Goodisman, Jerry; Chaiken, Joseph
2017-03-01
Biofilm produced by Escherichia coli (E. coli) or Pseudomonas aeruginosa (P. aeruginosa) on quartz or polystyrene is removed from the culture medium and drained. Observed optical interference fringes indicate the presence of a layer of uniform thickness with refractive index different from air-dried biofilm. Fringe wavelengths indicate that layer optical thickness is <20 μm or 1 to 2 orders of magnitude thinner than the biofilm as measured by confocal Raman microscopy or fluorescence imaging of the bacteria. Raman shows that films have an alginate-like carbohydrate composition. Fringe amplitudes indicate that the refractive index of the interfering layer is higher than dry alginate. Drying and rehydration nondestructively thins and restores the interfering layer. The strength of the 1451-nm near infrared water absorption varies in unison with thickness. Absorption and layer thickness are proportional for films with different bacteria, substrates, and growth conditions. Formation of the interfering layer is general, possibly depending more on the chemical nature of alginate-like materials than bacterial processes. Films grown during the exponential growth phase produce no observable interference fringes, indicating requirements for layer formation are not met, possibly reflecting bacterial activities at that stage. The interfering layer might provide a protective environment for bacteria when water is scarce.
Material Structure of a Graded Refractive Index Lens in Decapod Squid
NASA Astrophysics Data System (ADS)
Cai, Jing; Heiney, Paul; Sweeney, Alison
2013-03-01
Underwater vision with a camera-type eye that is simultaneously acute and sensitive requires a spherical lens with a graded distribution of refractive index. Squids have this type of lens, and our previous work has shown that its optical properties are likely achieved with radially variable densities of a single protein with multiple isoforms. Here we measure the spatial organization of this novel protein material in concentric layers of the lens and use these data to suggest possible mechanisms of self-assembly of the proteins into a graded refractive index structure. First, we performed small angle x-ray scattering (SAXS) to study how the protein is spatially organized. Then, molecular dynamic simulation allowed us to correlate structure to the possible dynamics of the system in different regions of the lens. The combination of simulation and SAXS data in this system revealed the likely protein-protein interactions, resulting material structure and its relationship to the observed and variable optical properties of this graded index system. We believe insights into the material properties of the squid lens system will inform the invention of self-assembling graded index devices.
Tu, Tianyu; Pang, Fufei; Zhu, Shan; Cheng, Jiajing; Liu, Huanhuan; Wen, Jianxiang; Wang, Tingyun
2017-04-17
We have theoretically and experimentally demonstrated a novel approach to excite Bloch surface wave (BSW) on tapered optical fibers, which are coated with one-dimensional photonic crystal (1DPC) consisting of periodic TiO2 and Al2O3 by atomic layer deposition technology. Two resonant dips are found in transmission spectra that are originated from the excitation of BSW for p-polarized light and s-polarized light, respectively. For the first time, we have demonstrated the developed device for refractive index (RI) sensing.
Experimental results for characterization of a tapered plastic optical fiber sensor based on SPR
NASA Astrophysics Data System (ADS)
Cennamo, N.; Galatus, R.; Zeni, L.
2015-05-01
The experimental results obtained with two different Plastic Optical Fiber (POF) geometries, tapered and not-tapered, for a sensor based on Surface Plasmon Resonance (SPR) are presented. SPR is used for determining the refractive index variations at the interface between a gold layer and a dielectric medium (aqueous medium). In this work SPR sensors in POF configurations, useful for bio-sensing applications, have been realized for the optimization of the sensitivity and experimentally tested. The results show as the sensitivity increases with the tapered POF configuration, when the refractive index of aqueous medium increases.
Optical models for radio-frequency-magnetron reactively sputtered AlN films
NASA Astrophysics Data System (ADS)
Easwarakhanthan, T.; Assouar, M. B.; Pigeat, P.; Alnot, P.
2005-10-01
The optical properties of aluminum nitrate (AlN) films reactively sputtered on Si substrates using radio-frequency (rf) magnetron have been studied in this work from multiwavelength spectroscopic ellipsometry (SE) measurements performed over the 290-615 nm wavelength range. The SE modeling carried out with care to adhere as much to the ellipsometric fitting qualities is also backed up with atomic force microscopy and x-ray-diffraction measurements taken on these films thus grown to nominal thicknesses from 40 to 150 nm under the same optimized experimental conditions. It follows that the model describing the optical properties of the thicker AlN films should consist at least in three layers on the Si substrate: an almost roughnessless smooth surface overlayer that is presumed essentially of Al2O3, a bulk AlN layer, and an AlN interface layer that has a refractive index dispersion falling in the range from 2.04 [312 nm] to 1.91 [615 nm] on the average and is fairly distinguishable from the slightly higher bulk layer index which drops correspondingly from 2.12 to 1.99. These index values imply that, beneath the partly or mostly oxidized surface AlN layer, the films comprise a polycrystalline-structured bulk AlN layer above a less-microstructurally-ordered interface layer that extends over 40-55 nm from the substrate among thicker films. This ellipsometric evidence indicating the existence of the interface layer is consistent with those interface layers confirmed through electron microscopy in some previous works. However, the ellipsometrically insufficient thinner AlN films may be only modeled with the surface layer and an AlN layer. The film surface oxide layer thickness varies between 5 and 15 nm among samples. The refractive index dispersions, the layer thicknesses, and the lateral thickness variation of the films are given and discussed regarding the optical constitution of these films and the ellipsometric validity of these parameters.
Novel multichannel surface plasmon resonance photonic crystal fiber biosensor
NASA Astrophysics Data System (ADS)
Hameed, Mohamed Farhat O.; Alrayk, Yassmin K. A.; Shaalan, A. A.; El Deeb, Walid S.; Obayya, S. S. A.
2016-04-01
In this paper, a novel design of highly sensitive biosensor based on photonic crystal fiber is presented and analyzed using full vectorial finite element method. The suggested design depends on using silver layer as a plasmonic active material coated by a gold layer to protect silver oxidation. The reported sensor is based on the detection using the quasi transverse electric (TE) and quasi transverse magnetic (TM) modes which offers the possibility of multi-channel/multi-analyte sensing. The sensor geometrical parameters are optimized to achieve high sensitivity for the two polarized modes. High refractive index sensitivity of about 4750 nm/RIU (refractive index unit) and 4300 nm/RIU with corresponding resolutions of 2.1×10-5 RIU, and 2.33×10-5 RIU can be obtained for the quasi TM and quasi TE modes, respectively.
An Optical Wavefront Sensor Based on a Double Layer Microlens Array
Lin, Vinna; Wei, Hsiang-Chun; Hsieh, Hsin-Ta; Su, Guo-Dung John
2011-01-01
In order to determine light aberrations, Shack-Hartmann optical wavefront sensors make use of microlens arrays (MLA) to divide the incident light into small parts and focus them onto image planes. In this paper, we present the design and fabrication of long focal length MLA with various shapes and arrangements based on a double layer structure for optical wavefront sensing applications. A longer focal length MLA could provide high sensitivity in determining the average slope across each microlens under a given wavefront, and spatial resolution of a wavefront sensor is increased by numbers of microlenses across a detector. In order to extend focal length, we used polydimethysiloxane (PDMS) above MLA on a glass substrate. Because of small refractive index difference between PDMS and MLA interface (UV-resin), the incident light is less refracted and focused in further distance. Other specific focal lengths could also be realized by modifying the refractive index difference without changing the MLA size. Thus, the wavefront sensor could be improved with better sensitivity and higher spatial resolution. PMID:22346643
Optical Enhancement in Optoelectronic Devices Using Refractive Index Grading Layers.
Lee, Illhwan; Park, Jae Yong; Gim, Seungo; Kim, Kisoo; Cho, Sang-Hwan; Choi, Chung Sock; Song, Seung-Yong; Lee, Jong-Lam
2016-02-10
We enhanced the optical transmittance of a multilayer barrier film by inserting a refractive index grading layer (RIGL). The result indicates that the Fresnel reflection, induced by the difference of refractive indices between Si(x)N(y) and SiO2, is reduced by the RIGL. To eliminate the Fresnel reflection while maintaining high transmittance, the optimized design of grading structures with the RIGL was conducted using an optical simulator. With the RIGL, we achieved averaged transmittance in the visible wavelength region by 89.6%. It is found that the optimized grading structure inserting the multilayer barrier film has a higher optical transmittance (89.6%) in the visible region than that of a no grading sample (82.6%). Furthermore, luminance is enhanced by 14.5% (from 10,190 to 11,670 cd m(-2) at 30 mA cm(-2)) when the grading structure is applied to organic light-emitting diodes. Finally, the results offer new opportunities in development of multilayer barrier films, which assist industrialization of very cost-effective flexible organic electronic devices.
NASA Astrophysics Data System (ADS)
El-Haddad, Mohamed T.; Tao, Yuankai K.
2018-02-01
Design of optical imaging systems requires careful balancing of lens aberrations to optimize the point-spread function (PSF) and minimize field distortions. Aberrations and distortions are a result of both lens geometry and glass material. While most lens manufacturers provide optical models to facilitate system-level simulation, these models are often not reflective of true system performance because of manufacturing tolerances. Optical design can be further confounded when achromatic or proprietary lenses are employed. Achromats are ubiquitous in systems that utilize broadband sources due to their superior performance in balancing chromatic aberrations. Similarly, proprietary lenses may be custom-designed for optimal performance, but lens models are generally not available. Optical coherence tomography (OCT) provides non-contact, depth-resolved imaging with high axial resolution and sensitivity. OCT has been previously used to measure the refractive index of unknown materials. In a homogenous sample, the group refractive index is obtained as the ratio between the measured optical and geometric thicknesses of the sample. In heterogenous samples, a method called focus-tracking (FT) quantifies the effect of focal shift introduced by the sample. This enables simultaneous measurement of the thickness and refractive index of intermediate sample layers. Here, we extend the mathematical framework of FT to spherical surfaces, and describe a method based on OCT and FT for full characterization of lens geometry and refractive index. Finally, we validate our characterization method on commercially available singlet and doublet lenses.
Enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays.
Xiao, Gongli; Yao, Xiang; Ji, Xinming; Zhou, Jia; Bao, Zongming; Huang, Yiping
2011-12-01
The enhanced middle-infrared light transmission through Au/SiO(x)N(y)/Au aperture arrays by changing the refractive index and the thickness of a dielectric layer was studied experimentally. The results indicated that the transmission spectra was highly dependent on the refractive index and the thickness of SiO(x)N(y). We found that the transmission peaks redshifted regularly along with the refractive index from 1.6 to 1.8, owing to the role of surface plasmon polaritons (SPP) coupling in the Au/SiO(x)N(y)/Au cascaded metallic structure. Simultaneously, a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO2.1N0.3/Au cascaded metallic structure with small refractive index (1.6) than in Au/SiO0.6N1/Au cascaded metallic structure with large refractive index (1.8). When the thickness of SiO(x)N(y) changes from 0.2 to 0.4 microm, the shape of transmission spectra exhibits a large change. It was found that a higher transmission efficiency and narrower transmission peak was obtained in Au/SiO(x)N(y)/Au cascaded metallic structure with a thin dielectric film (0.2 microm), with the increase of SiO(x)N(y) film's thickness, the transmission peak gradually widened and disappeared finally. This effect is useful in applications of biochemical sensing and tunable integrated plasmonic devices in the middle-infrared region.
1989-11-01
cherists because a new parameter; the refractive index of materials is an important in design as the chemistry of the absorbing or reacting layer ...redox electrode surfaces (the Sharp electrodes); use of enzymes in reactive layers to generate from neutral charge substrate species that can be...and natural and synthetic ionophores in monovalent and divalent ion sensors since 1965); use of selective layers to extract or partition species into
Index matching of TE and TM modes in organic multilayer waveguides
NASA Astrophysics Data System (ADS)
Thompson, Jonathan; Schmitzer, Heidrun; Wagner, Hans Peter
We investigate transverse electric (TE) and magnetic (TM) mode propagation in organic multilayers consisting of aluminum quinoline (Alq3) and perylenetetracarboxylic dianhydride (PTCDA). In particular, we analyze two multilayer waveguides, Alq3-PTCDA-Alq3 and PTCDA-Alq3-PTCDA, engineered to give index matching according to modeling. The waveguides were grown on a glass substrate via organic molecular beam deposition. Fabry-Perot oscillations observed from reflection measurements were used to confirm the individual layer thicknesses. We were able to observe refractive index matching between TE0 and TE1, as well as TE2 and TE3 modes for the PTCDA-Alq3-PTCDA waveguide due to the light propagation through the top and bottom PTCDA layers, respectively. In addition, we were able to match TE1 and TM1, as well as TE3 and TM3 modes in the Alq3-PTCDA-Alq3 multilayer due to the birefringence of the PTCDA layer. Furthermore, we are able to create mode matching for a range of wavelengths due to the similar effective refractive index dispersion of different waveguide modes. The ability to phase match different waveguide modes opens a wide range of potential applications including polarization-insensitive propagation and mode switching by adding a thin magnetic metal film within the waveguide and applying an external magnetic field.
NASA Astrophysics Data System (ADS)
Das, Nandan Kumar; Mukhopadhyay, Sabyasachi; Ghosh, Nirmalya; Chhablani, Jay; Richhariya, Ashutosh; Divakar Rao, Kompalli; Sahoo, Naba Kishore
2016-09-01
Optical coherence tomography (OCT) enables us to monitor alterations in the thickness of the retinal layer as disease progresses in the human retina. However, subtle morphological changes in the retinal layers due to early disease progression often may not lead to detectable alterations in the thickness. OCT images encode depth-dependent backscattered intensity distribution arising due to the depth distributions of the refractive index from tissue microstructures. Here, such depth-resolved refractive index variations of different retinal layers were analyzed using multifractal detrended fluctuation analysis, a special class of multiresolution analysis tools. The analysis extracted and quantified microstructural multifractal information encoded in normal as well as diseased human retinal OCT images acquired in vivo. Interestingly, different layers of the retina exhibited different degrees of multifractality in a particular retina, and the individual layers displayed consistent multifractal trends in healthy retinas of different human subjects. In the retinal layers of diabetic macular edema (DME) subjects, the change in multifractality manifested prominently near the boundary of the DME as compared to the normal retinal layers. The demonstrated ability to quantify depth-resolved information on multifractality encoded in OCT images appears promising for the early diagnosis of diseases of the human eye, which may also prove useful for detecting other types of tissue abnormalities from OCT images.
Magneto-photonic crystal optical sensors with sensitive covers
NASA Astrophysics Data System (ADS)
Dissanayake, Neluka; Levy, Miguel; Chakravarty, A.; Heiden, P. A.; Chen, N.; Fratello, V. J.
2011-08-01
We report on a magneto-photonic crystal on-chip optical sensor for specific analyte detection with polypyrrole and gold nano particles as modified photonic crystal waveguide cover layers. The reaction of the active sensor material with various analytes modifies the electronic structure of the sensor layer causing changes in its refractive index and a strong transduction signal. Magneto-photonic crystal enhanced polarization rotation sensitive to the nature of the cover layer detects the index modification upon analyte adsorption. A high degree of selectivity and sensitivity are observed for aqueous ammonia and methanol with polypyrrole and for thiolated-gold- with gold-nanoparticles covers.
Numerical methods for the design of gradient-index optical coatings.
Anzengruber, Stephan W; Klann, Esther; Ramlau, Ronny; Tonova, Diana
2012-12-01
We formulate the problem of designing gradient-index optical coatings as the task of solving a system of operator equations. We use iterative numerical procedures known from the theory of inverse problems to solve it with respect to the coating refractive index profile and thickness. The mathematical derivations necessary for the application of the procedures are presented, and different numerical methods (Landweber, Newton, and Gauss-Newton methods, Tikhonov minimization with surrogate functionals) are implemented. Procedures for the transformation of the gradient coating designs into quasi-gradient ones (i.e., multilayer stacks of homogeneous layers with different refractive indices) are also developed. The design algorithms work with physically available coating materials that could be produced with the modern coating technologies.
NASA Astrophysics Data System (ADS)
Diniz, F. L.; Munchow, G. B.; Herdies, D. L.; Foster, P. R.
2010-12-01
When the eletromagnetic wave travels in the atmosphere from one medium to another with different density and/or composition suffers small changes in speed and direction of propagation. These changes are caused by the vertical variation of atmospheric refractive index. This causes different types of trajectory deviations, which can be called: normal refraction, sub-refraction, super-refraction and duct. The condition to create duct is satisfied when there is a especific vertical profile of refraction, in this case an eletromagnectic wave will oscillate in a layer of the atmosphere. Considering that this ducts condition can causes damage in the transmission and reception of microwave system equipment (e.g. telecomunications, global positioning, weather radars and satellites) and that in the Rio Grande do Sul, state of Brazil, there are two weather radars, this study present a simulation of the trajectory that would have an eletromagnetic wave. In this study was used soundings of the atmosphere to infer the vertical profile of refractive index during the passage of a Mesoescale Convective System on September 7, 2009. In the lack of this data a numerical simulation with nested grids using Weather Research & Forecasting Model was performed to infer this.
Theoretical study of modulated multi-layer SPR device for improved refractive index sensing
NASA Astrophysics Data System (ADS)
Mohapatra, Saswat; Moirangthem, Rakesh S.
2018-02-01
In the present work, a theoretical investigation of Surface Plasmon Resonance (SPR) properties of a multilayer film (Au-SiO2-Au) coated on a glass prism is being carried out. In this multilayer structure, each interface corresponds to multiple SPR modes. To obtain the maximum reflection dips in the SPR modes, the thickness of SiO2 layer is optimized by varying it from 100-600 nm. Our calculation also reveals that SPR mode corresponding to Au-ambient interface is very sensitive to the changes in the surrounding medium, least affecting other SPR modes. The sensing performance of the proposed nano-plasmonic sensor is theoretically calculated using bulk refractive index sensing. Such multilayer SPR sensing device has advantages over conventional SPR devices in terms of their bulk sensitivity and self-referencing, claiming itself as a potential candidate for the development of highly sensitive biological sensor.
Micro spectrometer for parallel light and method of use
NASA Technical Reports Server (NTRS)
Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2011-01-01
A spectrometer system includes an optical assembly for collimating light, a micro-ring grating assembly having a plurality of coaxially-aligned ring gratings, an aperture device defining an aperture circumscribing a target focal point, and a photon detector. An electro-optical layer of the grating assembly may be electrically connected to an energy supply to change the refractive index of the electro-optical layer. Alternately, the gratings may be electrically connected to the energy supply and energized, e.g., with alternating voltages, to change the refractive index. A data recorder may record the predetermined spectral characteristic. A method of detecting a spectral characteristic of a predetermined wavelength of source light includes generating collimated light using an optical assembly, directing the collimated light onto the micro-ring grating assembly, and selectively energizing the micro-ring grating assembly to diffract the predetermined wavelength onto the target focal point, and detecting the spectral characteristic using a photon detector.
Optical analysis of AlGaInP laser diodes with real refractive index guided self-aligned structure
NASA Astrophysics Data System (ADS)
Xu, Yun; Zhu, Xiaopeng; Ye, Xiaojun; Kang, Xiangning; Cao, Qing; Guo, Liang; Chen, Lianghui
2004-05-01
Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.
Flexible photonic crystal membranes with nanoparticle high refractive index layers.
Karrock, Torben; Paulsen, Moritz; Gerken, Martina
2017-01-01
Flexible photonic crystal slabs with an area of 2 cm 2 are fabricated by nanoimprint replication of a 400 nm period linear grating nanostructure into a ≈60 µm thick polydimethylsiloxane membrane and subsequent spin coating of a high refractive index titanium dioxide nanoparticle layer. Samples are prepared with different nanoparticle concentrations. Guided-mode resonances with a quality factor of Q ≈ 40 are observed. The highly flexible nature of the membranes allows for stretching of up to 20% elongation. Resonance peak positions for unstretched samples vary from 555 to 630 nm depending on the particle concentration. Stretching results in a resonance shift for these peaks of up to ≈80 nm, i.e., 3.9 nm per % strain. The color impression of the samples observed with crossed-polarization filters changes from the green to the red regime. The high tunability renders these membranes promising for both tunable optical devices as well as visualization devices.
Photo-crosslinkable polymers for fabrication of photonic multilayer sensors
NASA Astrophysics Data System (ADS)
Chiappelli, Maria; Hayward, Ryan C.
2013-03-01
We have used photo-crosslinkable polymers to fabricate photonic multilayer sensors. Benzophenone is utilized as a covalently incorporated pendent photo-crosslinker, providing a convenient means of fabricating multilayer films by sequential spin-coating and crosslinking processes. Colorimetric temperature sensors were designed from thermally-responsive, low-refractive index poly(N-isopropylacrylamide) (PNIPAM) and high-refractive index poly(para-methyl styrene) (P pMS). Copolymer chemistries and layer thicknesses were selected to provide robust multilayer sensors which show color changes across nearly the full visible spectrum due to changes in temperature of the hydrated film stack. We have characterized the uniformity and interfacial broadening within the multilayers, the kinetics of swelling and de-swelling, and the reversibility over multiple hydration/dehydration cycles. We also describe how the approach can be extended to alternative sensor designs through the ability to tailor each layer independently, as well as to additional stimuli by selecting alternative copolymer chemistries.
Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.
Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less
Non-destructive characterization of corroded glass surfaces by spectroscopic ellipsometry
Kaspar, Tiffany C.; Reiser, Joelle T.; Ryan, Joseph V.; ...
2017-11-03
Characterization of the alteration layers that form on glass surfaces during corrosion processes provides valuable information on both the mechanisms and rate of glass alteration. In recent years, state-of-the-art materials and surface characterization techniques have been employed to study various aspects of the alteration layers that result from corrosion. In most cases, these techniques are destructive and thus can only be employed at the end of the corrosion experiment. We show that the alteration layers can be investigated by non-destructive spectroscopic ellipsometry (SE), which provides pertinent information on alteration layer thickness, morphology, and, through correlation of the index of refraction,more » porosity. SE measurements of silicate glass coupons altered in aqueous solutions of pH 3, 5, 7, 9, and 11 at 90 °C for 7 days are compared to cross-sectional secondary electron microscopy images. In most cases, quantitative agreement of the alteration layer thickness is obtained. The fractional porosity calculated from the index of refraction is lower than the porosity calculated from elemental analysis of the aqueous solutions, indicating that the alteration layer has compacted during corrosion or the subsequent supercritical CO 2 drying process. Our results confirm the utility of performing non-destructive SE measurements on corroded glass surfaces.« less
Fabrication of poly(vinyl carbazole) waveguides by oxygen ion implantation
NASA Astrophysics Data System (ADS)
Ghailane, Fatima; Manivannan, Gurusamy; Knystautas, Émile J.; Lessard, Roger A.
1995-08-01
Polymer waveguides were fabricated by ion implantation involving poly(vinyl carbazole) films. This material was implanted by oxygen ions (O ++ ) of energies ranging from 50 to 250 keV. The ion doses varied from 1010 to 1015 ions / cm2. The conventional prism-film coupler method was used to determine the waveguiding nature of the implanted and unimplanted films. The increase of the surface refractive index in the implanted layer has been studied by measuring the effective refractive index (neff) for different optical modes. Electron spectroscopy chemical analysis measurements were also performed to assess the effect of ion implantation on the polymer matrix.
NASA Astrophysics Data System (ADS)
Rottler, Andreas; Harland, Malte; Bröll, Markus; Schwaiger, Stephan; Stickler, Daniel; Stemmann, Andrea; Heyn, Christian; Heitmann, Detlef; Mendach, Stefan
2012-04-01
We propose and demonstrate the fabrication of a three-dimensional fishnet metamaterial by utilizing rolled-up nanotechnology. It consists of 6 alternating layers of silver and (In)GaAs with an array of subwavelength holes "drilled" by focused ion beams. By means of finite-integration technique simulations, we show that the fabricated structure is a single-negative material possessing a negative real part of the refractive index in the near-infrared regime. We show that the fabricated material can be made double negative by slightly changing the size of the holes.
Watanabe, Yuuki; Yamaguchi, Ichirou
2002-08-01
A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 microm without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-microm thick with refractive indices between 1 and 1.5.
NASA Astrophysics Data System (ADS)
Watanabe, Yuuki; Yamaguchi, Ichirou
2002-08-01
A wavelength-scanning heterodyne interference confocal microscope quickly accomplishes the simultaneous measurement of the thickness and the refractive index of a sample by detection of the amplitude and the phase of the interference signal during a sample scan. However, the measurement range of the optical path difference (OPD) that is obtained from the phase changes is limited by the time response of the phase-locked loop circuit in the FM demodulator. To overcome this limitation and to improve the accuracy of the separation measurement, we propose an OPD detection using digital signal processing with a Hilbert transform. The measurement range is extended approximately five times, and the resolution of the OPD is improved to 5.5 from 9 mum without the electrical noise of the FM demodulator circuit. By applying this method for simultaneous measurement of thickness and the refractive index, we can measure samples 20-30-mum thick with refractive indices between 1 and 1.5.
NASA Astrophysics Data System (ADS)
Wei, Lin-Yang; Qi, Hong; Ren, Ya-Tao; Ruan, Li-Ming
2016-11-01
Inverse estimation of the refractive index distribution in one-dimensional participating media with graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distribution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorption coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of quadratic GRI distribution, a double-layer model is proposed to supply more measurement information. The influence of measurement errors upon the precision of estimated results is also investigated. Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable to retrieve different GRI distributions in participating media accurately even with noisy data.
Modeling liquid organic thin films on substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.
We present the rationale, methods, and results of modeling of thin film organic liquids on various substrates. These liquids may coat surfaces (substrates) either as a result of their production, dispersal via aerosols or spills. Identification of unknown coated surfaces using either reflectance or emittance spectroscopy cannot be accomplished simply through reference to reflectance signature libraries since neither the thickness of the liquid layer nor the substrate type is known beforehand and both contribute to the signature. Liquid spectral libraries offer the complex index of refraction (n,k) as a function of wavelength which by itself is useful only for thickmore » (bulk) liquid layers via computation of reflectance and transmittance coefficients using the Fresnel equations. Thin liquid layers both reflect and refract incident light in combination with reflectance from the substrate. We show modeling of various organic liquids on substrates using commercial thin film design and modeling software, as well as Monte Carlo ray tracing software to demonstrate the variety of potential signatures encountered that depend on the thickness of the liquid layer as well as the characteristics of the substrate (metal or dielectric). These substrates give rise to transflectance behavior, while many dielectric substrates have rich absorption features that provide complex signatures that combine attributes of both the liquid and the substrate. Knowledge of the complex index of refraction of both target liquids and substrates is essential in order to synthesize spectra necessary in the application of target identification algorithms.« less
NASA Astrophysics Data System (ADS)
Pradhan, Prabhakar; John Park, Daniel; Capoglu, Ilker; Subramanian, Hariharan; Damania, Dhwanil; Cherkezyan, Lusik; Taflove, Allen; Backman, Vadim
2017-06-01
Statistical properties of light waves reflected from a one-dimensional (1D) disordered optical medium [n(x) = n0+ dn(x),
NASA Astrophysics Data System (ADS)
Wang, Jun; Yi, Jia; Guo, Lijun; Liu, Peng; Hall, Trevor J.; Sun, DeGui
2017-03-01
For the most popular structure of planer lightwave circuit (PLC) 2×2 thermo-optic switches, Mach-Zehnder interferometer (MZI), a full range of splitting ratio errors of directional coupler (DC) are investigated. All the parameters determining the splitting ratio are the dimensions and the refractive indices of the waveguide core and cladding layers. In this work, the coherent relationships between the waveguide size and the refractive indices are analyzed and then the error compensation between the width and the refractive index of waveguide core, and the controllable effect of over clad layer refractive index error upon the MZI-type optical switch are all discovered with numerical calculation and BPM simulations. Then, an MZI-type 2×2 thermo-optic switch having a higher error tolerance is established with the efficient optimizations of all the 3 dB-DC parameters. As a result, for the symmetric MZI switch, an insertion loss of 1.5 dB and optical extinction ratio of over 20 dB are realized for the average tolerance of±5.0%. An asymmetric arm optical phase and unequal arm lengths is also employed to improve the uniformities of insertion loss. The agreements between the designs and the experiments are recognized, leading to a wide adoption of practical silica-PLC optical switch products.
NASA Astrophysics Data System (ADS)
Soltani, Osswa; Zaghdoudi, Jihene; Kanzari, Mounir
2018-06-01
By means of two fluid model and transfer matrix method (TMM), we investigate theoretically the transmittance properties of a defective hybrid dielectric-dielectric photonic crystal that contains a superconducting material as a defect layer. The considered hybrid photonic structure is: H(LH) 7(HLSLH) P H(LH) 7 , where H is the high refractive index dielectric, L is the low refractive index dielectric, S is the superconducting material and P is the repetitive number. The results show that the variation of the number and the positions of the transmissions modes depend strongly on the repetitive number P, the temperature T and the thickness of the layer S. An improvement of the spectral response is obtained with the exponential gradation of layer thicknesses dj =d0 + βejα , where d0 is the initial thickness of the layer j, α and β are two particular constants for each material. In addition, the effect of the incident angle for both transverse electric (TE) and transverse magnetic (TM) polarizations on the transmittance spectrum is discussed. As a result, we propose a tunable narrow stop-band polychromatic filter that covers the visible wavelength.
Effective group index of refraction in non-thermal plasma photonic crystals
NASA Astrophysics Data System (ADS)
Mousavi, A.; Sadegzadeh, S.
2015-11-01
Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum).
Long range wetting transparency on top of layered metal dielectric substrates
2015-11-20
multi-layered stacks were deposited onto glass substrates ( silica -based Micro cover glass , 22mmx22mm from VWR (48366-067), index of refraction n...necessarily endorsed by the United States Government. Long-range wetting transparency on top of layered metal-dielectric substrates M. A...as far as ~100 nm beneath the water/MgF2 interface. We refer to this phenomenon as long range wetting transparency . The latter effect cannot be
[Spectral characteristics of refractive index based on nanocoated optical fiber F-P sensor].
Jiang, Ming-Shun; Li, Qiu-Shun; Sui, Qing-Mei; Jia, Lei; Peng, Peng
2013-01-01
An optical fiber Fabry-Perot (F-P) interferometer end surface was modified using layer-by-layer assembly and chemical covalent cross linking method, and the refractive index (RI) response characteristics of coated optical fiber F-P sensor were experimentally studied. Poly diallyldimethylammonium chloride (PDDA) and sodium polystyrene sulfonate (PSS) were chosen as nano-film materials. With the numbers of layers increasing, the reflection spectral contrast of optical fiber F-P sensor presents from high to low, then to high regularity. And the reflection spectral contrast has good temperature stability. The reflection spectra of the optical F-P sensor coated with 20 bilayers for a series of concentration of sucrose and inorganic solution were measured. Experimental results show that the inflection point extends from 1.457 to 1.462 3, and the reflection spectral contrast sensitivity to low RI material and high RI material is 24.53 and 3.60 dB x RI(-1), respectively, with good linearity. The results demonstrate that the functional coated optical F-P sensor provides a new method for biology and chemical material test.
Improved nonlinear plasmonic slot waveguide: a full study
NASA Astrophysics Data System (ADS)
Elsawy, Mahmoud M. R.; Nazabal, Virginie; Chauvet, Mathieu; Renversez, Gilles
2016-04-01
We present a full study of an improved nonlinear plasmonic slot waveguides (NPSWs) in which buffer linear dielectric layers are added between the Kerr type nonlinear dielectric core and the two semi-infinite metal regions. Our approach computes the stationary solutions using the fixed power algorithm, in which for a given structure the wave power is an input parameter and the outputs are the propagation constant and the corresponding field components. For TM polarized waves, the inclusion of these supplementary layers have two consequences. First, they reduced the overall losses. Secondly, they modify the types of solutions that propagate in the NPSWs adding new profiles enlarging the possibilities offered by these nonlinear waveguides. In addition to the symmetric linear plasmonic profile obtained in the simple plasmonic structure with linear core such that its effective index is above the linear core refractive index, we obtained a new field profile which is more localized in the core with an effective index below the core linear refractive index. In the nonlinear case, if the effective index of the symmetric linear mode is above the core linear refractive index, the mode field profiles now exhibit a spatial transition from a plasmonic type profile to a solitonic type one. Our structure also provides longer propagation length due to the decrease of the losses compared to the simple nonlinear slot waveguide and exhibits, for well-chosen refractive index or thickness of the buffer layer, a spatial transition of its main modes that can be controlled by the power. We provide a full phase diagram of the TM wave operating regimes of these improved NPSWs. The stability of the main TM modes is then demonstrated numerically using the FDTD. We also demonstrate the existence of TE waves for both linear and nonlinear cases (for some configurations) in which the maximum intensity is located in the middle of the waveguide. We indicate the bifurcation of the nonlinear asymmetric TE mode from the symmetric nonlinear one through the Hopf bifurcation. This kind of bifurcation is similar to the ones already obtained in TM case for our improved structure, and also for the simple NPSWs. At high power, above the bifurcation threshold, the fundamental symmetric nonlinear TE mode moves gradually to new nonlinear mode in which the soliton peak displays two peaks in the core. The losses of the TE modes decrease with the power for all the cases. This kind of structures could be fabricated and characterized experimentally due to the realistic parameters chosen to model them.
Microsphere-assisted super-resolution imaging with enlarged numerical aperture by semi-immersion
NASA Astrophysics Data System (ADS)
Wang, Fengge; Yang, Songlin; Ma, Huifeng; Shen, Ping; Wei, Nan; Wang, Meng; Xia, Yang; Deng, Yun; Ye, Yong-Hong
2018-01-01
Microsphere-assisted imaging is an extraordinary simple technology that can obtain optical super-resolution under white-light illumination. Here, we introduce a method to improve the resolution of a microsphere lens by increasing its numerical aperture. In our proposed structure, BaTiO3 glass (BTG) microsphere lenses are semi-immersed in a S1805 layer with a refractive index of 1.65, and then, the semi-immersed microspheres are fully embedded in an elastomer with an index of 1.4. We experimentally demonstrate that this structure, in combination with a conventional optical microscope, can clearly resolve a two-dimensional 200-nm-diameter hexagonally close-packed (hcp) silica microsphere array. On the contrary, the widely used structure where BTG microsphere lenses are fully immersed in a liquid or elastomer cannot even resolve a 250-nm-diameter hcp silica microsphere array. The improvement in resolution through the proposed structure is due to an increase in the effective numerical aperture by semi-immersing BTG microsphere lenses in a high-refractive-index S1805 layer. Our results will inform on the design of microsphere-based high-resolution imaging systems.
Design and characterization of dielectric subwavelength focusing lens with polarization dependence
NASA Astrophysics Data System (ADS)
Kim, Sung W.; Pang, Lin; Fainman, Yeshaiahu
2016-03-01
We introduce and develop design, fabrication and characterization methodology for engineering the effective refractive index of a composite dielectric planar surface created by controlling the density of deeply subwavelength low index nanoholes (e.g., air) in a high index dielectric layer (e.g., Si). The nanoscale properties of a composite dielectric layer allows for full control of the optical wavefront phase by designing arbitrary space-variant refractive index profiles. We present the composite dielectric metasurface microlens exploiting symmetric design to achieve polarization invariant impulse response, and use asymmetric design to demonstrate polarization sensitive impulse response of the lens. This composite dielectric layers lenses were fabricated by patterning nanohole distributions on a dielectric surface and etching to submicron depths. Our dielectric microlens with asymmetric distribution of neff (neff x ≠ neff y) demonstrates a graded index lens with polarization dependent focusing with of 32um and 22 um for linearly x- and y-polarized light, respectively operating at a wavelength of λ = 1550nm. We also show numerically and demonstrate experimentally achromatic performance of the devices operating in the wavelength range of 1500nm - 1900nm with FWHM of the focal spots of about 4um. Namely, we have constructed a graded index lens that can overcome diffraction effects even when aperture/wavelength (D/λ) is smaller than 40. The demonstrated novel approach to engineer dielectric composite nanosurfaces has the potential to realize arbitrary phase functions with minimal insertion loss, submicron thickness and miniaturization to reduce element size and weight, and may have a significant impact on numerous miniature imaging systems applications.
Wavelength dependence of polarization. XXXX. Venus upper atmosphere aerosol layers from polarimetry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santer, R.; Dollfus, A.
1980-06-01
Previous photometric and polarimetric observations of Venus have indicated the presence of a thin layer of small particles above the usual cloud layers. We sensed some characteristics of this upper layer on the basis of the Meudon and Pic-du-Midi regional polarization survey, covering from 1950 to 1972. Optical thicknesses of the order of several percent with particle radii of around 0.2 ..mu..m are indicated. The refraction index is not known. Although this layer is apparently globally permanent, variations occur regionally and with time.
Holgado, M; Casquel, R; Sánchez, B; Molpeceres, C; Morales, M; Ocaña, J L
2007-10-01
We have fabricated and characterized a lattice of submicron cone-shaped holes on a SiO(2)/Si wafer. Reflectivity profiles as a function of angle of incidence and polarization, phase shift and spectrometry are obtained for several fluids with different refractive indexes filling the holes. The optical setup allows measuring in the center of a single hole and collecting all data simultaneously, which can be applied for measuring extremely low volumes of fluid (in the order of 0.1 femtolitres) and label-free immunoassays, as it works as a refractive index sensor. A three layer film stack model is defined to perform theoretical calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vijayarangamuthu, K.; Singh, Chaman; Rath, Shyama
2011-09-15
Sub-stoichiometric GeO{sub x} films were fabricated by electron-beam evaporation method. The films were irradiated with 100 MeV Ag{sup 7+} ions at fluences between 1 x 10{sup 12} and 1 x 10{sup 14} ions-cm{sup -2}. Spectroscopic ellipsometric measurements were performed in air at room temperature. The values of the layer thickness and refractive index were extracted from ellipsometry using a multilayer analysis and the Tauc Lorentz model. The refractive index (at 633 nm) of the as-deposited GeO{sub x} film was estimated to be 1.860 and decreased to 1.823 for films irradiated at an ion fluence of 1 x 10{sup 14} ions-cm{supmore » -2}. The thickness of the films also decreased after irradiation and is due to a sputtering induced by the ion beam. The change in the refractive index with ion fluence is attributed to a stoichiometric change and structural transformation represented by GeO{sub x}{yields} Ge + GeO{sub y} (y > x) occurring due to a thermal spike induced by ion irradiation. Swift heavy ions thus provide a scope for modulating the refractive index of GeO{sub x} films. The thickness and stoichiometric changes are supported by Rutherford backscattering measurements.« less
Organic plasmon-emitting diodes for detecting refractive index variation.
Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi
2013-06-28
A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10-3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor.
1985-05-30
consisting of quarterwave layers by detecting the -- extrema of transmission or reflectance at a particular wavelength. This method is extremely stable for the...technique, which is based on an envelope method , and gives some experimental *results. L"( iL -2- I. Introduction The refractive index and the...constants determination :ecnnique by computer simulation, we have applied the method to various layers of titanium dioxide. This technique can then
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
Various aspects of a sensitivity analysis, in particular, the impact of variations in metal sheet resistivity, metal line width, diffused layer sheet resistance, junction depth, base layer lifetime, optical coating thickness and optical coating refractive index and on process reproducibility for A's diffusion from a polymer dopant source and on module fabrication were studied. Model calculations show that acceptable process windows exist for each of these parameters.
Alkali resistant optical coatings for alkali lasers and methods of production thereof
Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C
2014-11-18
In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.
Layered chalcogenide glass structures for IR lenses
NASA Astrophysics Data System (ADS)
Gibson, Daniel; Bayya, Shyam; Sanghera, Jas; Nguyen, Vinh; Scribner, Dean; Maksimovic, Velimir; Gill, John; Yi, Allen; Deegan, John; Unger, Blair
2014-07-01
A technique for fabricating novel infrared (IR) lenses can enable a reduction in the size and weight of IR imaging optics through the use of layered glass structures. These structures can range from having a few thick glass layers, mimicking cemented doublets and triplets, to having many thin glass layers approximating graded index (GRIN) lenses. The effectiveness of these structures relies on having materials with diversity in refractive index (large Δn) and dispersion and similar thermo-viscous behavior (common glass transition temperature, ΔTg = 10°C). A library of 13 chalcogenide glasses with broad IR transmission (NIR through LWIR bands) was developed to satisfy these criteria. The lens fabrication methodology, including glass design and synthesis, sheet fabrication, preform making, lens molding and surface finishing are presented.
Electrically pumped edge-emitting photonic bandgap semiconductor laser
Lin, Shawn-Yu; Zubrzycki, Walter J.
2004-01-06
A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.
Optimized Wavelength-Tuned Nonlinear Frequency Conversion Using a Liquid Crystal Clad Waveguide
NASA Technical Reports Server (NTRS)
Stephen, Mark A. (Inventor)
2018-01-01
An optimized wavelength-tuned nonlinear frequency conversion process using a liquid crystal clad waveguide. The process includes implanting ions on a top surface of a lithium niobate crystal to form an ion implanted lithium niobate layer. The process also includes utilizing a tunable refractive index of a liquid crystal to rapidly change an effective index of the lithium niobate crystal.
NASA Astrophysics Data System (ADS)
Desfours, Caroline; Calas-Etienne, Sylvie; Horvath, Robert; Martin, Marta; Gergely, Csilla; Cuisinier, Frédéric; Etienne, Pascal
2014-02-01
The aim of this work is to demonstrate the sensing ability of reverse-symmetry waveguides to investigate adsorption of casein and build-up of poly-L-lysine mediated casein multilayers. A first part of this study is dedicated to the elaboration and characterization of ultra-porous thin films with very low refractive indices by an appropriate sol-gel method. This will form the basis of our planar optical sensors. Optical waveguide light mode spectroscopy is a real-time and sensitive method to study protein adsorption kinetics and lipid bilayers. We used it to test the obtained waveguides for in-situ monitoring of biomolecule adsorption. As a result, significant changes in the incoupling peak position were observed during the layer-by-layer adsorption. Finally, refractive index and thickness of the adsorbed layers were established.
NASA Astrophysics Data System (ADS)
Shen, Jian; Liu, Shouhua; Shen, Zicai; Shao, Jianda; Fan, Zhengxiu
2006-03-01
A model for refractive index of stratified dielectric substrate was put forward according to theories of inhomogeneous coatings. The substrate was divided into surface layer, subsurface layer and bulk layer along the normal direction of its surface. Both the surface layer (separated into N1 sublayers of uniform thickness) and subsurface layer (separated into N2 sublayers of uniform thickness), whose refractive indices have different statistical distributions, are equivalent to inhomogeneous coatings, respectively. And theoretical deduction was carried out by employing characteristic matrix method of optical coatings. An example of mathematical calculation for optical properties of dielectric coatings had been presented. The computing results indicate that substrate subsurface defects can bring about additional bulk scattering and change propagation characteristic in thin film and substrate. Therefore, reflectance, reflective phase shift and phase difference of an assembly of coatings and substrate deviate from ideal conditions. The model will provide some beneficial theory directions for improving optical properties of dielectric coatings via substrate surface modification.
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.
Near-infrared left-handed metamaterials made of arrays of upright split-ring pairs
NASA Astrophysics Data System (ADS)
Chan, Hsun-Chi; Sun, Shulin; Guo, Guang-Yu
2018-07-01
Electromagnetic metamaterials are man-made structures that have novel properties such as a negative refraction index, not attainable in naturally occurring materials. Although negative index materials (NIMs) in microwave frequencies were demonstrated in 2001, it is still challenging to design NIMs for optical frequencies especially those with both negative permittivity and negative permeability (known as left-handed metamaterials (LHMs)). Here, by going beyond the traditional concept of the combination of artificial electronic and magnetic meta-atoms to design NIMs, we propose a novel LHM composed of an array of upright split-ring pairs working in the near-infrared region. Our electromagnetic simulations reveal the underlying mechanism that the coupling of the two rings can stimulate simultaneously both the electric and magnetic resonances. The proposed structure has a highest refractive index of ‑2, a highest figure of merit of 21, good air-matched impedance and 180 nm double negative bandwidth, which excel the performances of many previous proposals. We also numerically demonstrate the negative refraction of this metamaterial in both the single-layer form and wedge-shaped lens.
Mid-infrared refractive index sensing using optimized slotted photonic crystal waveguides
NASA Astrophysics Data System (ADS)
Kassa-Baghdouche, Lazhar; Cassan, Eric
2018-02-01
Slotted photonic crystal waveguides (SPCWs) were designed to act as refractive index sensing devices at mid-infrared (IR) wavelengths around λ = 3.6 μm. In particular, effort was made to engineer the input and output slot waveguide interfaces in order to increase the effective sensitivity through resonant tapering. A slotted PhC waveguide immersed in air and liquid cladding layers was considered. To determine the performance of the sensor, the sensitivity of the device was estimated by calculating the shift in the upper band edge of the output transmission spectrum. The results showed that the sensitivity of a conventionally designed SPCW followed by modifications in the structure parameter yielded a 510 nm shift in the wavelength position of the upper band edge, indicating a sensitivity of more than 1150 nm per refractive index unit (RIU) with an insertion loss level of -0.3 dB. This work demonstrates the viability of photonic crystal waveguide high sensitivity devices in the Mid-IR, following a transposition of the concepts inherited from the telecom band and an optimization of the design, in particular a minimization of photonic device insertion losses.
Segment density profiles of polyelectrolyte brushes determined by Fourier transform ellipsometry
NASA Astrophysics Data System (ADS)
Biesalski, Markus; Rühe, Jürgen; Johannsmann, Diethelm
1999-10-01
We describe a method for the explicit determination of the segment density profile φ(z) of surface-attached polymer brushes with multiple angle of incidence null-ellipsometry. Because the refractive index contrast between the brush layer and the solvent is weak, multiple reflections are of minor influence and the ellipsometric spectrum is closely related to the Fourier transform of the refractive index profile, thereby allowing for explicit inversion of the ellipsometric data. We chose surface-attached monolayers of polymethacrylic acid (PMAA), a weak polyelectrolyte, as a model system and determined the segment density profile of this system as a function of the pH value of the surrounding medium by the Fourier method. Complementary to the Fourier analysis, fits with error functions are given as well. The brushes were prepared on the bases of high refractive index prisms with the "grafting-from" technique. In water, the brushes swell by more than a factor of 30. The swelling increases with increasing pH because of a growing fraction of dissociated acidic groups leading to a larger electrostatic repulsion.
Quasi-D-shaped optical fiber plasmonic refractive index sensor
NASA Astrophysics Data System (ADS)
An, Guowen; Li, Shuguang; Wang, Haiyang; Zhang, Xuenan; Yan, Xin
2018-03-01
A quasi-D-shaped photonic crystal fiber plasmonic sensor with a rectangular lattice is proposed by using Au as a plasmonic layer and graphene to enhance the sensing performance. By moving the core to the edge of the fiber, a shorter polishing depth is achieved, which makes the fiber proposed have a greater mechanical strength than other common D-shaped fibers. Benefiting from the natural advantage of the rectangular lattice, the dual sensing channels make the proposed sensor show a maximum wavelength interrogation sensitivity of 3877 nm/RIU with the dynamic refractive index range from 1.33 to 1.42 and a maximum amplitude sensitivity of 1236 RIU-1 with the analyte RI = 1.41 in the visible region. The corresponding resolutions are 2.58 × 10-5 and 8.1 × 10-6 with the methods of the wavelength interrogation method and amplitude- or phase-based method. These advantages make the proposed sensor a competitive candidate for biosensing in the field of refractive index detection, such as water quality analysis, clinical medicine detection, and pharmaceutical testing.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun
2016-08-15
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO₂) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO₂ nanofilm compared to that of silica, an asymmetric Fabry-Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO₂ nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO₂ on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373-1.3500. Due to TiO₂'s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field.
Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers.
Mishra, Satyendra K; Gupta, Banshi D
2013-05-07
The fabrication and characterization of a surface plasmon resonance based pH sensor using coatings of silver, ITO (In2O3:SnO2), aluminium and smart hydrogel layers over an unclad core of an optical fiber have been reported. The silver, aluminium and ITO layers were coated using a thermal evaporation technique, while the hydrogel layer was prepared using a dip-coating method. The sensor works on the principle of detecting changes in the refractive index of the hydrogel layer due to its swelling and shrinkage caused by changes in the pH of the fluid surrounding the hydrogel layer. The sensor utilizes a wavelength interrogation technique and operates in a particular window of low and high pH values. Increasing the pH value of the fluid causes swelling of the hydrogel layer, which decreases its refractive index and results in a shift of the resonance wavelength towards blue in the transmitted spectra. The thicknesses of the ITO and aluminium layers have been optimized to achieve the best performance of the sensor. The ITO layer increases the sensitivity while the aluminium layer increases the detection accuracy of the sensor. The proposed sensor possesses maximum sensitivity in comparison to the sensors reported in the literature. A negligible effect of ambient temperature in the range 25 °C to 45 °C on the performance of the sensor has been observed. The additional advantages of the sensor are short response time, low cost, probe miniaturization, probe re-usability and the capability of remote sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Jianjun; Shen, Dongyi; Feng, Yaming
Negative refraction has attracted much interest for its promising capability in imaging applications. Such an effect can be implemented by negative index meta-materials, however, which are usually accompanied by high loss and demanding fabrication processes. Recently, alternative nonlinear approaches like phase conjugation and four wave mixing have shown advantages of low-loss and easy-to-implement, but associated problems like narrow accepting angles can still halt their practical applications. Here, we demonstrate theoretically and experimentally a scheme to realize negative refraction by nonlinear difference frequency generation with wide tunability, where a thin Beta barium borate slice serves as a negative refraction layer bendingmore » the input signal beam to the idler beam at a negative angle. Furthermore, we realize optical focusing effect using such nonlinear negative refraction, which may enable many potential applications in imaging science.« less
NASA Astrophysics Data System (ADS)
Seraji, Faramarz E.; Rashidi, Mahnaz; Khasheie, Vajieh
2006-08-01
Photonic crystal fibers (PCFs) with a stepped raised-core profile and one layer equally spaced holes in the cladding are analyzed. Using effective index method and considering a raised step refractive index difference between the index of the core and the effective index of the cladding, we improve the characteristic parameters such as numerical aperture and V-parameter, and reduce its bending loss to about one tenth of a conventional PCF. Implementing such a structure in PCFs may be one step forward to achieve low loss PCFs for communication applications.
Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun
2015-11-01
We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.
NASA Astrophysics Data System (ADS)
Kao, I.-Ling; Ku, Chun-Neng; Chen, Yi-Ping; Lin, Ding-Zheng
2012-09-01
We proposed an internal nanostructure with a high reflective index planarization layer to solve the optical loss due to the reflective index mismatch between ITO and glass substrate. In our experiments, we found the electrical property of OLED device was significantly influenced by the internal nanostructures without planarization layer. Moreover, the internal extraction structure (IES) is not necessarily beneficial for light extraction. Therefore, we proposed a new substrate combine both internal and external extraction structure (EES) to extract trapping light. We successfully developed a high refractive index (N 1.7) planarization material with flat surface (RMS roughness < 2 nm), and improved about 70% device efficiency compared to traditional glass substrate.
Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells
Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak
2014-01-01
Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%). PMID:24980936
Low Altitude Near-the-Horizon Propagation: A Comparison Between RPO and M-Layer
1993-12-01
scaling based on the assumption that a single mode contributes to the complete field strength (Ref. 31, output from M-Layer [Ref. 4, 5] in the over-the...PE. The parabolic equation approximation to the Maxwell wave equations is developed under the optical assumption that the operating frequency is so...profile data are specified (an array) capm zim profile data (modified index of refraction; an array) (a) RPO: from I to n/evs; M-Layer from 0 to nzlayr
Effective group index of refraction in non-thermal plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mousavi, A.; Sadegzadeh, S., E-mail: sadegzadeh@azaruniv.edu
Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity v{sub g}, and effective group index of refraction n{sub eff}(g)more » of such NPPC structure with TeO{sub 2} as the material of dielectric layers have been studied. The concept of negative group velocity and negative n{sub eff}(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, n{sub eff}(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 10{sup 3}c (c is the speed of light in vacuum)« less
NASA Astrophysics Data System (ADS)
Sazideh, M. R.; Dizaji, H. Rezagholipour; Ehsani, M. H.; Moghadam, R. Zarei
2017-05-01
Tin sulfide (SnS) films were prepared by thermal evaporation method using Glancing Angle Deposition (GLAD) technique at zero and different oblique incident flux angles (α = 45°, 55°, 65°, 75° and 85°). The physical properties of prepared films were systematically investigated. The X-ray diffraction analysis indicated that the film deposited at α = 0° formed as single phase with an orthorhombic structure. However, the layers became amorphous at α = 45°, 55°, 65°, 75° and 85°. Beside the appearance of amorphous feature in the film prepared at α higher than zero, Sn2S3 phase was also observed. The top and cross-sectional field emission scanning electron microscope (FESEM) images of the samples showed noticeable changes in the structure and morphology of individual nano-plates as a function of incident angle. The band gap and refractive index values of the films were calculated by optical transmission measurements. The optical band-gap values were observed to increase with increasing the incident flux angle. This can be due to presence of Sn2S3 phase observed in the samples produced at α values other than zero. The effective refractive index and porosity exhibit an opposite evolution as the incident angle α rises. At α = 85° the layers show a considerable change in effective refractive index (Δn = 1.7) at near-IR spectral range.
NASA Astrophysics Data System (ADS)
Butt, M. A.; Fomchenkov, S. A.; Ullah, A.; Verma, P.; Khonina, S. N.
2016-08-01
We report a design for creating a multilayer dielectric optical filters based on TiO2 and SiO2/MgF2 alternating layers. We have selected Titanium dioxide (TiO2) for high refractive index (2.5), Silicon dioxide (SiO2) and Magnesium fluoride (MgF2) as a low refractive index layer (1.45 & 1.37) respectively. Miniaturized visible spectrometers are useful for quick and mobile characterization of biological samples. Such devices can be fabricated by using Fabry-Perot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. Distributed Bragg Reflectors (DBRs) consisting of alternating high and low refractive index material pairs are the most commonly used mirrors in FP filters, due to their high reflectivity. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer range. Therefore a bandpass filters are required to restrict wavelength outside the stopband of the FP DBRs. The proposed filter shows a high quality with average transmission of 97.4% within the passbands and the transmission outside the passband is around 4%. Special attention has been given to keep the thickness of the filters within the economic limits. It can be suggested that these filters are exceptional choice for florescence imaging and Endoscope narrow band imaging.
Woo, Seouk-Hoon; Hwangbo, Chang Kwon
2006-03-01
Effects of thermal annealing at 400 degrees C on the optical, structural, and chemical properties of TiO2 single-layer, MgF2 single-layer, and TiO2/MgF2 narrow-bandpass filters deposited by conventional electron-beam evaporation (CE) and plasma ion-assisted deposition (PIAD) were investigated. In the case of TiO2 films, the results show that the annealing of both CE and PIAD TiO2 films increases the refractive index slightly and the extinction coefficient and surface roughness greatly. Annealing decreases the thickness of CE TiO2 films drastically, whereas it does not vary that of PIAD TiO2 films. For PIAD MgF2 films, annealing increases the refractive index and decreases the extinction coefficient drastically. An x-ray photoelectron spectroscopy analysis suggests that an increase in the refractive index and a decrease in the extinction coefficient for PIAD MgF2 films after annealing may be related to the enhanced concentration of MgO in the annealed PIAD MgF2 films and the changes in the chemical bonding states of Mg 2p, F 1s, and O is. It is found that (TiO2/MgF2) multilayer filters, consisting of PIAD TiO2 and CE MgF2 films, are as deposited without microcracks and are also thermally stable after annealing.
Liu, H L; Shi, Y; Liang, L; Li, L; Guo, S S; Yin, L; Yang, Y
2017-03-29
A gradient refractive index (GRIN) lens has a great potential for on-chip imaging and detection systems because of its flat surface with reduced defects. This paper reports a liquid thermal GRIN lens prepared using heat conduction between only one liquid, and uses it as a tunable optical tweezer for single living cell trapping in a flowing environment. This liquid GRIN lens consists of a trapezoidal region in the upper layer which is used to establish a GRIN profile by the heat conduction between three streams of benzyl alcohol with different temperatures, and subsequently a rhombus region in the lower layer with compensation liquids to form a steady square-law parabolic refractive index profile only in transverse direction. Simulations and experiments successfully show the real-time tunability of the focusing properties. The focal length can be modulated in the range of 500 μm with the minimum focal length of 430 μm. A considerable high enhancement factor achieves 5.4 whereas the full width at half maximum is 4 μm. The response time of the GRIN lens is about 20 ms. Based on this enhancement, tunable optical trapping for single human embryonic kidney 293 cell in the range of 280 μm is demonstrated by varying the focal length and working distance which is difficult for solid optical tweezers. The considerable quality of this liquid GRIN lens indicates on-chip applications especially in high quality optical imaging, detection and cells' handling.
The refractive index of human hemoglobin in the visible range.
Zhernovaya, O; Sydoruk, O; Tuchin, V; Douplik, A
2011-07-07
Because the refractive index of hemoglobin in the visible range is sensitive to the hemoglobin concentration, optical investigations of hemoglobin are important for medical diagnostics and treatment. Direct measurements of the refractive index are, however, challenging; few such measurements have previously been reported, especially in a wide wavelength range. We directly measured the refractive index of human deoxygenated and oxygenated hemoglobin for nine wavelengths between 400 and 700 nm for the hemoglobin concentrations up to 140 g l(-1). This paper analyzes the results and suggests a set of model functions to calculate the refractive index depending on the concentration. At all wavelengths, the measured values of the refractive index depended on the concentration linearly. Analyzing the slope of the lines, we determined the specific refraction increments, derived a set of model functions for the refractive index depending on the concentration, and compared our results with those available in the literature. Based on the model functions, we further calculated the refractive index at the physiological concentration within the erythrocytes of 320 g l(-1). The results can be used to calculate the refractive index in the visible range for arbitrary concentrations provided that the refractive indices depend on the concentration linearly.
Burgmeier, Jörg; Feizpour, Amin; Schade, Wolfgang; Reinhard, Björn M
2015-02-15
A novel fiber optical refractive index sensor based on gold nanoshells immobilized on the surface of an etched single-mode fiber including a Bragg grating is demonstrated. The nanoparticle coating induces refractive index dependent waveguide losses, because of the variation of the evanescently guided part of the light. Hence the amplitude of the Bragg reflection is highly sensitive to refractive index changes of the surrounding medium. The nanoshell functionalized fiber optical refractive index sensor works in reflectance mode, is suitable for chemical and biochemical sensing, and shows an intensity dependency of 4400% per refractive index unit in the refractive index range between 1.333 and 1.346. Furthermore, the physical length of the sensor is smaller than 3 mm with a diameter of 6 μm, and therefore offers the possibility of a localized refractive index measurement.
Refractive index sensor based on the leaky radiation of a microfiber.
Gao, F; Liu, H; Sheng, C; Zhu, C; Zhu, S N
2014-05-19
In this work we present a refractive index sensor based on the leaky radiation of a microfiber. The 5.3um diameter microfiber is fabricated by drawing a commercial optical fiber. When the microfiber is immersed into a liquid with larger refractive index than the effective index of fiber mode, the light will leak out through the leaky radiation process. The variation of refractive index of liquid can be monitored by measuring radiation angle of light. The refractive index sensitivity can be over 400 degree/RIU in theory. In the experiment, the variation value 0.001 of refractive index of liquid around this microfiber can be detected through this technique. This work provides a simple and sensitive method for refractive index sensing application.
A Novel Light Trapping Phenomenon in Fluid Media.
ERIC Educational Resources Information Center
Devlin, J. C.; Tolles, W. M.
1979-01-01
Describes an experiment on light trapping in thin liquid films. Injection of a thin layer of solution at the boundary of a moving solvent is utilized to create a thin fluid sheet having an index of refraction greater than that of the surrounding medium. (Author/SA)
NASA Astrophysics Data System (ADS)
Heya, Akira; Matsuo, Naoto
2008-01-01
The surface of a poly(ethylene naphthalate) (PEN) substrate was modified by atomic hydrogen annealing (AHA). In this method, a PEN substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. The properties of the surface-modification layer by AHA were evaluated by spectroscopic ellipsometry. It is found that the thickness of the modified layer was 5 nm and that the modification layer has a low refractive index compared with the PEN substrate. The modification layer relates to the reduction reaction of the PEN substrate by AHA.
Transmissive metallic contact for amorphous silicon solar cells
Madan, A.
1984-11-29
A transmissive metallic contact for amorphous silicon semiconductors includes a thin layer of metal, such as aluminum or other low work function metal, coated on the amorphous silicon with an antireflective layer coated on the metal. A transparent substrate, such as glass, is positioned on the light reflective layer. The metallic layer is preferably thin enough to transmit at least 50% of light incident thereon, yet thick enough to conduct electricity. The antireflection layer is preferably a transparent material that has a refractive index in the range of 1.8 to 2.2 and is approximately 550A to 600A thick.
Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro
2018-01-22
A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.
High refractive index and temperature sensitivity LPGs for high temperature operation
NASA Astrophysics Data System (ADS)
Nascimento, I. M.; Gouveia, C.; Jana, Surnimal; Bera, Susanta; Baptista, J. M.; Moreira, Paulo; Biwas, Palas; Bandyopadhyay, Somnath; Jorge, Pedro A. S.
2013-11-01
A fiber optic sensor for high sensitivity refractive index and temperature measurement able to withstand temperature up to 450 °C is reported. Two identical LPG gratings were fabricated, whereas one was coated with a high refractive index (~1.78) sol-gel thin film in order to increase its sensitivity to the external refractive index. The two sensors were characterized and compared in refractive index and temperature. Sensitivities of 1063 nm/RIU (1.338 - 1.348) and 260 pm/°C were achieved for refractive index and temperature, respectively.
NASA Astrophysics Data System (ADS)
Ding, Li
High repetition rate femtosecond laser micro-processing has been applied to ophthalmological hydrogel polymers and ocular tissues to create novel refractive and diffractive structures. Through the optimization of laser irradiation conditions and material properties, this technology has become feasible for future industrial applications and clinical practices. A femtosecond laser micro-processing workstation has been designed and developed. Different experimental parameters of the workstation such as laser pulse duration, focusing lens, and translational stages have been described and discussed. Diffractive gratings and three-dimensional waveguides have been fabricated and characterized in hydrogel polymers, and refractive index modifications as large as + 0.06 have been observed within the laser-irradiated region. Raman spectroscopic studies have shown that our femtosecond laser micro-processing induces significant thermal accumulation, resulting in a densification of the polymer network and increasing the localized refractive index of polymers within the laser irradiated region. Different kinds of dye chromophores have been doped in hydrogel polymers to enhance the two-photon absorption during femtosecond laser micro-processing. As the result, laser scanning speed can be greatly increased while the large refractive index modifications remain. Femtosecond laser wavelength and pulse energy as well as water and dye concentration of the hydrogels are optimized. Lightly fixed ocular tissues such as corneas and lenses have been micro-processed by focused femtosecond laser pulses, and refractive index modifications without any tissue-breakdown are observed within the stromal layer of the corneas and the cortex of the lenses. Living corneas are doped with Sodium Fluorescein to increase the two-photon absorption during the laser micro-processing, and laser scanning speed can be greatly increased while inducing large refractive index modifications. No evidence of cell death has been observed in or around the laser-induced refractive index modification regions. These results support the notion that femtosecond laser micro-processing method may be an excellent means of altering the refraction or higher order aberration content of corneal tissue without cell death and short-term tissue damage, and has been named as Intra-tissue Refractive Index Shaping (IRIS). The femtosecond laser micro-processing workstation has also been employed for laser transfection of single defined cells. Some preliminary results suggest that this method can be used to trace individual cells and record their biological and morphological evolution, which is quite promising in many biomedical applications especially in immunology science. In conclusion, high repetition rate femtosecond laser micro-processing has been employed to fabricate microstructures in ophthalmological hydrogels and ocular tissues. Its unique three-dimensional capability over transparent materials and biological media makes it a powerful tool and will greatly impact the future of laser material-processing.
Ochoa-Martínez, Efraín; Gabás, Mercedes; Barrutia, Laura; Pesquera, Amaia; Centeno, Alba; Palanco, Santiago; Zurutuza, Amaia; Algora, Carlos
2015-01-28
The refractive index and extinction coefficient of chemical vapour deposition grown graphene are determined by ellipsometry analysis. Graphene films were grown on copper substrates and transferred as both monolayers and bilayers onto SiO2/Si substrates by using standard manufacturing procedures. The chemical nature and thickness of residual debris formed after the transfer process were elucidated using photoelectron spectroscopy. The real layered structure so deduced has been used instead of the nominal one as the input in the ellipsometry analysis of monolayer and bilayer graphene, transferred onto both native and thermal silicon oxide. The effect of these contamination layers on the optical properties of the stacked structure is noticeable both in the visible and the ultraviolet spectral regions, thus masking the graphene optical response. Finally, the use of heat treatment under a nitrogen atmosphere of the graphene-based stacked structures, as a method to reduce the water content of the sample, and its effect on the optical response of both graphene and the residual debris layer are presented. The Lorentz-Drude model proposed for the optical response of graphene fits fairly well the experimental ellipsometric data for all the analysed graphene-based stacked structures.
Simulation and Implementation of a Morphology-Tuned Gold Nano-Islands Integrated Plasmonic Sensor
Ozhikandathil, Jayan; Packirisamy, Muthukumaran
2014-01-01
This work presents simulation, analysis and implementation of morphology tuning of gold nano-island structures deposited by a novel convective assembly technique. The gold nano-islands were simulated using 3D Finite-Difference Time-Domain (FDTD) techniques to investigate the effect of morphological changes and adsorption of protein layers on the localized surface plasmon resonance (LSPR) properties. Gold nano-island structures were deposited on glass substrates by a novel and low-cost convective assembly process. The structure formed by an uncontrolled deposition method resulted in a nano-cluster morphology, which was annealed at various temperatures to tune the optical absorbance properties by transforming the nano-clusters to a nano-island morphology by modifying the structural shape and interparticle separation distances. The dependence of the size and the interparticle separation distance of the nano-islands on the LSPR properties were analyzed in the simulation. The effect of adsorption of protein layer on the nano-island structures was simulated and a relation between the thickness and the refractive index of the protein layer on the LSPR peak was presented. Further, the sensitivity of the gold nano-island integrated sensor against refractive index was computed and compared with the experimental results. PMID:24932868
Measurement of the Microwave Refractive Index of Materials Based on Parallel Plate Waveguides
NASA Astrophysics Data System (ADS)
Zhao, F.; Pei, J.; Kan, J. S.; Zhao, Q.
2017-12-01
An electrical field scanning apparatus based on a parallel plate waveguide method is constructed, which collects the amplitude and phase matrices as a function of the relative position. On the basis of such data, a method for calculating the refractive index of the measured wedge samples is proposed in this paper. The measurement and calculation results of different PTFE samples reveal that the refractive index measured by the apparatus is substantially consistent with the refractive index inferred with the permittivity of the sample. The proposed refractive index calculation method proposed in this paper is a competitive method for the characterization of the refractive index of materials with positive refractive index. Since the apparatus and method can be used to measure and calculate arbitrary direction of the microwave propagation, it is believed that both of them can be applied to the negative refractive index materials, such as metamaterials or “left-handed” materials.
Elastic and Inelastic Light Scattering by Microdroplets
NASA Astrophysics Data System (ADS)
Huckaby, James Longinus
A technique for simultaneously determining microdroplet radius, refractive index and its dispersion is developed and demonstrated for three droplet compounds. Based on the accurate determination of the spectral positions of a set of scattered field optical resonances, the technique is shown to provide size and refractive index values to within a relative error of 5 times 10^{-5}, while also providing the refractive index as a function of wavenumber. A method for unambiguously distinguishing droplet growth by the formation of a layer from homogeneous growth is presented and demonstrated. This method employs the precise determination of the spectral positions of optical resonances associated with the transverse magnetic (TM) and transverse electric (TE) scattered fields from a sphere. The method relies upon the observation that the formation of a coating having a different refractive index than the core droplet results in substantially different spectral shifts of the scattered TE and TM resonances. This method was applied to examine absorption and coating events. Droplet size changes of as small as 3.0 nm due to the absorption of vapor were induced and measured. Coatings of perfluorinated polyether on polyphenol ether droplets were generated and shown to produce peak shifts consistent with theory. The observation of a large number of internal field resonances of the droplet with the incident wavenumber in the Raman spectra of microdroplets is reported. An argument based on the observed density of these internal resonances is made for the observation of all internal field resonances through the techniques described.
Organic Plasmon-Emitting Diodes for Detecting Refractive Index Variation
Chiu, Nan-Fu; Cheng, Chih-Jen; Huang, Teng-Yi
2013-01-01
A photo-excited organic layer on a metal thin film with a corrugated substrate was used to generate surface plasmon grating coupled emissions (SPGCEs). Directional emissions corresponded to the resonant condition of surface plasmon modes on the Au/air interface. In experimental comparisons of the effects of different pitch sizes on the plasmonic band-gap, the obtained SPGCEs were highly directional, with intensity increases as large as 10.38-fold. The FWHM emission spectrum was less than 70 nm. This method is easily applicable to detecting refractive index changes by using SP-coupled fluorophores in which wavelength emissions vary by viewing angle. The measurements and calculations in this study confirmed that the color wavelength of the SPGCE changed from 545.3 nm to 615.4 nm at certain viewing angles, while the concentration of contacting glucose increased from 10 to 40 wt%, which corresponded to a refractive index increase from 1.3484 to 1.3968. The organic plasmon-emitting diode exhibits a wider linearity range and a resolution of the experimental is 1.056 × 10−3 RIU. The sensitivity of the detection limit for naked eye of the experimental is 0.6 wt%. At a certain viewing angle, a large spectral shift is clearly distinguishable by the naked eye unaided by optoelectronic devices. These experimental results confirm the potential applications of the organic plasmon-emitting diodes in a low-cost, integrated, and disposable refractive-index sensor. PMID:23812346
Denaturation process of laccase in various media by refractive index measurements.
Saoudi, O; Ghaouar, N; Ben Salah, S; Othman, T
2017-09-01
In this work, we are interested in the denaturation process of a laccase from Tramates versicolor via the determination of the refractive index, the refractive index increment and the specific volume in various media. The measurements were carried out using an Abbe refractometer. We have shown that the refractive index increment values obtained from the slope of the variation of the refractive index vs. Concentration are outside the range refractive index increments of proteins. To correct the results, we have followed the theoretical predictions based on the knowledge of the protein refractive index from its amino acids composition. The denaturation process was studied by calculating the specific volume variation where its determination was related to the Gladstone-Dale and the Lorentz-Lorentz models.
Structural characterization and optical constants of CuIn3Se5 vacuum and air annealed thin films
NASA Astrophysics Data System (ADS)
Segmane, N. E. H.; Abdelkader, D.; Amara, A.; Drici, A.; Akkari, F. Chaffar; Khemiri, N.; Bououdina, M.; Kanzari, M.; Bernède, J. C.
2018-01-01
Milled powder of ordered defect compound (ODC) CuIn3Se5 phase was successfully synthesized via milling process. Thin films of CuIn3Se5 were deposited onto glass substrates at room temperature by thermal evaporation technique. The obtained layers were annealed in vacuum and air atmosphere. The structural and compositional properties of the powder were analyzed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Powder XRD characterization, Rietveld analysis and chemical bounding confirm the tetragonal ordered defect compound phase formation with lattice constants a = 5.732 Å and c = 11.575 Å. Thin films were characterized by XRD, atomic force microscopy (AFM) and UV/Vis spectroscopy. Transmittance (T) and reflectance (R) spectra were measured in the spectral range of 300-1800 nm. The absorption coefficient α exhibits high values in the visible range and reaches a value of 105 cm-1. The band gap energy Eg of the annealed thin films is estimated to be approximately 1.75 eV. The refractive index n was estimated from transmittance data using Swanepoel's method. The refractive indices of the films as a function of wavelengths can be fitted with Cauchy dispersion equation. The oscillator energy E0, dispersion energy Ed, zero frequency refractive index n0, high frequency dielectric constant ε∞ and the carrier concentration per effective mass N/m∗ values were determined from the analysis of the experimental data using Wemple-DiDomenico and Spitzer-Fan models. We exploited the refractive index dispersion for the determination of the magneto-optical constant V, which characterizes the Faraday rotation. The nonlinear optical parameters namely nonlinear susceptibility χ(3), nonlinear refractive index and nonlinear absorption coefficient β are investigated for the first time for CuIn3Se5 material.
Light propagation in phosphor-filled matrices for photovoltaic PL down-shifting
NASA Astrophysics Data System (ADS)
Solodovnyk, Anastasiia; Lipovšek, Benjamin; Forberich, Karen; Stern, Edda; Batentschuk, Miroslaw; Topič, Marko; Brabec, Christoph J.
2014-09-01
Efficient transparent light converters have received lately a growing interest from optical device industries (LEDs, PV, etc.). While organic luminescent dyes were tested in PV light-converting application, such restrictions as small Stokes shifts, short lifetimes, and relatively high costs must yet be overcome. Alternatively, use of phosphors in transparent matrix materials would mean a major breakthrough for this technology, as phosphors exhibit long-term stability and are widely available. For the fabrication of phosphor-filled layers tailored specifically for the desired application, it is of great importance to gain deep understanding of light propagation through the layers, including the detailed optical interplay between the phosphor particles and the matrix material. Our measurements show that absorption and luminescent behavior of the phosphors and especially the scattering of light by the phosphor particles play an important role. In this contribution we have investigated refractive index difference between transparent binder and phosphors. Commercially available highly luminescent UV and near-UV absorbing μm-sized powder is chosen for the fabrication of phosphor-filled layers with varied refractive index of transparent polymer matrix, and well-defined particle size distributions. Solution-processed thick layers on glass substrates are optically analyzed and compared with simulation results acquired from CROWM, a combined wave optics/ray optics home-built software. The results demonstrate the inter-dependence of the layer parameters, prove the importance of careful optimization steps required for fabrication of efficient light converting layers, and, thus, show a path into the future of this promising approach.
2013-03-08
crystals with tunable band gaps possible Refractive index N is imaginary - Bulk Electromagnetic waves cannot propogate But surface plasmons...Directional wave radiation through plasmon resonances Directional wave guiding through mid-band defect wave localization Distribution A: Approved for... acoustic damping, shear- layer instability (PERTURBATION EXPANSION EXAMPLE) classical wave equation for combustion instability: model
Avian Nanostructured Tissues as Models for New Defensive Coatings and Photonic Crystal Fibers
2012-03-31
promiscuous binding capacity of chitin , the chemical backbone of the arthropod cuticle (Kumar 2000). This polysaccharide binds many proteins and other...properties. The greater refractive index contrast between light and dark layers afforded by chitin may allow Arthropoda to attain brighter and more 71
Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.
THz conductivities of indium-tin-oxide nanowhiskers as a graded-refractive-index structure.
Yang, Chan-Shan; Chang, Chia-Hua; Lin, Mao-Hsiang; Yu, Peichen; Wada, Osamu; Pan, Ci-Ling
2012-07-02
Indium-tin-oxide (ITO) nanowhiskers with attractive electrical and anti-reflection properties were prepared by the glancing-angle electron-beam evaporation technique. Structural and crystalline properties of such nanostructures were examined by scanning transmission electron microscopy and X-ray diffraction. Their frequency-dependent complex conductivities, refractive indices and absorption coefficients have been characterized with terahertz time-domain spectroscopy (THz-TDS), in which the nanowhiskers were considered as a graded-refractive-index (GRIN) structure instead of the usual thin film model. The electrical properties of ITO GRIN structures are analyzed and fitted well with Drude-Smith model in the 0.2~2.0 THz band. Our results indicate that the ITO nanowhiskers and its bottom layer atop the substrate exhibit longer carrier scattering times than ITO thin films. This signifies that ITO nanowhiskers have an excellent crystallinity with large grain size, consistent with X-ray data. Besides, we show a strong backscattering effect and fully carrier localization in the ITO nanowhiskers.
Wang, Kangpeng; Feng, Yanyan; Chang, Chunxia; Zhan, Jingxin; Wang, Chengwei; Zhao, Quanzhong; Coleman, Jonathan N; Zhang, Long; Blau, Werner J; Wang, Jun
2014-09-21
A series of layered molybdenum dichalcogenides, i.e., MoX₂ (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX₂ dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS₂ and MoSe₂ dispersions after higher speed centrifugation (10,000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc.
Patel, Sudi; Alió, Jorge L; Walewska, Anna; Amparo, Francisco; Artola, Alberto
2013-03-01
To determine the influence of age and the corneal stromal refractive index on the difference between the predicted and actual postoperative refractive error after laser in situ keratomileusis (LASIK) and whether the precision of outcomes could be improved by considering age and the refractive index. Vissum Instituto Oftalmologico de Alicante, Alicante, Spain. Case series. Flaps were created using a mechanical microkeratome. The stromal refractive index was measured using a VCH-1 refractometer after flap lifting. Refractive data were obtained 1, 3, and 6 months postoperatively. Uneventful LASIK was performed in 133 eyes. The mean age, refractive index, and applied corrections were 33.4 years ± 9.49 (SD), 1.368 ± 0.006, and -2.43 ± 3.36 diopters (D), respectively. The difference between the predicted and actual postoperative refractive error = 2.315-0.021 age-1.106 refractive index (F = 3.647, r = 0.254, P=.029; n = 109) at 1 month and = 11.820-0.023 age-7.976 refractive index (F = 3.392, r = 0.261, P=.022, n = 106) at 3 months. A correlation between the actual and calculated postoperative refraction improved from r = -0.178 (P=.064; n = 75) to r = -0.418 (P<.001) after considering the true refractive index 6 months postoperatively. The predicted outcomes of LASIK can be improved by inputting the refractive index of the individual corneal stroma. Unexpected outcomes (>0.50 D) of LASIK could be avoided by considering patient age and the refractive index and by adjusting the applied correction accordingly. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Charman, W Neil; Adnan; Atchison, David A
2012-12-01
Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed.
Charman, W. Neil; Adnan; Atchison, David A.
2012-01-01
Transient hyperopic refractive shifts occur on a timescale of weeks in some patients after initiation of therapy for hyperglycemia, and are usually followed by recovery to the original refraction. Possible lenticular origin of these changes is considered in terms of a paraxial gradient index model. Assuming that the lens thickness and curvatures remain unchanged, as observed in practice, it appears possible to account for initial hyperopic refractive shifts of up to a few diopters by reduction in refractive index near the lens center and alteration in the rate of change between center and surface, so that most of the index change occurs closer to the lens surface. Restoration of the original refraction depends on further change in the refractive index distribution with more gradual changes in refractive index from the lens center to its surface. Modeling limitations are discussed. PMID:23243557
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Robaee, M.S.; Krishna, M.G.; Rao, K.N.
Single layer films of CeO{sub 2} have been deposited both by conventional electron beam evaporation and ion assisted deposition with oxygen and argon ions. A broad beam Kaufman ion source (3 cm diam) has been used to generate the ions. A systematic study has been made on optical properties such as refractive index, extinction coefficient and inhomogeneity of the films as a function of: (1) oxygen partial pressure in the range 1{times}10{sup {minus}4} to 1{times}10{sup {minus}5} mbar. (2) Incidence of oxygen ions with energy in the range 300--700 eV and current density in the range 50--220 {mu}A/cm{sup 2}. (3) Incidencemore » of mixed argon and oxygen ions of different ratios. The refractive index of the films deposited under the influence of ion bombardment showed higher indices than the conventionally evaporated films. The maximum index obtained with an oxygen ion bombardment was 2.3 at an ion energy of 600 eV and current density of 220 {mu}A/cm{sup 2}. The bombardment of the films with a mixed argon--oxygen (25% Ar) ion beam of the same energy and current density was found to further increase the refractive index. The extinction coefficient in both cases was negligible.« less
First Demonstration of Ocular Refractive Change Using Blue-IRIS in Live Cats
Savage, Daniel E.; Brooks, Daniel R.; DeMagistris, Margaret; Xu, Lisen; MacRae, Scott; Ellis, Jonathan D.; Knox, Wayne H.; Huxlin, Krystel R.
2014-01-01
Purpose. To determine the efficacy of intratissue refractive index shaping (IRIS) using 400-nm femtosecond laser pulses (blue light) for writing refractive structures directly into live cat corneas in vivo, and to assess the longevity of these structures in the eyes of living cats. Methods. Four eyes from two adult cats underwent Blue-IRIS. Light at 400 nm with 100-femtosecond (fs) pulses were tightly focused into the corneal stroma of each eye at an 80-MHz repetition rate. These pulses locally increased the refractive index of the corneal stroma via an endogenous, two-photon absorption process and were used to inscribe three-layered, gradient index patterns into the cat corneas. The optical effects of the patterns were then tracked using optical coherence tomography (OCT) and Shack-Hartmann wavefront sensing. Results. Blue-IRIS patterns locally changed ocular cylinder by −1.4 ± 0.3 diopters (D), defocus by −2.0 ± 0.5 D, and higher-order root mean square (HORMS) by 0.31 ± 0.04 μm at 1 month post-IRIS, without significant changes in corneal thickness or curvature. Refractive changes were maintained for the duration they were tracked, 12 months post-IRIS in one eye, and just more than 3 months in the remaining three eyes. Conclusions. Blue-IRIS can be used to inscribe refractive structures into live cat cornea in vivo that are stable for at least 12 months, and are not associated with significant alterations in corneal thicknesses or radii of curvature. This result is a critical step toward establishing Blue-IRIS as a promising technique for noninvasive vision correction. PMID:24985471
First demonstration of ocular refractive change using blue-IRIS in live cats.
Savage, Daniel E; Brooks, Daniel R; DeMagistris, Margaret; Xu, Lisen; MacRae, Scott; Ellis, Jonathan D; Knox, Wayne H; Huxlin, Krystel R
2014-07-01
To determine the efficacy of intratissue refractive index shaping (IRIS) using 400-nm femtosecond laser pulses (blue light) for writing refractive structures directly into live cat corneas in vivo, and to assess the longevity of these structures in the eyes of living cats. Four eyes from two adult cats underwent Blue-IRIS. Light at 400 nm with 100-femtosecond (fs) pulses were tightly focused into the corneal stroma of each eye at an 80-MHz repetition rate. These pulses locally increased the refractive index of the corneal stroma via an endogenous, two-photon absorption process and were used to inscribe three-layered, gradient index patterns into the cat corneas. The optical effects of the patterns were then tracked using optical coherence tomography (OCT) and Shack-Hartmann wavefront sensing. Blue-IRIS patterns locally changed ocular cylinder by -1.4 ± 0.3 diopters (D), defocus by -2.0 ± 0.5 D, and higher-order root mean square (HORMS) by 0.31 ± 0.04 μm at 1 month post-IRIS, without significant changes in corneal thickness or curvature. Refractive changes were maintained for the duration they were tracked, 12 months post-IRIS in one eye, and just more than 3 months in the remaining three eyes. Blue-IRIS can be used to inscribe refractive structures into live cat cornea in vivo that are stable for at least 12 months, and are not associated with significant alterations in corneal thicknesses or radii of curvature. This result is a critical step toward establishing Blue-IRIS as a promising technique for noninvasive vision correction. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
Optofluidic two-dimensional grating volume refractive index sensor.
Sarkar, Anirban; Shivakiran Bhaktha, B N; Khastgir, Sugata Pratik
2016-09-10
We present an optofluidic reservoir with a two-dimensional grating for a lab-on-a-chip volume refractive index sensor. The observed diffraction pattern from the device resembles the analytically obtained fringe pattern. The change in the diffraction pattern has been monitored in the far-field for fluids with different refractive indices. Reliable measurements of refractive index variations, with an accuracy of 6×10-3 refractive index units, for different fluids establishes the optofluidic device as a potential on-chip tool for monitoring dynamic refractive index changes.
Refractive index measurements in absorbing media with white light spectral interferometry.
Arosa, Yago; Lago, Elena López; de la Fuente, Raúl
2018-03-19
White light spectral interferometry is applied to measure the refractive index in absorbing liquids in the spectral range of 400-1000 nm. We analyze the influence of absorption on the visibility of interferometric fringes and, accordingly, on the measurement of the refractive index. Further, we show that the refractive index in the absorption band can be retrieved by a two-step process. The procedure requires the use of two samples of different thickness, the thicker one to retrieve the refractive index in the transparent region and the thinnest to obtain the data in the absorption region. First, the refractive index values are retrieved with good accuracy in the transparent region of the material for 1-mm-thick samples. Second, these refractive index values serve also to precisely calculate the thickness of a thinner sample (~150 µm) since the accuracy of the methods depends strongly on the thickness of the sample. Finally, the refractive index is recovered for the entire spectral range.
Optical intensity scintillation in the simulated atmospherical environment
NASA Astrophysics Data System (ADS)
Hajek, Lukas; Latal, Jan; Vanderka, Ales; Vitasek, Jan; Bojko, Marian; Bednarek, Lukas; Vasinek, Vladimir
2016-09-01
There are several parameters of the atmospheric environment which have an effect on the optical wireless connection. Effects like fog, snow or rain are ones of the effects which appears tendentiously and which are bound by season, geographic location, etc. One of the effects that appear with various intensity for the whole time is airflow. The airflow changes the local refractive index of the air and areas with lower or higher refractive index form. The light going through these areas refracts and due to the optical intensity scintillates on the detector of the receiver. The airflow forms on the basis of two effects in the atmosphere. The first is wind cut and flowing over barriers. The other is thermal flow when warm air rises to the higher layers of the atmosphere. The heart of this article is creation such an environment that will form airflow and the refractive index will scintillate. For the experiment, we used special laboratory box with high-speed ventilators and heating units to simulate atmospheric turbulence. We monitor the impact of ventilator arrangement and air temperature on the scintillation of the gas laser with wavelength 633 nm/15 mW. In the experiment, there is watched the difference in behavior between real measurement and flow simulation with the same peripheral conditions of the airflow in the area of 500 x 500 cm.
3-D photo-patterning of refractive index structures in photosensitive thin film materials
Potter, Jr., Barrett George; Potter, Kelly Simmons
2002-01-01
A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.
NASA Astrophysics Data System (ADS)
Wan, Yuan; An, Yashuai; Tao, Zhi; Deng, Luogen
2018-03-01
Behaviors of surface plasmon resonance (SPR) of a graphene-based Au aperture antenna are investigated in visible and near-infrared (vis-NIR) regions. Compared with the SPR wavelength of a traditional Au aperture antenna, the SPR wavelength of the graphene-based Au aperture antenna shows a remarkable blue shift due to the redistribution of the electric field in the proposed structure. The electric field of the graphene-based Au aperture antenna is highly localized on the surface of the graphene in the aperture and redistributed to be a standing wave. Moreover, the SPR of a graphene-based Au aperture antenna is sensitive to the thickness and the refractive index of the dielectric layer, the graphene Fermi energy, the refractive index of the environment and the polarization direction of the incident light. Finally, we find the wavelength, intensity and phase of the reflected light of the graphene-based Au aperture antenna array can be actively modulated by varying the graphene Fermi energy. The proposed structure provides a promising platform for realizing a tunable optical filter, a highly sensitive refractive index sensor, and other actively tunable optical and optoelectronic devices.
Zhu, Shan; Pang, Fufei; Huang, Sujuan; Zou, Fang; Guo, Qiang; Wen, Jianxiang; Wang, Tingyun
2016-01-01
Atomic layer deposition (ALD) technology is introduced to fabricate a high sensitivity refractometer based on an adiabatic tapered optical fiber. Different thicknesses of titanium dioxide (TiO2) nanofilm were coated around the tapered fiber precisely and uniformly under different deposition cycles. Attributed to the higher refractive index of the TiO2 nanofilm compared to that of silica, an asymmetric Fabry–Perot (F-P) resonator could be constructed along the fiber taper. The central wavelength of the F-P resonator could be controlled by adjusting the thickness of the TiO2 nanofilm. Such a F-P resonator is sensitive to changes in the surrounding refractive index (SRI), which is utilized to realize a high sensitivity refractometer. The refractometer developed by depositing 50.9-nm-thickness TiO2 on the tapered fiber shows SRI sensitivity as high as 7096 nm/RIU in the SRI range of 1.3373–1.3500. Due to TiO2’s advantages of high refractive index, lack of toxicity, and good biocompatibility, this refractometer is expected to have wide applications in the biochemical sensing field. PMID:27537885
Min, Qiao; Chen, Chengkun; Berini, Pierre; Gordon, Reuven
2010-08-30
We show that long-range surface plasmons (LRSPs) are supported in a physically asymmetric thin film structure, consisting of a low refractive index medium on a metal slab, supported by a high refractive index dielectric layer (membrane) over air, as a suspended waveguide. For design purposes, an analytic formulation is derived in 1D yielding a transcendental equation that ensures symmetry of the transverse fields of the LRSP within the metal slab by constraining its thicknesses and that of the membrane. Results from the formulation are in quantitative agreement with transfer matrix calculations for a candidate slab waveguide consisting of an H(2)O-Au-SiO(2)-air structure. Biosensor-relevant figures of merit are compared for the asymmetric and symmetric structures, and it is found that the asymmetric structure actually improves performance, despite higher losses. The finite difference method is also used to analyse metal stripes providing 2D confinement on the structure, and additional constraints for non-radiative LRSP guiding thereon are discussed. These results are promising for sensors that operate with an aqueous solution that would otherwise require a low refractive index-matched substrate for the LRSP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulchin, Yu N; Vitrik, O B; Kuchmizhak, A A
2014-10-31
It is shown theoretically that the use of the spectral registration of the dipole local plasmon resonance (DLPR) displacement in a single spherical gold nanoantenna, placed near the surface of a homogeneous dielectric medium, allows the mapping of extremely small variations (to 5 × 10{sup -4}) of the refractive index (RI) of this medium. Using the quasi-static approximation, we have developed an analytic model that allows evaluation of the spectral displacement of the nanoantenna DLPR depending on the variation in the medium refractive index. The point probe based on a fibre microaxicon with a gold spherical nanoantenna attached to itsmore » top is proposed that allows practical implementation of the developed RI scanning method. Numerical calculations of the probe characteristics using the time-domain finite-difference method are presented, and it is shown that for the case of a gold spherical nanoantenna of small size, comparable with the skin layer thickness in gold, the relative spectral shift value is in good agreement with the results obtained by using the developed analytic model. (laser applications and other topics in quantum electronics)« less
Light dosimetry for focused and defocused beam irradiation in multi-layered tissue models
NASA Astrophysics Data System (ADS)
Petrova, Kremena S.; Stoykova, Elena V.
2006-09-01
Treatment of acupuncture points, trigger points, joint inflammations in low level laser therapy as well as various applications of lasers for treatment of soft tissues in dental medicine, require irradiation by a narrow converging laser beam. The aim of this study is to compare light delivery produced by focused or defocused narrow beam irradiation in a multi-layered skin tissue model at increasing depth of the target. The task is solved by 3-D Monte-Carlo simulation for matched and mismatched refractive indices at the tissue/ambient medium interface. The modeled light beams have a circular cross-section at the tissue entrance with uniform or Gaussian intensity distribution. Three are the tissue models used in simulation : i) a bloodless skin layer; ii) a bloodless skin layer with embedded scattering object; iii) a skin layer with small blood vessels of varying size, which are modeled as infinite cylinders parallel to the tissue surface located at different depths. Optical properties (absorption coefficient, scattering coefficient, anisotropy factor, g, and index of refraction) of different tissue constituents are chosen from the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, V I; Glebov, V N; Malyutin, A M
2015-09-30
A method based on resonant excitation of waveguide modes with a prism coupler is proposed for measuring the thickness and refractive index of thin-film layers in multilayer dielectric structures. The peculiarities of reflection of TE- and TM-polarised light beams from a structure comprising eleven alternating layers of zinc sulfide (ZnS) and magnesium barium fluoride (MgBaF{sub 4}), whose thicknesses are much less than the wavelength of light, are investigated. Using the mathematical model developed, we have calculated the coefficients of reflection of collimated TE and TM light beams from a multilayer structure and determined the optical constants and thicknesses of themore » structure layers. The refractive indices of the layers, obtained for TE and TM polarisation of incident light, are in good agreement. The thicknesses of ZnS and MgBaF{sub 4} layers, found for different polarisations, coincide with an accuracy of ±1%. Thus, we have demonstrated for the first time that the prism-coupling technique allows one to determine the optical properties of thin-film structures when the number of layers in the structure exceeds ten layers. (integrated optics)« less
NASA Astrophysics Data System (ADS)
Richardson, Christina E.; Andrews, Larry C.
1991-07-01
New spectra models have recently been developed for the spatial power spectra of temperature and refractive index fluctuations in the atmospheric boundary layer showing the characteristic 'bump' just prior to the dissipation ranges. Theoretical work involving these new models has led to new expressions for the phase structure function associated with a plane optical wave, although most experimental work has involved spherical waves. Following techniques similar to those used for the plane wave analysis, new expressions valid in geometrical and diffraction regimes are developed here for the phase structure function of a spherical optical wave propagating through clear-air atmospheric turbulence. Useful asymptotic formulas for small separation distances and the inertial subrange are derived from these general expressions.
Aging effect of AlF3 coatings for 193 nm lithography
NASA Astrophysics Data System (ADS)
Zhao, Jia; Wang, Lin; Zhang, Weili; Yi, Kui; Shao, Jianda
2018-02-01
As important part of components for 193 nm lithography, AlF3 coatings deposited by resistive heating method acquire advantages like lower optical loss and higher laser damage threshold, but they also possess some disadvantages like worse stability, which is what aging effect focuses on. AlF3 single-layer coatings were deposited; optical property, surface morphology and roughness, and composition were characterized in different periods. Owing to aging effect, refractive index and extinction coefficient increased; larger and larger roughness caused more and more scattering loss, which was in the same order with absorption at 193.4 nm and part of optical loss; from composition analysis, proportional substitution of AlF3 by alumina may account for changes in refractive index as well as absorption.
Niskanen, I; Räty, J; Peiponen, K E
2013-10-15
The knowledge of the refractive index of a particle is important in sensing and imaging applications, e.g., in biology, medicine and process industry. The refractive index of tiny solid particles such as microsize particles can be determined by the so-called liquid immersion technique. This study deals with three different types of interrogation methods to get the refractive index of a particle in a liquid matrix. These methods utilize thermo-optical properties and wavelength-dependent refractive index of the particle and the immersion liquids, as well as, the classical method using a set of in advance prepared set of immersion liquids with different refractive indices. The emphasis is on a method to get especially the wavelength-dependent refractive index of microparticles and exploiting different wavelength-dependences of immersion liquid and a solid particle because identification of a particle is more reliable if the refractive index of the particle is known at several wavelengths. In this study glycerol-water mixtures served as immersion liquids to obtain the refractive index of CaF2 at several discrete wavelengths in the spectral range 200-500 nm. The idea is to find the maximum value of light transmission of suspension by scanning the wavelength of a commercial spectrophotometer. The light dispersion-based method is suggested as a relatively easy, economic and fast method to determine the refractive index of a particle by a spectrophotometer at several wavelengths of light. The accuracy of the detection of the refractive index is suggested to be better than ± 0.005 refractive index units. © 2013 Elsevier B.V. All rights reserved.
Predicted and measured boundary layer refraction for advanced turboprop propeller noise
NASA Technical Reports Server (NTRS)
Dittmar, James H.; Krejsa, Eugene A.
1990-01-01
Currently, boundary layer refraction presents a limitation to the measurement of forward arc propeller noise measured on an acoustic plate in the NASA Lewis 8- by 6-Foot Supersonic Wind Tunnel. The use of a validated boundary layer refraction model to adjust the data could remove this limitation. An existing boundary layer refraction model is used to predict the refraction for cases where boundary layer refraction was measured. In general, the model exhibits the same qualitative behavior as the measured refraction. However, the prediction method does not show quantitative agreement with the data. In general, it overpredicts the amount of refraction for the far forward angles at axial Mach number of 0.85 and 0.80 and underpredicts the refraction at axial Mach numbers of 0.75 and 0.70. A more complete propeller source description is suggested as a way to improve the prediction method.
Ding, Li; Knox, Wayne H.; Bühren, Jens; Nagy, Lana J.; Huxlin, Krystel R.
2009-01-01
Purpose To assess the optical effect of high-repetition-rate, low energy femtosecond laser pulses on lightly-fixed corneas and lenses. Methods Eight corneas and eight lenses were extracted post-mortem from normal, adult cats. They were lightly fixed and stored in a solution that minimized swelling and opacification. An 800nm Ti:Sapphire femtosecond laser oscillator with a 27fs pulse duration and 93MHz repetition rate was used to inscribe gratings consisting of 20-40 lines, each 1μm wide, 100μm long and 5μm apart, 100μm below the tissue surface. Refractive index changes in the micromachined regions were calculated immediately and after one month of storage by measuring the intensity distribution of diffracted light when the gratings were irradiated with a 632.8nm He-Ne laser. Results Periodic gratings were created into the stromal layer of the corneas and the cortex of the lenses by adjusting the laser pulse energy until visible plasma luminescence and bubbles were no longer generated. The gratings had low scattering loss and could only be visualized using phase microscopy. Refractive index changes measured 0.005±0.001 to 0.01±0.001 in corneal tissue and 0.015±0.001 to 0.021±0.001 in the lenses. The gratings and refractive index changes were preserved after storing the micromachined corneas and lenses for one month. Conclusions These pilot experiments demonstrate a novel application of low-pulse-energy, MHz femtosecond lasers in modifying the refractive index of transparent ocular tissues without apparent tissue destruction. Although it remains to be verified in living tissues, the stability of this effect suggests that the observed modifications are due to long-term molecular and/or structural changes. PMID:18641284
Beltrami, D R; Love, J D; Durandet, A; Samo, A; Cogswell, C J
1997-10-01
A thin, one-dimensional, gradient-index slab lens with a parabolic profile was designed and fabricated in fluorine-doped silica by use of plasma-enhanced chemical vapor deposition in a Helicon plasma reactor. The refractive-index profile of the fabricated lens was determined by the application of an inversion technique to the values of modal effective index measured with a prism coupler. The periodic refocusing property of the lens and the independence of the wavelength were measured with the fluorescence of a specially doped, thin polymer layer spin-coated onto the surface of the lens.
Plasmon-enhanced tilted fiber Bragg gratings with oriented silver nanowire coatings
NASA Astrophysics Data System (ADS)
Renoirt, J.-M.; Debliquy, M.; Albert, J.; Ianoul, A.; Caucheteur, C.
2014-05-01
(TFBG) covered by silver nanowires aligned perpendicularly to the fiber axis. TBFGs are a convenient way to measure surrounding refractive index, as they provide intrinsic temperature-insensitivity and preserve the optical fiber structural integrity. With bare TFBGs, sensitivity is about 60 nm/RIU (refractive index unit) while when coated with a gold thin film, surface plasmon resonance can be excited leading to a sensitivity about 600 nm/RIU. In our case, we show that localized plasmon resonances can be excited on silver nanowires. These nanowires (100 nm diameter and about 2.5 µm length) were synthetized by polyol process (ethylene glycol reducing silver nitrate in the presence of poly (vinyl pyrrolidone and sodium chloride). The nanowires were aligned and deposited perpendicularly to the fiber axis on the gratings using the Langmuir-Blodgett technique in order to maximise the coupling between azimuthally polarized light modes and the localized plasmons. Excitation of surface plasmons at wavelengths around 1.5 µm occurred, leading to a dip in the polarization dependent losses of the grating. This dip is highly dependent of the surrounding refractive index, leading to a sensitivity of 650 nm/RIU, which is a 10-fold increase compared to bare gratings. We obtain results equal or slightly higher than those obtained using a gold layer on TFBGs. In spite of the comparable bulk refractometric sensitivity, the use of these oriented nanowire layers provide significantly higher contact surface area for biochemical analysis using bioreceptors, and benefit from stronger polarization selectivity between azimuthal and radially polarized modes.
Self-anti-reflective density-modulated thin films by HIPS technique
NASA Astrophysics Data System (ADS)
Keles, Filiz; Badradeen, Emad; Karabacak, Tansel
2017-08-01
A critical factor for an efficient light harvesting device is reduced reflectance in order to achieve high optical absorptance. In this regard, refractive index engineering becomes important to minimize reflectance. In this study, a new fabrication approach to obtain density-modulated CuIn x Ga(1-x)Se2 (CIGS) thin films with self-anti-reflective properties has been demonstrated. Density-modulated CIGS samples were fabricated by utilizing high pressure sputtering (HIPS) at Ar gas pressure of 2.75 × 10-2 mbar along with conventional low pressure sputtering (LPS) at Ar gas pressure of 3.0 × 10-3 mbar. LPS produces conventional high density thin films while HIPS produces low density thin films with approximate porosities of ˜15% due to a shadowing effect originating from the wide-spread angular atomic of HIPS. Higher pressure conditions lower the film density, which also leads to lower refractive index values. Density-modulated films that incorporate a HIPS layer at the side from which light enters demonstrate lower reflectance thus higher absorptance compared to conventional LPS films, although there is not any significant morphological difference between them. This result can be attributed to the self-anti-reflective property of the density-modulated samples, which was confirmed by the reduced refractive index calculated for HIPS layer via an envelope method. Therefore, HIPS, a simple and scalable approach, can provide enhanced optical absorptance in thin film materials and eliminate the need for conventional light trapping methods such as anti-reflective coatings of different materials or surface texturing.
Atomic Layer Deposition of Vanadium Dioxide and a Temperature-dependent Optical Model.
Currie, Marc; Mastro, Michael A; Wheeler, Virginia D
2018-05-23
Vanadium dioxide is a material that has a reversible metal-insulator phase change near 68 °C. To grow VO2 on a wide variety of substrates, with wafer-scale uniformity and angstrom level control of thickness, the method of atomic-layer deposition was chosen. This ALD process enables high-quality, low-temperature (≤150 °C) growth of ultrathin films (100-1000 Å) of VO2. For this demonstration, the VO2 films were grown on sapphire substrates. This low temperature growth technique produces mostly amorphous VO2 films. A subsequent anneal in an ultra-high vacuum chamber with a pressure of 7x10 -4 Pa of ultra-high purity (99.999%) oxygen produced oriented, polycrystalline VO2 films. The crystallinity, phase, and strain of the VO2 were determined by Raman spectroscopy and X-ray diffraction, while the stoichiometry and impurity levels were determined by X-ray photoelectron spectroscopy, and finally the morphology was determined by atomic force microscopy. These data demonstrate the high-quality of the films grown by this technique. A model was created to fit to the data for VO2 in its metallic and insulating phases in the near infrared spectral region. The permittivity and refractive index of the ALD VO2 agreed well with the other fabrication methods in its insulating phase, but showed a difference in its metallic state. Finally, the analysis of the films' optical properties enabled the creation of a wavelength- and temperature-dependent model of the complex optical refractive index for developing VO2 as a tunable refractive index material.
Śmietana, Mateusz; Myśliwiec, Marcin; Mikulic, Predrag; Witkowski, Bartłomiej S.; Bock, Wojtek J.
2013-01-01
This work presents an application of thin aluminum oxide (Al2O3) films obtained using atomic layer deposition (ALD) for fine tuning the spectral response and refractive-index (RI) sensitivity of long-period gratings (LPGs) induced in optical fibers. The technique allows for an efficient and well controlled deposition at monolayer level (resolution ∼ 0.12 nm) of excellent quality nano-films as required for optical sensors. The effect of Al2O3 deposition on the spectral properties of the LPGs is demonstrated experimentally and numerically. We correlated both the increase in Al2O3 thickness and changes in optical properties of the film with the shift of the LPG resonance wavelength and proved that similar films are deposited on fibers and oxidized silicon reference samples in the same process run. Since the thin overlay effectively changes the distribution of the cladding modes and thus also tunes the device's RI sensitivity, the tuning can be simply realized by varying number of cycles, which is proportional to thickness of the high-refractive-index (n > 1.6 in infrared spectral range) Al2O3 film. The advantage of this approach is the precision in determining the film properties resulting in RI sensitivity of the LPGs. To the best of our knowledge, this is the first time that an ultra-precise method for overlay deposition has been applied on LPGs for RI tuning purposes and the results have been compared with numerical simulations based on LP mode approximation.
NASA Astrophysics Data System (ADS)
Wang, Y.; Klittnick, A.; Clark, N. A.; Keller, P.
2008-10-01
We demonstrate an easily fabricated all-optical and freely reconfigurable method of controlling the propagating characteristics of the optic path within a planar waveguide with low insertion losses by employing the optical patterning of the refractive index of an erasable and rewriteable photosensitive liquid crystal polymer cladding layer.
NASA Astrophysics Data System (ADS)
Jen, Yi-Jun; Jhang, Yi-Ciang; Liu, Wei-Chih
2017-08-01
A multilayer that comprises ultra-thin metal and dielectric films has been investigated and applied as a layered metamaterial. By arranging metal and dielectric films alternatively and symmetrically, the equivalent admittance and refractive index can be tailored separately. The tailored admittance and refractive index enable us to design optical filters with more flexibility. The admittance matching is achieved via the admittance tracing in the normalized admittance diagram. In this work, an ultra-thin light absorber is designed as a multilayer composed of one or several cells. Each cell is a seven-layered film stack here. The design concept is to have the extinction as large as possible under the condition of admittance matching. For a seven-layered symmetrical film stack arranged as Ta2O5 (45 nm)/ a-Si (17 nm)/ Cr (30 nm)/ Al (30 nm)/ Cr (30 nm)/ a-Si (17 nm)/ Ta2O5 (45 nm), its mean equivalent admittance and extinction coefficient over the visible regime is 1.4+0.2i and 2.15, respectively. The unit cell on a transparent BK7 glass substrate absorbs 99% of normally incident light energy for the incident medium is glass. On the other hand, a transmission-induced metal-dielectric film stack is investigated by using the admittance matching method. The equivalent anisotropic property of the metal-dielectric multilayer varied with wavelength and nanostructure are investigated here.
NASA Astrophysics Data System (ADS)
Liu, H. L.; Wang, S. S.; Zhou, Yan; Lam, Yee Loy; Chan, Yuen Chuen; Kam, Chan Hin
1997-08-01
In this paper, we report the preparation of crack-free relatively thick SiO2-TiO2 thin films on silicon substrates using the sol-gel spin-coating method. The influence of the process parameters on the quality of the film, such as the solution condition, the spin-coating speed, the heat treatment temperature and time, have been studied. We found that the cracking of the film could be avoided by selecting the right sol composition ratios, adding PVA to the sold and properly controlling the heat treatment. Most importantly, we discovered that by polishing the edges of the film after the deposition of each single layer, the number of such layers that deposited without crack formation could be substantially increased. The refractive index profile and thickness of the film have been determined using prism coupling technique and the inverse WKB method. The refractive index was found to depend on the content of TiO2 as well as the heat treatment condition. Using an AFM, the surface morphology of the film was found to be good.
NASA Astrophysics Data System (ADS)
Chen, Chao; Sheng, Yuping; Jun, Wang
2018-01-01
A high performed multiple band metamaterial absorber is designed and computed through the software Ansofts HFSS 10.0, which is constituted with two kinds of separated metal particles sub-structures. The multiple band absorption property of the metamaterial absorber is based on the resonance of localized surface plasmon (LSP) modes excited near edges of metal particles. The damping constant of gold layer is optimized to obtain a near-perfect absorption rate. Four kinds of dielectric layers is computed to achieve the perfect absorption perform. The perfect absorption perform of the metamaterial absorber is enhanced through optimizing the structural parameters (R = 75 nm, w = 80 nm). Moreover, a perfect absorption band is achieved because of the plasmonic hybridization phenomenon between LSP modes. The designed metamaterial absorber shows high sensitive in the changed of the refractive index of the liquid. A liquid refractive index sensor strategy is proposed based on the computed figure of merit (FOM) value of the metamaterial absorber. High FOM values (116, 111, and 108) are achieved with three liquid (Methanol, Carbon tetrachloride, and Carbon disulfide).
Refractive-index measurement and inverse correction using optical coherence tomography.
Stritzel, Jenny; Rahlves, Maik; Roth, Bernhard
2015-12-01
We describe a novel technique for determination of the refractive index of hard biological tissue as well as nonopaque technical samples based on optical coherence tomography (OCT). Our method relies on an inverse refractive-index correction (I-RIC), which matches a measured feature geometry distorted due to refractive-index boundaries to its real geometry. For known feature geometry, the refractive index can be determined with high precision from the best match between the distorted and corrected images. We provide experimental data for refractive-index measurements on a polymethylmethacrylate (PMMA) and on an ex vivo porcine cranial-bone, which are compared to reference measurements and previously published data. Our method is potentially capable of in vivo measurements on rigid biological tissue such as bone as, for example, is required to improve guidance in robot-aided surgical interventions and also for retrieving complex refractive-index profiles of compound materials.
Sugimoto, Tomohiro
2016-10-01
This paper presents a nondestructive and non-exact-index-matching method for measuring the refractive index distribution of a glass molded lens with high refractivity. The method measures two-wavelength wavefronts of a test lens immersed in a liquid with a refractive index dispersion different from that of the test lens and calculates the refractive index distribution by eliminating the refractive index distribution error caused by the shape error of the test lens. The estimated uncertainties of the refractive index distributions of test lenses with nd≈1.77 and nd≈1.85 were 1.9×10-5 RMS and 2.4×10-5 RMS, respectively. I validated the proposed method by evaluating the agreement between the estimated uncertainties and experimental values.
NASA Astrophysics Data System (ADS)
Hessler, Steffen; Rosenberger, Manuel; Schmauss, Bernhard; Hellmann, Ralf
2018-01-01
In this paper we precisely determine laser-induced refractive index profiles created in cyclic olefin copolymer Topas 6017 employing a sophisticated phase shifting Mach-Zehnder interferometry approach. Beyond the usual one-dimensional modification depth measurement we highlight that for straight waveguide structures also a two-dimensional refractive index distribution can be directly obtained providing full information of a waveguide's exact cross section and its gradient refractive index contrast. Deployed as direct data input in optical waveguide simulation, the evaluated 2D refractive index profiles permit a detailed calculation of the waveguides' actual mode profiles. Furthermore, conventional one-dimensional interferometric measurements for refractive index depth profiles with varying total imposed laser fluence of a 248 nm KrF excimer laser are included to investigate the effect on refractive index modification depth. Maximum surface refractive index increase turns out to attain up to 1.86 ·10-3 enabling laser-written optical waveguide channels. Additionally, a comprehensive optical material characterization in terms of dispersion, thermo-optic coefficient and absorption measurement of unmodified and UV-modified Topas 6017 is carried out.
In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber.
Yang, Jing; Guan, Chunying; Tian, Peixuan; Yuan, Tingting; Zhu, Zheng; Li, Ping; Shi, Jinhui; Yang, Jun; Yuan, Libo
2017-11-01
We propose a novel and simple in-fiber refractive index sensor based on resonant coupling, constructed by a short section of single eccentric hole-assisted dual-core fiber (SEHADCF) spliced between two single-mode fibers. The coupling characteristics of the SEHADCF are calculated numerically. The strong resonant coupling occurs when the fundamental mode of the center core phase-matches to that of the suspended core in the air hole. The effective refractive index of the fundamental mode of the suspended core can be obviously changed by injecting solution into the air hole. The responses of the proposed devices to the refractive index and temperature are experimentally measured. The refractive index sensitivity is 627.5 nm/refractive index unit in the refractive index range of 1.335-1.385. The sensor without solution filling is insensitive to temperature in the range of 30-90°C. The proposed refractive index sensor has outstanding advantages, such as simple fabrication, good mechanical strength, and excellent microfluidic channel, and will be of importance in biological detection, chemical analysis, and environment monitoring.
NASA Astrophysics Data System (ADS)
Radiyonoa, Y.; Surantoro, S.; Pujayanto, P.; Budiharti, R.; Respati, Y. S.; Saputro, D. E.
2018-05-01
The occurrence of the broken pencil shadow into a glass of water becomes an interesting matter to be learned. The students of senior high school still find difficulty in determining liquid refractive index. To overcome this problem, it needs to develop an experimental tool to determine liquid refractive index by utilizing the newest technology. It is expected to be useful for students. This study is aimed to (1) make the design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 (2) explain the working principle and experimental result of liquid refractive indexing instrument assisted with ATMega328 microcontroller based ultrasonic sensor. This research used the experimental method. The result of the research shows design of physics learning experimental tool determinant of a liquid refractive index assisted by microcontroller based on ultrasonic sensors ATMega328 that has relative counting mistake of 0.36% on the measurement of aquades liquid refractive index, relative mistake of 0.18% on the 5% NaCl measurement, 0.24% on 5% glucose, and relative mistake of 0.50% on the measurement of 5 % fructose liquid refractive index. It has been created a proper device to be used in determining liquid refractive index.
NASA Astrophysics Data System (ADS)
McClymer, J. P.
2016-08-01
Many fluids appear white because refractive index differences lead to multiple scattering. In this paper, we use safe, low-cost commercial index matching fluids to quantitatively study light transmission as a function of index mismatch, reduce multiple scattering to allow single scattering probes, and to precisely determine the index of refraction of suspended material. The transmission profile is compared with Rayleigh-Gans and Mie theory predictions. The procedure is accessible as a student laboratory project, while providing advantages over other standard methods of measuring the refractive index of an unknown nanoparticle, making it valuable to researchers.
Liu, Li; Gong, Yuan; Wu, Yu; Zhao, Tian; Wu, Hui-Juan; Rao, Yun-Jiang
2012-01-01
Fiber-optic interferometric sensors based on graded-index multimode fibers have very high refractive-index sensitivity, as we previously demonstrated. In this paper, spatial-frequency multiplexing of this type of fiber-optic refractive index sensors is investigated. It is estimated that multiplexing of more than 10 such sensors is possible. In the multiplexing scheme, one of the sensors is used to investigate the refractive index and temperature responses. The fast Fourier transform (FFT) of the combined reflective spectra is analyzed. The intensity of the FFT spectra is linearly related with the refractive index and is not sensitive to the temperature.
Sundar, Bhuvanesh; Hamilton, Alasdair C; Courtial, Johannes
2009-02-01
We derive a formal description of local light-ray rotation in terms of complex refractive indices. We show that Fermat's principle holds, and we derive an extended Snell's law. The change in the angle of a light ray with respect to the normal of a refractive index interface is described by the modulus of the refractive index ratio; the rotation around the interface normal is described by the argument of the refractive index ratio.
Tan, Siyu; Yan, Fengping; Singh, Leena; Cao, Wei; Xu, Ningning; Hu, Xiang; Singh, Ranjan; Wang, Mingwei; Zhang, Weili
2015-11-02
The realization of high refractive index is of significant interest in optical imaging with enhanced resolution. Strongly coupled subwavelength resonators were proposed and demonstrated at both optical and terahertz frequencies to enhance the refractive index due to large induced dipole moment in meta-atoms. Here, we report an alternative design for flexible free-standing terahertz metasurface in the strong coupling regime where we experimentally achieve a peak refractive index value of 14.36. We also investigate the impact of the nearest neighbor coupling in the form of frequency tuning and enhancement of the peak refractive index. We provide an analytical circuit model to explain the impact of geometrical parameters and coupling on the effective refractive index of the metasurface. The proposed meta-atom structure enables tailoring of the peak refractive index based on nearest neighbor coupling and this property offers tremendous design flexibility for transformation optics and other index-gradient devices at terahertz frequencies.
Refractive index of liquid mixtures: theory and experiment.
Reis, João Carlos R; Lampreia, Isabel M S; Santos, Angela F S; Moita, Maria Luísa C J; Douhéret, Gérard
2010-12-03
An innovative approach is presented to interpret the refractive index of binary liquid mixtures. The concept of refractive index "before mixing" is introduced and shown to be given by the volume-fraction mixing rule of the pure-component refractive indices (Arago-Biot formula). The refractive index of thermodynamically ideal liquid mixtures is demonstrated to be given by the volume-fraction mixing rule of the pure-component squared refractive indices (Newton formula). This theoretical formulation entails a positive change of refractive index upon ideal mixing, which is interpreted in terms of dissimilar London dispersion forces centred in the dissimilar molecules making up the mixture. For real liquid mixtures, the refractive index of mixing and the excess refractive index are introduced in a thermodynamic manner. Examples of mixtures are cited for which excess refractive indices and excess molar volumes show all of the four possible sign combinations, a fact that jeopardises the finding of a general equation linking these two excess properties. Refractive indices of 69 mixtures of water with the amphiphile (R,S)-1-propoxypropan-2-ol are reported at five temperatures in the range 283-303 K. The ideal and real refractive properties of this binary system are discussed. Pear-shaped plots of excess refractive indices against excess molar volumes show that extreme positive values of excess refractive index occur at a substantially lower mole fraction of the amphiphile than extreme negative values of excess molar volume. Analysis of these plots provides insights into the mixing schemes that occur in different composition segments. A nearly linear variation is found when Balankina's ratios between excess and ideal values of refractive indices are plotted against ratios between excess and ideal values of molar volumes. It is concluded that, when coupled with volumetric properties, the new thermodynamic functions defined for the analysis of refractive indices of liquid mixtures give important complementary information on the mixing process over the whole composition range.
Visible light emitting vertical cavity surface emitting lasers
Bryan, Robert P.; Olbright, Gregory R.; Lott, James A.; Schneider, Jr., Richard P.
1995-01-01
A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.
Visible light emitting vertical cavity surface emitting lasers
Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.
1995-06-27
A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.
Long period grating refractive-index sensor: optimal design for single wavelength interrogation.
Kapoor, Amita; Sharma, Enakshi K
2009-11-01
We report the design criteria for the use of long period gratings (LPGs) as refractive-index sensors with output power at a single interrogating wavelength as the measurement parameter. The design gives maximum sensitivity in a given refractive-index range when the interrogating wavelength is fixed. Use of the design criteria is illustrated by the design of refractive-index sensors for specific application to refractive-index variation of a sugar solution with a concentration and detection of mole fraction of xylene in heptane (paraffin).
Niskanen, Ilpo; Räty, Jukka; Myllylä, Risto; Sutinen, Veijo; Matsuda, Kiyofumi; Homma, Kazuhiro; Silfsten, Pertti; Peiponen, Kai-Erik
2012-07-01
We describe a method to determine the wavelength-dependent refractive index of liquids by measurement of light transmittance with a spectrophotometer. The method is based on using roughened glass slides with different a priori known refractive indices and immersing the slides into the transparent liquid with unknown refractive index. Using the dispersion data on the glass material it is possible to find the index match between the liquid and the glass slide, and hence the refractive index of the liquid.
Compact eccentric long period grating with improved sensitivity in low refractive index region.
Shen, Fangcheng; Zhou, Kaiming; Gordon, Neil; Zhang, Lin; Shu, Xuewen
2017-07-10
We demonstrate a compact eccentric long period grating with enhanced sensitivity in low refractive index region. With a period designed at 15 µm for coupling light to high order cladding modes, the grating is more sensitive to surrounding refractive index in low refractive index region. The intrinsically low coupling coefficients for those high order cladding modes are significantly improved with the eccentric localized inscription induced by the femtosecond laser. The fabricated grating is compact with a length of 4.05 mm, and exhibits an average sensitivity of ~505 nm/RIU in low refractive index region (1.3328-1.3544). The proposed principle can also work in other refractive index region with a proper choice of the resonant cladding modes.
Reflection based Extraordinary Optical Transmission Fiber Optic Probe for Refractive Index Sensing.
Lan, Xinwei; Cheng, Baokai; Yang, Qingbo; Huang, Jie; Wang, Hanzheng; Ma, Yinfa; Shi, Honglan; Xiao, Hai
2014-03-31
Fiber optic probes for chemical sensing based on the extraordinary optical transmission (EOT) phenomenon are designed and fabricated by perforating subwavelength hole arrays on the gold film coated optical fiber endface. The device exhibits a red shift in response to the surrounding refractive index increases with high sensitivity, enabling a reflection-based refractive index sensor with a compact and simple configuration. By choosing the period of hole arrays, the sensor can be designed to operate in the near infrared telecommunication wavelength range, where the abundant source and detectors are available for easy instrumentation. The new sensor probe is demonstrated for refractive index measurement using refractive index matching fluids. The sensitivity reaches 573 nm/RIU in the 1.333~1.430 refractive index range.
Przibilla, Sabine; Dartmann, Sebastian; Vollmer, Angelika; Ketelhut, Steffi; Greve, Burkhard; von Bally, Gert; Kemper, Björn
2012-09-01
The intracellular refractive index is an important parameter that describes the optical density of the cytoplasm and the concentration of the intracellular solutes. The refractive index of adherently grown cells is difficult to access. We present a method in which silica microspheres in living cells are used to determine the cytoplasm refractive index with quantitative phase microscopy. The reliability of our approach for refractive index retrieval is shown by data from a comparative study on osmotically stimulated adherent and suspended human pancreatic tumor cells. Results from adherent human fibro sarcoma cells demonstrate the capability of the method for sensing of dynamic refractive index changes and its usage with microfluidics.
Refractive index dependence of L3 photonic crystal nano-cavities.
Adawi, A M; Chalcraft, A R; Whittaker, D M; Lidzey, D G
2007-10-29
We model the optical properties of L3 photonic crystal nano-cavities as a function of the photonic crystal membrane refractive index n using a guided mode expansion method. Band structure calculations revealed that a TE-like full band-gap exists for materials of refractive index as low as 1.6. The Q-factor of such cavities showed a super-linear increase with refractive index. By adjusting the relative position of the cavity side holes, the Q-factor was optimised as a function of the photonic crystal membrane refractive index n over the range 1.6 to 3.4. Q-factors in the range 3000-8000 were predicted from absorption free materials in the visible range with refractive index between 2.45 and 2.8.
NASA Astrophysics Data System (ADS)
Zuppella, P.; Corso, Alain J.; Pelizzo, Maria G.; Cennamo, N.; Zeni, L.
2016-09-01
We have realized a plasmonic sensor based on Au/Pd metal bilayer in a multimode plastic optical fiber. This metal bilayer, based on a metal with high imaginary part of the refractive index and gold, shows interesting properties in terms of sensitivity and performances, in different refractive index ranges. The development of highly sensitive platforms for high refractive index detection (higher than 1.38) is interesting for chemical applications based on molecularly imprinted polymer as receptors, while the aqueous medium is the refractive index range of biosensors based on bio-receptors. In this work we have presented an Au/Pd metal bilayer optimized for 1.38-1.42 refractive index range.
Phase-Controlled Magnetic Mirror for Wavefront Correction
NASA Technical Reports Server (NTRS)
Hagopian, John; Wollack, Edward
2011-01-01
Typically, light interacts with matter via the electric field and interaction with weakly bound electrons. In a magnetic mirror, a patterned nanowire is fabricated over a metallic layer with a dielectric layer in between. Oscillation of the electrons in the nanowires in response to the magnetic field of incident photons causes a re-emission of photons and operation as a "magnetic mirror." By controlling the index of refraction in the dielectric layer using a local applied voltage, the phase of the emitted radiation can be controlled. This allows electrical modification of the reflected wavefront, resulting in a deformable mirror that can be used for wavefront control. Certain applications require wavefront quality in the few-nanometer regime, which is a major challenge for optical fabrication and alignment of mirrors or lenses. The use of a deformable magnetic mirror allows for a device with no moving parts that can modify the phase of incident light over many spatial scales, potentially with higher resolution than current approaches. Current deformable mirrors modify the incident wavefront by using nano-actuation of a substrate to physically bend the mirror to a desired shape. The purpose of the innovation is to modify the incident wavefront for the purpose of correction of fabrication and alignment-induced wavefront errors at the system level. The advanced degree of precision required for some applications such as gravity wave detection (LISA - Laser Interferometer Space Antenna) or planet finding (FKSI - Fourier-Kelvin Stellar Interferometer) requires wavefront control at the limits of the current state of the art. All the steps required to fabricate a magnetic mirror have been demonstrated. The modification is to apply a bias voltage to the dielectric layer so as to change the index of refraction and modify the phase of the reflected radiation. Light is reflected off the device and collected by a phase-sensing interferometer. The interferometer determines the initial wavefront of the device and fore optics. A wavefront correction is calculated, and voltage profile for each nanowire strip is determined. The voltage is applied, modifying the local index of refraction of the dielectric under the nanowire strip. This modifies the phase of the reflected light to allow wavefront correction.
Regional variation in the refractive-index of the bovine and human cornea.
Vasudevan, Balamurali; Simpson, Trefford L; Sivak, Jacob G
2008-10-01
Given the refractive importance of the human cornea, surprisingly little attention has been directed to the study of local variation in corneal refractive-index. This in vitro and in vivo study measures the refractive-index of different portions of the bovine and human cornea. Fifty fresh bovine corneas (obtained from an abattoir) and 10 human subjects were used for the study. The refractive-index of the central, nasal, and temporal corneal epithelium was measured with a bench-top Abbe refractometer in the case of bovine corneas and with a hand-held refractometer with humans. The mean (+/-standard deviation) refractive-indices of the central, nasal, and temporal bovine corneal epithelium were 1.3760 (+/-0.003), 1.3757 (+/-0.002), and 1.3746 (+/-0.002), respectively. Refractive-indices of the anterior and posterior bovine corneal stroma were 1.3731 (+/-0.002) and 1.3708 (+/-0.004), respectively. The mean (+/-standard deviation) refractive-index in the central, nasal, and temporal periphery of the human cornea epithelium were 1.3970 (+/-0.001), 1.3946 (+/-0.001), and 1.3940 (+/-0.001), respectively. There are small local differences in the refractive-index of the bovine and human corneal epithelium and the refractive-index of the epithelium is higher than that of the anterior and posterior stroma of the bovine cornea.
Influence of stromal refractive index and hydration on corneal laser refractive surgery.
de Ortueta, Diego; von Rüden, Dennis; Magnago, Thomas; Arba Mosquera, Samuel
2014-06-01
To evaluate the influence of the stromal refractive index and hydration on postoperative outcomes in eyes that had corneal laser refractive surgery using the Amaris laser system. Augenzentrum Recklinghausen, Recklinghausen, Germany. Comparative case series. At the 6-month follow-up, right eyes were retrospectively analyzed. The effect of the stromal refractive index and hydration on refractive outcomes was assessed using univariate linear and multilinear correlations. Sixty eyes were analyzed. Univariate linear analyses showed that the stromal refractive index and hydration were correlated with the thickness of the preoperative exposed stroma and was statistically different for laser in situ keratomileusis and laser-assisted subepithelial keratectomy treatments. Univariate multilinear analyses showed that the spherical equivalent (SE) was correlated with the attempted SE and stromal refractive index (or hydration). Analyses suggest overcorrections for higher stromal refractive index values and for lower hydration values. The stromal refractive index and hydration affected postoperative outcomes in a subtle, yet significant manner. An adjustment toward greater attempted correction in highly hydrated corneas and less intended correction in low hydrated corneas might help optimize refractive outcomes. Mr. Magnago and Dr. Arba-Mosquera are employees of and Dr. Diego de Ortueta is a consultant to Schwind eye-tech-solutions GmbH & Co. KG. Mr. Rüden has no financial or proprietary interest in any material or method mentioned. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Fabrication of refractive index distributions in polymer using a photochemical reaction
NASA Astrophysics Data System (ADS)
Kada, Takeshi; Obara, Atsushi; Watanabe, Toshiyuki; Miyata, Seizo; Liang, Chuan Xin; Machida, Hideaki; Kiso, Koichi
2000-01-01
We demonstrate that a photochemical reaction can create various distributions of refractive index in polymer. When the polymer containing a photochemically active material is irradiated by UV light, the photochemical reaction which breaks the π-conjugated system in the material and decreases its linear polarizability can reduce refractive index of the polymer. We prepared a PMMA film added DMAPN ((4-N,N-dimethylaminophenyl)-N'-phenylnitrone) with a rate of 23 wt % by use of spin coating. Electronic structural change of DMAPN and refractive indices of the film before and after UV irradiation were evaluated by UV absorption spectra and m-line method, respectively. The UV irradiation decreased λmax at 380 nm in the absorption spectra, which is attributed to nitrone, and the refractive indices exponentially with irradiation time. The change of refractive indices reached 0.028. The refractive index profile upon depth of the film was investigated by measuring refractive indices of stacked DMAPN/PMMA films. When UV with a power of 10.7 mW/cm2 irradiated upon three stacked DMAPN/PMMA films for 35 s, variation of the refractive index change showed a quadratic profile. The refractive index profile with various irradiation time can be accounted with the combination of the chemical kinetics with the steady state approximation and Lambert-Beer's law. Thus, the photochemical reaction can be used to control the refractive index distribution in polymer.
Highly tunable refractive index visible-light metasurface from block copolymer self-assembly.
Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk
2016-09-29
The refractive index of natural transparent materials is limited to 2-3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification.
Highly tunable refractive index visible-light metasurface from block copolymer self-assembly
Kim, Ju Young; Kim, Hyowook; Kim, Bong Hoon; Chang, Taeyong; Lim, Joonwon; Jin, Hyeong Min; Mun, Jeong Ho; Choi, Young Joo; Chung, Kyungjae; Shin, Jonghwa; Fan, Shanhui; Kim, Sang Ouk
2016-01-01
The refractive index of natural transparent materials is limited to 2–3 throughout the visible wavelength range. Wider controllability of the refractive index is desired for novel optical applications such as nanoimaging and integrated photonics. We report that metamaterials consisting of period and symmetry-tunable self-assembled nanopatterns can provide a controllable refractive index medium for a broad wavelength range, including the visible region. Our approach exploits the independent control of permeability and permittivity with nanoscale objects smaller than the skin depth. The precise manipulation of the interobject distance in block copolymer nanopatterns via pattern shrinkage increased the effective refractive index up to 5.10. The effective refractive index remains above 3.0 over more than 1,000 nm wavelength bandwidth. Spatially graded and anisotropic refractive indices are also obtained with the design of transitional and rotational symmetry modification. PMID:27683077
Geometric phase and o -mode blueshift in a chiral anisotropic medium inside a Fabry-Pérot cavity
NASA Astrophysics Data System (ADS)
Timofeev, Ivan V.; Gunyakov, Vladimir A.; Sutormin, Vitaly S.; Myslivets, Sergey A.; Arkhipkin, Vasily G.; Vetrov, Stepan Ya.; Lee, Wei; Zyryanov, Victor Ya.
2015-11-01
Anomalous spectral shift of transmission peaks is observed in a Fabry-Pérot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method, and geometrically using the generalized Mauguin-Poincaré rolling cone method. The o -mode blueshift is measured for a 4-methoxybenzylidene-4 '-n -butylaniline twisted-nematic layer inside the Fabry-Pérot cavity. The twist is electrically induced due to the homeoplanar-twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidayat, Arif, E-mail: arif.hidayat.fmipa@um.ac.id; Latifah, Eny; Kurniati, Diana
This study investigated the influence of refraction index strength on the light propagation in refraction index-varied dielectric material. This dielectric material served as photonic lattice. The behavior of light propagation influenced by variation of refraction index in photonic lattice was investigated. Modes of the guiding light were determined numerically using squared-operator iteration method. It was found that the greater the strength of refraction index, the smaller the guiding modes.
Cell refractive index for cell biology and disease diagnosis: past, present and future.
Liu, P Y; Chin, L K; Ser, W; Chen, H F; Hsieh, C-M; Lee, C-H; Sung, K-B; Ayi, T C; Yap, P H; Liedberg, B; Wang, K; Bourouina, T; Leprince-Wang, Y
2016-02-21
Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.
Ultraviolet refractometry using field-based light scattering spectroscopy
Fu, Dan; Choi, Wonshik; Sung, Yongjin; Oh, Seungeun; Yaqoob, Zahid; Park, YongKeun; Dasari, Ramachandra R.; Feld, Michael S.
2010-01-01
Accurate refractive index measurement in the deep ultraviolet (UV) range is important for the separate quantification of biomolecules such as proteins and DNA in biology. This task is demanding and has not been fully exploited so far. Here we report a new method of measuring refractive index using field-based light scattering spectroscopy, which is applicable to any wavelength range and suitable for both solutions and homogenous objects with well-defined shape such as microspheres. The angular scattering distribution of single microspheres immersed in homogeneous media is measured over the wavelength range 260 to 315 nm using quantitative phase microscopy. By least square fitting the observed scattering distribution with Mie scattering theory, the refractive index of either the sphere or the immersion medium can be determined provided that one is known a priori. Using this method, we have measured the refractive index dispersion of SiO2 spheres and bovine serum albumin (BSA) solutions in the deep UV region. Specific refractive index increments of BSA are also extracted. Typical accuracy of the present refractive index technique is ≤0.003. The precision of refractive index measurements is ≤0.002 and that of specific refractive index increment determination is ≤0.01 mL/g. PMID:20372622
New designs and characterization techniques for thin-film solar cells
NASA Astrophysics Data System (ADS)
Pang, Yutong
This thesis presents a fundamentally new thin-film photovoltaic design and develops several novel characterization techniques that improve the accuracy of thin-film solar cell computational models by improving the accuracy of the input data. We first demonstrate a novel organic photovoltaic (OPV) design, termed a "Slot OPV", in which the active layer is less than 50 nm; We apply the principles of slot waveguides to confine light within the active layer. According to our calculation, the guided-mode absorption for a 10nm thick active layer equal to the absorption of normal incidence on an OPV with a 100nm thick active layer. These results, together with the expected improvement in charge extraction for ultrathin layers, suggest that slot OPVs can be designed with greater power conversion efficiency than today's state-of-art OPV architectures if practical challenges, such as the efficient coupling of light into these modes, can be overcome. The charge collection probability, i.e. the probability that charges generated by absorption of a photon are successfully collected as current, is a critical feature for all kinds of solar cells. While the electron-beam-induced current (EBIC) method has been used in the past to successfully reconstruct the charge collection probability, this approach is destructive and requires time-consuming sample preparation. We demonstrate a new nondestructive optoelectronic method to reconstruct the charge collection probability by analyzing the internal quantum efficiency (IQE) data that are measured on copper indium gallium diselenide (CIGS) thin-film solar cells. We further improve the method with a parameter-independent regularization approach. Then we introduce the Self-Constrained Ill-Posed Inverse Problem (SCIIP) method, which improves the signal-to-noise of the solution by using the regularization method with system constraints and optimization via an evolutionary algorithm. For a thin-film solar cell optical model to be an accurate representation of reality, the measured refractive index profile of the solar cell used as input to the model must also be accurate. We describe a new method for reconstructing the depth-dependent refractive-index profile with high spatial resolution in thin photoactive layers. This novel technique applies to any thin film, including the photoactive layers of a broad range of thin-film photovoltaics. Together, these methods help us improve the measurement accuracy of the depth profile within thin-film photovoltaics for optical and electronic properties such as refractive index and charge collection probability, which is critical to the understanding, modeling, and optimization of these devices.
Advanced Antireflection Coatings for High-Performance Solar Energy Applications
NASA Technical Reports Server (NTRS)
Pan, Noren
2015-01-01
Phase II objectives: Develop and refine antireflection coatings incorporating lanthanum titanate as an intermediate refractive index material; Investigate wet/dry thermal oxidation of aluminum containing semiconductor compounds as a means of forming a more transparent window layer with equal or better optical properties than its unoxidized form; Develop a fabrication process that allows integration of the oxidized window layer and maintains the necessary electrical properties for contacting the solar cell; Conduct an experimental demonstration of the best candidates for improved antireflection coatings.
Single transverse mode protein laser
NASA Astrophysics Data System (ADS)
Dogru, Itir Bakis; Min, Kyungtaek; Umar, Muhammad; Bahmani Jalali, Houman; Begar, Efe; Conkar, Deniz; Firat Karalar, Elif Nur; Kim, Sunghwan; Nizamoglu, Sedat
2017-12-01
Here, we report a single transverse mode distributed feedback (DFB) protein laser. The gain medium that is composed of enhanced green fluorescent protein in a silk fibroin matrix yields a waveguiding gain layer on a DFB resonator. The thin TiO2 layer on the quartz grating improves optical feedback due to the increased effective refractive index. The protein laser shows a single transverse mode lasing at the wavelength of 520 nm with the threshold level of 92.1 μJ/ mm2.
Resonance-shifting luminescent solar concentrators
Giebink, Noel Christopher; Wiederrecht, Gary P; Wasielewski, Michael R
2014-09-23
An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.
Resonance-shifting luminescent solar concentrators
Giebink, Noel Christopher; Wiederrecht, Gary P.; Wasielewski, Michael R.
2018-01-23
An optical system and method to overcome luminescent solar concentrator inefficiencies by resonance-shifting, in which sharply directed emission from a bi-layer cavity into a glass substrate returns to interact with the cavity off-resonance at each subsequent reflection, significantly reducing reabsorption loss en route to the edges. In one embodiment, the system comprises a luminescent solar concentrator comprising a transparent substrate, a luminescent film having a variable thickness; and a low refractive index layer disposed between the transparent substrate and the luminescent film.
Integrated optical refractometer based on bend waveguide with air trench structure
NASA Astrophysics Data System (ADS)
Ryu, Jin Hwa; Park, Jaehoon; Kang, Chan-mo; Son, Youngdal; Do, Lee-Mi; Baek, Kyu-Ha
2015-07-01
This study proposed a novel optical sensor based on a refractometer integrating a bend waveguide and a trench structure. The optical sensor is a planar lightwave circuit (PLC) device involving a bend waveguide with maximum optical loss. A trench structure was aligned with the partially exposed core layer's sidewall of the bend waveguide, providing a quantitative measurement condition. The insertion losses of the proposed 1 x 2 single-mode optical splitter-type sensor were 4.38 dB and 8.67 dB for the reference waveguide and sensing waveguide, respectively, at a wavelength of 1,550 nm. The optical loss of the sensing waveguide depends on the change in the refractive index of the material in contact with the trench, but the reference waveguide had stable optical propagating characteristic regardless of the variations of the refractive index.
Magneto-photonic crystal microcavities based on magnetic nanoparticles embedded in Silica matrix
NASA Astrophysics Data System (ADS)
Hocini, Abdesselam; Moukhtari, Riad; Khedrouche, Djamel; Kahlouche, Ahmed; Zamani, Mehdi
2017-02-01
Using the three-dimensional finite difference time domain method (3D FDTD) with perfectly matched layers (PML), optical and magneto-optical properties of two-dimensional magneto-photonic crystals micro-cavity is studied. This micro-cavity is fabricated by SiO2/ZrO2 or SiO2/TiO2 matrix doped with magnetic nanoparticles, in which the refractive index varied in the range of 1.51-1.58. We demonstrate that the Q factor for the designed cavity increases as the refractive index increases, and we find that the Q factor decreases as the volume fraction VF% due to off-diagonal elements increases. These magnetic microcavities may serve as a fundamental structure in a variety of ultra compact magneto photonic devices such as optical isolators, circulators and modulators in the future.
Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application
NASA Astrophysics Data System (ADS)
Ebrahimy, Mehdi N.; Moghaddam, Aydin B.; Andalib, Alireza; Naziri, Mohammad; Ronagh, Nazli
2015-09-01
In this paper, a new ultra-compact optical biosensor based on photonic crystal (phc) resonant cavity is proposed. This sensor has ability to work in chemical optical processes for the determination and analysis of liquid material. Here, we used an optical filter based on two-dimensional phc resonant cavity on a silicon layer and an active area is created in center of cavity. According to results, with increasing the refractive index of cavity, resonant wavelengths shift so that this phenomenon provides the ability to measure the properties of materials. This novel designed biosensor has more advantage to operate in the biochemical process for example sensing protein and DNA molecule refractive index. This nanoscale biosensor has quality factor higher than 1.5 × 104 and it is suitable to be used in the home healthcare diagnostic applications.
Demonstration of versatile whispering-gallery micro-lasers for remote refractive index sensing.
Wan, Lei; Chandrahalim, Hengky; Zhou, Jian; Li, Zhaohui; Chen, Cong; Cho, Sangha; Zhang, Hui; Mei, Ting; Tian, Huiping; Oki, Yuji; Nishimura, Naoya; Fan, Xudong; Guo, L Jay
2018-03-05
We developed chip-scale remote refractive index sensors based on Rhodamine 6G (R6G)-doped polymer micro-ring lasers. The chemical, temperature, and mechanical sturdiness of the fused-silica host guaranteed a flexible deployment of dye-doped polymers for refractive index sensing. The introduction of the dye as gain medium demonstrated the feasibility of remote sensing based on the free-space optics measurement setup. Compared to the R6G-doped TZ-001, the lasing behavior of R6G-doped SU-8 polymer micro-ring laser under an aqueous environment had a narrower spectrum linewidth, producing the minimum detectable refractive index change of 4 × 10 -4 RIU. The maximum bulk refractive index sensitivity (BRIS) of 75 nm/RIU was obtained for SU-8 laser-based refractive index sensors. The economical, rapid, and simple realization of polymeric micro-scale whispering-gallery-mode (WGM) laser-based refractive index sensors will further expand pathways of static and dynamic remote environmental, chemical, biological, and bio-chemical sensing.
Binfeng, Yun; Guohua, Hu; Ruohu, Zhang; Yiping, Cui
2014-11-17
A nanometric and high sensitive refractive index sensor based on the metal-insulator-metal plasmonic Bragg grating is proposed. The wavelength encoded sensing characteristics of the refractive index sensor were investigated by analyzing its transmission spectrum. The numerical results show that a good linear relationship between the Bragg wavelength and the refractive index of the sensing material can be obtained, which is in accordance with the analytical results very well. A high refractive index sensitivity of 1,488 nm/RIU around Bragg resonance wavelength of 1,550 nm was obtained. Besides, the simulation results show that the sensitivity is depended on the Bragg resonance wavelength and the longer the Bragg resonance wavelength, the higher sensitivity can be obtained. Furthermore, the figure of merit of the refractive index sensor can be greatly increased by introducing a nano-cavity in the proposed plasmonic Bragg grating structure. This work pave the way for high sensitive nanometric refractive index sensor design and application.
Method of determining effects of heat-induced irregular refractive index on an optical system.
Song, Xifa; Li, Lin; Huang, Yifan
2015-09-01
The effects of an irregular refractive index on optical performance are examined. A method was developed to express a lens's irregular refractive index distribution. An optical system and its mountings were modeled by a thermomechanical finite element (FE) program in the predicted operating temperature range, -45°C-50°C. FE outputs were elaborated using a MATLAB optimization routine; a nonlinear least squares algorithm was adopted to determine which gradient equation best fit each lens's refractive index distribution. The obtained gradient data were imported into Zemax for sequential ray-tracing analysis. The root mean square spot diameter, modulation transfer function, and diffraction ensquared energy were computed for an optical system under an irregular refractive index and under thermoelastic deformation. These properties are greatly reduced by the irregular refractive index effect, which is one-third to five-sevenths the size of the thermoelastic deformation effect. Thus, thermal analyses of optical systems should consider not only thermoelastic deformation but also refractive index irregularities caused by inhomogeneous temperature.
Age-dependence of the average and equivalent refractive indices of the crystalline lens
Charman, W. Neil; Atchison, David A.
2013-01-01
Lens average and equivalent refractive indices are required for purposes such as lens thickness estimation and optical modeling. We modeled the refractive index gradient as a power function of the normalized distance from lens center. Average index along the lens axis was estimated by integration. Equivalent index was estimated by raytracing through a model eye to establish ocular refraction, and then backward raytracing to determine the constant refractive index yielding the same refraction. Assuming center and edge indices remained constant with age, at 1.415 and 1.37 respectively, average axial refractive index increased (1.408 to 1.411) and equivalent index decreased (1.425 to 1.420) with age increase from 20 to 70 years. These values agree well with experimental estimates based on different techniques, although the latter show considerable scatter. The simple model of index gradient gives reasonable estimates of average and equivalent lens indices, although refinements in modeling and measurements are required. PMID:24466474
Holographic Optical Elements with Ultra-High Spatial Frequencies.
1983-01-01
optical film thickness is equal to one-quarter of the wavelength of the incident radiation and the film’s index of refraction is...Am amount of photoresist material removed by developer N diffractive order number n index of refraction nx index of refraction -- x direction ny index ...since a material with the required index of refraction is usually hard to find4 7 . For example, there is no inorganic material available for
Swedish Defence Research Abstracts 1980/81-3 (Froe Forsvars Forsknings Referat 1980/81-3).
1981-11-01
computes the refractive index or the thickness of thin mono- or multi -layer films. The program is written in Fortran and is adapted to the ellipsometer at...Unmnnounced EtN8PECT: Justlflotl Distribution/ Availability Codes Avail and/or Dist Special 2 Index to FRO 80/81-3 A PROTECTION - ATOMIC Al The nuclear...aberrations in PHA-stimulated human lymphocytes in the GI stage (in English) B PROTECTION - BIOLOGICAL BI Threat scenario (119) Epidemiological aspects
Design and manufacture of high absorption metal dielectric coatings for the reduction of straylight
NASA Astrophysics Data System (ADS)
Cathelinaud, Michel; Lemarquis, Frédéric; Torchio, Philippe; Amra, Claude
2017-11-01
This paper describes the design and manufacture of broadband metal dielectric absorbers. First, we give some design principles to obtain achromatic absorption properties. Then, we describe a new method to determine the complex refractive index of metallic layers. A graded index model is developed to take account of the evolution of the film packing density. Manufacturing is detailed in the last section. Absorption levels higher than 99.9% have been measured over the visible range.
2007-11-01
waveguide approach in which a right-angled gadolinium gallium garnet (GGG) glass prism of index 1.965 at 633 nm is used to couple light from a HeNe laser of...SPARROW sensor consists of two planar, single mode aluminum oxide waveguides separated vertically by a lower refractive index silicon dioxide layer...and high stability could be formed on aluminum oxide, the binding of an alkyl carboxylic acid, stearic acid (n-octadecanoic acid), was investigated
Third order nonlinear optical response exhibited by mono- and few-layers of WS 2
Torres-Torres, Carlos; Perea-López, Néstor; Elías, Ana Laura; ...
2016-04-13
In this work, strong third order nonlinear optical properties exhibited by WS 2 layers are presented. Optical Kerr effect was identified as the dominant physical mechanism responsible for these third order optical nonlinearities. An extraordinary nonlinear refractive index together with an important contribution of a saturated absorptive response was observed to depend on the atomic layer stacking. Comparative experiments performed in mono- and few-layer samples of WS 2 revealed that this material is potentially capable of modulating nonlinear optical processes by selective near resonant induced birefringence. In conclusion, we envision applications for developing all-optical bidimensional nonlinear optical devices.
Investigation on optical properties of Bi2.85La0.15TiNbO9 thin films by prism coupling technique
NASA Astrophysics Data System (ADS)
Zhang, Mingfu; Chen, Hengzhi; Yang, Bin; Cao, Wenwu
2009-12-01
Layered-perovskite ferroelectric Bi2.85La0.15TiNbO9 (LBTN) optical waveguiding thin films were grown on fused silica substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) revealed that the film is highly (00 l) textured. We observed sharp and distinct transverse electric (TE) and transverse magnetic (TM) multimodes and measured the refractive indices of LBTN thin films at 632.8 nm. The ordinary and extraordinary refractive indices were calculated to be n TE=2.358 and n TM=2.464, respectively. The film homogeneity and the film-substrate interface were analyzed using an improved version of the inverse Wentzel-Kramer-Brillouin (iWKB) method. The refractive index of the film remains constant at n 0 within the waveguiding layer. The average transmittance of the film is 70% in the wavelength range of 400-1400 nm and the optical waveguiding properties were evaluated by the optical prism coupling method. Our results showed that the LBTN films are very good electro-optical active material.
Refractive index variance of cells and tissues measured by quantitative phase imaging.
Shan, Mingguang; Kandel, Mikhail E; Popescu, Gabriel
2017-01-23
The refractive index distribution of cells and tissues governs their interaction with light and can report on morphological modifications associated with disease. Through intensity-based measurements, refractive index information can be extracted only via scattering models that approximate light propagation. As a result, current knowledge of refractive index distributions across various tissues and cell types remains limited. Here we use quantitative phase imaging and the statistical dispersion relation (SDR) to extract information about the refractive index variance in a variety of specimens. Due to the phase-resolved measurement in three-dimensions, our approach yields refractive index results without prior knowledge about the tissue thickness. With the recent progress in quantitative phase imaging systems, we anticipate that using SDR will become routine in assessing tissue optical properties.
Zhang, Yu; Tang, Xiaoyun; Zhang, Yaxun; Su, Wenjie; Liu, Zhihai; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Oh, Kyunghwan; Yuan, Libo
2018-06-15
We proposed and experimentally demonstrated 3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam. The Bessel beam was produced by concatenating single-mode fiber and a step index multimode fiber, which was then focused by a high refractive index glass microsphere integrated on the fiber end facet. The focused Bessel beam provided two dark fields along the axial direction, where stable trapping of low refractive index bio-cells was realized in a high refractive index liquid bath. The all-fiber and seamlessly integrated structure of the proposed scheme can find ample potential as a micro-optical probe in in situ characterization and manipulation of multiple bio-cells with refractive indices lower than that of the liquid bath.
NASA Astrophysics Data System (ADS)
Lam, Kai-Yuen; Afromowitz, Martin A.
1995-09-01
We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.
Hong, Chin-Yih; Chieh, Jen-Jie; Yang, Shieh-Yueh; Yang, Hong-Chang; Horng, Herng-Er
2009-10-10
We use a heterodyne Mach-Zehnder interferometer to simultaneously and simply measure the complex refractive index by only normal incidence on the specimen, instead of using a complicated measurement procedure or instrument that only measures the real or imaginary part of the complex refractive index. To study the tiny variation of the complex refractive index, the small complex refractive-index variation of a rare-concentration magnetic-fluid thin film, due to a weak field of less than 200 Oe, was processed by this interferometer. We also present the wavelength trend of the complex refractive index of magnetic fluids to verify the appearance of the slight change in a small wavelength range.
NASA Astrophysics Data System (ADS)
Sadri-Moshkenani, Parinaz; Khan, Mohammad Wahiduzzaman; Zhao, Qiancheng; Krivorotov, Ilya; Nilsson, Mikael; Bagherzadeh, Nader; Boyraz, Ozdal
2017-08-01
Plasmonic nanostructures are highly used for sensing purposes since they support plasmonic modes which make them highly sensitive to the refractive index change of their surrounding medium. Therefore, they can also be used to detect changes in optical properties of ultrathin layer films in a multilayer plasmonic structure. Here, we investigate the changes in optical properties of ultrathin films of macro structures consisting of STT-RAM layers. Among the highest sensitive plasmonic structures, nanohole array has attracted many research interest because of its ease of fabrication, small footprint, and simplified optical alignment. Hence it is more suitable for defect detection in STT-RAM geometries. Moreover, the periodic nanohole pattern in the nanohole array structure makes it possible to couple the light to the surface plasmon polariton (SPP) mode supported by the structure. To assess the radiation damages and defects in STT-RAM cells we have designed a multilayer nanohole array based on the layers used in STT-RAM structure, consisting 4nm- Ta/1.5nm-CoFeB/2nm-MgO/1.5nm-CoFeB/4nm-Ta layers, all on a 300nm silver layer on top of a PEC boundary. The nanoholes go through all the layers and become closed by the PEC boundary on one side. The dimensions of the designed nanoholes are 313nm depth, 350nm diameter, and 700nm period. Here, we consider the normal incidence of light and investigate zeroth-order reflection coefficient to observe the resonance. Our simulation results show that a 10% change in refractive index of the 2nm-thick MgO layer leads to about 122GHz shift in SPP resonance in reflection pattern.
Local isotropy and refractive index fluctuations in the surface layer of the atmosphere
NASA Technical Reports Server (NTRS)
Portman, D. J.
1969-01-01
Theoretical and experimental evidence for the existence of local isotropy is briefly examined and conflicting results are found. Recent measurements of temperature spectra support earlier hot wire anemometer and optical scintillation measurements that show little evidence of local isotropy at 1 to 1.5 meters over an extensive uniform and level grass covered field.
New Kronig-Penney Equation Emphasizing the Band Edge Conditions
ERIC Educational Resources Information Center
Szmulowicz, Frank
2008-01-01
The Kronig-Penney problem is a textbook example for discussing band dispersions and band gap formation in periodic layered media. For example, in photonic crystals, the behaviour of bands next to the band edges is important for further discussions of such effects as inhibited light emission, slow light and negative index of refraction. However,…
Change in refractive index of muscle tissue during laser-induced interstitial thermotherapy.
Chen, Na; Chen, Meimei; Liu, Shupeng; Guo, Qiang; Chen, Zhenyi; Wang, Tingyun
2014-01-01
This paper presents a long-period fiber-grating (LPG) based Michelson interferometric refractometry to monitor the change in refractive index of porcine muscle during laser-induced interstitial thermotherapy (LITT). As the wavelength of RI interferometer alters with the change in refractive index around the probe, the LPG based refractometry is combined with LITT system to measure the change in refractive index of porcine muscle when irradiated by laser. The experimental results show the denaturation of tissue alters the refractive index significantly and the LPG sensor can be applied to monitor the tissue state during the LITT.
Ionospheric Impacts on UHF Space Surveillance
NASA Astrophysics Data System (ADS)
Jones, J. C.
2017-12-01
Earth's atmosphere contains regions of ionized plasma caused by the interaction of highly energetic solar radiation. This region of ionization is called the ionosphere and varies significantly with altitude, latitude, local solar time, season, and solar cycle. Significant ionization begins at about 100 km (E layer) with a peak in the ionization at about 300 km (F2 layer). Above the F2 layer, the atmosphere is mostly ionized but the ion and electron densities are low due to the unavailability of neutral molecules for ionization so the density decreases exponentially with height to well over 1000 km. The gradients of these variations in the ionosphere play a significant role in radio wave propagation. These gradients induce variations in the index of refraction and cause some radio waves to refract. The amount of refraction depends on the magnitude and direction of the electron density gradient and the frequency of the radio wave. The refraction is significant at HF frequencies (3-30 MHz) with decreasing effects toward the UHF (300-3000 MHz) range. UHF is commonly used for tracking of space objects in low Earth orbit (LEO). While ionospheric refraction is small for UHF frequencies, it can cause errors in range, azimuth angle, and elevation angle estimation by ground-based radars tracking space objects. These errors can cause significant errors in precise orbit determinations. For radio waves transiting the ionosphere, it is important to understand and account for these effects. Using a sophisticated radio wave propagation tool suite and an empirical ionospheric model, we calculate the errors induced by the ionosphere in a simulation of a notional space surveillance radar tracking objects in LEO. These errors are analyzed to determine daily, monthly, annual, and solar cycle trends. Corrections to surveillance radar measurements can be adapted from our simulation capability.
Refractive index sensor based on a polymer fiber directional coupler for low index sensing.
Lee, Kwang Jo; Liu, Xiaoqi; Vuillemin, Nelly; Lwin, Richard; Leon-Saval, Sergio G; Argyros, Alexander; Kuhlmey, Boris T
2014-07-14
We propose, numerically analyze and experimentally demonstrate a novel refractive index sensor specialized for low index sensing. The device is based on a directional coupler architecture implemented in a single microstructured polymer optical fiber incorporating two waveguides within it: a single-mode core and a satellite waveguide consisting of a hollow high-index ring. This hollow channel is filled with fluid and the refractive index of the fluid is detected through changes to the wavelength at which resonant coupling occurs between the two waveguides. The sensor design was optimized for both higher sensitivity and lower detection limit, with simulations and experiments demonstrating a sensitivity exceeding 1.4 × 10(3) nm per refractive index unit. Simulations indicate a detection limit of ~2 × 10(-6) refractive index units is achievable. We also numerically investigate the performance for refractive index changes localized at the surface of the holes, a case of particular importance for biosensing.
NASA Astrophysics Data System (ADS)
Stefanov, Ivan L.; Stoyanov, Hristiyan Y.; Petrova, Elitza; Russev, Stoyan C.; Tsutsumanova, Gichka G.; Hadjichristov, Georgi B.
2013-03-01
The depth profile of the complex refractive index of silicon ion (Si+) implanted polymethylmethacrylate (PMMA) is studied, in particular PMMA implanted with Si+ ions accelerated to a relatively low energy of 50 keV and at a fluence of 3.2 × 1015 cm-2. The ion-modified material with nano-clustered structure formed in the near(sub)surface layer of a thickness of about 100 nm is optically characterized by simulation based on reflection ellipsometry measurements at a wavelength of 632.8 nm (He-Ne laser). Being of importance for applications of ion-implanted PMMA in integrated optics, optoelectronics and optical communications, the effect of the index depth profile of Si+-implanted PMMA on the profile of the reflected laser beam due to laser-induced thermo-lensing in reflection is also analyzed upon illumination with a low power cw laser (wavelength 532 nm, optical power 10 - 50 mW).
Trottier-Lapointe, W; Zabeida, O; Schmitt, T; Martinu, L
2016-11-01
Ultralow refractive index materials (n less than 1.38 at 550 nm) are of particular interest in the context of antireflective coatings, allowing one to enhance their overall optical performance. However, application of such materials is typically limited by their mechanical properties. In this study, we explore the characteristics of a new category of hybrid (organic/inorganic) SiOCH thin films prepared by glancing angle deposition (GLAD) using electron beam evaporation of SiO2 in the presence of an organosilicon precursor. The resulting layers exhibited n as low as 1.2, showed high elastic rebound, and generally better mechanical properties than their inorganic counterparts. In addition, hybrid GLAD films were found to be highly hydrophobic. The performance of the films is discussed in terms of their hybridicity (organic/inorganic) ratio determined by infrared spectroscopic ellipsometry as well as the presence of anisotropy assessed by the nanostructure-based spectroscopic ellipsometry model. Finally, we demonstrate successful implementation of the ultralow-index material in a complete antireflective stack.
Goos-Hänchen effect in semiconductor metamaterial waveguide and its application as a biosensor
NASA Astrophysics Data System (ADS)
Tang, Tingting; Li, Chaoyang; Luo, Li; Zhang, Yanfen; Li, Jie
2016-06-01
We investigate Goos-Hänchen (GH) effect in a prism waveguide coupling structure with semiconductor metamaterial (SMM) of ZnGaO/ZnO multilayer and explore the possibility as a biosensor. The GH effect in three different waveguides and their performances as a refractive index sensor to detect glycerol concentration in water are analyzed. The SMM brings a periodic property of GH shift peaks which is not found in other waveguides. It is also verified that setting coupling layer of the prism waveguide coupling structure as sensing area is an effective method to significantly increase the sensitivity to refractive index variation. A schematic diagram for the biosensor configuration is designed, and the sensitivity distribution for different glycerol water index is given. Calculation results show that in the proposed biosensor the maximum sensitivity reaches 3.2 × 106 μm/RIU and resolution reaches 1.6 × 10-7 (around 1.33306) with high sensitive position sensitive detector.
NASA Astrophysics Data System (ADS)
Wang, Kangpeng; Feng, Yanyan; Chang, Chunxia; Zhan, Jingxin; Wang, Chengwei; Zhao, Quanzhong; Coleman, Jonathan N.; Zhang, Long; Blau, Werner J.; Wang, Jun
2014-08-01
A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc.A series of layered molybdenum dichalcogenides, i.e., MoX2 (X = S, Se and Te), were prepared in cyclohexyl pyrrolidinone by a liquid-phase exfoliation technique. The high quality of the two-dimensional nanostructures was verified by transmission electron microscopy and absorption spectroscopy. Open- and closed-aperture Z-scans were employed to study the nonlinear absorption and nonlinear refraction of the MoX2 dispersions, respectively. All the three-layered nanostructures exhibit prominent ultrafast saturable absorption (SA) for both femtosecond (fs) and picosecond (ps) laser pulses over a broad wavelength range from the visible to the near infrared. While the dispersions treated with low-speed centrifugation (1500 rpm) have an SA response, and the MoS2 and MoSe2 dispersions after higher speed centrifugation (10 000 rpm) possess two-photon absorption for fs pulses at 1030 nm, which is due to the significant reduction of the average thickness of the nanosheets; hence, the broadening of band gap. In addition, all dispersions show obvious nonlinear self-defocusing for ps pulses at both 1064 nm and 532 nm, resulting from the thermally-induced nonlinear refractive index. The versatile ultrafast nonlinear properties imply a huge potential of the layered MoX2 semiconductors in the development of nanophotonic devices, such as mode-lockers, optical limiters, optical switches, etc. Electronic supplementary information (ESI) available: Electron scattering patterns from TEM characterizations of MX2 nanosheets; CA Z-scan results of graphene dispersions in the ps region. See DOI: 10.1039/c4nr02634a
NASA Astrophysics Data System (ADS)
Idris, N.; Maswati; Yusibani, E.
2018-05-01
The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.
Protein Sensors Based on Optical Ring Resonators
NASA Technical Reports Server (NTRS)
Lin, Ying; Ksendzov, Alexander
2006-01-01
Prototype transducers based on integrated optical ring resonators have been demonstrated to be useful for detecting the protein avidin in extremely dilute solutions. In an experiment, one of the transducers proved to be capable of indicating the presence of avidin at a concentration of as little as 300 pM in a buffer solution a detection sensitivity comparable to that achievable by previously reported protein-detection techniques. These transducers are serving as models for the further development of integrated-optics sensors for detecting small quantities of other proteins and protein-like substances. The basic principle of these transducers was described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. The differences between the present transducers and the ones described in the cited prior article lie in details of implementation of the basic principle. As before, the resonator in a transducer of the present type is a closed-circuit dielectric optical waveguide. The outermost layer of this waveguide, analogous to the optical cladding layer on an optical fiber, consists of a layer comprising sublayers having indices of refraction lower than that of the waveguide core. The outermost sublayer absorbs the chemical of interest (in this case, avidin). The index of refraction of the outermost sublayer changes with the concentration of absorbed avidin. The resonator is designed to operate with relatively strong evanescent-wave coupling between the outer sublayer and the electromagnetic field propagating along the waveguide core. By virtue of this coupling, the chemically induced change in the index of refraction of the outermost sublayer causes a measurable change in the spectrum of the resonator output.
On the refractive index of sodium iodide solutions for index matching in PIV
NASA Astrophysics Data System (ADS)
Bai, Kunlun; Katz, Joseph
2014-04-01
Refractive index matching has become a popular technique for facilitating applications of modern optical diagnostic techniques, such as particle image velocimetry, in complex systems. By matching the refractive index of solid boundaries with that of the liquid, unobstructed optical paths can be achieved for illumination and image acquisition. In this research note, we extend previously provided data for the refractive index of aqueous solutions of sodium iodide (NaI) for concentrations reaching the temperature-dependent solubility limit. Results are fitted onto a quadratic empirical expression relating the concentration to the refractive index. Temperature effects are also measured. The present range of indices, 1.333-1.51, covers that of typical transparent solids, from silicone elastomers to several recently introduced materials that could be manufactured using rapid prototyping. We also review briefly previous measurements of the refractive index, viscosity, and density of NaI solutions, as well as prior research that has utilized this fluid.
Thermo-optical properties of 1H[3,4-b] quinoline films used in electroluminescent devices
NASA Astrophysics Data System (ADS)
Jaglarz, Janusz; Kępińska, Mirosława; Sanetra, Jerzy
2014-06-01
Electroluminescence cells with H[3,4-b] quinoline layers are promising devices for a blue light emitting EL diode. This work measured the optical reflectance as a function of temperature in copolymers PAQ layers deposited on Si crystalline substrate. Using the extended Cauchy dispersion model of the film refractive index we determined the thermo-optical coefficients for quinoline layers in the temperature range of 76-333 K from combined ellipsometric and spectrofotometric studies. The obtained values of thermo-optical coefficients of thin PAQ film, were negative and ranged in 5-10 × 10-4 [1/K].
NASA Astrophysics Data System (ADS)
Blinov, L. M.; Lazarev, V. V.; Yudin, S. G.; Artemov, V. V.; Palto, S. P.; Gorkunov, M. V.
2018-01-01
The electro-optic effect in three nanoscale heterostructures, in each of which a thin layer of dielectric or ferroelectric material is inserted between two planar metal electrodes, has been studied. Each structure has one aluminum layer, containing a subwavelength grating with a period of 400 nm, contacting with either the glass substrate or air. The light transmission spectra of structures with subwavelength grating contain characteristic plasmon dips. Short external-voltage pulses affect the change in the refractive index of the corresponding active layer. Significant values of these changes may be useful for designing optical modulators.
The Use of Index-Matched Beads in Optical Particle Counters
Hu, Zhishang; Ripple, Dean C
2014-01-01
In this paper, we demonstrate the use of 2-pyridinemethanol (2P) aqueous solutions as a refractive index matching liquid. The high refractive index and low viscosity of 2P-water mixtures enables refractive index matching of beads that cannot be index matched with glycerol-water or sucrose-water solutions, such as silica beads that have the refractive index of bulk fused silica or of polymethylmethacrylate beads. Suspensions of beads in a nearly index-matching liquid are a useful tool to understand the response of particle counting instruments to particles of low optical contrast, such as aggregated protein particles. Data from flow imaging and light obscuration instruments are presented for bead diameters ranging from 6 µm to 69 µm, in a matrix liquid spanning the point of matched refractive index. PMID:26601049
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arora, P.; Krishnan, A., E-mail: ananthk@iitm.ac.in; Experimental Optics Laboratory, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai-600036
We demonstrate an optical technique for refractive index and thickness sensing of sub-wavelength-thick dielectric analytes. The technique utilizes the broadband, multimode, directional leakage radiation arising from the excitation of hybrid mode surface plasmons (SP) on low aspect ratio periodic plasmonic substrates with period ≈λ. The approach requires relaxed fabrication tolerances compared to extra ordinary transmission-based sensing techniques, wherein minor shifts in the fabricated dimensions result in a very large change from the designed resonant wavelength. We show that refractive index perturbations due to about 10-nm-thick dielectric can be captured optically by the usage of carefully designed plasmonic substrates, a halogenmore » lamp source, free-space optical components, polarizers, and a low-end, consumer-grade charge coupled device camera. The plasmonic substrates were designed for converting the signature of hybrid mode SP excitation into a transmission peak by utilizing a thin homogeneous metal layer sandwiched between the periodic plasmonic structures and the substrate. The resonance is highly sensitive to the refractive index and thickness of the analyte superstrate. The excitation of hybrid mode SP results in a polarization rotation of 90° of the leaked radiation at resonant wavelength. In order to eliminate the problem of image registration (i.e., placing the same feature in the same pixel of the image, for comparison before and after a change in refractive index) for sensing, we perform the color analysis in the Fourier plane. The change in color of the bright emitted spot with highest momentum, corresponding to the leakage of fundamental SP mode, was used to measure the changes in refractive index, whereas the number and color of spots of lower momenta, corresponding to higher-order Fabry Perot modes, was used to measure the variation in thickness. We further show that the Fourier plane analysis can also be used to sense the index of thicker dielectrics, where real plane image analysis may fail to sense index perturbations, simply due to superposition of different modes in the real plane images of such substrates. Control experiments and analysis revealed a refractive index resolution of 10{sup –5} RIU. The results were correlated with simulations to establish the physical origin of the change in the fundamental mode and higher-order modes due to the refractive index and thickness of analyte. As a demonstration of an application and to test the limits of sensing, the substrates were used to image the surface functionalization using 2-nm-thick 11-mercaptoundecanoic acid and immobilization of 7-nm-thick mouse anti-human IgG antibody. In biological systems, where a priori knowledge about a process step is available, where accurate chemical composition testing is not necessary or possible, the presented method could be used to study the surface changes using a label-free sensing mechanism.« less
NASA Astrophysics Data System (ADS)
Arora, P.; Krishnan, A.
2015-12-01
We demonstrate an optical technique for refractive index and thickness sensing of sub-wavelength-thick dielectric analytes. The technique utilizes the broadband, multimode, directional leakage radiation arising from the excitation of hybrid mode surface plasmons (SP) on low aspect ratio periodic plasmonic substrates with period ≈λ. The approach requires relaxed fabrication tolerances compared to extra ordinary transmission-based sensing techniques, wherein minor shifts in the fabricated dimensions result in a very large change from the designed resonant wavelength. We show that refractive index perturbations due to about 10-nm-thick dielectric can be captured optically by the usage of carefully designed plasmonic substrates, a halogen lamp source, free-space optical components, polarizers, and a low-end, consumer-grade charge coupled device camera. The plasmonic substrates were designed for converting the signature of hybrid mode SP excitation into a transmission peak by utilizing a thin homogeneous metal layer sandwiched between the periodic plasmonic structures and the substrate. The resonance is highly sensitive to the refractive index and thickness of the analyte superstrate. The excitation of hybrid mode SP results in a polarization rotation of 90° of the leaked radiation at resonant wavelength. In order to eliminate the problem of image registration (i.e., placing the same feature in the same pixel of the image, for comparison before and after a change in refractive index) for sensing, we perform the color analysis in the Fourier plane. The change in color of the bright emitted spot with highest momentum, corresponding to the leakage of fundamental SP mode, was used to measure the changes in refractive index, whereas the number and color of spots of lower momenta, corresponding to higher-order Fabry Perot modes, was used to measure the variation in thickness. We further show that the Fourier plane analysis can also be used to sense the index of thicker dielectrics, where real plane image analysis may fail to sense index perturbations, simply due to superposition of different modes in the real plane images of such substrates. Control experiments and analysis revealed a refractive index resolution of 10-5 RIU. The results were correlated with simulations to establish the physical origin of the change in the fundamental mode and higher-order modes due to the refractive index and thickness of analyte. As a demonstration of an application and to test the limits of sensing, the substrates were used to image the surface functionalization using 2-nm-thick 11-mercaptoundecanoic acid and immobilization of 7-nm-thick mouse anti-human IgG antibody. In biological systems, where a priori knowledge about a process step is available, where accurate chemical composition testing is not necessary or possible, the presented method could be used to study the surface changes using a label-free sensing mechanism.
Safe and simple detection of sparse hydrogen by Pd-Au alloy/air based 1D photonic crystal sensor
NASA Astrophysics Data System (ADS)
Mitra, S.; Biswas, T.; Chattopadhyay, R.; Ghosh, J.; Bysakh, S.; Bhadra, S. K.
2016-11-01
A simple integrated hydrogen sensor using Pd-Au alloy/air based one dimensional photonic crystal with an air defect layer is theoretically modeled. Structural parameters of the photonic crystal are delicately scaled to generate photonic band gap frequencies in a visible spectral regime. An optimized defect thickness permits a localized defect mode operating at a frequency within the photonic band gap region. Hydrogen absorption causes modification in the band gap characteristics due to variation of refractive index and lattice parameters of the alloy. As a result, the transmission peak appeared due to the resonant defect state gets shifted. This peak shifting is utilized to detect sparse amount of hydrogen present in the surrounding environment. A theoretical framework is built to calculate the refractive index profile of hydrogen loaded alloy using density functional theory and Bruggeman's effective medium approximation. The calculated refractive index variation of Pd3Au alloy film due to hydrogen loading is verified experimentally by measuring the reflectance characteristics. Lattice expansion properties of the alloy are studied through X-ray diffraction analyses. The proposed structure shows about 3 nm red shift of the transmission peak for a rise of 1% atomic hydrogen concentration in the alloy.
One-dimensional transient radiative transfer by lattice Boltzmann method.
Zhang, Yong; Yi, Hongliang; Tan, Heping
2013-10-21
The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.
Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.
Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina
2016-10-11
The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.
Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan
2016-10-08
A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.
Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan
2016-01-01
A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity. PMID:27740607
Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries
Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina
2016-01-01
The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172
Refractive index measurement based on confocal method
NASA Astrophysics Data System (ADS)
An, Zhe; Xu, XiPing; Yang, JinHua; Qiao, Yang; Liu, Yang
2017-10-01
The development of transparent materials is closed to optoelectronic technology. It plays an increasingly important role in various fields. It is not only widely used in optical lens, optical element, optical fiber grating, optoelectronics, but also widely used in the building material, pharmaceutical industry with vessel, aircraft windshield and daily wear glasses.Regard of solving the problem of refractive index measurement in optical transparent materials. We proposed that using the polychromatic confocal method to measuring the refractive index of transparent materials. In this article, we describes the principle of polychromatic confocal method for measuring the refractive index of glass,and sketched the optical system and its optimization. Then we establish the measurement model of the refractive index, and set up the experimental system. In this way, the refractive index of the glass has been calibrated for refractive index experiment. Due to the error in the experimental process, we manipulated the experiment data to compensate the refractive index measurement formula. The experiment taking the quartz glass for instance. The measurement accuracy of the refractive index of the glass is +/-1.8×10-5. This method is more practical and accurate, especially suitable for non-contact measurement occasions, which environmental requirements is not high. Environmental requirements are not high, the ordinary glass production line up to the ambient temperature can be fully adapted. There is no need for the color of the measured object that you can measure the white and a variety of colored glass.
Application of refractometry to quality assurance monitoring of parenteral nutrition solutions.
Chang, Wei-Kuo; Chao, You-Chen; Yeh, Ming-Kung
2008-01-01
Parenteral nutrition (PN) solution contains various concentrations of dextrose, amino acids, lipids, vitamins, electrolytes, and trace elements. Incorrect preparation of PN solution could lead to patient death. In this study we used the refractive index as a quality assurance tool to monitor the preparation of PN solution. Refractive indices of single nutrient components and PN solutions consisting of various concentrations of dextrose, amino acids, electrolytes, and lipids were measured. A mathematical equation and its linear plot were generated then used to predict the refractive index of the PN solution. The best-fit refractive index for PN solution (i.e., the predicted refractive index)=0.9798x(% dextrose)+1.2889x(% amino acids)+1.1017x(% lipids)+0.9440x(% sum of the electrolytes)+0.5367 (r2=0.99). This equation was validated by comparing the measured refractive indices of 500 clinical PN solutions to their predicted refractive indices. We found that 2 of the 500 prepared samples (0.4%) had less than the predicted refractive index (<95%). Refractive index can be used as a reliable quality assurance tool for monitoring PN preparation. Such information can be obtained at the bedside and used to confirm the accuracy of the PN solution composition.
NASA Technical Reports Server (NTRS)
Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.
1990-01-01
A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.
Refractive-index profiling of embedded microstructures in optical materials
NASA Astrophysics Data System (ADS)
Dave, Digant P.; Milner, Thomas E.
2002-04-01
We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.
NASA Astrophysics Data System (ADS)
Kim, Jin-Hong; Lee, Jun-Seok; Lim, Jungshik; Seo, Jung-Kyo
2009-03-01
Narrow gap distance in cover-layer incident near-field recording (NFR) configuration causes a collision problem in the interface between a solid immersion lens and a disk surface. A polymer cover-layer with smooth surface results in a stable gap servo while a nanocomposite cover-layer with high refractive index shows a collision problem during the gap servo test. Even though a dielectric cover-layer, in which the surface is rougher than the polymer, supplements the mechanical properties, an unclear eye pattern due to an unstable gap servo can be obtained after a chemical mechanical polishing. Not only smooth surface but also good mechanical properties of cover-layer are required for the stable gap servo in the NFR.
Zhang, De-Long; Zhang, Pei; Zhou, Hao-Jiang; Pun, Edwin Yue-Bun
2008-10-01
We have demonstrated the possibility that near-stoichiometric Ti:LiNbO(3) strip waveguides are fabricated by carrying out vapor transport equilibration at 1060 degrees C for 12 h on a congruent LiNbO(3) substrate with photolithographically patterned 4-8 microm wide, 115 nm thick Ti strips. Optical characterizations show that these waveguides are single mode at 1.5 microm and show a waveguide loss of 1.3 dB/cm for TM mode and 1.1 dB/cm for TE mode. In the width/depth direction of the waveguide, the mode field follows the Gauss/Hermite-Gauss function. Secondary-ion-mass spectrometry (SIMS) was used to study Ti-concentration profiles in the depth direction and on the surface of the 6 microm wide waveguide. The result shows that the Ti profile follows a sum of two error functions along the width direction and a complementary error function in the depth direction. The surface Ti concentration, 1/e width and depth, and mean diffusivities along the width and depth directions of the guide are similar to 3.0 x 10(21) cm(-3), 3.8 microm, 2.6 microm, 0.30 and 0.14 microm(2)/h, respectively. Micro-Raman analysis was carried out on the waveguide endface to characterize the depth profile of Li composition in the guiding layer. The results show that the depth profile of Li composition also follows a complementary error function with a 1/e depth of 3.64 microm. The mean ([Li(Li)]+[Ti(Li)])/([Nb(Nb)]+[Ti(Nb)]) ratio in the waveguide layer is about 0.98. The inhomogeneous Li-composition profile results in a varied substrate index in the guiding layer. A two-dimensional refractive index profile model in the waveguide is proposed by taking into consideration the varied substrate index and assuming linearity between Ti-induced index change and Ti concentration. The net waveguide surface index increments at 1545 nm are 0.0114 and 0.0212 for ordinary and extraordinary rays, respectively. Based upon the constructed index model, the fundamental mode field profile was calculated using the beam propagation method, and the mode sizes and effective index versus the Ti-strip width were calculated for three lower TM and TE modes using the variational method. An agreement between theory and experiment is obtained.
A refractive index sensor based on taper Michelson interferometer in multimode fiber
NASA Astrophysics Data System (ADS)
Fu, Xinghu; Zhang, Jiangpeng; Wang, Siwen; Fu, Guangwei; Liu, Qiang; Jin, Wa; Bi, Weihong
2016-11-01
A refractive index sensor based on taper Michelson interferometer in multimode fiber is proposed. The Hydrofluoric acid corrosion processing is studied in the preparation of single cone multimode optical fiber sensor. The taper Michelson interferometer is fabricated by changing corrosion time. The relationship between fiber sensor feature and corrosion time is analyzed. The experimental results show that the interference spectrum shift in the direction of short wave with the increase of the refractive index. The refractive index sensitivity can reach 115.8008 nm/RIU. Thereby, it can be used in detecting the refractive index in different areas including the environmental protection, health care and food production.
Experimental verification and simulation of negative index of refraction using Snell's law.
Parazzoli, C G; Greegor, R B; Li, K; Koltenbah, B E C; Tanielian, M
2003-03-14
We report the results of a Snell's law experiment on a negative index of refraction material in free space from 12.6 to 13.2 GHz. Numerical simulations using Maxwell's equations solvers show good agreement with the experimental results, confirming the existence of negative index of refraction materials. The index of refraction is a function of frequency. At 12.6 GHz we measure and compute the real part of the index of refraction to be -1.05. The measurements and simulations of the electromagnetic field profiles were performed at distances of 14lambda and 28lambda from the sample; the fields were also computed at 100lambda.
Polymer microfiber bridging Bi-tapered refractive index sensor based on evanescent field
NASA Astrophysics Data System (ADS)
Lv, Ri-Qing; Wang, Qi; Wang, Bo-Tao; Liu, Yu; Kong, Lingxin
2018-05-01
A PDMS/graphene enhanced PMMA micro optical waveguide sensor is reported in terms of fabrication method and optical characteristics. The micro optical waveguide with a diameter of 6 μm and a length of 800 μm is used as the sensing probe to realize refractive index (RI) measurement suspended in NaCl solutions with different concentrations. Experimental results show that the refractive index sensing sensitivity can reach 2027.97 nm/RIU within the refractive index ranging from 1.3333-1.3426. Research results show that PMMA/graphene micro optical waveguide doped with PDMS is an excellent high sensitive sensing technology in refractive index detection field.
NASA Astrophysics Data System (ADS)
Sun, Xiao-Yan; Chu, Dong-Kai; Dong, Xin-Ran; Zhou, Chu; Li, Hai-Tao; Luo-Zhi; Hu, You-Wang; Zhou, Jian-Ying; Cong-Wang; Duan, Ji-An
2016-03-01
A High sensitive refractive index (RI) sensor based on Mach-Zehnder interferometer (MZI) in a conventional single-mode optical fiber is proposed, which is fabricated by femtosecond laser transversal-scanning inscription method and chemical etching. A rectangular cavity structure is formed in part of fiber core and cladding interface. The MZI sensor shows excellent refractive index sensitivity and linearity, which exhibits an extremely high RI sensitivity of -17197 nm/RIU (refractive index unit) with the linearity of 0.9996 within the refractive index range of 1.3371-1.3407. The experimental results are consistent with theoretical analysis.
Sobral, H; Peña-Gomar, M
2015-10-01
A spectroscopic refractometer was used to investigate the dispersion curves of ethanol and D-glucose solutions in water near the critical angle; here, the reflectivity was measured using a white source. Dispersion curves were obtained in the 320-1000 nm wavelength range with a resolution better than 10(-4) for the refractive index, n. The differential refractive index is measured as a function of wavelength, and a simple expression is proposed to obtain the refractive index of the glucose-ethanol-water ternary system. Using this expression, combined with the experimental differential refractive index values, the concentrations of individual components can be calculated.
Reflectance modeling of electrochemically P-type porosified silicon by Drude-Lorentz model
NASA Astrophysics Data System (ADS)
Kadi, M.; Media, E. M.; Gueddaoui, H.; Outemzabet, R.
2014-09-01
Porous silicon remains a promising material for optoelectronic application; in this field monitoring of the refractive index profile of the porous layer is required. We present in this work a procedure based on Drude-Lorentz model for calculating the optical parameters such as the high- and low-frequency dielectric constants, the plasma frequency by fitting the reflectance spectra. The experimental data of different porous silicon layer created above the bulk silicon material by electrochemical etching are extracted from reflectance measurements. The reflectance spectra are recorded in the spectral range 350-2500 nm. First, our computational procedure has been validated by its application on mono-crystalline silicon for the determination of its optical parameters. A good agreement between our results and those found in other works has been achieved in the visible-NIR range. In the second step, the model was applied to porous silicon (PS) layers. Useful optical parameters like the refractive index and the extinction coefficient, respectively, n (λ) and κ(λ), the band gap Eg, of different fabricated porous silicon layer are determined from simulated reflectance spectra. The correlation between the optical properties and the conditions of the electrochemical treatment was observed and analyzed. The main conclusion is that the reflected light from the porous silicon surface, although non-homogeneous and thus possessing the light scattering, is essentially smaller than the reflected light from the bulk crystalline silicon. These results show that the porous surface layer can act as an antireflection coating for silicon and could be used, in particular, in solar cells.
Low cost fiber optic sensing of sugar solution
NASA Astrophysics Data System (ADS)
Muthuraju, M. E.; Patlolla, Anurag Reddy; Vadakkapattu Canthadai, Badrinath; Pachava, Vengalrao
2015-03-01
The demand for highly sensitive and reliable sensors to assess the refractive index of liquid get many applications in chemical and biomedical areas. Indeed, the physical parameters such as concentration, pressure and density, etc., can be found using the refractive index of liquid. In contrast to the conventional refractometer for measurement, optical fiber sensor has several advantages like remote sensing, small in size, low cost, immune to EMI etc., In this paper we have discussed determination of refractive index of sugar solution using optical fiber. An intensity modulated low cost plastic fiber optic refractive index sensor has been designed for the study. The sensor is based on principle of change in angle of reflected light caused by refractive index change of the medium surrounding the fiber. The experimental results obtained for the sugar solution of different refractive indices prove that the fiber optic sensor is cable of measuring the refractive indices as well as the concentrations.
Sarimov, R M; Matveyeva, T A; Binhi, V N
2018-05-11
Using an original laser interferometer of enhanced sensitivity, an increase in the refractive index of a protein solution was observed during the reaction of proteolysis catalyzed by pepsin. The increase in the refractive index of the protein solution at a concentration of 4 mg/ml was [Formula: see text] for bovine serum albumin and [Formula: see text] for lysozyme. The observed effect disproves the existing idea that the refractive index of protein solutions is determined only by their amino acid composition and concentration. It is shown that the refractive index also depends on the state of protein fragmentation. A mathematical model of proteolysis and a real-time method for estimating the state of protein hydration based on the measurement of refractive index during the reaction are proposed. A good agreement between the experimental and calculated time dependences of the refractive index shows that the growth of the surface of protein fragments and the change in the number of hydration cavities during proteolysis can be responsible for the observed effect.
Properties of chirped mirrors manufactured by plasma ion assisted electron beam evaporation
NASA Astrophysics Data System (ADS)
Bischoff, Martin; Stenzel, Olaf; Gäbler, Dieter; Kaiser, Norbert
2005-09-01
Nowadays, chirped dielectric mirrors for ultrafast optics and laser applications are usually manufactured by sputtering techniques. The suitability of Advanced Plasma Source (APS) assisted electron beam evaporation with respect to such coatings is still under investigation. The purpose of this presentation is to show our first results of the deposition of chirped layers produced by plasma ion assisted electron beam evaporation and of the investigation of their properties. The aim was to design and prepare a NIR-mirror for the spectral range of 700 nm to 900 nm. It has been attempted to find a design that is robust with respect to errors of thickness and refractive index. The mirror consists of more than 26 layers composed of alternating high- (Nb2O5) and low-refractive index (SiO2) material. The deposited coatings were tested in terms of their group delay dispersion (GDD) and their reflectivity. We show, that in the wavelength range between 720 nm and 890 nm the GDD exhibits a value of about -50 fs2, whereas the reflectivity is above 99%. However, the subsequent reverse engineering operations show a relatively large thickness error of more than 1% - 2% regarding the particular layers. Nevertheless the effect on the GDD and the reflectivity is tolerable. Furthermore, we present our first experiments concerning the design and fabrication of a chirped mirror, which allows controlling the third order dispersion (TOD), whereas the relative thickness error of the particular layers should not exceed 1%.
Focusing light in a bianisotropic slab with negatively refracting materials.
Liu, Yan; Guenneau, Sebastien; Gralak, Boris; Ramakrishna, S Anantha
2013-04-03
We investigate the electromagnetic response of a pair of complementary bianisotropic media, which consist of a medium with positive refractive index (+ε, +μ, +ξ) and a medium with negative refractive index(-ε, -μ, -ξ). We show that this idealized system has peculiar imaging properties in that it reproduces images of a source, in principle, with unlimited resolution. We then consider an infinite array of line sources regularly spaced in a 1D photonic crystal (PC) consisting of 2n layers of bianisotropic complementary media. Using coordinate transformations, we map this system into 2D corner chiral lenses of 2n heterogeneous anisotropic complementary media sharing a vertex, within which light circles around closed trajectories. Alternatively, one can consider corner lenses with homogeneous isotropic media and map them into 1D PCs with heterogeneous bianisotropic layers. Interestingly, such complementary media are described by scalar, or matrix valued, sign-shifting parameters, which satisfy a new version of the generalized lens theorem of Pendry and Ramakrishna. This theorem can be derived using Fourier series solutions of the Maxwell-Tellegen equations, or from space-time symmetry arguments. Also of interest are 2D periodic checkerboards consisting of alternating rectangular cells of complementary media which are such that one point source in one cell gives rise to an infinite set of images with an image in every other cell. Such checkerboards can themselves be mapped into a class of 3D corner lenses of complementary bianisotropic media. These theoretical results are illustrated by finite element computations.
Roy, P D; Prasad, A; Das, M K
2009-02-18
The binary mixture of 4-n-pentyl phenyl 4-n'-hexyloxy benzoate (ME6O.5) and p-cyanophenyl trans-4-pentyl cyclohexane carboxylate (CPPCC) shows the presence of an induced smectic A(d) phase in a certain concentration range 0.03
Optical properties of periodic, quasi-periodic, and disordered one-dimensional photonic structures
NASA Astrophysics Data System (ADS)
Bellingeri, Michele; Chiasera, Alessandro; Kriegel, Ilka; Scotognella, Francesco
2017-10-01
Photonic structures are building blocks for many optical applications in which light manipulation is required spanning optical filtering, lasing, light emitting diodes, sensing and photovoltaics. The fabrication of one-dimensional photonic structures is achievable with a variety of different techniques, such as spin coating, sputtering, evaporation, pulse laser deposition, or extrusion. Such different techniques enable facile integration of the photonic structure with many types of devices. Photonic crystals are characterized by a spatial modulation of the dielectric constant on the length scale of the wavelength of light giving rise to energy ranges where light cannot propagate through the crystal - the photonic band gap. While mostly photonic crystals are referred to as periodic arrangements, in this review we aim to highlight as well how aperiodicity and disorder affects light modulation. In this review article, we introduce the concepts of periodicity, quasi-periodicity, and disorder in photonic crystals, focussing on the one-dimensional case. We discuss in detail the physical peculiarities, the fabrication techniques, and the applications of periodic, quasi-periodic, and disorder photonic structures, highlighting how the degree of crystallinity matters in the manipulation of light. We report different types of disorder in 1D photonic structures and we discuss their properties in terms of light transmission. We discuss the relationship between the average total transmission, in a range of wavelengths around the photonic band gap of the corresponding photonic crystal, and the homogeneity of the photonic structures, quantified by the Shannon index. Then we discuss the light transmission in structures in which the high refractive index layers are aggregated in clusters following a power law distribution. Finally, in the case of structures in which the high refractive index layers are aggregated in clusters with a truncated uniform distribution, we discuss: i) how different refractive index contrast tailors the total light transmission; ii) how the total light transmission is affected by the introduction of defects made with a third material.
Optical negative refraction by four-wave mixing in thin metallic nanostructures.
Palomba, Stefano; Zhang, Shuang; Park, Yongshik; Bartal, Guy; Yin, Xiaobo; Zhang, Xiang
2011-10-30
The law of refraction first derived by Snellius and later introduced as the Huygens-Fermat principle, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed and experimentally demonstrated in the microwave region. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.
Niskanen, Ilpo; Sutinen, Veijo; Thungström, Göran; Räty, Jukka
2018-06-01
The refractive index is a fundamental physical property of a medium, which can be used for the identification and purity issues of all media. Here we describe a refractive index measurement technique to determine simultaneously the refractive index of different solid particles by monitoring the transmittance of light from a suspension using a charge-coupled device (CCD) camera. An important feature of the measurement is the liquid evaporation process for the refractive index matching of the solid particle and the immersion liquid; this was realized by using a pair of volatile and non-volatile immersion liquids. In this study, refractive indices of calcium fluoride (CaF 2 ) and barium fluoride (BaF 2 ) were determined using the proposed method.
Mixed effects modelling for glass category estimation from glass refractive indices.
Lucy, David; Zadora, Grzegorz
2011-10-10
520 Glass fragments were taken from 105 glass items. Each item was either a container, a window, or glass from an automobile. Each of these three classes of use are defined as glass categories. Refractive indexes were measured both before, and after a programme of re-annealing. Because the refractive index of each fragment could not in itself be observed before and after re-annealing, a model based approach was used to estimate the change in refractive index for each glass category. It was found that less complex estimation methods would be equivalent to the full model, and were subsequently used. The change in refractive index was then used to calculate a measure of the evidential value for each item belonging to each glass category. The distributions of refractive index change were considered for each glass category, and it was found that, possibly due to small samples, members of the normal family would not adequately model the refractive index changes within two of the use types considered here. Two alternative approaches to modelling the change in refractive index were used, one employed more established kernel density estimates, the other a newer approach called log-concave estimation. Either method when applied to the change in refractive index was found to give good estimates of glass category, however, on all performance metrics kernel density estimates were found to be slightly better than log-concave estimates, although the estimates from log-concave estimation prossessed properties which had some qualitative appeal not encapsulated in the selected measures of performance. These results and implications of these two methods of estimating probability densities for glass refractive indexes are discussed. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Gradient polymer network liquid crystal with a large refractive index change.
Ren, Hongwen; Xu, Su; Wu, Shin-Tson
2012-11-19
A simple approach for preparing gradient polymer network liquid crystal (PNLC) with a large refractive index change is demonstrated. To control the effective refractive index at a given cell position, we applied a voltage to a homogeneous cell containing LC/diacrylate monomer mixture to generate the desired tilt angle and then stabilize the LC orientation with UV-induced polymer network. By varying the applied voltage along with the cells' movement, a PNLC with a gradient refractive index distribution is obtained. In comparison with conventional approaches using patterned photomask or electrode, our method offers following advantages: large refractive index change, freedom to design specific index profile, and large panel capability. Potential applications include tunable-focus lenses, prism gratings, phase modulators, and other adaptive photonic devices.
Ultrasensitive Magnetic Field Sensing Based on Refractive-Index-Matched Coupling.
Rao, Jie; Pu, Shengli; Yao, Tianjun; Su, Delong
2017-07-07
An ultrasensitive magnetic field sensor is proposed and investigated experimentally. The no-core fiber is fusion-spliced between two pieces of single-mode fibers and then immersed in magnetic fluid with an appropriate value of refractive index. Under the refractive-index-matched coupling condition, the guided mode becomes leaky and a coupling wavelength dip in the transmission spectrum of the structure is observed. The coupling wavelength dip is extremely sensitive to the ambient environment. The excellent sensitivity to the refractive index is measured to be 116.681 μm/RIU (refractive index unit) in the refractive index range of 1.45691-1.45926. For the as-fabricated sensors, the highest magnetic field sensing sensitivities of 6.33 and 1.83 nm/mT are achieved at low and high fields, respectively. The sensitivity is considerably enhanced compared with those of previously designed, similar structures.
Miao, Qingyuan; Zhou, Qunjie; Cui, Jun; He, Ping-An; Huang, Dexiu
2014-12-29
Characteristics of polarization insensitivity of carrier-induced refractive index change of 1.55 μm tensile-strained multiple quantum well (MQW) are theoretically investigated. A comprehensive MQW model is proposed to effectively extend the application range of previous models. The model considers the temperature variation as well as the nonuniform distribution of injected carrier in MQW. Tensile-strained MQW is expected to achieve polarization insensitivity of carrier-induced refractive index change over a wide wavelength range as temperature varies from 0°C to 40°C, while the magnitude of refractive index change keeps a large value (more than 3 × 10-3). And that the polarization insensitivity of refractive index change can maintain for a wide range of carrier concentration. Multiple quantum well with different material and structure parameters is anticipated to have the similar polarization insensitivity of refractive index change, which shows the design flexibility.
The study of multilayer anti-reflection coating in InSb focal plane detector
NASA Astrophysics Data System (ADS)
Zheng, Kelin; Wei, Peng; Wang, Liwen; Su, Xianjun; Wang, Haizhen
2016-10-01
In manufacturing of InSb focal plane detector, InSb chip have to be polished from backside to reduce its thickness and then be plated a layer of coating to decrease its reflection (enhance its transmittance) for infrared ray. Moreover, the anti-reflection coating has to be multilayer for more anti-reflection bandwidth. In this article, it is introduced that the optimal design of triple layer λ/4 anti-reflection coating——the anodic oxide, SiNx and MgF2. The best thickness range of each layer and its theoretical reflective index are calculated from simulation software, until the refractive index of each layer has been measured by ellipsometer. And then the transmissivity and reflectivity of the triple layer coating are measured for testing and verifying its performance on the transmittance and reflection. In the end, the anti-reflective effect of the triple layer coating and monolayer SiNx coating are respectively measured and compared by infrared focal plane array measurement system. And it is showed that this triple layer coating achieved more anti-reflection bandwidth and better anti reflective effect.
Method and apparatus for determining peak temperature along an optical fiber
Fox, Richard J.
1985-01-01
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light refraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
NASA Astrophysics Data System (ADS)
Saxton-Fox, Theresa; Gordeyev, Stanislav; Smith, Adam; McKeon, Beverley
2015-11-01
Strong density gradients associated with turbulent structure were measured in a mildly heated turbulent boundary layer using an optical sensor (Malley probe). The Malley probe measured index of refraction gradients integrated along the wall-normal direction, which, due to the proportionality of index of refraction and density in air, was equivalently an integral measure of density gradients. The integral output was observed to be dominated by strong, localized density gradients. Conditional averaging and Pearson correlations identified connections between the streamwise gradient of density and the streamwise gradient of wall-normal velocity. The trends were suggestive of a process of pick-up and transport of heat away from the wall. Additionally, by considering the density field as a passive marker of structure, the role of the wall-normal velocity in shaping turbulent structure in a sheared flow was examined. Connections were developed between sharp gradients in the density and flow fields and strong vertical velocity fluctuations. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.
Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors
Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki
2016-01-01
The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles’ diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications. PMID:27658446
Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors.
Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki
2016-09-23
The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles' diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications.
Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles.
Pennanen, Antti M; Toppari, J Jussi
2013-01-14
Coupling of light into a thin layer of high refractive index material by plasmonic nanoparticles has been widely studied for application in photovoltaic devices, such as thin-film solar cells. In numerous studies this coupling has been investigated through measurement of e.g. quantum efficiency or photocurrent enhancement. Here we present a direct optical measurement of light coupling into a waveguide by plasmonic nanoparticles. We investigate the coupling efficiency into the guided modes within the waveguide by illuminating the surface of a sample, consisting of a glass slide coated with a high refractive index planar waveguide and plasmonic nanoparticles, while directly measuring the intensity of the light emitted out of the waveguide edge. These experiments were complemented by transmittance and reflectance measurements. We show that the light coupling is strongly affected by thin-film interference, localized surface plasmon resonances of the nanoparticles and the illumination direction (front or rear).
Modelling of the luminescent properties of nanophosphor coatings with different porosity
NASA Astrophysics Data System (ADS)
Kubrin, R.; Graule, T.
2016-10-01
Coatings of Y2O3:Eu nanophosphor with the effective refractive index of 1.02 were obtained by flame aerosol deposition (FAD). High-pressure cold compaction decreased the layer porosity from 97.3 to 40 vol % and brought about dramatic changes in the photoluminescent performance. Modelling of interdependence between the quantum yield, decay time of luminescence, and porosity of the nanophosphor films required a few basic simplifying assumptions. We confirmed that the properties of porous nanostructured coatings are most appropriately described by the nanocrystal cavity model of the radiative decay. All known effective medium equations resulted in seemingly underestimated values of the effective refractive index. While the best fit was obtained with the linear permittivity mixing rule, the influence of further effects, previously not accounted for, could not be excluded. We discuss the peculiarities in optical response of nanophopshors and suggest the directions for future research.
Internal high-reflectivity omni-directional reflectors
NASA Astrophysics Data System (ADS)
Xi, J.-Q.; Ojha, Manas; Plawsky, J. L.; Gill, W. N.; Kim, Jong Kyu; Schubert, E. F.
2005-07-01
An internal high-reflectivity omni-directional reflector (ODR) for the visible spectrum is realized by the combination of total internal reflection using a low-refractive-index (low-n) material and reflection from a one-dimensional photonic crystal (1D PC). The low-n layer limits the range of angles in the 1D PC to values below the Brewster angle, thereby enabling high reflectivity and omni-directionality. This ODR is demonstrated using GaP as ambient, nanoporous SiO2 with a very low refractive index (n=1.10), and a four-pair TiO2/SiO2 multilayer stack. The results indicate a two orders of magnitude lower angle-integrated transverse-electric-transverse-magnetic polarization averaged mirror loss of the ODR compared with conventional distributed Bragg reflectors and metal reflectors. This indicates the high potential of the internal ODRs for optoelectronic semiconductor devices, e.g., light-emitting diodes.
Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan
2010-01-12
Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
Optical Coherence Tomography Enabling Non Destructive Metrology of Layered Polymeric GRIN Material
Meemon, Panomsak; Yao, Jianing; Lee, Kye-Sung; Thompson, Kevin P.; Ponting, Michael; Baer, Eric; Rolland, Jannick P.
2013-01-01
Gradient Refractive INdex (GRIN) optical components have historically fallen short of theoretical expectations. A recent breakthrough is the manufacturing of nanolayered spherical GRIN (S-GRIN) polymer optical elements, where the construction method yields refractive index gradients that exceed 0.08. Here we report on the application of optical coherence tomography (OCT), including micron-class axial and lateral resolution advances, as effective, innovative methods for performing nondestructive diagnostic metrology on S-GRIN. We show that OCT can be used to visualize and quantify characteristics of the material throughout the manufacturing process. Specifically, internal film structure may be revealed and data are processed to extract sub-surface profiles of each internal film of the material to quantify 3D film thickness and homogeneity. The technique provides direct feedback into the fabrication process directed at optimizing the quality of the nanolayered S-GRIN polymer optical components.
Microstructure-related properties of magnesium fluoride films at 193nm by oblique-angle deposition.
Guo, Chun; Kong, Mingdong; Lin, Dawei; Liu, Cunding; Li, Bincheng
2013-01-14
Magnesium fluoride (MgF2) films deposited by resistive heating evaporation with oblique-angle deposition have been investigated in details. The optical and micro-structural properties of single-layer MgF2 films were characterized by UV-VIS and FTIR spectrophotometers, scanning electron microscope (SEM), atomic force microscope (AFM), and x-ray diffraction (XRD), respectively. The dependences of the optical and micro-structural parameters of the thin films on the deposition angle were analyzed. It was found that the MgF2 film in a columnar microstructure was negatively inhomogeneous of refractive index and polycrystalline. As the deposition angle increased, the optical loss, extinction coefficient, root-mean-square (rms) roughness, dislocation density and columnar angle of the MgF2 films increased, while the refractive index, packing density and grain size decreased. Furthermore, IR absorption of the MgF2 films depended on the columnar structured growth.
Gallego, Sergi; Márquez, Andrés; Méndez, David; Ortuño, Manuel; Neipp, Cristian; Fernández, Elena; Pascual, Inmaculada; Beléndez, Augusto
2008-05-10
One of the problems associated with photopolymers as optical recording media is the thickness variation during the recording process. Different values of shrinkages or swelling are reported in the literature for photopolymers. Furthermore, these variations depend on the spatial frequencies of the gratings stored in the materials. Thickness variations can be measured using different methods: studying the deviation from the Bragg's angle for nonslanted gratings, using MicroXAM S/N 8038 interferometer, or by the thermomechanical analysis experiments. In a previous paper, we began the characterization of the properties of a polyvinyl alcohol/acrylamide based photopolymer at the lowest end of recorded spatial frequencies. In this work, we continue analyzing the thickness variations of these materials using a reflection interferometer. With this technique we are able to obtain the variations of the layers refractive index and, therefore, a direct estimation of the polymer refractive index.
Metamaterials with gradient negative index of refraction.
Pinchuk, Anatoliy O; Schatz, George C
2007-10-01
We propose a new metamaterial with a gradient negative index of refraction, which can focus a collimated beam of light coming from a distant object. A slab of the negative refractive index metamaterial has a focal length that can be tuned by changing the gradient of the negative refractive index. A thin metal film pierced with holes of appropriate size or spacing between them can be used as a metamaterial with the gradient negative index of refraction. We use finite-difference time-domain calculations to show the focusing of a plane electromagnetic wave passing through a system of equidistantly spaced holes in a metal slab with decreasing diameters toward the edges of the slab.
Equivalent refractive-index structure constant of non-Kolmogorov turbulence.
Li, Yujie; Zhu, Wenyue; Wu, Xiaoqing; Rao, Ruizhong
2015-09-07
The relationship between the non-Kolmogorov refractive-index structure constant and the Kolmogorov refractive-index structure constant is derived by using the refractive-index structure function and the variance of refractive-index fluctuations. It shows that the non-Kolmogorov structure constant is proportional to the Kolmogorov structure constant and the scaling factor depends on the outer scale and the spectral power law. For a fixed Kolmogorov structure constant, the non-Kolmogorov structure constant increases with a increasing outer scale for the power law less than 11/3, the trend is opposite for the power law greater than 11/3. This equivalent relation provides a way of obtaining the non-Kolmogorov structure constant by using the Kolmogorov structure constant.
Zhang, Xingwang; Zhou, Guangya; Shi, Peng; Du, Han; Lin, Tong; Teng, Jinghua; Chau, Fook Siong
2016-03-15
Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.
Photo-Induced Self-Condensation, A Technique For Fabricating Organic Lightguide Structures
NASA Astrophysics Data System (ADS)
Franke, H.; Heuer, W.
1986-11-01
Planar lightguides have been fabricated from mixtures of the polymer PMMA with benzoin type photoinitiators. Using conventional UV-photolithography 2 dimensional refractive index patterns were recorded in the polymer films. Thickness and refractive index of the organic lightguides were determined by m-line spectroscopy. The achieved refractive index changes increased with increasing photoinitiator concentrations. For high concentrations (< 70 %) the film refractive index could be increased via UV exposure by Δn = 0.03. Thermal treatment at below 100°C caused the out diffusion of the unexposed photoinitiator and completion of the photochemically induced reaction in the exposed parts of the film. Thus refractive index patterns (Δn < 0.05) could be developed and fixed.
Formation of bulk refractive index structures
Potter, Jr., Barrett George; Potter, Kelly Simmons; Wheeler, David R.; Jamison, Gregory M.
2003-07-15
A method of making a stacked three-dimensional refractive index structure in photosensitive materials using photo-patterning where first determined is the wavelength at which a photosensitive material film exhibits a change in refractive index upon exposure to optical radiation, a portion of the surfaces of the photosensitive material film is optically irradiated, the film is marked to produce a registry mark. Multiple films are produced and aligned using the registry marks to form a stacked three-dimensional refractive index structure.
Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper
NASA Astrophysics Data System (ADS)
Karvinen, Petri; Oksman, Antti; Silvennoinen, Raimo; Mikkonen, Hannu
2007-05-01
Complex refractive index of strongly depolarizing starch acetate is investigated as a function of bulk package density, which is compulsory parameter in analysis of light scattering from nanoscale starch acetate pigments and fillers. The measurements were made using a laser-goniometer and spectrophotometer to gain data for refractive index analysis according to the Brewster's law and Fresnel equations. The real part of refractive index was verified by microscopic immersion method.
Improved retroreflection method for measuring the refractive index of liquids.
Shao, Duo; Tian, Linghao; Chen, Jingfei; Chen, Xianfeng
2010-06-01
We propose a new method for measuring the refractive index of liquids with high precision; the method is based on use of the optical fiber end face. As an example, we investigated the refractive index of sugar solution under varying conditions tens of times. The results show that this method has the advantage of higher stability and repeatability. The concentration and the temperature-dependent refractive index of the sugar solution is also experimentally studied.
Farahani, Shahrzad Shahrabi; Madanipour, Khosro; Koohian, Ata
2017-05-01
In this work, a nonscanning measurement technique is presented for determining the nonlinear refractive index and absorption coefficient of liquid media based on Moiré deflectometry. In the proposed method two lasers are used: a low power, wide beam as probe and a high power with specific wavelength as a pump. Interaction of the pump laser beam with the nonlinear sample changes the refractive index, which leads to change in convergence/divergence of the collimated incident probe laser beam. The induced deflection is monitored by Moiré deflectometry. If the pump laser has a Gaussian intensity profile, the refractive index profile of the sample is Gaussian, too. Measuring the deflection angle of the probe beam by Moiré fringes deflection, and by using the inverse Abel transform integral, the refractive index profile and nonlinear refractive index can be determined. This method is fast, easy, and insensitive to environmental noise and allows real-time measurement. Also, the refractive index profile of the interacted medium with pump laser can be achieved by this technique. As a liquid sample, a DCJ dye in water solution was studied. The value of nonlinear refractive index, n2, and absorption coefficient, α, were obtained -2.54×10-4 cm2 w-1 and 1.368 cm-1, respectively.
Pearson, Richard
2011-03-01
To assess the possibility of estimating the refractive index of rigid contact lenses on the basis of measurements of their back vertex power (BVP) in air and when immersed in liquid. First, a spreadsheet model was used to quantify the magnitude of errors arising from simulated inaccuracies in the variables required to calculate refractive index. Then, refractive index was calculated from in-air and in-liquid measurements of BVP of 21 lenses that had been made in three negative BVPs from materials with seven different nominal refractive index values. The power measurements were made by two operators on two occasions. Intraobserver reliability showed a mean difference of 0.0033±0.0061 (t = 0.544, P = 0.59), interobserver reliability showed a mean difference of 0.0043±0.0061 (t = 0.707, P = 0.48), and the mean difference between the nominal and calculated refractive index values was -0.0010±0.0111 (t = -0.093, P = 0.93). The spreadsheet prediction that low-powered lenses might be subject to greater errors in the calculated values of refractive index was substantiated by the experimental results. This method shows good intra and interobserver reliabilities and can be used easily in a clinical setting to provide an estimate of the refractive index of rigid contact lenses having a BVP of 3 D or more.
NASA Astrophysics Data System (ADS)
Zhang, Ya-nan; Xie, Wen-ge; Wang, Jianzhang; Wang, Pengzhao
2018-01-01
Refractive index sensing of liquid is important in the domain of chemistry and biology. Fiber optical sensors provide an excellent way to measure the refractive index due to their feasible integration to other fiber optics components, high sensitivity, small size, and distributed sensing. However, conventional optical sensors have different shortages. To find a practical way to measure the refractive index of liquid, this paper intended to combine Carbon Nanotube (CNT) with non-core fiber (NCF) to prepare a kind of modal interferometer sensor and to explore the effect of CNT coating on refractive index sensing properties of the modal interferometer. Firstly, a structure of single mode non-core single mode (SNS) fiber with a CNT film coating was proposed and simulated. The simulation results showed that the CNT coating could improve the refractive index sensitivity of the interferometer sensor. Then in the experiment part, the CNT solution was fabricated and deposited onto the NCF, and a refractive index sensing system was built to examine the property of the CNT-coated SNS interferometer sensor. During the experiment, the influence factors of sensitivity were summarized by testing the sensing performance under different conditions, and it was demonstrated that the CNT coating could improve the contrast of the interference spectrum, and also had the possibility to increase the refractive index sensitivity of the interferometer sensor.
Modified Kramers-Kronig relations and sum rules for meromorphic total refractive index
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peiponen, Kai-Erik; Saarinen, Jarkko J.; Vartiainen, Erik M.
2003-08-01
Modified Kramers-Kronig relations and corresponding sum rules are shown to hold for the total refractive index that can be presented as a sum of complex linear and nonlinear refractive indices, respectively. It is suggested that a self-action process, involving the degenerate third-order nonlinear susceptibility, can yield a negative total refractive index at some spectral range.
Pedrueza, E; Sancho-Parramon, J; Bosch, S; Valdés, J L; Martinez-Pastor, J P
2013-02-15
The anti-reflective effect of dielectric coatings used in silicon solar cells has traditionally been the subject of intensive studies and practical applications. In recent years the interest has permanently grown in plasmonic layers based on metal nanoparticles, which are shown to increase light trapping in the underlying silicon. In the present work we have combined these two concepts by means of in situ synthesis of Au nanoparticles in a dielectric matrix (TiO2), which is commonly used as an anti-reflective coating in silicon solar cells, and added the third element: a 10-20% porosity in the matrix. The porosity is formed by means of a controllable wet etching by low concentration HF. As a consequence, the experimentally measured reflectance of silicon coated by such a plasmonic layer decreases to practically zero in a broad wavelength region around the localized surface plasmon resonance. Furthermore, we demonstrate that extinction and reflectance spectra of silicon coated by the plasmonic films can be successfully accounted for by means of Fresnel formulae, in which a double refractive index of the metal-dielectric material is used. This double refractive index cannot be explained by effective medium theory (Maxwell-Garnett, for example) and appears when the contribution of Au nanoparticles located at the TiO2/Si interface is high enough to result in formation of interface surface plasmon modes.
NASA Astrophysics Data System (ADS)
Lin, Wensheng; Zheng, Jiaxian; Yan, Lianghong; Zhang, Xinxiang
2018-03-01
Self-cleaning SiO2-TiO2/SiO2-TiO2 double-layer antireflective (AR) coating is prepared by sol-gel process. SiO2 sol is prepared by using tetraethyl orthosilicate (TEOS) as precursor and ammonia as catalyst, while TiO2 sol was prepared by using tetrabutyl orthotitanate (TBOT) as precursor and hydrochloric acid as catalyst. The effect of TiO2 content on refractive index, abrasion-resistance and photo-catalytic activity of SiO2-TiO2 hybrid thin films or powders is systematically investigated. It is found that the refractive index of SiO2-TiO2 hybrid thin films increases gradually from 1.18 to 1.53 as the weight ratio of TiO2 to SiO2 increased from 0 to 1.0. The SiO2-TiO2 hybrid thin film and powder possesses good abrasion-resistance and photo-catalytic activity, respectively, as the weight ratio of TiO2 to SiO2 is 0.4. The degradation degree of Rhodamine B by SiO2-TiO2 hybrid powder is 88.3%. Finally, SiO2-TiO2/SiO2-TiO2 double-layer AR coating with high transmittance, abrasion-resistance and self-cleaning property is realized.
Thin-film limit formalism applied to surface defect absorption.
Holovský, Jakub; Ballif, Christophe
2014-12-15
The thin-film limit is derived by a nonconventional approach and equations for transmittance, reflectance and absorptance are presented in highly versatile and accurate form. In the thin-film limit the optical properties do not depend on the absorption coefficient, thickness and refractive index individually, but only on their product. We show that this formalism is applicable to the problem of ultrathin defective layer e.g. on a top of a layer of amorphous silicon. We develop a new method of direct evaluation of the surface defective layer and the bulk defects. Applying this method to amorphous silicon on glass, we show that the surface defective layer differs from bulk amorphous silicon in terms of light soaking.
Multi-layer coating of SiO2 nanoparticles to enhance light absorption by Si solar cells
NASA Astrophysics Data System (ADS)
Nam, Yoon-Ho; Um, Han-Don; Park, Kwang-Tae; Shin, Sun-Mi; Baek, Jong-Wook; Park, Min-Joon; Jung, Jin-Young; Zhou, Keya; Jee, Sang-Won; Guo, Zhongyi; Lee, Jung-Ho
2012-06-01
We found that multi-layer coating of a Si substrate with SiO2 dielectric nanoparticles (NPs) was an effective method to suppress light reflection by silicon solar cells. To suppress light reflection, two conditions are required for the coating: 1) The difference of refractive indexes between air and Si should be alleviated, and 2) the quarter-wavelength antireflection condition should be satisfied while avoiding intrinsic absorption loss. Light reflection was reduced due to destructive interference at certain wavelengths that depended on the layer thickness. For the same thickness dielectric layer, smaller NPs enhanced antireflectance more than larger NPs due to a decrease in scattering loss by the smaller NPs.
Measurements of IR and visual propagation in the marine boundary layer
NASA Astrophysics Data System (ADS)
Heen, Lars T.; Madsen, Eirik B.; Selnes, Oddvar
2004-11-01
Two field trials have been performed on the west coast of Norway to study propagation effects (in particular refraction and turbulence effects) close to the sea surface. A complete meteorological station and a temperature profile buoy were used to characterize the propagation environment, while sensor height was logged continuously. Land and ship mounted sources were studied using infrared (midwave IR and longwave IR FPAs) and visual cameras at about 4 m above mean sea level (MSL). The land-based sources were mounted about 2-13 m above MSL, while the ship mounted sources were 10 m above sea level. Both sub- and superrefractive conditions were studied during the trials. The sensors were mounted on a programmable motion controller, which allowed extraction of absolute apparent pitch angles of the imaged sources. Apparent horizon distances have been determined for the ship sources, while mirror plane positions and apparent elevation (pitch) angles have been determined for the land sources. In addition, normalized variance of intensity (scintillation index) has been calculated for a number of cases. The scintillation index can easily be converted to refractive index structure parameters (Cn2), one of the key parameters characterizing optical turbulence. Measurement results are compared to results from the IR Boundary Layer Effects Model (IRBLEM *). *) IRBLEM is proprietory to the Department for National Defence of Canada as represented by DRDC-Valcartier
Predicting of the refractive index of haemoglobin using the Hybrid GA-SVR approach.
Oyehan, Tajudeen A; Alade, Ibrahim O; Bagudu, Aliyu; Sulaiman, Kazeem O; Olatunji, Sunday O; Saleh, Tawfik A
2018-04-30
The optical properties of blood play crucial roles in medical diagnostics and treatment, and in the design of new medical devices. Haemoglobin is a vital constituent of the blood whose optical properties affect all of the optical properties of human blood. The refractive index of haemoglobin has been reported to strongly depend on its concentration which is a function of the physiology of biological cells. This makes the refractive index of haemoglobin an essential non-invasive bio-marker of diseases. Unfortunately, the complexity of blood tissue makes it challenging to experimentally measure the refractive index of haemoglobin. While a few studies have reported on the refractive index of haemoglobin, there is no solid consensus with the data obtained due to different measuring instruments and the conditions of the experiments. Moreover, obtaining the refractive index via an experimental approach is quite laborious. In this work, an accurate, fast and relatively convenient strategy to estimate the refractive index of haemoglobin is reported. Thus, the GA-SVR model is presented for the prediction of the refractive index of haemoglobin using wavelength, temperature, and the concentration of haemoglobin as descriptors. The model developed is characterised by an excellent accuracy and very low error estimates. The correlation coefficients obtained in these studies are 99.94% and 99.91% for the training and testing results, respectively. In addition, the result shows an almost perfect match with the experimental data and also demonstrates significant improvement over a recent mathematical model available in the literature. The GA-SVR model predictions also give insights into the influence of concentration, wavelength, and temperature on the RI measurement values. The model outcome can be used not only to accurately estimate the refractive index of haemoglobin but also could provide a reliable common ground to benchmark the experimental refractive index results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Comparable change in stromal refractive index of cat and human corneas following blue-IRIS.
Wozniak, Kaitlin T; Gearhart, Sara M; Savage, Daniel E; Ellis, Jonathan D; Knox, Wayne H; Huxlin, Krystel R
2017-05-01
Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ? 300 ?? ? m below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ? 1 ?? ? m wide, spaced 5 ?? ? m apart, using a scan speed of 5 ?? mm / s . Additional cat corneas were used to test writing at 3 and 7 ?? mm / s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.
Comparable change in stromal refractive index of cat and human corneas following blue-IRIS
NASA Astrophysics Data System (ADS)
Wozniak, Kaitlin T.; Gearhart, Sara M.; Savage, Daniel E.; Ellis, Jonathan D.; Knox, Wayne H.; Huxlin, Krystel R.
2017-05-01
Blue intratissue refractive index shaping (blue-IRIS) is a method with potential to correct ocular refraction noninvasively in humans. To date, blue-IRIS has only ever been applied to cat corneas and hydrogels. To test the comparability of refractive index change achievable in cat and human tissues, we used blue-IRIS to write identical phase gratings in ex vivo feline and human corneas. Femtosecond pulses (400 nm) were focused ˜300 μm below the epithelial surface of excised cat and human corneas and scanned to write phase gratings with lines ˜1 μm wide, spaced 5 μm apart, using a scan speed of 5 mm/s. Additional cat corneas were used to test writing at 3 and 7 mm/s in order to document speed dependence of the refractive index change magnitude. The first-order diffraction efficiency was immediately measured and used to calculate the refractive index change attained. Our data show that blue-IRIS induces comparable refractive index changes in feline and human corneas, an essential requirement for further developing its use as a clinical vision correction technique.
NASA Astrophysics Data System (ADS)
Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando
2018-05-01
A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehtikangas, O., E-mail: Ossi.Lehtikangas@uef.fi; Tarvainen, T.; Department of Computer Science, University College London, Gower Street, London WC1E 6BT
2015-02-01
The radiative transport equation can be used as a light transport model in a medium with scattering particles, such as biological tissues. In the radiative transport equation, the refractive index is assumed to be constant within the medium. However, in biomedical media, changes in the refractive index can occur between different tissue types. In this work, light propagation in a medium with piece-wise constant refractive index is considered. Light propagation in each sub-domain with a constant refractive index is modeled using the radiative transport equation and the equations are coupled using boundary conditions describing Fresnel reflection and refraction phenomena onmore » the interfaces between the sub-domains. The resulting coupled system of radiative transport equations is numerically solved using a finite element method. The approach is tested with simulations. The results show that this coupled system describes light propagation accurately through comparison with the Monte Carlo method. It is also shown that neglecting the internal changes of the refractive index can lead to erroneous boundary measurements of scattered light.« less
REFRACTOMETRY AS A TOOL IN DIABETIC STUDIES
Kavitha, S.; Murthy, V.R.
2006-01-01
The refractive index as well as molar refraction, is the true index of purity of substance and plays a vital role in solution chemistry. A small addition of a foreign substance either in solid state of liquid form is going to effect the refractive index. As such the variation of refractive indices in pure glucose solution as a function of concentration is studied in detail and this principle is extended to the study of the refractive indices of urine solution of diabetic patients. The refractive indices are measured by spectrometry and abbe refractometry. A detailed study of variation of refractive indices of urine samples containing different sugar concentrations, of patients of different age groups revealed that the increase in refractive index follows a linear scale and can be explained by the equation, n=no [l+0.00251og (a s)1/4] [l+0.031og0.011C]. These study provided an opportunity to project refractometry as an effective tool in diagnosing the diabetic level of a patient by making use of a simple calibration curve of increment in refractive index ‘Δn, as a function of level of the disease. PMID:22557211
Effect of TiCl4 treatment on the refractive index of nanoporous TiO2 films
NASA Astrophysics Data System (ADS)
Lee, Jeeyoung; Lee, Myeongkyu
2015-12-01
We investigate the effect of TiCl4 treatment on the refractive index of a nanoporous TiO2 film. A nanoparticulate TiO2 film prepared on a glass substrate was immersed in a TiCl4 aqueous solution. The subsequent reaction of TiCl4 with H2O produces TiO2 and thus modifies the density and the refractive index of the film. With increasing TiCl4 concentration, the refractive index initially increased and then declined after being maximized (n = 2.02 at 633 nm) at 0.08 M concentration. A refractive index change as large as 0.45 could be obtained with the TiCl4 treatment, making it possible to achieve diffraction efficiency exceeding 80% in a diffraction grating-embedded TiO2 film. For high TiCl4 concentrations of 0.32 M and 0.64 M, the refractive index remained nearly unchanged. This was attributed to the limited permeability of high-viscosity TiCl4 solutions into the nanoporous films. The measured pore size distributions were in good agreement with the results of a diffraction analysis and refractive index measurement.
Iodine insertion and dispersion of refractive index in organic single crystal semiconductor.
Kwon, Seonho; Bae, Junwan; Lee, I J
2018-02-20
Insertion of halogens such as bromine or iodine affects the electronic polarizability of ions and the local field inside the medium, and thus modifies the refractive index. Acquiring precise knowledge of the dispersion of refractive index and ultimately tailoring conventional semiconductors for wide-range refractive index control have been a vital issue to resolve before realizing advanced organic optoelectronic devices. In this report, dispersions of the refractive index of a single crystal tetramethyltetraselenafulvalene [C 10 H 12 Se 4 ] (TMTSF) are thoroughly studied from broadband interference modulations of photoluminescence (PL) spectra at various temperatures and doping levels. A large enhancement of the refractive index, more than 20% of the intrinsic value, is achieved with inclusion of a small composition of iodide ions, while the structural and optical properties remain mostly intact. Nearly temperature independent dispersion of the refractive index suggests that, unlike most polymers in which the thermal expansion coefficient dominates over the change of polarizability with temperature, the latter enhances significantly and may become more or less comparable to the thermal expansion coefficient given by 1.71 × 10 -4 /K, when single crystal TMTSF is doped by iodine.
[Modeling and Simulation of Spectral Polarimetric BRDF].
Ling, Jin-jiang; Li, Gang; Zhang, Ren-bin; Tang, Qian; Ye, Qiu
2016-01-01
Under the conditions of the polarized light, The reflective surface of the object is affected by many factors, refractive index, surface roughness, and so the angle of incidence. For the rough surface in the different wavelengths of light exhibit different reflection characteristics of polarization, a spectral polarimetric BRDF based on Kirchhof theory is proposee. The spectral model of complex refraction index is combined with refraction index and extinction coefficient spectral model which were got by using the known complex refraction index at different value. Then get the spectral model of surface roughness derived from the classical surface roughness measuring method combined with the Fresnel reflection function. Take the spectral model of refraction index and roughness into the BRDF model, then the spectral polarimetirc BRDF model is proposed. Compare the simulation results of the refractive index varies with wavelength, roughness is constant, the refraction index and roughness both vary with wavelength and origin model with other papers, it shows that, the spectral polarimetric BRDF model can show the polarization characteristics of the surface accurately, and can provide a reliable basis for the application of polarization remote sensing, and other aspects of the classification of substances.
NASA Technical Reports Server (NTRS)
Rottger, J.
1983-01-01
Mesospheric echoes are strongly influenced by the electron density profile of the ionospheric D region. These echoes therefore are only observed during daylight hours or high energy particle precipitation. The turbulence occurs in layers, which often confines the radar echoes to rather thin regions of several 100 m vertical extent, although layers as thick as several kilometers are also observed. Evaluable echoes are not observed through the entire altitude region of the mesosphere for the given power aperture product. The echoes indicate temporal variation.
Simple approach for high-contrast optical imaging and characterization of graphene-based sheets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, I.; Pelton, M.; Piner, R.
2007-12-01
A simple optical method is presented for identifying and measuring the effective optical properties of nanometer-thick, graphene-based materials, based on the use of substrates consisting of a thin dielectric layer on silicon. High contrast between the graphene-based materials and the substrate is obtained by choosing appropriate optical properties and thickness of the dielectric layer. The effective refractive index and optical absorption coefficient of graphene oxide, thermally reduced graphene oxide, and graphene are obtained by comparing the predicted and measured contrasts.
AlxGa1-xAs Single-Quantum-Well Surface-Emitting Lasers
NASA Technical Reports Server (NTRS)
Kim, Jae H.
1992-01-01
Surface-emitting solid-state laser contains edge-emitting Al0.08Ga0.92As single-quantum-well (SQW) active layer sandwiched between graded-index-of-refraction separate-confinement-heterostructure (GRINSCH) layers of AlxGa1-xAs, includes etched 90 degree mirrors and 45 degree facets to direct edge-emitted beam perpendicular to top surface. Laser resembles those described in "Pseudomorphic-InxGa1-xAs Surface-Emitting Lasers" (NPO-18243). Suitable for incorporation into optoelectronic integrated circuits for photonic computing; e.g., optoelectronic neural networks.
Interaction of ultrashort laser pulses with epsilon-near-zero materials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Boyd, Robert W.
2017-05-01
Abstract: The nonlinear optical response of a material is conventionally assumed to be very much smaller than its linear response. Here we report that the nonlinear contribution to the refractive index of a sample of indium-tin oxide can be much larger than the linear contribution when the optical wavelength is close to the material's bulk plasma wavelength, where the material exhibits epsilon-near-zero behavior. In particular, we demonstrate that a change in refractive index as large as 0.7 can be obtained in an ultra-thin indium-tin oxide film using an optical intensity of 140 GW/cm2. Nonlinear optical phenomena result from the light-induced modification of the optical properties of a material lead to a broad range of applications, including microscopy, all-optical data processing, and quantum information. However, nonlinear (NL) effects are typically extremely weak. The size of nonlinear effects is typically limited by the largest intensity that can be used without permanently damaging of the material. Consequently, the resulting change in refractive index is typically of the order of 0.001 or smaller. A long-standing goal of nonlinear optics (NLO) has been the development of materials that can display a light-induced change in the refractive index of the order of unity. Such materials would lead to exciting new applications of NLO. Indeed, much effort in the fields of plasmonics and metamaterials is devoted to the development of such materials. Furthermore, it has been suggested that materials with vanishing permittivity, commonly known as epsilon-nearzero (ENZ) materials, can be used to induce highly nonlinear phenomena and unusual phase-matching behavior. In this work, we describe our studies of indium-tin oxide (ITO) at its ENZ wavelength, and we demonstrate a refractive index change of 0.7. Materials possessing free charges, such as metals and doped semiconductors, exhibit a vanishing permittivity at the bulk plasmon wavelength. The zero-permittivity wavelength in doped semiconductors typically lies at infrared wavelengths and can be fine tuned by controlling the level of doping. Here we study the case of an ultra-thin layer of ITO exhibiting ENZ behavior at wavelengths around 1.24 µm. We show that in this spectral region the nonlinear response (intensity-dependent change in refractive index, Δn) is enhanced approximately 2000-fold with respect to that observed at shorter wavelengths and that a Δn of the order of unity can be observed.
NASA Astrophysics Data System (ADS)
Brooks, Daniel R.; Wozniak, Kaitlin T.; Knox, Wayne; Ellis, Jonathan D.; Huxlin, Krystel R.
2018-02-01
Intra-Tissue Refractive Index Shaping (IRIS) uses a 405 nm femtosecond laser focused into the stromal region of the cornea to induce a local refractive index change through multiphoton absorption. This refractive index change can be tailored through scanning of the focal region and variations in laser power to create refractive structures, such as gradient index lenses for visual refractive correction. Previously, IRIS was used to create 2.5 mm wide, square, -1 D cylindrical refractive structures in living cats. In the present work, we first wrote 400 μm wide bars of refractive index change at varying powers in enucleated cat globes using a custom flexure-based scanning system. The cornea and surrounding sclera were then removed and mounted into a wet cell. The induced optical phase change was measured with a Mach- Zehnder Interferometer (MZI), and appeared as fringe displacement, whose magnitude was proportional to the refractive index change. The interferograms produced by the MZI were analyzed with a Fourier Transform based algorithm in order to extract the phase change. This provided a phase change versus laser power calibration, which was then used to design the scanning and laser power distribution required to create -1.5 D cylindrical Fresnel lenses in cat cornea covering an area 6 mm in diameter. This prescription was inscribed into the corneas of one eye each of two living cats, under surgical anesthesia. It was then verified in vivo by contrasting wavefront aberration measurements collected pre- IRIS with those obtained over six months post-IRIS using a Shack-Hartmann wavefront sensor.
NASA Astrophysics Data System (ADS)
Bian, Qiang; Song, Zhangqi; Zhang, Xueliang; Yu, Yang; Chen, Yuzhong
2018-03-01
We proposed a refractive index sensor based on optical fiber end face using pulse reference-based compensation technique. With good compensation effect of this compensation technique, the power fluctuation of light source, the change of optic components transmission loss and coupler splitting ratio can be compensated, which largely reduces the background noise. The refractive index resolutions can achieve 3.8 × 10-6 RIU and1.6 × 10-6 RIU in different refractive index regions.
Optical Properties of Si, Ge, GaAs, GaSb, InAs, and InP at Elevated Temperatures
2010-03-01
transmitted, and an absorbed (or scattered) component. The reflectance can be defined in terms of the index of refraction of the media on either side...of the interface. If the index of refraction of the material is n and the material is surrounded by air (nair ≈ 1), then the reflectance for near...the absorption coefficient and t is the sample thickness. 9 Since R depends on the refractive index and the refractive index depends on the
Steelman, Zachary A; Eldridge, Will J; Wax, Adam
2018-06-01
Recently, Maxim A. Yurkin commented on our paper "Is the nuclear refractive index lower than cytoplasm? Validation of phase measurements and implications for light scattering technologies" as well as on a complementary study "Cell nuclei have lower refractive index and mass density than cytoplasm" from Schürmann et al. In his comment, Yurkin concluded that quantitative phase images of cells with nuclei that are less optically dense than the cytoplasm must exhibit a characteristic concavity, the absence of which is evidence against our conclusion of a less-dense nucleus. In this response, we suggest that Yurkin's conclusion is reached through an oversimplification of the spatial refractive index distribution within cells, which does not account for high index inclusions such as the nucleolus. We further cite recent studies in 3-dimensional refractive index imaging, in which the preponderance of studies supports our conclusion. Finally, we comment on the current state of knowledge regarding subcellular refractive index distributions in living cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of the hologram recording on the novel chloride photo-thermo-refractive glass
NASA Astrophysics Data System (ADS)
Ivanov, S. A.; Nikonorov, N. V.; Dubrovin, V. D.; Krykova, V. A.
2017-05-01
In this research, we present new holographic material based on fluoride photo-thermo-refractive glass(PTR) - chloride PTR glass. One of the benefit of this type of PTR glass is positive refractive index change. During this work, for the first-time volume Bragg gratings were recorded in this kind of material. The first experiments revealed that such gratings are mixed i.e. possess both absorption and phase components. Complex analysis shows that both refractive index and absorption coefficient are modulated inside the grating structure. We found out that at first there is no strict dependence of the refractive index change from dosage, but as we continue the process of thermal treatment - dependence is appear. Exposure influence on the refractive index change for this glass differs from fluoride one and shows some sort of saturation after the exposure of 4-6 J/cm2 . We distinguished refractive index change and absorption coefficient change and observed both behavior with increasing thermal treatment time. We found out that the increase of thermal treatment time results in the significant refractive index change. At the same time the absorption does `not practically change. It was found that maximum modulation of refractive index is comparable with fluoride PTR glass and achieves value of 1600 ppm. The modulation of absorption is equal to induced absorption caused by silver nanoparticles and depends from reading wavelength. Our study shows that almost all absorption is modulated inside the grating.
Refractive index inversion based on Mueller matrix method
NASA Astrophysics Data System (ADS)
Fan, Huaxi; Wu, Wenyuan; Huang, Yanhua; Li, Zhaozhao
2016-03-01
Based on Stokes vector and Jones vector, the correlation between Mueller matrix elements and refractive index was studied with the result simplified, and through Mueller matrix way, the expression of refractive index inversion was deduced. The Mueller matrix elements, under different incident angle, are simulated through the expression of specular reflection so as to analyze the influence of the angle of incidence and refractive index on it, which is verified through the measure of the Mueller matrix elements of polished metal surface. Research shows that, under the condition of specular reflection, the result of Mueller matrix inversion is consistent with the experiment and can be used as an index of refraction of inversion method, and it provides a new way for target detection and recognition technology.
Study of optical nonlinearities in Se-Te-Bi thin films
NASA Astrophysics Data System (ADS)
Sharma, Ambika; Yadav, Preeti; Kumari, Anshu
2014-04-01
The present work reports the nonlinear refractive index of Se85-xTe15Bix thin films calculated by Ticha and Tichy relation. The nonlinear refractive index of Chalcogenide amorphous semiconductor is well correlated with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system. The density of the system is calculated theoretical as well as experimentally by using Archimedes principle. The linear refractive index and WDD parameters are calculated using single transmission spectra in the spectral range of 400-1500 nm. It is observed that linear as well as nonlinear refractive index increases with Bi content. The results are analyzed on the basis of increasing polarizability due to larger radii of Bi.
Numerical simulations of negative-index refraction in wedge-shaped metamaterials.
Dong, Z G; Zhu, S N; Liu, H; Zhu, J; Cao, W
2005-07-01
A wedge-shaped structure made of split-ring resonators (SRR) and wires is numerically simulated to evaluate its refraction behavior. Four frequency bands, namely, the stop band, left-handed band, ultralow-index band, and positive-index band, are distinguished according to the refracted field distributions. Negative phase velocity inside the wedge is demonstrated in the left-handed band and the Snell's Law is conformed in terms of its refraction behaviors in different frequency bands. Our results confirmed that negative index of refraction indeed exists in such a composite metamaterial and also provided a convincing support to the results of previous Snell's Law experiments.
Determination of average refractive index of spin coated DCG films for HOE fabrication
NASA Technical Reports Server (NTRS)
Kim, T. J.; Campbell, Eugene W.; Kostuk, Raymond K.
1993-01-01
The refractive index of holographic emulsions is an important parameter needed for designing holographic optical elements (HOE's). Theoretical calculations of the accuracy required for the refractive index and thickness of emulsions needed to meet predetermined Bragg angle conditions are presented. A modified interferometric method is used to find average refractive index of the unexposed and the developed dichromated gelatin holographic films. Slanted transmission HOE's are designed considering the index and thickness variations, and used to verify the index measurement results. The Brewster angle method is used to measure surface index of the unexposed and the developed films. The differences between average index and surface index are discussed. Theoretical calculation of the effects of index variation on diffraction efficiency, and experimental results for index modulation variation caused by process changes are also presented.
Measurement of Refractive Index Using a Michelson Interferometer.
ERIC Educational Resources Information Center
Fendley, J. J.
1982-01-01
Describes a novel and simple method of measuring the refractive index of transparent plates using a Michelson interferometer. Since it is necessary to use a computer program when determining the refractive index, undergraduates could be given the opportunity of writing their own programs. (Author/JN)
String and Sticky Tape Experiments: Refractive Index of Liquids.
ERIC Educational Resources Information Center
Edge, R. D., Ed.
1979-01-01
Describes a simple method of measuring the refractive index of a liquid using a paper cup, a liquid, a pencil, and a ruler. Uses the ratio between the actual depth and the apparent depth of the cup to calculate the refractive index. (GA)
NASA Astrophysics Data System (ADS)
Arasa, Josep; Pizarro, Carles; Blanco, Patricia
2016-06-01
Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.
Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan
2017-04-10
The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.
Using a laser source to measure the refractive index of glass beads and Debye theory analysis.
Li, Shui-Yan; Qin, Shuang; Li, Da-Hai; Wang, Qiong-Hua
2015-11-20
Using a monochromatic laser beam to illuminate a homogeneous glass bead, some rainbows will appear around it. This paper concentrates on the study of the scattering intensity distribution and the method of measuring the refractive index for glass beads based on the Debye theory. It is found that the first rainbow due to the scattering superposition of backward light of the low-refractive-index glass beads can be explained approximately with the diffraction, the external reflection plus the one internal reflection, while the second rainbow of high-refractive-index glass beads is due to the contribution from the diffraction, the external reflection, the direct transmission, and the two internal reflections. The scattering intensity distribution is affected by the refractive index, the radius of the glass bead, and the incident beam width. The effects of the refractive index and the glass bead size on the first and second minimum deviation angle position are analyzed in this paper. The results of the measurements agree very well with the specifications.
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-01-01
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development. PMID:28796155
Meng, Qing-Qing; Zhao, Xin; Lin, Cheng-You; Chen, Shu-Jing; Ding, Ying-Chun; Chen, Zhao-Yang
2017-08-10
In this paper; the surface plasmon resonance (SPR) sensor with a porous silica film was studied. The effect of the thickness and porosity of the porous silica film on the performance of the sensor was analyzed. The results indicated that the figure of merit (FOM) of an SPR sensor can be enhanced by using a porous silica film with a low-refractive-index. Particularly; the FOM of an SPR sensor with 40 nm thick 90% porosity porous silica film; whose refractive index is 1.04 was improved by 311% when compared with that of a traditional SPR sensor. Furthermore; it was found that the decrease in the refractive index or the increase in the thickness of the low-refractive-index porous silica film can enlarge the FOM enhancement. It is believed that the proposed SPR sensor with a low-refractive-index porous silica film will be helpful for high-performance SPR sensors development.
Wang, Xinxin; Lu, Xingmei; Zhou, Qing; Zhao, Yongsheng; Li, Xiaoqian; Zhang, Suojiang
2017-08-02
Refractive index is one of the important physical properties, which is widely used in separation and purification. In this study, the refractive index data of ILs were collected to establish a comprehensive database, which included about 2138 pieces of data from 1996 to 2014. The Group Contribution-Artificial Neural Network (GC-ANN) model and Group Contribution (GC) method were employed to predict the refractive index of ILs at different temperatures from 283.15 K to 368.15 K. Average absolute relative deviations (AARD) of the GC-ANN model and the GC method were 0.179% and 0.628%, respectively. The results showed that a GC-ANN model provided an effective way to estimate the refractive index of ILs, whereas the GC method was simple and extensive. In summary, both of the models were accurate and efficient approaches for estimating refractive indices of ILs.
Yingying, Zhang; Jiancheng, Lai; Cheng, Yin; Zhenhua, Li
2009-03-01
The dependence of the surface plasmon resonance (SPR) phase difference curve on the complex refractive index of a sample in Kretschmann configuration is discussed comprehensively, based on which a new method is proposed to measure the complex refractive index of turbid liquid. A corresponding experiment setup was constructed to measure the SPR phase difference curve, and the complex refractive index of turbid liquid was determined. By using the setup, the complex refractive indices of Intralipid solutions with concentrations of 5%, 10%, 15%, and 20% are obtained to be 1.3377+0.0005 i, 1.3427+0.0028 i, 1.3476+0.0034 i, and 1.3496+0.0038 i, respectively. Furthermore, the error analysis indicates that the root-mean-square errors of both the real and the imaginary parts of the measured complex refractive index are less than 5x10(-5).
Method and apparatus for determining peak temperature along an optical fiber
Fox, R.J.
1982-07-29
The invention relates to a new method and new apparatus for determining the hottest temperature or the coldest temperature prevailing along the length of an optical-fiber light guide. The invention is conducted with an optical fiber capable of supporting multidiode propagation of light and comprising a core, a cladding, and a jacket. The core is selected to have (1) a higher refractive index than the core and the cladding and (2) a relatively high negative temperature coefficient of refractive index. A light beam capable of establishing substantially single-mode propagation in the core is launched into an end thereof at an angle to the axis. The angle is increased to effect the onset of light fraction from the core into the cladding. The value of the launch angle corresponding to the onset is determined and then used to establish the refractive index of the core corresponding to the onset angle. The maximum temperature prevailing along the fiber then is determined from the (1) refractive index so determined and (2) the temperature coefficient of refractive index for the core. The invention is based on the finding that the launch angle corresponding to the onset of refraction into the cladding is uniquely determined by the maximum value of the ratio of the core refractive index to the cladding refractive index, which maximum occurs at the hottest point along the fiber.
Alim, Marvin D; Glugla, David J; Mavila, Sudheendran; Wang, Chen; Nystrom, Philip D; Sullivan, Amy C; McLeod, Robert R; Bowman, Christopher N
2018-01-10
Holographic photopolymers capable of high refractive index modulation (Δn) on the order of 10 -2 are integral for the fabrication of functional holographic optical elements that are useful in a myriad of optical applications. In particular, to address the deficiency of suitable high refractive index writing monomers for use in two-stage holographic formulations, here we report a novel high refractive index writing monomer, 1,3-bis(phenylthio)-2-propyl acrylate (BPTPA), simultaneously possessing enhanced solubility in a low refractive index (n = 1.47) urethane matrix. When examined in comparison to a widely used high refractive index monomer, 2,4,6-tribromophenyl acrylate, BPTPA exhibited superior solubility in a stage 1 urethane matrix of approximately 50% with a 20% higher refractive index increase per unit amount of the writing monomer for stage 2 polymerizations. Formulations with 60 wt % loading of BPTPA exhibit a peak-to-mean holographic Δn ≈ 0.029 without obvious deficiencies in transparency, color, or scatter. To the best of our knowledge, this value is the highest reported in the peer-reviewed literature for a transmission hologram. The capabilities and versatility of BPTPA-based formulations are demonstrated at varying length scales via demonstrative refractive index gradient structure examples including direct laser write, projection mask lithography of a 1″ diameter Fresnel lens, and ∼100% diffraction efficiency volume transmission holograms with a 1 μm fringe spacing in 11 μm thick samples.
Thin layered drawing media probed by THz time-domain spectroscopy.
Tasseva, J; Taschin, A; Bartolini, P; Striova, J; Fontana, R; Torre, R
2016-12-19
Dry and wet drawing materials were investigated by THz time-domain spectroscopy in transmission mode. Carbon-based and iron-gall inks have been studied, some prepared following ancient recipes and others using current synthetic materials; a commercial ink was studied as well. We measured the THz signals on the thin films of liquid inks deposited on polyethylene pellicles, comparing the results with the thick pellets of dried inks blended with polyethylene powder. This study required the implementation of an accurate experimental method and data analysis procedure able to provide a reliable extraction of the material transmission parameters from a structured sample composed of thin layers, down to a thickness of a few tens of micrometers. THz measurements on thin ink layers enabled the determination of both the absorption and the refractive index in an absolute scale in the 0.1-3 THz range, as well as the layer thickness. THz spectroscopic features of a paper sheet dyed by using one of the iron-gall inks were also investigated. Our results showed that THz time-domain spectroscopy enables the discrimination of various inks on different supports, including the application on paper, together with the proper determination of the absorption coefficients and indices of refraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Hong; Lipschultz, Kristen A.; Anheier, Norman C.
2012-04-01
A state-of-the-art mid-infrared prism coupler was used to study the refractive index properties of forward-looking-infrared (FLIR) grade zinc sulfide samples prepared with unique planar grain orientations and locations with respect to the CVD growth axis. This study was motivated by prior photoluminescence and x-ray diffraction measurements that suggested refractive index may vary according to grain orientation. Measurements were conducted to provide optical dispersion and thermal index (dn/dT) data at discrete laser wavelengths between 0.633 and 10.591 {mu}m at two temperature set points (30 C and 90 C). Refractive index measurements between samples exhibited an average standard deviation comparable to themore » uncertainty of the prism coupler measurement (0.0004 refractive index units), suggesting that the variation in refractive index as a function of planar grain orientation and CVD deposition time is negligible, and should have no impact on subsequent optical designs. Measured dispersion data at mid-infrared wavelengths was found to agree well with prior published measurements.« less
Field, Ella Suzanne; Bellum, John Curtis; Kletecka, Damon E.
2016-09-21
Broad bandwidth coatings allow angle of incidence flexibility and accommodate spectral shifts due to aging and water absorption. Higher refractive index materials in optical coatings, such as TiO 2, Nb 2O 5, and Ta 2O 5, can be used to achieve broader bandwidths compared to coatings that contain HfO 2 high index layers. We have identified the deposition settings that lead to the highest index, lowest absorption layers of TiO 2, Nb 2O 5, and Ta 2O 5, via e-beam evaporation using ion-assisted deposition. We paired these high index materials with SiO 2 as the low index material to createmore » broad bandwidth high reflection coatings centered at 1054 nm for 45 deg angle of incidence and P polarization. Furthermore, high reflection bandwidths as large as 231 nm were realized. Laser damage tests of these coatings using the ISO 11254 and NIF-MEL protocols are presented, which revealed that the Ta 2O 5/SiO 2 coating exhibits the highest resistance to laser damage, at the expense of lower bandwidth compared to the TiO 2/SiO 2 and Nb 2O 5/SiO 2 coatings.« less
Wankhede, Dnyaneshwar Shamrao
2012-06-01
Refractive indices (n) have been experimentally determined for the binary liquid-liquid mixtures of Propylene carbonate (PC) (1) with benzene, ethylbenzene, o-xylene and p-xylene (2) at 298.15, 303.15 and 308.15 K over the entire mole fraction range. The experimental values of n are utilised to calculate deviation in refractive index (Δn), molar refraction (R) and deviation in molar refraction (ΔR). A comparative study of Arago-Biot (A-B), Newton (NW), Eyring and John (E-J) equations for determining refractive index of a liquid has been carried out to test their validity for all the binary mixtures over the entire composition range at 298.15 K. Comparison of various mixing relations is represented in terms of average deviation (AVD). The Δn and ΔR values have been fitted to Redlich-Kister equation at 298.15 K and standard deviations have been calculated. The results are discussed in terms of intermolecular interactions present amongst the components.
Kim, Ki-Joong; Lu, Ping; Culp, Jeffrey T; Ohodnicki, Paul R
2018-02-23
Integration of optical fiber with sensitive thin films offers great potential for the realization of novel chemical sensing platforms. In this study, we present a simple design strategy and high performance of nanoporous metal-organic framework (MOF) based optical gas sensors, which enables detection of a wide range of concentrations of small molecules based upon extremely small differences in refractive indices as a function of analyte adsorption within the MOF framework. Thin and compact MOF films can be uniformly formed and tightly bound on the surface of etched optical fiber through a simple solution method which is critical for manufacturability of MOF-based sensor devices. The resulting sensors show high sensitivity/selectivity to CO 2 gas relative to other small gases (H 2 , N 2 , O 2 , and CO) with rapid (
Márquez-Islas, Roberto; Sánchez-Pérez, Celia; García-Valenzuela, Augusto
2014-02-01
We describe a method for obtaining the refractive index (RI), size, and concentration of nonabsorbing nanoparticles in suspension from relatively simple optical measurements. The method requires measuring the complex effective RI of two dilute suspensions of the particles in liquids of different refractive indices. We describe the theoretical basis of the proposed method and provide experimental results validating the procedure.
Method of producing optical quality glass having a selected refractive index
Poco, John F.; Hrubesh, Lawrence W.
2000-01-01
Optical quality glass having a selected refractive index is produced by a two stage drying process. A gel is produced using sol-gel chemistry techniques and first dried by controlled evaporation until the gel volume reaches a pre-selected value. This pre-selected volume determines the density and refractive index of the finally dried gel. The gel is refilled with solvent in a saturated vapor environment, and then dried again by supercritical extraction of the solvent to form a glass. The glass has a refractive index less than the full density of glass, and the range of achievable refractive indices depends on the composition of the glass. Glasses having different refractive indices chosen from an uninterrupted range of values can be produced from a single precursor solution.
Andersen, Torben B
2016-05-01
In a recent paper, conditions for achieving equal and opposite angular deflections of a light beam by reflection and refraction at an interface between air and a dielectric were determined [J. Opt. Soc. Am. A32, 2436 (2015)JOAOD60740-323210.1364/JOSAA.32.002436]. The paper gives plots of angles of incidence and refraction as a function of the prism refractive index as well as plots of reflectances and incident linear-polarization azimuth angles as functions of the refractive index. We show here that it is possible to express these quantities as simple algebraic functions of the refractive index.
Note: Index of refraction measurement using the Fresnel equations.
McClymer, J P
2014-08-01
The real part of the refractive index is measured from 1.30 to above 3.00 without the use of index matching fluids. This approach expands upon the Brewster angle technique as both S and P polarized lights are used and the full Fresnel equations fitted to the data to extract the index of refraction using nonlinear curve fitting.
Systematic design of broadband path-coiling acoustic metamaterials
NASA Astrophysics Data System (ADS)
Jia, Zhetao; Li, Junfei; Shen, Chen; Xie, Yangbo; Cummer, Steven A.
2018-01-01
A design approach for acoustic metamaterial unit cells based on a coiled path with impedance matching layers (IMLs) is proposed in this paper. A theoretical approach is developed to calculate the transmission of the labyrinthine unit cells with different effective refractive indices. The IML is introduced to broaden the transmission bandwidth and produce a lower envelope boundary of transmission for unit cells of different effective refractive indices. According to the theory, cells of all effective refractive indices can be built to achieve unitary transmission at center working frequencies. The working frequency can be tuned by adjusting the length of the IML. Numerical simulations based on finite element analysis are used to validate the theoretical predictions. The high transmission and low dispersive index nature of our designs are further verified by experiments within a broad frequency band of over 1.4 kHz centered at 2.86 kHz. Our design approach can be useful in various wavefront engineering applications.
The influence of ozone and aerosols on the brightness and color of the twilight sky
NASA Technical Reports Server (NTRS)
Adams, C. N.; Plass, G. N.; Kattawar, G. W.
1974-01-01
The radiance and color of the twilight sky are calculated for single scattered radiation with the use of spherically symmetric models of the earth's atmosphere. Spherical geometry is used throughout the calculations with no plane-parallel approximations. Refraction effects are taken into account through fine subdivision of the atmosphere into spherical shells of fixed index of refraction. Snell's law of refraction is used to calculate a new direction of travel each time that a photon traverses the interface between layers. Five different models of the atmosphere were used: a pure molecular scattering atmosphere; molecular atmosphere plus ozone absorption; and three models with aerosol concentrations of one, three, and ten times normal together with molecular scattering and ozone absorption. The results of the calculations are shown for various observation positions and local viewing angles in the solar plane for wavelengths in the range from 0.40 to 0.75 micron.
The influence of ozone and aerosols on the brightness and color of the twilight zone
NASA Technical Reports Server (NTRS)
Adams, C. N.; Plass, G. N.; Kattawar, G. W.
1973-01-01
The radiance and color of the twilight sky are calculated for single scattered radiation with the use of spherically symmetric models of the earth's atmosphere. Spherical geometry is used throughout the calculations with no plane parallel approximations. Refraction effects are taken into account through fine subdivision of the atmosphere into spherical shells of fixed index of refraction. Shell's law of refraction is used to calculate a direction of travel each time that a photon traverses the interface between layers. Five different models of the atmosphere were used: a pure molecular scattering atmosphere; molecular atmosphere plus ozone absorption; and three models with aerosol concentrations of 1, 3, and 10 times normal together with molecular scattering and ozone absorption. The results of the calculations are shown for various observation positions and local viewing angles in the solar plane for wavelengths in the range of 0.40 microns to 0.75 microns.
Mueller matrix characterization of flexible plastic substrates
NASA Astrophysics Data System (ADS)
Hong, Nina; Synowicki, Ron A.; Hilfiker, James N.
2017-11-01
This work reports on Mueller matrix spectroscopic ellipsometry characterization of various flexible plastic substrates that are optically anisotropic with varying degrees of birefringence. The samples are divided into three groups according to the suggested characterization strategy: low birefringence, high birefringence, and twisted birefringence. The first group includes poly(methyl methacrylate) and cyclic olefin copolymer substrates. These are modeled with biaxial anisotropy for the real part of the refractive index while the imaginary part is approximated as isotropic due to small light absorption. The second group includes polyethylene terephthalate and polyethylene naphthalate substrates, which are modeled with biaxial anisotropy for both real and imaginary refractive indices. Lastly, a polyimide substrate is described as two birefringent layers with twisted in-plane orientation.
Optofluidic refractive-index sensor in step-index fiber with parallel hollow micro-channel.
Lee, H W; Schmidt, M A; Uebel, P; Tyagi, H; Joly, N Y; Scharrer, M; Russell, P St J
2011-04-25
We present a simple refractive index sensor based on a step-index fiber with a hollow micro-channel running parallel to its core. This channel becomes waveguiding when filled with a liquid of index greater than silica, causing sharp dips to appear in the transmission spectrum at wavelengths where the glass-core mode phase-matches to a mode of the liquid-core. The sensitivity of the dip-wavelengths to changes in liquid refractive index is quantified and the results used to study the dynamic flow characteristics of fluids in narrow channels. Potential applications of this fiber microstructure include measuring the optical properties of liquids, refractive index sensing, biophotonics and studies of fluid dynamics on the nanoscale.
Options for refractive index and viscosity matching to study variable density flows
NASA Astrophysics Data System (ADS)
Clément, Simon A.; Guillemain, Anaïs; McCleney, Amy B.; Bardet, Philippe M.
2018-02-01
Variable density flows are often studied by mixing two miscible aqueous solutions of different densities. To perform optical diagnostics in such environments, the refractive index of the fluids must be matched, which can be achieved by carefully choosing the two solutes and the concentration of the solutions. To separate the effects of buoyancy forces and viscosity variations, it is desirable to match the viscosity of the two solutions in addition to their refractive index. In this manuscript, several pairs of index matched fluids are compared in terms of viscosity matching, monetary cost, and practical use. Two fluid pairs are studied in detail, with two aqueous solutions (binary solutions of water and a salt or alcohol) mixed into a ternary solution. In each case: an aqueous solution of isopropanol mixed with an aqueous solution of sodium chloride (NaCl) and an aqueous solution of glycerol mixed with an aqueous solution of sodium sulfate (Na_2SO_4). The first fluid pair allows reaching high-density differences at low cost, but brings a large difference in dynamic viscosity. The second allows matching dynamic viscosity and refractive index simultaneously, at reasonable cost. For each of these four solutes, the density, kinematic viscosity, and refractive index are measured versus concentration and temperature, as well as wavelength for the refractive index. To investigate non-linear effects when two index-matched, binary solutions are mixed, the ternary solutions formed are also analyzed. Results show that density and refractive index follow a linear variation with concentration. However, the viscosity of the isopropanol and NaCl pair deviates from the linear law and has to be considered. Empirical correlations and their coefficients are given to create index-matched fluids at a chosen temperature and wavelength. Finally, the effectiveness of the refractive index matching is illustrated with particle image velocimetry measurements performed for a buoyant jet in a linearly stratified environment. The creation of the index-matched solutions and linear stratification in a large-scale experimental facility are detailed, as well as the practical challenges to obtain precise refractive index matching.
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
ERIC Educational Resources Information Center
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
Plasmas with an index of refraction greater than 1.
Nilsen, Joseph; Scofield, James H
2004-11-15
Over the past decade, x-ray lasers in the wavelength range 14-47 nm have been used for interferometry of plasmas. As in optical interferometry of plasmas, the experimental analysis assumed that the index of refraction is due only to free electrons. This makes the index of refraction less than 1. Recent experiments in A1 plasmas have shown fringe lines bending the wrong way as though the electron density were negative. We show how the bound electrons can dominate the index of refraction in many plasmas and make the index greater than 1 or enhance the index such that one would greatly overestimate the density of the plasma using interferometry.
Cheng, Fei; Yang, Xiaodong; Gao, Jie
2014-06-01
An infrared refractive index sensor based on plasmonic perfect absorbers for glucose concentration sensing is experimentally demonstrated. Utilizing substantial absorption contrast between a perfect absorber (∼98% at normal incidence) and a non-perfect absorber upon the refractive index change, a maximum value of figure of merit (FOM*) about 55 and a bulk wavelength sensitivity about 590 nm/RIU are achieved. The demonstrated sensing platform provides great potential in improving the performance of plasmonic refractive index sensors and developing future surface enhanced infrared spectroscopy.
Reflectivity of a disordered monolayer estimated by graded refractive index and scattering models.
Diamant, Ruth; Garcí-Valenzuela, Augusto; Fernández-Guasti, Manuel
2012-09-01
Reflectivity of a random monolayer, consisting of transparent spherical particles, is estimated using a graded refractive index model, an effective medium approach, and two scattering models. Two cases, a self-standing film and one with a substrate, are considered. Neither the surrounding medium nor the substrate are absorbing materials. Results at normal incidence, with different particle sizes, covering ratios and refractive indexes, are compared. The purpose of this work is to find under which circumstances, for reflectivity at normal incidence, a particle monolayer behaves as a graded refractive index film.
NASA Astrophysics Data System (ADS)
Zhang, Zhen; Li, Shuguang; Liu, Qiang; Feng, Xinxing; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun
2018-07-01
A groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance (SPR) is proposed and analyzed by the finite element method (FEM). Numerical results show that the average sensitivity is 15,933 nm/refractive index unit (RIU) with the refractive index of analyte ranging from 1.40 to 1.43 and the maximum sensitivity is 28,600 nm/RIU and the resolution of the sensor is 3.50 × 10-8 RIU. The groove micro-structure optical fiber refractive index sensor do some changes on the D-shaped fiber sensor, compared with conventional D-shaped fiber sensor, it has a higher sensitivity and it is easier to produce than the traditional SPR sensor.
Refractive index modulation in LiNbO3: MgO slab through Lamb wave
NASA Astrophysics Data System (ADS)
Prakash, Suraj; Sharma, Gaurav; Yadav, Gulab Chand; Singh, Vivek
2018-05-01
Present theoretical analysis deals with inducing refractive index contrast in Y-Z LiNbO3:MgO plate via GHz Lamb wave perturbation for photonic applications. Dispersion curves for Lamb wave in plate are plotted by employing displacement potential technique. Selecting wave parameters from dispersion curve, fundamental symmetric Lamb mode (S0) is excited in slab for 6GHz frequency. Produced displacement field by propagating S0 mode and thus developed strain is estimated to calculate refractive index modulation by applying photo-elastic relations. Modulated refractive index is of sinusoidal nature with period of modulation dependence on Lamb's wavelength. This plate having periodically modulated refractive index can be used as photonic crystal for different applications with acoustically tunable photonic band gap.
Methods for prediction of refractive index in glasses for the infrared
NASA Astrophysics Data System (ADS)
McCloy, John S.
2011-06-01
It is often useful to obtain custom glasses that meet particular requirements of refractive index and dispersion for highend optical design and applications. In the case of infrared glasses, limited experimental data are available due to difficulties in processing of these glasses and also measuring refractive indices accurately. This paper proposes methods to estimate refractive index and dispersion as a function of composition for selected infrared-transmitting glasses. Methods for refractive index determination are reviewed and evaluated, including Gladstone-Dale, Wemple- DiDomenico single oscillator, Optical basicity, and Lorentz-Lorenz total polarizability. Various estimates for a set of PbO-Bi2O3-Ga2O3 (heavy metal oxide) and As-S (chalcogenide) glasses will be compared with measured values of index and dispersion.
Simultaneous measurements of absorption spectrum and refractive index in a microfluidic system.
Helseth, Lars Egil
2012-02-13
The characterization of dyes in various solvents requires determination of the absorption spectrum of the dye as well as the refractive index of the solvent. Typically, the refractive index of the solvent and the absorption spectrum of the solute are measured using separate experimental setups where significant liquid volumes are required. In this work the first optical measurement system that is able to do simultaneous measurements of the refractive index of the solvent and the spectral properties of the solute in a microscopic volume is presented. The laser dye Rhodamine 6G in glycerol is investigated, and the refractive index of the solution is monitored using the interference pattern of the light scattered off the channel, while its spectral properties is found by monitoring reflected light from the channel.
Yeung, E.S.; Woodruff, S.D.
1984-06-19
A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.
Yeung, Edward S.; Woodruff, Steven D.
1984-06-19
A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.
Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu
2015-01-01
In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.
Smietana, Mateusz; Bock, Wojtek J; Mikulic, Predrag; Chen, Jiahua
2010-01-01
The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD>1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n>2.2 at λ=1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters.
Structured Antireflective Coating for Silicon at Submillimeter Frequencies
NASA Astrophysics Data System (ADS)
Padilla, Estefania
2018-01-01
Observations at millimeter and submillimeter wavelengths are useful for many astronomical studies, such as the polarization of the cosmic microwave background or the formation and evolution of galaxy clusters. In order to allow observations over a broad spectral bandwidth (approximatively from 70 to 420 GHz), innovative broadband anti-reflective (AR) optics must be utilized in submillimeter telescopes. Due to its low loss and high refractive index, silicon is a fine optical material at these frequencies, but an AR coating with multiple layers is required to maximize its transmission over a wide bandwidth. Structured multilayer AR coatings for silicon are currently being developed at Caltech and JPL. The development process includes the design of the structured layers with commercial electromagnetic simulation software, the fabrication by using deep reactive ion etching, and the test of the transmission and reflection of the patterned wafers. Geometrical 3D patterns have successfully been etched at the surface of the silicon wafers creating up to 2 layers with different effective refractive indices. The transmission and reflection of single AR layer wafers, measured between 75 and 330 GHz, are close to the simulation predictions. These results allow the development of new designs with 5 or 6 AR layers in order to improve the bandwidth and transmission of the silicon AR coatings.
Jonášová, Eleonóra Parelius; Bjørkøy, Astrid; Stokke, Bjørn Torger
2016-12-01
Optical aberrations due to refractive index mismatches occur in various types of microscopy due to refractive differences between the sample and the immersion fluid or within the sample. We study the effects of lateral refractive index differences by fluorescence confocal laser scanning microscopy due to glass or polydimethylsiloxane cuboids and glass cylinders immersed in aqueous fluorescent solution, thereby mimicking realistic imaging situations in the proximity of these materials. The reduction in fluorescence intensity near the embedded objects was found to depend on the geometry and the refractive index difference between the object and the surrounding solution. The observed fluorescence intensity gradients do not reflect the fluorophore concentration in the solution. It is suggested to apply a Gaussian fit or smoothing to the observed fluorescence intensity gradient and use this as a basis to recover the fluorophore concentration in the proximity of the refractive index step change. The method requires that the reference and sample objects have the same geometry and refractive index. The best results were obtained when the sample objects were also used for reference since small differences such as uneven surfaces will result in a different extent of aberration.
A pitfall in shallow shear-wave refraction surveying
Xia, J.; Miller, R.D.; Park, C.B.; Wightman, E.; Nigbor, R.
2002-01-01
The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. However, complex near-surface geology may not fit into the assumption of a series of horizontal layers. That a plane SH-wave undergoes wave-type conversion along an interface in an area of nonhorizontal layers is theoretically inevitable. One real example shows that the shallow shear-wave refraction method provides velocities of a converted wave rather than an SH- wave. Moreover, it is impossible to identify the converted wave by refraction data itself. As most geophysical engineering firms have limited resources, an additional P-wave refraction survey is necessary to verify if velocities calculated from a shear-wave refraction survey are velocities of converted waves. The alternative at this time may be the surface wave method, which can provide reliable S-wave velocities, even in an area of velocity inversion (a higher velocity layer underlain by a lower velocity layer). ?? 2002 Elsevier Science B.V. All rights reserved.
Chen, Wei-Ting; Li, Shao-Sian; Chu, Jinn P; Feng, Kuei Chih; Chen, Jem-Kun
2018-04-15
In this study, a photoresist template with well-defined contact hole array was fabricated, to which radio frequency magnetron sputtering process was then applied to deposit an alloyed Zr 55 Cu 30 Al 10 Ni 5 target, and finally resulted in ordered metallic glass nanotube (MGNT) arrays after removal of the photoresist template. The thickness of the MGNT walls increased from 98 to 126nm upon increasing the deposition time from 225 to 675s. The wall thickness of the MGNT arrays also increased while the dimensions of MGNT reduced under the same deposition condition. The MGNT could be filled with biomacromolecules to change the effective refractive index. The air fraction of the medium layer were evaluated through static water contact angle measurements and, thereby, the effective refractive indices the transverse magnetic (TM) and transverse electric (TE) polarized modes were calculated. A standard biotin-streptavidin affinity model was tested using the MGNT arrays and the fundamental response of the system was investigated. Results show that filling the MGNT with streptavidin altered the effective refractive index of the layer, the angle of reflectance and color changes identified by an L*a*b* color space and color circle on an a*b* chromaticity diagram. The limit of detection (LOD) of the MGNT arrays for detection of streptavidin was estimated as 25nM, with a detection time of 10min. Thus, the MGNT arrays may be used as a versatile platform for high-sensitive label-free optical biosensing. Copyright © 2017 Elsevier B.V. All rights reserved.
Liquid refractive index sensing independent of opacity using an optofluidic diffraction sensor.
Xu, Zhida; Han, Kevin; Khan, Ibrahim; Wang, Xinhao; Liu, G Logan
2014-10-15
We have implemented a multifunctional optofluidic sensor that can monitor changes in the refractive index and pressure of biofluid simultaneously and can detect free-solution molecular interaction in situ. In this Letter, we demonstrate two major improvements of this sensor proven by both simulation and experiments. One improvement is the broader measurement range of refractive index by making the diffraction grating with high-index polymer. The other improvement is the separation of refractive index sensing from opacity sensing by using the relative power ratio of diffraction orders. This simple, compact and low-cost multifunctional optofluidic sensor has the potential to be used for in situ biofluid monitoring.
Adaptive Optoelectronic Eyes: Hybrid Sensor/Processor Architectures
2006-11-13
corresponding calculated data. The width of the mirror stopband is proportional to the refractive index difference between the high and low index materials ...Silicon VLSI Neuron Unit Arrays 56 Development of a Single-Sided Flip-Chip Bonding Process 65 Development of High Refractive Index Diffractive Optical ...Elements (DOEs) 68 Development of High-Performance Antireflection Coatings for High Refractive Index DOEs 69 Design and Fabrication of Low Threshold
Bahrami, Mehdi; Hoshino, Masato; Pierscionek, Barbara; Yagi, Naoto; Regini, Justyn; Uesugi, Kentaro
2015-11-01
A major structure/function relationship in the eye lens is that between the constituent proteins, the crystallins and the optical property of refractive index. Structural breakdown that leads to cataract has been investigated in a number of studies; the concomitant changes in the optics, namely increases in light attenuation have also been well documented. Specific changes in the refractive index gradient that cause such attenuation, however, are not well studied because previous methods of measuring refractive index require transparent samples. The X-ray Talbot interferometric method using synchrotron radiation allows for measurement of fine changes in refractive index through lenses with opacities. The findings of this study on older human lenses show disruptions to the refractive index gradient and in the refractive index contours. These disruptions are linked to location in the lens and occur in polar regions, along or close to the equatorial plane or in lamellar-like formations. The disruptions that are seen in the polar regions manifest branching formations that alter with progression through the lens with some similarity to lens sutures. This study shows how the refractive index gradient, which is needed to maintain image quality of the eye, may be disturbed and that this can occur in a number of distinct ways. These findings offer insight into functional changes to a major optical parameter in older lenses. Further studies are needed to elicit how these may be related to structural degenerations reported in the literature. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hattori, Koichi, E-mail: khattori@yonsei.ac.kr; Itakura, Kazunori, E-mail: kazunori.itakura@kek.jp; Department of Particle and Nuclear Studies, Graduate University for Advanced Studies
2013-07-15
We compute the refractive indices of a photon propagating in strong magnetic fields on the basis of the analytic representation of the vacuum polarization tensor obtained in our previous paper. When the external magnetic field is strong enough for the fermion one-loop diagram of the polarization tensor to be approximated by the lowest Landau level, the propagating mode in parallel to the magnetic field is subject to modification: The refractive index deviates from unity and can be very large, and when the photon energy is large enough, the refractive index acquires an imaginary part indicating decay of a photon intomore » a fermion–antifermion pair. We study dependences of the refractive index on the propagating angle and the magnetic-field strength. It is also emphasized that a self-consistent treatment of the equation which defines the refractive index is indispensable for accurate description of the refractive index. This self-consistent treatment physically corresponds to consistently including the effects of back reactions of the distorted Dirac sea in response to the incident photon. -- Highlights: •Vacuum birefringence and photon decay are described by the complex refractive index. •Resummed photon vacuum polarization tensor in the lowest Landau level is used. •Back reactions from the distorted Dirac sea are self-consistently taken into account. •Self-consistent treatment drastically changes structure in photon energy dependence. •Dependences on photon propagation angle and magnetic-field strength are presented.« less
Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters.
Manjappa, Rakesh; Makki S, Sharath; Kumar, Rajesh; Kanhirodan, Rajan
2015-02-01
Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.
Effects of refractive index mismatch in optical CT imaging of polymer gel dosimeters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manjappa, Rakesh; Makki S, Sharath; Kanhirodan, Rajan, E-mail: rajan@physics.iisc.ernet.in
2015-02-15
Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at themore » inhomogeneities. Jacob’s ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results.« less
Femtosecond laser-induced refractive index modification in multicomponent glasses
NASA Astrophysics Data System (ADS)
Bhardwaj, V. R.; Simova, E.; Corkum, P. B.; Rayner, D. M.; Hnatovsky, C.; Taylor, R. S.; Schreder, B.; Kluge, M.; Zimmer, J.
2005-04-01
We present a comprehensive study on femtosecond laser-induced refractive index modification in a wide variety of multicomponent glasses grouped as borosilicate, aluminum-silicate, and heavy-metal oxide glasses along with lanthanum-borate and sodium-phosphate glasses. By using high-spatial resolution refractive index profiling techniques, we demonstrate that under a wide range of writing conditions the refractive index modification in multicomponent glasses can be positive, negative, or nonuniform, and exhibits a strong dependence on the glass composition. With the exception of some aluminum-silicate glasses all other glasses exhibited a negative/nonuniform index change. We also demonstrate direct writing of waveguides in photosensitive Foturan® glass with a femtosecond laser without initiating crystallization by thermal treatment. Upon ceramization of lithium-aluminum-silicate glasses such as Foturan®, Zerodur®, and Robax® we observe switching of laser-induced refractive index change from being positive to negative. The measured transmission losses in the waveguides at 1550nm agree with the index profile measurements in alkali-free aluminum-silicate glasses.
Homodyne chiral polarimetry for measuring thermo-optic refractive index variations.
Twu, Ruey-Ching; Wang, Jhao-Sheng
2015-10-10
Novel reflection-type homodyne chiral polarimetry is proposed for measuring the refractive index variations of a transparent plate under thermal impact. The experimental results show it is a simple and useful method for providing accurate measurements of refractive index variations. The measurement can reach a resolution of 7×10-5.
Refractive index of colloidal dispersions of spheroidal particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meeten, G.H.
1980-09-01
The effect of particle shape on the refractive index of a colloidal dispersion of spheroidal particles is investigated theoretically, using the Rayleigh, Rayleigh- Gans-Debye, and the anomalous diffraction light-scattering approximations. It is shown that departure from particle sphericity modify the dispersion refractive index, both size and shape being of importance.
Photorefractive Nonlinear Optics
1991-01-15
conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...conjugate interferometer for the measurement of thin film thickness, refractive index and absorption coefficients. Also, we have investigated...interaction by considering the refractive index grating as a linear superposition of the gratings from each of the frequency components of the
Femtosecond Z-scan measurements of the nonlinear refractive index of fused silica
NASA Astrophysics Data System (ADS)
Zhang, Lin; Shi, Zhendong; Ma, Hua; Ren, Huan; Yuan, Quan; Ma, Yurong; Feng, Xiaoxuan; Chen, Bo; Yang, Yi
2018-01-01
Z-scan technology is a popular experimental technique for determining the nonlinear refractive index of the material. However, it encounters a great difficulty in measuring the weak nonlinear material like fused silica which is about two orders of magnitude below the nonlinear refractive index of most of the materials studied with the nanosecond and picosecond Z-scan methods. In this case, the change of refractive index introduced by accumulation of thermal effects cannot be neglected. In order to have a reliable measurement of the nonlinear refractive index, a metrology bench based on the femtosecond Z-scan technology is developed. The intensity modulation component and the differential measurement system are applied to guarantee the accuracy of the measuring system. Based on the femtosecond Z-scan theory, the femtosecond laser Z-scan technique is performed on fused silica, and the nonlinear refractive index of Fused silica is determined to be 9.2039×10-14esu for 800nm, 37fs pulse duration at I0=50GW/cm2 with a good repeatability of 6.7%.
Small and large particle limits of single scattering albedo for homogeneous, spherical particles
NASA Astrophysics Data System (ADS)
Moosmüller, H.; Sorensen, C. M.
2018-01-01
The aerosol single scattering albedo (SSA) is the dominant intensive particle parameter determining aerosols direct radiative forcing. For homogeneous spherical particles and a complex refractive index independent of wavelength, the SSA is solely dependent on size parameter (ratio of particle circumference and wavelength) and complex refractive index of the particle. Here, we explore this dependency for the small and large particle limits with size parameters much smaller and much larger than one. We show that in the small particle limit of Rayleigh scattering, a novel, generalized size parameter can be introduced that unifies the SSA dependence on particle size parameter independent of complex refractive index. In the large particle limit, SSA decreases with increasing product of imaginary part of the refractive index and size parameter, another generalized parameter, until this product becomes about one, then stays fairly constant until the imaginary part of the refractive index becomes comparable with the real part minus one. Beyond this point, particles start to acquire metallic character and SSA quickly increases with the imaginary part of the refractive index and approaches one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Dauksher, Bill; Bowden, Stuart
We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less
Oh, Jaewon; Dauksher, Bill; Bowden, Stuart; ...
2017-01-11
We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiN x refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-smore » was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 x 10 21 cm -3), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). In conclusion, the emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.« less
Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex.
Liang, Yansheng; Lei, Ming; Yan, Shaohui; Li, Manman; Cai, Yanan; Wang, Zhaojun; Yu, Xianghua; Yao, Baoli
2018-01-01
Low-refractive-index microparticles, such as hollow microspheres, have shown great significance in some applications, such as biomedical sensing and targeted drug delivery. However, optical trapping and manipulation of low-refractive-index microparticles are challenging, owing to the repelling force exerted by typical optical traps. In this paper, we demonstrated optical trapping and rotating of large-sized low-refractive-index microparticles by using quasi-perfect optical vortex (quasi-POV) beams, which were generated by Fourier transform of high-order quasi-Bessel beams. Numerical simulation was carried out to characterize the focusing property of the quasi-POV beams. The dynamics of low-refractive-index microparticles in the quasi-POV with various topological charges was investigated in detail. To improve the trapping and rotating performances of the vortex, a point trap was introduced at the center of the ring. Experimental results showed that the quasi-POV was preferable for manipulation of large-sized low-refractive-index microparticles, with its control of the particles' rotating velocity dependent only on the topological charge due to the unchanged orbital radius.
Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu
2017-05-31
Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.
Laskar, Junaid M; Shravan Kumar, P; Herminghaus, Stephan; Daniels, Karen E; Schröter, Matthias
2016-04-20
Optically transparent immersion liquids with refractive index (n∼1.77) to match the sapphire-based aplanatic numerical aperture increasing lens (aNAIL) are necessary for achieving deep 3D imaging with high spatial resolution. We report that antimony tribromide (SbBr3) salt dissolved in liquid diiodomethane (CH2I2) provides a new high refractive index immersion liquid for optics applications. The refractive index is tunable from n=1.74 (pure) to n=1.873 (saturated), by adjusting either salt concentration or temperature; this allows it to match (or even exceed) the refractive index of sapphire. Importantly, the solution gives excellent light transmittance in the ultraviolet to near-infrared range, an improvement over commercially available immersion liquids. This refractive-index-matched immersion liquid formulation has enabled us to develop a sapphire-based aNAIL objective that has both high numerical aperture (NA=1.17) and long working distance (WD=12 mm). This opens up new possibilities for deep 3D imaging with high spatial resolution.
Wave refraction in negative-index media: always positive and very inhomogeneous.
Valanju, P M; Walser, R M; Valanju, A P
2002-05-06
We present the first treatment of the refraction of physical electromagnetic waves in newly developed negative index media (NIM), also known as left-handed media (LHM). The NIM dispersion relation implies that group fronts refract positively even when phase fronts refract negatively. This difference results in rapidly dispersing, very inhomogeneous waves. In fact, causality and finite signal speed always prevent negative wave signal (not phase) refraction. Earlier interpretations of phase refraction as "negative light refraction" and "light focusing by plane slabs" are therefore incorrect, and published NIM experiments can be explained without invoking negative signal refraction.