NASA Technical Reports Server (NTRS)
Mack, L. M.
1967-01-01
The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.
Some theoretical aspects of boundary layer stability theory
NASA Technical Reports Server (NTRS)
Hall, Philip
1990-01-01
Increased understanding in recent years of boundary layer transition has been made possible by the development of strongly nonlinear stability theories. After some twenty or so years when nonlinear stability theory was restricted to the application of the Stuart-Watson method (or less formal amplitude expansion procedures), there now exist strongly nonlinear theories which can describe processes which have an 0(1) effect on the basic state. These strongly nonlinear theories and their possible role in pushing theoretical understanding of transition ever further into the nonlinear regime are discussed.
Stability of an oscillating boundary layer
NASA Technical Reports Server (NTRS)
Levchenko, V. Y.; Solovyev, A. S.
1985-01-01
Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.
Simulation of Nonlinear Instabilities in an Attachment-Line Boundary Layer
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1996-01-01
The linear and the nonlinear stability of disturbances that propagate along the attachment line of a three-dimensional boundary layer is considered. The spatially evolving disturbances in the boundary layer are computed by direct numerical simulation (DNS) of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced either by forcing at the in ow or by applying suction and blowing at the wall. Quasi-parallel linear stability theory and a nonparallel theory yield notably different stability characteristics for disturbances near the critical Reynolds number; the DNS results con rm the latter theory. Previously, a weakly nonlinear theory and computations revealed a high wave-number region of subcritical disturbance growth. More recent computations have failed to achieve this subcritical growth. The present computational results indicate the presence of subcritically growing disturbances; the results support the weakly nonlinear theory. Furthermore, an explanation is provided for the previous theoretical and computational discrepancy. In addition, the present results demonstrate that steady suction can be used to stabilize disturbances that otherwise grow subcritically along the attachment line.
NASA Technical Reports Server (NTRS)
Berry, S. A.
1986-01-01
An incompressible boundary-layer stability analysis of Laminar Flow Control (LFC) experimental data was completed and the results are presented. This analysis was undertaken for three reasons: to study laminar boundary-layer stability on a modern swept LFC airfoil; to calculate incompressible design limits of linear stability theory as applied to a modern airfoil at high subsonic speeds; and to verify the use of linear stability theory as a design tool. The experimental data were taken from the slotted LFC experiment recently completed in the NASA Langley 8-Foot Transonic Pressure Tunnel. Linear stability theory was applied and the results were compared with transition data to arrive at correlated n-factors. Results of the analysis showed that for the configuration and cases studied, Tollmien-Schlichting (TS) amplification was the dominating disturbance influencing transition. For these cases, incompressible linear stability theory correlated with an n-factor for TS waves of approximately 10 at transition. The n-factor method correlated rather consistently to this value despite a number of non-ideal conditions which indicates the method is useful as a design tool for advanced laminar flow airfoils.
Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Masad, Jamal A.
1996-01-01
The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.
The roll-up and merging of coherent structures in shallow mixing layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, M. Y., E-mail: celmy@connect.ust.hk; Ghidaoui, M. S.; Kolyshkin, A. A.
2016-09-15
The current study seeks a fundamental explanation to the development of two-dimensional coherent structures (2DCSs) in shallow mixing layers. A nonlinear numerical model based on the depth-averaged shallow water equations is used to investigate the temporal evolution of shallow mixing layers, where the mapping from temporal to spatial results is made using the velocity at the center of the mixing layers. The flow is periodic in the streamwise direction. Transmissive boundary conditions are used in the cross-stream boundaries to prevent reflections. Numerical results are compared to linear stability analysis, mean-field theory, and secondary stability analysis. Results suggest that the onsetmore » and development of 2DCS in shallow mixing layers are the result of a sequence of instabilities governed by linear theory, mean-field theory, and secondary stability theory. The linear instability of the shearing velocity gradient gives the onset of 2DCS. When the perturbations reach a certain amplitude, the flow field of the perturbations changes from a wavy shape to a vortical (2DCS) structure because of nonlinearity. The development of the vertical 2DCS does not appear to follow weakly nonlinear theory; instead, it follows mean-field theory. After the formation of 2DCS, separate 2DCSs merge to form larger 2DCS. In this way, 2DCSs grow and shallow mixing layers develop and grow in scale. The merging of 2DCS in shallow mixing layers is shown to be caused by the secondary instability of the 2DCS. Eventually 2DCSs are dissipated by bed friction. The sequence of instabilities can cause the upscaling of the turbulent kinetic energy in shallow mixing layers.« less
On the effect of boundary layer growth on the stability of compressible flows
NASA Technical Reports Server (NTRS)
El-Hady, N. M.
1981-01-01
The method of multiple scales is used to describe a formally correct method based on the nonparallel linear stability theory, that examines the two and three dimensional stability of compressible boundary layer flows. The method is applied to the supersonic flat plate layer at Mach number 4.5. The theoretical growth rates are in good agreement with experimental results. The method is also applied to the infinite-span swept wing transonic boundary layer with suction to evaluate the effect of the nonparallel flow on the development of crossflow disturbances.
A numerical method for the prediction of high-speed boundary-layer transition using linear theory
NASA Technical Reports Server (NTRS)
Mack, L. M.
1975-01-01
A method is described of estimating the location of transition in an arbitrary laminar boundary layer on the basis of linear stability theory. After an examination of experimental evidence for the relation between linear stability theory and transition, a discussion is given of the three essential elements of a transition calculation: (1) the interaction of the external disturbances with the boundary layer; (2) the growth of the disturbances in the boundary layer; and (3) a transition criterion. The computer program which carried out these three calculations is described. The program is first tested by calculating the effect of free-stream turbulence on the transition of the Blasius boundary layer, and is then applied to the problem of transition in a supersonic wind tunnel. The effects of unit Reynolds number and Mach number on the transition of an insulated flat-plate boundary layer are calculated on the basis of experimental data on the intensity and spectrum of free-stream disturbances. Reasonable agreement with experiment is obtained in the Mach number range from 2 to 4.5.
1961-10-01
Observations . . . . . . . .................. 3 Double Layer Theory ................. .... 4 The Electroosmotic Phenomenon in Soils . . . . ... 6 Helmholtz...lL PART III: EFFECTS OF ELECTROOSMOSIS . ............. .. 133 Electroosmotic Dewatering ........ ................ ... 13 Electroosmotic ... electroosmotic flow based on the theories of Helmholtz-Smoluchowski and Schmid are compared. It is apparent that the applicability of the theoretical concepts
Collisionless kinetic theory of oblique tearing instabilities
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-15
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. In this paper, we find that this stabilization is associated with the density-gradient-driven diamagnetic drift. Themore » analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. Finally, a simple analytic estimate for the stability criterion is provided.« less
Collisionless kinetic theory of oblique tearing instabilities
NASA Astrophysics Data System (ADS)
Baalrud, S. D.; Bhattacharjee, A.; Daughton, W.
2018-02-01
The linear dispersion relation for collisionless kinetic tearing instabilities is calculated for the Harris equilibrium. In contrast to the conventional 2D geometry, which considers only modes at the center of the current sheet, modes can span the current sheet in 3D. Modes at each resonant surface have a unique angle with respect to the guide field direction. Both kinetic simulations and numerical eigenmode solutions of the linearized Vlasov-Maxwell equations have recently revealed that standard analytic theories vastly overestimate the growth rate of oblique modes. We find that this stabilization is associated with the density-gradient-driven diamagnetic drift. The analytic theories miss this drift stabilization because the inner tearing layer broadens at oblique angles sufficiently far that the assumption of scale separation between the inner and outer regions of boundary-layer theory breaks down. The dispersion relation obtained by numerically solving a single second order differential equation is found to approximately capture the drift stabilization predicted by solutions of the full integro-differential eigenvalue problem. A simple analytic estimate for the stability criterion is provided.
Effects of forebody geometry on subsonic boundary-layer stability
NASA Technical Reports Server (NTRS)
Dodbele, Simha S.
1990-01-01
As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.
Effects of shock on hypersonic boundary layer stability
NASA Astrophysics Data System (ADS)
Pinna, F.; Rambaud, P.
2013-06-01
The design of hypersonic vehicles requires the estimate of the laminar to turbulent transition location for an accurate sizing of the thermal protection system. Linear stability theory is a fast scientific way to study the problem. Recent improvements in computational capabilities allow computing the flow around a full vehicle instead of using only simplified boundary layer equations. In this paper, the effect of the shock is studied on a mean flow provided by steady Computational Fluid Dynamics (CFD) computations and simplified boundary layer calculations.
Nonparallel stability of three-dimensional compressible boundary layers. Part 1: Stability analysis
NASA Technical Reports Server (NTRS)
El-Hady, N. M.
1980-01-01
A compressible linear stability theory is presented for nonparallel three-dimensional boundary-layer flows, taking into account the normal velocity component as well as the streamwise and spanwise variations of the basic flow. The method of multiple scales is used to account for the nonparallelism of the basic flow, and equations are derived for the spatial evolution of the disturbance amplitude and wavenumber. The numerical procedure for obtaining the solution of the nonparallel problem is outlined.
Linear stability theory and three-dimensional boundary layer transition
NASA Technical Reports Server (NTRS)
Spall, Robert E.; Malik, Mujeeb R.
1992-01-01
The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.
A new approach to assess the skier additional stress within a multi-layered snowpack
NASA Astrophysics Data System (ADS)
Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg
2014-05-01
The physical and mechanical processes of dry-snow slab avalanche formation can be distinguished into two subsequent phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation, based on a simple strength-of-material approach (strength vs. stress). Even if it is known that both weak layer and slab properties play a major role in avalanche release, apart from weak layer characteristics, often only the slab thickness and its average density were considered. For calculating the amount of additional stress (e.g. due to a skier) at the depth of the weak layer, the snow cover was often assumed to be a semi-infinite elastic half space in order to apply Boussinesq's theory. However, finite element (FE) calculations have shown that slab layering strongly influences the stress at depth. To avoid FE calculations, we suggest a new approach based on a simplification of multi-layered elasticity theory. It allows computing the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The proposed approach was first tested on simplified snow profiles and compared reasonably well with FE calculations. We then implemented the method to refine the classical skier stability index. Using manually observed snow profiles, classified in different stability classes using stability tests, we obtained a satisfactory discrimination power. Lastly, the refined skier stability index was implemented into the 1-D snow cover model SNOWPACK and presented on two case studies. In the future, it will be interesting to implement the proposed method for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.
Stability of boundary layer flow based on energy gradient theory
NASA Astrophysics Data System (ADS)
Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong
2018-05-01
The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.
Measurements in a Transitioning Cone Boundary Layer at Freestream Mach 3.5
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Chou, Amanda; Balakumar, Ponnampalam; Owens, Lewis R.; Kegerise, Michael A.
2016-01-01
An experimental study was conducted in the Supersonic Low-Disturbance Tunnel to investigate naturally-occurring instabilities in a supersonic boundary layer on a 7 deg half- angle cone. All tests were conducted with a nominal freestream Mach number of M(sub infinity) = 3:5, total temperature of T(sub 0) = 299:8 K, and unit Reynolds numbers of Re(sub infinity) x 10(exp -6) = 9:89, 13.85, 21.77, and 25.73 m(exp -1). Instability measurements were acquired under noisy- ow and quiet- ow conditions. Measurements were made to document the freestream and the boundary-layer edge environment, to document the cone baseline flow, and to establish the stability characteristics of the transitioning flow. Pitot pressure and hot-wire boundary- layer measurements were obtained using a model-integrated traverse system. All hot- wire results were single-point measurements and were acquired with a sensor calibrated to mass ux. For the noisy-flow conditions, excellent agreement for the growth rates and mode shapes was achieved between the measured results and linear stability theory (LST). The corresponding N factor at transition from LST is N 3:9. The stability measurements for the quiet-flow conditions were limited to the aft end of the cone. The most unstable first-mode instabilities as predicted by LST were successfully measured, but this unstable first mode was not the dominant instability measured in the boundary layer. Instead, the dominant instabilities were found to be the less-amplified, low-frequency disturbances predicted by linear stability theory, and these instabilities grew according to linear theory. These low-frequency unstable disturbances were initiated by freestream acoustic disturbances through a receptivity process that is believed to occur near the branch I locations of the cone. Under quiet-flow conditions, the boundary layer remained laminar up to the last measurement station for the largest Re1, implying a transition N factor of N greater than 8:5.
NASA Technical Reports Server (NTRS)
Jacobson, I. D.; Morton, J. B.
1972-01-01
The parameters are established which are important to the stability of a boundary layer flow over a yawed spinning cylinder in a uniform stream. It is shown that transition occurs asymmetrically in general and this asymmetry can be important for the prediction of aerodynamic forces and moments (e.g., the Magnus effect). Instability of the steady-state boundary layer flow is determined using small disturbance theory. Although the approach is strictly valid only for the calculation of the conditions for stability in the small, experimental data indicate that in many problems, it provides a good estimate for the transition to turbulence.
Plasma-resistivity-induced strong damping of the kinetic resistive wall mode.
He, Yuling; Liu, Yueqiang; Liu, Yue; Hao, Guangzhou; Wang, Aike
2014-10-24
An energy-principle-based dispersion relation is derived for the resistive wall mode, which incorporates both the drift kinetic resonance between the mode and energetic particles and the resistive layer physics. The equivalence between the energy-principle approach and the resistive layer matching approach is first demonstrated for the resistive plasma resistive wall mode. As a key new result, it is found that the resistive wall mode, coupled to the favorable average curvature stabilization inside the resistive layer (as well as the toroidal plasma flow), can be substantially more stable than that predicted by drift kinetic theory with fast ion stabilization, but with the ideal fluid assumption. Since the layer stabilization becomes stronger with decreasing plasma resistivity, this regime is favorable for reactor scale, high-temperature fusion devices.
NASA Technical Reports Server (NTRS)
Goldstein, M. E.; Leib, S. J.; Cowley, S. J.
1990-01-01
Researchers show how an initially linear spanwise disturbance in the free stream velocity field is amplified by leading edge bluntness effects and ultimately leads to a small amplitude but linear spanwise motion far downstream from the edge. This spanwise motion is imposed on the boundary layer flow and ultimately causes an order-one change in its profile shape. The modified profiles are highly unstable and can support Tollmein-Schlichting wave growth well upstream of the theoretical lower branch of the neutral stability curve for a Blasius boundary layer.
Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2017-12-01
A set of layer equations for determining the stability of semi-collisional tearing modes in an axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit, is provided. These can be used as an inner layer module for inclusion in numerical codes that asymptotically match the layer to toroidal calculations of the tearing mode stability index, \\prime $ . They are more complete than in earlier work and comprise equations for the perturbed electron density and temperature, the ion temperature, Ampère's law and the vorticity equation, amounting to a twelvth-order set of radial differential equations. While the toroidal geometry is kept quite general when treating the classical and Pfirsch-Schlüter transport, parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of trapped particles is small for the banana regime contribution. This is to justify the use of a model collision term when acting on the localised (in velocity space) solutions that remain after the Spitzer solutions have been exploited to account for the bulk of the passing distributions. In this respect, unlike standard neoclassical transport theory, the calculation involves the second Spitzer solution connected with a parallel temperature gradient, because this stability problem involves parallel temperature gradients that cannot occur in equilibrium toroidal transport theory. Furthermore, a calculation of the linearised neoclassical radial transport of toroidal momentum for general geometry is required to complete the vorticity equation. The solutions of the resulting set of equations do not match properly to the ideal magnetohydrodynamic (MHD) equations at large distances from the layer, and a further, intermediate layer involving ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to achieve this matching and allow one to correctly calculate the layer \\prime $ .
On the Relationship between Transitional and Fully Turbulent Shear Flow.
1982-05-01
the spot a single large coherent eddy on which mall scale turbulence is superimposed or is it an assembly of eddies, both large and mall ...laminar boundary layer. These finds provided the first link between stability theory and the actual spreading of turbu- lence. We expected the...findings of the transitional spot and its re- lation to the transition process in boundary layers flow were drawn togeth- er into an organized theory
NASA Technical Reports Server (NTRS)
Scherrer, Richard
1951-01-01
An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.
Design optimization of natural laminar flow bodies in compressible flow
NASA Technical Reports Server (NTRS)
Dodbele, Simha S.
1992-01-01
An optimization method has been developed to design axisymmetric body shapes such as fuselages, nacelles, and external fuel tanks with increased transition Reynolds numbers in subsonic compressible flow. The new design method involves a constraint minimization procedure coupled with analysis of the inviscid and viscous flow regions and linear stability analysis of the compressible boundary-layer. In order to reduce the computer time, Granville's transition criterion is used to predict boundary-layer transition and to calculate the gradients of the objective function, and linear stability theory coupled with the e(exp n)-method is used to calculate the objective function at the end of each design iteration. Use of a method to design an axisymmetric body with extensive natural laminar flow is illustrated through the design of a tiptank of a business jet. For the original tiptank, boundary layer transition is predicted to occur at a transition Reynolds number of 6.04 x 10(exp 6). For the designed body shape, a transition Reynolds number of 7.22 x 10(exp 6) is predicted using compressible linear stability theory coupled with the e(exp n)-method.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
2004-01-01
The unsteady, incompressible Navier-Stokes equations are used for the direct numerical simulation (DNS) of spatially evolving disturbances in a three-dimensional (3-D) attachment-line boundary layer. Two-dimensional (2-D) disturbances are introduced either by forcing at the in ow or by harmonic-source generators at the wall; 3-D disturbances are introduced by harmonic-source generators at the wall. The DNS results are in good agreement with both 2-D non-parallel theory (for small-amplitude disturbances) and weakly nonlinear theory (for finite-amplitude disturbances), which validates the two theories. The 2-D DNS results indicate that nonlinear disturbance growth occurs near branch II of the neutral stability curve; however, steady suction can be used to stabilize this disturbance growth. For 3-D instabilities that are generated o the attachment line, spreading both toward and away from the attachment line causes energy transfer to the attachment-line and downstream instabilities; suction stabilizes these instabilities. Furthermore, 3-D instabilities are more stable than 2-D or quasi-2-D instabilities.
NASA Technical Reports Server (NTRS)
Blanchard, Alan E.; Selby, Gregory V.
1996-01-01
One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.
Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects
NASA Technical Reports Server (NTRS)
Lachowicz, Jason T.; Chokani, Ndaona
1996-01-01
Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.
2014-01-04
Ca, 93536 Stuart Laurence2, Amy War-Kei Beierholm3, Hans G. Hornung4 Caltech, Pasadena, Ca, 91125 and Ross Wagnild5, Graham Candler6 University...The shots refer to particular conditions tested in the T5 facility for a 45-degree swept cylinder. Taken from [10]. The theory of how relaxation...0. 25 14 /6 .2 00 9- 12 87 27 American Institute of Aeronautics and Astronautics 15 3 Mack, L.M., “Boundary-layer stability theory ,” In
A quiet tunnel investigation of hypersonic boundary-layer stability over a cooled, flared cone
NASA Technical Reports Server (NTRS)
Blanchard, Alan E.; Selby, Gregory V.; Wilkinson, Stephen P.
1996-01-01
A flared-cone model under adiabatic and cooled-wall conditions was placed in a calibrated, low-disturbance Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N = 10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows under low freestream noise conditions was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of spectral data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.
NASA Astrophysics Data System (ADS)
Ukpong, A. M.; Chetty, N.
2012-05-01
The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.
On the nonlinear stability of a high-speed, axisymmetric boundary layer
NASA Technical Reports Server (NTRS)
Pruett, C. David; Ng, Lian L.; Erlebacher, Gordon
1991-01-01
The stability of a high-speed, axisymmetric boundary layer is investigated using secondary instability theory and direct numerical simulation. Parametric studies based on the temporal secondary instability theory identify subharmonic secondary instability as a likely path to transition on a cylinder at Mach 4.5. The theoretical predictions are validated by direct numerical simulation at temporally-evolving primary and secondary disturbances in an axisymmetric boundary-layer flow. At small amplitudes of the secondary disturbance, predicted growth rates agree to several significant digits with values obtained from the spectrally-accurate solution of the compressible Navier-Stokes equations. Qualitative agreement persists to large amplitudes of the secondary disturbance. Moderate transverse curvature is shown to significantly affect the growth rate of axisymmetric second mode disturbances, the likely candidates of primary instability. The influence of curvature on secondary instability is largely indirect but most probably significant, through modulation of the primary disturbance amplitude. Subharmonic secondary instability is shown to be predominantly inviscid in nature, and to account for spikes in the Reynolds stress components at or near the critical layer.
NASA Astrophysics Data System (ADS)
Parlange, M. B.; Katul, G. G.
1995-04-01
Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.
Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel
NASA Technical Reports Server (NTRS)
Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.
1996-01-01
Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.
Direct Numerical Simulation of Transition Due to Traveling Crossflow Vortices
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Duan, Lian
2016-01-01
Previous simulations of laminar breakdown mechanisms associated with stationary crossflow instability over a realistic swept-wing configuration are extended to investigate the alternate scenario of transition due to secondary instability of traveling crossflow modes. Earlier analyses based on secondary instability theory and parabolized stability equations have shown that this alternate scenario is viable when the initial amplitude of the most amplified mode of the traveling crossflow instability is greater than approximately 0.03 times the initial amplitude of the most amplified stationary mode. The linear growth predictions based on the secondary instability theory and parabolized stability equations agree well with the direct numerical simulation. Nonlinear effects are initially stabilizing but subsequently lead to a rapid growth followed by the onset of transition when the amplitude of the secondary disturbance exceeds a threshold value. Similar to the breakdown of stationary vortices, the transition zone is rather short and the boundary layer becomes completely turbulent across a distance of less than 15 times the boundary layer thickness at the completion of transition.
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.
1995-01-01
The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier-Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic- source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in at-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.
NASA Technical Reports Server (NTRS)
Trimpi, Robert L
1956-01-01
From a theory developed on a quasi-one-dimensional-flow basis, it is found that the stability of the ram jet is dependent upon the instantaneous values of mass flow and total pressure recovery of the supersonic diffuser and immediate neighboring subsonic diffuser. Conditions for stable and unstable flow are presented. The theory developed in the report is in agreement with the experimental data of NACA-TN-3506 and NACA-RM-L50K30. A simple theory for predicting the approximate amplitude of small pressure pulsation in terms of mass-flow decrement from minimum-stable mass flow is developed and found to agree with experiments. Cold-flow tests at a Mach number of 1.94 of ram-jet models having scale factors of 3.15:1 and Reynolds number ratios of 4.75:1 with several supersonic diffuser configurations showed only small variations in performance between geometrically similar models. The predominant variation in steady-flow performance resulted from the larger boundary layer in the combustion chamber of the low Reynolds number models. The conditions at which buzz originated were nearly the same for the same supersonic diffuser (cowling-position angle) configurations in both large and small diameter models. There was no appreciable variation in stability limits of any of the models when the combustion-chamber length was increased by a factor of three. The unsteady-flow performance and wave patterns were also similar when considered on a reduced-frequency basis determined from the relative lengths of the model. The negligible effect of Reynolds number on stability of the off-design configurations was not anticipated in view of the importance of boundary layer to stability, and this result should not be construed to be generally applicable. (author)
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan
1992-01-01
Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.
Bypass transition in boundary layers including curvature and favorable pressure gradient effects
NASA Technical Reports Server (NTRS)
Volino, R. J.; Simon, T. W.
1991-01-01
Recent studies of 2-D boundary layers undergoing bypass transition were reviewed. Bypass transition is characterized by the sudden appearance of turbulent spots in boundary layer without first the regular, observable growth of disturbances predicted by linear stability theory. There are no standard criteria or parameters for defining bypass transition, but it is known to be the mode of transition when the flow is disturbed by perturbations of sufficient amplitude.
Theory of multiple quantum dot formation in strained-layer heteroepitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu
2016-07-11
We develop a theory for the experimentally observed formation of multiple quantum dots (QDs) in strained-layer heteroepitaxy based on surface morphological stability analysis of a coherently strained epitaxial thin film on a crystalline substrate. Using a fully nonlinear model of surface morphological evolution that accounts for a wetting potential contribution to the epitaxial film's free energy as well as surface diffusional anisotropy, we demonstrate the formation of multiple QD patterns in self-consistent dynamical simulations of the evolution of the epitaxial film surface perturbed from its planar state. The simulation predictions are supported by weakly nonlinear analysis of the epitaxial filmmore » surface morphological stability. We find that, in addition to the Stranski-Krastanow instability, long-wavelength perturbations from the planar film surface morphology can trigger a nonlinear instability, resulting in the splitting of a single QD into multiple QDs of smaller sizes, and predict the critical wavelength of the film surface perturbation for the onset of the nonlinear tip-splitting instability. The theory provides a fundamental interpretation for the observations of “QD pairs” or “double QDs” and other multiple QDs reported in experimental studies of epitaxial growth of semiconductor strained layers and sets the stage for precise engineering of tunable-size nanoscale surface features in strained-layer heteroepitaxy by exploiting film surface nonlinear, pattern forming phenomena.« less
NASA Technical Reports Server (NTRS)
Balakumar, P.; Jeyasingham, Samarasingham
1999-01-01
A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.
Nonlinear Stability and Structure of Compressible Reacting Mixing Layers
NASA Technical Reports Server (NTRS)
Day, M. J.; Mansour, N. N.; Reynolds, W. C.
2000-01-01
The parabolized stability equations (PSE) are used to investigate issues of nonlinear flow development and mixing in compressible reacting shear layers. Particular interest is placed on investigating the change in flow structure that occurs when compressibility and heat release are added to the flow. These conditions allow the 'outer' instability modes- one associated with each of the fast and slow streams-to dominate over the 'central', Kelvin-Helmholtz mode that unaccompanied in incompressible nonreacting mixing layers. Analysis of scalar probability density functions in flows with dominant outer modes demonstrates the ineffective, one-sided nature of mixing that accompany these flow structures. Colayer conditions, where two modes have equal growth rate and the mixing layer is formed by two sets of vortices, offer some opportunity for mixing enhancement. Their extent, however, is found to be limited in the mixing layer's parameter space. Extensive validation of the PSE technique also provides a unique perspective on central- mode vortex pairing, further supporting the view that pairing is primarily governed perspective sheds insight on how linear stability theory is able to provide such an accurate prediction of experimentally-observed, fully nonlinear flow phenomenon.
NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.
Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.
1997-06-01
In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.
Direct numerical simulations of mack-mode damping on porous coated cones
NASA Astrophysics Data System (ADS)
Lüdeke, H.; Wartemann, V.
2013-06-01
The flow field over a 3 degree blunt cone is investigated with respect to a hypersonic stability analysis of the boundary-layer flow at Mach 6 with porous as well as smooth walls by comparing local direct numerical simulations (DNS) and linear stability theory (LST) data. The original boundary-layer profile is generated by a finite volume solver, using shock capturing techniques to generate an axisymmetric flow field. Local boundary-layer profiles are extracted from this flow field and hypersonic Mack-modes are superimposed for cone-walls with and without a porous surface used as a passive transition-reduction device. Special care is taken of curvature effects of the wall on the mode development over smooth and porous walls.
Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Kang, Ying; Ge, Zhongxue
2015-03-01
The structural characteristics involving thermal stabilities of liquid nitromethane (NM)—one of the simplest energetic materials—confined within a graphene (GRA) bilayer were investigated by means of all-atom molecular dynamics simulations and density functional theory calculations. The results show that ordered and layered structures are formed at the confinement of the GRA bilayer induced by the van der Waals attractions of NM with GRA and the dipole-dipole interactions of NM, which is strongly dependent on the confinement size, i.e., the GRA bilayer distance. These unique intermolecular arrangements and preferred orientations of confined NM lead to higher stabilities than bulk NM revealed by bond dissociation energy calculations.
Stability theory applications to laminar-flow control
NASA Technical Reports Server (NTRS)
Malik, Mujeeb R.
1987-01-01
In order to design Laminar Flow Control (LFC) configurations, reliable methods are needed for boundary-layer transition predictions. Among the available methods, there are correlations based upon R sub e, shape factors, Goertler number and crossflow Reynolds number. The most advanced transition prediction method is based upon linear stability theory in the form of the e sup N method which has proven to be successful in predicting transition in two- and three-dimensional boundary layers. When transition occurs in a low disturbance environment, the e sup N method provides a viable design tool for transition prediction and LFC in both 2-D and 3-D subsonic/supersonic flows. This is true for transition dominated by either TS, crossflow, or Goertler instability. If Goertler/TS or crossflow/TS interaction is present, the e sup N will fail to predict transition. However, there is no evidence of such interaction at low amplitudes of Goertler and crossflow vortices.
NASA Technical Reports Server (NTRS)
Hall, P.; Malik, M. R.
1986-01-01
The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier-Stokes equations for the attachment-line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.
NASA Technical Reports Server (NTRS)
Hall, P.; Malik, M. R.
1984-01-01
The instability of a three dimensional attachment line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time dependent Navier-Stokes equations for the attachment line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment line boundary layer is also investigated.
Interface coupling and growth rate measurements in multilayer Rayleigh-Taylor instabilities
NASA Astrophysics Data System (ADS)
Adkins, Raymond; Shelton, Emily M.; Renoult, Marie-Charlotte; Carles, Pierre; Rosenblatt, Charles
2017-06-01
Magnetic levitation was used to measure the growth rate Σ vs wave vector k of a Rayleigh-Taylor instability in a three-layer fluid system, a crucial step in the elucidation of interface coupling in finite-layer instabilities. For a three-layer (low-high-low density) system, the unstable mode growth rate decreases as both the height h of the middle layer and k are reduced, consistent with an interface coupling ∝e-k h . The ratios of the three-layer to the established two-layer growth rates are in good agreement with those of classic linear stability theory, which has long resisted verification in that configuration.
Robust flow stability: Theory, computations and experiments in near wall turbulence
NASA Astrophysics Data System (ADS)
Bobba, Kumar Manoj
Helmholtz established the field of hydrodynamic stability with his pioneering work in 1868. From then on, hydrodynamic stability became an important tool in understanding various fundamental fluid flow phenomena in engineering (mechanical, aeronautics, chemical, materials, civil, etc.) and science (astrophysics, geophysics, biophysics, etc.), and turbulence in particular. However, there are many discrepancies between classical hydrodynamic stability theory and experiments. In this thesis, the limitations of traditional hydrodynamic stability theory are shown and a framework for robust flow stability theory is formulated. A host of new techniques like gramians, singular values, operator norms, etc. are introduced to understand the role of various kinds of uncertainty. An interesting feature of this framework is the close interplay between theory and computations. It is shown that a subset of Navier-Stokes equations are globally, non-nonlinearly stable for all Reynolds number. Yet, invoking this new theory, it is shown that these equations produce structures (vortices and streaks) as seen in the experiments. The experiments are done in zero pressure gradient transiting boundary layer on a flat plate in free surface tunnel. Digital particle image velocimetry, and MEMS based laser Doppler velocimeter and shear stress sensors have been used to make quantitative measurements of the flow. Various theoretical and computational predictions are in excellent agreement with the experimental data. A closely related topic of modeling, simulation and complexity reduction of large mechanics problems with multiple spatial and temporal scales is also studied. A nice method that rigorously quantifies the important scales and automatically gives models of the problem to various levels of accuracy is introduced. Computations done using spectral methods are presented.
Cordelair, Jens; Greil, Peter
2003-09-15
A new solution for the Poisson equation for the diffuse part of the double layer around spherical particles will be presented. The numerical results are compared with the solution of the well-known DLVO theory. The range of the diffuse layer differs considerably in the two theories. Also, the inconsistent representation of the surface and diffuse layer charge in the DLVO theory do not occur in the new theory. Experimental zeta potential measurements were used to determine the charge of colloidal Al2O3 and ZrO2 particles. It is shown that the calculated charge can be interpreted as a superposition of independent H+ and OH- adsorption isotherms. The corresponding Langmuir adsorption isotherms are taken to model the zeta potential dependence on pH. In the vicinity of the isoelectric point the model fits well with the experimental data, but at higher ion concentrations considerable deviations occur. The deviations are discussed. Furthermore, the numerical results for the run of the potential in the diffuse part of the double layer were used to determine the electrostatic interaction potential between the particles in correlation with the zeta potential measurements. The corresponding total interaction potentials, including the van der Waals attraction, were taken to calculate the coagulation half-life for a suspension with a particle loading of 2 vol%. It is shown that stability against coagulation is maintained for Al2O3 particles in the pH region between 3.3 and 7 and for ZrO2 only around pH 5. Stability against flocculation can be achieved in the pH regime between 4.5 and 7 for Al2O3, while the examined ZrO2 particles are not stable against flocculation in aqueous suspensions.
Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Brock, Joseph Michael
Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.
`Surface-Layer' momentum fluxes in nocturnal slope flows over steep terrain
NASA Astrophysics Data System (ADS)
Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.
2017-12-01
A common working definition for the `surface layer' is the lowest 10% of the atmospheric boundary layer (ABL) where the turbulent fluxes are essentially constant. The latter part of this definition is a critical assumption that must hold for accurate flux estimations from land-surface models, wall models, similarity theory, flux-gradient relations and bulk transfer methods. We present cases from observed momentum fluxes in nocturnal slope flows over steep (35.5 degree), alpine terrain in Val Ferret, Switzerland that satisfy the classical definitions of the surface layer and other cases where no traditional surface layer is observed. These cases broadly fall into two distinct flow regimes occurring under clear-sky conditions: (1) buoyancy-driven, `katabatic flow', characterized by an elevated velocity maximum (katabatic jet peak) and (2) `downslope winds', for which larger-scale forcing prevents formation of a katabatic jet. Velocity profiles in downslope wind cases are quite similar to logarithmic profiles typically observed over horizontal and homogeneous terrain, and the corresponding momentum fluxes roughly resemble a constant-flux surface-layer. Contrastingly, velocity profiles in the katabatic regime exhibit a jet-like shape. This jet strongly modulates the corresponding momentum fluxes, which exhibit strong gradients over the shallow katabatic layer and usually change sign near the jet peak, where the velocity gradients also change sign. However, a counter-gradient momentum flux is frequently observed near the jet peak (and sometimes at higher levels), suggesting strong non-local turbulent transport within the katabatic jet layer. We compare our observations with katabatic flow theories and observational studies over shallow-angle slopes and use co-spectral analyses to better identify and understand the non-local transport dynamics. Finally, we show that because of the counter-gradient momentum fluxes, surface layer stability and even local stability can be difficult to characterize because the counter-gradient momentum flux represents a sink in the shear term of turbulence kinetic energy budget equation. These results have broad implications for stability-based modeling and general definitions and assumptions used for the ABL and so-called `surface layer' over steep terrain.
Transition Studies on a Swept-Wing Model
NASA Technical Reports Server (NTRS)
Saric, William S.
1996-01-01
The present investigation contributes to the understanding of boundary-layer stability and transition by providing detailed measurements of carefully-produced stationary crossflow vortices. It is clear that a successful prediction of transition in swept-wing flows must include an understanding of the detailed physics involved. Receptivity and nonlinear effects must not be ignored. Linear stability theory correctly predicts the expected wavelengths and mode shapes for stationary crossflow, but fails to predict the growth rates, even for low amplitudes. As new computational and analytical methods are developed to deal with three-dimensional boundary layers, the data provided by this experiment will serve as a useful benchmark for comparison.
NASA Technical Reports Server (NTRS)
Lyell, M. J.; Roh, Michael
1991-01-01
With the increasing opportunities for research in a microgravity environment, there arises a need for understanding fluid mechanics under such conditions. In particular, a number of material processing configurations involve fluid-fluid interfaces which may experience instabilities in the presence of external forcing. In a microgravity environment, these accelerations may be periodic or impulse-type in nature. This research investigates the behavior of a multi-layer idealized fluid configuration which is infinite in extent. The analysis is linear, and each fluid region is considered inviscid, incompressible, and immiscible. An initial parametric study of confiquration stability in the presence of a constant acceleration field is performed. The zero mean gravity limit case serves as the base state for the subsequent time-dependent forcing cases. A stability analysis of the multi-layer fluid system in the presence of periodic forcing is investigated. Floquet theory is utilized. A parameter study is performed, and regions of stability are identified. For the impulse-type forcing case, asymptotic stability is established for the configuration. Using numerical integration, the time response of the interfaces is determined.
A spectrally accurate boundary-layer code for infinite swept wings
NASA Technical Reports Server (NTRS)
Pruett, C. David
1994-01-01
This report documents the development, validation, and application of a spectrally accurate boundary-layer code, WINGBL2, which has been designed specifically for use in stability analyses of swept-wing configurations. Currently, we consider only the quasi-three-dimensional case of an infinitely long wing of constant cross section. The effects of streamwise curvature, streamwise pressure gradient, and wall suction and/or blowing are taken into account in the governing equations and boundary conditions. The boundary-layer equations are formulated both for the attachment-line flow and for the evolving boundary layer. The boundary-layer equations are solved by marching in the direction perpendicular to the leading edge, for which high-order (up to fifth) backward differencing techniques are used. In the wall-normal direction, a spectral collocation method, based upon Chebyshev polynomial approximations, is exploited. The accuracy, efficiency, and user-friendliness of WINGBL2 make it well suited for applications to linear stability theory, parabolized stability equation methodology, direct numerical simulation, and large-eddy simulation. The method is validated against existing schemes for three test cases, including incompressible swept Hiemenz flow and Mach 2.4 flow over an airfoil swept at 70 deg to the free stream.
The stability boundary of group-III transition metal diboride ScB 2 (0 0 0 1) surfaces
NASA Astrophysics Data System (ADS)
Zhao, Hui; Qin, Na
2012-01-01
Experimental observations and theoretical investigations exhibit that a group-IV(V) transition metal diboride (0 0 0 1) surface is terminated with a 1 × 1 TM(B) layer. As to a group-III transition metal diboride, we have investigated the stability boundary of ScB2 (0 0 0 1) surfaces using first principles total energy plane-wave pseudopotential method based on density functional theory. The Mulliken charge population analysis shows that Sc atoms in the second layer cannot provide B atoms in the first layer with sufficient electrons to form a complete graphene-like boron layer. We also found that the charge transfer between the first and the second layer for the B-terminated surface is more than that for Sc-terminated surface. It elucidates the reason that the outermost interlayer spacing contract more strongly in the B-terminated surface than in the Sc-terminated surface. The surface energies of both terminated ScB2 (0 0 0 1) surfaces as a function of the chemical potential of B are also calculated to check the relative stability of the two surface structures.
Effect of gravity modulation on thermosolutal convection in an infinite layer of fluid
NASA Astrophysics Data System (ADS)
Saunders, B. V.; Murray, B. T.; McFadden, G. B.; Coriell, S. R.; Wheeler, A. A.
1991-10-01
The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress free boundaries is studied using Floquet theory for the linear stability analysis. Situations are considered for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double diffusive convection. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency.
Experimental studies on the stability and transition of 3-dimensional boundary layers
NASA Technical Reports Server (NTRS)
Nitschke-Kowsky, P.
1987-01-01
Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.
NASA Astrophysics Data System (ADS)
Ji, Xuewu; He, Xiangkun; Lv, Chen; Liu, Yahui; Wu, Jian
2018-06-01
Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.
Stability analysis of internally damped rotating composite shafts using a finite element formulation
NASA Astrophysics Data System (ADS)
Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed
2018-04-01
This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.
Density functional theory study of bulk and single-layer magnetic semiconductor CrPS4
NASA Astrophysics Data System (ADS)
Zhuang, Houlong L.; Zhou, Jia
2016-11-01
Searching for two-dimensional (2D) materials with multifunctionality is one of the main goals of current research in 2D materials. Magnetism and semiconducting are certainly two desirable functional properties for a single 2D material. In line with this goal, here we report a density functional theory (DFT) study of bulk and single-layer magnetic semiconductor CrPS4. We find that the ground-state magnetic structure of bulk CrPS4 exhibits the A-type antiferromagnetic ordering, which transforms to ferromagnetic (FM) ordering in single-layer CrPS4. The calculated formation energy and phonon spectrum confirm the stability of single-layer CrPS4. The band gaps of FM single-layer CrPS4 calculated with a hybrid density functional are within the visible-light range. We also study the effects of FM ordering on the optical absorption spectra and band alignments for water splitting, indicating that single-layer CrPS4 could be a potential photocatalyst. Our work opens up ample opportunities of energy-related applications of single-layer CrPS4.
Simulating stick-slip failure in a sheared granular layer using a physics-based constitutive model
Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; ...
2017-01-14
In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less
The Stability and Interfacial Motion of Multi-layer Radial Porous Media and Hele-Shaw Flows
NASA Astrophysics Data System (ADS)
Gin, Craig; Daripa, Prabir
2017-11-01
In this talk, we will discuss viscous fingering instabilities of multi-layer immiscible porous media flows within the Hele-Shaw model in a radial flow geometry. We study the motion of the interfaces for flows with both constant and variable viscosity fluids. We consider the effects of using a variable injection rate on multi-layer flows. We also present a numerical approach to simulating the interface motion within linear theory using the method of eigenfunction expansion. We compare these results with fully non-linear simulations.
Design and performance of the University of Michigan 6.6-inch hypersonic wind tunnel
NASA Technical Reports Server (NTRS)
Amick, J. L.
1975-01-01
The tunnel described has several design features intended to maintain laminar flow in the boundary layer of its nozzle. Measurements show that transition to turbulence in the nozzle wall boundary layer begins at the throat and is sensitive to surface roughness, heat transfer rate, and longitudinal radius of curvature. The observed dependence of transition on heat transfer rate is the reverse of that predicted by stability theory for infinitesimal disturbances. Tests include boundary layer surveys of a contoured nozzle and a conical nozzle with four interchangeable throats.
Acoustics-turbulence interaction
NASA Technical Reports Server (NTRS)
Hussain, A. K. M. F.; Zaman, K. B. M. O.
1977-01-01
An investigation of the instability frequency was undertaken. Measurements revealed that the hot wire probe induces and sustains stable upstream oscillation of the free shear layer. The characteristics of the free shear layer tone are found to be different from the slit jet wedge edgetone phenomenon. The shear tone induced by a plane wedge in a plane free shear layer was then examined in order to further document the phenomenon. The eigenvalues and eigenfunctions of the tone fundamental show agreement with the spatial stability theory. A comprehensive summary of the results is also included.
Instability of a Supersonic Boundary-Layer with Localized Roughness
NASA Technical Reports Server (NTRS)
Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.
2010-01-01
A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katoch, Neha, E-mail: nehakatoch2@gmail.com; Kapoor, Pooja; Sharma, Munish
We report stability and electronic properties of benzene molecule adsorbed on the Au atomic layer within the framework of density function theory (DFT). Horizontal configuration of benzene on the top site of Au monolayer prefers energetically over other studied configurations. On the adsorption of benzene, the ballistic conductance of Au monolayer is found to decrease from 4G{sub 0} to 2G{sub 0} suggesting its applications for the fabrications of organic sensor devices based on the Au atomic layers.
Stability investigations of airfoil flow by global analysis
NASA Technical Reports Server (NTRS)
Morzynski, Marek; Thiele, Frank
1992-01-01
As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.
NASA Astrophysics Data System (ADS)
Mahmud, M. N.
2018-04-01
The chaotic dynamical behaviour of thermal convection in an anisotropic porous layer subject to gravity, heated from below and cooled from above, is studied based on theory of dynamical system in the presence of feedback control. The extended Darcy model, which includes the time derivative has been employed in the momentum equation to derive a low dimensional Lorenz-like equation by using Galerkin-truncated approximation. The classical fourth-order Runge-Kutta method is used to obtain the numerical solution in order to exemplify the dynamics of the nonlinear autonomous system. The results show that stability enhancement of chaotic convection is feasible via feedback control.
Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack
NASA Astrophysics Data System (ADS)
Monti, Fabiano; Gaume, Johan; van Herwijnen, Alec; Schweizer, Jürg
2016-03-01
The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic, half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach reproduced the additional stress obtained by finite element simulations for the simplified profiles well - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. The two study cases presented in this paper showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.
Snow instability evaluation: calculating the skier-induced stress in a multi-layered snowpack
NASA Astrophysics Data System (ADS)
Monti, F.; Gaume, J.; van Herwijnen, A.; Schweizer, J.
2015-08-01
The process of dry-snow slab avalanche formation can be divided into two phases: failure initiation and crack propagation. Several approaches tried to quantify slab avalanche release probability in terms of failure initiation based on shear stress and strength. Though it is known that both the properties of the weak layer and the slab play a major role in avalanche release, most previous approaches only considered slab properties in terms of slab depth, average density and skier penetration. For example, for the skier stability index, the additional stress (e.g. due to a skier) at the depth of the weak layer is calculated by assuming that the snow cover can be considered a semi-infinite, elastic half-space. We suggest a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer taking into account the layering of the snow slab and the substratum. We first tested the proposed approach on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles. Our simple approach well reproduced the additional stress obtained by finite element simulations for the simplified profiles - except that the sequence of layering in the slab cannot be replicated. Once implemented into the classical skier stability index and applied to manually observed snow profiles classified into different stability classes, the classification accuracy improved with the new approach. Finally, we implemented the refined skier stability index into the 1-D snow cover model SNOWPACK. For the two study cases presented in this paper, this approach showed promising results even though further verification is still needed. In the future, we intend to implement the proposed approach for describing skier-induced stress within a multi-layered snowpack into more complex models which take into account not only failure initiation but also crack propagation.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi; Gu, Haozhong; Liu, Qiang; Chattopadhyay, Aditi; Zhou, Xu
2000-08-01
The use of a special type of smart material, known as segmented constrained layer (SCL) damping, is investigated for improved rotor aeromechanical stability. The rotor blade load-carrying member is modeled using a composite box beam with arbitrary wall thickness. The SCLs are bonded to the upper and lower surfaces of the box beam to provide passive damping. A finite-element model based on a hybrid displacement theory is used to accurately capture the transverse shear effects in the composite primary structure and the viscoelastic and the piezoelectric layers within the SCL. Detailed numerical studies are presented to assess the influence of the number of actuators and their locations for improved aeromechanical stability. Ground and air resonance analysis models are implemented in the rotor blade built around the composite box beam with segmented SCLs. A classic ground resonance model and an air resonance model are used in the rotor-body coupled stability analysis. The Pitt dynamic inflow model is used in the air resonance analysis under hover condition. Results indicate that the surface bonded SCLs significantly increase rotor lead-lag regressive modal damping in the coupled rotor-body system.
Viscous drag reduction in boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)
1990-01-01
The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.
NASA Technical Reports Server (NTRS)
Chen, Falin; Chen, C. F.
1989-01-01
Experiments have been carried out in a horizontal superposed fluid and porous layer contained in a test box 24 cm x 12 cm x 4 cm high. The porous layer consisted of 3 mm diameter glass beads, and the fluids used were water, 60 and 90 percent glycerin-water solutions, and 100 percent glycerin. The depth ratio d, which is the ratio of the thickness of the fluid layer to that of the porous layer, varied from 0 to 1.0. Fluids of increasingly higher viscosity were used for cases with larger d in order to keep the temperature difference across the tank within reasonable limits. The size of the convection cells was inferred from temperature measurements made with embedded thermocouples and from temperature distributions at the top of the layer by use of liquid crystal film. The experimental results showed: (1) a precipitous decrease in the critical Rayleigh number as the depth of the fluid layer was increased from zero, and (2) an eightfold decrease in the critical wavelength between d = 0.1 and 0.2. Both of these results were predicted by the linear stability theory reported earlier (Chen and Chen, 1988).
Boundary layer transition: A review of theory, experiment and related phenomena
NASA Technical Reports Server (NTRS)
Kistler, E. L.
1971-01-01
The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.
Mixing in Shear Coaxial Jets (Briefing Charts)
2013-08-01
relevant boundary layers 9. Thermodynamic states (2 phase, 1 phase) 10. Transverse Acoustic mode from chamber/siren, f=f(c, geometry St=fDij/Uij 11...stability theory for inviscid instability of a hyperbolic tangent velocity profile for free boundary layers • U(y)=0.5[1 + tanh(y)] • Chigier and Beer , 1964...acoustics Natural OJ excited IJ excited From Chigier NA. and Beer JM, The Flow Region Near the Nozzle in Double Concentric Jets, J of
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1986-01-01
A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.
Stabilization of magnetic skyrmions by RKKY interactions
NASA Astrophysics Data System (ADS)
Bezvershenko, Alla V.; Kolezhuk, Alexei K.; Ivanov, Boris A.
2018-02-01
We study the stabilization of an isolated magnetic skyrmion in a magnetic monolayer on a nonmagnetic conducting substrate via the Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange interaction. Two different types of the substrate are considered, usual normal metal and single-layer graphene. While the full stability analysis for skyrmions in the presence of the RKKY coupling requires a separate effort that is outside the scope of this work, we are able to study the radial stability (stability of a skyrmion against collapse) using variational energy estimates obtained within first-order perturbation theory, with the unperturbed Hamiltonian describing the isotropic Heisenberg magnet, and the two perturbations being the RKKY exchange and the easy-axis anisotropy. We show that a proper treatment of the long-range nature of the RKKY interaction leads to a qualitatively different stabilization scenario compared to previous studies, where solitons were stabilized by the frustrated exchange coupling (leading to terms with the fourth power of the magnetization gradients) or by the Dzyaloshinskii-Moriya interaction (described by terms linear in the magnetization gradients). In the case of a metallic substrate, the skyrmion stabilization is possible under restrictive conditions on the Fermi surface parameters, while in the case of a graphene substrate the stabilization is naturally achieved in several geometries with a lattice-matching of graphene and magnetic layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odier, Philippe; Ecke, Robert E.
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
Odier, Philippe; Ecke, Robert E.
2017-02-21
Stratified shear flows occur in many geophysical contexts, from oceanic overflows and river estuaries to wind-driven thermocline layers. In this study, we explore a turbulent wall-bounded shear flow of lighter miscible fluid into a quiescent fluid of higher density with a range of Richardson numbersmore » $$0.05\\lesssim Ri\\lesssim 1$$. In order to find a stability parameter that allows close comparison with linear theory and with idealized experiments and numerics, we investigate different definitions of$Ri$$. We find that a gradient Richardson number defined on fluid interface sections where there is no overturning at or adjacent to the maximum density gradient position provides an excellent stability parameter, which captures the Miles–Howard linear stability criterion. For small $$Ri$$ the flow exhibits robust Kelvin–Helmholtz instability, whereas for larger $$Ri$$ interfacial overturning is more intermittent with less frequent Kelvin–Helmholtz events and emerging Holmboe wave instability consistent with a thicker velocity layer compared with the density layer. We compute the perturbed fraction of interface as a quantitative measure of the flow intermittency, which is approximately 1 for the smallest $$Ri$$ but decreases rapidly as $$Ri$ increases, consistent with linear theory. For the perturbed regions, we use the Thorpe scale to characterize the overturning properties of these flows. The probability distribution of the non-zero Thorpe length yields a universal exponential form, suggesting that much of the overturning results from increasingly intermittent Kelvin–Helmholtz instability events. Finally, the distribution of turbulent kinetic energy, conditioned on the intermittency fraction, has a similar form, suggesting an explanation for the universal scaling collapse of the Thorpe length distribution.« less
Penta-P2X (X=C, Si) monolayers as wide-bandgap semiconductors: A first principles prediction
NASA Astrophysics Data System (ADS)
Naseri, Mosayeb; Lin, Shiru; Jalilian, Jaafar; Gu, Jinxing; Chen, Zhongfang
2018-06-01
By means of density functional theory computations, we predicted two novel two-dimensional (2D) nanomaterials, namely P2X (X=C, Si) monolayers with pentagonal configurations. Their structures, stabilities, intrinsic electronic, and optical properties as well as the effect of external strain to the electronic properties have been systematically examined. Our computations showed that these P2C and P2Si monolayers have rather high thermodynamic, kinetic, and thermal stabilities, and are indirect semiconductors with wide bandgaps (2.76 eV and 2.69 eV, respectively) which can be tuned by an external strain. These monolayers exhibit high absorptions in the UV region, but behave as almost transparent layers for visible light in the electromagnetic spectrum. Their high stabilities and exceptional electronic and optical properties suggest them as promising candidates for future applications in UV-light shielding and antireflection layers in solar cells.
Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation
Yang, Da
2018-01-24
Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and themore » square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. Furthermore, this theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a sui te of cloud-resolving simulations spanning a wide range of climates.« less
Boundary Layer Height and Buoyancy Determine the Horizontal Scale of Convective Self-Aggregation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Da
Organized rainstorms and their associated overturning circulations can self-emerge over an ocean surface with uniform temperature in cloud-resolving simulations. This phenomenon is referred to as convective self-aggregation. Convective self-aggregation is argued to be an important building block for tropical weather systems and may help regulate tropical atmospheric humidity and thereby tropical climate stability. Here the author presents a boundary layer theory for the horizontal scale λ of 2D (x, z) convective self-aggregation by considering both the momentum and energy constraints for steady circulations. This theory suggests that λ scales with the product of the boundary layer height h and themore » square root of the amplitude of density variation between aggregated moist and dry regions in the boundary layer, and that this density variation mainly arises from the moisture variation due to the virtual effect of water vapor. Furthermore, this theory predicts the following: 1) the order of magnitude of λ is ~2000 km, 2) the aspect ratio of the boundary layer λ/h increases with surface warming, and 3) λ decreases when the virtual effect of water vapor is disabled. These predictions are confirmed using a sui te of cloud-resolving simulations spanning a wide range of climates.« less
First-principles modeling of hafnia-based nanotubes.
Evarestov, Robert A; Bandura, Andrei V; Porsev, Vitaly V; Kovalenko, Alexey V
2017-09-15
Hybrid density functional theory calculations were performed for the first time on structure, stability, phonon frequencies, and thermodynamic functions of hafnia-based single-wall nanotubes. The nanotubes were rolled up from the thin free layers of cubic and tetragonal phases of HfO 2 . It was shown that the most stable HfO 2 single-wall nanotubes can be obtained from hexagonal (111) layer of the cubic phase. Phonon frequencies have been calculated for different HfO 2 nanolayers and nanotubes to prove the local stability and to find the thermal contributions to their thermodynamic functions. The role of phonons in stability of nanotubes seems to be negligible for the internal energy and noticeable for the Helmholtz free energy. Zone folding approach has been applied to estimate the connection between phonon modes of the layer and nanotubes and to approximate the nanotube thermodynamic properties. It is found that the zone-folding approximation is sufficiently accurate for heat capacity, but less accurate for entropy. The comparison has been done between the properties of TiO 2 , ZrO 2 , and HfO 2 . © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Studies in Thermocapillary Convection of the Marangoni-Benard Type
NASA Technical Reports Server (NTRS)
Kelly, Robert E.; Or, Arthur C.
1996-01-01
The effects of imposed nonlinear oscillatory shear upon the onset of Marangoni-Bernard convection, as predicted by linear theory, in a layer of liquid with a deformable free surface were reported upon by Or and Kelly for small amplitude oscillations. Depending on the operating conditions, either stabilization or destabilization might occur. The aim of the current paper is to report the results for finite amplitude imposed oscillations so that the actual amount of stabilization or destabilization can be determined for prescribed operating conditions.
NASA Astrophysics Data System (ADS)
Rusakov, V. S.; Sukhorukov, I. A.; Zhankadamova, A. M.; Kadyrzhanov, K. K.
2010-05-01
Results of the simulation of thermally induced processes of diffusion and phase formation in model and experimentally investigated layered binary metallic systems are presented. The physical model is based on the Darken phenomenological theory and on the mechanism of interdiffusion of components along the continuous diffusion channels of phases in the two-phase regions of the system. The simulation of processes in the model systems showed that the thermally stabilized concentration profiles in two-layer binary metallic systems are virtually independent of the partial diffusion coefficients; for the systems with the average concentration of components that is the same over the sample depth, the time of the thermal stabilization of the structural and phase state inhomogeneous over the depth grows according to a power law with increasing thickness of the system in such a manner that the thicknesses of the surface layers grow, while the thickness of the intermediate layer approaches a constant value. The results of the simulation of the processes of diffusion and phase formation in experimentally investigated layered binary systems Fe-Ti and Cu-Be upon sequential isothermal and isochronous annealings agree well with the experimental data.
NASA Technical Reports Server (NTRS)
Iyer, Venkit
1993-01-01
The theory, formulation, and solution of three-dimensional, compressible attached laminar flows, applied to swept wings in subsonic or supersonic flow are discussed. Several new features and modifications to an earlier general procedure described in NASA CR 4269, Jan. 1990 are incorporated. Details of interfacing the boundary-layer computation with solution of the inviscid Euler equations are discussed. A description of the computer program, complete with user's manual and example cases, is also included. Comparison of solutions with Navier-Stokes computations with or without boundary-layer suction is given. Output of solution profiles and derivatives required in boundary-layer stability analysis is provided.
NASA Technical Reports Server (NTRS)
Joslin, R. D.; Streett, C. L.; Chang, C.-L.
1991-01-01
A study of instabilities in incompressible boundary-layer flow on a flat plate is conducted by spatial direct numerical simulation (DNS) of the Navier-Stokes equations. Here, the DNS results are used to critically evaluate the results obtained using parabolized stability equations (PSE) theory and to study mechanisms associated with breakdown from laminar to turbulent flow. Three test cases are considered: two-dimensional Tollmien-Schlichting wave propagation, subharmonic instability breakdown, and oblique-wave break-down. The instability modes predicted by PSE theory are in good quantitative agreement with the DNS results, except a small discrepancy is evident in the mean-flow distortion component of the 2-D test problem. This discrepancy is attributed to far-field boundary- condition differences. Both DNS and PSE theory results show several modal discrepancies when compared with the experiments of subharmonic breakdown. Computations that allow for a small adverse pressure gradient in the basic flow and a variation of the disturbance frequency result in better agreement with the experiments.
Stabilization of hydrodynamic flows by small viscosity variations.
Govindarajan, Rama; L'vov, Victor S; Procaccia, Itamar; Sameen, A
2003-02-01
Motivated by the large effect of turbulent drag reduction by minute concentrations of polymers, we study the effects of a weakly space-dependent viscosity on the stability of hydrodynamic flows. In a recent paper [Phys. Rev. Lett. 87, 174501, (2001)], we exposed the crucial role played by a localized region where the energy of fluctuations is produced by interactions with the mean flow (the "critical layer"). We showed that a layer of a weakly space-dependent viscosity placed near the critical layer can have a very large stabilizing effect on hydrodynamic fluctuations, retarding significantly the onset of turbulence. In this paper we extend these observations in two directions: first we show that the strong stabilization of the primary instability is also obtained when the viscosity profile is realistic (inferred from simulations of turbulent flows with a small concentration of polymers). Second, we analyze the secondary instability (around the time-dependent primary instability) and find similar strong stabilization. Since the secondary instability develops around a time-dependent solution and is three dimensional, this brings us closer to the turbulent case. We reiterate that the large effect is not due to a modified dissipation (as is assumed in some theories of drag reduction), but due to reduced energy intake from the mean flow to the fluctuations. We propose that similar physics act in turbulent drag reduction.
Electronic and thermodynamic properties of layered Hf2Sfrom first-principles calculations
NASA Astrophysics Data System (ADS)
Nandadasa, Chandani; Yoon, Mina; Kim, Seong-Gon; Erwin, Steve; Kim, Sungho; Kim, Sung Wng; Lee, Kimoon
Theoretically we explored two stable phases of inorganic fullerene-like structure of the layered dihafnium sulfide (Hf2 S) . We investigated structural and electronic properties of the two phases of Hf2 S by using first-principles calculations. Our calculation identifies experimentally observed anti-NbS2 structure of Hf2 S . Our electronic calculation results indicate that the density of states of anti- NbS2 structure of Hf2 S at fermi level is less than that of the other phase of Hf2 S . To study the relative stability of different phases at finite temperature Helmholtz free energies of two phases are obtained using density functional theory and density functional perturbation theory. The free energy of the anti-NbS2 structure of Hf2 S always lies below the free energy of the other phase by confirming the most stable structure of Hf2 S . The phonon dispersion, phonon density of states including partial density of states and total density of states are obtained within density functional perturbation theory. Our calculated zero-pressure phonon dispersion curves confirm that the thermodynamic stability of Hf2 S structures. For further investigation of thermodynamic properties, the temperature dependency of thermal expansion, heat capacities at constant pressure and volume are evaluated within the quasiharmonic approximations (QHA).
Boundary-Layer Linear Stability Theory
1984-06-01
give aa aapllfieatloa rate that Is 151 too high. This ia an iaproveaeat over the 2D results, but »till net as good as the result obtsleed whoa only th...useful to say about the origin of turbulence, whi ch is inherently nonlinear. A good idea of the low repute of the theory can be gained by reading the...engineering studies of laminar flow control [see, e.g., Hefner and Bushnell ( 1979) ]. A good introduction to the complexities of transition and the
Kang, Joonhee; Han, Byungchan
2015-06-03
Using first-principles calculations, we study how to enhance thermal stability of high Ni compositional cathodes in Li-ion battery application. Using the archetype material LiNiO2 (LNO), we identify that ultrathin coating of Al2O3 (0001) on LNO(012) surface, which is the Li de-/intercalation channel, substantially improves the instability problem. Density functional theory calculations indicate that the Al2O3 deposits show phase transition from the corundum-type crystalline (c-Al2O3) to amorphous (a-Al2O3) structures as the number of coating layers reaches three. Ab initio molecular dynamic simulations on the LNO(012) surface coated by a-Al2O3 (about 0.88 nm) with three atomic layers oxygen gas evolution is strongly suppressed at T=400 K. We find that the underlying mechanism is the strong contacting force at the interface between LNO(012) and Al2O3 deposits, which, in turn, originated from highly ionic chemical bonding of Al and O at the interface. Furthermore, we identify that thermodynamic stability of the a-Al2O3 is even more enhanced with Li in the layer, implying that the protection for the LNO(012) surface by the coating layer is meaningful over the charging process. Our approach contributes to the design of innovative cathode materials with not only high-energy capacity but also long-term thermal and electrochemical stability applicable for a variety of electrochemical energy devices including Li-ion batteries.
NASA Astrophysics Data System (ADS)
Various papers on applied mathematics and mechanics are presented. Among the individual topics addressed are: dynamical systems with time-varying or unsteady structure, micromechanical modeling of creep rupture, forced vibrations of elastic sandwich plates with thick surface layers, postbuckling of a complete spherical shell under a line load, differential-geometric approach to the multibody system dynamics, stability of an oscillator with stochastic parametric excitation, identification strategies for crack-formation in rotors, identification of physical parameters of FEMs, impact model for elastic and partly plastic impacts on objects, varying delay and stability in dynamical systems. Also discussed are: parameter identification of a hybrid model for vibration analysis using the FEM, vibration behavior of a labyrinth seal with through-flow, similarities in the boundary layer of fiber composite materials, distortion parameter in shell theories, elastoplastic crack problem at finite strain, algorithm for computing effective stiffnesses of plates with periodic structure, plasticity of metal-matrix composites in a mixed stress-strain space formation, constitutive equations in directly formulated plate theories, microbuckling and homogenization for long fiber composites.
Multigrid direct numerical simulation of the whole process of flow transition in 3-D boundary layers
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining
1993-01-01
A new technology was developed in this study which provides a successful numerical simulation of the whole process of flow transition in 3-D boundary layers, including linear growth, secondary instability, breakdown, and transition at relatively low CPU cost. Most other spatial numerical simulations require high CPU cost and blow up at the stage of flow breakdown. A fourth-order finite difference scheme on stretched and staggered grids, a fully implicit time marching technique, a semi-coarsening multigrid based on the so-called approximate line-box relaxation, and a buffer domain for the outflow boundary conditions were all used for high-order accuracy, good stability, and fast convergence. A new fine-coarse-fine grid mapping technique was developed to keep the code running after the laminar flow breaks down. The computational results are in good agreement with linear stability theory, secondary instability theory, and some experiments. The cost for a typical case with 162 x 34 x 34 grid is around 2 CRAY-YMP CPU hours for 10 T-S periods.
Long-wave theory for a new convective instability with exponential growth normal to the wall.
Healey, J J
2005-05-15
A linear stability theory is presented for the boundary-layer flow produced by an infinite disc rotating at constant angular velocity in otherwise undisturbed fluid. The theory is developed in the limit of long waves and when the effects of viscosity on the waves can be neglected. This is the parameter regime recently identified by the author in a numerical stability investigation where a curious new type of instability was found in which disturbances propagate and grow exponentially in the direction normal to the disc, (i.e. the growth takes place in a region of zero mean shear). The theory describes the mechanisms controlling the instability, the role and location of critical points, and presents a saddle-point analysis describing the large-time evolution of a wave packet in frames of reference moving normal to the disc. The theory also shows that the previously obtained numerical solutions for numerically large wavelengths do indeed lie in the asymptotic long-wave regime, and so the behaviour and mechanisms described here may apply to a number of cross-flow instability problems.
NASA Astrophysics Data System (ADS)
Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios
2018-03-01
We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.
The Martian atmospheric planetary boundary layer stability, fluxes, spectra, and similarity
NASA Technical Reports Server (NTRS)
Tillman, James E.
1994-01-01
This is the first analysis of the high frequency data from the Viking lander and spectra of wind, in the Martian atmospheric surface layer, along with the diurnal variation of the height of the mixed surface layer, are calculated for the first time for Mars. Heat and momentum fluxes, stability, and z(sub O) are estimated for early spring, from a surface temperature model and from Viking Lander 2 temperatures and winds at 44 deg N, using Monin-Obukhov similarity theory. The afternoon maximum height of the mixed layer for these seasons and conditions is estimated to lie between 3.6 and 9.2 km. Estimations of this height is of primary importance to all models of the boundary layer and Martian General Circulation Models (GCM's). Model spectra for two measuring heights and three surface roughnesses are calculated using the depth of the mixed layer, and the surface layer parameters and flow distortion by the lander is also taken into account. These experiments indicate that z(sub O), probably lies between 1.0 and 3.0 cm, and most likely is closer to 1.0 cm. The spectra are adjusted to simulate aliasing and high frequency rolloff, the latter caused both by the sensor response and the large Kolmogorov length on Mars. Since the spectral models depend on the surface parameters, including the estimated surface temperature, their agreement with the calculated spectra indicates that the surface layer estimates are self consistent. This agreement is especially noteworthy in that the inertial subrange is virtually absent in the Martian atmosphere at this height, due to the large Kolmogorov length scale. These analyses extend the range of applicability of terrestrial results and demonstrate that it is possible to estimate the effects of severe aliasing of wind measurements, to produce a models which agree well with the measured spectra. The results show that similarity theory developed for Earth applies to Mars, and that the spectral models are universal.
NASA Astrophysics Data System (ADS)
Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.
2015-12-01
As micrometeorological research shifts to increasingly non-idealized environments, the lens through which we view classical atmospheric boundary layer theory must also shift to accommodate unfamiliar behavior. We present observations of katabatic flow over a steep (35.5 degree), alpine slope and draw comparisons with classical theory for nocturnal boundary layers (NBL) over flat terrain to delineate key physical differences and similarities. In both cases, the NBL is characterized by a strong, terrain-aligned thermal stratification. Over flat terrain, this temperature inversion tends to stabilize perturbations and suppresses vertical motions. Hence, the buoyancy term in the TKE budget equation acts as a sink. In contrast, the steep-slope katabatic flow regime is characterized by buoyant TKE production despite NBL thermal stratification. This buoyant TKE production occurs because streamwise (upslope) heat fluxes, which are typically treated as unimportant over flat terrain, contribute to the total vertical buoyancy flux since the gravity vector is not terrain-normal. Due to a relatively small number of observations over steep terrain, the turbulence structure of such flows and the implications of buoyant TKE production in the NBL have gone largely unexplored. As an important consequence of this characteristic, we show that conventional stability characterizations require careful coordinate system alignment and interpretation for katabatic flows. The streamwise heat fluxes play an integral role in characterizing stability and turbulent transport, more broadly, in katabatic flows. Therefore, multi-scale statistics and budget analyses describing physical interactions between turbulent fluxes at various scales are presented to interpret similarities and differences between the observations and classical theories regarding streamwise heat fluxes.
Duan, Haohong; Yan, Ning; Yu, Rong; Chang, Chun-Ran; Zhou, Gang; Hu, Han-Shi; Rong, Hongpan; Niu, Zhiqiang; Mao, Junjie; Asakura, Hiroyuki; Tanaka, Tsunehiro; Dyson, Paul Joseph; Li, Jun; Li, Yadong
2014-01-01
Despite significant advances in the fabrication and applications of graphene-like materials, it remains a challenge to prepare single-layered metallic materials, which have great potential applications in physics, chemistry and material science. Here we report the fabrication of poly(vinylpyrrolidone)-supported single-layered rhodium nanosheets using a facile solvothermal method. Atomic force microscope shows that the thickness of a rhodium nanosheet is <4 Å. Electron diffraction and X-ray absorption spectroscopy measurements suggest that the rhodium nanosheets are composed of planar single-atom-layered sheets of rhodium. Density functional theory studies reveal that the single-layered Rh nanosheet involves a δ-bonding framework, which stabilizes the single-layered structure together with the poly(vinylpyrrolidone) ligands. The poly(vinylpyrrolidone)-supported single-layered rhodium nanosheet represents a class of metallic two-dimensional structures that might inspire further fundamental advances in physics, chemistry and material science.
Solar Synthesis of PbS-SnS2 Superstructure Nanoparticles.
Brontvein, Olga; Albu-Yaron, Ana; Levy, Moshe; Feuerman, Daniel; Popovitz-Biro, Ronit; Tenne, Reshef; Enyashin, Andrey; Gordon, Jeffrey M
2015-08-25
We report the synthesis and supporting density-functional-theory computations for a closed-cage, misfit layered-compound superstructure from PbS-SnS2, generated by highly concentrated sunlight from a precursor mixture of Pb, SnS2, and graphite. The unique reactor conditions created in our solar furnace are found to be particularly conducive to the formation of these nanomaterials. Detailed structural and chemical characterization revealed a spontaneous inside-out formation mechanism, with a broad range of nonhollow fullerene-like structures starting at a diameter of ∼20 nm and a wall thickness of ∼5 layers. The computations also reveal a counterintuitive charge transfer pathway from the SnS2 layers to the PbS layers, which indicates that, in contrast to binary-layered compounds where it is principally van der Waals forces that hold the layers together, polar forces appear to be as important in stabilizing superstructures of misfit layered compounds.
Resonant triad in boundary-layer stability. Part 1: Fully nonlinear interaction
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
A first principles theory is developed to study the nonlinear spatial evolution of a near-resonance triad of instability waves in boundary layer transition. This triad consists of a plane wave at fundamental frequency and a pair of symmetrical, oblique waves at the subharmonic frequency. A low frequency, high Reynolds number asymptotic scaling leads to a distinct critical layer where nonlinearity first becomes important; the development of the triad's waves is determined by the critical layer's nonlinear, viscous dynamics. The resulting theory is fully nonlinear in that all nonlinearly generated oscillatory and nonoscillatory components are accounted for. The presence of the plane wave initially causes exponential of exponential growth of the oblique waves. However, the plane wave continues to follow the linear theory, even when the oblique waves' amplitude attains the same order of magnitude as that of the plane wave. A fully interactive stage then comes into effect when the oblique waves exceed a certain level compared to that of the plane wave. The oblique waves react back on the fundamental, slowing its growth rate. The oblique waves' saturation results from their self-interaction - a mechanism that does not require the presence of the plane wave. The oblique waves' saturation level is independent of their initial level, but decreases as the obliqueness angle increases.
Estimating amplitude ratios in boundary layer stability theory: a comparison between two approaches
NASA Astrophysics Data System (ADS)
Govindarajan, Rama; Narasimha, R.
2001-07-01
We first demonstrate that, if the contributions of higher-order mean flow are ignored, the parabolized stability equations (Bertolotti et al. 1992) and the ‘full’ non-parallel equation of Govindarajan & Narasimha (1995, hereafter GN95) are both equivalent to order R[minus sign]1 in the local Reynolds number R to Gaster's (1974) equation for the stability of spatially developing boundary layers. It is therefore of some concern that a detailed comparison between Gaster (1974) and GN95 reveals a small difference in the computed amplitude ratios. Although this difference is not significant in practical terms in Blasius flow, it is traced here to the approximation, in Gaster's method, of neglecting the change in eigenfunction shape due to flow non-parallelism. This approximation is not justified in the critical and the wall layers, where the neglected term is respectively O(R[minus sign]2/3) and O(R[minus sign]1) compared to the largest term. The excellent agreement of GN95 with exact numerical simulations, on the other hand, suggests that the effect of change in eigenfunction is accurately taken into account in that paper.
Stability Of Oscillatory Rotating-Disk Boundary Layers
NASA Astrophysics Data System (ADS)
Morgan, Scott; Davies, Christopher
2017-11-01
The rotating disk boundary layer has long been considered as an archetypal model for studying the stability of three-dimensional boundary-layer flows. It is one of the few truly three-dimensional configurations for which there is an exact similarity solution of the Navier-Stokes equations. Due to a crossflow inflexion point instability, the investigation of strategies for controlling the behaviour of disturbances that develop in the rotating disk flow may prove to be helpful for the identification and assessment of aerodynamical technologies that have the potential to maintain laminar flow over swept wings. We will consider the changes in the stability behaviour which arise when the base-flow is altered by imposing a periodic modulation in the rotation rate of the disk surface. Following similar work by Thomas et al., preliminary results indicate that this modification can lead to significant stabilising effects. Current work encompasses linearised DNS, complemented by a local in time analysis made possible by imposing an artificial frozen flow approximation. This is deployed together with a more exact global treatment based upon Floquet theory, which avoids the need for any simplification of the temporal dependency of the base-flow.
Sudden bending of cracked laminates
NASA Technical Reports Server (NTRS)
Sih, G. C.; Chen, E. P.
1980-01-01
A dynamic approximate laminated plate theory is developed with emphasis placed on obtaining effective solution for the crack configuration where the 1/square root of r stress singularity and the condition of plane strain are preserved. The radial distance r is measured from the crack edge. The results obtained show that the crack moment intensity tends to decrease as the crack length to laminate plate thickness is increased. Hence, a laminated plate has the desirable feature of stabilizing a through crack as it increases its length at constant load. Also, the level of the average load intensity transmitted to a through crack can be reduced by making the inner layers to be stiffer than the outer layers. The present theory, although approximate, is useful for analyzing laminate failure to crack propagation under dynamic load conditions.
Global instability in a laminar boundary layer perturbed by an isolated roughness element
NASA Astrophysics Data System (ADS)
Puckert, Dominik K.; Rist, Ulrich
2018-03-01
Roughness-induced boundary-layer instabilities are investigated by means of hot-film anemometry in a water channel to provide experimental evidence of a global instability. It is shown that the roughness wake dynamics depends on extrinsic disturbances (amplifier) at subcritical Reynolds numbers, whereas intrinsic, self-sustained oscillations (wavemaker) are suspected at supercritical Reynolds numbers. The critical Reynolds number, therefore, separates between two different instability mechanisms. Furthermore, the critical Reynolds number from recent theoretical results is successfully confirmed in this experiment, supporting the physical relevance of 3-d global stability theory.
Analysis of the instability underlying electrostatic suppression of the Leidenfrost state
NASA Astrophysics Data System (ADS)
Shahriari, Arjang; Das, Soumik; Bahadur, Vaibhav; Bonnecaze, Roger T.
2017-03-01
A liquid droplet on a hot solid can generate enough vapor to prevent its contact on the surface and reduce the rate of heat transfer, the so-called Leidenfrost effect. We show theoretically and experimentally that for a sufficiently high electrostatic potential on the droplet, the formation of the vapor layer is suppressed. The interplay of the destabilizing electrostatic force and stabilizing capillary force and evaporation determines the minimum or threshold voltage to suppress the Leidenfrost effect. Linear stability theory accurately predicts threshold voltages for different size droplets and varying temperatures.
The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid
NASA Astrophysics Data System (ADS)
Saunders, B. V.; Murray, B. T.; McFadden, G. B.; Coriell, S. R.; Wheeler, A. A.
1992-06-01
The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress-free boundaries is investigated using Floquet theory for the linear stability analysis. Situations for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double-diffusive convection are considered. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency. The response to modulation of the fundamental instability of the unmodulated system is described both analytically and numerically; in the double-diffusive system this mode persists under subcritical conditions as a high-frequency lobe.
The effect of gravity modulation on thermosolutal convection in an infinite layer of fluid
NASA Technical Reports Server (NTRS)
Saunders, B. V.; Murray, B. T.; Mcfadden, G. B.; Coriell, S. R.; Wheeler, A. A.
1992-01-01
The effect of time-periodic vertical gravity modulation on the onset of thermosolutal convection in an infinite horizontal layer with stress-free boundaries is investigated using Floquet theory for the linear stability analysis. Situations for which the fluid layer is stably stratified in either the fingering or diffusive regimes of double-diffusive convection are considered. Results are presented both with and without steady background acceleration. Modulation may stabilize an unstable base solution or destabilize a stable base solution. In addition to synchronous and subharmonic response to the modulation frequency, instability in the double diffusive system can occur via a complex conjugate mode. In the diffusive regime, where oscillatory onset occurs in the unmodulated system, regions of resonant instability occur and exhibit strong coupling with the unmodulated oscillatory frequency. The response to modulation of the fundamental instability of the unmodulated system is described both analytically and numerically; in the double-diffusive system this mode persists under subcritical conditions as a high-frequency lobe.
Quantum Chemical Study of Water Adsorption on the Surfaces of SrTiO3 Nanotubes.
Bandura, Andrei V; Kuruch, Dmitry D; Evarestov, Robert A
2015-07-20
We have studied the adsorption of water molecules on the inner and outer surfaces of nanotubes generated by rolling (001) layers of SrTiO3 cubic crystals. The stability and the atomic and electronic structures of the adsorbed layers are determined by using hybrid density functional theory. The absorption energy and the preferred adsorbate structure are essentially governed by the nature of the surface of the nanotube. Dissociative adsorption prevails on the outer nanotube surfaces. The stability of the adsorbed layers on the inner surfaces is related to the possibility of the formation of hydrogen bonds between water molecules and surface oxygen atoms, and depends on the surface curvature. The presence of water molecules on the inner surface of the nanotubes leads to an increase of the electronic band gap. Externally TiO2 -terminated nanotubes could be used for the photocatalytic decomposition of water by ultraviolet radiation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stabilization of Hypersonic Boundary Layers by Linear and Nonlinear Optimal Perturbations
NASA Technical Reports Server (NTRS)
Paredes, Pedro; Choudhari, Meelan M.; Li, Fei
2017-01-01
The effect of stationary, finite-amplitude, linear and nonlinear optimal perturbations on the modal disturbance growth in a Mach 6 axisymmetric flow over a 7 deg. half-angle cone with 0:126 mm nose radius and 0:305 m length is investigated. The freestream parameters (M = 6, Re(exp 1) = 18 x 10(exp. 6) /m) are selected to match the flow conditions of a previous experiment in the VKI H3 hypersonic tunnel. Plane-marching parabolized stability equations are used in conjunction with a partial-differential equation based planar eigenvalue analysis to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode and first-mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone; however, subharmonic first-mode instabilities, which are destabilized by the presence of the streaks, do reach N = 6 near the end of the cone. The highest stabilization is observed at streak amplitudes of approximately 20 percent of the freestream velocity. Because the use of initial disturbance profiles based on linear optimal growth theory may yield suboptimal control in the context of nonlinear streaks, the computational predictions are extended to nonlinear optimal growth theory. Results show that by using nonlinearly optimal perturbation leads to slightly enhanced stabilization of plane Mack mode disturbances as well as reduced destabilization of subharmonic first-mode disturbances.
Nonlinear stability of non-stationary cross-flow vortices in compressible boundary layers
NASA Technical Reports Server (NTRS)
Gajjar, J. S. B.
1995-01-01
The nonlinear evolution of long wavelength non-stationary cross-flow vortices in a compressible boundary layer is investigated and the work extends that of Gajjar (1994) to flows involving multiple critical layers. The basic flow profile considered in this paper is that appropriate for a fully three-dimensional boundary layer with O(1) Mach number and with wall heating or cooling. The governing equations for the evolution of the cross-flow vortex are obtained and some special cases are discussed. One special case includes linear theory where exact analytic expressions for the growth rate of the vortices are obtained. Another special case is a generalization of the Bassom & Gajjar (1988) results for neutral waves to compressible flows. The viscous correction to the growth rate is derived and it is shown how the unsteady nonlinear critical layer structure merges with that for a Haberman type of viscous critical layer.
Vertical Structure of Heat and Momentum Transport in the Urban Surface Layer
NASA Astrophysics Data System (ADS)
Hrisko, J.; Ramamurthy, P.
2017-12-01
Vertical transport of heat and momentum during convective periods is investigated in the urban surface layer using eddy covariance measurements at 5 levels. The Obukhov length is used to divide the dataset into distinct stability regimes: weakly unstable, unstable and very unstable. Our preliminary analysis indicates critical differences in the transport of heat and momentum as the instability increases. Particularly, during periods of increased instability the vertical heat flux deviates from surface layer similarity theory. Further analysis of primary quadrant sweeps and ejections also indicate deviations from the theory, alluding that ejections dominate during convective periods for heat transport, but equally contribute with sweeps for momentum transport. The transport efficiencies of momentum at all 5 levels uniformly decreases as the instability increases, in stark contrast the heat transport efficiencies increase non-linearly as the instability increases. Collectively, these results demonstrate the breakdown of similarity theory during convective periods, and reaffirm that revised and improved methods for characterizing heat and momentum transport in urban areas is needed. These implications could ultimately advance weather prediction and estimation of scalar transport for urban areas susceptible to weather hazards and large amounts of pollution.
Most-Critical Transient Disturbances in an Incompressible Flat-Plate Boundary Layer
NASA Astrophysics Data System (ADS)
Monschke, Jason; White, Edward
2015-11-01
Transient growth is a linear disturbance growth mechanism that plays a key role in roughness-induced boundary-layer transition. It occurs when superposed stable, non-orthogonal continuous spectrum modes experience algebraic disturbance growth followed by exponential decay. Algebraic disturbance growth can modify the basic state making it susceptible to secondary instabilities rapidly leading to transition. Optimal disturbance theory was developed to model the most-dangerous disturbances. However, evidence suggests roughness-induced transient growth is sub-optimal yet leads to transition earlier than optimal theory suggests. This research computes initial disturbances most unstable to secondary instabilities to further develop the applicability of transient growth theory to surface roughness. The main approach is using nonlinear adjoint optimization with solutions of the parabolized Navier-Stokes and BiGlobal stability equations. Two objective functions were considered: disturbance kinetic energy growth and sinuous instability growth rate. The first objective function was used as validation of the optimization method. Counter-rotating streamwise vortices located low in the boundary layer maximize the sinuous instability growth rate. The authors would like to acknowledge NASA and the AFOSR for funding this work through AFOSR Grant FA9550-09-1-0341.
A Review of Hypersonic Boundary Layer Stability Experiments in a Quiet Mach 6 Wind Tunnel
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.
1997-01-01
Three recent experimental studies of transition on cones with adverse pressure gradient produced by a flared afterbody and with the additive stability modifiers of wall cooling, angle of attack and bluntness are reviewed. All tests were conducted in a quiet Mach 6 wind tunnel. The dominant instability was found to be the second mode. For the cases examined with linear stability theory, the N factors at mode saturation were in the range of 8.5 to 11. Evidence of a combined second-mode/Gortler transition process was found. Mean, rms and spectral freestream data for the quiet facility is presented and the role of low frequency freestream noise is discussed.
Linear Rayleigh-Taylor instability in an accelerated Newtonian fluid with finite width
NASA Astrophysics Data System (ADS)
Piriz, S. A.; Piriz, A. R.; Tahir, N. A.
2018-04-01
The linear theory of Rayleigh-Taylor instability is developed for the case of a viscous fluid layer accelerated by a semi-infinite viscous fluid, considering that the top interface is a free surface. Effects of the surface tensions at both interfaces are taken into account. When viscous effects dominate on surface tensions, an interplay of two mechanisms determines opposite behaviors of the instability growth rate with the thickness of the heavy layer for an Atwood number AT=1 and for sufficiently small values of AT. In the former case, viscosity is a less effective stabilizing mechanism for the thinnest layers. However, the finite thickness of the heavy layer enhances its viscous effects that, in general, prevail on the viscous effects of the semi-infinite medium.
Emergent Interfacial Ferromagnetism in CaMnO3-based Superlattices
NASA Astrophysics Data System (ADS)
Grutter, Alexander
2014-03-01
Interfaces of complex oxide materials provide a rich playground not only for the exploration of properties not found in the bulk constituents but also for the development of functional interfaces to be incorporated in spintronic applications. Emergent interfacial magnetic phenomena have been of great interest but surprisingly there have been few examples of emergent interfacial ferromagnetism. In this talk, I will describe our recent work on the stabilization of ferromagnetism in CaMnO3-based superlattices. We have demonstrated ferromagnetism at the interface between the antiferromagnetic insulator CaMnO3 and a paramagnetic metallic layer, including CaRuO3 and LaNiO3. Theoretically the ferromagnetism has been attributed to an interfacial double exchange interaction among the interfacial Mn ions that is mediated by itinerant electrons from the paramagnetic metallic layer. Through polarized neutron reflectivity and observation of exchange bias, we have demonstrated that the ferromagnetism comes from Mn ions in a single unit cell at the interfaces just as theory has predicted. We have also demonstrated that the metallicity of the paramagnetic layer is critical in stabilizing ferromagnetism at the interface and that the interfacial ferromagnetism can be suppressed by suppressing the metallicity of the paramagnetic layer. Despite the agreement with theory, there remain open questions as to the magnetic interactions among the interfacial ferromagnetic layers. For example, the saturated magnetic moment modulates as a function of the thickness of both the CaMnO3 and paramagnetic metal layers. The origins of this oscillation are not well understood and may stem from either structural effects or long-range oscillatory magnetic coupling interactions reminiscent of RKKY interactions. Evidence of the doubling of the unit cell and long range antiferromagnetic correlations support these speculations. This work was supported by the U.S. Department of Energy, Office of Science, Division of Materials Sciences and Engineering, under Contract # DE-AC05-76RL01830 and DE-SC0008505.
NASA Astrophysics Data System (ADS)
Gürbüz, E.; Cahangirov, S.; Durgun, E.; Ciraci, S.
2017-11-01
Further to planar single-layer hexagonal structures, GaN and AlN can also form free-standing, single-layer structures constructed from squares and octagons. We performed an extensive analysis of dynamical and thermal stability of these structures in terms of ab initio finite-temperature molecular dynamics and phonon calculations together with the analysis of Raman and infrared active modes. These single-layer square-octagon structures of GaN and AlN display directional mechanical properties and have wide, indirect fundamental band gaps, which are smaller than their hexagonal counterparts. These density functional theory band gaps, however, increase and become wider upon correction. Under uniaxial and biaxial tensile strain, the fundamental band gaps decrease and can be closed. The electronic and magnetic properties of these single-layer structures can be modified by adsorption of various adatoms, or by creating neutral cation-anion vacancies. The single-layer structures attain magnetic moment by selected adatoms and neutral vacancies. In particular, localized gap states are strongly dependent on the type of vacancy. The energetics, binding, and resulting electronic structure of bilayer, trilayer, and three-dimensional (3D) layered structures constructed by stacking the single layers are affected by vertical chemical bonds between adjacent layers. In addition to van der Waals interaction, these weak vertical bonds induce buckling in planar geometry and enhance their binding, leading to the formation of stable 3D layered structures. In this respect, these multilayers are intermediate between van der Waals solids and wurtzite crystals, offering a wide range of tunability.
Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow
NASA Technical Reports Server (NTRS)
Choudhari, Meelan; Duck, Peter W.
1996-01-01
We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.
Segregation and trapping of oxygen vacancies near the SrTiO 3Σ3 (112) [110] tilt grain boundary
Liu, Bin; Cooper, Valentino R.; Zhang, Yanwen; ...
2015-03-21
In nanocrystalline materials, structural discontinuities at grain boundaries (GBs) and the segregation of point defects to these GBs play a key role in defining the structural stability of a material, as well as its macroscopic electrical/mechanical properties. In this study, the segregation of oxygen vacancies near the Σ3 (1 1 2) [¯110] tilt GB in SrTiO 3 is explored using density functional theory. We find that oxygen vacancies segregate toward the GB, preferring to reside within the next nearest-neighbor layer. This oxygen vacancy segregation is found to be crucial for stabilizing this tilt GB. Furthermore, we find that the migrationmore » barriers of oxygen vacancies diffusing toward the first nearest-neighbor layer of the GB are low, while those away from this layer are very high. Furthermore, the segregation and trapping of the oxygen vacancies in the first nearest-neighbor layer of GBs are attributed to the large local distortions, which can now accommodate the preferred sixfold coordination of Ti. These results suggest that the electronic, transport, and capacitive properties of SrTiO 3 can be engineered through the control of GB structure and grain size or layer thickness.« less
Guo, Bingkun; Kong, Qingyu; Zhu, Ying; Mao, Ya; Wang, Zhaoxiang; Wan, Meixiang; Chen, Liquan
2011-12-23
Current lithium-ion battery (LIB) technologies are all based on inorganic electrode materials, though organic materials have been used as electrodes for years. Disadvantages such as limited thermal stability and low specific capacity hinder their applications. On the other hand, the transition metal oxides that provide high lithium-storage capacity by way of electrochemical conversion reaction suffer from poor cycling stability. Here we report a novel high-performance, organic, lithium-storage material, a polypyrrole-cobalt-oxygen (PPy-Co-O) coordination complex, with high lithium-storage capacity and excellent cycling stability. Extended X-ray absorption fine structure and Raman spectroscopy and other physical and electrochemical characterizations demonstrate that this coordination complex can be electrochemically fabricated by cycling PPy-coated Co(3)O(4) between 0.0 V and 3.0 V versus Li(+)/Li. Density functional theory (DFT) calculations indicate that each cobalt atom coordinates with two nitrogen atoms within the PPy-Co coordination layer and the layers are connected with oxygen atoms between them. Coordination weakens the C-H bonds on PPy and makes the complex a novel lithium-storage material with high capacity and high cycling stability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Qiang; Chattopadhyay, Aditi
2000-06-01
Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.
NASA Technical Reports Server (NTRS)
Srokowski, A. J.
1994-01-01
The computer program SALLY was developed to compute the incompressible linear stability characteristics and integrate the amplification rates of boundary layer disturbances on swept and tapered wings. For some wing designs, boundary layer disturbance can significantly alter the wing performance characteristics. This is particularly true for swept and tapered laminar flow control wings which incorporate suction to prevent boundary layer separation. SALLY should prove to be a useful tool in the analysis of these wing performance characteristics. The first step in calculating the disturbance amplification rates is to numerically solve the compressible laminar boundary-layer equation with suction for the swept and tapered wing. A two-point finite-difference method is used to solve the governing continuity, momentum, and energy equations. A similarity transformation is used to remove the wall normal velocity as a boundary condition and place it into the governing equations as a parameter. Thus the awkward nonlinear boundary condition is avoided. The resulting compressible boundary layer data is used by SALLY to compute the incompressible linear stability characteristics. The local disturbance growth is obtained from temporal stability theory and converted into a local growth rate for integration. The direction of the local group velocity is taken as the direction of integration. The amplification rate, or logarithmic disturbance amplitude ratio, is obtained by integration of the local disturbance growth over distance. The amplification rate serves as a measure of the growth of linear disturbances within the boundary layer and can serve as a guide in transition prediction. This program is written in FORTRAN IV and ASSEMBLER for batch execution and has been implemented on a CDC CYBER 70 series computer with a central memory requirement of approximately 67K (octal) of 60 bit words. SALLY was developed in 1979.
NASA Astrophysics Data System (ADS)
Tatsuuma, Misako; Michikoshi, Shugo; Kokubo, Eiichiro
2018-03-01
Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. It has recently been proposed that they can grow as porous aggregates when their monomer radius is smaller than ∼10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability (GI) of this dust layer. To evaluate the disk stability, we calculate Toomre’s stability parameter Q, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the GI using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength α ≲ 10‑5. If the dust-to-gas ratio is increased twice, the GI occurs for α ≲ 10‑4. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle.
Salorinne, Kirsi; Malola, Sami; Wong, O Andrea; Rithner, Christopher D; Chen, Xi; Ackerson, Christopher J; Häkkinen, Hannu
2016-01-21
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of (1)H and (13)C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications.
Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle
Salorinne, Kirsi; Malola, Sami; Wong, O. Andrea; Rithner, Christopher D.; Chen, Xi; Ackerson, Christopher J.; Häkkinen, Hannu
2016-01-01
Inorganic nanoparticles, stabilized by a passivating layer of organic molecules, form a versatile class of nanostructured materials with potential applications in material chemistry, nanoscale physics, nanomedicine and structural biology. While the structure of the nanoparticle core is often known to atomic precision, gaining precise structural and dynamical information on the organic layer poses a major challenge. Here we report a full assignment of 1H and 13C NMR shifts to all ligands of a water-soluble, atomically precise, 102-atom gold nanoparticle stabilized by 44 para-mercaptobenzoic acid ligands in solution, by using a combination of multidimensional NMR methods, density functional theory calculations and molecular dynamics simulations. Molecular dynamics simulations augment the data by giving information about the ligand disorder and visualization of possible distinct ligand conformations of the most dynamic ligands. The method demonstrated here opens a way to controllable strategies for functionalization of ligated nanoparticles for applications. PMID:26791253
Aspect ratio effects on limited scrape-off layer plasma turbulence
NASA Astrophysics Data System (ADS)
Jolliet, Sébastien; Halpern, Federico D.; Loizu, Joaquim; Mosetto, Annamaria; Ricci, Paolo
2014-02-01
The drift-reduced Braginskii model describing turbulence in the tokamak scrape-off layer is written for a general magnetic configuration with a limiter. The equilibrium is then specified for a circular concentric magnetic geometry retaining aspect ratio effects. Simulations are then carried out with the help of the global, flux-driven fluid three-dimensional code GBS [Ricci et al., Plasma Phys. Controlled Fusion 54, 124047 (2012)]. Linearly, both simulations and simplified analytical models reveal a stabilization of ballooning modes. Nonlinearly, flux-driven nonlinear simulations give a pressure characteristic length whose trends are correctly captured by the gradient removal theory [Ricci and Rogers, Phys. Plasmas 20, 010702 (2013)], that assumes the profile flattening from the linear modes as the saturation mechanism. More specifically, the linear stabilization of ballooning modes is reflected by a 15% increase in the steady-state pressure gradient obtained from GBS nonlinear simulations when going from an infinite to a realistic aspect ratio.
Secondary instability of high-speed flows and the influence of wall cooling and suction
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1992-01-01
The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two dimensional first mode or second mode wave makes the resulting base flow susceptible to a broadband spanwise-periodic three dimensional type of instability. The principal parametric resonance of this instability (subharmonic) was analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical nature of the subharmonic secondary instability are assessed for both a first mode and a second mode primary wave. Results indicate that the secondary subharmonic instability of the insulated wall boundary layer is weakened as Mach number increases. Cooling of the wall destabilizes the secondary subharmonic of a second mode primary wave, but stabilizes it when the primary wave is a first mode. Suction stabilizes the secondary subharmonic at all Mach numbers.
NASA Astrophysics Data System (ADS)
Problems in applied mathematics and mechanics are addressed in reviews and reports. Areas covered are vibration and stability, elastic and plastic mechanics, fluid mechanics, the numerical treatment of differential equations (general theory and finite-element methods in particular), optimization, decision theory, stochastics, actuarial mathematics, applied analysis and mathematical physics, and numerical analysis. Included are major lectures on separated flows, the transition regime of rarefied-gas dynamics, recent results in nonlinear elasticity, fluid-elastic vibration, the new computer arithmetic, and unsteady wave propagation in layered elastic bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.
In this paper, we model laboratory earthquakes in a biaxial shear apparatus using the Shear-Transformation-Zone (STZ) theory of dense granular flow. The theory is based on the observation that slip events in a granular layer are attributed to grain rearrangement at soft spots called STZs, which can be characterized according to principles of statistical physics. We model lab data on granular shear using STZ theory and document direct connections between the STZ approach and rate-and-state friction. We discuss the stability transition from stable shear to stick-slip failure and show that stick slip is predicted by STZ when the applied shearmore » load exceeds a threshold value that is modulated by elastic stiffness and frictional rheology. Finally, we also show that STZ theory mimics fault zone dilation during the stick phase, consistent with lab observations.« less
Thermoelectric properties of single-layered SnSe sheet.
Wang, Fancy Qian; Zhang, Shunhong; Yu, Jiabing; Wang, Qian
2015-10-14
Motivated by the recent study of inspiring thermoelectric properties in bulk SnSe [Zhao et al., Nature, 2014, 508, 373] and the experimental synthesis of SnSe sheets [Chen et al., J. Am. Chem. Soc., 2013, 135, 1213], we have carried out systematic calculations for a single-layered SnSe sheet focusing on its stability, electronic structure and thermoelectric properties by using density functional theory combined with Boltzmann transport theory. We have found that the sheet is dynamically and thermally stable with a band gap of 1.28 eV, and the figure of merit (ZT) reaches 3.27 (2.76) along the armchair (zigzag) direction with optimal n-type carrier concentration, which is enhanced nearly 7 times compared to its bulk counterpart at 700 K due to quantum confinement effect. Furthermore, we designed four types of thermoelectric couples by assembling single-layered SnSe sheets with different transport directions and doping types, and found that their efficiencies are all above 13%, which are higher than those of thermoelectric couples made of commercial bulk Bi2Te3 (7%-8%), suggesting the great potential of single-layered SnSe sheets for heat-electricity conversion.
Segregation and Migration of the Oxygen Vacancies in the 3 (111) Tilt Grain Boundaries of Ceria
Yuan, Fenglin; Liu, Bin; Zhang, Yanwen; ...
2016-03-01
In nanocrystalline materials, defect-grain boundary (GB) interaction plays a key role in determining the structure stability, as well as size-dependent ionic, electronic, magnetic and chemical properties. In this study, we systematically investigated using density functional theory segregation and migration of oxygen vacancies at the Σ3 [110] / (111) grain boundary of ceria. Three oxygen layers near the GB are predicted to be segregation sites for oxygen vacancies. Moreover, the presence of oxygen vacancies stabilizes this tilt GB at a low Fermi level and/or oxygen poor conditions. An atomic strain model was proposed to rationalize layer dependency of the relaxation energymore » for +2 charged oxygen vacancy. The structural origin of large relaxation energies at layers 1 and 2 was determined to be free-volume space that induces ion relaxation towards the GB. Our results not only pave the way for improving the oxygen transport near GBs of ceria, but also provide important insights into engineering the GB structure for better ionic, magnetic and chemical properties of nanocrystalline ceria.« less
Stability of parallel electroosmotic flow subject to an axial modulated electric field
NASA Astrophysics Data System (ADS)
Suresh, Vinod; Homsy, George
2001-11-01
The stability of parallel electroosmotic flow in a micro-channel subjected to an AC electric field is studied. A spatially uniform time harmonic electric field is applied along the length of a two-dimensional micro-channel containing a dilute electrolytic solution, resulting in a time periodic parallel flow. The top and bottom walls of the channel are maintained at constant potential. The base state ion concentrations and double layer potential are determined using the Poisson-Boltzmann equation in the Debye-Hückel approximation. Experiments by other workers (Santiago et. al., unpublished) have shown that such a system can exhibit instabilities that take the form of mixing motion occurring in the bulk flow outside the double layer. It is shown that such instabilities can potentially result from the coupling of disturbances in the ion concentrations or electric potential to the base state velocity or ion concentrations, respectively. The stability boundary of the system is determined using Floquet theory and its dependence on the modulation frequency and amplitude of the axial electric field is studied.
Predicting the stability of a compressible periodic parallel jet flow
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.
1996-01-01
It is known that mixing enhancement in compressible free shear layer flows with high convective Mach numbers is difficult. One design strategy to get around this is to use multiple nozzles. Extrapolating this design concept in a one dimensional manner, one arrives at an array of parallel rectangular nozzles where the smaller dimension is omega and the longer dimension, b, is taken to be infinite. In this paper, the feasibility of predicting the stability of this type of compressible periodic parallel jet flow is discussed. The problem is treated using Floquet-Bloch theory. Numerical solutions to this eigenvalue problem are presented. For the case presented, the interjet spacing, s, was selected so that s/omega =2.23. Typical plots of the eigenvalue and stability curves are presented. Results obtained for a range of convective Mach numbers from 3 to 5 show growth rates omega(sub i)=kc(sub i)/2 range from 0.25 to 0.29. These results indicate that coherent two-dimensional structures can occur without difficulty in multiple parallel periodic jet nozzles and that shear layer mixing should occur with this type of nozzle design.
Receptivity of the Boundary Layer to Vibrations of the Wing Surface
NASA Astrophysics Data System (ADS)
Bernots, Tomass; Ruban, Anatoly; Pryce, David; Laminar Flow Control UK Group Team
2014-11-01
In this work we study generation of Tollmien-Schlichting (T-S) waves in the boundary layer due to elastic vibrations of the wing surface. The flow is investigated based on the asymptotic analysis of the Navier-Stokes equations at large values of the Reynolds number. It is assumed that in the spectrum of the wing vibrations there is a harmonic which comes in resonance with the T-S wave on the lower branch of the stability curve. It was found that the vibrations of the wing surface produce pressure perturbations in the flow outside the boundary layer which can be calculated with the help of the piston theory. As the pressure perturbations penetrate into the boundary layer, a Stokes layer forms on the wing surface which appears to be influenced significantly by the compressibility of the flow, and is incapable of producing the T-S waves. The situation changes when the Stokes layer encounters an roughness; near which the flow is described using the triple-deck theory. The solution of the triple-deck problem can be found in an analytic form. Our main concern is with the flow behaviour downstream of the roughness and, in particular, with the amplitude of the generated Tollmien-Schlichting waves. This research was performed in the Laminar Flow Control Centre (LFC-UK) at Imperial College London. The centre is supported by EPSRC, Airbus UK and EADS Innovation Works.
Long-Wavelength Rupturing Instability in Surface-Tension-Driven Benard Convection
NASA Technical Reports Server (NTRS)
Swift, J. B.; Hook, Stephen J. Van; Becerril, Ricardo; McCormick, W. D.; Swinney, H. L.; Schatz, Michael F.
1999-01-01
A liquid layer with a free upper surface and heated from below is subject to thermocapillary-induced convective instabilities. We use very thin liquid layers (0.01 cm) to significantly reduce buoyancy effects and simulate Marangoni convection in microgravity. We observe thermocapillary-driven convection in two qualitatively different modes, short-wavelength Benard hexagonal convection cells and a long-wavelength interfacial rupturing mode. We focus on the long-wavelength mode and present experimental observations and theoretical analyses of the long-wavelength instability. Depending on the depths and thermal conductivities of the liquid and the gas above it, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. Linear stability theory gives good agreement to the experimental measurements of onset as long as sidewall effects are taken into account. Nonlinear theory correctly predicts the subcritical nature of the bifurcation and the selection between the dry spot and high spots.
Unsteady viscous effects in the flow over an oscillating surface. [mathematical model
NASA Technical Reports Server (NTRS)
Lerner, J. I.
1972-01-01
A theoretical model for the interaction of a turbulent boundary layer with an oscillating wavy surface over which a fluid is flowing is developed, with an application to wind-driven water waves and to panel flutter in low supersonic flow. A systematic methodology is developed to obtain the surface pressure distribution by considering separately the effects on the perturbed flow of a mean shear velocity profile, viscous stresses, the turbulent Reynolds stresses, compressibility, and three-dimensionality. The inviscid theory is applied to the wind-water wave problem by specializing to traveling-wave disturbances, and the pressure magnitude and phase shift as a function of the wave phase speed are computed for a logarithmic mean velocity profile and compared with inviscid theory and experiment. The results agree with experimental evidence for the stabilization of the panel motion due to the influence of the unsteady boundary layer.
Lane, S; Marsiglio, F; Zhi, Y; Meldrum, A
2015-02-20
Fluorescent-core microcapillaries (FCMs) present a robust basis for the application of optical whispering gallery modes toward refractometric sensing. An important question concerns whether these devices can be rendered insensitive to local temperature fluctuations, which may otherwise limit their refractometric detection limits, mainly as a result of thermorefractive effects. Here, we first use a standard cylindrical cavity formalism to develop the refractometric and thermally limited detection limits for the FCM structure. We then measure the thermal response of a real device with different analytes in the channel and compare the result to the theory. Good stability against temperature fluctuations was obtained for an ethanol solvent, with a near-zero observed thermal shift for the transverse magnetic modes. Similarly good results could in principle be obtained for any other solvent (e.g., water), if the thickness of the fluorescent layer can be sufficiently well controlled.
Stochastic modeling of mode interactions via linear parabolized stability equations
NASA Astrophysics Data System (ADS)
Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo
2017-11-01
Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2014-01-01
Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.
Stability and electronic properties of low-dimensional nanostructures
NASA Astrophysics Data System (ADS)
Guan, Jie
As the devices used in daily life become smaller and more concentrated, traditional three-dimensional (3D) bulk materials have reached their limit in size. Low-dimensional nanomaterials have been attracting more attention in research and getting widely applied in many industrial fields because of their atomic-level size, unique advanced properties, and varied nanostructures. In this thesis, I have studied the stability and mechanical and electronic properties of zero-dimensional (0D) structures including carbon fullerenes, nanotori, metallofullerenes and phosphorus fullerenes, one-dimensional (1D) structures including carbon nanotubes and phosphorus nanotubes, as well as two-dimensional (2D) structures including layered transition metal dichalcogenides (TMDs), phosphorene and phosphorus carbide (PC). I first briefly introduce the scientific background and the motivation of all the work in this thesis. Then the computational techniques, mainly density functional theory (DFT), are reviewed in Chapter 2. In Chapter 3, I investigate the stability and electronic structure of endohedral rare-earth metallofullerene La C60 and the trifluoromethylized La C60(CF3)n with n ≤ 5. Odd n is preferred due to the closed-shell electronic configuration or large HOMO-LUMO gap, which is also meaningful for the separation of C 60-based metallofullerenes. Mechanical and electronic properties of layered materials including TMDs and black phosphorus are studied in Chapter 4 and 5. In Chapter 4, a metallic NbSe2/semiconducting WSe2 bilayer is investigated and besides a rigid band shift associated with charge transfer, the presence of NbSe2 does not modify the electronic structure of WSe2. Structural similarity and small lattice mismatch results in the heterojunction being capable of efficiently transferring charge acrossthe interface. In Chapter 5, I investigate the dependence of stability and electronic band structure on the in-layer strain in bulk black phosphorus. In Chapters 6, 7 and 8, novel 2D structures are predicted theoretically. In Chapter 6, I propose two new stable structural phases of layered phosphorus besides the layered alpha-P (black) and beta-P (blue) phosphorus allotropes. A metal-insulator transition caused by inlayer strain or changing the number of layers is found in the new gamma-P phase. An unforeseen benefit is the possibility to connect different structural phases at no energy cost, which further leads to a paradigm of constructing very stable, faceted phosphorus nanotube and fullerene structures by laterally joining nanoribbons or patches of different planar phosphorene phases, which is discussed in Chapter 7. In Chapter 8, I propose previously unknown allotropes of PC in the stable shape of an atomically thin layer. Different stable geometries, which result from the competition between sp2 bonding found in graphitic C and sp3 bonding found in black P, display different electronic properties including metallic, semi-metallic with an anisotropic Dirac cone, and direct-gap semiconductors with their gap tunable by in-layer strain. In Chapter 9, I propose a fast method to determine the local curvature in 2D systems with arbitrary shape. The curvature information, combined with elastic constants obtained for a planar system, provides an accurate estimate of the local stability in the framework of continuum elasticity theory. This approach can be applied to all 2D structures. Finally, I present general conclusions from the PhD Thesis work in Chapter 10.
Disturbance functions of the Goertler instability on an airfoil
NASA Technical Reports Server (NTRS)
Dagenhart, J. R.; Mangalam, S. M.
1986-01-01
Goertler vortices arise in boundary layers along concave surfaces due to centrifugal effects. This paper presents some results of an experiment conducted to study the development of these vortices on an airfoil with a pressure gradient in the concave region where an attached laminar boundary layer was insured with suction through a perforated panel. A sublimating chemical technique was used to visualize Goertler vortices and the velocity field was measured by laser velocimetry. Experimental disturbance functions are compared with those predicted by the linear stability theory. The trend of vortex amplification in the concave zone and damping in the following convex region is shown to essentially follow the theoretical predictions.
Magnons in a honeycomb ferromagnet
NASA Astrophysics Data System (ADS)
Banerjee, Saikat
The original discovery of the Dirac electron dispersion in graphene led naturally to the question of Dirac cone stability with respect to interactions, and the Coulomb interaction between electrons was shown to induce a logarithmic renormalization of the Dirac dispersion. With the rapid expansion of the list of Dirac fermion compounds, the concept of bosonic Dirac materials has emerged. At the single particle level, these materials closely resemble the fermionic counterparts. However, the changed particle statistics affects the stability of Dirac cones differently. Here we study the effect of interactions focusing on the honeycomb ferromagnet - where the quasi-particles are magnetic spin waves (magnons). We demonstrate that magnon-magnon interactions lead to a significant renormalization of the bare band structure. We also address the question of the edge and surface states for a finite system. We applied these results to ferromagnetic CrBr3, where the Cr3+ atoms are arranged in weakly coupled honeycomb layers. Our theory qualitatively accounts for the unexplained anomalies in neutron scattering data from 40 years ago for CrBr3 and hereby expand the theory of ferromagnets beyond the standard Dyson theory.
Casillas-Trujillo, Luis; Xu, H.; McMurray, Jake W.; ...
2016-07-06
In the present work, we have used density functional theory (DFT) and DFT+U to investigate the crystal structure and phase stability of four model compounds in the Ln 2O 3-UO 2-UO 3 ternary oxide system: La2UO 6, Ce 2UO 6, LaUO 4, CeUO 4, due to the highly-correlated nature of the f-electrons in uranium. We have considered both hypothetical ordered compounds and compounds in which the cations randomly occupy atomic sites in a fluorite-like lattice. We determined that ordered compounds are stable and are energetically favored compared to disordered configurations, though the ordering tendencies are weak. To model and analyzemore » the structures of these complex oxides, we have used supercells based on a layered atomic model. In the layer model, the supercell is composed of alternating planes of anions and cations. We have considered two different ordering motifs for the cations, namely single species (isoatomic) cation layers versus mixed species cation layers. Energy differences between various ordered cationic arrangements were found to be small. This may have implications regarding radiation stability, since cationic arrangements should be able to change under irradiation with little cost in energy.« less
Ahn, Yong Nam; Lee, Sung Hoon; Lee, Goo Soo; Kim, Hyunbin
2017-08-02
Quaternary ammoniums are cations having widespread use in organic electrolytes for high performance electrochemical double layer capacitors (EDLCs) due to their various advantages such as high electrochemical stability and inexpensive production cost. However, the decomposition of quaternary ammoniums via Hofmann elimination hinders their applications for EDLCs operating at elevated temperatures. This study systematically investigates the reactivity of four different quaternary ammoniums (tetraethyl-, triethylmethyl-, diethyldimethyl-, and trimethylethyl-ammonium) in EDLC by utilizing density functional theory calculations and Brownian dynamics simulations complemented with molecular dynamics simulations. It is found that ammonium stability reduces upon increasing the number of ethyl branches that have a stronger positive charge than the methyl groups. However, the contribution of the entropy change to the reaction free energy makes trimethylethylammonium less stable than diethyldimethylammonium at room temperature although the former has less ethyl branches than the latter. Trimethylethylammonium becomes the most stable at a high temperature of 488 K above which the activation free energy becomes effectively negligible and thus the number of reactive sites determines the overall stability. The fundamental understanding of the ammonium decompositions through Hofmann elimination demonstrated in this study is expected to contribute to developing new long-life organic electrolyte systems for high-temperature applications.
Point defect stability in a semicoherent metallic interface
NASA Astrophysics Data System (ADS)
González, C.; Iglesias, R.; Demkowicz, M. J.
2015-02-01
We present a comprehensive density functional theory (DFT) -based study of different aspects of one vacancy and He impurity atom behavior at semicoherent interfaces between the low-solubility transition metals Cu and Nb. Such interfaces have not been previously modeled using DFT. A thorough analysis of the stability and mobility of the two types of defects at the interfaces and neighboring internal layers has been performed and the results have been compared to the equivalent cases in the pure metallic matrices. The different behavior of fcc and bcc metals on both sides of the interface has been specifically assessed. The modeling effort undertaken is the first attempt to study the stability and defect energetics of noncoherent Cu/Nb interfaces from first principles, in order to assess their potential use in radiation-resistant materials.
Flight-measured laminar boundary-layer transition phenomena including stability theory analysis
NASA Technical Reports Server (NTRS)
Obara, C. J.; Holmes, B. J.
1985-01-01
Flight experiments were conducted on a single-engine turboprop aircraft fitted with a 92-in-chord, 3-ft-span natural laminar flow glove at glove section lift coefficients from 0.15 to 1.10. The boundary-layer transition measurement methods used included sublimating chemicals and surface hot-film sensors. Transition occurred downstream of the minimum pressure point. Hot-film sensors provided a well-defined indication of laminar, laminar-separation, transitional, and turbulent boundary layers. Theoretical calculations of the boundary-layer parameters provided close agreement between the predicted laminar-separation point and the measured transition location. Tollmien-Schlichting (T-S) wave growth n-factors between 15 and 17 were calculated at the predicted point of laminar separation. These results suggest that for many practical airplane cruise conditions, laminar separation (as opposed to T-S instability) is the major cause of transition in predominantly two-dimensional flows.
NASA Astrophysics Data System (ADS)
Mokhtar, N. F. M.; Khalid, I. K.; Siri, Z.; Ibrahim, Z. B.; Gani, S. S. A.
2017-10-01
The influences of feedback control and internal heat source on the onset of Rayleigh-Bénard convection in a horizontal nanofluid layer is studied analytically due to Soret and Dufour parameters. The confining boundaries of the nanofluid layer (bottom boundary-top boundary) are assumed to be free-free, rigid-free, and rigid-rigid, with a source of heat from below. Linear stability theory is applied, and the eigenvalue solution is obtained numerically using the Galerkin technique. Focusing on the stationary convection, it is shown that there is a positive thermal resistance in the presence of feedback control on the onset of double-diffusive convection, while there is a positive thermal efficiency in the existence of internal heat generation. The possibilities of suppress or augment of the Rayleigh-Bénard convection in a nanofluid layer are also discussed in detail.
Real-Gas Effects on Binary Mixing Layers
NASA Technical Reports Server (NTRS)
Okong'o, Nora; Bellan, Josette
2003-01-01
This paper presents a computational study of real-gas effects on the mean flow and temporal stability of heptane/nitrogen and oxygen/hydrogen mixing layers at supercritical pressures. These layers consist of two counterflowing free streams of different composition, temperature, and density. As in related prior studies reported in NASA Tech Briefs, the governing conservation equations were the Navier-Stokes equations of compressible flow plus equations for the conservation of total energy and of chemical- species masses. In these equations, the expressions for heat fluxes and chemical-species mass fluxes were derived from fluctuation-dissipation theory and incorporate Soret and Dufour effects. Similarity equations for the streamwise velocity, temperature, and mass fractions were derived as approximations to the governing equations. Similarity profiles showed important real-gas, non-ideal-mixture effects, particularly for temperature, in departing from the error-function profile, which is the similarity solution for incompressible flow. The temperature behavior was attributed to real-gas thermodynamics and variations in Schmidt and Prandtl numbers. Temporal linear inviscid stability analyses were performed using the similarity and error-function profiles as the mean flow. For the similarity profiles, the growth rates were found to be larger and the wavelengths of highest instability shorter, relative to those of the errorfunction profiles and to those obtained from incompressible-flow stability analysis. The range of unstable wavelengths was found to be larger for the similarity profiles than for the error-function profiles
Passive control of coherent structures in a modified backwards-facing step flow
NASA Astrophysics Data System (ADS)
Ormonde, Pedro C.; Cavalieri, André V. G.; Silva, Roberto G. A. da; Avelar, Ana C.
2018-05-01
We study a modified backwards-facing step flow, with the addition of two different plates; one is a baseline, impermeable plate and the second a perforated one. An experimental investigation is carried out for a turbulent reattaching shear layer downstream of the two plates. The proposed setup is a model configuration to study how the plate characteristics affect the separated shear layer and how turbulent kinetic energies and large-scale coherent structures are modified. Measurements show that the perforated plate changes the mean flow field, mostly by reducing the intensity of reverse flow close to the bottom wall. Disturbance amplitudes are significantly reduced up to five step heights downstream of the trailing edge of the plate, more specifically in the recirculation region. A loudspeaker is then used to introduce phase-locked, low-amplitude perturbations upstream of the plates, and phase-averaged measurements allow a quantitative study of large-scale structures in the shear-layer. The evolution of such coherent structures is evaluated in light of linear stability theory, comparing the eigenfunction of the Kelvin-Helmholtz mode to the experimental results. We observe a close match of linear-stability eigenfunctions with phase-averaged amplitudes for the two tested Strouhal numbers. The perforated plate is found to reduce the amplitude of the Kelvin-Helmholtz coherent structures in comparison to the baseline, impermeable plate, a behavior consistent with the predicted amplification trends from linear stability.
Surface-stabilized gold nanocatalysts
Dai, Sheng [Knoxville, TN; Yan, Wenfu [Oak Ridge, TN
2009-12-08
A surface-stabilized gold nanocatalyst includes a solid support having stabilizing surfaces for supporting gold nanoparticles, and a plurality of gold nanoparticles having an average particle size of less than 8 nm disposed on the stabilizing surfaces. The surface-stabilized gold nanocatalyst provides enhanced stability, such as at high temperature under oxygen containing environments. In one embodiment, the solid support is a multi-layer support comprising at least a first layer having a second layer providing the stabilizing surfaces disposed thereon, the first and second layer being chemically distinct.
Influences of Atmospheric Stability State on Wind Turbine Aerodynamic Loadings
NASA Astrophysics Data System (ADS)
Vijayakumar, Ganesh; Lavely, Adam; Brasseur, James; Paterson, Eric; Kinzel, Michael
2011-11-01
Wind turbine power and loadings are influenced by the structure of atmospheric turbulence and thus on the stability state of the atmosphere. Statistical differences in loadings with atmospheric stability could impact controls, blade design, etc. Large-eddy simulation (LES) of the neutral and moderately convective atmospheric boundary layer (NBL, MCBL) are used as inflow to the NREL FAST advanced blade-element momentum theory code to predict wind turbine rotor power, sectional lift and drag, blade bending moments and shaft torque. Using horizontal homogeneity, we combine time and ensemble averages to obtain converged statistics equivalent to ``infinite'' time averages over a single turbine. The MCBL required longer effective time periods to obtain converged statistics than the NBL. Variances and correlation coefficients among wind velocities, turbine power and blade loadings were higher in the MCBL than the NBL. We conclude that the stability state of the ABL strongly influences wind turbine performance. Supported by NSF and DOE.
Dynamic Processes at the Outer Boundary of the Magnetosphere, Including Coupling to the Ionosphere
1994-04-15
numerical simulation, of the stability of laminar flow in the equatorial LLBL in the presence of coupling to the ionosphere and associated nonuniform ...L.C. Laec Theory of inaperfcs eto lhreio s1w dependenceors dependenceon theelecio precpittion associated coupling. GeV*li. Res. Lair ... nonuniform magnetic field, the nonuniformity being created by electic currents that connect the plasma in the layer to two conducting plates which
Linear tearing mode stability equations for a low collisionality toroidal plasma
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2009-01-01
Tearing mode stability is normally analysed using MHD or two-fluid Braginskii plasma models. However for present, or future, large hot tokamaks like JET or ITER the collisionality is such as to place them in the banana regime. Here we develop a linear stability theory for the resonant layer physics appropriate to such a regime. The outcome is a set of 'fluid' equations whose coefficients encapsulate all neoclassical physics: the neoclassical Ohm's law, enhanced ion inertia, cross-field transport of particles, heat and momentum all play a role. While earlier treatments have also addressed this type of neoclassical physics we differ in incorporating the more physically relevant 'semi-collisional fluid' regime previously considered in cylindrical geometry; semi-collisional effects tend to screen the resonant surface from the perturbed magnetic field, preventing reconnection. Furthermore we also include thermal physics, which may modify the results. While this electron description is of wide relevance and validity, the fluid treatment of the ions requires the ion banana orbit width to be less than the semi-collisional electron layer. This limits the application of the present theory to low magnetic shear—however, this is highly relevant to the sawtooth instability—or to colder ions. The outcome of the calculation is a set of one-dimensional radial differential equations of rather high order. However, various simplifications that reduce the computational task of solving these are discussed. In the collisional regime, when the set reduces to a single second-order differential equation, the theory extends previous work by Hahm et al (1988 Phys. Fluids 31 3709) to include diamagnetic-type effects arising from plasma gradients, both in Ohm's law and the ion inertia term of the vorticity equation. The more relevant semi-collisional regime pertaining to JET or ITER, is described by a pair of second-order differential equations, extending the cylindrical equations of Drake et al (1983 Phys. Fluids 26 2509) to toroidal geometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
NASA Astrophysics Data System (ADS)
Khalid, Izzati Khalidah; Mokhtar, Nor Fadzillah Mohd; Bakri, Nur Amirah; Siri, Zailan; Ibrahim, Zarina Bibi; Gani, Siti Salwa Abd
2017-11-01
The onset of oscillatory magnetoconvection for an infinite horizontal nanofluid layer subjected to Soret effect and internal heat source heated from below is examined theoretically with the implementation of linear stability theory. Two important properties that are thermophoresis and Brownian motion are included in the model and three types of lower-upper bounding systems of the model: rigid-rigid, rigid-free as well as free-free boundaries are examined. Eigenvalue equations are gained from a normal mode analysis and executed using Galerkin technique. Magnetic field effect, internal heat source effect, Soret effect and other nanofluid parameters on the oscillatory convection are presented graphically. For oscillatory mode, it is found that the effect of internal heat source is quite significant for small values of the non-dimensional parameter and elevating the internal heat source speed up the onset of convection. Meanwhile, the increasing of the strength of magnetic field in a nanofluid layer reduced the rate of thermal instability and sustain the stabilization of the system. For the Soret effect, the onset of convection in the system is accelerated when the values of the Soret effect is increased.
Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ2, Q = Se, Te.
Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama; Assoud, Abdeljalil; Bieringer, Mario; Kleinke, Holger
2017-12-12
A few thallium based layered chalcogenides of α-NaFeO 2 structure-type are known for their excellent thermoelectric properties and interesting topological insulator nature. TlScQ 2 belongs to this structural category. In the present work, we have studied the electronic structure, electrical and thermal transport properties and thermal stability of the title compounds within the temperature range 2-600 K. Density functional theory (DFT) predicts a metallic nature for TlScTe 2 and a semiconducting nature for TlScSe 2 . DFT calculations also show significant lowering of energies of frontier bands upon inclusion of spin-orbit coupling contribution in the calculation. The electronic structure also shows the simultaneous occurrence of holes and electron pockets for the telluride. Experiments reveal that the telluride shows a semi-metallic behaviour whereas the selenide is a semiconductor. The thermoelectric properties for both the materials were also investigated. Both these materials possess very low thermal conductivity which is an attractive feature for thermoelectrics. However, they lack thermal stability and decompose upon warming above room temperature, as evidenced from high temperature powder X-ray diffraction and thermal analysis.
Distributed-Roughness Effects on Stability and Transition In Swept-Wing Boundary Layers
NASA Technical Reports Server (NTRS)
Carrillo, Ruben B., Jr.; Reibert, Mark S.; Saric, William S.
1997-01-01
Boundary-layer stability experiments are conducted in the Arizona State University Unsteady Wind Tunnel on a 45 deg swept airfoil. The pressure distribution and test conditions are designed to suppress Tollmien-Schlichting disturbances and provide crossflow-dominated transition. The surface of the airfoil is finely polished to a near mirror finish. Under these conditions, submicron surface irregularities cause the naturally occurring stationary crossflow waves to grow to nonuniform amplitudes. Spanwise-uniform stationary crossflow disturbances are generated through careful control of the initial conditions with full-span arrays of micron-high roughness elements near the attachment line. Detailed hot-wire measurements are taken to document the stationary crossflow structure and determine growth rates for the total and individual-mode disturbances. Naphthalene flow visualization provides transition location information. Roughness spacing and roughness height are varied to examine the effects on transition location and all amplified wavelengths. The measurements show that roughness spacings that do not contain harmonics equal to the most unstable wavelength as computed by linear stability theory effectively suppress the most unstable mode. Under certain conditions, subcritical roughness spacing delays transition past that of the corresponding smooth surface.
Enhanced magnetic anisotropies of single transition-metal adatoms on a defective MoS2 monolayer.
Cong, W T; Tang, Z; Zhao, X G; Chu, J H
2015-03-23
Single magnetic atoms absorbed on an atomically thin layer represent the ultimate limit of bit miniaturization for data storage. To approach the limit, a critical step is to find an appropriate material system with high chemical stability and large magnetic anisotropic energy. Here, on the basis of first-principles calculations and the spin-orbit coupling theory, it is elucidated that the transition-metal Mn and Fe atoms absorbed on disulfur vacancies of MoS2 monolayers are very promising candidates. It is analysed that these absorption systems are of not only high chemical stabilities but also much enhanced magnetic anisotropies and particularly the easy magnetization axis is changed from the in-plane one for Mn to the out-of-plane one for Fe by a symmetry-lowering Jahn-Teller distortion. The results point out a promising direction to achieve the ultimate goal of single adatomic magnets with utilizing the defective atomically thin layers.
NASA Astrophysics Data System (ADS)
Zhou, Ming De; Liu, Tian Shu
The effects of heat pulses from surface-mounted wires on the laminar boundary-layer flow on an 800 x 300 x 32-mm flat wooden plate with a 6:1 elliptical nose are investigated experimentally in the 1.5 x 0.3-m working section of the DFVLR-AVA Goettingen low-turbulence wind tunnel at maximum free-stream velocity 45 m/s and longitudinal turbulence intensity about 0.05 percent. The results of flow visualization and hot-film measurements are presented in extensive graphs and photographs and analyzed. It is found that the initial amplification of disturbances is accurately predicted by two-dimensional linear stability theory, even when the disturbances include significant three-dimensional components. Subharmonic paths to turbulence are shown to begin from lower initial-disturbance fluctuation levels or at lower Reynolds numbers than predicted by the 'K' mechanism (Klebanoff et al., 1962), and the oblique wave angles at which maximum amplification occurs are seen as consistent with the resonant triad model of Craik (1971).
NASA Astrophysics Data System (ADS)
Park, Si-Hyun; Park, Yeonsang; Jeon, Heonsu
2003-08-01
We have investigated theoretically the transverse mode stabilization mechanism in oxide-confined concave-micromirror-capped vertical-cavity surface-emitting lasers (CMC-VCSELs) as reported by Park et al. [Appl. Phys. Lett. 80, 183 (2002)]. From detailed numerical calculations on a model CMC-VCSEL structure, we found that mode discrimination factors appear to be periodic in the micromirror layer thickness with a periodicity of λ/2. We also found that there are two possible concave micromirror structures for the fundamental transverse mode laser operation. These structures can be grouped according to the thickness of the concave micromirror layer: whether it is an integer or a half-integer multiple of λ/2. The optimal micromirror curvature radius differs accordingly for each case. In an optimally designed CMC-VCSEL model structure, the fundamental transverse mode can be favored as much as 4, 8, and 13 times more strongly than the first, second, and third excited modes, respectively.
Observations of two-dimensional monolayer zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahoo, Trilochan, E-mail: trilochansahoo@gmail.com; Nayak, Sanjeev K.; Chelliah, Pandian
2016-03-15
Highlights: • Synthesis of planer ZnO nanostructure. • Observation of multilayered and monolayer ZnO. • DFT calculation of (10-10), (11-20) and (0 0 0 1) planes of ZnO. • Stability of non-polar (10-10) and (11-20) planes of ZnO. - Abstract: This letter reports the observations of planar two-dimensional ZnO synthesized using the hydrothermal growth technique. High-resolution transmission electron microscopy revealed the formation of a two-dimensional honeycomb lattice and aggregated structures of layered ZnO. The nonpolar (10-10) and (11-20) planes were present in the X-ray diffraction patterns, but the characteristic (0 0 0 1) peak of bulk ZnO was absent. Themore » study found that nonpolar freestanding ZnO structures composed of a single or few layers may be more stable and may have a higher probability of formation than their polar counterparts. The stability of the nonpolar two-dimensional hexagonal ZnO slabs is supported by density functional theory studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Fuentes, C.; Gallardo, R. A., E-mail: rodolfo.gallardo@usm.cl; Landeros, P.
2015-10-05
An analytical model for studying the stability of a single domain ferromagnetic layer under the influence of a spin-polarized current is presented. The theory is applied to bias-field-free nano-oscillators with perpendicular anisotropy, which allows to obtain a polarizer-angle vs. current phase diagram that describes the stability of magnetic states. Explicit formulae for the critical current densities unveil the influence of the relative orientation between free and polarizer layers, allowing the emergence of precessional steady-states, and also the possibility to reduce the magnitude of the threshold current density to produce microwave oscillations. It is shown that oscillating steady-states arise in amore » broad angular region, and the dependence of their boundaries is fully specified by the model. The reliability of the analytical results has been corroborated by comparison to numerical calculations. Such structures are currently under intense research because of remarkable properties offering new prospects for microwave applications in communication technologies.« less
Studies of heat source driven natural convection
NASA Technical Reports Server (NTRS)
Kulacki, F. A.; Nagle, M. E.; Cassen, P.
1974-01-01
Natural convection energy transport in a horizontal layer of internally heated fluid with a zero heat flux lower boundary, and an isothermal upper boundary, has been studied. Quantitative information on the time-mean temperature distribution and the fluctuating component of temperature about the mean temperature in steady turbulent convection are obtained from a small thermocouple inserted into the layer through the upper bounding plate. Data are also presented on the development of temperature at several vertical positions when the layer is subject to both a sudden increase and to a sudden decrease in power input. For changes of power input from zero to a value corresponding to a Rayleigh number much greater than the critical linear stability theory value, a slight hysteresis in temperature profiles near the upper boundary is observed between the heat-up and cool-down modes.
Trends in the thermodynamic stability of ultrathin supported oxide films
Plessow, Philipp N.; Bajdich, Michal; Greene, Joshua; ...
2016-05-05
The formation of thin oxide films on metal supports is an important phenomenon, especially in the context of strong metal support interaction (SMSI). Computational predictions of the stability of these films are hampered by their structural complexity and a varying lattice mismatch with different supports. In this study, we report a large combination of supports and ultrathin oxide films studied with density functional theory (DFT). Trends in stability are investigated through a descriptor-based analysis. Since the studied films are bound to the support exclusively through metal–metal interaction, the adsorption energy of the oxide-constituting metal atom can be expected to bemore » a reasonable descriptor for the stability of the overlayers. If the same supercell is used for all supports, the overlayers experience different amounts of stress. Using supercells with small lattice mismatch for each system leads to significantly improved scaling relations for the stability of the overlayers. Finally, this approach works well for the studied systems and therefore allows the descriptor-based exploration of the thermodynamic stability of supported thin oxide layers.« less
Multigrid methods for flow transition in three-dimensional boundary layers with surface roughness
NASA Technical Reports Server (NTRS)
Liu, Chaoqun; Liu, Zhining; Mccormick, Steve
1993-01-01
The efficient multilevel adaptive method has been successfully applied to perform direct numerical simulations (DNS) of flow transition in 3-D channels and 3-D boundary layers with 2-D and 3-D isolated and distributed roughness in a curvilinear coordinate system. A fourth-order finite difference technique on stretched and staggered grids, a fully-implicit time marching scheme, a semi-coarsening multigrid method associated with line distributive relaxation scheme, and an improved outflow boundary-condition treatment, which needs only a very short buffer domain to damp all order-one wave reflections, are developed. These approaches make the multigrid DNS code very accurate and efficient. This allows us not only to be able to do spatial DNS for the 3-D channel and flat plate at low computational costs, but also to do spatial DNS for transition in the 3-D boundary layer with 3-D single and multiple roughness elements, which would have extremely high computational costs with conventional methods. Numerical results show good agreement with the linear stability theory, the secondary instability theory, and a number of laboratory experiments. The contribution of isolated and distributed roughness to transition is analyzed.
NASA Astrophysics Data System (ADS)
Farajpour, M. R.; Shahidi, A. R.; Farajpour, A.
2018-03-01
In this study, the buckling behavior of a three-layered composite nanoplate reinforced with shape memory alloy (SMA) nanowires is examined. Whereas the upper and lower layers are reinforced with typical nanowires, SMA nanoscale wires are used to strengthen the middle layer of the system. The composite nanoplate is assumed to be under the action of biaxial compressive loading. A scale-dependent mathematical model is presented with the consideration of size effects within the context of the Eringen’s nonlocal continuum mechanics. Using the one-dimensional Brinson’s theory and the Kirchhoff theory of plates, the governing partial differential equations of SMA nanowire-reinforced hybrid nanoplates are derived. Both lateral and longitudinal deflections are taken into consideration in the theoretical formulation and method of solution. In order to reduce the governing differential equations to their corresponding algebraic equations, a discretization approach based on the differential quadrature method is employed. The critical buckling loads of the hybrid nanosystem with various boundary conditions are obtained with the use of a standard eigenvalue solver. It is found that the stability response of SMA composite nanoplates is strongly sensitive to the small scale effect.
Similarity theory of the buoyantly interactive planetary boundary layer with entrainment
NASA Technical Reports Server (NTRS)
Hoffert, M. I.; Sud, Y. C.
1976-01-01
A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.
NASA Astrophysics Data System (ADS)
O'Neill, M. E.; Chavas, D. R.
2017-12-01
In f-plane numerical simulations and analytical theory, tropical cyclones completely recycle their exhausted outflow air back into the boundary layer. This low-angular momentum air must experience cyclonic torque at the sea surface for cyclone to reach equilibrium. On Earth, however, it is not clear that tropical cyclones recycle all of the outflow air in a closed secondary circulation, and strong asymmetric outflow-jet interactions suggest that much of the air may be permanently evacuated from the storm over its lifetime. The fraction of outflow air that is returned to the near-storm boundary layer is in part a function of the environmental inertial stability, which controls the size and strength of the upper anticyclone. We run a suite of idealized axisymmetric tropical cyclone simulations at constant latitude while varying the outer domain's inertial stability profile. Fixing the latitude allows the gradient wind balance of the storm core to remain constant except for changes due to the far environment. By varying both the outer inertial stability and its location with respect to the Rossby radius of deformation, we show how the tropical cyclone's area-of-influence is controlled by the nature and strength of the upper anticyclone. Parcel tracking additionally demonstrates the likelihood of outflow air parcels to be quickly re-consumed by the secondary circulation as a function of inertial stability. These experiments demonstrate the sensitivity of the tropical cyclone's secondary circulation, typically assumed to be closed, to the dynamics of the far environment.
NASA Technical Reports Server (NTRS)
Weng, Fuzhong
1992-01-01
A theory is developed for discretizing the vector integro-differential radiative transfer equation including both solar and thermal radiation. A complete solution and boundary equations are obtained using the discrete-ordinate method. An efficient numerical procedure is presented for calculating the phase matrix and achieving computational stability. With natural light used as a beam source, the Stokes parameters from the model proposed here are compared with the analytical solutions of Chandrasekhar (1960) for a Rayleigh scattering atmosphere. The model is then applied to microwave frequencies with a thermal source, and the brightness temperatures are compared with those from Stamnes'(1988) radiative transfer model.
NASA Astrophysics Data System (ADS)
Zhang, Wenshu; Hu, Huijun; Zhang, Caili; Li, Jianguo; Li, Yuping; Ling, Lixia; Han, Peide
2017-12-01
Based on the density functional theory, the structural stability and optical properties of undoped and Y (Y = Al, B, Si and Ti)-doped ZnO nano thin films are investigated. The good stability of the films based on the ZnO (0 0 0 1) can be obtained when the layer is larger than 12. Moreover, the dielectric function, refractive index, absorption, and reflectivity of doped ZnO nano thin films have been analyzed in detail. In the visible light range, the values of ZnO films from 12 to 24 layers are all smaller than those of the bulk. And with the augment of the layers, the values keep increasing. All the results signify that the nano film of 12 layers possesses the lowest reflectivity and weakest absorption. In addition, there is an evident impact of some doped element on the properties of nano films. The absorption and reflectivity of Ti, Si-doped ZnO nano thin films are higher than those of the clean films, while Al, B-doped are lower, especially B-doped. Moreover, the conductivity of the doped structure is better than that of the bulk. Thus, the B-doped ZnO nano thin films could be potential candidate materials of transparent conductive films.
Wrinkle-stabilized metal-graphene hybrid fibers with zero temperature coefficient of resistance.
Fang, Bo; Xi, Jiabin; Liu, Yingjun; Guo, Fan; Xu, Zhen; Gao, Weiwei; Guo, Daoyou; Li, Peigang; Gao, Chao
2017-08-24
The interfacial adhesion between graphene and metals is poor, as metals tend to generate superlubricity on smooth graphene surface. This problem renders the free assembly of graphene and metals to be a big challenge, and therefore, some desired conducting properties (e.g., stable metal-like conductivities in air, lightweight yet flexible conductors, and ultralow temperature coefficient of resistance, TCR) likely being realized by integrating the merits of graphene and metals remains at a theoretical level. This work proposes a wrinkle-stabilized approach to address the poor adhesion between graphene surface and metals. Cyclic voltammetry (CV) tests and theoretical analysis by Scharifker-Hills models demonstrate that multiscale wrinkles effectively induce nucleation of metal particles, locking in metal nuclei and guiding the continuous growth of metal islands in an instantaneous model on rough graphene surface. The universality and practicability of the wrinkle-stabilized approach is verified by our investigation through the electrodeposition of nine kinds of metals on graphene fibers (GF). The strong interface bonding permits metal-graphene hybrid fibers to show metal-level conductivities (up to 2.2 × 10 7 S m -1 , a record high value for GF in air), reliable weatherability and favorable flexibility. Due to the negative TCR of graphene and positive TCR of metals, the TCR of Cu- and Au-coated GFs reaches zero at a wide temperature range (15 K-300 K). For this layered model, the quantitative analysis by classical theories demonstrates the suitable thickness ratio of graphene layer and metal layer to achieve zero TCR to be 0.2, agreeing well with our experimental results. This wrinkle-stabilized approach and our theoretical analysis of zero-TCR behavior of the graphene-metal system are conducive to the design of high-performance conducting materials based on graphene and metals.
Jeon, Sunbin; Jung, Hyunchul; Kim, Sung Hyun; Lee, Ki Bong
2018-06-18
CO 2 capture using polyethyleneimine (PEI)-impregnated silica adsorbents has been receiving a lot of attention. However, the absence of physical stability (evaporation and leaching of amine) and chemical stability (urea formation) of the PEI-impregnated silica adsorbent has been generally established. Therefore, in this study, a double-layer impregnated structure, developed using modified PEI, is newly proposed to enhance the physical and chemical stabilities of the adsorbent. Epoxy-modified PEI and diepoxide-cross-linked PEI were impregnated via a dry impregnation method in the first and second layers, respectively. The physical stability of the double-layer structured adsorbent was noticeably enhanced when compared to the conventional adsorbents with a single layer. In addition to the enhanced physical stability, the result of simulated temperature swing adsorption cycles revealed that the double-layer structured adsorbent presented a high potential working capacity (3.5 mmol/g) and less urea formation under CO 2 -rich regeneration conditions. The enhanced physical and chemical stabilities as well as the high CO 2 working capacity of the double-layer structured adsorbent were mainly attributed to the second layer consisting of diepoxide-cross-linked PEI.
New-class of Semiconducting 2D materials: Tin Dichalcogenides (SnX2)
NASA Astrophysics Data System (ADS)
Ataca, Can; Wu, Kedi; Saritas, Kayahan; Tongay, Sefaattin; Grossman, Jeffrey C.
2015-03-01
Recent studies have focused on a new generation of atomically thin films of semiconducting materials. A broad family of two-dimensional (2D) semiconducting transition metal dichalcogenides (MX2) have been fabricated and investigated in monolayer, bilayer and few layer form. In this work, we investigated the electronic, optical and elastic properties of single and few layer and bulk SnX2 (X = S, Se) both theoretically and experimentally. Using density functional theory (DFT) we carried out stability analysis through phonon and electronic, optical and elastic structure calculations. Single-few layer SnX2s are mechanically exfoliated and Raman and photoluminescence (PL) measurements are taken. UV-Vis absorption spectrum together with PL measurements and DFT calculations yield an indirect gap of ~ 2.5 eV for SnS2 structures (bulk). Tunability of the energy band gap and indirect-direct gap transitions are investigated by controlling the number of layers and applied stress. Lowering the number of layers decreases the indirect gap (0.1-0.3 eV), but indirect-direct gap transition occurs when layer-layer distance is reduced. Due to flexibility in engineering the electronic and optical properties, SnX2 compounds are promising materials for future optoelectronic nanoscale applications.
Transonic Symposium: Theory, Application, and Experiment, volume 1, part 2
NASA Technical Reports Server (NTRS)
Foughner, Jerome T., Jr. (Compiler)
1989-01-01
In order to assess the state of the art in transonic flow disciplines and to glimpse at future directions, NASA-Langley held a Transonic Symposium. Emphasis was placed on steady, three dimensional external, transonic flow and its simulation, both numerically and experimentally. The symposium included technical sessions on wind tunnel and flight experiments; computational fluid dynamic applications; inviscid methods and grid generation; viscous methods and boundary layer stability; and wind tunnel techniques and wall interference. This, being volume 1, is unclassified.
An effective method to screen sodium-based layered materials for sodium ion batteries
NASA Astrophysics Data System (ADS)
Zhang, Xu; Zhang, Zihe; Yao, Sai; Chen, An; Zhao, Xudong; Zhou, Zhen
2018-03-01
Due to the high cost and insufficient resource of lithium, sodium-ion batteries are widely investigated for large-scale applications. Typically, insertion-type materials possess better cyclic stability than alloy-type and conversion-type ones. Therefore, in this work, we proposed a facile and effective method to screen sodium-based layered materials based on Materials Project database as potential candidate insertion-type materials for sodium ion batteries. The obtained Na-based layered materials contains 38 kinds of space group, which reveals that the credibility of our screening approach would not be affected by the space group. Then, some important indexes of the representative materials, including the average voltage, volume change and sodium ion mobility, were further studied by means of density functional theory computations. Some materials with extremely low volume changes and Na diffusion barriers are promising candidates for sodium ion batteries. We believe that our classification algorithm could also be used to search for other alkali and multivalent ion-based layered materials, to accelerate the development of battery materials.
Understanding Defect-Stabilized Noncovalent Functionalization of Graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.
2015-09-01
The noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The findings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. The structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogen bonding with terminalmore » hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. These results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less
Understanding Defect-Stabilized Noncovalent Functionalization of Graphene
Zhou, Hua; Uysal, Ahmet; Anjos, Daniela M.; ...
2015-09-01
For the noncovalent functionalization of graphene by small molecule aromatic adsorbates, phenanthrenequinone (PQ), is investigated systematically by combining electrochemical characterization, high-resolution interfacial X-ray scattering, and ab initio density functional theory calculations. The fi ndings in this study reveal that while PQ deposited on pristine graphene is unstable to electrochemical cycling, the prior introduction of defects and oxygen functionality (hydroxyl and epoxide groups) to the basal plane by exposure to atomic radicals (i.e., oxygen plasma) effectively stabilizes its noncovalent functionalization by PQ adsorption. Moreover, the structure of adsorbed PQ molecules resembles the graphene layer stacking and is further stabilized by hydrogenmore » bonding with terminal hydroxyl groups that form at defect sites within the graphene basal plane. The stabilized PQ/graphene interface demonstrates persistent redox activity associated with proton-coupled-electron-transfer reactions. The resultant PQ adsorbed structure is essentially independent of electrochemical potentials. Finally, these results highlight a facile approach to enhance functionalities of the otherwise chemically inert graphene using noncovalent interactions.« less
Analysis of Instabilities in Non-Axisymmetric Hypersonic Boundary Layers Over Cones
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.
2010-01-01
Hypersonic flows over circular cones constitute one of the most important generic configurations for fundamental aerodynamic and aerothermodynamic studies. In this paper, numerical computations are carried out for Mach 6 flows over a 7-degree half-angle cone with two different flow incidence angles and a compression cone with a large concave curvature. Instability wave and transition-related flow physics are investigated using a series of advanced stability methods ranging from conventional linear stability theory (LST) and a higher-fidelity linear and nonlinear parabolized stability equations (PSE), to the 2D eigenvalue analysis based on partial differential equations. Computed N factor distribution pertinent to various instability mechanisms over the cone surface provides initial assessments of possible transition fronts and a guide to corresponding disturbance characteristics such as frequency and azimuthal wave numbers. It is also shown that strong secondary instability that eventually leads to transition to turbulence can be simulated very efficiently using a combination of advanced stability methods described above.
Stabilization of Inviscid Vortex Sheets
NASA Astrophysics Data System (ADS)
Protas, Bartosz; Sakajo, Takashi
2017-11-01
In this study we investigate the problem of stabilizing inviscid vortex sheets via feedback control. Such models, expressed in terms of the Birkhoff-Rott equation, are often used to describe the Kevin-Helmholtz instability of shear layers and are known to be strongly unstable to small-scale perturbations. First, we consider the linear stability of a straight vortex sheet in the periodic setting with actuation in the form of an array of point vortices or sources located a certain distance away from the sheet. We establish conditions under which this system is controllable and observable. Next, using methods of the linear control theory, we synthesize a feedback control strategy which stabilizes a straight vortex sheet in the linear regime. Given the poor conditioning of the discretized problem, reliable solution of the resulting algebraic Riccati equation requires the use of high-precision arithmetic. Finally, we demonstrate that this control approach also succeeds in the nonlinear regime, provided the magnitude of the initial perturbation is sufficiently small.
Four things we don't know about scalar transfer from plant canopies
NASA Astrophysics Data System (ADS)
Finnigan, J. J.
2009-04-01
In terrestrial plant canopies, turbulent exchange of water through evapotranspiration is intimately bound up with exchange of other scalars, heat and carbon dioxide in particular. Turbulent transport is rarely the process limiting exchange of these scalars between the biosphere and the atmosphere. However, in measurement programs like FLUXNET or when we parameterise surface exchange at the canopy scale in climate or weather models we must understand the mechanism of turbulent exchange in detail. In this talk we survey four current obstacles to extending our understanding of canopy turbulence from the idealised case of homogeneous flow in neutral stratification to complex flows in stable and unstable conditions. 1. Canopy eddy structure and the hydrodynamic instability Recent analysis of canopy LES and wind tunnel simulations has revealed the ‘two hairpin' structure of a characteristic canopy eddy. This structure explains a large body of results from a wide range of canopies and redefines the Roughness Sub Layer (RSL) as an asymptotic layer similar to the logarithmic and outer layers of the Planetary Boundary Layer. However, the nature of the non-linear ‘mixing-layer' instability process that gives canopy/RSL eddies their coherence and enhanced transport efficiency (as compared to eddies in the logarithmic layer above) is poorly understood so we do not know how resilient this instability and the eddies that depend upon it are to large scale flow perturbations or to changes in stability. 2. Turbulent Schmidt and Prandtl Numbers The scalar RSL can be defined as the layer across which the turbulent Schmidt (Sc) and Prandtl (Pr) numbers in neutral stratification change from their canopy top values of ~0.5, typical of mixing layers, to their logarithmic layer values of ~1.0, typical of boundary layers. The value of Sc or Pr is a critical parameter when adjusting Monin-Obukhov similarity theory (MOST) for the proximity of the canopy. The need for such adjustments has been recognized for several decades but they are still often ignored with serious consequences for prognostic models. However, at the present time we have only weak experimental evidence for the values of Sc and Pr in neutral conditions. More importantly, our poor understanding of the processes that set Sc and Pr and control their variation with diabatic stability is a barrier to generalizing MOST for use above tall canopies. 3. Diabatic stability and canopy flows As radiative cooling proceeds after sundown, turbulence within dense canopies can collapse suddenly leading to decoupling of the canopy layer from the boundary layer above. Theory suggests that this process should occur because of the different transport mechanisms of scalars and momentum at leaf level. So far no definitive experimental results are available to confirm or refute this theory or to set bounds on its applicability. This has important implications for transport and canopy microclimate. In particular we need to know how the controlling time scales of this process depend upon canopy density and radiative transfer. 4. Gravity currents Deep coherent gravity currents are often observed on long hill slopes covered with tall canopies. The process of turbulent collapse after sundown mentioned in (3) above produces a deep stable layer which is decoupled from the boundary layer above and must come into a new dynamic balance involving the hydrostatic and hydrodynamic pressure gradients and canopy drag. Scale analysis suggests that the strength of such currents depends upon hill length rather than hill slope while wind tunnel experiments reveal that they can penetrate onto flat ground far upwind of the hills on which they originate. Many field sites where flow is well behaved during the day can, therefore, be affected by such gravity flows at night. The parameters controlling the unsteady dynamics of this situation are not known but are of critical importance to measurements of water and other trace gas exchange over the diurnal cycle. The four topics chosen move from the fundamentals of canopy eddy structure to the impact at large scale of microscale processes. Each requires us to consider simultaneously processes from the leaf to the whole canopy scale and each will require effort from the whole community if serious progress is to be made.
NASA Technical Reports Server (NTRS)
Biringen, Sedat; Hatay, Ferhat F.
1993-01-01
The nonlinear temporal evolution of disturbances in compressible flow between infinitely long, concentric cylinders is investigated through direct numerical simulations of the full, three-dimensional Navier-Stokes and energy equations. Counter-rotating cylinders separated by wide gaps are considered with supersonic velocities of the inner cylinder. Initially, the primary disturbance grows exponentially in accordance with linear stability theory. As the disturbances evolve, higher harmonics and subharmonics are generated in a cascading order eventually reaching a saturation state. Subsequent highly nonlinear stages of the evolution are governed by the interaction of the disturbance modes, particularly the axial subharmonics. Nonlinear evolution of the disturbance field is characterized by the formation of high-shear layers extending from the inner cylinder towards the center of the gap in the form of jets similar to the ejection events in transitional and turbulent wall-bounded shear flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Likith, S. R. J.; Farberow, C. A.; Manna, S.
Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less
Likith, S. R. J.; Farberow, C. A.; Manna, S.; ...
2017-12-20
Molybdenum carbide (Mo 2C) nanoparticles and thin films are particularly suitable catalysts for catalytic fast pyrolysis (CFP) as they are effective for deoxygenation and can catalyze certain reactions that typically occur on noble metals. Oxygen deposited during deoxygenation reactions may alter the carbide structure, leading to the formation of oxycarbides, which can determine changes in catalytic activity or selectivity. Despite emerging spectroscopic evidence of bulk oxycarbides, so far there have been no reports of their precise atomic structure or their relative stability with respect to orthorhombic Mo 2C. This knowledge is essential for assessing the catalytic properties of molybdenum (oxy)carbidesmore » for CFP. In this article, we use density functional theory (DFT) calculations to (a) describe the thermodynamic stability of surface and subsurface configurations of oxygen and carbon atoms for a commonly studied Mo-terminated surface of orthorhombic Mo 2C and (b) determine atomic structures for oxycarbides with a Mo:C ratio of 2:1. The surface calculations suggest that oxygen atoms are not stable under the top Mo layer of the Mo 2C(100) surface. Coupling DFT calculations with a polymorph sampling method, we determine (Mo 2C) xO y oxycarbide structures for a wide range of oxygen compositions. Oxycarbides with lower oxygen content (y/x = 2) adopt layered structures reminiscent of the parent carbide phase, with flat Mo layers separated by layers of oxygen and carbon; for higher oxygen content, our results suggest the formation of amorphous phases, as the atomic layers lose their planarity with increasing oxygen content. We characterize the oxidation states of Mo in the oxycarbide structures determined computationally, and simulate their X-ray diffraction (XRD) patterns in order to facilitate comparisons with experiments. Our study may provide a platform for large-scale investigations of the catalytic properties of oxycarbides and their surfaces and for tailoring the catalytic properties for different desired reactions.« less
Cross-flow vortex structure and transition measurements using multi-element hot films
NASA Technical Reports Server (NTRS)
Agarwal, Naval K.; Mangalam, Siva M.; Maddalon, Dal V.; Collier, Fayette S., Jr.
1991-01-01
An experiment on a 45-degree swept wing was conducted to study three-dimensional boundary-layer characteristics using surface-mounted, micro-thin, multi-element hot-film sensors. Cross-flow vortex structure and boundary-layer transition were measured from the simultaneously acquired signals of the hot films. Spanwise variation of the root-mean-square (RMS) hot-film signal show a local minima and maxima. The distance between two minima corresponds to the stationary cross-flow vortex wavelength and agrees with naphthalene flow-visualization results. The chordwise and spanwise variation of amplified traveling (nonstationary) cross-flow disturbance characteristics were measured as Reynolds number was varied. The frequency of the most amplified cross-flow disturbances agrees with linear stability theory.
Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles
NASA Astrophysics Data System (ADS)
Widjaja, Yuniarto; Musgrave, Charles B.
2002-08-01
Atomic layer deposition (ALD) of hafnium oxide (HfO2) using HfCl4 and H2O as precursors is studied using density functional theory. The mechanism consists of two deposition half-reactions: (1) HfCl4 with Hf-OH sites, and (2) H2O with Hf-Cl sites. Both half-reactions exhibit stable intermediates with energies lower than those of the final products. We show that increasing the temperature reduces the stability of the complex. However, increasing temperature also increases the dissociation free-energy barrier, which in turn results in increased desorption of adsorbed precursors. Both half-reactions are qualitatively similar to the corresponding reactions of ZrO2 ALD using ZrCl4 and H2O.
NASA Technical Reports Server (NTRS)
Agnone, Anthony M.
1987-01-01
The performance of a fixed-geometry, swept, mixed compression hypersonic inlet is presented. The experimental evaluation was conducted for a Mach number of 6.0 and for several angles of attack. The measured surface pressures and pitot pressure surveys at the inlet throat are compared to computations using a three-dimensional Euler code and an integral boundary layer theory. Unique features of the intake design, including the boundary layer control, insure a high inlet performance. The experimental data show the inlet has a high mass averaged total pressure recovery, a high mass capture and nearly uniform flow diffusion. The swept inlet exhibits excellent starting characteristics, and high flow stability at angle of attack.
Studies on laminar boundary-layer receptivity to freestream turbulence near a leading edge
NASA Technical Reports Server (NTRS)
Kendall, James M.
1991-01-01
An experimental study of the generation of Tollmien-Schlichting waves and wave packets in a flat-plate boundary-layer by weak freestream turbulence has been conducted with the intent of clarifying receptivity mechanisms. Emphasis was placed upon the properties of such waves at stations as far forward as the minimum critical Reynolds number. It was found that alteration of the flow about the leading edge, due either to an asymmetry associated with lift, or due to a change of the fineness ratio of the leading edge, altered the T-S wave amplitude at early stations. The subsequent growth of the waves proceeded faster than expected according to certain stability theory results. Speculation regarding receptivity mechanisms is made.
Nitrogen doping and CO2 adsorption on graphene: A thermodynamical study
NASA Astrophysics Data System (ADS)
Re Fiorentin, Michele; Gaspari, Roberto; Quaglio, Marzia; Massaglia, Gulia; Saracco, Guido
2018-04-01
Nitrogen-doped graphene has raised considerable interest for its possible applications as carbon dioxide adsorber and catalyst. In this paper, we provide a theoretical study of graphitic, pyridiniclike and pyrroliclike nitrogen defects in a free-standing graphene layer, focusing on their formation and adsorption behavior. Using density functional theory and thermodynamics, we analyze the various defects, highlighting the great stability of graphitic nitrogen in a wide temperature and pressure range. CO2 adsorption proves to be moderately thermodynamically disfavored around standard conditions for the most stable nitrogen defects and slightly favored for the more energetic ones. The combination of the results on defect stability and CO2 adsorption may open interesting possibilities in the design of carbon-based materials with promising adsorption performances.
Potential of mean force between two hydrophobic solutes in water.
Southall, Noel T; Dill, Ken A
2002-12-10
We study the potential of mean force between two nonpolar solutes in the Mercedes Benz model of water. Using NPT Monte Carlo simulations, we find that the solute size determines the relative preference of two solute molecules to come into contact ('contact minimum') or to be separated by a single layer of water ('solvent-separated minimum'). Larger solutes more strongly prefer the contacting state, while smaller solutes have more tendency to become solvent-separated, particularly in cold water. The thermal driving forces oscillate with solute separation. Contacts are stabilized by entropy, whereas solvent-separated solute pairing is stabilized by enthalpy. The free energy of interaction for small solutes is well-approximated by scaled-particle theory. Copyright 2002 Elsevier Science B.V.
The Application of Layer Theory to Design: The Control Layer
ERIC Educational Resources Information Center
Gibbons, Andrew S.; Langton, Matthew B.
2016-01-01
A theory of design layers proposed by Gibbons ("An Architectural Approach to Instructional Design." Routledge, New York, 2014) asserts that each layer of an instructional design is related to a body of theory closely associated with the concerns of that particular layer. This study focuses on one layer, the control layer, examining…
First-principles calculations of the thermal stability of Ti 3SiC 2(0001) surfaces
NASA Astrophysics Data System (ADS)
Orellana, Walter; Gutiérrez, Gonzalo
2011-12-01
The energetic, thermal stability and dynamical properties of the ternary layered ceramic Ti3SiC2(0001) surface are addressed by density-functional theory calculations and molecular dynamic (MD) simulations. The equilibrium surface energy at 0 K of all terminations is contrasted with thermal stability at high temperatures, which are investigated by ab initio MD simulations in the range of 800 to 1400 °C. We find that the toplayer (sublayer) surface configurations: Si(Ti2) and Ti2(Si) show the lowest surface energies with reconstruction features for Si(Ti2). However, at high temperatures they are unstable, forming disordered structures. On the contrary, Ti1(C) and Ti2(C) despite their higher surface energies, show a remarkable thermal stability at high temperatures preserving the crystalline structures up to 1400 °C. The less stable surfaces are those terminated in C atoms, C(Ti1) and C(Ti2), which at high temperatures show surface dissociation forming amorphous TiCx structures. Two possible atomic scale mechanisms involved in the thermal stability of Ti3SiC2(0001) are discussed.
Lii-Rosales, Ann; Han, Yong; Evans, James W.; ...
2018-02-06
Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less
You, Shuai; Wang, Hui; Bi, Shiqing; Zhou, Jiyu; Qin, Liang; Qiu, Xiaohui; Zhao, Zhiqiang; Xu, Yun; Zhang, Yuan; Shi, Xinghua; Zhou, Huiqiong; Tang, Zhiyong
2018-04-18
Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI 3 ) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley-Read-Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO 2 cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI 3 and TiO 2 surfaces by HS occurs through the interactions of the functional groups (COO - , SO 3 - , or Na + ) in HS with undersaturated Pb and I ions in MAPbI 3 and Ti 4+ in TiO 2 . This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high-performance and stable perovskite solar cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lii-Rosales, Ann; Han, Yong; Evans, James W.
Here in this paper, we present an extensive experimental study of the conditions under which Cu forms encapsulated islands under the top surface layers of graphite, as a result of physical vapor deposition of Cu on argon-ion-bombarded graphite. When the substrate is held at 800 K during deposition, conditions are optimal for formation of encapsulated multilayer Cu islands. Deposition temperatures below 600 K favor adsorbed Cu clusters, while deposition temperatures above 800 K favor a different type of feature that is probably a single-layer intercalated Cu island. The multilayer Cu islands are characterized with respect to size and shape, thicknessmore » and continuity of the graphitic overlayer, relationship to graphite steps, and stability in air. The experimental techniques are scanning tunneling microscopy and X-ray photoelectron spectroscopy. We also present an extensive study using density functional theory to compare stabilities of a wide variety of configurations of Cu atoms, Cu clusters, and Cu layers on/under the graphite surface. The only configuration that is significantly more stable under the graphite surface than on top of it, is a single Cu atom. This analysis leads us to conclude that formation of encapsulated Cu islands is kinetically driven, rather than thermodynamically driven.« less
NASA Astrophysics Data System (ADS)
Oberlack, Martin; Nold, Andreas; Sanjon, Cedric Wilfried; Wang, Yongqi; Hau, Jan
2016-11-01
Classical hydrodynamic stability theory for laminar shear flows, no matter if considering long-term stability or transient growth, is based on the normal-mode ansatz, or, in other words, on an exponential function in space (stream-wise direction) and time. Recently, it became clear that the normal mode ansatz and the resulting Orr-Sommerfeld equation is based on essentially three fundamental symmetries of the linearized Euler and Navier-Stokes equations: translation in space and time and scaling of the dependent variable. Further, Kelvin-mode of linear shear flows seemed to be an exception in this context as it admits a fourth symmetry resulting in the classical Kelvin mode which is rather different from normal-mode. However, very recently it was discovered that most of the classical canonical shear flows such as linear shear, Couette, plane and round Poiseuille, Taylor-Couette, Lamb-Ossen vortex or asymptotic suction boundary layer admit more symmetries. This, in turn, led to new problem specific non-modal ansatz functions. In contrast to the exponential growth rate in time of the modal-ansatz, the new non-modal ansatz functions usually lead to an algebraic growth or decay rate, while for the asymptotic suction boundary layer a double-exponential growth or decay is observed.
NASA Astrophysics Data System (ADS)
Schweizer, Ken
2012-02-01
A major goal in polymer nanocomposite research is to understand and predict how the chemical and physical nature of individual polymers and nanoparticles, and thermodynamic state (temperature, composition, solvent dilution, filler loading), determine bulk assembly, miscibility and properties. Microscopic PRISM theory provides a route to this goal for equilibrium disordered mixtures. A major prediction is that by manipulating the net polymer-particle interfacial attraction, miscibility is realizable via the formation of thin thermodynamically stable adsorbed layers, which, however, are destroyed by entropic depletion and bridging attraction effects if interface cohesion is too weak or strong, respectively. This and related issues are quantitatively explored for miscible mixtures of hydrocarbon polymers, silica nanospheres, and solvent using x-ray scattering, neutron scattering and rheology. Under melt conditions, quantitative agreement between theory and silica scattering experiments is achieved under both steric stabilization and weak depletion conditions. Using contrast matching neutron scattering to characterize the collective structure factors of polymers, particles and their interface, the existence and size of adsorbed polymer layers, and their consequences on microstructure, is determined. Failure of the incompressible RPA, accuracy of PRISM theory, the nm thickness of adsorbed layers, and qualitative sensitivity of the bulk modulus to interfacial cohesion and particle size are demonstrated for concentrated PEO-silica-ethanol nanocomposites. Temperature-dependent complexity is discovered when water is the solvent, and nonequilibrium effects emerge for adsorbing entangled polymers that strongly impact structure. By varying polymer chemistry, the effect of polymer-particle attraction on the intrinsic viscosity is explored with striking non-classical effects observed. This work was performed in collaboration with S.Y.Kim, L.M.Hall, C.Zukoski and B.Anderson.
Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J
2018-02-25
In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be involved in the natural stability of Bio-Me-nanomaterials. As a result, macromolecules such as DNA, polyphosphates and proteins may electrostatically interact with Bio-Me-nanomaterials in suspension through their charged moieties, showing the same properties of counterions in Ch-Me-nanostructure suspensions. Since several biomolecules (e.g. neutral lipids, nonionic biosurfactants, polysaccharides, and secondary metabolites) produced by metal(loid)-grown organisms can develop similar steric hindrance as compared to nonionic amphiphilic surfactants and block co-polymers generally used to sterically stabilize Ch-Me-nanomaterials. These biomolecules, most likely, are involved in the development of steric stabilization, because of their bulky structures. Finally, charged lipids and polysaccharides, ionic biosurfactants or proteins with amphiphilic properties can exert a dual effect (i.e. electrostatic and steric repulsion interactions) in the contest of Bio-Me-nanomaterials, leading to the high degree of stability observed.
NASA Astrophysics Data System (ADS)
Risius, Steffen; Costantini, Marco; Koch, Stefan; Hein, Stefan; Klein, Christian
2018-05-01
The influence of unit Reynolds number (Re_1=17.5× 106-80× 106 {m}^{-1}), Mach number (M= 0.35-0.77) and incompressible shape factor (H_{12} = 2.50-2.66) on laminar-turbulent boundary layer transition was systematically investigated in the Cryogenic Ludwieg-Tube Göttingen (DNW-KRG). For this investigation the existing two-dimensional wind tunnel model, PaLASTra, which offers a quasi-uniform streamwise pressure gradient, was modified to reduce the size of the flow separation region at its trailing edge. The streamwise temperature distribution and the location of laminar-turbulent transition were measured by means of temperature-sensitive paint (TSP) with a higher accuracy than attained in earlier measurements. It was found that for the modified PaLASTra model the transition Reynolds number (Re_{ {tr}}) exhibits a linear dependence on the pressure gradient, characterized by H_{12}. Due to this linear relation it was possible to quantify the so-called `unit Reynolds number effect', which is an increase of Re_{ {tr}} with Re_1. By a systematic variation of M, Re_1 and H_{12} in combination with a spectral analysis of freestream disturbances, a stabilizing effect of compressibility on boundary layer transition, as predicted by linear stability theory, was detected (`Mach number effect'). Furthermore, two expressions were derived which can be used to calculate the transition Reynolds number as a function of the amplitude of total pressure fluctuations, Re_1 and H_{12}. To determine critical N-factors, the measured transition locations were correlated with amplification rates, calculated by incompressible and compressible linear stability theory. By taking into account the spectral level of total pressure fluctuations at the frequency of the most amplified Tollmien-Schlichting wave at transition location, the scatter in the determined critical N-factors was reduced. Furthermore, the receptivity coefficients dependence on incidence angle of acoustic waves was used to correct the determined critical N-factors. Thereby, a found dependency of the determined critical N-factors on H_{12} decreased, leading to an average critical N-factor of about 9.5 with a standard deviation of σ ≈ 0.8.
Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls
NASA Astrophysics Data System (ADS)
Dettenrieder, Fabian; Bodony, Daniel
2017-11-01
Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.
NASA Astrophysics Data System (ADS)
Eremin, Roman; Zolotarev, Pavel; Bobrikov, Ivan
2018-04-01
Here we present results of density functional theory (DFT) study of delithiated structures of layered LiNiO2 (LNO, Li12Ni12O24 model) cathode material and its doped analogue LiNi0.833Co0.083Al0.083O2 (N10C1A1, Li12Ni10CoAlO24 model). The paper is aimed at independent elucidation of doping and dispersion interaction effects on the structural stability of cathode materials studied. For this purpose, the LNO and N10C1A1 configurational spaces consisting of 87 and 4512 crystallographically independent configurations (obtained starting from 2×2×1 supercell of R-3m structure of LNO) are optimized within a number of DFT models. Based on a comparison of the calculated dependencies for the lattice parameters with the results of in situ neutron diffraction experiments, the most pronounced effect of cathode material stabilization is due to the dispersion interaction. In turn, the doping effect is found to affect cathode structure behavior at the latest stages of delithiation only.
Hydrophobic forces in the foam films stabilized by sodium dodecyl sulfate: effect of electrolyte.
Wang, Liguang; Yoon, Roe-Hoan
2004-12-21
Further studies of the hydrophobic force in foam films were carried out, including the effect of added inorganic electrolyte. We used a thin film balance of Scheludko-Exerowa type to obtain the disjoining pressure isotherms of the foam films stabilized by 10(-4) M sodium dodecyl sulfate in varying concentrations of sodium chloride. The results were compared with the disjoining pressure isotherms predicted from the extended Derjaguin-Landau-Verwey-Overbeek theory, which considers contributions from hydrophobic force in addition to those from double layer and van der Waals dispersion forces. The double layer forces were calculated from the surface potentials (psi s) obtained using the Gibbs adsorption equation and corrected for the counterion binding effect, while the dispersion forces were calculated using the Hamaker constant (A232) of 3.7 x 10(-20) J. The hydrophobic forces were calculated from the equilibrium film thickness as described previously. The predicted disjoining pressure isotherms were in good agreement with the experimental ones. It was found that the hydrophobic force is dampened substantially by the added electrolyte.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S. (Principal Investigator); Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.
Effect of sound on boundary layer stability
NASA Technical Reports Server (NTRS)
Saric, William S.; Spencer, Shelly Anne
1993-01-01
Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.
Stability and Interaction of Coherent Structure in Supersonic Reactive Wakes
NASA Technical Reports Server (NTRS)
Menon, Suresh
1983-01-01
A theoretical formulation and analysis is presented for a study of the stability and interaction of coherent structure in reacting free shear layers. The physical problem under investigation is a premixed hydrogen-oxygen reacting shear layer in the wake of a thin flat plate. The coherent structure is modeled as a periodic disturbance and its stability is determined by the application of linearized hydrodynamic stability theory which results in a generalized eigenvalue problem for reactive flows. Detailed stability analysis of the reactive wake for neutral, symmetrical and antisymmetrical disturbance is presented. Reactive stability criteria is shown to be quite different from classical non-reactive stability. The interaction between the mean flow, coherent structure and fine-scale turbulence is theoretically formulated using the von-Kaman integral technique. Both time-averaging and conditional phase averaging are necessary to separate the three types of motion. The resulting integro-differential equations can then be solved subject to initial conditions with appropriate shape functions. In the laminar flow transition region of interest, the spatial interaction between the mean motion and coherent structure is calculated for both non-reactive and reactive conditions and compared with experimental data wherever available. The fine-scale turbulent motion determined by the application of integral analysis to the fluctuation equations. Since at present this turbulence model is still untested, turbulence is modeled in the interaction problem by a simple algebraic eddy viscosity model. The applicability of the integral turbulence model formulated here is studied parametrically by integrating these equations for the simple case of self-similar mean motion with assumed shape functions. The effect of the motion of the coherent structure is studied and very good agreement is obtained with previous experimental and theoretical works for non-reactive flow. For the reactive case, lack of experimental data made direct comparison difficult. It was determined that the growth rate of the disturbance amplitude is lower for reactive case. The results indicate that the reactive flow stability is in qualitative agreement with experimental observation.
NASA Astrophysics Data System (ADS)
Schäfer, K.; Grant, R. H.; Emeis, S.; Raabe, A.; von der Heide, C.; Schmid, H. P.
2012-07-01
Measurements of land-surface emission rates of greenhouse and other gases at large spatial scales (10 000 m2) are needed to assess the spatial distribution of emissions. This can be readily done using spatial-integrating micro-meteorological methods like flux-gradient methods which were evaluated for determining land-surface emission rates of trace gases under stable boundary layers. Non-intrusive path-integrating measurements are utilized. Successful application of a flux-gradient method requires confidence in the gradients of trace gas concentration and wind, and in the applicability of boundary-layer turbulence theory; consequently the procedures to qualify measurements that can be used to determine the flux is critical. While there is relatively high confidence in flux measurements made under unstable atmospheres with mean winds greater than 1 m s-1, there is greater uncertainty in flux measurements made under free convective or stable conditions. The study of N2O emissions of flat grassland and NH3 emissions from a cattle lagoon involves quality-assured determinations of fluxes under low wind, stable or night-time atmospheric conditions when the continuous "steady-state" turbulence of the surface boundary layer breaks down and the layer has intermittent turbulence. Results indicate that following the Monin-Obukhov similarity theory (MOST) flux-gradient methods that assume a log-linear profile of the wind speed and concentration gradient incorrectly determine vertical profiles and thus flux in the stable boundary layer. An alternative approach is considered on the basis of turbulent diffusivity, i.e. the measured friction velocity as well as height gradients of horizontal wind speeds and concentrations without MOST correction for stability. It is shown that this is the most accurate of the flux-gradient methods under stable conditions.
How do Stability Corrections Perform in the Stable Boundary Layer Over Snow?
NASA Astrophysics Data System (ADS)
Schlögl, Sebastian; Lehning, Michael; Nishimura, Kouichi; Huwald, Hendrik; Cullen, Nicolas J.; Mott, Rebecca
2017-10-01
We assess sensible heat-flux parametrizations in stable conditions over snow surfaces by testing and developing stability correction functions for two alpine and two polar test sites. Five turbulence datasets are analyzed with respect to, (a) the validity of the Monin-Obukhov similarity theory, (b) the model performance of well-established stability corrections, and (c) the development of new univariate and multivariate stability corrections. Using a wide range of stability corrections reveals an overestimation of the turbulent sensible heat flux for high wind speeds and a generally poor performance of all investigated functions for large temperature differences between snow and the atmosphere above (>10 K). Applying the Monin-Obukhov bulk formulation introduces a mean absolute error in the sensible heat flux of 6 W m^{-2} (compared with heat fluxes calculated directly from eddy covariance). The stability corrections produce an additional error between 1 and 5 W m^{-2}, with the smallest error for published stability corrections found for the Holtslag scheme. We confirm from previous studies that stability corrections need improvements for large temperature differences and wind speeds, where sensible heat fluxes are distinctly overestimated. Under these atmospheric conditions our newly developed stability corrections slightly improve the model performance. However, the differences between stability corrections are typically small when compared to the residual error, which stems from the Monin-Obukhov bulk formulation.
Optimal Disturbances in Boundary Layers Subject to Streamwise Pressure Gradient
NASA Technical Reports Server (NTRS)
Tumin, Anatoli; Ashpis, David E.
2003-01-01
Laminar-turbulent transition in shear flows is still an enigma in the area of fluid mechanics. The conventional explanation of the phenomenon is based on the instability of the shear flow with respect to infinitesimal disturbances. The conventional hydrodynamic stability theory deals with the analysis of normal modes that might be unstable. The latter circumstance is accompanied by an exponential growth of the disturbances that might lead to laminar-turbulent transition. Nevertheless, in many cases, the transition scenario bypasses the exponential growth stage associated with the normal modes. This type of transition is called bypass transition. An understanding of the phenomenon has eluded us to this day. One possibility is that bypass transition is associated with so-called algebraic (non-modal) growth of disturbances in shear flows. In the present work, an analysis of the optimal disturbances/streamwise vortices associated with the transient growth mechanism is performed for boundary layers in the presence of a streamwise pressure gradient. The theory will provide the optimal spacing of the control elements in the spanwise direction and their placement in the streamwise direction.
Yuan, Kun; Zhao, Rui-Sheng; Zheng, Jia-Jia; Zheng, Hong; Nagase, Shigeru; Zhao, Sheng-Dun; Liu, Yan-Zhi; Zhao, Xiang
2017-04-15
Noncovalent interactions involving aromatic rings, such as π···π stacking, CH···π are very essential for supramolecular carbon nanostructures. Graphite is a typical homogenous carbon matter based on π···π stacking of graphene sheets. Even in systems not involving aromatic groups, the stability of diamondoid dimer and layer-layer graphane dimer originates from C - H···H - C noncovalent interaction. In this article, the structures and properties of novel heterogeneous layer-layer carbon-nanostructures involving π···H-C-C-H···π···H-C-C-H stacking based on [n]-graphane and [n]-graphene and their derivatives are theoretically investigated for n = 16-54 using dispersion corrected density functional theory B3LYP-D3 method. Energy decomposition analysis shows that dispersion interaction is the most important for the stabilization of both double- and multi-layer-layer [n]-graphane@graphene. Binding energy between graphane and graphene sheets shows that there is a distinct additive nature of CH···π interaction. For comparison and simplicity, the concept of H-H bond energy equivalent number of carbon atoms (noted as NHEQ), is used to describe the strength of these noncovalent interactions. The NHEQ of the graphene dimers, graphane dimers, and double-layered graphane@graphene are 103, 143, and 110, indicating that the strength of C-H···π interaction is close to that of π···π and much stronger than that of C-H···H-C in large size systems. Additionally, frontier molecular orbital, electron density difference and visualized noncovalent interaction regions are discussed for deeply understanding the nature of the C-H···π stacking interaction in construction of heterogeneous layer-layer graphane@graphene structures. We hope that the present study would be helpful for creations of new functional supramolecular materials based on graphane and graphene carbon nano-structures. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wrinkling of solidifying polymeric coatings
NASA Astrophysics Data System (ADS)
Basu, Soumendra Kumar
2005-07-01
In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.
NASA Astrophysics Data System (ADS)
Yu, Zhi-nong; Zhao, Jian-jian; Xia, Fan; Lin, Ze-jiang; Zhang, Dong-pu; Leng, Jian; Xue, Wei
2011-03-01
The electrical stability of flexible indium tin oxide (ITO) films fabricated on stripe SiO 2 buffer layer-coated polyethylene terephthalate (PET) substrates by magnetron sputtering was investigated by the bending test. The ITO thin films with stripe SiO 2 buffer layer under bending have better electrical stability than those with flat SiO 2 buffer layer and without buffer layer. Especially in inward bending text, the ITO thin films with stripe SiO 2 buffer layer only have a slight resistance change when the bending radius r is not less than 8 mm, while the resistances of the films with flat SiO 2 buffer layer and without buffer layer increase significantly at r = 16 mm with decreasing bending radius. This improvement of electrical stability in bending test is due to the small mismatch factor α in ITO-SiO 2, the enhanced interface adhesion and the balance of residual stress. These results indicate that the stripe SiO 2 buffer layer is suited to enhance the electrical stability of flexible ITO film under bending.
NASA Astrophysics Data System (ADS)
Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo
2018-06-01
The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.
Effect of dielectric layers on device stability of pentacene-based field-effect transistors.
Di, Chong-an; Yu, Gui; Liu, Yunqi; Guo, Yunlong; Sun, Xiangnan; Zheng, Jian; Wen, Yugeng; Wang, Ying; Wu, Weiping; Zhu, Daoben
2009-09-07
We report stable organic field-effect transistors (OFETs) based on pentacene. It was found that device stability strongly depends on the dielectric layer. Pentacene thin-film transistors based on the bare or polystyrene-modified SiO(2) gate dielectrics exhibit excellent electrical stabilities. In contrast, the devices with the octadecyltrichlorosilane (OTS)-treated SiO(2) dielectric layer showed the worst stabilities. The effects of the different dielectrics on the device stabilities were investigated. We found that the surface energy of the gate dielectric plays a crucial role in determining the stability of the pentacene thin film, device performance and degradation of electrical properties. Pentacene aggregation, phase transfer and film morphology are also important factors that influence the device stability of pentacene devices. As a result of the surface energy mismatch between the dielectric layer and organic semiconductor, the electronic performance was degraded. Moreover, when pentacene was deposited on the OTS-treated SiO(2) dielectric layer with very low surface energy, pentacene aggregation occurred and resulted in a dramatic decrease of device performance. These results demonstrated that the stable OFETs could be obtained by using pentacene as a semiconductor layer.
Measurement of crossflow vortices, attachment-line flow, and transition using microthin hot films
NASA Technical Reports Server (NTRS)
Mangalam, S. M.; Agarwal, N. K.; Maddalon, D. V.; Saric, W. S.
1990-01-01
A flow diagnostic experiment was conducted on a 45-deg swept-wing model using surface-mounted, multielement, microthin, hot-film sensors. The cross-flow vortex spacing, the attachment-line flow characteristics, and the transition region were all determined using an advanced data acquisition and instrumentation system. In addition to the frequencies of traveling waves predicted by linear stability theory, amplified disturbances at much higher frequencies were observed. Simultaneous measurements from sensors located at a number of chord and span locations highlighted the strong three-dimensionality of the boundary-layer flow in the presence of cross-flow vortices. The state of the attachment-line boundary layer was determined using a multielement sensor wrapped around the wing leading edge. The transition region flow characteristics were also identified.
Crossflow Stability and Transition Experiments in Swept-Wing Flow
NASA Technical Reports Server (NTRS)
Dagenhart, J. Ray; Saric, William S.
1999-01-01
An experimental examination of crossflow instability and transition on a 45deg swept wing was conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized by using both sublimating chemical and liquid-crystal coatings. Extensive hot-wire measurements were obtained at several measurement stations across a single vortex track. The mean and travelling wave disturbances were measured simultaneously. Stationary crossflow disturbance profiles were determined by subtracting either a reference or a span-averaged velocity profile from the mean velocity data. Mean, stationary crossflow, and traveling wave velocity data were presented as local boundary layer profiles and contour plots across a single stationary crossflow vortex track. Disturbance mode profiles and growth rates were determined. The experimental data are compared with predictions from linear stability theory.
The inviscid stability of supersonic flow past a sharp cone
NASA Technical Reports Server (NTRS)
Duck, Peter W.; Shaw, Stephen J.
1990-01-01
The effects of lateral curvature on the development of supersonic laminar inviscid boundary-layer flow on a sharp cone with adiabatic wall conditions are investigated analytically, with a focus on the linear temporal inviscid stability properties. The derivation of the governing equations and of a 'triply generalized' inflexion condition is outlined, and numerical results for freestream Mach number 3.8 are presented in extensive graphs and characterized in detail. A third instability mode related to the viscous mode observed by Duck and Hall (1990) using triple-deck theory is detected and shown to be more unstable and to have larger growth rates than the second mode in some cases. It is found that the 'sonic' neutral mode is affected by the lateral curvature and becomes a supersonic neutral mode.
Crossflow Instability on a Wedge-Cone at Mach 3.5
NASA Technical Reports Server (NTRS)
Beeler, George B.; Wilkinson, Stephen P.; Balakumar, P.; McDaniel, Keith S.
2012-01-01
As a follow-on activity to the HyBoLT flight experiment, a six degree half angle wedge-cone model at zero angle of attack has been employed to experimentally and computationally study the boundary layer crossflow instability at Mach 3.5 under low disturbance freestream conditions. Computed meanflow and linear stability analysis results are presented along with corresponding experimental Pitot probe data. Using a model-mounted probe survey apparatus, data acquired to date show a well defined stationary crossflow vortex pattern on the flat wedge surface. This effort paves the way for additional detailed, calibrated flow field measurements of the crossflow instability, both stationary and traveling modes, and transition-to-turbulence under quiet flow conditions as a means of validating existing stability theory and providing a foundation for dynamic flight instrumentation development.
Alternative experiments using the geophysical fluid flow cell
NASA Technical Reports Server (NTRS)
Hart, J. E.
1984-01-01
This study addresses the possibility of doing large scale dynamics experiments using the Geophysical Fluid Flow Cell. In particular, cases where the forcing generates a statically stable stratification almost everywhere in the spherical shell are evaluated. This situation is typical of the Earth's atmosphere and oceans. By calculating the strongest meridional circulation expected in the spacelab experiments, and testing its stability using quasi-geostrophic stability theory, it is shown that strongly nonlinear baroclinic waves on a zonally symmetric modified thermal wind will not occur. The Geophysical Fluid Flow Cell does not have a deep enough fluid layer to permit useful studies of large scale planetary wave processes arising from instability. It is argued, however, that by introducing suitable meridional barriers, a significant contribution to the understanding of the oceanic thermocline problem could be made.
NASA Astrophysics Data System (ADS)
Lymperakis, L.; Schulz, T.; Freysoldt, C.; Anikeeva, M.; Chen, Z.; Zheng, X.; Shen, B.; Chèze, C.; Siekacz, M.; Wang, X. Q.; Albrecht, M.; Neugebauer, J.
2018-01-01
Nominal InN monolayers grown by molecular beam epitaxy on GaN(0001) are investigated combining in situ reflection high-energy electron diffraction (RHEED), transmission electron microscopy (TEM), and density functional theory (DFT). TEM reveals a chemical intraplane ordering never observed before. Employing DFT, we identify a novel surface stabilization mechanism elastically frustrated rehybridization, which is responsible for the observed chemical ordering. The mechanism also sets an incorporation barrier for indium concentrations above 25% and thus fundamentally limits the indium content in coherently strained layers.
Solid oxide fuel cell operable over wide temperature range
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
2001-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
Interfacial material for solid oxide fuel cell
Baozhen, Li; Ruka, Roswell J.; Singhal, Subhash C.
1999-01-01
Solid oxide fuel cells having improved low-temperature operation are disclosed. In one embodiment, an interfacial layer of terbia-stabilized zirconia is located between the air electrode and electrolyte of the solid oxide fuel cell. The interfacial layer provides a barrier which controls interaction between the air electrode and electrolyte. The interfacial layer also reduces polarization loss through the reduction of the air electrode/electrolyte interfacial electrical resistance. In another embodiment, the solid oxide fuel cell comprises a scandia-stabilized zirconia electrolyte having high electrical conductivity. The scandia-stabilized zirconia electrolyte may be provided as a very thin layer in order to reduce resistance. The scandia-stabilized electrolyte is preferably used in combination with the terbia-stabilized interfacial layer. The solid oxide fuel cells are operable over wider temperature ranges and wider temperature gradients in comparison with conventional fuel cells.
Evaluating the DLVO Model for Non-Aqueous Colloidal Suspensions
NASA Astrophysics Data System (ADS)
DeCarlo, Keith Joseph
Application of DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory for suspensions utilizing non-aqueous suspension mediums has been tested. Prediction of suspension stability using DLVO theory requires the calculation of the attractive and repulsive forces between the suspended colloids and that the only significant stabilization mechanism present is electrostatic stabilization which was tested. The van der Waals attractive potential was calculated for 12 different colloids in 11 suspending mediums in accord with Lifshitz's treatment and a new approximation proposing that the material bandgap energy can be used to approximate the Hamaker constant was developed. This treatment requires the complete knowledge of the permittivity as a function of frequency for all the components in the respective suspension. The permittivity data was simplified using a damped oscillator model described by Ninham and Parsegian. All permittivity data was compiled from the literature. Microwave data was tabulated by NIST, infrared parameters were determined from FTIR data, and the ultraviolet/visual parameters were determined via Cauchy plots or estimated by the bandgap. Using the bandgap to approximate the ultraviolet/visual parameters proved to be more accurate than other approximations when compared to the accepted values. It was found that the non-oxide and non-stoichiometric colloids tested had the largest associated van der Waals attractive force. The van der Waals potential calculated for oxide particles was found to follow a direct relationship with the ionic character of the bonding. Repulsive forces were calculated for 12 different colloids in 11 suspending mediums. The calculated repulsive potential generated is a function of both the magnitude of charge generated on each colloid (zeta-potential) and the size of the interacting double-layers. zeta-potential was measured for each suspension using a microelectrophoretic technique and the double-layer thickness was calculated. It was demonstrated that as the polarity of the suspending medium increased, the thickness of the double-layer also increased. A large double-layer thickness was found to directly correlate to the suspension stability. A large double-layer thickness results in a decreased slope of the charge degradation from the colloidal surface to the bulk suspension. This coupled with a large magnitude of surface charge increases the probability of dispersion. Through viscosity measurements, the stability mechanism of each suspension was determined by comparison of the viscosity at a shear rate of 1.0s -1 with the shear thinning exponent. It was determined that, of the suspension mediums tested, heptane, octanoic acid, and poly(ethylene glycol) introduce non-electrostatic stabilization mechanisms significant enough to invalidate the DLVO predictions for suspensions made using those mediums. Consistent with DLVO theory, the total interaction potential was calculated by summation of the repulsive and attractive potentials of each suspension (84 suspensions total) as a function of separation distance. Based upon the results of the summation, the suspension stability can be predicted. 64 of the 84 suspensions were determined to be unstable as the colloids agglomerated in the primary minimum, 11 suspensions were determined to be weakly flocculated, and nine suspensions were found to be stable. Viscosity was used to determine the critical value for the thermal energy barrier and to test the DLVO predictions. The critical value of the thermal energy barrier was found to be 2.0 x 10 -6J/m2. Therefore, for suspensions calculated to have a thermal energy barrier less than the critical value, the Brownian motion of the colloids in suspension at 298K were enough to overcome it, resulting in agglomeration at the primary minimum. For suspensions with a thermal barrier larger than 2.0 x 10-6J/m2, the interacting colloids moved into the secondary energy minimum. All suspensions tested in which the thermal energy barrier was less than 2.0 x 10-6J/m 2 had a specific viscosity at a shear rate of 1.0s-1 greater than the cut-off viscosity for stability. If the colloids moved into the secondary minimum, the resulting suspension was characterized as either being weakly flocculated or stable. Weakly flocculated suspensions had an equilibrium separation distance of colloids less than 40nm resulting in a viscosity at a shear rate of 1.0s-1 larger than the determined specific viscosity cut-off (1.1x 104), but a shear thinning exponent greater than 1.0. Stable suspensions were defined by the colloids as having an equilibrium separation distance greater than 40nm, resulting in viscosity values at a shear rate of 1.0s-1 smaller than that of the determined cut-off viscosity value.
Progress on the Surface Nanobubble Story: What is in the bubble? Why does it exist?
Peng, Hong; Birkett, Greg R; Nguyen, Anh V
2015-08-01
Interfaces between aqueous solutions and hydrophobic solid surfaces are important in various areas of science and technology. Many researchers have found that forces between hydrophobic surfaces in aqueous solution are significantly different from the classical DLVO theory. Long-range attractive forces (non-DLVO forces) are thought to be affected by nanoscopic gaseous domains at the interfaces. This is a review of the latest research on nanobubbles at hydrophobic surfaces from experimental and simulation studies. The review focusses on non-intrusive optical view of surface nanobubbles and gas enrichment on solid surfaces by imaging and force mapping. By use of these recent experimental data in conjunction with molecular simulation work, all major theories on surface nanobubble formation and stability are critically reviewed. Even though the current body of research cannot comprehensively explain all properties of surface nanobubbles observed, the fundamental understanding has been significantly improved. Line tension has been shown to be incapable of explaining the contact angle of nanobubbles. Dense gas layer theory provides a new explanation on both large contact angle and long-time stability. The high density of gas in these domains may significantly affect the gas-water interface which is in line with some observation made on bulk nanobubbles. Along this line of inquiry, experimental and simulation effort should be focussed on measuring the density within surface nanobubbles and the properties of the gas water interface which may be the key to explaining the stability of these nanobubbles. Copyright © 2014 Elsevier B.V. All rights reserved.
Atomic layer confined vacancies for atomic-level insights into carbon dioxide electroreduction
NASA Astrophysics Data System (ADS)
Gao, Shan; Sun, Zhongti; Liu, Wei; Jiao, Xingchen; Zu, Xiaolong; Hu, Qitao; Sun, Yongfu; Yao, Tao; Zhang, Wenhua; Wei, Shiqiang; Xie, Yi
2017-02-01
The role of oxygen vacancies in carbon dioxide electroreduction remains somewhat unclear. Here we construct a model of oxygen vacancies confined in atomic layer, taking the synthetic oxygen-deficient cobalt oxide single-unit-cell layers as an example. Density functional theory calculations demonstrate the main defect is the oxygen(II) vacancy, while X-ray absorption fine structure spectroscopy reveals their distinct oxygen vacancy concentrations. Proton transfer is theoretically/experimentally demonstrated to be a rate-limiting step, while energy calculations unveil that the presence of oxygen(II) vacancies lower the rate-limiting activation barrier from 0.51 to 0.40 eV via stabilizing the formate anion radical intermediate, confirmed by the lowered onset potential from 0.81 to 0.78 V and decreased Tafel slope from 48 to 37 mV dec-1. Hence, vacancy-rich cobalt oxide single-unit-cell layers exhibit current densities of 2.7 mA cm-2 with ca. 85% formate selectivity during 40-h tests. This work establishes a clear atomic-level correlation between oxygen vacancies and carbon dioxide electroreduction.
Non-equilibrium phase stabilization versus bubble nucleation at a nanoscale-curved Interface
NASA Astrophysics Data System (ADS)
Schiffbauer, Jarrod; Luo, Tengfei
Using continuum dynamic van der Waals theory in a radial 1D geometry with a Lennard-Jones fluid model, we investigate the nature of vapor bubble nucleation near a heated, nanoscale-curved convex interface. Vapor bubble nucleation and growth are observed for interfaces with sufficiently large radius of curvature while phase stabilization of a superheated fluid layer occurs at interfaces with smaller radius. The hypothesis that the high Laplace pressure required for stable equilibrium of very small bubbles is responsible for phase stability is tested by effectively varying the parameter which controls liquid-vapor surface tension. In doing so, the liquid-vapor surface tension- hence Laplace pressure-is shown to have limited effect on phase stabilization vs. bubble nucleation. However, the strong dependence of nucleation on leading-order momentum transport, i.e. viscous dissipation, near the heated inner surface is demonstrated. We gratefully acknowledge ND Energy for support through the ND Energy Postdoctoral Fellowship program and the Army Research Office, Grant No. W911NF-16-1-0267, managed by Dr. Chakrapani Venanasi.
2017-01-01
We report on a very significant enhancement of the thermal, chemical, and mechanical stability of self-organized TiO2 nanotubes layers, provided by thin Al2O3 coatings of different thicknesses prepared by atomic layer deposition (ALD). TiO2 nanotube layers coated with Al2O3 coatings exhibit significantly improved thermal stability as illustrated by the preservation of the nanotubular structure upon annealing treatment at high temperatures (870 °C). In addition, a high anatase content is preserved in the nanotube layers against expectation of the total rutile conversion at such a high temperature. Hardness of the resulting nanotube layers is investigated by nanoindentation measurements and shows strongly improved values compared to uncoated counterparts. Finally, it is demonstrated that Al2O3 coatings guarantee unprecedented chemical stability of TiO2 nanotube layers in harsh environments of concentrated H3PO4 solutions. PMID:28291942
Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study
NASA Astrophysics Data System (ADS)
Abkar, Mahdi; Porté-Agel, Fernando
2014-05-01
In this study, large-eddy simulation is combined with a turbine model to investigate the influence of atmospheric stability on wind-turbine wakes. In the simulations, subgrid-scale turbulent fluxes are parameterized using tuning-free Lagrangian scale-dependent dynamic models. These models optimize the local value of the model coefficients based on the dynamics of the resolved scales. The turbine-induced forces are parameterized with an actuator-disk model with rotation. In this technique, blade-element theory is used to calculate the lift and drag forces acting on the blades. Emphasis is placed on the structure and characteristics of wind-turbine wakes in the cases where the incident flows to the turbine have the same mean velocity at the hub height but different stability conditions. The simulation results show that atmospheric stability has a significant effect on the spatial distribution of the mean velocity deficit and turbulent fluxes in the wake region. In particular, the magnitude of the velocity deficit increases with increasing stability in the atmosphere. In addition, the locations of the maximum turbulence intensity and turbulent stresses are closer to the turbine in convective boundary layer compared with neutral and stable ones. Detailed analysis of the resolved turbulent kinetic energy (TKE) budget inside the wake reveals also that the thermal stratification of the incoming wind considerably affects the magnitude and spatial distribution of the turbulent production, transport term and dissipation rate (transfer of energy to the subgrid scales). It is also shown that the near-wake region can be extended to a farther distance downstream in stable condition compared with neutral and unstable counterparts. In order to isolate the effect of atmospheric stability, additional simulations of neutrally-stratified atmospheric boundary layers are performed with the same turbulence intensity at hub height as convective and stable ones. The results show that the turbulence intensity alone is not sufficient to describe the impact of atmospheric stability on the wind-turbine wakes.
Hyono, Atsushi; Gaboriaud, Fabien; Mazda, Toshio; Takata, Youichi; Ohshima, Hiroyuki; Duval, Jérôme F L
2009-09-15
The stability of native and enzyme-treated human red blood cells of type A (Rh D positive) against agglutination is investigated under conditions where it is mediated by immunoglobuline G (IgG) anti-D antibody binding. The propensity of cells to agglutinate is related to their interphasic (electrokinetic) properties. These properties significantly depend on the concentration of proteolytic papain enzyme and protease-free neuraminidase enzyme that the cells are exposed to. The analysis is based on the interpretation of electrophoretic data of cells by means of the numerical theory for the electrokinetics of soft (bio)particles. A significant reduction of the hydrodynamic permeability of the external soft glycoprotein layer of the cells is reported under the action of papain. This reflects a significant decrease in soft surface layer thickness and a loss in cell surface integrity/rigidity, as confirmed by nanomechanical AFM analysis. Neuraminidase action leads to an important decrease in the interphase charge density by removing sialic acids from the cell soft surface layer. This is accompanied by hydrodynamic softness modulations less significant than those observed for papain-treated cells. On the basis of these electrohydrodynamic characteristics, the overall interaction potential profiles between two native cells and two enzyme-treated cells are derived as a function of the soft surface layer thickness in the Debye-Hückel limit that is valid for cell suspensions under physiological conditions (approximately 0.16 M). The thermodynamic computation of cell suspension stability against IgG-mediated agglutination then reveals that a decrease in the cell surface layer thickness is more favorable than a decrease in interphase charge density for inducing agglutination. This is experimentally confirmed by agglutination data collected for papain- and neuraminidase-treated cells.
Boundary-layer stability and airfoil design
NASA Technical Reports Server (NTRS)
Viken, Jeffrey K.
1986-01-01
Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.
Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores.
Aliabadi, Roohollah; Gurin, Péter; Velasco, Enrique; Varga, Szabolcs
2018-01-01
The effect of strong confinement on the positional and orientational ordering is examined in a system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee modification of the second virial density-functional theory. The rods are nonmesogenic (L/D<3) and confined between two parallel hard walls, where the width of the pore (H) is chosen in such a way that both planar (particle's long axis parallel to the walls) and homeotropic (particle's long axis perpendicular to the walls) orderings are possible and a maximum of two layers is allowed to form in the pore. In the extreme confinement limit of H≤2D, where only one-layer structures appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which becomes sharper as L→H. In wider pores (2D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.
2013-10-15
In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less
ERIC Educational Resources Information Center
Wright, John Paul; Beaver, Kevin M.; Gibson, Chris L.
2010-01-01
The best predictor of future misbehavior is a history of aberrant and wayward conduct. Even so, few theories attempt to account for time-stable maladaptive pathways. To this end, we advance a theory of stability, what we term Coherence Theory. Coherence Theory conceptualizes stability as an emergent property that occurs when antisocial…
"Squishy capacitor" model for electrical double layers and the stability of charged interfaces.
Partenskii, Michael B; Jordan, Peter C
2009-07-01
Negative capacitance (NC), predicted by various electrical double layer (EDL) theories, is critically reviewed. Physically possible for individual components of the EDL, the compact or diffuse layer, it is strictly prohibited for the whole EDL or for an electrochemical cell with two electrodes. However, NC is allowed for the artificial conditions of sigma control, where an EDL is described by the equilibrium electric response of electrolyte to a field of fixed, and typically uniform, surface charge-density distributions, sigma. The contradiction is only apparent; in fact local sigma cannot be set independently, but is established by the equilibrium response to physically controllable variables, i.e., applied voltage phi (phi control) or total surface charge q (q control). NC predictions in studies based on sigma control signify potential instabilities and phase transitions for physically realizable conditions. Building on our previous study of phi control [M. B. Partenskii and P. C. Jordan, Phys. Rev. E 77, 061117 (2008)], here we analyze critical behavior under q control, clarifying the basic picture using an exactly solvable "squishy capacitor" toy model. We find that phi can change discontinuously in the presence of a lateral transition, specify stability conditions for an electrochemical cell, analyze the origin of the EDL's critical point in terms of compact and diffuse serial contributions, and discuss perspectives and challenges for theoretical studies not limited by sigma control.
Room Temperature Silicene Field-Effect Transistors
NASA Astrophysics Data System (ADS)
Akinwande, Deji
Silicene, a buckled Si analogue of graphene, holds significant promise for future electronics beyond traditional CMOS. In our predefined experiments via encapsulated delamination with native electrodes approach, silicene devices exhibit an ambipolar charge transport behavior, corroborating theories on Dirac band in Ag-free silicene. Monolayer silicene device has extracted field-effect mobility within the theoretical expectation and ON/OFF ratio greater than monolayer graphene, while multilayer silicene devices show decreased mobility and gate modulation. Air-stability of silicene devices depends on the number of layers of silicene and intrinsic material structure determined by growth temperature. Few or multi-layer silicene devices maintain their ambipolar behavior for days in contrast to minutes time scale for monolayer counterparts under similar conditions. Multilayer silicene grown at different temperatures below 300oC possess different intrinsic structures and yield different electrical property and air-stability. This work suggests a practical prospect to enable more air-stable silicene devices with layer and growth condition control, which can be leveraged for other air-sensitive 2D materials. In addition, we describe quantum and classical transistor device concepts based on silicene and related buckled materials that exploit the 2D topological insulating phenomenon. The transistor device physics offer the potential for ballistic transport that is robust against scattering and can be employed for both charge and spin transport. This work was supported by the ARO.
Stability Indices derived from Atmospheric Measurements on a Cable Car
NASA Astrophysics Data System (ADS)
Herma, F.; Seidel, J.; Bárdossy, A.
2012-04-01
Stability indices are meteorological parameters to describe vertical atmospheric layering and therefore it is possible to predict convective events such as thunderstorms. Commonly, weather balloons with radiosondes are used for the analysis of vertical atmospheric layering. These weather balloons reach high altitudes and atmospheric layering can be determined for the entire troposphere. On the other hand, these balloon ascents are expensive, require the appropriate equipment and permissions and cannot be conducted several times a day on an operational basis. Due to the limitations of the application of weather balloons the unconventional idea came up to equip a cable car with meteorological instruments for vertical profile measurements. To some extent the meteorological instruments had to be customized to the particular requirements and data are transmitted via GSM. The investigated area is a small alpine catchment which is prone to flash floods and thus a reliable forecast for such floods mostly caused by convective rainfall events is important. Therefore the purpose of this contribution is to proof if a cable car can be used for measuring continuous data during the operating hours and whether it is possible to derive reliable conclusions about the stability in the lower troposphere. Several stability indices (e.g. Lifted-, Showalter-, Boyden- and Convective-Index) were investigated. Indices which are calculated on the basis of the "Lifted Parcel Theory" were tested with different approaches to determine the most unstable parcel and therefore the initial values of the required parameters. The derived indices were flagged in active (thunderstorms) and non-active (no thunderstorms) cases. The classification results from available lightning maps in this region. Threshold values were established to distinguish stable, potential indifferent and unstable atmospheric conditions. On the basis of this division pre-warnings for the occurrence of thunderstorms are declared. The verification of the quality of these predictions is done by a skill score statistic.
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
Is Subsurface Oxygen Necessary for the Electrochemical Reduction of CO 2 on Copper?
Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
2018-01-17
It has recently been proposed that subsurface oxygen is crucial for the adsorption and subsequent electroreduction of CO 2 on copper. Using density functional theory, we have studied the stability and diffusion of subsurface oxygen in single crystals of copper exposing (111) and (100) facets. Oxygen is at least 1.5 eV more stable on the surface than beneath it for both crystal orientations; interstitial sites are too small to accommodate oxygen. Here, the rate of atomic oxygen diffusion from one layer below a Cu(111) surface to the surface is 5 × 10 3 s –1. Oxygen can survive longer inmore » deeper layers, but it does not promote CO 2 adsorption there. Diffusion of subsurface oxygen is easier to the less-dense Cu(100) surface, even from lower layers (rate ≈ 1 × 107 s–1). Finally, once the applied voltage and dispersion forces are properly modeled, we find that subsurface oxygen is unnecessary for CO 2 adsorption on copper.« less
NASA Astrophysics Data System (ADS)
Priyantha, W.; Smith, R. J.; Chen, H.; Kopczyk, M.; Lerch, M.; Key, C.; Nachimuthu, P.; Jiang, W.
2009-03-01
Fe-Al bilayer interfaces with and without interface stabilizing layers (Ti, V, Zr) were fabricated using dc magnetron sputtering. Intermixing layer thickness and the effectiveness of the stabilizing layer (Ti, V, Zr) at the interface were studied using Rutherford backscattering spectrometry (RBS) and x-ray reflectometry (XRR). The result for the intermixing thickness of the AlFe layer is always higher when Fe is deposited on Al as compared to when Al is deposited on Fe. By comparing measurements with computer simulations, the thicknesses of the AlFe layers were determined to be 20.6 Å and 41.1 Å for Al/Fe and Fe/Al bilayer systems, respectively. The introduction of Ti and V stabilizing layers at the Fe-Al interface reduced the amount of intermixing between Al and Fe, consistent with the predictions of model calculations. The Zr interlayer, however, was ineffective in stabilizing the Fe-Al interface in spite of the chemical similarities between Ti and Zr. In addition, analysis suggests that the Ti interlayer is not effective in stabilizing the Fe-Al interface when the Ti interlayer is extremely thin (˜3 Å) for these sputtered metallic films.
Heteroaggregation of oppositely charged particles in the presence of multivalent ions.
Cao, Tianchi; Sugimoto, Takuya; Szilagyi, Istvan; Trefalt, Gregor; Borkovec, Michal
2017-06-14
Time-resolved dynamic light scattering is used to measure absolute heteroaggregation rate coefficients and the corresponding stability ratios for heteroaggregation between amidine and sulfate latex particles. These measurements are complemented by the respective quantities for the homoaggregation of the two systems and electrophoresis. Based on the latter measurements, the stability ratios are calculated using Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. In monovalent salt solutions, the two types of particles investigated are oppositely charged. In the presence of multivalent ions, however, one particle type reverses its charge, while the charge of the other particle type is hardly affected. In this region, the heteroaggregation stability ratio goes through a pronounced maximum when plotted versus concentration. This region of slow aggregation is wider than the one observed in the corresponding homoaggregation process. One also finds that the onset of this region sensitively depends on the boundary conditions used to calculate the double layer force. The present results are more in line with constant potential boundary conditions.
Flexible all-carbon photovoltaics with improved thermal stability
NASA Astrophysics Data System (ADS)
Tang, Chun; Ishihara, Hidetaka; Sodhi, Jaskiranjeet; Chen, Yen-Chang; Siordia, Andrew; Martini, Ashlie; Tung, Vincent C.
2015-04-01
The structurally robust nature of nanocarbon allotropes, e.g., semiconducting single-walled carbon nanotubes (SWCNTs) and C60s, makes them tantalizing candidates for thermally stable and mechanically flexible photovoltaic applications. However, C60s rapidly dissociate away from the basal of SWCNTs under thermal stimuli as a result of weak intermolecular forces that "lock up" the binary assemblies. Here, we explore use of graphene nanoribbons (GNRs) as geometrically tailored protecting layers to suppress the unwanted dissociation of C60s. The underlying mechanisms are explained using a combination of molecular dynamics simulations and transition state theory, revealing the temperature dependent disassociation of C60s from the SWCNT basal plane. Our strategy provides fundamental guidelines for integrating all-carbon based nano-p/n junctions with optimized structural and thermal stability. External quantum efficiency and output current-voltage characteristics are used to experimentally quantify the effectiveness of GNR membranes under high temperature annealing. Further, the resulting C60:SWCNT:GNR ternary composites display excellent mechanical stability, even after iterative bending tests.
NASA Technical Reports Server (NTRS)
Saric, William S.
1988-01-01
The effects of normal mass injection and suction on boundary-layer stability and transition are studied on a flat plate. Titanium panels, in which 0.063 mm diameter holes were drilled on 0.635 mm centers, are inserted in the plate. Suction level and distribution are variable. Disturbances are introduced by means of a vibrating ribbon and measurements of both mean- and disturbance-flow velocities are made with a hot wire. Disturbance amplitudes are measured as a function of Reynolds number, frequency, and suction characteristics, and are compared with the previous results obtained over a Dynapore surface. Transition measurements under natural and forced conditions are also made. The stabilizing effects of suction are documented. It is also shown that very high local flow rates through the suction holes (which approach a hole Reynolds number of 300) do not destabilize the flow. On the other hand, weak blowing lowers the transition Reynolds number, but is found not to cause serious problems.
Photocatalytic property and structural stability of CuAl-based layered double hydroxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lv, Ming; Liu, Haiqiang, E-mail: Liuhaiqiang1980@126.com
2015-07-15
Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) were successfully synthesized by coprecipitation. Powder X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometry (ICP-AES) and UV–Vis diffuse reflectance spectrum (UV–vis) were used to confirm the formation of as-synthesized solids with good crystal structure. The photocatalytic activity of those LDH materials for CO{sub 2} reduction under visible light was investigated. The experimental results show that CuNiAl-LDHs with narrowest band gap and largest surface areas behave highest efficiency for methanol generation under visible light compared with CuMgAl-LDHs and CuZnAl-LDHs. The CuNiAL-LDH showed high yield for methanol production i.e. 0.210more » mmol/g h, which was high efficient. In addition, the influence of the different M{sup 2+} on the structures and stability of the CuMAl-LDHs was also investigated by analyzing the geometric parameters, electronic arrangement, charge populations, hydrogen-bonding, and binding energies by density functional theory (DFT) analysis. The theoretical calculation results show that the chemical stability of LDH materials followed the order of CuMgAl-LDHs>CuZnAl-LDHs>CuNiAl-LDHs, which is just opposite with the photocatalytic activity and band gaps of three materials. - Graphical abstract: The host–guest calculation models and XRD patterns of CuMAl-LDHs: CuMgAl-LDHs (a), CuZnAl-LDHs (b) and CuNiAl-LDHs (c). - Highlights: • Three types of CuMAl layered double hydroxides (LDHs, M=Mg, Zn, Ni) has been synthesized. • CuMgNi shows narrower band gap and more excellent textural properties than other LDHs. • The band gap: CuMgAl« less
Test of Monin-Obukhov similarity theory using distributed temperature sensing
NASA Astrophysics Data System (ADS)
Cheng, Y.; Sayde, C.; Li, Q.; Gentine, P.
2017-12-01
Monin-Obukhov similarity theory [Monin and Obukhov, 1954] (MOST) has been widely used to calculate atmospheric surface fluxes applying the structure correction functions [Stull, 1988]. The exact forms of the structure correction functions for momentum and heat, which depend on the vertical gradient velocity and temperature, have been determined empirically mostly from the Kansas experiment [Kaimal et al., 1972]. However, due to the limitation of point measurement, the vertical gradient of temperature and horizontal wind speed are not well captured. Here we propose a way to measure the vertical gradient of temperature and horizontal wind speed with high resolution in space (every 12.7 cm) and time (every second) using the Distributed Temperature Sensing [Selker et al., 2006] (DTS), thus determining the exact form of the structure correction functions of MOST under various stability conditions. Two parallel vertical fiber optics will be placed on a tower at the central facility of ARM SGP site. Vertical air temperature will be measured every 12.7 cm by the fiber optics and horizontal wind speed along fiber will be measured. Then vertical gradient of temperature and horizontal wind speed will be calculated and stability correction functions for momentum and heat will be determined. ReferencesKaimal, J. C., Wyngaard, J. C., Izumi, Y., and Cote, O. R. (1972), Spectral characteristics of surface-layer turbulence, Quarterly Journal of the Royal Meteorological Society, 98(417), 563-589, doi: 10.1002/qj.49709841707. Monin, A., and Obukhov, A. (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Contrib. Geophys. Inst. Acad. Sci. USSR, 24(151), 163-187. Selker, J., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., and Parlange, M. B. (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resources Research, 42, W12202, doi: 10.1029/2006wr005326. Stull, R. (1988), An Introduction to Boundary Layer Meteorology, pp. 666, Kluwer Academic Publishers, Dordrecht.
Partially Oxidized SnS2 Atomic Layers Achieving Efficient Visible-Light-Driven CO2 Reduction.
Jiao, Xingchen; Li, Xiaodong; Jin, Xiuyu; Sun, Yongfu; Xu, Jiaqi; Liang, Liang; Ju, Huanxin; Zhu, Junfa; Pan, Yang; Yan, Wensheng; Lin, Yue; Xie, Yi
2017-12-13
Unraveling the role of surface oxide on affecting its native metal disulfide's CO 2 photoreduction remains a grand challenge. Herein, we initially construct metal disulfide atomic layers and hence deliberately create oxidized domains on their surfaces. As an example, SnS 2 atomic layers with different oxidation degrees are successfully synthesized. In situ Fourier transform infrared spectroscopy spectra disclose the COOH* radical is the main intermediate, whereas density-functional-theory calculations reveal the COOH* formation is the rate-limiting step. The locally oxidized domains could serve as the highly catalytically active sites, which not only benefit for charge-carrier separation kinetics, verified by surface photovoltage spectra, but also result in electron localization on Sn atoms near the O atoms, thus lowering the activation energy barrier through stabilizing the COOH* intermediates. As a result, the mildly oxidized SnS 2 atomic layers exhibit the carbon monoxide formation rate of 12.28 μmol g -1 h -1 , roughly 2.3 and 2.6 times higher than those of the poorly oxidized SnS 2 atomic layers and the SnS 2 atomic layers under visible-light illumination. This work uncovers atomic-level insights into the correlation between oxidized sulfides and CO 2 reduction property, paving a new way for obtaining high-efficiency CO 2 photoreduction performances.
Influence of electrical double-layer interaction on coal flotation.
Harvey, Paul A; Nguyen, Anh V; Evans, Geoffrey M
2002-06-15
In the early 1930s it was first reported that inorganic electrolytes enhance the floatability of coal and naturally hydrophobic minerals. To date, explanations of coal flotation in electrolytes have not been entirely clear. This research investigated the floatability of coal in NaCl and MgCl2 solutions using a modified Hallimond tube to examine the role of the electrical double-layer interaction between bubbles and particles. Flotation of coal was highly dependent on changes in solution pH, type of electrolyte, and electrolyte concentration. Floatability of coal in electrolyte solutions was seen not to be entirely controlled by the electrical double-layer interaction. Coal flotation in low electrolyte concentration solutions decreases with increase in concentration, not expected from the theory since the electrical double layer is compressed, resulting in diminishing the (electrical double layer) repulsion between the bubble and the coal particles. Unlike in low electrolyte concentration solutions, coal flotation in high electrolyte concentration solutions increases with increase in electrolyte concentration. Again, this behavior of coal flotation in high electrolyte concentration solutions cannot be quantitatively explained using the electrical double-layer interaction. Possible mechanisms are discussed in terms of the bubston (i.e., bubble stabilized by ions) phenomenon, which explains the existence of the submicron gas bubbles on the hydrophobic coal surface.
Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Tien, J. S.
1999-01-01
Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.
Nonlinear development and secondary instability of Gortler vortices in hypersonic flows
NASA Technical Reports Server (NTRS)
Fu, Yibin B.; Hall, Philip
1991-01-01
In a hypersonic boundary layer over a wall of variable curvature, the region most susceptible to Goertler vortices is the temperature adjustment layer over which the basic state temperature decreases monotonically to its free stream value. Except for a special wall curvature distribution, the evolution of Goertler vortices trapped in the temperature adjustment layer will in general be strongly affected by the boundary layer growth through the O(M sup 3/2) curvature of the basic state, where M is the free stream Mach number. Only when the local wavenumber becomes as large as of order M sup 3/8, do nonparallel effects become negligible in the determination of stability properties. In the latter case, Goertler vortices will be trapped in a thin layer of O(epsilon sup 1/2) thickness which is embedded in the temperature adjustment layer; here epsilon is the inverse of the local wavenumber. A weakly nonlinear theory is presented in which the initial nonlinear development of Goertler vortices in the neighborhood of the neutral position is studied and two coupled evolution equations are derived. From these, it can be determined whether the vortices are decaying or growing depending on the sign of a constant which is related to wall curvature and the basic state temperature.
Optimally growing boundary layer disturbances in a convergent nozzle preceded by a circular pipe
NASA Astrophysics Data System (ADS)
Uzun, Ali; Davis, Timothy B.; Alvi, Farrukh S.; Hussaini, M. Yousuff
2017-06-01
We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.
NASA Technical Reports Server (NTRS)
Mankbadi, Reda R.
1991-01-01
Here, numerical results are computed from an asymptotic near-resonance triad analysis. The analysis considers a resonant triad of instability waves consisting of a plane fundamental wave and a pair of symmetrical oblique subharmonic waves. The relevant scaling ensures that nonlinearity is confined to a distinct critical layer. The analysis is first used to form a composite solution that accounts for both the flow divergence and nonlinear effects. It is shown that the backreaction on the plane Tollmien Schlichting (TS) fundamental wave, although fully accounted for, is of little significance. The observed enhancement at the fundamental frequency disturbance is not in the plane TS wave, but is caused by nonlinearly generated waves at the fundamental frequency that result from nonlinear interactions in the critical layer. The saturation of the oblique waves is caused by their self-interaction. The nonlinear phase-locking phenomenon, the location of resonance with respect to the neutral stability curve, low frequency effects, detuning in the streamwise wave numbers, and nonlinear distortion of the mode shapes are discussed. Nonlinearity modifies the initially two dimensional Blasius profile into a fuller one with spanwise periodicity. The interactions at a wide range of unstable spanwise wave numbers are considered, and the existence of a preferred spanwise wave number is explained by means of the vorticity distribution in the critical layer. Besides presenting novel features of the phenomena and explaining the delicate mechanisms of the interactions, the results of the theory are in excellent agreement with experimental and numerical observations for all stages of the development and for various input parameters.
NASA Astrophysics Data System (ADS)
Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae
2018-04-01
We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.
Takechi, Hiroki; Kawamura, Hinata
2017-01-01
Formation of a functional neuronal network requires not only precise target recognition, but also stabilization of axonal contacts within their appropriate synaptic layers. Little is known about the molecular mechanisms underlying the stabilization of axonal connections after reaching their specifically targeted layers. Here, we show that two receptor protein tyrosine phosphatases (RPTPs), LAR and Ptp69D, act redundantly in photoreceptor afferents to stabilize axonal connections to the specific layers of the Drosophila visual system. Surprisingly, by combining loss-of-function and genetic rescue experiments, we found that the depth of the final layer of stable termination relied primarily on the cumulative amount of LAR and Ptp69D cytoplasmic activity, while specific features of their ectodomains contribute to the choice between two synaptic layers, M3 and M6, in the medulla. These data demonstrate how the combination of overlapping downstream but diversified upstream properties of two RPTPs can shape layer-specific wiring. PMID:29116043
NASA Astrophysics Data System (ADS)
Balbi, V.; Kuhl, E.; Ciarletta, P.
2015-05-01
With nine meters in length, the gastrointestinal tract is not only our longest, but also our structurally most diverse organ. During embryonic development, it evolves as a bilayered tube with an inner endodermal lining and an outer mesodermal layer. Its inner surface displays a wide variety of morphological patterns, which are closely correlated to digestive function. However, the evolution of these intestinal patterns remains poorly understood. Here we show that geometric and mechanical factors can explain intestinal pattern formation. Using the nonlinear field theories of mechanics, we model surface morphogenesis as the instability problem of constrained differential growth. To allow for internal and external expansion, we model the gastrointestinal tract with homogeneous Neumann boundary conditions. To establish estimates for the folding pattern at the onset of folding, we perform a linear stability analysis supplemented by the perturbation theory. To predict pattern evolution in the post-buckling regime, we perform a series of nonlinear finite element simulations. Our model explains why longitudinal folds emerge in the esophagus with a thick and stiff outer layer, whereas circumferential folds emerge in the jejunum with a thinner and softer outer layer. In intermediate regions like the feline esophagus, longitudinal and circumferential folds emerge simultaneously. Our model could serve as a valuable tool to explain and predict alterations in esophageal morphology as a result of developmental disorders or certain digestive pathologies including food allergies.
Oriented conductive oxide electrodes on SiO2/Si and glass
Jia, Quanxi; Arendt, Paul N.
2001-01-01
A thin film structure is provided including a silicon substrate with a layer of silicon dioxide on a surface thereof, and a layer of cubic oxide material deposited upon the layer of silicon dioxide by ion-beam-assisted-deposition, said layer of cubic oxide material characterized as biaxially oriented. Preferably, the cubic oxide material is yttria-stabilized zirconia. Additional thin layers of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide are deposited upon the layer of yttria-stabilized zirconia. An intermediate layer of cerium oxide is employed between the yttria-stabilized zirconia layer and the lanthanum strontium cobalt oxide layer. Also, a layer of barium strontium titanium oxide can be upon the layer of biaxially oriented ruthenium oxide or lanthanum strontium cobalt oxide. Also, a method of forming such thin film structures, including a low temperature deposition of a layer of a biaxially oriented cubic oxide material upon the silicon dioxide surface of a silicon dioxide/silicon substrate is provided.
Surface self-organization in multilayer film coatings
NASA Astrophysics Data System (ADS)
Shuvalov, Gleb M.; Kostyrko, Sergey A.
2017-12-01
It is a recognized fact that during film deposition and subsequent thermal processing the film surface evolves into an undulating profile. Surface roughness affects many important aspects in the engineering application of thin film materials such as wetting, heat transfer, mechanical, electromagnetic and optical properties. To accurately control the morphological surface modifications at the micro- and nanoscale and improve manufacturing techniques, we design a mathematical model of the surface self-organization process in multilayer film materials. In this paper, we consider a solid film coating with an arbitrary number of layers under plane strain conditions. The film surface has a small initial perturbation described by a periodic function. It is assumed that the evolution of the surface relief is governed by surface and volume diffusion. Based on Gibbs thermodynamics and linear theory of elasticity, we present a procedure for constructing a governing equation that gives the amplitude change of the surface perturbation with time. A parametric study of the evolution equation leads to the definition of a critical undulation wavelength that stabilizes the surface. As a numerical result, the influence of geometrical and physical parameters on the morphological stability of an isotropic two-layered film coating is analyzed.
Stationary bubble formation and cavity collapse in wedge-shaped hoppers
Yagisawa, Yui; Then, Hui Zee; Okumura, Ko
2016-01-01
The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamic regimes of bubbling and cavity. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by considering the stability of a suspended granular layer and clogging of granular flow at the outlet of the hopper. The bubbling and cavity regimes could be useful for mixing a fluid with granular materials. PMID:27138747
Experimental analysis of the boundary layer transition with zero and positive pressure gradient
NASA Technical Reports Server (NTRS)
Arnal, D.; Jullen, J. C.; Michel, R.
1980-01-01
The influence of a positive pressure gradient on the boundary layer transition is studied. The mean velocity and turbulence profiles of four cases are examined. As the intensity of the pressure gradient is increased, the Reynolds number of the transition onset and the length of the transition region are reduced. The Tollmein-Schlichting waves disturb the laminar regime; the amplification of these waves is in good agreement with the stability theory. The three dimensional deformation of the waves leads finally to the appearance of turbulence. In the case of zero pressure gradient, the properties of the turbulent spots are studied by conditional sampling of the hot-wire signal; in the case of positive pressure gradient, the turbulence appears in a progressive manner and the turbulent spots are much more difficult to characterize.
NASA Technical Reports Server (NTRS)
Tetervin, Neal
1957-01-01
By use of the linear theory of boundary-layer stability and Schlichting's formula for the maximum amplification of a disturbance, an approximate relation is derived between the Reynolds number on a cone and the Reynolds number on a flat plate for equal closeness to transition. The indication is that the ratio of the cone Reynolds number for transition, based on the distance to the cone apex, to the plate Reynolds number for transition, based on the distance to the leading edge, is not in general equal to 3, as has been suggested by other investigators, but varies from 3 when transition occurs at the minimum critical Reynolds number to unity when transition occurs at a large multiple of the critical Reynolds number.
Rayleigh-Taylor instability in soft elastic layers
NASA Astrophysics Data System (ADS)
Riccobelli, D.; Ciarletta, P.
2017-04-01
This work investigates the morphological stability of a soft body composed of two heavy elastic layers attached to a rigid surface and subjected only to the bulk gravity force. Using theoretical and computational tools, we characterize the selection of different patterns as well as their nonlinear evolution, unveiling the interplay between elastic and geometric effects for their formation. Unlike similar gravity-induced shape transitions in fluids, such as the Rayleigh-Taylor instability, we prove that the nonlinear elastic effects saturate the dynamic instability of the bifurcated solutions, displaying a rich morphological diagram where both digitations and stable wrinkling can emerge. The results of this work provide important guidelines for the design of novel soft systems with tunable shapes, with several applications in engineering sciences. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'
NASA Technical Reports Server (NTRS)
Luidens, Roger W; Simon, Paul C
1950-01-01
Experimental investigation of flow about a slender body of revolution (NACA RM-10 missile) aligned and inclined to a supersonic stream was conducted at Mach numbers from 1.49 to 1.98 at a Reynolds number of approximately 30,000,000. Boundary-layer measurements at zero angle of attack are correlated with subsonic formulations for predicting boundary-layer thickness and profile. Comparison of pressure coefficients predicted by theory with experimental values showed close agreement at zero angle of attack and angle of attack except over the aft leeward side of body. At angle of attack, pitot pressure measurements in plane of model base indicated a pair of symmetrically disposed vortices on leeward side of body.
Stability analysis of nanoscale surface patterns in stressed solids
NASA Astrophysics Data System (ADS)
Kostyrko, Sergey A.; Shuvalov, Gleb M.
2018-05-01
Here, we use the theory of surface elasticity to extend the morphological instability analysis of stressed solids developed in the works of Asaro, Tiller, Grinfeld, Srolovitz and many others. Within the framework of Gurtin-Murdoch model, the surface phase is assumed to be a negligibly thin layer with the elastic properties which differ from those of the bulk material. We consider the mass transport mechanism driven by the variation of surface and bulk energy along undulated surface of stressed solid. The linearized surface evolution equation is derived in the case of plane strain conditions and describes the amplitude change of surface perturbations with time. A parametric analysis of this equation leads to the definition of critical conditions which depend on undulation wavelength, residual surface stress, applied loading, surface and bulk elastic constants and predict the surface morphological stability.
Crossflow Stability and Transition Experiments in a Swept-Wing Flow. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Dagenhart, John Ray
1992-01-01
An experimental examination of crossflow instability and transition on a 45 degree swept wing is conducted in the Arizona State University Unsteady Wind Tunnel. The stationary-vortex pattern and transition location are visualized using both sublimating-chemical and liquid-crystal coatings. Extensive hot-wire measurements are conducted at several measurement stations across a single vortex track. The mean and travelling-wave disturbances are measured simultaneously. Stationary-crossflow disturbance profiles are determined by subtracting either a reference or a span-averaged velocity profile from the mean-velocity data. Mean, stationary-crossflow, and travelling-wave velocity data are presented as local boundary-layer profiles and as contour plots across a single stationary-crossflow vortex track. Disturbance-mode profiles and growth rates are determined. The experimental data are compared to predictions from linear stability theory.
Highly stable thin film transistors using multilayer channel structure
NASA Astrophysics Data System (ADS)
Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.; Hedhili, M. N.; Alshareef, H. N.
2015-03-01
We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Pradipta K.; Wang, Zhenwei; Anjum, D. H.
We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO{sub 2}) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60 °C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO{sub 2} layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO{sub 2} layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnOmore » layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.« less
Nonlinear electrokinetic phenomena in microfluidic devices
NASA Astrophysics Data System (ADS)
Ben, Yuxing
This thesis addresses nonlinear electrokinetic mechanisms for transporting fluid and particles in microfluidic devices for potential applications in biomedical chips, microelectronic cooling and micro-fuel cells. Nonlinear electrokinetics have many advantages, such as low voltage, low power, high velocity, and no significant gas formation in the electrolyte. However, they involve new and complex charging and flow mechanisms that are still not fully understood or explored. Linear electrokinetic fingering that occurs when a fluid with a lower electrolyte concentration advances into one with a higher concentration is first analyzed. Unlike earlier miscible fingering theories, the linear stability analysis is carried out in the self-similar coordinates of the diffusing front. This new spectral theory is developed for small-amplitude gravity and viscous miscible fingering phenomena in general and applied to electrokinetic miscible fingering specifically. Transient electrokinetic fingering is shown to be insignificant in sub-millimeter micro-devices. Nonlinear electroosmotic flow around an ion-exchange spherical granule is studied next. When an electric field is applied across a conducting and ion-selective porous granule in an electrolyte solution, a polarized surface layer with excess counter-ions is created. The flux-induced polarization produces a nonlinear slip velocity to produce micro-vortices around this sphere. This polarization layer is reduced by convection at high velocity. Two velocity scalings at low and high electric fields are derived and favorably compared with experimental results. A mixing device based on this mechanism is shown to produce mixing efficiency 10-100 times higher than molecular diffusion. Finally, AC nonlinear electrokinetic flow on planar electrodes is studied. Two double layer charging mechanisms are responsible for the flow---one due to capacitive charging of ions from the bulk electrolyte and one due to Faradaic reactions at the electrode that consume or produce ions in the double layer. Faradaic charging is analyzed for specific reactions. From the theory, particular electrokinetic flows above the electrodes are selected for micropumps and bioparticle trapping by specifying the electrode geometry and the applied voltage and frequency.
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2003-01-01
During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary layers.
NASA Astrophysics Data System (ADS)
Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas
2002-08-01
In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.
NASA Astrophysics Data System (ADS)
Sabine, Ortiz; Marc, Chomaz Jean; Thomas, Loiseleux
2001-11-01
In mixing layers between two parallel streams of different densities, shear and gravity effects interplay. When the Roosby number, which compares the nonlinear acceleration terms to the Coriolis forces, is large enough, buoyancy acts as a restoring force, the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, propagating in opposite directions appear. This mechanism has been study in the temporal instability framework. We analyze the associated spatial instability problem, in the Boussinesq approximation, for two immiscible inviscid fluids with broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In convective region, the spatial theory is relevant and the slowest propagative wave is shown to be the most spatially amplified, as suggested by the intuition. Spatial theory is compared with mixing layer experiments (C.G. Koop and Browand J. Fluid Mech. 93, part 1, 135 (1979)), and wedge flows (G. Pawlak and L. Armi J. Fluid Mech. 376, 1 (1999)). Physical mechanism for the Holmboe mode destabilization is analyzed via an asymptotic expansion that explains precisely the absolute instability domain at large Richardson number.
NASA Astrophysics Data System (ADS)
Shen, I. Y.
1997-02-01
This paper studies vibration control of a shell structure through use of an active constrained layer (ACL) damping treatment. A deep-shell theory that assumes arbitrary Lamé parameters 0964-1726/6/1/011/img1 and 0964-1726/6/1/011/img2 is first developed. Application of Hamilton's principle leads to the governing Love equations, the charge equation of electrostatics, and the associated boundary conditions. The Love equations and boundary conditions imply that the control action of the ACL for shell treatments consists of two components: free-end boundary actuation and membrane actuation. The free-end boundary actuation is identical to that of beam and plate ACL treatments, while the membrane actuation is unique to shell treatments as a result of the curvatures of the shells. In particular, the membrane actuation may reinforce or counteract the boundary actuation, depending on the location of the ACL treatment. Finally, an energy analysis is developed to determine the proper control law that guarantees the stability of ACL shell treatments. Moreover, the energy analysis results in a simple rule predicting whether or not the membrane actuation reinforces the boundary actuation.
Live Soap: Stability, Order, and Fluctuations in Apolar Active Smectics
NASA Astrophysics Data System (ADS)
Adhyapak, Tapan Chandra; Ramaswamy, Sriram; Toner, John
2013-03-01
We construct a hydrodynamic theory of noisy, apolar active smectics in bulk suspension or on a substrate. Unlike purely orientationally ordered active fluids, active apolar smectics can be dynamically stable in Stokesian bulk suspensions. Smectic order in these systems is quasilong ranged in dimension d=2 and long ranged in d=3. We predict reentrant Kosterlitz-Thouless melting to an active nematic in our simplest model in d=2, a nonzero second-sound speed parallel to the layers in bulk suspensions, and that there are no giant number fluctuations in either case. We also briefly discuss possible instabilities in these systems.
NASA Technical Reports Server (NTRS)
Rumsey, Charles B.; Lee, Dorothy B.
1961-01-01
Measurements of aerodynamic heat transfer have been made at several stations on the 15 deg total-angle conical nose of a rocket-propelled model in free flight at Mach numbers up to 5.2. Data are presented for a range of local Mach number just outside the boundary layer from 1.40 to 4.65 and a range of local Reynolds number from 3.8 x 10(exp 6) to 46.5 x 10(exp 6), based on length from the nose tip to a measurement station. Laminar, transitional, and turbulent heat-transfer coefficients were measured. The laminar data were in agreement with laminar theory for cones, and the turbulent data agreed well with turbulent theory for cones using Reynolds number based on length from the nose tip. At a nearly constant ratio of wall to local static temperature of 1.2 the Reynolds number of transition increased from 14 x 10(exp 6) to 30 x 10(exp 6) as Mach number increased from 1.4 to 2.9 and then decreased to 17 x 10(exp 6) as Mach number increased to 3.7. At Mach numbers near 3.5, transition Reynolds numbers appeared to be independent of skin temperature at skin temperatures very cold with respect to adiabatic wall temperature. The transition Reynolds number was 17.7 x 10(exp 6) at a condition of Mach number and ratio of wall to local static temperature near that for which three-dimensional disturbance theory has been evaluated and has predicted laminar boundary-layer stability to very high Reynolds numbers (approximately 10(exp 12)).
NASA Technical Reports Server (NTRS)
Jarrah, Yousef Mohd
1989-01-01
The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. In the second part, the weakly nonlinear theory is extended to heated (or nonisothermal; mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbance is also studied by solving the initial value problem and then examining the behavior of the long-time solution.
Hydrogen jet combustion in a scramjet combustor with the rearwall-expansion cavity
NASA Astrophysics Data System (ADS)
Zhang, Yan-Xiang; Wang, Zhen-Guo; Sun, Ming-Bo; Yang, Yi-Xin; Wang, Hong-Bo
2018-03-01
This study is carried out to experimentally investigate the combustion characteristics of the hydrogen jet flame stabilized by the rearwall-expansion cavity in a model scramjet combustor. The flame distributions are characterized by the OH* spontaneous emission images, and the dynamic features of the flames are studied through the high speed framing of the flame luminosity. The combustion modes are further analyzed based on the visual flame structure and wall pressure distributions. Under the present conditions, the combustion based on the rearwall-expansion cavity appears in two distinguished modes - the typical cavity shear-layer stabilized combustion mode and the lifted-shear-layer stabilized combustion mode. In contrast with the shear-layer stabilized mode, the latter holds stronger flame. The transition from shear-layer stabilized combustion mode to lifted-shear-layer stabilized mode usually occurs when the equivalence ratio is high enough. While the increases of the offset ratio and upstream injection distance both lead to weaker jet-cavity interactions, cause longer ignition delay, and thus delay the mode transition. The results reveal that the rearwall-expansion cavity with an appropriate offset ratio should be helpful in delaying mode transition and preventing thermal choke, and meanwhile just brings minor negative impact on the combustion stability and efficiency.
Design and construction control guidance for chemically stabilized pavement base layers.
DOT National Transportation Integrated Search
2013-12-01
A laboratory and field study was conducted related to chemically stabilized pavement layers, which is also : referred to as soil-cement. Soil-cement practices within MDOT related to Class 9C soils used for base layers : were evaluated in this report....
Method for transition prediction in high-speed boundary layers, phase 2
NASA Astrophysics Data System (ADS)
Herbert, T.; Stuckert, G. K.; Lin, N.
1993-09-01
The parabolized stability equations (PSE) are a new and more reliable approach to analyzing the stability of streamwise varying flows such as boundary layers. This approach has been previously validated for idealized incompressible flows. Here, the PSE are formulated for highly compressible flows in general curvilinear coordinates to permit the analysis of high-speed boundary-layer flows over fairly general bodies. Vigorous numerical studies are carried out to study convergence and accuracy of the linear-stability code LSH and the linear/nonlinear PSE code PSH. Physical interfaces are set up to analyze the M = 8 boundary layer over a blunt cone calculated by using a thin-layer Navier Stokes (TNLS) code and the flow over a sharp cone at angle of attack calculated using the AFWAL parabolized Navier-Stokes (PNS) code. While stability and transition studies at high speeds are far from routine, the method developed here is the best tool available to research the physical processes in high-speed boundary layers.
Layered method of electrode for solid oxide electrochemical cells
Jensen, Russell R.
1991-07-30
A process for fabricating a fuel electrode comprising: slurry dipping to form layers which are structurally graded from all or mostly all stabilized zirconia at a first layer, to an outer most layer of substantially all metal powder, such an nickel. Higher performaance fuel electrodes may be achieved if sinter active stabilized zirconia doped for electronic conductivity is used.
NASA Astrophysics Data System (ADS)
Tani, Tadaaki; Uchida, Takayuki
2015-06-01
Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.
NASA Technical Reports Server (NTRS)
Johnston, J. P.; Halleen, R. M.; Lezius, D. K.
1972-01-01
Experiments on fully developed turbulent flow in a channel which is rotating at a steady rate about a spanwise axis are described. The Coriolis force components in the region of two-dimensional mean flow affect both local and global stability. Three stability-related phenomena were observed or inferred: (1) the reduction (increase) of the rate of wall-layer streak bursting in locally stabilized (destabilized) wall layers; (2) the total suppression of transition to turbulence in a stabilized layer; (3) the development of large-scale roll cells on the destabilized side of the channel by growth of a Taylor-Gortler vortex instability. Local effects of rotational stabilization, such as reduction of the turbulent stress in wall layers, can be related to the local Richardson number in a simple way. This paper not only investigates this effect, but also, by methods of flow visualization, exposes some of the underlying structure changes caused by rotation.-
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Yuling; Liu, Yue, E-mail: Yueqiang.Liu@ccfe.ac.uk, E-mail: liuyue@dlut.edu.cn; Liu, Chao
2016-01-15
A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilizationmore » is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.« less
Electrodeposition of thin yttria-stabilized zirconia layers using glow-discharge plasma
NASA Astrophysics Data System (ADS)
Ogumi, Zempachi; Uchimoto, Yoshiharu; Tsuji, Yoichiro; Takehara, Zen-ichiro
1992-08-01
A novel process for preparation of thin yttria-stabilized zirconia (YSZ) layers was developed. This process differs from other vapor-phase deposition methods in that a dc bias circuit, separate from the plasma-generation circuit, is used for the electrodeposition process. The YSZ layer was electrodeposited from ZrCl4 and YCl3 on a nonporous calcia-stabilized zirconia substrate. Scanning electron microscopy, electron probe microanalysis, electron spectroscopy for chemical analysis, and x-ray-diffraction measurements confirmed the electrodeposition of a smooth, pinhole-free yttria-stabilized zirconia film of about 3 μm thickness.
Wrinkle-to-fold transition in soft layers under equi-biaxial strain: A weakly nonlinear analysis
NASA Astrophysics Data System (ADS)
Ciarletta, P.
2014-12-01
Soft materials can experience a mechanical instability when subjected to a finite compression, developing wrinkles which may eventually evolve into folds or creases. The possibility to control the wrinkling network morphology has recently found several applications in many developing fields, such as scaffolds for biomaterials, stretchable electronics and surface micro-fabrication. Albeit much is known of the pattern initiation at the linear stability order, the nonlinear effects driving the pattern selection in soft materials are still unknown. This work aims at investigating the nature of the elastic bifurcation undertaken by a growing soft layer subjected to a equi-biaxial strain. Considering a skin effect at the free surface, the instability thresholds are found to be controlled by a characteristic length, defined by the ratio between capillary energy and bulk elasticity. For the first time, a weakly nonlinear analysis of the wrinkling instability is performed here using the multiple-scale perturbation method applied to the incremental theory in finite elasticity. The Ginzburg-Landau equations are derived for different superposing linear modes. This study proves that a subcritical pitchfork bifurcation drives the observed wrinkle-to-fold transition in swelling gels experiments, favoring the emergence of hexagonal creased patterns, albeit quasi-hexagonal patterns might later emerge because of an expected symmetry break. Moreover, if the surface energy is somewhat comparable to the bulk elastic energy, it has the same stabilizing effect as for fluid instabilities, driving the formation of stable wrinkles, as observed in elastic bi-layered materials.
Sublayer of Prandtl Boundary Layers
NASA Astrophysics Data System (ADS)
Grenier, Emmanuel; Nguyen, Toan T.
2018-03-01
The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.
Xia, Jing; Zhao, Yun-Xuan; Wang, Lei; Li, Xuan-Ze; Gu, Yi-Yi; Cheng, Hua-Qiu; Meng, Xiang-Min
2017-09-21
Despite the substantial progress in the development of two-dimensional (2D) materials from conventional layered crystals, it still remains particularly challenging to produce high-quality 2D non-layered semiconductor alloys which may bring in some unique properties and new functions. In this work, the synthesis of well-oriented 2D non-layered CdS x Se (1-x) semiconductor alloy flakes with tunable compositions and optical properties is established. Structural analysis reveals that the 2D non-layered alloys follow an incommensurate van der Waals epitaxial growth pattern. Photoluminescence measurements show that the 2D alloys have composition-dependent direct bandgaps with the emission peak varying from 1.8 eV to 2.3 eV, coinciding well with the density functional theory calculations. Furthermore, photodetectors based on the CdS x Se (1-x) flakes exhibit a high photoresponsivity of 703 A W -1 with an external quantum efficiency of 1.94 × 10 3 and a response time of 39 ms. Flexible devices fabricated on a thin mica substrate display good mechanical stability upon repeated bending. This work suggests a facile and general method to produce high-quality 2D non-layered semiconductor alloys for next-generation optoelectronic devices.
Boundary Layer Transition in the Leading Edge Region of a Swept Cylinder in High Speed Flow
NASA Technical Reports Server (NTRS)
Coleman, Colin P.
1998-01-01
Experiments were conducted on a 76 degree swept cylinder to establish the behavior of the attachment line transition process in a low-disturbance level, Mach number 1.6 flow. For a near adiabatic wall condition, the attachment-line boundary layer remained laminar up to the highest attainable Reynolds number. The attachment-line boundary layer transition under the influence of trip wires depended on wind tunnel disturbance level, and a transition onset condition for this flow is established. Internal heating raised the surface temperature of the attachment line to induce boundary layer instabilities. This was demonstrated experimentally for the first time and the frequencies of the most amplified disturbances were determined over a range of temperature settings. Results were in excellent agreement to those predicted by a linear stability code, and provide the first experimental verification of theory. Transition onset along the heated attachment line at an R-bar of 800 under quiet tunnel conditions was found to correlate with an N factor of 13.2. Increased tunnel disturbance levels caused the transition onset to occur at lower cylinder surface temperatures and was found to correlate with an approximate N factor of 1 1.9, so demonstrating that the attachment-line boundary layer is receptive to increases in the tunnel disturbance level.
NASA Astrophysics Data System (ADS)
Fazleev, N. G.; Olenga, Antoine; Weiss, A. H.
2013-03-01
The process by which oxide layers are formed on metal surfaces is still not well understood. In this work we present the results of theoretical studies of positron states and annihilation characteristics of surface-trapped positrons at the oxidized Cu(110) surface. An ab-initio investigation of stability and associated electronic properties of different adsorption phases of oxygen on Cu(110) has been performed on the basis of density functional theory and using DMOl3 code. The changes in the positron work function and the surface dipole moment when oxygen atoms occupy on-surface and sub-surface sites have been attributed to charge redistribution within the first two layers, buckling effects within each layer and interlayer expansion. The computed positron binding energy, positron surface state wave function, and annihilation probabilities of surface trapped positrons with relevant core electrons demonstrate their sensitivity to oxygen coverage, elemental content, atomic structure of the topmost layers of surfaces, and charge transfer effects. Theoretical results are compared with experimental data obtained from studies of oxidized transition metal surfaces using positron annihilation induced Auger electron spectroscopy. This work was supported in part by the National Science Foundation Grant DMR-0907679.
Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer
NASA Astrophysics Data System (ADS)
Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas
2018-03-01
First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.
Development of an improved model for runback water on aircraft surfaces
NASA Technical Reports Server (NTRS)
Al-Khalil, Kamel M.; Keith, Theo G., Jr.; De Witt, Kenneth J.
1992-01-01
A computer simulation for 'running wet' and evaporative aircraft anti-icing systems is developed. The model is based on the analysis of the liquid water film which forms in the regions of direct impingement and, then, breaks up near the impingement limits into rivulets. The wetness factor distribution resulting from the film breakup and the rivulet configuration on the surface are predicted using a stability analysis theory and the laws of mass energy conservation. The solid structure is modeled as a multiple layer wall. The anti-icing system modeled is of the thermal type utilizing hot air and/or electrical heating elements embedded within the wall layers. Experimental observations revealing some of the basic physics of the water flow on the surface are presented. Detailed qualitative documentation of the tests are given. Several numerical examples are considered, and the effect of some of the involved parameters on the system performance are investigated.
Direct imaging of atomic-scale ripples in few-layer graphene.
Wang, Wei L; Bhandari, Sagar; Yi, Wei; Bell, David C; Westervelt, Robert; Kaxiras, Efthimios
2012-05-09
Graphene has been touted as the prototypical two-dimensional solid of extraordinary stability and strength. However, its very existence relies on out-of-plane ripples as predicted by theory and confirmed by experiments. Evidence of the intrinsic ripples has been reported in the form of broadened diffraction spots in reciprocal space, in which all spatial information is lost. Here we show direct real-space images of the ripples in a few-layer graphene (FLG) membrane resolved at the atomic scale using monochromated aberration-corrected transmission electron microscopy (TEM). The thickness of FLG amplifies the weak local effects of the ripples, resulting in spatially varying TEM contrast that is unique up to inversion symmetry. We compare the characteristic TEM contrast with simulated images based on accurate first-principles calculations of the scattering potential. Our results characterize the ripples in real space and suggest that such features are likely common in ultrathin materials, even in the nanometer-thickness range.
A preliminary assessment of the Titan planetary boundary layer
NASA Technical Reports Server (NTRS)
Allison, Michael
1992-01-01
Results of a preliminary assessment of the characteristic features of the Titan planetary boundary are addressed. These were derived from the combined application of a patched Ekman surface layer model and Rossby number similarity theory. Both these models together with Obukhov scaling, surface speed limits and saltation are discussed. A characteristic Akman depth of approximately 0.7 km is anticipated, with an eddy viscosity approximately equal to 1000 sq cm/s, an associated friction velocity approximately 0.01 m/s, and a surface wind typically smaller than 0.6 m/s. Actual values of these parameters probably vary by as much as a factor of two or three, in response to local temporal variations in surface roughness and stability. The saltation threshold for the windblown injection of approximately 50 micrometer particulates into the atmosphere is less than twice the nominal friction velocity, suggesting that dusty breezes might be an occassional feature of the Titan meteorology.
NASA Astrophysics Data System (ADS)
Golosovsky, I. V.; Ovsyanikov, A. K.; Aristov, D. N.; Matveeva, P. G.; Mukhin, A. A.; Boehm, M.; Regnault, L.-P.; Bezmaternykh, L. N.
2018-04-01
Magnetic excitations and exchange interactions in multiferroic NdFe3(BO3)4 were studied by inelastic neutron scattering in the phase with commensurate antiferromagnetic structure. The observed spectra were analyzed in the frame of the linear spin-wave theory. It was shown that only the model, which includes the exchange interactions within eight coordination spheres, describes satisfactorily all observed dispersion curves. The calculation showed that the spin-wave dynamics is governed by the strongest antiferromagnetic intra-chain interaction and three almost the same inter-chain interactions. Other interactions, including ferromagnetic exchange, appeared to be insignificant. The overall energy balance of the antiferromagnetic inter-chain exchange interactions, which couple the moments from the adjacent ferromagnetic layers as well as within a layer, stabilizes ferromagnetic arrangement in the latter. It demonstrates that the pathway geometry plays a crucial role in forming of the magnetic structure.
NASA Technical Reports Server (NTRS)
Stewart, R. B.; Grose, W. L.
1975-01-01
Parametric studies were made with a multilayer atmospheric diffusion model to place quantitative limits on the uncertainty of predicting ground-level toxic rocket-fuel concentrations. Exhaust distributions in the ground cloud, cloud stabilized geometry, atmospheric coefficients, the effects of exhaust plume afterburning of carbon monoxide CO, assumed surface mixing-layer division in the model, and model sensitivity to different meteorological regimes were studied. Large-scale differences in ground-level predictions are quantitatively described. Cloud alongwind growth for several meteorological conditions is shown to be in error because of incorrect application of previous diffusion theory. In addition, rocket-plume calculations indicate that almost all of the rocket-motor carbon monoxide is afterburned to carbon dioxide CO2, thus reducing toxic hazards due to CO. The afterburning is also shown to have a significant effect on cloud stabilization height and on ground-level concentrations of exhaust products.
First-principles study of direct and narrow band gap semiconducting β -CuGaO 2
Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; ...
2015-04-16
Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO 2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO 2 phase. Our calculations show that the β-CuGaO 2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point ofmore » Brillouin zone. In conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less
Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P
2013-11-12
In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.
Fluid-structure interaction in Taylor-Couette flow
NASA Astrophysics Data System (ADS)
Kempf, Martin Horst Willi
1998-10-01
The linear stability of a viscous fluid between two concentric, rotating cylinders is considered. The inner cylinder is a rigid boundary and the outer cylinder has an elastic layer exposed to the fluid. The subject is motivated by flow between two adjoining rollers in a printing press. The governing equations of the fluid layer are the incompressible Navier-Stokes equations, and the governing equations of the elastic layer are Navier's equations. A narrow gap, neutral stability, and axisymmetric disturbances are assumed. The solution involves a novel technique for treating two layer stability problems, where an exact solution in the elastic layer is used to isolate the problem in the fluid layer. The results show that the presence of the elastic layer has only a slight effect on the critical Taylor numbers for the elastic parameters of modern printing presses. However, there are parameter values where the critical Taylor number is dramatically different than the classical Taylor-Couette problem.
NASA Astrophysics Data System (ADS)
McGinty, C.; Finnemeyer, V.; Reich, R.; Clark, H.; Berry, S.; Bos, P.
2017-11-01
We have previously proposed a low cost, versatile process for stabilizing azodye photo-alignment layers for liquid crystal devices by utilizing a surface localized reactive mesogen (RM) layer. The RM is applied by dissolving the monomer in a liquid crystal material prior to filling the cell. In this paper, we show the significant effect of azodye layer thickness on the long term stability of these alignment layers when exposed to polarized light. We demonstrate, surprisingly, that thin azodye layers (˜3 nm) provide improved stability over thicker (˜40 nm) layers. Using this process, we show cells which have been stable to exposure with polarized light through one month. Additionally, we demonstrate the use of a photo-alignment layer to align the liquid crystals that afterwards can be rendered insensitive to polarized light. This was accomplished by using the process described above with the additional step of eliminating the photosensitivity of the azodye layer through photo-bleaching; the result is an RM alignment layer that will be stable when exposed to polarized light in the dye absorption band.
The effect of viscoelasticity on the stability of a pulmonary airway liquid layer
NASA Astrophysics Data System (ADS)
Halpern, David; Fujioka, Hideki; Grotberg, James B.
2010-01-01
The lungs consist of a network of bifurcating airways that are lined with a thin liquid film. This film is a bilayer consisting of a mucus layer on top of a periciliary fluid layer. Mucus is a non-Newtonian fluid possessing viscoelastic characteristics. Surface tension induces flows within the layer, which may cause the lung's airways to close due to liquid plug formation if the liquid film is sufficiently thick. The stability of the liquid layer is also influenced by the viscoelastic nature of the liquid, which is modeled using the Oldroyd-B constitutive equation or as a Jeffreys fluid. To examine the role of mucus alone, a single layer of a viscoelastic fluid is considered. A system of nonlinear evolution equations is derived using lubrication theory for the film thickness and the film flow rate. A uniform film is initially perturbed and a normal mode analysis is carried out that shows that the growth rate g for a viscoelastic layer is larger than for a Newtonian fluid with the same viscosity. Closure occurs if the minimum core radius, Rmin(t), reaches zero within one breath. Solutions of the nonlinear evolution equations reveal that Rmin normally decreases to zero faster with increasing relaxation time parameter, the Weissenberg number We. For small values of the dimensionless film thickness parameter ɛ, the closure time, tc, increases slightly with We, while for moderate values of ɛ, ranging from 14% to 18% of the tube radius, tc decreases rapidly with We provided the solvent viscosity is sufficiently small. Viscoelasticity was found to have little effect for ɛ >0.18, indicating the strong influence of surface tension. The film thickness parameter ɛ and the Weissenberg number We also have a significant effect on the maximum shear stress on tube wall, max(τw), and thus, potentially, an impact on cell damage. Max(τw) increases with ɛ for fixed We, and it decreases with increasing We for small We provided the solvent viscosity parameter is sufficiently small. For large ɛ ≈0.2, there is no significant difference between the Newtonian flow case and the large We cases.
NASA Astrophysics Data System (ADS)
Konduru, R.; Gupta, A.; Matsumoto, J.; Takahashi, H. G.
2017-12-01
In order to explain monsoon circulation, surface temperature gradients described as most traditional concept. However, it cannot explain certain important aspects of monsoon circulation. Later, convective quasi-equilibrium framework and vertically integrated atmospheric energy budget has become recognized theories to explain the monsoon circulation. In this article, same theories were analyzed and observed for the duration 1979-2010 over south Asian summer monsoon region. With the help of NCEP-R2, NOAA 20th Century, and Era-Interim reanalysis an important feature was noticed pertained to subcloud layer entropy and vertical moist static energy. In the last 32 years, subcloud layer entropy and vertically integrated moist static energy has shown significant seasonal warming all over the region with peak over the poleward flank of the cross-equatorial cell. The important reason related to the warming was found to be increase in surface enthalpy fluxes. Instead, other dynamical contributions pertained to the warming was also observed. Increase in positive anomalies of vertical advection of moist static energy over northern Bay of Bengal, Central India, Peninsular India, Eastern Arabian Sea, and Equatorial Indian Ocean was found to be an important dynamic factor contributing for warming of vertically integrated moist static energy. Along with it vertical moist stability has also supported the argument. Similar interpretations were perceived in the AMIP simulation of CCSM4 model. Further modeling experiments on this warming will be helpful to know the exact mechanism behind it.
Stability of organic solar cells: challenges and strategies.
Cheng, Pei; Zhan, Xiaowei
2016-05-03
Organic solar cells (OSCs) present some advantages, such as simple preparation, light weight, low cost and large-area flexible fabrication, and have attracted much attention in recent years. Although the power conversion efficiencies have exceeded 10%, the inferior device stability still remains a great challenge. In this review, we summarize the factors limiting the stability of OSCs, such as metastable morphology, diffusion of electrodes and buffer layers, oxygen and water, irradiation, heating and mechanical stress, and survey recent progress in strategies to increase the stability of OSCs, such as material design, device engineering of active layers, employing inverted geometry, optimizing buffer layers, using stable electrodes and encapsulation. Some research areas of device stability that may deserve further attention are also discussed to help readers understand the challenges and opportunities in achieving high efficiency and high stability of OSCs towards future industrial manufacture.
Method of forming an HTS article
Bhattacharya, Raghu N.; Zhang, Xun; Selvamanickam, Venkat
2014-08-19
A method of forming a superconducting article includes providing a substrate tape, forming a superconducting layer overlying the substrate tape, and depositing a capping layer overlying the superconducting layer. The capping layer includes a noble metal and has a thickness not greater than about 1.0 micron. The method further includes electrodepositing a stabilizer layer overlying the capping layer using a solution that is non-reactive to the superconducting layer. The superconducting layer has an as-formed critical current I.sub.C(AF) and a post-stabilized critical current I.sub.C(PS). The I.sub.C(PS) is at least about 95% of the I.sub.C(AF).
Arctic Submarine Slope Stability
NASA Astrophysics Data System (ADS)
Winkelmann, D.; Geissler, W.
2010-12-01
Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are the consequence. Its geometrical configuration and timing is different from submarine slides on other glaciated continental margins. Thus, it raises the question whether slope stability within the Arctic Ocean is governed by processes specific to this environment. The extraordinary thick slabs (up to 1600 m) that were moved translationally during sliding rise the question on the nature of the weak layers associated with this process. Especially theories involving higher pore pressure are being challenged by this observation, because either extreme pore pressures or alternative explanations (e.g. mineralogical and/or textural) can be considered. To assess the actual submarine slope stability and failure potential in the Arctic Ocean, we propose to drill and recover weak layer material of the HYM from the adjacent intact strata by deep drilling under the framework of Integrated Ocean Drilling Program. This is the only method to recover weak layer material from the HYM, because the strata are too thick. We further propose to drill into the adjacent deforming slope to identify material properties of the layers acting as detachment and monitor the deformation.
Linear stability of three-dimensional boundary layers - Effects of curvature and non-parallelism
NASA Technical Reports Server (NTRS)
Malik, M. R.; Balakumar, P.
1993-01-01
In this paper we study the effect of in-plane (wavefront) curvature on the stability of three-dimensional boundary layers. It is found that this effect is stabilizing or destabilizing depending upon the sign of the crossflow velocity profile. We also investigate the effects of surface curvature and nonparallelism on crossflow instability. Computations performed for an infinite-swept cylinder show that while convex curvature stabilizes the three-dimensional boundary layer, nonparallelism is, in general, destabilizing and the net effect of the two depends upon meanflow and disturbance parameters. It is also found that concave surface curvature further destabilizes the crossflow instability.
Nonlinear instability and convection in a vertically vibrated granular bed
NASA Astrophysics Data System (ADS)
Shukla, Priyanka; Ansari, I. H.; van der Meer, D.; Lohse, Detlef; Alam, Meheboob
2015-11-01
The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis. Under a quasi-steady ansatz, the base state temperature decreases with increasing height away from from the vibrating plate, but the density profile consists of three distinct regions: (i) a collisional dilute layer at the bottom, (ii) a levitated dense layer at some intermediate height and (iii) a ballistic dilute layer at the top of the granular bed. For the nonlinear stability analysis, the nonlinearities up-to cubic order in perturbation amplitude are retained, leading to the Landau equation. The genesis of granular convection is shown to be tied to a supercritical pitchfork bifurcation from the Leidenfrost state. Near the bifurcation point the equilibrium amplitude is found to follow a square-root scaling law, Ae √{ ▵} , with the distance ▵ from bifurcation point. The strength of convection is maximal at some intermediate value of the shaking strength, with weaker convection both at weaker and stronger shaking. Our theory predicts a novel floating-convection state at very strong shaking.
Coherent instability in wall-bounded turbulence
NASA Astrophysics Data System (ADS)
Hack, M. J. Philipp
2017-11-01
Hairpin vortices are commonly considered one of the major classes of coherent fluid motions in shear layers, even as their significance in the grand scheme of turbulence has remained an openly debated question. The statistical prevalence of the dynamic process that gives rise to the hairpins across different types of flows suggests an origin in a robust common mechanism triggered by conditions widespread in wall-bounded shear layers. This study seeks to shed light on the physical process which drives the generation of hairpin vortices. It is primarily facilitated through an algorithm based on concepts developed in the field of computer vision which allows the topological identification and analysis of coherent flow processes across multiple scales. Application to direct numerical simulations of boundary layers enables the time-resolved sampling and exploration of the hairpin process in natural flow. The analysis yields rich statistical results which lead to a refined characterization of the hairpin process. Linear stability theory offers further insight into the flow physics and especially into the connection between the hairpin and exponential amplification mechanisms. The results also provide a sharpened understanding of the underlying causality of events.
The presence and significance of polar meibum and tear lipids.
Pucker, Andrew D; Haworth, Kristina M
2015-01-01
The ocular tear film is a complex structure composed of a number of elements. While all of these components serve valuable functional and structural roles, the external lipid layer has been a focus because it is known to play a critical role in dry eye. Traditionally, meibomian gland phospholipids have been considered to be the vital amphiphilic molecules needed to create an interphase between the outer nonpolar lipid layer and inner aqueous layers, yet recent work has called this theory into question. The purpose of this review is to clarify the current understanding of the origins, identity, and significance of polar tear lipids. Studies indicate that both phospholipids and ω-hydroxy fatty acids likely play a critical role in tear film stability. Studies also indicate that polar lipids likely originate from multiple sources and that they are integrally involved in ocular surface disease. Additional studies are needed to fully understand the origins and significance of polar tear lipids, because to date only correlational evidence has described their hypothesized origins and functions. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Semionov, N. V.; Yermolaev, Yu. G.; Kosinov, A. D.; Semenov, A. N.; Smorodsky, B. V.; Yatskikh, A. A.
2017-10-01
The paper is devoted to an experimental and theoretical study of effect of small angle of attack on disturbances evolution and laminar-turbulent transition in a supersonic boundary layer on swept wing at Mach number M=2. The experiments are conducted at the low nose supersonic wind tunnel T-325 of ITAM. Model is a symmetrical wing with a 45° sweep angle, a 3 percent-thick circular-arc airfoil. The transition location is determined using a hot-wire anemometer. Confirmed monotonous growth of the transition Reynolds numbers with increasing of angle of attack from -2° to 2.5°. The experimental data on the influence of the angle of attack on the disturbances evolution in the supersonic boundary layer on the swept wing model are obtained. Calculations on the effect of small angles of attack on the development of perturbations are made in the framework of the linear theory of stability. A good qualitative correspondence of theoretical and experimental data are obtained.
Influence of hydrogen on the structure and stability of ultra-thin ZnO on metal substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bieniek, Bjoern; Hofmann, Oliver T.; Institut für Festkörperphysik, TU Graz, 8010 Graz
2015-03-30
We investigate the atomic and electronic structure of ultra-thin ZnO films (1 to 4 layers) on the (111) surfaces of Ag, Cu, Pd, Pt, Ni, and Rh by means of density-functional theory. The ZnO monolayer is found to adopt an α-BN structure on the metal substrates with coincidence structures in good agreement with experiment. Thicker ZnO layers change into a wurtzite structure. The films exhibit a strong corrugation, which can be smoothed by hydrogen (H) adsorption. An H over-layer with 50% coverage is formed at chemical potentials that range from low to ultra-high vacuum H{sub 2} pressures. For the Agmore » substrate, both α-BN and wurtzite ZnO films are accessible in this pressure range, while for Cu, Pd, Pt, Rh, and Ni wurtzite films are favored. The surface structure and the density of states of these H passivated ZnO thin films agree well with those of the bulk ZnO(0001{sup ¯})-2×1-H surface.« less
Effects of Transition-Metal Mixing on Na Ordering and Kinetics in Layered P 2 Oxides
NASA Astrophysics Data System (ADS)
Zheng, Chen; Radhakrishnan, Balachandran; Chu, Iek-Heng; Wang, Zhenbin; Ong, Shyue Ping
2017-06-01
Layered P 2 oxides are promising cathode materials for rechargeable sodium-ion batteries. In this work, we systematically investigate the effects of transition-metal (TM) mixing on Na ordering and kinetics in the NaxCo1 -yMnyO2 model system using density-functional-theory (DFT) calculations. The DFT-predicted 0-K stability diagrams indicate that Co-Mn mixing reduces the energetic differences between Na orderings, which may account for the reduction of the number of phase transformations observed during the cycling of mixed-TM P 2 layered oxides compared to a single TM. Using ab initio molecular-dynamics simulations and nudged elastic-band calculations, we show that the TM composition at the Na(1) (face-sharing) site has a strong influence on the Na site energies, which in turn impacts the kinetics of Na diffusion towards the end of the charge. By employing a site-percolation model, we establish theoretical upper and lower bounds for TM concentrations based on their effect on Na(1) site energies, providing a framework to rationally tune mixed-TM compositions for optimal Na diffusion.
Mishra, Rohan; Kim, Young -Min; He, Qian; ...
2016-07-18
Here, the surfaces of transition-metal oxides with the perovskite structure are fertile grounds for the discovery of novel electronic and magnetic phenomena. In this article, we combine scanning transmission electron microscopy (STEM) with density functional theory (DFT) calculations to obtain the electronic and magnetic properties of the (001) surface of a (LaFeO 3) 8/(SrFeO 3) 1 superlattice film capped with four layers of LaFeO 3. Simultaneously acquired STEM images and electron-energy-loss spectra reveal the surface structure and a reduction in the oxidation state of iron from Fe 3+ in the bulk to Fe 2+ at the surface, extending over severalmore » atomic layers, which signals the presence of oxygen vacancies. The DFT calculations confirm the reduction in terms of oxygen vacancies and further demonstrate the stabilization of an exotic phase in which the surface layer is half metallic and ferromagnetic, while the bulk remains antiferromagnetic and insulating. Based on the calculations, we predict that the surface magnetism and conductivity can be controlled by tuning the partial pressure of oxygen.« less
Origins of the Non-DLVO Force between Glass Surfaces in Aqueous Solution.
Adler, Joshua J.; Rabinovich, Yakov I.; Moudgil, Brij M.
2001-05-15
Direct measurement of surface forces has revealed that silica surfaces seem to have a short-range repulsion that is not accounted for in classical DLVO theory. The two leading hypotheses for the origin of the non-DLVO force are (i) structuring of water at the silica interface or (ii) water penetration into the surface resulting in a gel layer. In this article, the interaction of silica surfaces will be reviewed from the perspective of the non-DLVO force origin. In an attempt to more accurately describe the behavior of silica and glass surfaces, alternative models of how surfaces with gel layers should interact are proposed. It is suggested that a lessened van der Waals attraction originating from a thin gel layer may explain both the additional stability and the coagulation behavior of silica. It is important to understand the mechanisms underlying the existence of the non-DLVO force which is likely to have a major influence on the adsorption of polymers and surfactants used to modify the silica surface for practical applications in the ceramic, mineral, and microelectronic industries. Copyright 2001 Academic Press.
Schroeder, Marshall A; Kumar, Nitin; Pearse, Alexander J; Liu, Chanyuan; Lee, Sang Bok; Rubloff, Gary W; Leung, Kevin; Noked, Malachi
2015-06-03
One of the greatest obstacles for the realization of the nonaqueous Li-O2 battery is finding a solvent that is chemically and electrochemically stable under cell operating conditions. Dimethyl sulfoxide (DMSO) is an attractive candidate for rechargeable Li-O2 battery studies; however, there is still significant controversy regarding its stability on the Li-O2 cathode surface. We performed multiple experiments (in situ XPS, FTIR, Raman, and XRD) which assess the stability of the DMSO-Li2O2 interface and report perspectives on previously published studies. Our electrochemical experiments show long-term stable cycling of a DMSO-based operating Li-O2 cell with a platinum@carbon nanotube core-shell cathode fabricated via atomic layer deposition, specifically with >45 cycles of 40 h of discharge per cycle. This work is complemented by density functional theory calculations of DMSO degradation pathways on Li2O2. Both experimental and theoretical evidence strongly suggests that DMSO is chemically and electrochemically stable on the surface of Li2O2 under the reported operating conditions.
NASA Technical Reports Server (NTRS)
Tam, Christopher; Krothapalli, A
1993-01-01
The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.
Seo, Seongrok; Jeong, Seonghwa; Bae, Changdeuck; Park, Nam-Gyu; Shin, Hyunjung
2018-05-22
Despite the high power conversion efficiency (PCE) of perovskite solar cells (PSCs), poor long-term stability is one of the main obstacles preventing their commercialization. Several approaches to enhance the stability of PSCs have been proposed. However, an accelerating stability test of PSCs at high temperature under the operating conditions in ambient air remains still to be demonstrated. Herein, interface-engineered stable PSCs with inorganic charge-transport layers are shown. The highly conductive Al-doped ZnO films act as efficient electron-transporting layers as well as dense passivation layers. This layer prevents underneath perovskite from moisture contact, evaporation of components, and reaction with a metal electrode. Finally, inverted-type PSCs with inorganic charge-transport layers exhibit a PCE of 18.45% and retain 86.7% of the initial efficiency for 500 h under continuous 1 Sun illumination at 85 °C in ambient air with electrical biases (at maximum power point tracking). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Vortical Dawn Flank Boundary Layer for Near-Radial IMF: Wind Observations on 24 October 2001
NASA Technical Reports Server (NTRS)
Farrugia, C. J.; Gratton, F. T.; Gnavi, G.; Torbert, R. B.; Wilson, Lynn B., III
2014-01-01
We present an example of a boundary layer tailward of the dawn terminator which is entirely populated by rolled-up flow vortices. Observations were made by Wind on 24 October 2001 as the spacecraft moved across the region at the X plane approximately equal to -13 Earth radii. Interplanetary conditions were steady with a near-radial interplanetary magnetic field (IMF). Approximately 15 vortices were observed over the 1.5 hours duration of Wind's crossing, each lasting approximately 5 min. The rolling up is inferred from the presence of a hot tenuous plasma being accelerated to speeds higher than in the adjoining magnetosheath, a circumstance which has been shown to be a reliable signature of this in single-spacecraft observations. A blob of cold dense plasma was entrained in each vortex, at whose leading edge abrupt polarity changes of field and velocity components at current sheets were regularly observed. In the frame of the average boundary layer velocity, the dense blobs were moving predominantly sunward and their scale size along the X plane was approximately 7.4 Earth radii. Inquiring into the generation mechanism of the vortices, we analyze the stability of the boundary layer to sheared flows using compressible magnetohydrodynamic Kelvin-Helmholtz theory with continuous profiles for the physical quantities. We input parameters from (i) the exact theory of magnetosheath flow under aligned solar wind field and flow vectors near the terminator and (ii) the Wind data. It is shown that the configuration is indeed Kelvin-Helmholtz (KH) unstable. This is the first reported example of KH-unstable waves at the magnetopause under a radial IMF.
Hu, Hang; Reven, Linda; Rey, Alejandro
2013-10-17
The structure and mechanical properties of gold nanorods and their interactions with alkenthiolate self-assembled monolayers have been determined using a novel first-principle density functional theory simulation approach. The multifaceted, 1-dimensional, octagonal nanorod has alternate Au100 and Au110 surfaces. The structural optimization of the gold nanorods was performed with a mixed basis: the outermost layer of gold atoms used double-ζ plus polarization (DZP), the layer below used double-ζ (DZ), and the inner layers used single-ζ (SZ). The final structure compares favorably with simulations using DZP for all atoms. Phonon dispersion calculations and ab initio molecular dynamics (AIMD) were used to establish the dynamic and thermal stability of the system. From the AIMD simulations it was found that the nanorod system will undergo significant surface reconstruction at 300 K. In addition, when subjected to mechanical stress in the axial direction, the nanorod responds as an orthotropic material, with uniform expansion along the radial direction. The Young's moduli are 207 kbar in the axial direction and 631 kbar in the radial direction. The binding of alkanethiolates, ranging from methanethiol to pentanethiol, caused formation of surface point defects on the Au110 surfaces. On the Au100 surfaces, the defects occurred in the inner layer, creating a small surface island. These defects make positive and negative concavities on the gold nanorod surface, which helps the ligand to achieve a more stable state. The simulation results narrowed significant knowledge gaps on the alkanethiolate adsorption process and on their mutual interactions on gold nanorods. The mechanical characterization offers a new dimension to understand the physical chemistry of these complex nanoparticles.
Boundary Layer Theory. Part 1; Laminar Flows
NASA Technical Reports Server (NTRS)
Schlichting, H.
1949-01-01
The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.
NASA Technical Reports Server (NTRS)
Dean, R. C., Jr.
1974-01-01
The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco
2012-01-01
This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Gherlone, Marco; Versino, Daniele; Di Sciuva, Marco
2012-01-01
This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C0-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite elements provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.
NASA Astrophysics Data System (ADS)
Wei, Ying; Yao, Kai; Wang, Xiaofeng; Jiang, Yihua; Liu, Xueyuan; Zhou, Naigen; Li, Fan
2018-01-01
In this paper, we demonstrate the high-performance inverted planar heterojunction perovskite solar cells (PeSCs) based on the novel inorganic hole-transporting layer (HTL) of silver (Ag)-doped NiOx (Ag:NiOx). Density-functional theory (DFT) calculation reveals that Ag prefers to occupy the substitutional Ni site (AgNi) and behaves as an acceptor in NiO lattice. Compared with the pristine NiOx films, appropriate Ag doping can increase the optical transparency, work function, electrical conductivity and hole mobility of NiOx films. Moreover, the CH3NH3PbI3 perovskite films grown on Ag:NiOx exhibit better crystallinity, higher coverage and smoother surface with densely packed larger grains than those grown on the pristine NiOx film. Consequently, the Ag:NiOx HTL boosts the efficiency of the inverted planar heterojunction PeSCs from 13.46% (for the pristine NiOx-based device) to 16.86% (for the 2 at.% Ag:NiOx-based device). Furthermore, the environmental stability of PeSCs based on Ag:NiOx HTL is dramatically improved compared to devices based on organic HTLs and pristine NiOx HTLs. This work provides a simple and effective HTL material system for high-efficient and stable PeSCs.
First-principles data-driven discovery of transition metal oxides for artificial photosynthesis
NASA Astrophysics Data System (ADS)
Yan, Qimin
We develop a first-principles data-driven approach for rapid identification of transition metal oxide (TMO) light absorbers and photocatalysts for artificial photosynthesis using the Materials Project. Initially focusing on Cr, V, and Mn-based ternary TMOs in the database, we design a broadly-applicable multiple-layer screening workflow automating density functional theory (DFT) and hybrid functional calculations of bulk and surface electronic and magnetic structures. We further assess the electrochemical stability of TMOs in aqueous environments from computed Pourbaix diagrams. Several promising earth-abundant low band-gap TMO compounds with desirable band edge energies and electrochemical stability are identified by our computational efforts and then synergistically evaluated using high-throughput synthesis and photoelectrochemical screening techniques by our experimental collaborators at Caltech. Our joint theory-experiment effort has successfully identified new earth-abundant copper and manganese vanadate complex oxides that meet highly demanding requirements for photoanodes, substantially expanding the known space of such materials. By integrating theory and experiment, we validate our approach and develop important new insights into structure-property relationships for TMOs for oxygen evolution photocatalysts, paving the way for use of first-principles data-driven techniques in future applications. This work is supported by the Materials Project Predictive Modeling Center and the Joint Center for Artificial Photosynthesis through the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. Computational resources also provided by the Department of Energy through the National Energy Supercomputing Center.
NASA Astrophysics Data System (ADS)
Arora, Neha; Dar, M. Ibrahim; Hinderhofer, Alexander; Pellet, Norman; Schreiber, Frank; Zakeeruddin, Shaik Mohammed; Grätzel, Michael
2017-11-01
Perovskite solar cells (PSCs) with efficiencies greater than 20% have been realized only with expensive organic hole-transporting materials. We demonstrate PSCs that achieve stabilized efficiencies exceeding 20% with copper(I) thiocyanate (CuSCN) as the hole extraction layer. A fast solvent removal method enabled the creation of compact, highly conformal CuSCN layers that facilitate rapid carrier extraction and collection. The PSCs showed high thermal stability under long-term heating, although their operational stability was poor. This instability originated from potential-induced degradation of the CuSCN/Au contact. The addition of a conductive reduced graphene oxide spacer layer between CuSCN and gold allowed PSCs to retain >95% of their initial efficiency after aging at a maximum power point for 1000 hours under full solar intensity at 60°C. Under both continuous full-sun illumination and thermal stress, CuSCN-based devices surpassed the stability of spiro-OMeTAD-based PSCs.
NASA Astrophysics Data System (ADS)
Cooper, Harry J.; Smith, Eric A.; Martsolf, J. David
1997-02-01
Observations taken by two surface radiation and energy budget stations deployed in the University of Florida/Institute for Food and Agricultural Service experimental citrus orchard in Gainesville, Florida, have been analyzed to identify the effects of sprayer irrigation on thermal stability and circulation processes within the orchard during three 1992 winter freeze episodes. Lapse rates of temperature observed from a micrometeorological tower near the center of the orchard were also recorded during periods of irrigation for incorporation into the analysis. Comparisons of the near-surface temperature lapse rates observed with the two energy budget stations show consistency between the two sites and with the tower-based lapse rates taken over a vertical layer from 1.5 to 15 m above ground level. A theoretical framework was developed that demonstrates that turbulent-scale processes originating within the canopy, driven by latent heat release associated with condensation and freezing processes from water vapor and liquid water released from sprayer nozzles, can destabilize lapse rates and promote warm air mixing above the orchard canopy. The orchard data were then analyzed in the context of the theory for evidence of local overturning and displacement of surface-layer air, with warmer air from aloft driven by locally buoyant plumes generated by water vapor injected into the orchard during the irrigation periods. It was found that surface-layer lapse rates were lower during irrigation periods than under similar conditions when irrigation was not occurring, indicating a greater degree of vertical mixing of surface-layer air with air from above treetops, as a result of local convective overturning induced by the condensation heating of water vapor released at the nozzles of the sprinklers. This provides an additional explanation to the well-accepted heat of fusion release effect, of how undertree irrigation of a citrus orchard during a freeze period helps protect crops against frost damage.
NASA Astrophysics Data System (ADS)
Fong, Kahei Danny
The current understanding and research efforts on surface roughness effects in hypersonic boundary-layer flows focus, almost exclusively, on how roughness elements trip a hypersonic boundary layer to turbulence. However, there were a few reports in the literature suggesting that roughness elements in hypersonic boundary-layer flows could sometimes suppress the transition process and delay the formation of turbulent flow. These reports were not common and had not attracted much attention from the research community. Furthermore, the mechanisms of how the delay and stabilization happened were unknown. A recent study by Duan et al. showed that when 2-D roughness elements were placed downstream of the so-called synchronization point, the unstable second-mode wave in a hypersonic boundary layer was damped. Since the second-mode wave is typically the most dangerous and dominant unstable mode in a hypersonic boundary layer for sharp geometries at a zero angle of attack, this result has pointed to an explanation on how roughness elements delay transition in a hypersonic boundary layer. Such an understanding can potentially have significant practical applications for the development of passive flow control techniques to suppress hypersonic boundary-layer transition, for the purpose of aero-heating reduction. Nevertheless, the previous study was preliminary because only one particular flow condition with one fixed roughness parameter was considered. The study also lacked an examination on the mechanism of the damping effect of the second mode by roughness. Hence, the objective of the current research is to conduct an extensive investigation of the effects of 2-D roughness elements on the growth of instability waves in a hypersonic boundary layer. The goal is to provide a full physical picture of how and when 2-D roughness elements stabilize a hypersonic boundary layer. Rigorous parametric studies using numerical simulation, linear stability theory (LST), and parabolized stability equation (PSE) are performed to ensure the fidelity of the data and to study the relevant flow physics. All results unanimously confirm the conclusion that the relative location of the synchronization point with respect to the roughness element determines the roughness effect on the second mode. Namely, a roughness placed upstream of the synchronization point amplifies the unstable waves while placing a roughness downstream of the synchronization point damps the second-mode waves. The parametric study also shows that a tall roughness element within the local boundary-layer thickness results in a stronger damping effect, while the effect of the roughness width is relatively insignificant compared with the other roughness parameters. On the other hand, the fact that both LST and PSE successfully predict the damping effect only by analyzing the meanflow suggests the mechanism of the damping is by the meanflow alteration due to the existence of roughness elements, rather than new mode generation. In addition to studying the unstable waves, the drag force and heating with and without roughness have been investigated by comparing the numerical simulation data with experimental correlations. It is shown that the increase in drag force generated by the Mach wave around a roughness element in a hypersonic boundary layer is insignificant compared to the reduction of drag force by suppressing turbulent flow. The study also shows that, for a cold wall flow which is the case for practical flight applications, the Stanton number decreases as roughness elements smooth out the temperature gradient in the wall-normal direction. Based on the knowledge of roughness elements damping the second mode gained from the current study, a novel passive transition control method using judiciously placed roughness elements has been developed, and patented, during the course of this research. The main idea of the control method is that, with a given geometry and flow condition, it is possible to find the most unstable second-mode frequency that can lead to transition. And by doing a theoretical analysis such as LST, the synchronization location for the most unstable frequency can be found. Roughness elements are then strategically placed downstream of the synchronization point to damp out this dangerous second-mode wave, thus stabilizing the boundary layer and suppressing the transition process. This method is later experimentally validated in Purdue's Mach 6 quiet wind tunnel. Overall, this research has not only provided details of when and how 2-D roughness stabilizes a hypersonic boundary layer, it also has led to a successful application of numerical simulation data to the development of a new roughness-based transition delay method, which could potentially have significant contributions to the design of future generation hypersonic vehicles.
Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...
Sahmani, S; Aghdam, M M
2017-06-07
Microtubules including tubulin heterodimers arranging in a parallel shape of cylindrical hollow plays an important role in the mechanical stiffness of a living cell. In the present study, the nonlocal strain gradient theory of elasticity including simultaneously the both nonlocality and strain gradient size dependency is put to use within the framework of a refined orthotropic shell theory with hyperbolic distribution of shear deformation to analyze the size-dependent buckling and postbuckling characteristics of microtubules embedded in cytoplasm under axial compressive load. The non-classical governing differential equations are deduced via boundary layer theory of shell buckling incorporating the nonlinear prebuckling deformation and microtubule-cytoplasm interaction in the living cell environment. Finally, with the aid of a two-stepped perturbation solution methodology, the explicit analytical expressions for nonlocal strain gradient stability paths of axially loaded microtubules are achieved. It is illustrated that by taking the nonlocal size effect into consideration, the critical buckling load of microtubule and its maximum deflection associated with the minimum postbuckling load decreases, while the strain gradient size dependency causes to increase them. Copyright © 2017 Elsevier Ltd. All rights reserved.
Understanding the stability of surface nanobubbles.
Wang, Shuo; Liu, Minghuan; Dong, Yaming
2013-05-08
Surface nanobubbles emerging at solid-liquid interfaces show extreme stability. In this paper, the stability of surface nanobubbles in degassed water is discussed and investigated by AFM. The result demonstrates that surface nanobubbles are kinetically stable and the liquid/gas interface is gas impermeable. The force modulation experiment further proves that there is a layer coating on nanobubbles. These critical properties suggest that surface nanobubbles may be stabilized by a layer which has a great diffusive resistance.
Reactive composite compositions and mat barriers
Langton, Christine A.; Narasimhan, Rajendran; Karraker, David G.
2001-01-01
A hazardous material storage area has a reactive multi-layer composite mat which lines an opening into which a reactive backfill and hazardous material are placed. A water-inhibiting cap may cover the hazardous material storage area. The reactive multi-layer composite mat has a backing onto which is placed an active layer which will neutralize or stabilize hazardous waste and a fronting layer so that the active layer is between the fronting and backing layers. The reactive backfill has a reactive agent which can stabilize or neutralize hazardous material and inhibit the movement of the hazardous material through the hazardous material storage area.
Jia, Xiaorui; Zhang, Lianping; Luo, Qun; Lu, Hui; Li, Xueyuan; Xie, Zhongzhi; Yang, Yongzhen; Li, Yan-Qing; Liu, Xuguang; Ma, Chang-Qi
2016-07-20
We have demonstrated in this article that both power conversion efficiency (PCE) and performance stability of inverted planar heterojunction perovskite solar cells can be improved by using a ZnO:PFN nanocomposite (PFN: poly[(9,9-bis(3'-(N,N-dimethylamion)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctyl)-fluorene]) as the cathode buffer layer (CBL). This nanocomposite could form a compact and defect-less CBL film on the perovskite/PC61BM surface (PC61BM: phenyl-C61-butyric acid methyl ester). In addition, the high conductivity of the nanocomposite layer makes it works well at a layer thickness of 150 nm. Both advantages of the composite layer are helpful in reducing interface charge recombination and improving device performance. The power conversion efficiency (PCE) of the best ZnO:PFN CBL based device was measured to be 12.76%, which is higher than that of device without CBL (9.00%), or device with ZnO (7.93%) or PFN (11.30%) as the cathode buffer layer. In addition, the long-term stability is improved by using ZnO:PFN composite cathode buffer layer when compare to that of the reference cells. Almost no degradation of open circuit voltage (VOC) and fill factor (FF) was found for the device having ZnO:PFN, suggesting that ZnO:PFN is able to stabilize the interface property and consequently improve the solar cell performance stability.
NASA Astrophysics Data System (ADS)
Liu, Jian; Li, Xi-Bo; Wang, Da; Lau, Woon-Ming; Peng, Ping; Liu, Li-Min
2014-02-01
The family of bulk metal phosphorus trichalcogenides (APX3, A = MII, M_{0.5}^IM_{0.5}^{III}; X = S, Se; MI, MII, and MIII represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functional theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX3 should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe3, CdPSe3, Ag0.5Sc0.5PSe3, and Ag0.5In0.5PX3 (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag0.5Sc0.5PSe3 is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.
Thin-film metal coated insulation barrier in a Josephson tunnel junction. [Patent application
Hawkins, G.A.; Clarke, J.
1975-10-31
A highly stable, durable, and reproducible Josephson tunnel junction consists of a thin-film electrode of a hard superconductor, a thin oxide insulation layer over the electrode constituting a Josephson tunnel junction barrier, a thin-film layer of stabilizing metal over the barrier, and a second thin-film hard superconductive electrode over the stabilizing film. The thin stabilizing metal film is made only thick enough to limit penetration of the electrode material through the insulation layer so as to prevent a superconductive short.
Vakarelski, Ivan U; Chan, Derek Y C; Thoroddsen, Sigurdur T
2014-08-21
We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 10(4) and 10(6), spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies.
Zhong, Xiaoliang; Rungger, Ivan; Zapol, Peter; ...
2016-02-15
Reversible resistive switching between high-resistance and low-resistance states in metal-oxide-metal heterostructures makes them very interesting for applications in random access memories. While recent experimental work has shown that inserting a metallic "oxygen scavenger layer'' between the positive electrode and oxide improves device performance, the fundamental understanding of how the scavenger layer modifies the heterostructure properties is lacking. We use density functional theory to calculate thermodynamic properties and conductance of TiN/HfO 2/TiN heterostructures with and without a Ta scavenger layer. First, we show that Ta insertion lowers the formation energy of low-resistance states. Second, while the Ta scavenger layer reduces themore » Schottky barrier height in the high-resistance state by modifying the interface charge at the oxide-electrode interface, the heterostructure maintains a high resistance ratio between high-and low-resistance states. Lastly, we show that the low-bias conductance of device on-states becomes much less sensitive to the spatial distribution of oxygen removed from the HfO 2 in the presence of the Ta layer. By providing a fundamental understanding of the observed improvements with scavenger layers, we open a path to engineer interfaces with oxygen scavenger layers to control and enhance device performance. In turn, this may enable the realization of a non-volatile low-power memory technology with concomitant reduction in energy consumption by consumer electronics and offering significant benefits to society.« less
NASA Technical Reports Server (NTRS)
Boclair, J. W.; Braterman, P. S.
1999-01-01
Solutions containing di- and trivalent metal chlorides [M(II) = Mg2+, Zn2+, Co2+, Ni2+, Mn2+; M(III) = Al3+, Fe3+] were titrated with NaOH to yield hydrotalcite-like layered double hydroxides (LDH), [[M(II)]1-x[M(III)]x(OH)2][Cl]x yH2O, by way of M(III) hydroxide/hydrous oxide intermediates. Analysis of the resultant titration curves yields nominal solubility constants for the LDH. The corresponding LDH stabilities are in the order Mg < Mn < Co approximately Ni < Zn for M(II) and Al < Fe for M(III). The stability of LDH relative to the separate metal hydroxides/hydrous oxides is discussed.
Highly-optimized TWSM software package for seismic diffraction modeling adapted for GPU-cluster
NASA Astrophysics Data System (ADS)
Zyatkov, Nikolay; Ayzenberg, Alena; Aizenberg, Arkady
2015-04-01
Oil producing companies concern to increase resolution capability of seismic data for complex oil-and-gas bearing deposits connected with salt domes, basalt traps, reefs, lenses, etc. Known methods of seismic wave theory define shape of hydrocarbon accumulation with nonsufficient resolution, since they do not account for multiple diffractions explicitly. We elaborate alternative seismic wave theory in terms of operators of propagation in layers and reflection-transmission at curved interfaces. Approximation of this theory is realized in the seismic frequency range as the Tip-Wave Superposition Method (TWSM). TWSM based on the operator theory allows to evaluate of wavefield in bounded domains/layers with geometrical shadow zones (in nature it can be: salt domes, basalt traps, reefs, lenses, etc.) accounting for so-called cascade diffraction. Cascade diffraction includes edge waves from sharp edges, creeping waves near concave parts of interfaces, waves of the whispering galleries near convex parts of interfaces, etc. The basic algorithm of TWSM package is based on multiplication of large-size matrices (make hundreds of terabytes in size). We use advanced information technologies for effective realization of numerical procedures of the TWSM. In particular, we actively use NVIDIA CUDA technology and GPU accelerators allowing to significantly improve the performance of the TWSM software package, that is important in using it for direct and inverse problems. The accuracy, stability and efficiency of the algorithm are justified by numerical examples with curved interfaces. TWSM package and its separate components can be used in different modeling tasks such as planning of acquisition systems, physical interpretation of laboratory modeling, modeling of individual waves of different types and in some inverse tasks such as imaging in case of laterally inhomogeneous overburden, AVO inversion.
Dirac Magnons in Honeycomb Ferromagnets
NASA Astrophysics Data System (ADS)
Pershoguba, Sergey S.; Banerjee, Saikat; Lashley, J. C.; Park, Jihwey; Ågren, Hans; Aeppli, Gabriel; Balatsky, Alexander V.
2018-01-01
The discovery of the Dirac electron dispersion in graphene [A. H. Castro Neto, et al., The Electronic Properties of Graphene, Rev. Mod. Phys. 81, 109 (2009), 10.1103/RevModPhys.81.109] led to the question of the Dirac cone stability with respect to interactions. Coulomb interactions between electrons were shown to induce a logarithmic renormalization of the Dirac dispersion. With a rapid expansion of the list of compounds and quasiparticle bands with linear band touching [T. O. Wehling, et al., Dirac Materials, Adv. Phys. 63, 1 (2014), 10.1080/00018732.2014.927109], the concept of bosonic Dirac materials has emerged. We consider a specific case of ferromagnets consisting of van der Waals-bonded stacks of honeycomb layers, e.g., chromium trihalides CrX3 (X =F , Cl, Br and I), that display two spin wave modes with energy dispersion similar to that for the electrons in graphene. At the single-particle level, these materials resemble their fermionic counterparts. However, how different particle statistics and interactions affect the stability of Dirac cones has yet to be determined. To address the role of interacting Dirac magnons, we expand the theory of ferromagnets beyond the standard Dyson theory [F. J. Dyson, General Theory of Spin-Wave Interactions, Phys. Rev. 102, 1217 (1956), 10.1103/PhysRev.102.1217, F. J. Dyson, Thermodynamic Behavior of an Ideal Ferromagnet, Phys. Rev. 102, 1230 (1956), 10.1103/PhysRev.102.1230] to the case of non-Bravais honeycomb layers. We demonstrate that magnon-magnon interactions lead to a significant momentum-dependent renormalization of the bare band structure in addition to strongly momentum-dependent magnon lifetimes. We show that our theory qualitatively accounts for hitherto unexplained anomalies in nearly half-century-old magnetic neutron-scattering data for CrBr3 [W. B. Yelon and R. Silberglitt, Renormalization of Large-Wave-Vector Magnons in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering: Spin-Wave Correlation Effects, Phys. Rev. B 4, 2280 (1971), 10.1103/PhysRevB.4.2280, E. J. Samuelsen, et al., Spin Waves in Ferromagnetic CrBr3 Studied by Inelastic Neutron Scattering, Phys. Rev. B 3, 157 (1971), 10.1103/PhysRevB.3.157]. We also show that honeycomb ferromagnets display dispersive surface and edge states, unlike their electronic analogs.
NASA Astrophysics Data System (ADS)
Guest, P. S.; Persson, O. P. G.; Blomquist, B.; Fairall, C. W.
2016-02-01
"Background" stability refers to the effect of vertical virtual temperature variations above the surface layer on fluxes within the surface layer. This is different from the classical surface layer stability quantified by the Obhukhov length scale. In most locations, changes in the background stability do not have a significant direct impact on surface fluxes. However in polar regions, where there is usually a strong low-level temperature inversion capping the boundary layer, changes in background stability can have big impacts on surface fluxes. Therefore, in the Arctic, there is potential for a positive feedback effect between ice cover and surface wind speed (and momentum flux) due to the background stability effects. As the surface becomes more ice free, heat fluxes from the surface weaken the temperature inversion which in turn increases the surface wind speed which further increases the surface turbulent heat fluxes and removes more sea ice by melting or advection. It is not clear how important feedbacks involving the background stability are during the fall freeze up of the Arctic Ocean; that will be the focus of this study. As part of an ONR-sponsored cruise in the fall of 2015 to examine sea state and boundary layer processes in the Beaufort Sea on the R/V Sikuliaq, the authors will perform a variety of surface layer and upper level atmospheric measurements of temperature, humidity and wind vector using ship platform instruments, radiosonde weather balloons, tethered balloons, kites, and miniature quad-rotor unmanned aerial vehicles. In addition, the authors will deploy a full suite of turbulent and radiational flux measurements from the vessel. These measurements will be used to quantify the impact of changing surface conditions on atmospheric structure and vice-versa. The goal is to directly observe how the surface and atmosphere above the surface layer interact and feedback with each other through radiational and turbulent fluxes.
NASA Astrophysics Data System (ADS)
Drazin, P. G.; Reid, W. H.
The book is written from the point of view intrinsic to fluid mechanics and applied mathematics. The analytical aspects of the theory are emphasized. However, it has also been tried, wherever possible, to relate the theory to experimental and numerical results. Mechanisms of instability are considered along with fundamental concepts of hydrodynamic stability, the Kelvin-Helmholtz instability, and the break-up of a liquid jet in air. Aspects of thermal instability are investigated, taking into account the equations of motion, the stability problem, general stability characteristics, particular stability characteristics, the cells, and experimental results. The inviscid theory and the viscous theory are examined in connection with a study of parallel shear flows. Centrifugal instability is discussed along with uniform asymptotic approximations, and problems of nonlinear stability. Attention is also given to baroclinic instability, the instability of the pinch, the development of linear instability in time and space, and the instability of unsteady flows.
Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons
NASA Astrophysics Data System (ADS)
Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.
2018-04-01
Few-layer black phosphorene has recently attracted significant interest in the scientific community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs) and employ deformation potential theory within the effective mass approximation, together with density functional theory, to investigate their structural, mechanical and electronic properties. The results show that the stability of a PNR strongly depends on the direction along which it can be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from 6 × 1010 eV m-1 to 18 × 1011 eV m-1, which has little dependence on the edge passivation. Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap semiconductor (E g < 1 eV) or a wide-gap semiconductor (E g > 1 eV). The carrier mobility of PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type (p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of the edges leads to n-type ↔ p-type transition in many of the PNRs considered. The predicted novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make them potentially suitable for use in nanoscale devices.
NASA Technical Reports Server (NTRS)
Carter, Arthur W.
1961-01-01
An investigation has been made to determine the effect of ground proximity on the aerodynamic characteristics of aspect-ratio-1 airfoils. The investigation was made with the model moving over the water in a towing tank in order to eliminate the effects of wind-tunnel walls and of boundary layer on ground boards at small ground clearances. The results indicated that, as the ground was approached, the airfoils experienced an increase in lift-curve slope and a reduction in induced drag; thus, lift-drag ratio was increased. As the ground was approached, the profile drag remained essentially constant for each airfoil. Near the ground, the addition of end plates to the airfoil resulted in a large increase in lift-drag ratio. The lift characteristics of the airfoils indicated stability of height at positive angles of attack and instability of height at negative angles; therefore, the operating range of angles of attack would be limited to positive values. At positive angles of attack, the static longitudinal stability was increased as the height above the ground was reduced. Comparison of the experimental data with Wieselsberger's ground-effect theory (NACA Technical Memorandum 77) indicated generally good agreement between experiment and theory for the airfoils without end plates.
Sensitivity of boundary-layer stability to base-state distortions at high Mach numbers
NASA Astrophysics Data System (ADS)
Park, Junho; Zaki, Tamer
2017-11-01
The stability diagram of high-speed boundary layers has been established by evaluating the linear instability modes of the similarity profile, over wide ranges of Reynolds and Mach numbers. In real flows, however, the base state can deviate from the similarity profile. Both the base velocity and temperature can be distorted, for example due to roughness and thermal wall treatments. We review the stability problem of high-speed boundary layer, and derive a new formulation of the sensitivity to base-state distortion using forward and adjoint parabolized stability equations. The new formulation provides qualitative and quantitative interpretations on change in growth rate due to modifications of mean-flow and mean-temperature in heated high-speed boundary layers, and establishes the foundation for future control strategies. This work has been funded by the Air Force Office of Scientific Research (AFOSR) Grant: FA9550-16-1-0103.
[Abnormal of tear lipid layer and recent advances in clinical study of dry eye].
Xiao, Xin-Ye; Liu, Zu-Guo
2012-03-01
Dry eye is a common disease in the ophthalmological clinic, which is related to the dysfunction of tear film. The tear film is composed of lipid layer, aqueous layer and mucin layer (or lipid layer, aqueous/mucin layer). The lipid of the outmost layer derived from Meibomian gland and distributed on the tear film after blinking can decrease the evaporation and stabilize the tear film. The thickness, quality, and distribution of lipid layer are impaired in many dry eye patients, hence restoring the physiological function of lipid layer may be crucial for the treatment of this kind of dry eye. The lipid artificial tears manifest great effects on increasing lipid layer thickness, stabilizing tear film, improving Meibomian gland dysfunction, and promoting tear film distribution.
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2017-11-01
In this paper, a new size-dependent inhomogeneous plate model is constructed to analyze the nonlinear buckling and postbuckling characteristics of multilayer functionally graded composite nanoplates reinforced with graphene platelet (GPL) nanofillers under axial compressive load. To this purpose, the nonlocal strain gradient theory of elasticity is implemented into a refined hyperbolic shear deformation plate theory. The mechanical properties of multilayer graphene platelet-reinforced composite (GPLRC) nanoplates are evaluated based upon the Halpin-Tsai micromechanical scheme. The weight fraction of randomly dispersed GPLs remain constant in each individual layer, which results in U-GPLRC nanoplate, or changes layerwise in accordance with three different functionally graded patterns, which make X-GPLRC, O-GPLRC and A-GPLRC nanoplates. Via a two-stepped perturbation technique, explicit analytical expressions for nonlocal strain gradient stability paths are established for layerwise functionally graded GPLRC nanoplates. It is demonstrated that both the nonlocal and strain gradient size dependencies are more significant for multilayer GPLRC nanoplates filling by GPL nanofillers with higher length-to-thickness and width-to-thickness ratios.
Enhancement of switching stability of tunneling magnetoresistance system with artificial ferrimagnet
NASA Astrophysics Data System (ADS)
You, Chun-Yeol; Bader, Sam. D.; Scheinfein, M. R.
2002-03-01
In the study of spin dependent magnetic tunneling junctions, the switching stability of the magnetically hard layer is a crucial issue in magnetic random access memory applications[1]. After repeated cycling of the soft layer, the magnetization of the hard layer is demagnetized by the stray field from the domain wall created during the switching[2]. The magnitude of the stray field from the soft layer is large enough to switch a domain in the hard layer. Therefore, reducing this stray field is necessary to increase the switching stability. In this study, we explore an artificial ferrimagnet to replace the usual soft layer in order to reduce stray field. The ferrimagnet consists of an antiferromagnetically coupled trilayer that has two ferromagnetic layers of unequal thickness and opposite magnetization orientation. Since the sign of stray field of the two ferromagnetic layers is opposed, the total stray field is greatly reduced. [Supported by the US DOE, BES-MS, under Contract W-31-109-ENG-38.] [1] S. Gider et al. Science 281, 797 (1998). [2] L. Thomas et al. Phys. Rev. Lett. 84, 1816 (2000).
Salting out the polar polymorph: analysis by alchemical solvent transformation.
Duff, Nathan; Dahal, Yuba Raj; Schmit, Jeremy D; Peters, Baron
2014-01-07
We computationally examine how adding NaCl to an aqueous solution with α- and γ-glycine nuclei alters the structure and interfacial energy of the nuclei. The polar γ-glycine nucleus in pure aqueous solution develops a melted layer of amorphous glycine around the nucleus. When NaCl is added, a double layer is formed that stabilizes the polar glycine polymorph and eliminates the surface melted layer. In contrast, the non-polar α-glycine nucleus is largely unaffected by the addition of NaCl. To quantify the stabilizing effect of NaCl on γ-glycine nuclei, we alchemically transform the aqueous glycine solution into a brine solution of glycine. The alchemical transformation is performed both with and without a nucleus in solution and for nuclei of α-glycine and γ-glycine polymorphs. The calculations show that adding 80 mg/ml NaCl reduces the interfacial free energy of a γ-glycine nucleus by 7.7 mJ/m(2) and increases the interfacial free energy of an α-glycine nucleus by 3.1 mJ/m(2). Both results are consistent with experimental reports on nucleation rates which suggest: J(α, brine) < J(γ, brine) < J(α, water). For γ-glycine nuclei, Debye-Hückel theory qualitatively, but not quantitatively, captures the effect of salt addition. Only the alchemical solvent transformation approach can predict the results for both polar and non-polar polymorphs. The results suggest a general "salting out" strategy for obtaining polar polymorphs and also a general approach to computationally estimate the effects of solvent additives on interfacial free energies for nucleation.
Stability of high-speed boundary layers in oxygen including chemical non-equilibrium effects
NASA Astrophysics Data System (ADS)
Klentzman, Jill; Tumin, Anatoli
2013-11-01
The stability of high-speed boundary layers in chemical non-equilibrium is examined. A parametric study varying the edge temperature and the wall conditions is conducted for boundary layers in oxygen. The edge Mach number and enthalpy ranges considered are relevant to the flight conditions of reusable hypersonic cruise vehicles. Both viscous and inviscid stability formulations are used and the results compared to gain insight into the effects of viscosity and thermal conductivity on the stability. It is found that viscous effects have a strong impact on the temperature and mass fraction perturbations in the critical layer and in the viscous sublayer near the wall. Outside of these areas, the perturbations closely match in the viscous and inviscid models. The impact of chemical non-equilibrium on the stability is investigated by analyzing the effects of the chemical source term in the stability equations. The chemical source term is found to influence the growth rate of the second Mack mode instability but not have much of an effect on the mass fraction eigenfunction for the flow parameters considered. This work was supported by the AFOSR/NASA/National Center for Hypersonic Laminar-Turbulent Transition Research.
Air- ice-snow interaction in the Northern Hemisphere under different stability conditions
NASA Astrophysics Data System (ADS)
Repina, Irina; Chechin, Dmitry; Artamonov, Arseny
2013-04-01
The traditional parameterizations of the atmospheric boundary layer are based on similarity theory and the coefficients of turbulent transfer, describing the atmospheric-surface interaction and the diffusion of impurities in the operational models of air pollution, weather forecasting and climate change. Major drawbacks of these parameterizations is that they are not applicable for the extreme conditions of stratification and currents over complex surfaces (such as sea ice, marginal ice zone or stormy sea). These problem could not be overcome within the framework of classical theory, i.e, by rectifying similarity functions or through the introduction of amendments to the traditional turbulent closure schemes. Lack of knowledge on the structure of the surface air layer and the exchange of momentum, heat and moisture between the rippling water surface and the atmosphere at different atmospheric stratifications is at present the major obstacle which impede proper functioning of the operational global and regional weather prediction models and expert models of climate and climate change. This is especially important for the polar regions, where in winter time the development of strong stable boundary layer in the presence of polynyas and leads usually occur. Experimental studies of atmosphere-ice-snow interaction under different stability conditions are presented. Strong stable and unstable conditions are discussed. Parametrizations of turbulent heat and gas exchange at the atmosphere ocean interface are developed. The dependence of the exchange coefficients and aerodynamic roughness on the atmospheric stratification over the snow and ice surface is experimentally confirmed. The drag coefficient is reduced with increasing stability. The behavior of the roughness parameter is simple. This result was obtained in the Arctic from the measurements over hummocked surface. The value of the roughness in the Arctic is much less than that observed over the snow in the middle and even high latitudes of the Northern Hemisphere because the stable conditions above Arctic ice field dominate. Under such conditions the air flow over the uneven surface behaves in the way it does over the even one. This happens because depressions between ridges are filled with heavier air up to the height of irreguralities. As a result, the air moves at the level of ridges without entering depressions. Increased heat and mass transfer over polynyas and leads through self-organization of turbulent convection is found. The work was sponsored by RFBR grants and funded by the Government of the Russian Federation grants.
NASA Technical Reports Server (NTRS)
Kogan, M. N.
1994-01-01
Recent progress in both the linear and nonlinear aspects of stability theory has highlighted the importance of the receptivity problem. One of the most unclear aspects of receptivity study is the receptivity of boundary-layer flow normal to vortical disturbances. Some experimental and theoretical results permit the proposition that quasi-steady outer-flow vortical disturbances may trigger by-pass transition. In present work such interaction is investigated for vorticity normal to a leading edge. The interest in these types of vortical disturbances arise from theoretical work, where it was shown that small sinusoidal variations of upstream velocity along the spanwise direction can produce significant variations in the boundary-layer profile. In the experimental part of this work, such non-uniform flow was created and the laminar-turbulent transition in this flow was investigated. The experiment was carried out in a low-turbulence direct-flow wind tunnel T-361 at the Central Aerohydrodynamic Institute (TsAGI). The non-uniform flow was produced by laminar or turbulent wakes behind a wire placed normal to the plate upstream of the leading edge. The theoretical part of the work is devoted to studying the unstable disturbance evolution in a boundary layer with strongly non-uniform velocity profiles similar to that produced by outer-flow vorticity. Specifically, the Tollmien-Schlichting wave development in the boundary layer flow with spanwise variations of velocity is investigated.
Sun, Binbin; Zhang, Yinqing; Chen, Wei; Wang, Kunkun; Zhu, Lingyan
2018-06-22
The impacts of a model globular protein (bovine serum albumin, BSA) on aggregation kinetics of graphene oxide (GO) in aquatic environment were investigated through time-resolved dynamic light scattering at pH 5.5. Aggregation kinetics of GO without BSA as a function of electrolyte concentrations (NaCl, MgCl 2 , and CaCl 2 ) followed the traditional Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, and the critical coagulation concentration (CCC) was 190, 5.41, and 1.61 mM, respectively. As BSA was present, it affected the GO stability in a concentration dependent manner. At fixed electrolyte concentrations below the CCC values, for example 120 mM NaCl, the attachment efficiency of GO increased from 0.08 to 1, then decreased gradually and finally reached up to zero as BSA concentration increased from 0 to 66.5 mg C/L. The low-concentration BSA depressed GO stability mainly due to electrostatic binding between the positively charged lysine groups of BSA and negatively charged groups of GO, as well as double layer compression effect. With the increase of BSA concentration, more and more BSA molecules were adsorbed on GO, leading to strong steric repulsion which finally predominated and stabilized the GO. These results provided significant information about the concentration dependent effects of natural organic matters on GO stability under environmentally relevant conditions.
Use of Bacteria To Stabilize Archaeological Iron
Comensoli, Lucrezia; Maillard, Julien; Albini, Monica; Sandoz, Frederic
2017-01-01
ABSTRACT Iron artifacts are common among the findings of archaeological excavations. The corrosion layer formed on these objects requires stabilization after their recovery, without which the destruction of the item due to physicochemical damage is likely. Current technologies for stabilizing the corrosion layer are lengthy and generate hazardous waste products. Therefore, there is a pressing need for an alternative method for stabilizing the corrosion layer on iron objects. The aim of this study was to evaluate an alternative conservation-restoration method using bacteria. For this, anaerobic iron reduction leading to the formation of stable iron minerals in the presence of chlorine was investigated for two strains of Desulfitobacterium hafniense (strains TCE1 and LBE). Iron reduction was observed for soluble Fe(III) phases as well as for akaganeite, the most troublesome iron compound in the corrosion layer of archaeological iron objects. In terms of biogenic mineral production, differential efficiencies were observed in assays performed on corroded iron coupons. Strain TCE1 produced a homogeneous layer of vivianite covering 80% of the corroded surface, while on the coupons treated with strain LBE, only 10% of the surface was covered by the same mineral. Finally, an attempt to reduce iron on archaeological objects was performed with strain TCE1, which led to the formation of both biogenic vivianite and magnetite on the surface of the artifacts. These results demonstrate the potential of this biological treatment for stabilizing archaeological iron as a promising alternative to traditional conservation-restoration methods. IMPORTANCE Since the Iron Age, iron has been a fundamental material for the building of objects used in everyday life. However, due to its reactivity, iron can be easily corroded, and the physical stability of the object built is at risk. This is particularly true for archaeological objects on which a potentially unstable corrosion layer is formed during the time the object is buried. After excavation, changes in environmental conditions (e.g., higher oxygen concentration or lower humidity) alter the stability of the corrosion layer and can lead to the total destruction of the object. In this study, we demonstrate the feasibility of an innovative treatment based on bacterial iron reduction and biogenic mineral formation to stabilize the corrosion layer and protect these objects. PMID:28283522
Stability results for multi-layer radial Hele-Shaw and porous media flows
NASA Astrophysics Data System (ADS)
Gin, Craig; Daripa, Prabir
2015-01-01
Motivated by stability problems arising in the context of chemical enhanced oil recovery, we perform linear stability analysis of Hele-Shaw and porous media flows in radial geometry involving an arbitrary number of immiscible fluids. Key stability results obtained and their relevance to the stabilization of fingering instability are discussed. Some of the key results, among many others, are (i) absolute upper bounds on the growth rate in terms of the problem data; (ii) validation of these upper bound results against exact computation for the case of three-layer flows; (iii) stability enhancing injection policies; (iv) asymptotic limits that reduce these radial flow results to similar results for rectilinear flows; and (v) the stabilizing effect of curvature of the interfaces. Multi-layer radial flows have been found to have the following additional distinguishing features in comparison to rectilinear flows: (i) very long waves, some of which can be physically meaningful, are stable; and (ii) eigenvalues can be complex for some waves depending on the problem data, implying that the dispersion curves for one or more waves can contact each other. Similar to the rectilinear case, these results can be useful in providing insight into the interfacial instability transfer mechanism as the problem data are varied. Moreover, these can be useful in devising smart injection policies as well as controlling the complexity of the long-term dynamics when drops of various immiscible fluids intersperse among each other. As an application of the upper bound results, we provide stabilization criteria and design an almost stable multi-layer system by adding many layers of fluid with small positive jumps in viscosity in the direction of the basic flow.
NASA Astrophysics Data System (ADS)
Würz, W.; Sartorius, D.; Kloker, M.; Borodulin, V. I.; Kachanov, Y. S.; Smorodsky, B. V.
2012-09-01
Transition prediction in two-dimensional laminar boundary layers developing on airfoil sections at subsonic speeds and very low turbulence levels is still a challenge. The commonly used semi-empirical prediction tools are mainly based on linear stability theory and do not account for nonlinear effects present unavoidably starting with certain stages of transition. One reason is the lack of systematic investigations of the weakly nonlinear stages of transition, especially of the strongest interactions of the instability modes predominant in non-self-similar boundary layers. The present paper is devoted to the detailed experimental, numerical, and theoretical study of weakly nonlinear subharmonic resonances of Tollmien-Schlichting waves in an airfoil boundary layer, representing main candidates for the strongest mechanism of these initial nonlinear stages. The experimental approach is based on phase-locked hot-wire measurements under controlled disturbance conditions using a new disturbance source being capable to produce well-defined, complex wave compositions in a wide range of streamwise and spanwise wave numbers. The tests were performed in a low-turbulence wind tunnel at a chord Reynolds number of Re = 0.7 × 106. Direct numerical simulations (DNS) were utilized to provide a detailed comparison for the test cases. The results of weakly nonlinear theory (WNT) enabled a profound understanding of the underlying physical mechanisms observed in the experiments and DNS. The data obtained in experiment, DNS and WNT agree basically and provide a high degree of reliability of the results. Interactions occurring between components of various initial frequency-wavenumber spectra of instability waves are investigated by systematic variation of parameters. It is shown that frequency-detuned and spanwise-wavenumber-detuned subharmonic-type resonant interactions have an extremely large spectral width. Similar to results obtained for self-similar base flows it is found that the amplification factors in the frequency-detuned resonances can be even higher than in tuned cases, in spite of the strong base-flow non-self-similarity. An explanation of this unusual phenomenon is found based on the theoretical analysis and comparison of experimental, theoretical, and DNS data.
NASA Astrophysics Data System (ADS)
Deal, E.; Carazzo, G.; Jellinek, M.
2013-12-01
The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.
Kwon, Young-Nam; Kim, In-Chul
2013-11-01
Hydrothermal stability of a porous nickel-supported silica membrane was successfully improved by deposition of titania multilayers on colloidal silica particles embedded in the porous nickel fiber support. Porous nickel-supported silica membranes were prepared by means of a dipping-freezing-fast drying (DFF) method. The titania layers were deposited on colloidal silica particles by repeating hydrolysis and condensation reactions of titanium isopropoxide on the silica particle surfaces. The deposition of thin titania layers on the nickel-supported silica membrane was verified by various analytical tools. The water flux and the solute rejection of the porous Ni fiber-supported silica membranes did not change after titania layer deposition, indicating that thickness of titania layers deposited on silica surface is enough thin not to affect the membrane performance. Moreover, improvement of the hydrothermal stability in the titania-deposited silica membranes was confirmed by stability tests, indicating that thin titania layers deposited on silica surface played an important role as a diffusion barrier against 90 degrees C water into silica particles.
Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating
Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.
2016-01-01
Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435
Nanostructure templating using low temperature atomic layer deposition
Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL
2011-12-20
Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.
Delay of Transition Using Forced Damping
NASA Technical Reports Server (NTRS)
Exton, Reginald J.
2014-01-01
Several experiments which have reported a delay of transition are analyzed in terms of the frequencies of the induced disturbances generated by different flow control elements. Two of the experiments employed passive stabilizers in the boundary layer, one leading-edge bluntness, and one employed an active spark discharge in the boundary layer. It is found that the frequencies generated by the various elements lie in the damping region of the associated stability curve. It is concluded that the creation of strong disturbances in the damping region stabilizes the boundary-layer and delays the transition from laminar to turbulent flow.
NASA Technical Reports Server (NTRS)
Tetervin, Neal
1959-01-01
The minimum critical Reynolds numbers for the similar solutions of the compressible laminar boundary layer computed by Cohen and Reshotko and also for the Falkner and Skan solutions as recomputed by Smith have been calculated by Lin's rapid approximate method for two-dimensional disturbances. These results enable the stability of the compressible laminar boundary layer with heat transfer and pressure gradient to be easily estimated after the behavior of the boundary layer has been computed by the approximate method of Cohen and Reshotko. The previously reported unusual result (NACA Technical Note 4037) that a highly cooled stagnation point flow is more unstable than a highly cooled flat-plate flow is again encountered. Moreover, this result is found to be part of the more general result that a favorable pressure gradient is destabilizing for very cool walls when the Mach number is less than that for complete stability. The minimum critical Reynolds numbers for these wall temperature ratios are, however, all larger than any value of the laminar-boundary-layer Reynolds number likely to be encountered. For Mach numbers greater than those for which complete stability occurs a favorable pressure gradient is stabilizing, even for very cool walls.
Power System Transient Stability Based on Data Mining Theory
NASA Astrophysics Data System (ADS)
Cui, Zhen; Shi, Jia; Wu, Runsheng; Lu, Dan; Cui, Mingde
2018-01-01
In order to study the stability of power system, a power system transient stability based on data mining theory is designed. By introducing association rules analysis in data mining theory, an association classification method for transient stability assessment is presented. A mathematical model of transient stability assessment based on data mining technology is established. Meanwhile, combining rule reasoning with classification prediction, the method of association classification is proposed to perform transient stability assessment. The transient stability index is used to identify the samples that cannot be correctly classified in association classification. Then, according to the critical stability of each sample, the time domain simulation method is used to determine the state, so as to ensure the accuracy of the final results. The results show that this stability assessment system can improve the speed of operation under the premise that the analysis result is completely correct, and the improved algorithm can find out the inherent relation between the change of power system operation mode and the change of transient stability degree.
NASA Astrophysics Data System (ADS)
Egli, R.; Zhao, X.
2015-04-01
We present a general theory for the acquisition of natural remanent magnetizations (NRM) in sediment under the influence of (a) magnetic torques, (b) randomizing torques, and (c) torques resulting from interaction forces. Dynamic equilibrium between (a) and (b) in the water column and at the sediment-water interface generates a detrital remanent magnetization (DRM), while much stronger randomizing torques may be provided by bioturbation inside the mixed layer. These generate a so-called mixed remanent magnetization (MRM), which is stabilized by mechanical interaction forces. During the time required to cross the surface mixed layer, DRM is lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are governed by a MRM lock-in function. The final NRM intensity is controlled mainly by a single parameter γ that is defined as the product of rotational diffusion and mixed-layer thickness, divided by sedimentation rate. This parameter defines three regimes: (1) slow mixing (γ < 0.2) leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing (γ > 10) with MRM acquisition and full DRM randomization, and (3) intermediate mixing. Because the acquisition efficiency of DRM is larger than that of MRM, NRM intensity is particularly sensitive to γ in case of mixed regimes, generating variable NRM acquisition efficiencies. This model explains (1) lock-in delays that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence of small lock-in depths that lead to DRM preservation, (3) specific NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) some relative paleointensity artifacts.
Yu, Jae Choul; Hong, Ji A; Jung, Eui Dae; Kim, Da Bin; Baek, Soo-Min; Lee, Sukbin; Cho, Shinuk; Park, Sung Soo; Choi, Kyoung Jin; Song, Myoung Hoon
2018-01-18
The beneficial use of a hole transport layer (HTL) as a substitution for poly(3,4-ethlyenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) is regarded as one of the most important approaches for improving the stability and efficiency of inverted perovskite solar cells. Here, we demonstrate highly efficient and stable inverted perovskite solar cells by applying a GO-doped PEDOT:PSS (PEDOT:GO) film as an HTL. The high performance of this solar cell stems from the excellent optical and electrical properties of the PEDOT:GO film, including a higher electrical conductivity, a higher work function related to the reduced contact barrier between the perovskite layer and the PEDOT:GO layer, enhanced crystallinity of the perovskite crystal, and suppressed leakage current. Moreover, the device with the PEDOT:GO layer showed excellent long-term stability in ambient air conditions. Thus, the enhancement in the efficiency and the excellent stability of inverted perovskite solar cells are promising for the eventual commercialization of perovskite optoelectronic devices.
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P; Noy, Aleksandr; Fornasiero, Francesco
2018-06-07
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
NASA Technical Reports Server (NTRS)
Hyun, J. M.
1981-01-01
Quasi-geostrophic disturbance instability characteristics are studied in light of a linearized, two-layer Eady model in which both the static stability and the zonal current shear are uniform but different in each layer. It is shown that the qualitative character of the instability is determined by the sign of the basic-state potential vorticity gradient at the layer interface, and that there is a qualitative similarity between the effects of Richardson number variations due to changes in static stability and those due to changes in shear. The two-layer model is also used to construct an analog of the Williams (1974) continuous model of generalized Eady waves, the basic state in that case having zero potential vorticity gradient in the interior. The model results are in good agreement with the earlier Williams findings.
NASA Astrophysics Data System (ADS)
In, Jung Bin; Cho, Kang Rae; Tran, Tung Xuan; Kim, Seok-Min; Wang, Yinmin; Grigoropoulos, Costas P.; Noy, Aleksandr; Fornasiero, Francesco
2018-06-01
We investigate the thermal stability of alumina supporting layers sputtered at different conditions and its effect on the growth of aligned single-walled carbon nanotube arrays. Radio frequency magnetron sputtering of alumina under oxygen-argon atmosphere produces a Si-rich alumina alloy film on a silicon substrate. Atomic force microscopy on the annealed catalysts reveals that Si-rich alumina films are more stable than alumina layers with low Si content at the elevated temperatures at which the growth of single-walled carbon nanotubes is initiated. The enhanced thermal stability of the Si-rich alumina layer results in a narrower (< 2.2 nm) diameter distribution of the single-walled carbon nanotubes. Thanks to the smaller diameters of their nanotube pores, membranes fabricated with vertically aligned nanotubes grown on the stable layers display improved ion selectivity.
Jing, Qiang; Zhang, Mian; Huang, Xiang; Ren, Xiaoming; Wang, Peng; Lu, Zhenda
2017-06-08
In recent years, there has been an unprecedented rise in the research of halide perovskites because of their important optoelectronic applications, including photovoltaic cells, light-emitting diodes, photodetectors and lasers. The most pressing question concerns the stability of these materials. Here faster degradation and PL quenching are observed at higher iodine content for mixed-halide perovskite CsPb(Br x I 1-x ) 3 nanocrystals, and a simple yet effective method is reported to significantly enhance their stability. After selective etching with acetone, surface iodine is partially etched away to form a bromine-rich surface passivation layer on mixed-halide perovskite nanocrystals. This passivation layer remarkably stabilizes the nanocrystals, making their PL intensity improved by almost three orders of magnitude. It is expected that a similar passivation layer can also be applied to various other kinds of perovskite materials with poor stability issues.
Bent-core fiber structure: Experimental and theoretical studies of fiber stability
NASA Astrophysics Data System (ADS)
Bailey, C.; Gartland, E.; Jakli, A.
2007-03-01
Recent studies have shown that bent core liquid crystals in the B7 and B2 phases can form stable freestanding fibers with a so called ``jelly-roll'' layer configuration, which means that the smectic layers would be arranged in concentric cylindrical shells. This configuration shows layer curvature is necessary for fiber stability. Classically this effect would destabilize the fiber configuration because of the energy cost of layer distortions and surface tension. We propose a model that can predict fiber stability in the experimentally observed range of a few micrometers, by assuming that layer curvature can be stabilized by including a term dealing with the linear divergence of the polarization direction if the polarization is allowed to have a component normal to the smectic layers. We show that this term can stabilize the fiber configuration if its strength is larger than the surface tension. We also propose an entropic model to explain the strength of this term by considering steric effects. Finally we will take results from this model and apply them to better understand experimental findings of bent-core fibers. Financial support by NSF FRG under contract DMS-0456221. Prof. Daniel Phillips, Particia Bauman and Jie Shen at Purdue Univ., Prof. Maria Carme Calderer at Univ. of Minnesota, and Prof. Jonathan Selinger at Kent State Univ. Liou Qiu and Dr. O.D. Lavrentovich, Characterization Facilities, Liquid Crystal Institute, Kent State Univ. Julie Kim and Dr. Quan Li, Chemical Synthesis Facilities, Liquid Crystal Institute, Kent State Univ.
Kitayama, Yukiya; Takeuchi, Toshifumi
2014-10-28
CO2/N2-triggered stability-controllable gold nanoparticles (AuNPs) grafted with poly(2-(diethylamino)ethyl methacrylate) (PDEAEMA) layers (PDEAEMA-g-AuNPs) were synthesized by the surface-initiated atom transfer radical polymerization of DEAEMA with AuNPs bearing the bis[2-(2-bromoisobutyryloxy)undecyl] layer (grafting from method). Extension of the PDEAEMA chain length increased the stability of the PDEAEMA-g-AuNPs in CO2-bubbled water because of the electrosteric repulsion of the protonated PDEAEMA layer. The chain-length-dependent stability of PDEAEMA-g-AuNPs was confirmed by DLS and UV-vis spectra by using the localized surface plasmon resonance property of the AuNPs, where the extinction wavelength was shifted toward shorter wavelength with increasing PDEAEMA chain length. The reversible stability change with the gas stimuli of CO2/N2 was also successfully demonstrated. Finally, the transfer across the immiscible interface between water and organic solvent was successfully demonstrated by N2-triggered insolubilization of PDEAEMA layer on AuNPs in the aqueous phase, leading to the successful collection of AuNPs using organic solvent from the aqueous phase. Our "grafting from" method of reversible stability-controllable AuNPs can be applied to develop advanced materials such as reusable optical AuNP-based nanosensors because the molecular recognition layer can be constructed by two-step polymerization.
Stationary stability for evolutionary dynamics in finite populations
Harper, Marc; Fryer, Dashiell
2016-08-25
Here, we demonstrate a vast expansion of the theory of evolutionary stability to finite populations with mutation, connecting the theory of the stationary distribution of the Moran process with the Lyapunov theory of evolutionary stability. We define the notion of stationary stability for the Moran process with mutation and generalizations, as well as a generalized notion of evolutionary stability that includes mutation called an incentive stable state (ISS) candidate. For sufficiently large populations, extrema of the stationary distribution are ISS candidates and we give a family of Lyapunov quantities that are locally minimized at the stationary extrema and at ISSmore » candidates. In various examples, including for the Moran andWright–Fisher processes, we show that the local maxima of the stationary distribution capture the traditionally-defined evolutionarily stable states. The classical stability theory of the replicator dynamic is recovered in the large population limit. Finally we include descriptions of possible extensions to populations of variable size and populations evolving on graphs.« less
NASA Astrophysics Data System (ADS)
Hilal, Muhammad; Han, Jeong In
2018-06-01
This is the first study that described how the interface interactions of graphene oxide (GO) with poly(3-hexylthiophene): 3'H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3'-butanoic acid 3'-phenyl methyl ester (PCBM) and with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) are influencing the stability and performance of poly(3-hexylthiophene): poly(3-hexylthiophene) (P3HT) (P3HT:PCBM)-based organic solar cell. The interface functionalization of these carrier-transporting layers was confirmed by XRD pattern, XPS analysis, and Raman spectroscopy. These interfaces chemical bond formation helped to firmly attach the GO layer with PCBM and PEDOT:PSS layers, forming a strong barrier against water molecule absorption and also provided an easy pathway for fast transfer of free carriers between P3HT:PCBM layer and metal electrodes via the backbone of the conjugated GO sheets. Because of these interface interactions, the device fabricated with PCBM/GO composite as an electron transport layer and GO/PEDOT:PSS composite as hole transport layer demonstrated a remarkable improvement in the value of power conversion efficiency (5.34%) and reproducibility with a high degree of control over the environmental stability (600 h). This study is paving a way for a new technique to further improve the stability and PCE for the commercialization of OSCs.
Stability in chemical and biological systems: Multistage polyenzymatic reactions
NASA Astrophysics Data System (ADS)
Varfolomeev, S. D.; Lukovenkov, A. V.
2010-08-01
General principles of the theory of stability of solutions to differential equations are considered. The stability of equations describing the dynamics of changes in reagent concentrations in polyenzymatic biochemical chains is analyzed. Various mechanisms of formation of stable and unstable stationary states are considered, and unbalanced regimes and collapse are analyzed. The influence of systems of toxins and drugs on stability is studied. An interpretation of pathological processes based on stability theory is given.
The Role of Subsurface Oxygen on Cu Surfaces for CO 2 Electrochemical Reduction
Fields, Meredith; Hong, Xin; Norskov, Jens K.; ...
2018-06-12
Under ambient conditions, copper with oxygen near the surface displays strengthened CO 2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO 2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity ofmore » crystalline Cu.« less
The Role of Subsurface Oxygen on Cu Surfaces for CO 2 Electrochemical Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Meredith; Hong, Xin; Norskov, Jens K.
Under ambient conditions, copper with oxygen near the surface displays strengthened CO 2 and CO adsorption energies. This finding is often used to rationalize differences seen in product distributions between Cu-oxide and pure Cu electrodes during electrochemical CO 2 reduction. However, little evidence exists to confirm the presence of oxygen within first few layers of the Cu matrix under relevant experimental reducing conditions. As a result, using density functional theory calculations, we discuss the stability of subsurface oxygen from thermodynamic and kinetic perspectives, and show that under reducing potentials, subsurface oxygen alone should have negligible effects on the activity ofmore » crystalline Cu.« less
Higher modes of the Orr-Sommerfeld problem for boundary layer flows
NASA Technical Reports Server (NTRS)
Lakin, W. D.; Grosch, C. E.
1983-01-01
The discrete spectrum of the Orr-Sommerfeld problem of hydrodynamic stability for boundary layer flows in semi-infinite regions is examined. Related questions concerning the continuous spectrum are also addressed. Emphasis is placed on the stability problem for the Blasius boundary layer profile. A general theoretical result is given which proves that the discrete spectrum of the Orr-Sommerfeld problem for boundary layer profiles (U(y), 0,0) has only a finite number of discrete modes when U(y) has derivatives of all orders. Details are given of a highly accurate numerical technique based on collocation with splines for the calculation of stability characteristics. The technique includes replacement of 'outer' boundary conditions by asymptotic forms based on the proper large parameter in the stability problem. Implementation of the asymptotic boundary conditions is such that there is no need to make apriori distinctions between subcases of the discrete spectrum or between the discrete and continuous spectrums. Typical calculations for the usual Blasius problem are presented.
NASA Astrophysics Data System (ADS)
Shi, Wenwu; Wang, Zhiguo; Qing Fu, Yong
2017-10-01
This paper reports a new design methodology to improve catalytic activities of catalysts based on 2D transition metal dichalcogenides through elemental doping which induces structural transformations. Effects of rhenium (Re) doping on structural stability/phase transformation and catalytic activity of mono-layered trigonal prismatic (2H) MoS2 were investigated using density functional theory as one example. Results show that 2H-Mo1-x Re x S2 transforms into 1T‧-Mo1-x Re x S2MoS2 as the value of x is larger than 0.4, and the transfer of the electron from Re to Mo is identified as the main reason for this structural transformation. The 1T‧-Mo1-x Re x S2 shows a good catalytic activity for the hydrogen evolution reaction when 0.75 ⩽ x ⩽ 0.94.
Design of a Humidity Sensor Tag for Passive Wireless Applications.
Wu, Xiang; Deng, Fangming; Hao, Yong; Fu, Zhihui; Zhang, Lihua
2015-10-07
This paper presents a wireless humidity sensor tag for low-cost and low-power applications. The proposed humidity sensor tag, based on radio frequency identification (RFID) technology, was fabricated in a standard 0.18 μm complementary metal oxide semiconductor (CMOS) process. The top metal layer was deposited to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture, resulting in a flat power conversion efficiency curve. The capacitive sensor interface, based on phase-locked loop (PLL) theory, employs a simple architecture and can work with 0.5 V supply voltage. The measurement results show that humidity sensor tag achieves excellent linearity, hysteresis and stability performance. The total power-dissipation of the sensor tag is 2.5 μW, resulting in a maximum operating distance of 23 m under 4 W of radiation power of the RFID reader.
Design of a Humidity Sensor Tag for Passive Wireless Applications
Wu, Xiang; Deng, Fangming; Hao, Yong; Fu, Zhihui; Zhang, Lihua
2015-01-01
This paper presents a wireless humidity sensor tag for low-cost and low-power applications. The proposed humidity sensor tag, based on radio frequency identification (RFID) technology, was fabricated in a standard 0.18 μm complementary metal oxide semiconductor (CMOS) process. The top metal layer was deposited to form the interdigitated electrodes, which were then filled with polyimide as the humidity sensing layer. A two-stage rectifier adopts a dynamic bias-voltage generator to boost the effective gate-source voltage of the switches in differential-drive architecture, resulting in a flat power conversion efficiency curve. The capacitive sensor interface, based on phase-locked loop (PLL) theory, employs a simple architecture and can work with 0.5 V supply voltage. The measurement results show that humidity sensor tag achieves excellent linearity, hysteresis and stability performance. The total power-dissipation of the sensor tag is 2.5 μW, resulting in a maximum operating distance of 23 m under 4 W of radiation power of the RFID reader. PMID:26457707
Strain-Engineered Oxygen Vacancies in CaMnO3 Thin Films.
Chandrasena, Ravini U; Yang, Weibing; Lei, Qingyu; Delgado-Jaime, Mario U; Wijesekara, Kanishka D; Golalikhani, Maryam; Davidson, Bruce A; Arenholz, Elke; Kobayashi, Keisuke; Kobata, Masaaki; de Groot, Frank M F; Aschauer, Ulrich; Spaldin, Nicola A; Xi, Xiaoxing; Gray, Alexander X
2017-02-08
We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO 3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO 3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.
Resonant tunneling across a ferroelectric domain wall
NASA Astrophysics Data System (ADS)
Li, M.; Tao, L. L.; Velev, J. P.; Tsymbal, E. Y.
2018-04-01
Motivated by recent experimental observations, we explore electron transport properties of a ferroelectric tunnel junction (FTJ) with an embedded head-to-head ferroelectric domain wall, using first-principles density-functional theory calculations. We consider a FTJ with L a0.5S r0.5Mn O3 electrodes separated by a BaTi O3 barrier layer and show that an in-plane charged domain wall in the ferroelectric BaTi O3 can be induced by polar interfaces. The resulting V -shaped electrostatic potential profile across the BaTi O3 layer creates a quantum well and leads to the formation of a two-dimensional electron gas, which stabilizes the domain wall. The confined electronic states in the barrier are responsible for resonant tunneling as is evident from our quantum-transport calculations. We find that the resonant tunneling is an orbital selective process, which leads to sharp spikes in the momentum- and energy-resolved transmission spectra. Our results indicate that domain walls embedded in FTJs can be used to control the electron transport.
A robust molecular probe for Ångstrom-scale analytics in liquids
Nirmalraj, Peter; Thompson, Damien; Dimitrakopoulos, Christos; Gotsmann, Bernd; Dumcenco, Dumitru; Kis, Andras; Riel, Heike
2016-01-01
Traditionally, nanomaterial profiling using a single-molecule-terminated scanning probe is performed at the vacuum–solid interface often at a few Kelvin, but is not a notion immediately associated with liquid–solid interface at room temperature. Here, using a scanning tunnelling probe functionalized with a single C60 molecule stabilized in a high-density liquid, we resolve low-dimensional surface defects, atomic interfaces and capture Ångstrom-level bond-length variations in single-layer graphene and MoS2. Atom-by-atom controllable imaging contrast is demonstrated at room temperature and the electronic structure of the C60–metal probe complex within the encompassing liquid molecules is clarified using density functional theory. Our findings demonstrates that operating a robust single-molecular probe is not restricted to ultra-high vacuum and cryogenic settings. Hence the scope of high-precision analytics can be extended towards resolving sub-molecular features of organic elements and gauging ambient compatibility of emerging layered materials with atomic-scale sensitivity under experimentally less stringent conditions. PMID:27516157
The Tropopause Inversion Layer: New Observations, New Theories
NASA Astrophysics Data System (ADS)
Tandon, N.; Randel, W. J.; Pan, L.; Son, S.; Polvani, L. M.
2009-12-01
There is now great interest in the tropopause inversion inversion layer (TIL), a 1-2 km region just above the tropopause where there is a spike in static stability. Radio occultation data from the COSMIC GPS mission are providing an unprecedented level of spatial and temporal resolution with which to analyze the TIL. We start by showing the agreement between GPS data and radiosondes. We then examine the causes and consequences of the TIL. Observations from the ACE satellite and fixed dynamical heating calculations suggest strong roles for water vapor and ozone in the formation and modulation of the TIL. This agrees with observations showing a large TIL in the polar winter, where water vapor levels are persistently high. It is also clear that TIL strength is related to vorticity, but observations and models have important differences that need to be reconciled. These dynamical considerations dovetail with observations showing high TIL variability in the storm-track regions. Finally there is evidence from ozonesonde data that the TIL may be coupled to transport across the tropopause.
Rimoldi, Martino; Bernales, Varinia; Borycz, Joshua; ...
2017-01-05
NU-1000, a zirconium-based metal-organic framework featuring mesoporous channels, has been post-synthetically metalated via atomic layer deposition in MOF (AIM) employing dimethylaluminum iso-propoxide ([AlMe 2 iOPr] 2 – DMAI), a milder precursor than widely used trimethylaluminum (AlMe 3 - TMA). The aluminum-modified NU-1000 (Al-NU-1000) has been characterized with a comprehensive suite of techniques that points to the formation of aluminum oxide clusters well dispersed through the framework and stabilized by confinement within small pores intrinsic to the NU-1000 structure. Experimental evidence allows for identification of spectroscopic similarities between Al-NU-1000 and γ-Al 2O 3. Density functional theory modeling provides structures and simulatedmore » spectra the relevance of which can be assessed via comparison to experimental IR and EXAFS data. As a result, the catalytic performance of Al-NU-1000 has been benchmarked against γ-Al 2O 3, with promising results in terms of selectivity.« less
Seasonality of eddy kinetic energy in an eddy permitting global climate model
NASA Astrophysics Data System (ADS)
Uchida, Takaya; Abernathey, Ryan; Smith, Shafer
2017-10-01
We examine the seasonal cycle of upper-ocean mesoscale turbulence in a high resolution CESM climate simulation. The ocean model component (POP) has 0.1° resolution, mesoscale resolving at low and middle latitudes. Seasonally and regionally resolved wavenumber power spectra are calculated for sea-surface eddy kinetic energy (EKE). Although the interpretation of the spectral slopes in terms of turbulence theory is complicated by the strong presence of dissipation and the narrow inertial range, the EKE spectra consistently show higher power at small scales during winter throughout the ocean. Potential hypotheses for this seasonality are investigated. Diagnostics of baroclinc energy conversion rates and evidence from linear quasigeostrophic stability analysis indicate that seasonally varying mixed-layer instability is responsible for the seasonality in EKE. The ability of this climate model, which is not considered submesoscale resolving, to produce mixed layer instability although damped by dissipation, demonstrates the ubiquity and robustness of this process for modulating upper ocean EKE.
Stability of Li- and Mn-Rich Layered-Oxide Cathodes within the First-Charge Voltage Plateau
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iddir, Hakim; Bareño, Javier; Benedek, Roy
Li and Mn rich layered oxides xLi 2MnO 3•(1-x)LiMO 2 enable high capacity and energy density Li-ion batteries, but undergo structural transformations during the first charge that degrade their performance, and result in Voltage Fade upon cycling. First-principles density-functional-theory simulations reveal atomic transformations that occur in the bulk during the first charge. The simulations and experiment (particularly XRD) show that the O and Mn sublattices remain intact during the early part of the voltage plateau, and significant transformations occur only well into the voltage plateau, with perhaps close to half of the Li in the Li 2MnO 3 domains removed.more » That Voltage Fade is actually observed experimentally for a first charge with only minimal activation (extending only slightly beyond the onset of the voltage plateau) may be a consequence of surface and interface instabilities. Implications for the achievement of high energy-density, low-fade battery operation are discussed.« less
NASA Technical Reports Server (NTRS)
Rozendaal, Rodger A.; Behbehani, Roxanna
1990-01-01
NASA initiated the Variable Sweep Transition Flight Experiment (VSTFE) to establish a boundary layer transition database for laminar flow wing design. For this experiment, full-span upper surface gloves were fitted to a variable sweep F-14 aircraft. The development of an improved laminar boundary layer stability analysis system called the Unified Stability System (USS) is documented and results of its use on the VSTFE flight data are shown. The USS consists of eight computer codes. The theoretical background of the system is described, as is the input, output, and usage hints. The USS is capable of analyzing boundary layer stability over a wide range of disturbance frequencies and orientations, making it possible to use different philosophies in calculating the growth of disturbances on sweptwings.
Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids
NASA Technical Reports Server (NTRS)
Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.
2012-01-01
Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.
NASA Technical Reports Server (NTRS)
Hefner, J. N.; Bushnell, D. M.
1980-01-01
The-state-of-the-art for the application of linear stability theory and the e to the nth power method for transition prediction and laminar flow control design are summarized, with analyses of previously published low disturbance, swept wing data presented. For any set of transition data with similar stream distrubance levels and spectra, the e to the nth power method for estimating the beginning of transition works reasonably well; however, the value of n can vary significantly, depending upon variations in disturbance field or receptivity. Where disturbance levels are high, the values of n are appreciably below the usual average value of 9 to 10 obtained for relatively low disturbance levels. It is recommended that the design of laminar flow control systems be based on conservative estimates of n and that, in considering the values of n obtained from different analytical approaches or investigations, the designer explore the various assumptions which entered into the analyses.
High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene
Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...
2015-12-03
Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less
High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang
Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less
The effect of topography on the evolution of unstable disturbances in a baroclinic atmosphere
NASA Technical Reports Server (NTRS)
Clark, J. H. E.
1985-01-01
A two layer spectral quasi-geostrophic model is used to simulate the effects of topography on the equilibria, their stability, and the long term evolution of incipient unstable waves. The flow is forced by latitudinally dependent radiative heating. Dissipation is in the form of Rayleigh friction. An analytical solution is found for the propagating finite amplitude waves which result from baroclinic instability of the zonal winds when topography is absent. The appearance of this solution for wavelengths just longer than the Rossby radius of deformation and disappearance of ultra-long wavelengths is interpreted in terms of the Hopf bifurcation theory. Simple dynamic and thermodynamic criteria for the existence of periodic Rossby solutions are presented. A Floquet stability analysis shows that the waves are neutral. The nature of the form drag instability of high index equilibria is investigated. The proximity of the equilibrium shear to a resonant value is essential for the instability, provided the equilibrium occurs at a slightly stronger shear than resonance.
NASA Astrophysics Data System (ADS)
Rechtsman, Mikael; de Gironcoli, Stefano; Ceder, Gerbrand; Marzari, Nicola
2003-03-01
The (111) surfaces of FCC metals can develop anomalous thermal expansion properties at high temperatures (e.g. for the case of Ag(111)), and display floating stacking faults during homoepitaxial growth in the presence of surfactants. Inspired by the results of high-temperature ensemble-DFT molecular dynamics simulations, we investigate here the relative stability of FCC and HCP stacking in simple and transition metals (Al, Ag, Zn), searching for a structural phase transition taking place at the surface layer in the high-temperature regime. We use a combination of total-energy structural relaxations and linear-response perturbation theory to determine the surface phonon dispersions, and then the relative free energies in the quasi-harmonic approximation. Our results in Al show that the vibrational entropy strongly favors HCP stacking, substantially offsetting the energetic cost of the stacking fault that becomes favored close to the melting temperature. Besides its fundamental interest, HCP phonon softening is relevant in determining the relative stability of small islands during homoeptiaxial growth.
Atomistic Molecular Dynamics Simulations of the Electrical Double
NASA Astrophysics Data System (ADS)
Li, Zifeng; Milner, Scott; Fichthorn, Kristen
2015-03-01
The electrical double layer (EDL) near the polymer/water interface plays a key role in the colloidal stability of latex paint. To elucidate the structure of the EDL at the molecular level, we conducted an all-atom molecular dynamics simulations. We studied two representative surface charge groups in latex, the ionic surfactant sodium dodecyl sulfate (SDS) and the grafted short polyelectrolyte charged by dissociated methyl methacrylic acid (MAA) monomers. Our results confirm that the Poisson-Boltzmann theory works well outside the Stern layer. Our calculated electrostatic potential at the Outer Helmholtz Plane (OHP) is close to the zeta potential measured experimentally, which suggests that the potential at the OHP is a good estimate of the zeta potential. We found that the position of the OHP for the MAA polyelectrolyte system extends much further into the aqueous phase than that in the SDS system, resulting in a Stern layer that is twice as thick. This model will allow for future investigations of the interactions of the surface with different surfactants and rheology modifiers, which may serve as a guide to tune the rheology of latex formulations. We thank Dow Chemical Company for financial support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo
2015-06-24
Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmissionmore » electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.« less
Orbital configuration in CaTiO 3 films on NdGaO 3
Cao, Yanwei; Park, Se Young; Liu, Xiaoran; ...
2016-10-13
Despite its use as a constituent layer for realization of a polar metal and interfacial conductivity, the microscopic study of electronic structure of CaTiO 3 is still very limited. Here, we epitaxially stabilized CaTiO 3 films on NdGaO 3 (110) substrates in a layer-by-layer way by pulsed laser deposition. The structural and electronic properties of the films were characterized by reflection-high-energy-electron-diffraction, X-ray diffraction, and element-specific resonant X-ray absorption spectroscopy. To reveal the orbital polarization and the crystal field splitting of the titanium 3d state, X-ray linear dichroism was carried out on CaTiO 3 films, demonstrating the orbital configuration of dmore » xz/d yz < d xy < d 3z2-r2 < d x2-y2. To further explore the origin of this configuration, we performed the first-principles density function theory calculations, which linked the orbital occupation to the on-site energy of Ti 3d orbitals. Finally, these findings can be important for understanding and designing exotic quantum states in heterostructures based on CaTiO 3.« less
NASA Astrophysics Data System (ADS)
Geenen, F. A.; van Stiphout, K.; Nanakoudis, A.; Bals, S.; Vantomme, A.; Jordan-Sweet, J.; Lavoie, C.; Detavernier, C.
2018-02-01
The electrical contact of the source and drain regions in state-of-the-art CMOS transistors is nowadays facilitated through NiSi, which is often alloyed with Pt in order to avoid morphological agglomeration of the silicide film. However, the solid-state reaction between as-deposited Ni and the Si substrate exhibits a peculiar change for as-deposited Ni films thinner than a critical thickness of tc = 5 nm. Whereas thicker films form polycrystalline NiSi upon annealing above 450 ° C , thinner films form epitaxial NiSi2 films that exhibit a high resistance toward agglomeration. For industrial applications, it is therefore of utmost importance to assess the critical thickness with high certainty and find novel methodologies to either increase or decrease its value, depending on the aimed silicide formation. This paper investigates Ni films between 0 and 15 nm initial thickness by use of "thickness gradients," which provide semi-continuous information on silicide formation and stability as a function of as-deposited layer thickness. The alloying of these Ni layers with 10% Al, Co, Ge, Pd, or Pt renders a significant change in the phase sequence as a function of thickness and dependent on the alloying element. The addition of these ternary impurities therefore changes the critical thickness tc. The results are discussed in the framework of classical nucleation theory.
NASA Astrophysics Data System (ADS)
Kadioglu, Yelda; Santana, Juan A.; Özaydin, H. Duygu; Ersan, Fatih; Aktürk, O. Üzengi; Aktürk, Ethem; Reboredo, Fernando A.
2018-06-01
We have studied the structural stability of monolayer and bilayer arsenene (As) in the buckled (b) and washboard (w) phases with diffusion quantum Monte Carlo (DMC) and density functional theory (DFT) calculations. DMC yields cohesive energies of 2.826(2) eV/atom for monolayer b-As and 2.792(3) eV/atom for w-As. In the case of bilayer As, DMC and DFT predict that AA-stacking is the more stable form of b-As, while AB is the most stable form of w-As. The DMC layer-layer binding energies for b-As-AA and w-As-AB are 30(1) and 53(1) meV/atom, respectively. The interlayer separations were estimated with DMC at 3.521(1) Å for b-As-AA and 3.145(1) Å for w-As-AB. A comparison of DMC and DFT results shows that the van der Waals density functional method yields energetic properties of arsenene close to DMC, while the DFT + D3 method closely reproduced the geometric properties from DMC. The electronic properties of monolayer and bilayer arsenene were explored with various DFT methods. The bandgap values vary significantly with the DFT method, but the results are generally qualitatively consistent. We expect the present work to be useful for future experiments attempting to prepare multilayer arsenene and for further development of DFT methods for weakly bonded systems.
Travelling waves above the canopy of aquatic vegetation
NASA Astrophysics Data System (ADS)
Lyubimov, D.; Lyubimova, T.; Baidina, D.
2012-04-01
When fluid moves over a saturated porous medium with high permeability and porosity, the flow partially involves the fluid in porous medium, however, because of the great resistance force there arises sharp drop of tangential velocity. This leads to the development of instability similar to the Kelvin-Helmholtz instability on discontinuity surface of the tangential velocities of homogeneous fluids. Analogy becomes even more complete if we take into account the deformability of porous medium under the influence of pressure changes. Intensive vortices above the canopy of aquatic vegetation can lead to the coherent oscillations of vegetation, such traveling waves are called monami [1]. In the present paper we investigate stability of steady flow over a saturated porous medium. The importance of this problem is related to the applications to the dynamics of pollutants in the bottom layer of vegetation: the accumulation at low flow and salvo emissions with increasing velocity. We consider a two-layer system consisting of a layer of a viscous incompressible fluid and porous layer saturated with the same fluid located underneath. The lower boundary of the system is assumed to be rigid, the upper boundary - free and non-deformable. Weak slope of the river is taken into account. The problem is solved within the framework of single approach in which a two-layer system is described by a single system of equations for saturated porous medium and the presence of two layers is modeled by introducing variable permeability and porosity, depending on vertical coordinate. The flow in a saturated porous medium is described by the Brinkman model. Solution of the problem for steady flow shows that the velocity profile has two inflection points, which leads to the instability. The neutral curves are obtained for different values of the ratio d of porous layer thickness to full thickness. It is found that the dependence of critical Reynolds number on d is non-monotonic and the wave number of most dangerous perturbations increases monotonically with d. The effect of the deformability of porous medium on linear stability conditions is also investigated. Non-linear flow regimes are studied numerically by finite difference method. The calculations are performed for the rectangular domains whose length is taken to be equal to the wavelength of most dangerous perturbations according to linear stability theory. The calculations show that for low values of Reynolds number the stationary uni-directional flow is realized. Starting from a certain Reynolds number, the stationary oscillations are established with amplitude and frequency depending on the parameters. Analysis of the velocity fields corresponding to different phases of the oscillation period, shows that the observed waves travel in the direction of the basic flow. The work was made under financial support of Russian Foundation for Basic Research. 1. Ghisalberti, M., Nepf, H.M., 2002, Mixing layers and coherent structures in vegetated aquatic flows, J. of Geophysical Research. 107, C2.
Tuning of Thermal Stability in Layered Li(NixMnyCoz)O2.
Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang; Wei, Yi; Song, Xiaohe; Ren, Yang; Wang, Weidong; Rao, Mumin; Lin, Yuan; Chen, Zonghai; Lu, Jun; Wang, Chongmin; Amine, Khalil; Pan, Feng
2016-10-12
Understanding and further designing new layered Li(Ni x Mn y Co z )O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3 -O-Li 3-x' ): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states from the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the "Ni═Mn" group NMC materials but benefit the thermal stability of "Ni-rich" group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in "Ni-rich" NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.
NASA Astrophysics Data System (ADS)
Schmiele, Martin; Schindler, Torben; Unruh, Tobias; Busch, Sebastian; Morhenn, Humphrey; Westermann, Martin; Steiniger, Frank; Radulescu, Aurel; Lindner, Peter; Schweins, Ralf; Boesecke, Peter
2013-06-01
Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr.JACGAR0021-889810.1107/S0021889807044378 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.
Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang
2016-09-19
Understanding and further designing new layered Li(Ni xMn yCo z)O 2 (NMC) (x + y + z = 1) materials with optimized thermal stability is important to rechargeable Li batteries (LIBs) for electrical vehicles (EV). Using ab initio calculations combined with experiments, we clarified how the thermal stability of NMC materials can be tuned by the most unstable oxygen, which is determined by the local coordination structure unit (LCSU) of oxygen (TM(Ni, Mn, Co) 3-O-Li 3-x'): each O atom bonds with three transition metals (TM) from the TM-layer and three to zero Li from fully discharged to charged states frommore » the Li-layer. Under this model, how the lithium content, valence states of Ni, contents of Ni, Mn, and Co, and Ni/Li disorder to tune the thermal stability of NMC materials by affecting the sites, content, and the release temperature of the most unstable oxygen is proposed. The synergistic effect between Li vacancies and raised valence state of Ni during delithiation process can aggravate instability of oxygen, and oxygen coordinated with more nickel (especially with high valence state) in LSCU becomes more unstable at a fixed delithiation state. The Ni/Li mixing would decrease the thermal stability of the “NiMn” group NMC materials but benefit the thermal stability of “Ni-rich” group, because the Ni in the Li layer would form 180° Ni-O-Ni super exchange chains in “Ni-rich” NMC materials. Mn and Co doping can tune the initial valence state of Ni, local coordination environment of oxygen, and the Ni/Li disorder, thus to tune the thermal stability directly.« less
Rheology of interfacial protein-polysaccharide composites
NASA Astrophysics Data System (ADS)
Fischer, P.
2013-05-01
The morphology and mechanical properties of protein adsorption layers can significantly be altered by the presence of surfactants, lipids, particles, other proteins, and polysaccharides. In food emulsions, polysaccharides are primarily considered as bulk thickener but can under appropriate environmental conditions stabilize or destabilize the protein adsorption layer and, thus, the entire emulsion system. Despite their ubiquitous usage as stabilization agent, relatively few investigations focus on the interfacial rheology of composite protein/polysaccharide adsorption layers. The manuscript provides a brief review on both main stabilization mechanisms, thermodynamic phase separation and electrostatic interaction and discusses the rheological response in light of the environmental conditions such as ionic strength and pH.
The inviscid stability of supersonic flow past axisymmetric bodies
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1990-01-01
The supersonic flow past a sharp cone is studied. The associated boundary layer flow (i.e., the velocity and temperature field) is computed. The inviscid linear temporal stability of axisymmetric boundary layers in general is considered, and in particular, a so-called 'triply generalized' inflection condition for 'subsonic' nonaxisymmetric neutral modes is presented. Preliminary numerical results for the stability of the cone boundary layer are presented for a freestream Mach number of 3.8. In particular, a new inviscid mode of instability is seen to occur in certain regimes, and this is shown to be related to a viscous mode found by Duck and Hall (1988).
Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control
NASA Technical Reports Server (NTRS)
Heyliger, P. R.; Ramirez, G.; Pei, K. C.
1994-01-01
The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.
Any Ontological Model of the Single Qubit Stabilizer Formalism must be Contextual
NASA Astrophysics Data System (ADS)
Lillystone, Piers; Wallman, Joel J.
Quantum computers allow us to easily solve some problems classical computers find hard. Non-classical improvements in computational power should be due to some non-classical property of quantum theory. Contextuality, a more general notion of non-locality, is a necessary, but not sufficient, resource for quantum speed-up. Proofs of contextuality can be constructed for the classically simulable stabilizer formalism. Previous proofs of stabilizer contextuality are known for 2 or more qubits, for example the Mermin-Peres magic square. In the work presented we extend these results and prove that any ontological model of the single qubit stabilizer theory must be contextual, as defined by R. Spekkens, and give a relation between our result and the Mermin-Peres square. By demonstrating that contextuality is present in the qubit stabilizer formalism we provide further insight into the contextuality present in quantum theory. Understanding the contextuality of classical sub-theories will allow us to better identify the physical properties of quantum theory required for computational speed up. This research was supported by CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.
Effects of Nose Bluntness on Stability of Hypersonic Boundary Layers over Blunt Cone
NASA Technical Reports Server (NTRS)
Kara, K.; Balakumar, P.; Kandil, O. A.
2007-01-01
Receptivity and stability of hypersonic boundary layers are numerically investigated for boundary layer flows over a 5-degree straight cone at a free-stream Mach number of 6.0. To compute the shock and the interaction of shock with the instability waves, we solve the Navier-Stokes equations in axisymmetric coordinates. The governing equations are solved using the 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. Generation of instability waves from leading edge region and receptivity of boundary layer to slow acoustic waves are investigated. Computations are performed for a cone with nose radii of 0.001, 0.05 and 0.10 inches that give Reynolds numbers based on the nose radii ranging from 650 to 130,000. The linear stability results showed that the bluntness has a strong stabilizing effect on the stability of axisymmetric boundary layers. The transition Reynolds number for a cone with the nose Reynolds number of 65,000 is increased by a factor of 1.82 compared to that for a sharp cone. The receptivity coefficient for a sharp cone is about 4.23 and it is very small, approx.10(exp -3), for large bluntness.
Xie, Jin; Sendek, Austin D; Cubuk, Ekin D; Zhang, Xiaokun; Lu, Zhiyi; Gong, Yongji; Wu, Tong; Shi, Feifei; Liu, Wei; Reed, Evan J; Cui, Yi
2017-07-25
Modern lithium ion batteries are often desired to operate at a wide electrochemical window to maximize energy densities. While pushing the limit of cutoff potentials allows batteries to provide greater energy densities with enhanced specific capacities and higher voltage outputs, it raises key challenges with thermodynamic and kinetic stability in the battery. This is especially true for layered lithium transition-metal oxides, where capacities can improve but stabilities are compromised as wider electrochemical windows are applied. To overcome the above-mentioned challenges, we used atomic layer deposition to develop a LiAlF 4 solid thin film with robust stability and satisfactory ion conductivity, which is superior to commonly used LiF and AlF 3 . With a predicted stable electrochemical window of approximately 2.0 ± 0.9 to 5.7 ± 0.7 V vs Li + /Li for LiAlF 4 , excellent stability was achieved for high Ni content LiNi 0.8 Mn 0.1 Co 0.1 O 2 electrodes with LiAlF 4 interfacial layer at a wide electrochemical window of 2.75-4.50 V vs Li + /Li.
Seo, Jin-Suk; Bae, Byeong-Soo
2014-09-10
We fabricated active single- and bilayer structure thin film transistors (TFTs) with aluminum or gallium doped (IZO:Al or IZO:Ga) and undoped indium zinc oxide (IZO) thin film layers using an aqueous solution process. The electrical performance and bias stability of these active single- and bilayer structure TFTs were investigated and compared to reveal the effects of Al/Gal doping and bilayer structure. The single-layer structure IZO TFT shows a high mobility of 19 cm(2)/V · s with a poor positive bias stability (PBS) of ΔVT + 3.4 V. However, Al/Ga doped in IZO TFT reduced mobility to 8.5-9.9 cm(2)/V · s but improved PBS to ΔVT + 1.6-1.7 V due to the reduction of oxygen vacancy. Thus, it is found the bilayer structure TFTs with a combination of bottom- and top-layer compositions modify both the mobility and bias stability of the TFTs to be optimized. The bilayer structure TFT with an IZO:X bottom layer possess high mobility and an IZO bottom layer improves the PBS.
Floquet stability analysis of the longitudinal dynamics of two hovering model insects
Wu, Jiang Hao; Sun, Mao
2012-01-01
Because of the periodically varying aerodynamic and inertial forces of the flapping wings, a hovering or constant-speed flying insect is a cyclically forcing system, and, generally, the flight is not in a fixed-point equilibrium, but in a cyclic-motion equilibrium. Current stability theory of insect flight is based on the averaged model and treats the flight as a fixed-point equilibrium. In the present study, we treated the flight as a cyclic-motion equilibrium and used the Floquet theory to analyse the longitudinal stability of insect flight. Two hovering model insects were considered—a dronefly and a hawkmoth. The former had relatively high wingbeat frequency and small wing-mass to body-mass ratio, and hence very small amplitude of body oscillation; while the latter had relatively low wingbeat frequency and large wing-mass to body-mass ratio, and hence relatively large amplitude of body oscillation. For comparison, analysis using the averaged-model theory (fixed-point stability analysis) was also made. Results of both the cyclic-motion stability analysis and the fixed-point stability analysis were tested by numerical simulation using complete equations of motion coupled with the Navier–Stokes equations. The Floquet theory (cyclic-motion stability analysis) agreed well with the simulation for both the model dronefly and the model hawkmoth; but the averaged-model theory gave good results only for the dronefly. Thus, for an insect with relatively large body oscillation at wingbeat frequency, cyclic-motion stability analysis is required, and for their control analysis, the existing well-developed control theories for systems of fixed-point equilibrium are no longer applicable and new methods that take the cyclic variation of the flight dynamics into account are needed. PMID:22491980
Robust control design with real parameter uncertainty using absolute stability theory. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
How, Jonathan P.; Hall, Steven R.
1993-01-01
The purpose of this thesis is to investigate an extension of mu theory for robust control design by considering systems with linear and nonlinear real parameter uncertainties. In the process, explicit connections are made between mixed mu and absolute stability theory. In particular, it is shown that the upper bounds for mixed mu are a generalization of results from absolute stability theory. Both state space and frequency domain criteria are developed for several nonlinearities and stability multipliers using the wealth of literature on absolute stability theory and the concepts of supply rates and storage functions. The state space conditions are expressed in terms of Riccati equations and parameter-dependent Lyapunov functions. For controller synthesis, these stability conditions are used to form an overbound of the H2 performance objective. A geometric interpretation of the equivalent frequency domain criteria in terms of off-axis circles clarifies the important role of the multiplier and shows that both the magnitude and phase of the uncertainty are considered. A numerical algorithm is developed to design robust controllers that minimize the bound on an H2 cost functional and satisfy an analysis test based on the Popov stability multiplier. The controller and multiplier coefficients are optimized simultaneously, which avoids the iteration and curve-fitting procedures required by the D-K procedure of mu synthesis. Several benchmark problems and experiments on the Middeck Active Control Experiment at M.I.T. demonstrate that these controllers achieve good robust performance and guaranteed stability bounds.
Stabilization of solar films against hi temperature deactivation
Jefferson, Clinton F.
1984-03-20
A multi-layer solar energy collector of improved stability comprising: (1) a solar absorptive film consisting essentially of copper oxide, cobalt oxide and manganese oxide; (2) a substrate of quartz, silicate glass or a stainless steel; and (3) an interlayer of platinum, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of platinum to obtain a stable conductor-dielectric tandem.
Achieving Agility and Stability in Large-Scale Software Development
2013-01-16
temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon
A Critique of the Controversy about the Stability of Consumers' Tastes.
ERIC Educational Resources Information Center
Daniel, Coldwell, III
1988-01-01
Examines the role of the stability of consumer tastes in descriptive theory. Summarizes the traditional approach to the derivation of the consumer's preference structure, considers ways in which the conventional theory has been extended, presents the Stigler-Becker theory of consumer choice, and evaluates both approaches. (GEA)
NASA Astrophysics Data System (ADS)
Goryk, A. V.; Koval'chuk, S. B.
2018-05-01
An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.
On the Applicability of DLVO Theory to the Prediction of Clay Colloids Stability.
Missana; Adell
2000-10-01
The stability behavior of Na-montmorillonite colloids has been studied by combining the analysis of their surface charge properties and time-resolved dynamic light scattering experiments. The chemical surface model for several types of clays, including montmorillonite, has to take into account the double surface charge contribution due to their permanent structural charge and to their pH-dependent charge, which is developed at the edge sites, therefore, these stability studies were carried out as a function of both ionic strength and pH. DLVO theory is largely applied for the prediction of the stability of many colloidal systems, including the natural ones. This work shows that the stability behavior of Na-montmorillonite colloids cannot be satisfactorily reproduced by DLVO theory, using the surface parameters experimentally obtained. Particularly, this theory is unable to explain their pH-dependent stability behavior caused by the small charge at the edge sites. Based on these results, a literature review of DLVO stability prediction of clay colloids was performed. It confirmed that this theory is not capable of taking into account the double contribution to the total surface charge and, at the same time, pointed out the main uncertainties related to the appropriate use of the input parameters for the calculation as, for example, the Hamaker constant or the surface potential. Copyright 2000 Academic Press.
Determination of Stability and Translation in a Boundary Layer
NASA Technical Reports Server (NTRS)
Crepeau, John; Tobak, Murray
1996-01-01
Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.
NASA Astrophysics Data System (ADS)
Chen, Xi; Lin, Zheng-Zhe
2018-05-01
Recently, two-dimensional materials and nanoparticles with robust ferromagnetism are even of great interest to explore basic physics in nanoscale spintronics. More importantly, room-temperature magnetic semiconducting materials with high Curie temperature is essential for developing next-generation spintronic and quantum computing devices. Here, we develop a theoretical model on the basis of density functional theory calculations and the Ruderman-Kittel-Kasuya-Yoshida theory to predict the thermal stability of two-dimensional magnetic materials. Compared with other rare-earth (dysprosium (Dy) and erbium (Er)) and 3 d (copper (Cu)) impurities, holmium-doped (Ho-doped) single-layer 1H-MoS2 is proposed as promising semiconductor with robust magnetism. The calculations at the level of hybrid HSE06 functional predict a Curie temperature much higher than room temperature. Ho-doped MoS2 sheet possesses fully spin-polarized valence and conduction bands, which is a prerequisite for flexible spintronic applications.
Charge ordering in ionic fluids mediate repulsive surface interactions
NASA Astrophysics Data System (ADS)
Dasbiswas, Kinjal; Ludwig, Nicholas B.; Zhang, Hao; Talapin, Dmitri; Vaikuntanathan, Suri
Recent experiments on ionic fluids, such as surface force measurements in organic ionic liquids and the observation of colloidal stability in inorganic molten salts, suggest the presence of long-ranged repulsive forces. These cannot be explained within the classical Debye-Hückel theory for dilute electrolytes. We argue that such repulsive interactions can arise from long-range (several nm) charge density oscillations induced by a surface that preferentially binds one of the ionic species in an ionic fluid. We present a continuum theory that accounts for such charge layering based on a frustrated Ising model that incorporates both long-range Coulombic and short-range steric interactions. The mean-field analytic treatment qualitatively matches results from molecular simulations. A careful analysis of the ionic correlation functions arising from such charge ordering may also explain the long electrostatic screening lengths observed in various ionic fluids and their non-monotonic dependence on the electrolyte concentration. We acknowledge the University of Chicago for support.
Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra; Nørskov, Jens K; Bell, Alexis T
2013-09-11
The presence of layered cobalt oxides has been identified experimentally in Co-based anodes under oxygen-evolving conditions. In this work, we report the results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH. We then study the oxygen evolution reaction (OER) on these surfaces and obtain activity trends at experimentally relevant electro-chemical conditions. Our calculated volume Pourbaix diagram shows that β-CoOOH is the active phase where the OER occurs in alkaline media. We calculate relative surface stabilities and adsorbate coverages of the most stable low-index surfaces of β-CoOOH: (0001), (0112), and (1014). We find that at low applied potentials, the (1014) surface is the most stable, while the (0112) surface is the more stable at higher potentials. Next, we compare the theoretical overpotentials for all three surfaces and find that the (1014) surface is the most active one as characterized by an overpotential of η = 0.48 V. The high activity of the (1014) surface can be attributed to the observation that the resting state of Co in the active site is Co(3+) during the OER, whereas Co is in the Co(4+) state in the less active surfaces. Lastly, we demonstrate that the overpotential of the (1014) surface can be lowered further by surface substitution of Co by Ni. This finding could explain the experimentally observed enhancement in the OER activity of Ni(y)Co(1-y)O(x) thin films with increasing Ni content. All energetics in this work were obtained from density functional theory using the Hubbard-U correction.
Stability of spatially developing boundary layers
NASA Astrophysics Data System (ADS)
Govindarajan, Rama
1993-07-01
A new formulation of the stability of boundary-layer flows in pressure gradients is presented, taking into account the spatial development of the flow. The formulation assumes that disturbance wavelength and eigenfunction vary downstream no more rapidly than the boundary-layer thickness, and includes all terms of O(1) and O(R(exp -1)) in the boundary-layer Reynolds number R. Although containing the Orr-Sommerfeld operator, the present approach does not yield the Orr-Sommerfeld equation in any rational limit. In Blasius flow, the present stability equation is consistent with that of Bertolotti et al. (1992) to terms of O(R(exp -1)). For the Falkner-Skan similarity solutions neutral boundaries are computed without the necessity of having to march in space. Results show that the effects of spatial growth are striking in flows subjected to adverse pressure gradients.
NASA Astrophysics Data System (ADS)
Wang, Lei; Huang, Dongchen; Li, Min; Xu, Hua; Zou, Jianhua; Tao, Hong; Peng, Junbiao; Xu, Miao
2017-12-01
Solution-processed silver nanowires (AgNWs) have been considered as a promising material for next generation flexible transparent conductive electrodes. However AgNWs films have several intrinsic drawbacks, such as thermal stability and storage stability. Herein, we demonstrate a laminated ZnO/MgO (ZnMgO, ZMO) as a protective layer on the AgNWs films using atomic layer deposition (ALD). The fabricated films exhibited a low sheet resistance of 16 Ω/sq with high transmittance of 91% at 550 nm, an excellent thermal stability and bending property. The ZMO film grows perpendicularly on the surface of the AgNWs, making a perfect coverage of bulk silver nanowires and junction, which can effectively prompt the electrical transport behavior and enhance stability of the silver nanowires network.
Conductive buffer layers and overlayers for the thermal stability of coated conductors
NASA Astrophysics Data System (ADS)
Cantoni, C.; Aytug, T.; Verebelyi, D. T.; Paranthaman, M.; Specht, E. D.; Norton, D. P.; Christen, D. K.
2001-03-01
We analyze fundamental issues related to the thermal and electrical stability of a coated conductor during its operation. We address the role of conductive buffer layers in the stability of Ni-based coated conductors, and the effect of a metallic cap layer on the electrical properties of Ni alloy-based superconducting tapes. For the first case we report on the fabrication of a fully conductive RABiTS architecture formed of bilayers of conductive oxides SrRuO3 and LaNiO3 on textured Ni tapes. For the second case we discuss measurements of current-voltage relations on Ag/YBa2Cu3O7-d and Cu/Ag/ YBa2Cu3O7-d prototype multilayers on insulating substrates. Limitations on the overall tape structure and properties that are posed by the stability requirement are presented.
Effects of Nose Bluntness on Hypersonic Boundary-Layer Receptivity and Stability Over Cones
NASA Technical Reports Server (NTRS)
Kara, Kursat; Balakumar, Ponnampalam; Kandil, Osama A.
2011-01-01
The receptivity to freestream acoustic disturbances and the stability properties of hypersonic boundary layers are numerically investigated for boundary-layer flows over a 5 straight cone at a freestream Mach number of 6.0. To compute the shock and the interaction of the shock with the instability waves, the Navier-Stokes equations in axisymmetric coordinates were solved. In the governing equations, inviscid and viscous flux vectors are discretized using a fifth-order accurate weighted-essentially-non-oscillatory scheme. A third-order accurate total-variation-diminishing Runge-Kutta scheme is employed for time integration. After the mean flow field is computed, disturbances are introduced at the upstream end of the computational domain. The appearance of instability waves near the nose region and the receptivity of the boundary layer with respect to slow mode acoustic waves are investigated. Computations confirm the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary-layer transition. The current solutions, compared with experimental observations and other computational results, exhibit good agreement.
Bioorthogonal layer-by-layer encapsulation of pancreatic islets via hyperbranched polymers
Gattás-Asfura, Kerim M.; Stabler, Cherie L.
2013-01-01
The encapsulation of viable tissues via layer-by-layer polymer assembly provides a versatile platform for cell surface engineering, with nanoscale control over capsule properties. Herein, we report the development of a hyperbranched polymer-based, ultrathin capsule architecture expressing bioorthogonal functionality and tailored physiochemical properties. Random carbodiimide-based condensation of 3,5-dicarboxyphenyl glycineamide on alginate yielded a highly branched polysaccharide with multiple, spatially restricted, and readily functionalizable terminal carboxylate moieties. Poly(ethylene glycol) (PEG) was utilized to link azido end groups to the structured alginate. Together with phosphine functionalized poly(amido amine) (PAMAM) dendrimer, nanoscale layer-by-layer coatings, covalently stabilized via Staudinger ligation, were assembled onto solid surfaces and pancreatic islets. The effects of electrostatic and/or bioorthogonal covalent interlayer interactions on the resulting coating efficiency and stability, as well as pancreatic islet viability and function, were studied. These hyperbranched polymers provide a flexible platform for the formation of covalently stabilized ultrathin coatings on viable cells and tissues. In addition, the hyperbranched nature of the polymers presents a highly functionalized surface capable of bioorthogonal conjugation of additional bioactive or labeling motifs. PMID:24063764
NASA Astrophysics Data System (ADS)
Lackey, Tahirih C.; Sotiropoulos, Fotis
2006-05-01
We solve numerically the three-dimensional incompressible Navier-Stokes equations to simulate the flow in a cylindrical container of aspect ratio one with exactly counter-rotating lids for a range of Reynolds numbers for which the flow is steady and three dimensional (300⩽Re⩽850). In agreement with linear stability results [C. Nore et al., J. Fluid Mech. 511, 45 (2004)] we find steady, axisymmetric solutions for Re <300. For Re >300 the equatorial shear layer becomes unstable to steady azimuthal modes and a complex vortical flow emerges, which consists of cat's eye radial vortices at the shear layer and azimuthally inclined axial vortices. Upon the onset of the three-dimensional instability the Lagrangian dynamics of the flow become chaotic. A striking finding of our work is that there is an optimal Reynolds number at which the stirring rate in the chaotically advected flow is maximized. Above this Reynolds number, the integrable (unmixed) part of the flow begins to grow and the stirring rate is shown conclusively to decline. This finding is explained in terms of and appears to support a recently proposed theory of chaotic advection [I. Mezić, J. Fluid Mech. 431, 347 (2001)]. Furthermore, the calculated rate of decay of the stirring rate with Reynolds numbers is consistent with the Re-1/2 upper bound predicted by the theory.
Achieving Agility and Stability in Large-Scale Software Development
2013-01-16
temporary team is assigned to prepare layers and frameworks for future feature teams. Presentation Layer Domain Layer Data Access Layer Framework...http://www.sei.cmu.edu/training/ elearning ~ Software Engineering Institute CarnegieMellon
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Huan, Yahuan; Li, Yong; Zhang, Ruxiao; Zhang, Yue
2018-06-06
The major restraint for the commercialization of the high-performance hybrid metal halide perovskite solar cells is the long-term stability, especially at the infirm interface between the perovskite film and organic charge-transfer layer. Recently, engineering the interface between the perovskite and spiro-OMeTAD becomes an effective strategy to simultaneously improve the efficiency and stability in the perovskite solar cells. In this work, we demonstrated that introducing an interfacial polystyrene layer between the perovskite film and spiro-OMeTAD layer can effectively improve the perovskite solar cells photovoltaic performance. The inserted polystyrene layer can passivate the interface traps and defects effectively and decrease the nonradiative recombination, leading to enhanced photoluminescence intensity and carrier lifetime, without compromising the carrier extraction and transfer. Under the optimized condition, the perovskite solar cells with the polystyrene layer achieve an enhanced average power efficiency of about 19.61% (20.46% of the best efficiency) from about 17.63% with negligible current density-voltage hysteresis. Moreover, the optimized perovskite solar cells with the hydrophobic polystyrene layer can maintain about 85% initial efficiency after 2 months storage in open air conditions without encapsulation.
New factors in the design, operation and performance of waste-stabilization ponds
Marais, G. v. R.
1966-01-01
In the developing countries, the unit costs of waste-stabilization ponds are generally low. Moreover, in the tropics and subtropics, the environmental conditions are conducive to a high level of pond performance. In view of this, the theory, operation and performance of such ponds under these conditions have been studied. It is shown that the Hermann & Gloyna and Marais & Shaw theories of the degradation action in oxidation ponds can be integrated, and that account can be taken of the effect of the sludge layer. In Lusaka, Zambia, anaerobic conditions are much more likely to occur in summer than in winter, because of intense stratification. It is confirmed that a series of maturation or oxidation ponds is more efficient than a single pond of equivalent volume. When aqua privies and septic tanks are used as anaerobic pretreatment units, the area of the primary oxidation ponds can be reduced and there is less likelihood that anaerobic conditions will develop in them in summer. The use of self-topping aqua privies, discharging through sewers to oxidation ponds, has made possible the economic installation of water-carriage systems of waste disposal in low-cost high-density housing areas. In the oxidation ponds, typhoid bacteria appear to be more resistant than indicator organisms; helminths, cysts and ova settle out; there are no snails and, if peripheral vegetation is removed, mosquitos will not breed. PMID:5296235
The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions.
Wang, Changwei; Mo, Yirong; Wagner, J Philipp; Schreiner, Peter R; Jemmis, Eluvathingal D; Danovich, David; Shaik, Sason
2015-04-14
We investigated the nature of the cohesive energy between graphane sheets via multiple CH···HC interactions, using density functional theory (DFT) including dispersion correction (Grimme's D3 approach) computations of [n]graphane σ dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical π/π interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (ΔE(F)) composed of electrostatic and Pauli repulsion interactions, polarization (ΔE(pol)), charge-transfer interaction (ΔE(CT)), and dispersion effects (ΔE(disp)). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the σ(CH) → σ*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 Å. The ΔE(CT) term, which accounts for ∼15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic "glue" for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the "double faced adhesive tape" style of charge transfer interactions was also observed among graphene sheets in which it accounts for ∼18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH···HC interactions, or as a function of the number of C-H bonds.
Emelyanenko, A V; Osipov, M A
2003-11-01
A general phenomenological description and a simple molecular model is proposed for the "discrete" flexoelectric effect in tilted smectic liquid crystal phases. This effect defines a polarization in a smectic layer induced by a difference of director orientations in the two smectic layers adjacent to it. It is shown that the "discrete" flexoelectric effect is determined by electrostatic dipole-quadrupole interaction between positionally correlated molecules located in adjacent smectic layers, while the corresponding dipole-dipole interaction is responsible for a coupling between polarization vectors in neighboring layers. It is shown that a simple phenomenological model of a ferrielectric smectic liquid crystal, which has recently been proposed in the literature, can be used to describe the whole sequence of intermediate chiral smectic C* phases with increasing periods, and to determine the nonplanar structure of each phase without additional assumptions. In this sequence the phases with three- and four-layer periodicities have the same structure, as observed in the experiment. The theory predicts also the structure of intermediate phases with longer periods that have not been studied experimentally so far. The structures of intermediate phases with periodicities of up to nine layers are presented together with the phase diagrams, and a relationship between molecular chirality and the three-dimensional structure of intermediate phases is discussed. It is considered also how the coupling between the spontaneous polarization determined by molecular chirality and the induced polarization determined by the discrete flexoelectric effect stabilizes the nonplanar structure of intermediate phases.
Icehouse Effect: A Selective Arctic Cooling Trend Current Models are Missing
NASA Technical Reports Server (NTRS)
Wetzel, Peter J.; Starr, David OC. (Technical Monitor)
2001-01-01
The icehouse effect is a hypothesized climate feedback mechanism which could result in human-caused surface cooling trends in polar regions. Once understood in detail, it becomes apparent that these trends, which are discernable in the literature, but have been largely dismissed, do not conflict with the consensus assessment of the evidence, which infers century-scale Arctic warming. In fact, confirmation of the hypothesis would substantially strengthen the argument that there is a detectable human influence on today's climate. This apparent enigma is resolved only through careful attention to the detail of the hypothesis and the data supporting it. The posited surface cooling is entirely dependent on the existence of climate warming in layers capping the stable boundary layer. Also, the cooling is not pandemic, but is selective. It is readily revealed in properly sorted data by making use of the principles of micrometeorological similarity. Specifically, the cooling is manifest under a range of favorable turbulence conditions which can develop and disappear locally on time scales of minutes to hours because of the intrinsically intermittent nature of stable boundary layer turbulence. Because of the fine-scale nature of the processes which produce the cooling, modeling it is a difficult proposition. Vertical resolution on the order of 1 meter is required. Adequate models of intermittent surface fluxes coupled with radiation exchange do not currently exist, not as parameterizations for aggregated systems, nor in large eddy simulation (LES) models. This presentation will introduce the theory. An important testable null hypothesis emerges: the icehouse effect produces a unique signature or "fingerprint" which could not be produced by any other known process. The presence of this signature will be demonstrated using nearly all available Arctic temperature observations. Its aggregate effect is clearly found in Arctic monthly surface temperature trends when sorted by climatological stability. Using all available Arctic rawinsonde ascents - about 1.1 million profiles, "frozen moments" of the icehouse processes are captured in various states. Because turbulent time scales are so short in the stable boundary layer. each of these snapshots can be treated as independent -- their chronology is irrelevant. Micrometeorological similarity is invoked to reassemble the soundings into bins of similar stability and it is in a wide, coherent range of these stability bins where the cooling effect is revealed.
Zhang, Lei; Shi, Jiafu; Jiang, Zhongyi; Jiang, Yanjun; Meng, Ruijie; Zhu, Yuanyuan; Liang, Yanpeng; Zheng, Yang
2011-02-01
A novel approach combining biomimetic mineralization and bioadhesion is proposed to prepare robust and versatile organic-inorganic hybrid microcapsules. More specifically, these microcapsules are fabricated by sequential deposition of inorganic layer and organic layer on the surface of CaCO(3) microparticles, followed by the dissolution of CaCO(3) microparticles using EDTA. During the preparation process, protamine induces the hydrolysis and condensation of titania or silica precursor to form the inorganic layer or the biomineral layer. The organic layer or bioadhesive layer was formed through the rapid, spontaneous oxidative polymerization of dopamine into polydopamine (PDA) on the surface of the biomineral layer. There exist multiple interactions between the inorganic layer and the organic layer. Thus, the as-prepared organic-inorganic hybrid microcapsules acquire much higher mechanical stability and surface reactivity than pure titania or pure silica microcapsules. Furthermore, protamine/titania/polydopamine hybrid microcapsules display superior mechanical stability to protamine/silica/polydopamine hybrid microcapsules because of the formation of Ti(IV)-catechol coordination complex between the biomineral layer and the bioadhesive layer. As an example of application, three enzymes are respectively immobilized through physical encapsulation in the lumen, in situ entrapment within the wall and chemical attachment on the out surface of the hybrid microcapsules. The as-constructed multienzyme system displays higher catalytic activity and operational stability. Hopefully, the approach developed in this study will evolve as a generic platform for facile and controllable preparation of organic-inorganic hybrid materials with different compositions and shapes for a variety of applications in catalysis, sensor, drug/gene delivery.
Improved Thermal Stability of Lithium-Rich Layered Oxide by Fluorine Doping.
Kapylou, Andrei; Song, Jay Hyok; Missiul, Aleksandr; Ham, Dong Jin; Kim, Dong Han; Moon, San; Park, Jin Hwan
2018-01-05
The thermal stability of lithium-rich layered oxide with the composition Li(Li 1/6 Ni 1/6 Co 1/6 Mn 1/2 )O 2-x F x (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wu, Zhen-Guo; Li, Jun-Tao; Zhong, Yan-Jun; Guo, Xiao-Dong; Huang, Ling; Zhong, Ben-He; Agyeman, Daniel-Adjei; Lim, Jin-Myoung; Kim, Du-Ho; Cho, Maeng-Hyo; Kang, Yong-Mook
2017-06-28
A synergistic approach for advanced cathode materials is proposed. Sodium manganese oxide with a layered-tunnel hybrid structure was designed, synthesized, and subsequently investigated. The layered-tunnel hybrid structure provides fast Na ion diffusivity and high structural stability thanks to the tunnel phase, enabling high rate capability and greatly improved cycling stability compared to that of the pure P2 layered phase while retaining the high specific capacity of the P2 layered phase. The hybrid structure provided a decent discharge capacity of 133.4 mAh g -1 even at 8 C, which exceeds the reported best rate capability for Mn-based cathodes. It also displayed an impressive cycling stability, maintaining 83.3 mAh g -1 after 700 cycles at 10 C. Theoretical calculation and the potentiostatic intermittent titration technique (PITT) demonstrated that this hybrid structure helps enhance Na ion diffusivity during charge and discharge, attaining, as a result, an unprecendented electrochemical performance.
Receptivity of Hypersonic Boundary Layers to Acoustic and Vortical Disturbances (Invited)
NASA Technical Reports Server (NTRS)
Balakumar, P.
2015-01-01
Boundary-layer receptivity to two-dimensional acoustic and vortical disturbances for hypersonic flows over two-dimensional and axi-symmetric geometries were numerically investigated. The role of bluntness, wall cooling, and pressure gradients on the receptivity and stability were analyzed and compared with the sharp nose cases. It was found that for flows over sharp nose geometries in adiabatic wall conditions the instability waves are generated in the leading-edge region and that the boundary layer is much more receptive to slow acoustic waves as compared to the fast waves. The computations confirmed the stabilizing effect of nose bluntness and the role of the entropy layer in the delay of boundary layer transition. The receptivity coefficients in flows over blunt bodies are orders of magnitude smaller than that for the sharp cone cases. Wall cooling stabilizes the first mode strongly and destabilizes the second mode. However, the receptivity coefficients are also much smaller compared to the adiabatic case. The adverse pressure gradients increased the unstable second mode regions.
NASA Astrophysics Data System (ADS)
Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey
2015-08-01
Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.
Effect of heat release on the spatial stability of a supersonic reacting mixing layer
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1988-01-01
A numerical study of the stability of compressible mixing layers in which a diffusion flame is embedded is described. The mean velocity profile has been approximated by a hyperbolic tangent profile and the limit of infinite activation energy taken, which reduces the diffusion flame to a flame sheet. The addition of combustion in the form of a flame sheet was found to have important, and complex, effects on the flow stability.
Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
Abstract An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large‐amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller‐amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying. PMID:29576994
NASA Astrophysics Data System (ADS)
Fritts, David C.; Laughman, Brian; Wang, Ling; Lund, Thomas S.; Collins, Richard L.
2018-01-01
An anelastic numerical model is employed to explore the dynamics of gravity waves (GWs) encountering a mesosphere inversion layer (MIL) having a moderate static stability enhancement and a layer of weaker static stability above. Instabilities occur within the MIL when the GW amplitude approaches that required for GW breaking due to compression of the vertical wavelength accompanying the increasing static stability. Thus, MILs can cause large-amplitude GWs to yield instabilities and turbulence below the altitude where they would otherwise arise. Smaller-amplitude GWs encountering a MIL do not lead to instability and turbulence but do exhibit partial reflection and transmission, and the transmission is a smaller fraction of the incident GW when instabilities and turbulence arise within the MIL. Additionally, greater GW transmission occurs for weaker MILs and for GWs having larger vertical wavelengths relative to the MIL depth and for lower GW intrinsic frequencies. These results imply similar dynamics for inversions due to other sources, including the tropopause inversion layer, the high stability capping the polar summer mesopause, and lower frequency GWs or tides having sufficient amplitudes to yield significant variations in stability at large and small vertical scales. MILs also imply much stronger reflections and less coherent GW propagation in environments having significant fine structure in the stability and velocity fields than in environments that are smoothly varying.
Paulo, Norbert
2016-03-01
This paper tackles the accusation that applied ethics is no serious academic enterprise because it lacks theoretical bracing. It does so in two steps. In the first step I introduce and discuss a highly acclaimed method to guarantee stability in ethical theories: Henry Richardson's specification. The discussion shows how seriously ethicists take the stability of the connection between the foundational parts of their theories and their further development as well as their "application" to particular problems or cases. A detailed scrutiny of specification leads to the second step, where I use insights from legal theory to inform the debate around stability from that point of view. This view reveals some of specification's limitations. I suggest that, once specification is sufficiently specified, it appears astonishingly similar to deduction as used in legal theory. Legal theory also provides valuable insight into the functional range of deduction and its relation to other forms of reasoning. This leads to a richer understanding of stability in normative theories and to a smart division of labor between deduction and other forms of reasoning. The comparison to legal theory thereby provides a framework for how different methods such as specification, deduction, balancing, and analogy relate to one another.
Statistical Physics of Colloidal Dispersions.
NASA Astrophysics Data System (ADS)
Canessa, E.
Available from UMI in association with The British Library. Requires signed TDF. This thesis is concerned with the equilibrium statistical mechanics of colloidal dispersions which represent useful model systems for the study of condensed matter physics; namely, charge stabilized colloidal dispersions and polymer stabilized colloidal dispersions. A one-component macroparticle approach is adopted in order to treat the macroscopic and microscopic properties of these systems in a simple and comprehensive manner. The thesis opens with the description of the nature of the colloidal state before reviewing some basic definitions and theory in Chapter II. In Chapter III a variational theory of phase equilibria based on the Gibbs-Bogolyobov inequality is applied to sterically stabilized colloidal dispersions. Hard spheres are chosen as the reference system for the disordered phases while an Einstein model is used for the ordered phases. The new choice of pair potential, taken for mathematical convenience, is a superposition of two Yukawa functions. By matching a double Yukawa potential to the van der Waals attractive potential at different temperatures and introducing a purely temperature dependent coefficient to the repulsive part, a rich variety of observed phase separation phenomena is qualitatively described. The behaviour of the potential is found to be consistent with a small decrease of the polymer layer thickness with increasing temperature. Using the same concept of a collapse transition the non-monotonic second virial coefficient is also explained and quantified. It is shown that a reduction of the effective macroparticle diameter with increasing temperature can only be partially examined from the point of view of a (binary-) polymer solution theory. This chapter concludes with the description of the observed, reversible, depletion flocculation behaviour. This is accomplished by using the variational formalism and by invoking the double Yukawa potential to allow changes of the depletion attraction with free polymer concentration. Chapter IV deals with the contributions of pairwise additive and volume dependent forces to the free energy of charge stabilized colloidal dispersions. To a first approximation the extra volume dependent contributions due to the chemical equilibrium and counterion-macroion coupling are treated in a one-component plasma approach. Added salt is treated as an ionized gas within the Debye-Huckel theory of electrolytes. In order to set this approach on a quantitative basis the existence of an equilibrium lattice with a small shear modulus is examined. Structural phase transitions in these systems are also analysed theoretically as a function of added electrolyte.
NASA Astrophysics Data System (ADS)
Castellví, F.; Snyder, R. L.
2009-09-01
SummaryHigh-frequency temperature data were recorded at one height and they were used in Surface Renewal (SR) analysis to estimate sensible heat flux during the full growing season of two rice fields located north-northeast of Colusa, CA (in the Sacramento Valley). One of the fields was seeded into a flooded paddy and the other was drill seeded before flooding. To minimize fetch requirements, the measurement height was selected to be close to the maximum expected canopy height. The roughness sub-layer depth was estimated to discriminate if the temperature data came from the inertial or roughness sub-layer. The equation to estimate the roughness sub-layer depth was derived by combining simple mixing-length theory, mixing-layer analogy, equations to account for stable atmospheric surface layer conditions, and semi-empirical canopy-architecture relationships. The potential for SR analysis as a method that operates in the full surface boundary layer was tested using data collected over growing vegetation at a site influenced by regional advection of sensible heat flux. The inputs used to estimate the sensible heat fluxes included air temperature sampled at 10 Hz, the mean and variance of the horizontal wind speed, the canopy height, and the plant area index for a given intermediate height of the canopy. Regardless of the stability conditions and measurement height above the canopy, sensible heat flux estimates using SR analysis gave results that were similar to those measured with the eddy covariance method. Under unstable cases, it was shown that the performance was sensitive to estimation of the roughness sub-layer depth. However, an expression was provided to select the crucial scale required for its estimation.
NASA Technical Reports Server (NTRS)
Cooper, Morton; Mayo, Edward E.; Julius, Jerome D.
1960-01-01
Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent.
NASA Astrophysics Data System (ADS)
Angulo Pava, Jaime; Natali, Fábio M. Amorin
2009-04-01
In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation ut+5u4ux+u=0, and the critical nonlinear Schrödinger equation ivt+v+|v=0. The periodic travelling wave solutions obtained in our study tend to the classical solitary wave solutions in the infinite wavelength scenario. The stability approach is based on the theory developed by Angulo & Natali in [J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling wave solutions, SIAM J. Math. Anal. 40 (2008) 1123-1151] for positive periodic travelling wave solutions associated to dispersive evolution equations of Korteweg-de Vries type. The instability approach is based on an extension to the periodic setting of arguments found in Bona & Souganidis & Strauss [J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987) 395-412]. Regarding the critical Schrödinger equation stability/instability theories similar to the critical Korteweg-de Vries equation are obtained by using the classical Grillakis & Shatah & Strauss theory in [M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348; M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197]. The arguments presented in this investigation have prospects for the study of the stability of periodic travelling wave solutions of other nonlinear evolution equations.
Making the Spoon: Analyzing and Employing Stability Power in Counterinsurgency Operations
2007-05-11
Economic Effects of 9/11:A Retrospective Assessment. Report to Congress: Specialist in Economic Policy, 2002. Maslow , Abraham H., and Robert Frager...elements of national power in proportion to the scale of the intervention, to stabilize a failing state. As the theory of stability power requires a...sustainment and support capabilities to provide the military a counterinsurgency “spoon,” through the theory of stability power. This thesis determines if
Stability and complexity in model meta-ecosystems
Gravel, Dominique; Massol, François; Leibold, Mathew A.
2016-01-01
The diversity of life and its organization in networks of interacting species has been a long-standing theoretical puzzle for ecologists. Ever since May's provocative paper challenging whether ‘large complex systems [are] stable' various hypotheses have been proposed to explain when stability should be the rule, not the exception. Spatial dynamics may be stabilizing and thus explain high community diversity, yet existing theory on spatial stabilization is limited, preventing comparisons of the role of dispersal relative to species interactions. Here we incorporate dispersal of organisms and material into stability–complexity theory. We find that stability criteria from classic theory are relaxed in direct proportion to the number of ecologically distinct patches in the meta-ecosystem. Further, we find the stabilizing effect of dispersal is maximal at intermediate intensity. Our results highlight how biodiversity can be vulnerable to factors, such as landscape fragmentation and habitat loss, that isolate local communities. PMID:27555100
Guerrero-García, Guillermo Iván; González-Tovar, Enrique; Chávez-Páez, Martín; Kłos, Jacek; Lamperski, Stanisław
2017-12-20
The spatial extension of the ionic cloud neutralizing a charged colloid or an electrode is usually characterized by the Debye length associated with the supporting charged fluid in the bulk. This spatial length arises naturally in the linear Poisson-Boltzmann theory of point charges, which is the cornerstone of the widely used Derjaguin-Landau-Verwey-Overbeek formalism describing the colloidal stability of electrified macroparticles. By definition, the Debye length is independent of important physical features of charged solutions such as the colloidal charge, electrostatic ion correlations, ionic excluded volume effects, or specific short-range interactions, just to mention a few. In order to include consistently these features to describe more accurately the thickness of the electrical double layer of an inhomogeneous charged fluid in planar geometry, we propose here the use of the capacitive compactness concept as a generalization of the compactness of the spherical electrical double layer around a small macroion (González-Tovar et al., J. Chem. Phys. 2004, 120, 9782). To exemplify the usefulness of the capacitive compactness to characterize strongly coupled charged fluids in external electric fields, we use integral equations theory and Monte Carlo simulations to analyze the electrical properties of a model molten salt near a planar electrode. In particular, we study the electrode's charge neutralization, and the maximum inversion of the net charge per unit area of the electrode-molten salt system as a function of the ionic concentration, and the electrode's charge. The behaviour of the associated capacitive compactness is interpreted in terms of the charge neutralization capacity of the highly correlated charged fluid, which evidences a shrinking/expansion of the electrical double layer at a microscopic level. The capacitive compactness and its first two derivatives are expressed in terms of experimentally measurable macroscopic properties such as the differential and integral capacity, the electrode's surface charge density, and the mean electrostatic potential at the electrode's surface.
NASA Astrophysics Data System (ADS)
Dasgupta, Sambarta
Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of sensitivity analysis of power system, subjected to changes or uncertainty in load parameters and network topology, is also studied using the theory of normally hyperbolic manifolds. The sensitivity analysis is used for the identification and rank ordering of the critical interactions and parameters in the power network. The sensitivity analysis is carried out both in finite time and in asymptotic. One of the distinguishing features of the asymptotic sensitivity analysis is that the asymptotic dynamics of the system is assumed to be a periodic orbit. For asymptotic sensitivity analysis we employ combination of tools from ergodic theory and geometric theory of dynamical systems.
Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles
Jia, Qingying; Zhao, Zipeng; Cao, Liang; ...
2017-12-22
Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo–PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shapemore » enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt 3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δμ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Lastly, our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.« less
First-principles study of stability of helium-vacancy complexes below tungsten surfaces
NASA Astrophysics Data System (ADS)
Yang, L.; Bergstrom, Z. J.; Wirth, B. D.
2018-05-01
Density function theory calculations have been performed to study the stability of small helium-vacancy (He-V) complexes near tungsten (W) surfaces of different orientations. The results show that the stability of vacancies and He-V complexes near W surfaces depends on surface orientation. However, as the depth below the surface increased beyond about 0.65-0.8 nm, the stability of He-V complexes is similar to the bulk. The formation energies of single vacancies and di-vacancies at depths less than 0.2 nm below the W(110) surface are higher than for W(100) or W(111) surfaces, but have lower energies at depths between 0.2 and 0.65 nm. The formation energies of He-V complexes below W surfaces are sensitive to the geometric orientation of the He and vacancy, especially below the W(111) surface. Within about 0.2 nm of the top layer of the three W surfaces, neither a vacancy nor a di-vacancy can trap He. Because of the lower formation energy of He-V complexes and higher He binding energy to vacancies below the W(110) surface, the He desorption from the W(110) surface is less likely to occur than from the W(100) and W(111) surfaces. Our results provide fundamental insight into the differences in surface morphology changes observed in single W crystals with different surface orientations under He plasma exposure.
Roles of Mo Surface Dopants in Enhancing the ORR Performance of Octahedral PtNi Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Qingying; Zhao, Zipeng; Cao, Liang
Doping with a transition metal was recently shown to greatly boost the activity and durability of PtNi/C octahedral nanoparticles (NPs) for the oxygen reduction reaction (ORR), but its specific roles remain unclear. By combining electrochemistry, ex situ and in situ spectroscopic techniques, density functional theory calculations, and a newly developed kinetic Monte Carlo model, we showed that Mo atoms are preferentially located on the vertex and edge sites of Mo–PtNi/C in the form of oxides, which are stable within the wide potential window of the electrochemical cycle. These surface Mo oxides stabilize adjacent Pt sites, hereby stabilizing the octahedral shapemore » enriched with (111) facets, and lead to increased concentration of Ni in subsurface layers where they are protected against acid dissolution. Consequently, the favorable Pt 3Ni(111) structure for the ORR is stabilized on the surface of PtNi/C NPs in acid against voltage cycling. Significantly, the unusual potential-dependent oxygen coverage trend on Mo-doped PtNi/C NPs as revealed by the surface-sensitive Δμ analysis suggests that the Mo dopants may also improve the ORR kinetics by modifying the coordination environments of Pt atoms on the surface. Lastly, our studies point out a possible way to stabilize the favorable shape and composition established on conceptual catalytic models in practical nanoscale catalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jian; Beijing Computational Science Research Center, Beijing 100084; College of Electrical and Information Engineering, Hunan Institute of Engineering, Xiangtan 411105, Hunan
2014-02-07
The family of bulk metal phosphorus trichalcogenides (APX{sub 3}, A = M{sup II}, M{sub 0.5}{sup I}M{sub 0.5}{sup III}; X = S, Se; M{sup I}, M{sup II}, and M{sup III} represent Group-I, Group-II, and Group-III metals, respectively) has attracted great attentions because such materials not only own magnetic and ferroelectric properties, but also exhibit excellent properties in hydrogen storage and lithium battery because of the layered structures. Many layered materials have been exfoliated into two-dimensional (2D) materials, and they show distinct electronic properties compared with their bulks. Here we present a systematical study of single-layer metal phosphorus trichalcogenides by density functionalmore » theory calculations. The results show that the single layer metal phosphorus trichalcogenides have very low formation energies, which indicates that the exfoliation of single layer APX{sub 3} should not be difficult. The family of single layer metal phosphorus trichalcogenides exhibits a large range of band gaps from 1.77 to 3.94 eV, and the electronic structures are greatly affected by the metal or the chalcogenide atoms. The calculated band edges of metal phosphorus trichalcogenides further reveal that single-layer ZnPSe{sub 3}, CdPSe{sub 3}, Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3}, and Ag{sub 0.5}In{sub 0.5}PX{sub 3} (X = S and Se) have both suitable band gaps for visible-light driving and sufficient over-potentials for water splitting. More fascinatingly, single-layer Ag{sub 0.5}Sc{sub 0.5}PSe{sub 3} is a direct band gap semiconductor, and the calculated optical absorption further convinces that such materials own outstanding properties for light absorption. Such results demonstrate that the single layer metal phosphorus trichalcogenides own high stability, versatile electronic properties, and high optical absorption, thus such materials have great chances to be high efficient photocatalysts for water-splitting.« less
NASA Astrophysics Data System (ADS)
Egli, Ramon; Zhao, Xiangyu
2015-04-01
We present a general theory on the acquisition of natural remanent magnetizations (NRM) in sediment under the influence of (a) magnetic torques, (b) randomizing torques (e.g. from bioturbation), and (c) torques resulting from interaction forces between remanence carriers and other particles. Dynamic equilibrium between (a) and (b) in the water column and sediment-water interface produce a detrital remanent magnetization (DRM), while much stronger randomizing forces occur in the mixed layer of sediment due to bioturbation forces. These generate a so-called mixing remanent magnetization (MRM), which is stabilized by interaction forces. During the time required to cross the mixed layer, DRM is lost and MRM is acquired at a rate that depends on bioturbation intensity. Both processes are governed by the same MRM lock-in function. The final NRM intensity is controlled mainly by a single parameter defined as the product of rotational diffusion constant and mixed layer thickness, divided by the sedimentation rate. This parameter defines three regimes: (1) slow mixing, leading to DRM preservation and insignificant MRM acquisition, (2) fast mixing with MRM acquisition and full randomization of the original DRM, and (3) intermediate mixing. Because the acquisition efficiency of DRM is expectedly larger than that of a MRM, MRM is particularly sensitive to the mixing rate in case of intermediate regimes, and generates variable NRM acquisition efficiencies. Our model explains (1) lock-in delays that can be matched with empirical reconstructions from paleomagnetic records, (2) the existence of small lock-in depths leading to DRM preservation, (3) NRM acquisition efficiencies of magnetofossil-rich sediments, and (4) relative paleointensity artifacts reported in some recent studies.
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.
1988-01-01
This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.
A theory of the inverse magnetoelectric effect in layered magnetostrictive-piezoelectric structures
NASA Astrophysics Data System (ADS)
Filippov, D. A.; Radchenko, G. S.; Firsova, T. O.; Galkina, T. A.
2017-05-01
A theory of the inverse magnetoelectric effect in layered structures has been presented. The theory is based on solving the equations of elastodynamics and electrostatics separately for the magnetostrictive and piezoelectric phases, taking into account the conditions at the interface between the phases. Expressions for the coefficient of inverse magnetoelectric conversion through the parameters characterizing the magnetostrictive and piezoelectric phases have been obtained. Theoretical dependences of the inverse magnetoelectric conversion coefficient on the frequency of the alternating-current electric field for the three-layer PZT-Ni-PZT structure and the two-layer terfenol- D-PZT structure have been calculated. The results of the calculations are in good agreement with the experimental data.
On the stability of an infinite swept attachment line boundary layer
NASA Technical Reports Server (NTRS)
Hall, P.; Mallik, M. R.; Poll, D. I. A.
1984-01-01
The instability of an infinite swept attachment line boundary layer is considered in the linear regime. The basic three dimensional flow is shown to be susceptible to travelling wave disturbances which propagate along the attachment line. The effect of suction on the instability is discussed and the results suggest that the attachment line boundary layer on a swept wing can be significantly stabilized by extremely small amounts of suction. The results obtained are in excellent agreement with the available experimental observations.
Stacking stability of MoS2 bilayer: An ab initio study
NASA Astrophysics Data System (ADS)
Tao, Peng; Guo, Huai-Hong; Yang, Teng; Zhang, Zhi-Dong
2014-10-01
The study of the stacking stability of bilayer MoS2 is essential since a bilayer has exhibited advantages over single layer MoS2 in many aspects for nanoelectronic applications. We explored the relative stability, optimal sliding path between different stacking orders of bilayer MoS2, and (especially) the effect of inter-layer stress, by combining first-principles density functional total energy calculations and the climbing-image nudge-elastic-band (CI-NEB) method. Among five typical stacking orders, which can be categorized into two kinds (I: AA, AB and II: AA', AB', A'B), we found that stacking orders with Mo and S superposing from both layers, such as AA' and AB, is more stable than the others. With smaller computational efforts than potential energy profile searching, we can study the effect of inter-layer stress on the stacking stability. Under isobaric condition, the sliding barrier increases by a few eV/(ucGPa) from AA' to AB', compared to 0.1 eV/(ucGPa) from AB to [AB]. Moreover, we found that interlayer compressive stress can help enhance the transport properties of AA'. This study can help understand why inter-layer stress by dielectric gating materials can be an effective means to improving MoS2 on nanoelectronic applications.
The dynamical environment of asteroid 21 Lutetia according to different internal models
NASA Astrophysics Data System (ADS)
Aljbaae, S.; Chanut, T. G. G.; Carruba, V.; Souchay, J.; Prado, A. F. B. A.; Amarante, A.
2017-01-01
One of the most accurate models currently used to represent the gravity field of irregular bodies is the polyhedral approach. In this model, the mass of the body is assumed to be homogeneous, which may not be true for a real object. The main goal of the this paper is to study the dynamical effects induced by three different internal structures (uniform, three- and four-layered) of asteroid (21) Lutetia, an object that recent results from space probe suggest being at least partially differentiated. The Mascon gravity approach used in the this work consists of dividing each tetrahedron into eight parts to calculate the gravitational field around the asteroid. The zero-velocity curves show that the greatest displacement of the equilibrium points occurs in the position of the E4 point for the four-layered structure and the smallest one occurs in the position of the E3 point for the three-layered structure. Moreover, stability against impact shows that the planar limit gets slightly closer to the body with the four-layered structure. We then investigated the stability of orbital motion in the equatorial plane of (21) Lutetia and propose numerical stability criteria to map the region of stable motions. Layered structures could stabilize orbits that were unstable in the homogeneous model.
NASA Astrophysics Data System (ADS)
Xing, Zhou; Li, Shu-Hui; Wu, Bao-Shan; Wang, Xin; Wang, Lu-Yao; Wang, Tan; Liu, Hao-Ran; Zhang, Mei-Lin; Yun, Da-Qin; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun
2018-06-01
Interface engineering that involves in the metal cathodes and the electron transport layers (ETLs) facilitates the simultaneous improvement of device performances and stability in perovskite solar cells (PSCs). Herein, low-temperature solution-processed cerium oxide (CeOx) films are prepared by a facile sol-gel method and employed as the interface layers between [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) and an Ag back contact to form PC61BM/CeOx double ETLs. The introduction of CeOx enables electron extraction to the Ag electrode and protects the underlying perovskite layer and thus improves the device performance and stability of the p-i-n PSCs. The p-i-n PSCs with double PC61BM/CeOx ETLs demonstrate a maximum power conversion efficiency (PCE) of 17.35%, which is superior to those of the devices with either PC61BM or CeOx single ETLs. Moreover, PC61BM/CeOx devices exhibit excellent stability in light soaking, which is mainly due to the chemically stable CeOx interlayer. The results indicate that CeOx is a promising interface modification layer for stable high-efficiency PSCs.
NASA Astrophysics Data System (ADS)
Luo, Hui; Lin, Xuanhuai; Hou, Xian; Pan, Likun; Huang, Sumei; Chen, Xiaohong
2017-10-01
As a hole transport layer, PEDOT:PSS usually limits the stability and efficiency of perovskite solar cells (PSCs) due to its hygroscopic nature and inability to block electrons. Here, a graphene-oxide (GO)-modified PEDOT:PSS hole transport layer was fabricated by spin-coating a GO solution onto the PEDOT:PSS surface. PSCs fabricated on a GO-modified PEDOT:PSS layer exhibited a power conversion efficiency (PCE) of 15.34%, which is higher than 11.90% of PSCs with the PEDOT:PSS layer. Furthermore, the stability of the PSCs was significantly improved, with the PCE remaining at 83.5% of the initial PCE values after aging for 39 days in air. The hygroscopic PSS material at the PEDOT:PSS surface was partly removed during spin-coating with the GO solution, which improves the moisture resistance and decreases the contact barrier between the hole transport layer and perovskite layer. The scattered distribution of the GO at the PEDOT:PSS surface exhibits superior wettability, which helps to form a high-quality perovskite layer with better crystallinity and fewer pin holes. Furthermore, the hole extraction selectivity of the GO further inhibits the carrier recombination at the interface between the perovskite and PEDOT:PSS layers. Therefore, the cooperative interactions of these factors greatly improve the light absorption of the perovskite layer, the carrier transport and collection abilities of the PSCs, and especially the stability of the cells.
NASA Astrophysics Data System (ADS)
Kim-Ngan, N.-T. H.; Krupska, M.; Balogh, A. G.; Malinsky, P.; Mackova, A.
2017-12-01
We investigate the stability of the bi-layer Fe3O4/Fe(0 0 1) films grown epitaxially on MgO(0 0 1) substrates with the layer thickness in the range of 25-100 nm upon 1 MeV Kr+ ion irradiation. The layer structure and layer composition of the films before and after ion irradiation were studied by XRR, RBS and RBS-C techniques. The interdiffusion and intermixing was analyzed. No visible change in the RBS spectra was observed upon irradiation with ion fluence below 1015 Kr cm-2. The bi-layer structure and the stoichiometric Fe3O4 layer on the surface were well preserved after Kr+ ion irradiation at low damage levels, although the strong intermixing implied a large interfacial (Fe x O y ) and (Fe, Mg)O y layer respective at Fe3O4-Fe and Fe-MgO interface. The high ion fluence of 3.8 × 1016 Kr cm-2 has induced a complete oxidization of the buffer Fe layer. Under such Kr fluence, the stoichiometry of the Fe3O4 surface layer was still preserved indicating its high stability. The entire film contains Fe x O y -type composition at ion fluence large than 5.0 × 1016 Kr cm-2.
Advanced Tokamak Stability Theory
NASA Astrophysics Data System (ADS)
Zheng, Linjin
2015-03-01
The intention of this book is to introduce advanced tokamak stability theory. We start with the derivation of the Grad-Shafranov equation and the construction of various toroidal flux coordinates. An analytical tokamak equilibrium theory is presented to demonstrate the Shafranov shift and how the toroidal hoop force can be balanced by the application of a vertical magnetic field in tokamaks. In addition to advanced theories, this book also discusses the intuitive physics pictures for various experimentally observed phenomena.
NASA Technical Reports Server (NTRS)
Svalbonas, V.
1973-01-01
The theoretical analysis background for the STARS-2 (shell theory automated for rotational structures) program is presented. The theory involved in the axisymmetric nonlinear and unsymmetric linear static analyses, and the stability and vibrations (including critical rotation speed) analyses involving axisymmetric prestress are discussed. The theory for nonlinear static, stability, and vibrations analyses, involving shells with unsymmetric loadings are included.
Murray, James M; Tesanović, Zlatko
2010-07-16
A Ginzburg-Landau approach to fluctuations of a layered superconductor in a magnetic field is used to show that the interlayer coupling can be incorporated within an interacting self-consistent theory of a single layer, in the limit of a large number of neighboring layers. The theory exhibits two phase transitions-a vortex liquid-to-solid transition is followed by a Bose-Einstein condensation into the Abrikosov lattice-illustrating the essential role of interlayer coupling. By using this theory, explicit expressions for magnetization, specific heat, and fluctuation conductivity are derived. We compare our results with recent experimental data on the iron-pnictide superconductors.
Stability and Control of Burning Tokamak Plasmas with Resistive Walls: Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, George; Brennan, Dylan; Cole, Andrew
This project is focused on theoretical and computational development for quantitative prediction of the stability and control of the equilibrium state evolution in toroidal burning plasmas, including its interaction with the surrounding resistive wall. The stability of long pulse burning plasmas is highly sensitive to the physics of resonant layers in the plasma, sources of momentum and flow, kinetic effects of energetic particles, and boundary conditions at the wall, including feedback control and error fields. In ITER in particular, the low toroidal flow equilibrium state, sustained primarily by energetic alpha particles from fusion reactions, will require the consideration of allmore » of these key elements to predict quantitatively the stability and evolution. The principal investigators on this project have performed theoretical and computational analyses, guided by analytic modeling, to address this physics in realistic configurations. The overall goal has been to understand the key physics mechanisms that describe stable toroidal burning plasmas under active feedback control. Several relevant achievements have occurred during this project, leading to publications and invited conference presentations. In theoretical efforts, with the physics of the resonant layers, resistive wall, and toroidal momentum transport included, this study has extended from cylindrical resistive plasma - resistive wall models with feedback control to toroidal geometry with strong shaping to study mode coupling effects on the stability. These results have given insight into combined tearing and resistive wall mode behavior in simulations and experiment, while enabling a rapid exploration of plasma parameter space, to identify possible domains of interest for large plasma codes to investigate in more detail. Resonant field amplification and quasilinear torques in the presence of error fields and velocity shear have also been investigated. Here it was found, surprisingly, that the Maxwell torque on resonant layers in the plasma which exhibit finite real frequencies ωr in their response is significantly different from the conventional results based on tearing layers with pure real growth (or damping) rates. This observation suggests the possibility that the torque on the tearing layers can lock the plasma rotation to this finite phase velocity, which may lead to locking in which velocity shear is maintained. More broadly, the sources of all torques driving flows in magnetic confinement experiments is not fully understood, and this theoretical work may shed light on puzzling experimental results. It was also found that real frequencies occur over a wide range of plasma response regimes, and are indeed the norm and not the exception, often leading to profound effects on the locking torque. Also, the influence of trapped energetic ions orbiting over the resistive plasma mode structure, a critical effect in burning plasmas, was investigated through analytic modeling and analysis of simulations and experiment. This effort has shown that energetic ions can drive the development of disruptive instabilities, but also damp and stabilize the instabilities, depending on the details of the shear in the equilibrium magnetic field. This finding could be critical to maintaining stable operations in burning plasmas. In the most recent work, a series of simulations have been conducted to study the effect of differential flow and energetic ion effects on entry to the onset of a disruptive instability in the most realistic conditions possible, with preexisting nonlinearly saturated benign instabilities. Throughout this work, the linear and quasilinear theory of resonant layers with differential flow between them, their interaction with resistive wall and error fields, and energetic ions effects, have been used to understand realistic simulations of mode onset and the experimental discharges they represent. These studies will continue to answer remaining questions about the relation between theoretical results obtained in this project and observations of the onset and evolution of disruptive instabilities in experiment.« less
Hoffmann, Lukas; Brinkmann, Kai O; Malerczyk, Jessica; Rogalla, Detlef; Becker, Tim; Theirich, Detlef; Shutsko, Ivan; Görrn, Patrick; Riedl, Thomas
2018-02-14
Despite the notable success of hybrid halide perovskite-based solar cells, their long-term stability is still a key-issue. Aside from optimizing the photoactive perovskite, the cell design states a powerful lever to improve stability under various stress conditions. Dedicated electrically conductive diffusion barriers inside the cell stack, that counteract the ingress of moisture and prevent the migration of corrosive halogen species, can substantially improve ambient and thermal stability. Although atomic layer deposition (ALD) is excellently suited to prepare such functional layers, ALD suffers from the requirement of vacuum and only allows for a very limited throughput. Here, we demonstrate for the first time spatial ALD-grown SnO x at atmospheric pressure as impermeable electron extraction layers for perovskite solar cells. We achieve optical transmittance and electrical conductivity similar to those in SnO x grown by conventional vacuum-based ALD. A low deposition temperature of 80 °C and a high substrate speed of 2.4 m min -1 yield SnO x layers with a low water vapor transmission rate of ∼10 -4 gm -2 day -1 (at 60 °C/60% RH). Thereby, in perovskite solar cells, dense hybrid Al:ZnO/SnO x electron extraction layers are created that are the key for stable cell characteristics beyond 1000 h in ambient air and over 3000 h at 60 °C. Most notably, our work of introducing spatial ALD at atmospheric pressure paves the way to the future roll-to-roll manufacturing of stable perovskite solar cells.
Ab initio modeling of zincblende AlN layer in Al-AlN-TiN multilayers
Yadav, S. K.; Wang, J.; Liu, X. -Y.
2016-06-13
An unusual growth mechanism of metastable zincblende AlN thin film by diffusion of nitrogen atoms into Al lattice is established. Using first-principles density functional theory, we studied the possibility of thermodynamic stability of AlN as a zincblende phase due to epitaxial strains and interface effect, which fails to explain the formation of zincblende AlN. We then compared the formation energetics of rocksalt and zincblende AlN in fcc Al through direct diffusion of nitrogen atoms to Al octahedral and tetrahedral interstitials. Furthermore, the formation of a zincblende AlN thin film is determined to be a kinetically driven process, not a thermodynamicallymore » driven process.« less
Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A
2016-05-23
This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Crystal structure stability and electronic properties of the layered nickelate La4Ni3O10
NASA Astrophysics Data System (ADS)
Puggioni, Danilo; Rondinelli, James M.
2018-03-01
We investigate the crystal structure and the electronic properties of the trilayer nickelate La4Ni3O10 by means of quantum-mechanical calculations in the framework of the density-functional theory. We find that, at low temperature, La4Ni3O10 undergoes a hitherto unreported structural phase transition and transforms to a new monoclinic P 21/a phase. This phase exhibits electronic properties in agreement with recent angle-resolved photoemission spectroscopy data reported in H. Li et al., [Nat. Commun. 8, 704 (2017), 10.1038/s41467-017-00777-0] and should be considered in models focused on explaining the observed ˜140 K metal-to-metal phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z. M.; Laser Fusion Research Center, CAEP, Mianyang 621900; He, X. T.
A complex target (CT) configuration tailored for generating high quality proton bunch by circularly polarized laser pulses at intensities of 10{sup 20-21} W/cm{sup 2} is proposed. Two-dimensional particle-in-cell simulations show that both the collimation and mono-energetic qualities of the accelerated proton bunch obtained using a front-shaped thin foil can be greatly enhanced by the backside inhomogeneous plasma layer. The main mechanisms for improving the accelerated protons are identified and discussed. These include stabilization of the photon cavity, providing hole-boring supplementary acceleration and suppressing the thermal-electron effects. A theory for tailoring the CT parameters is also presented.
Laminar fMRI and computational theories of brain function.
Stephan, K E; Petzschner, F H; Kasper, L; Bayer, J; Wellstein, K V; Stefanics, G; Pruessmann, K P; Heinzle, J
2017-11-02
Recently developed methods for functional MRI at the resolution of cortical layers (laminar fMRI) offer a novel window into neurophysiological mechanisms of cortical activity. Beyond physiology, laminar fMRI also offers an unprecedented opportunity to test influential theories of brain function. Specifically, hierarchical Bayesian theories of brain function, such as predictive coding, assign specific computational roles to different cortical layers. Combined with computational models, laminar fMRI offers a unique opportunity to test these proposals noninvasively in humans. This review provides a brief overview of predictive coding and related hierarchical Bayesian theories, summarises their predictions with regard to layered cortical computations, examines how these predictions could be tested by laminar fMRI, and considers methodological challenges. We conclude by discussing the potential of laminar fMRI for clinically useful computational assays of layer-specific information processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Asymptotic analysis of stability for prismatic solids under axial loads
NASA Astrophysics Data System (ADS)
Scherzinger, W.; Triantafyllidis, N.
1998-06-01
This work addresses the stability of axially loaded prismatic beams with any simply connected crosssection. The solids obey a general class of rate-independent constitutive laws, and can sustain finite strains in either compression or tension. The proposed method is based on multiple scale asymptotic analysis, and starts with the full Lagrangian formulation for the three-dimensional stability problem, where the boundary conditions are chosen to avoid the formation of boundary layers. The calculations proceed by taking the limit of the beam's slenderness parameter, ɛ (ɛ 2 ≡ area/length 2), going to zero, thus resulting in asymptotic expressions for the critical loads and modes. The analysis presents a consistent and unified treatment for both compressive (buckling) and tensile (necking) instabilities, and is carried out explicitly up to o( ɛ4) in each case. The present method circumvents the standard structural mechanics approach for the stability problem of beams which requires the choice of displacement and stress field approximations in order to construct a nonlinear beam theory. Moreover, this work provides a consistent way to calculate the effect of the beam's slenderness on the critical load and mode to any order of accuracy required. In contrast, engineering theories give accurately the lowest order terms ( O( ɛ2)—Euler load—in compression or O(1)—maximum load—in tension) but give only approximately the next higher order terms, with the exception of simple section geometries where exact stability results are available. The proposed method is used to calculate the critical loads and eigenmodes for bars of several different cross-sections (circular, square, cruciform and L-shaped). Elastic beams are considered in compression and elastoplastic beams are considered in tension. The O( ɛ2) and O( ɛ4) asymptotic results are compared to the exact finite element calculations for the corresponding three-dimensional prismatic solids. The O( ɛ4) results give significant improvement over the O( ɛ2) results, even for extremely stubby beams, and in particular for the case of cross-sections with commensurate dimensions.
NASA Astrophysics Data System (ADS)
Osman, Frederick; Ghahramani, Nader; Hora, Heinrich
2005-10-01
The studies of laser ablation have lead to a new theory of nuclei, endothermic nuclei generation, and quark-gluon plasmas. The surface of ablated plasma expanding into vacuum after high power laser irradiation of targets contains an electric double layer having the thickness of the Debye length. This led to the discovery of surface tension in plasmas, and led to the internal dynamic electric fields in all inhomogeneous plasmas. The surface tension causes stabilization by short length surface wave smoothing the expanding plasma plume and to stabilization against the Rayleigh Taylor instability. Generalizing this to the degenerate electrons in a metal with the Fermi energy instead of the temperature resulted in the first quantum theory of surface tension of metals in agreement with measurements. Taking the Fermi energy in the Debye length for nucleons results in a theory of nuclei with stable confinement of protons and neutrons just at the well-known nuclear density, and the Debye lengths equal to the Hofstadter decay of the nuclear surface. Increasing the nuclear density by a factor of 10 leads to a change of the Fermi energy into its relativistic branch where no surface energy is possible and the particle mass is not defined, permitting the quark gluon plasma. Expansion of this higher density at the big bang or in super-nova results in nucleation and element generation. The Boltzmann equilibrium permits the synthesis of nuclei even in the endothermic range, however with the limit to about uranium. A relation for the magic numbers leads to a quark structure of nuclear shells that can be understood as a duality property of nuclei with respect to nucleons and quarks
Liu, Mengying; Sun, Peihua
2014-01-01
A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods. PMID:24795535
On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Abid, Ridha; Blaisdell, Gregory A.
1995-01-01
The consistency of second-order closure models with results from hydrodynamic stability theory is analyzed for the simplified case of homogeneous turbulence. In a recent study, Speziale, Gatski, and MacGiolla Mhuiris showed that second-order closures are capable of yielding results that are consistent with hydrodynamic stability theory for the case of homogeneous shear flow in a rotating frame. It is demonstrated in this paper that this success is due to the fact that the stability boundaries for rotating homogeneous shear flow are not dependent on the details of the spatial structure of the disturbances. For those instances where they are -- such as in the case of elliptical flows where the instability mechanism is more subtle -- the results are not so favorable. The origins and extent of this modeling problem are examined in detail along with a possible resolution based on rapid distortion theory (RDT) and its implications for turbulence modeling.
Liu, Yanbin; Liu, Mengying; Sun, Peihua
2014-01-01
A typical model of hypersonic vehicle has the complicated dynamics such as the unstable states, the nonminimum phases, and the strong coupling input-output relations. As a result, designing a robust stabilization controller is essential to implement the anticipated tasks. This paper presents a robust stabilization controller based on the guardian maps theory for hypersonic vehicle. First, the guardian maps theories are provided to explain the constraint relations between the open subsets of complex plane and the eigenvalues of the state matrix of closed-loop control system. Then, a general control structure in relation to the guardian maps theories is proposed to achieve the respected design demands. Furthermore, the robust stabilization control law depending on the given general control structure is designed for the longitudinal model of hypersonic vehicle. Finally, a simulation example is provided to verify the effectiveness of the proposed methods.
Multilayer article having stabilized zirconia outer layer and chemical barrier layer
NASA Technical Reports Server (NTRS)
Bansal, Narottam P. (Inventor); Lee, Kang N. (Inventor)
2004-01-01
A multilayer article includes a substrate that includes at least one of a ceramic compound and a Si-containing metal alloy. An outer layer includes stabilized zirconia. Intermediate layers are located between the outer layer and the substrate and include a mullite-containing layer and a chemical barrier layer. The mullite-containing layer includes 1) mullite or 2) mullite and an alkaline earth metal aluminosilicate. The chemical barrier layer is located between the mullite-containing layer and the outer layer. The chemical barrier layer includes at least one of mullite, hafnia, hafnium silicate and rare earth silicate (e.g., at least one of RE.sub.2 SiO.sub.5 and RE.sub.2 Si.sub.2 O.sub.7 where RE is Sc or Yb). The multilayer article is characterized by the combination of the chemical barrier layer and by its lack of a layer consisting essentially of barium strontium aluminosilicate between the mullite-containing layer and the chemical barrier layer. Such a barium strontium aluminosilicate layer may undesirably lead to the formation of a low melting glass or unnecessarily increase the layer thickness with concomitant reduced durability of the multilayer article. In particular, the chemical barrier layer may include at least one of hafnia, hafnium silicate and rare earth silicate.
Simple single-emitting layer hybrid white organic light emitting with high color stability
NASA Astrophysics Data System (ADS)
Nguyen, C.; Lu, Z. H.
2017-10-01
Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.
NASA Technical Reports Server (NTRS)
Carmichael, B. H.
1979-01-01
The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.
Stabilization of flux during dead-end ultra-low pressure ultrafiltration.
Peter-Varbanets, Maryna; Hammes, Frederik; Vital, Marius; Pronk, Wouter
2010-06-01
Gravity driven ultrafiltration was operated in dead-end mode without any flushing or cleaning. In contrary to general expectations, the flux value stabilized after about one week of operation and remained constant during an extended period of time (several months). Different surface water types and diluted wastewater were used as feed water and, depending on the feed water composition, stable flux values were in the range of 4-10 L h(-1) m(-2). When sodium azide was added to the feed water to diminish the biological activity, no stabilization of flux occurred, indicating that biological processes play an important role in the flux stabilization process. Confocal laser scanning microscopy revealed the presence of a biofouling layer, of which the structure changed over time, leading to relatively heterogeneous structures. It is assumed that the stabilization of flux is related to the development of heterogeneous structures in the fouling layer, due to biological processes in the layer. The phenomenon of flux stabilization opens interesting possibilities for application, for instance in simple and low-cost ultrafiltration systems for decentralized drinking water treatment in developing and transition countries, independent of energy supply, chemicals, or complex process control. 2010 Elsevier Ltd. All rights reserved.
A Van der Waals-like theory of plasma double layers
NASA Technical Reports Server (NTRS)
Katz, Ira; Davis, V. A.
1989-01-01
A theory describing plasma double layers in terms of multiple roots of the charge density expression is presented. The theory presented uses the fact that equilibrium plasmas shield small potential perturbations linearly; for high potentials, the shielding decreases. The approach is analogous to Van der Waals' theory of simple fluids in which inclusion of approximate expressions for both excluded volume and long range attractive forces sufficiently describes the first-order liquid-gas phase transition.
Development of a plasma sprayed ceramic gas path seal for high pressure turbine applications
NASA Technical Reports Server (NTRS)
Shiembob, L. T.
1977-01-01
The plasma sprayed graded layered yittria stabilized zirconia (ZrO2)/metal(CoCrAlY) seal system for gas turbine blade tip applications up to 1589 K (2400 F) seal temperatures was studied. Abradability, erosion, and thermal fatigue characteristics of the graded layered system were evaluated by rig tests. Satisfactory abradability and erosion resistance was demonstrated. Encouraging thermal fatigue tolerance was shown. Initial properties for the plasma sprayed materials in the graded, layered seal system was obtained, and thermal stress analyses were performed. Sprayed residual stresses were determined. Thermal stability of the sprayed layer materials was evaluated at estimated maximum operating temperatures in each layer. Anisotropic behavior in the layer thickness direction was demonstrated by all layers. Residual stresses and thermal stability effects were not included in the analyses. Analytical results correlated reasonably well with results of the thermal fatigue tests. Analytical application of the seal system to a typical gas turbine engine application predicted performance similar to rig specimen thermal fatigue performance. A model for predicting crack propagation in the sprayed ZrO2/CoCrAlY seal system was proposed, and recommendations for improving thermal fatigue resistance were made. Seal system layer thicknesses were analytically optimized to minimize thermal stresses in the abradability specimen during thermal fatigue testing. Rig tests on the optimized seal configuration demonstrated some improvement in thermal fatigue characteristics.
On various refined theories in the bending analysis of angle-ply laminates
NASA Astrophysics Data System (ADS)
Savithri, S.; Varadan, T. K.
1992-05-01
The accuracies of six shear-deformation theories are compared by analyzing the bending of angle-ply laminates and studying the results in the light of exact solutions. The shear-deformation theories used are those by: Ren (1986), Savithri and Varadan (1990), Bhaskar and Varadan (1991), Murakami (1986), and Pandya and Kant (1988), and combinations of these. The analytical methods are similar in that the number of unknown variables in the displacement field is independent of the number of layers in the laminate. The model by Ren is based on a parabolic distribution of transverse shear stresses in each laminate layer. This model is shown to give good predictions of deflections and stresses in two-layer antisymmetric and three-layer symmetric angle-ply laminates.
Confirmation of theoretical colour predictions for layering dental composite materials.
Mikhail, Sarah S; Johnston, William M
2014-04-01
The aim of this study is to confirm the theoretical colour predictions for single and double layers of dental composite materials on an opaque backing. Single and double layers of composite resins were fabricated, placed in optical contact with a grey backing and measured for spectral radiance. The spectral reflectance and colour were directly determined. Absorption and scattering coefficients as previously reported, the measured thickness of the single layers and the effective reflectance of the grey backing were utilized to theoretically predict the reflectance of the single layer using corrected Kubelka-Munk reflectance theory. For double layers the predicted effective reflectance of the single layer was used as the reflectance of the backing of the second layer and the thickness of the second layer was used to predict the reflectance of the double layer. Colour differences, using both the CIELAB and CIEDE2000 formulae, measured the discrepancy between each directly determined colour and its corresponding theoretical colour. The colour difference discrepancies generally ranged around the perceptibility threshold but were consistently below the respective acceptability threshold. This theory can predict the colour of layers of composite resin within acceptability limits and generally also within perceptibility limits. This theory could therefore be incorporated into computer-based optical measuring instruments that can automate the shade selections for layers of a more opaque first layer under a more translucent second layer for those clinical situations where an underlying background colour and a desirable final colour can be measured. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Fieno, D.
1972-01-01
Perturbation theory formulas were derived and applied to determine changes in neutron and gamma-ray doses due to changes in various radiation shield layers for fixed sources. For a given source and detector position, the perturbation method enables dose derivatives with respect to density, or equivalently thickness, for every layer to be determined from one forward and one inhomogeneous adjoint calculation. A direct determination without the perturbation approach would require two forward calculations to evaluate the dose derivative due to a change in a single layer. Hence, the perturbation method for obtaining dose derivatives requires fewer computations for design studies of multilayer shields. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer in a two-layer spherical configuration as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.
[Simulation of CO2 exchange between forest canopy and atmosphere].
Diao, Yiwei; Wang, Anzhi; Jin, Changjie; Guan, Dexin; Pei, Tiefan
2006-12-01
Estimating the scalar source/sink distribution of CO2 and its vertical fluxes within and above forest canopy continues to be a critical research problem in biosphere-atmosphere exchange processes and plant ecology. With broad-leaved Korean pine forest in Changbai Mountains as test object, and based on Raupach's localized near field theory, the source/sink and vertical flux distribution of CO2 within and above forest canopy were modeled through an inverse Lagrangian dispersion analysis. This model correctly predicted a strong positive CO2 source strength in the deeper layers of the canopy due to soil-plant respiration, and a strong CO2 sink in the upper layers of the canopy due to the assimilation by sunlit foliage. The foliage in the top layer of canopy changed from a CO2 source in the morning to a CO2 sink in the afternoon, while the soil constituted a strong CO2 source all the day. The simulation results accorded well with the eddy covariance CO2 flux measurements within and above the canopy, and the average precision was 89%. The CO2 exchange predicted by the analysis was averagely 15% higher than that of the eddy correlation, but exhibited identical temporal trend. Atmospheric stability remarkably affected the CO2 exchange between forest canopy and atmosphere.
Turbulent Mixing Layer Control using Ns-DBD Plasma Actuators
NASA Astrophysics Data System (ADS)
Singh, Ashish; Little, Jesse
2016-11-01
A low speed turbulent mixing layer (Reθo =1282, U1 /U2 = 0 . 28 and U2 = 11 . 8 m / s) is subject to nanosecond pulse driven dielectric barrier discharge (ns-DBD) plasma actuation. The forcing frequency corresponds to a Strouhal number (St) of 0.032 which is the most amplified frequency based on stability theory. Flow response is studied as a function of the pulse energy, the energy input time scale (carrier frequency) and the duration of actuation (duty cycle). It is found that successful actuation requires a combination of forcing parameters. An evaluation of the forcing efficacy is achieved by examining different flow quantities such as momentum thickness, vorticity and velocity fluctuations. In accordance with past work, a dependence is found between the initial shear layer thickness and the energy coupled to the flow. More complex relationships are also revealed such as a limitation on the maximum pulse energy which yields control. Also, the pulse energy and the carrier frequency (inverse of period between successive pulses) are interdependent whereby an optimum exists between them and extreme values of either parameter is inconsonant with the control desired. These observations establish a rich and complex process behind ns-DBD plasma actuation. Air Force Office of Scientific Research (FA9550-12-1-0044).
Chen, Ji; Ren, Xinguo; Li, Xin-Zheng; Alfè, Dario; Wang, Enge
2014-07-14
The finite-temperature phase diagram of hydrogen in the region of phase IV and its neighborhood was studied using the ab initio molecular dynamics (MD) and the ab initio path-integral molecular dynamics (PIMD). The electronic structures were analyzed using the density-functional theory (DFT), the random-phase approximation, and the diffusion Monte Carlo (DMC) methods. Taking the state-of-the-art DMC results as benchmark, comparisons of the energy differences between structures generated from the MD and PIMD simulations, with molecular and dissociated hydrogens, respectively, in the weak molecular layers of phase IV, indicate that standard functionals in DFT tend to underestimate the dissociation barrier of the weak molecular layers in this mixed phase. Because of this underestimation, inclusion of the quantum nuclear effects (QNEs) in PIMD using electronic structures generated with these functionals leads to artificially dissociated hydrogen layers in phase IV and an error compensation between the neglect of QNEs and the deficiencies of these functionals in standard ab initio MD simulations exists. This analysis partly rationalizes why earlier ab initio MD simulations complement so well the experimental observations. The temperature and pressure dependencies for the stability of phase IV were also studied in the end and compared with earlier results.
Wang, Jianwei; Zhang, Yong
2016-01-01
When coming to identify new 2D materials, our intuition would suggest us to look from layered instead of 3D materials. However, since graphite can be hypothetically derived from diamond by stretching it along its [111] axis, many 3D materials can also potentially be explored as new candidates for 2D materials. Using a density functional theory, we perform a systematic study over the common Group IV, III–V, and II–VI semiconductors along different deformation paths to reveal new structures that are topologically connected to but distinctly different from the 3D parent structure. Specifically, we explore two major phase transition paths, originating respectively from wurtzite and NiAs structure, by applying compressive and tensile strain along the symmetry axis, and calculating the total energy changes to search for potential metastable states, as well as phonon spectra to examine the structural stability. Each path is found to further split into two branches under tensile strain–low buckled and high buckled structures, which respectively lead to a low and high buckled monolayer structure. Most promising new layered or planar structures identified include BeO, GaN, and ZnO on the tensile strain side, Ge, Si, and GaP on the compressive strain side. PMID:27090430
NASA Astrophysics Data System (ADS)
Sumantri, Bambang; Uchiyama, Naoki; Sano, Shigenori
2016-01-01
In this paper, a new control structure for a quad-rotor helicopter that employs the least squares method is introduced. This proposed algorithm solves the overdetermined problem of the control input for the translational motion of a quad-rotor helicopter. The algorithm allows all six degrees of freedom to be considered to calculate the control input. The sliding mode controller is applied to achieve robust tracking and stabilization. A saturation function is designed around a boundary layer to reduce the chattering phenomenon that is a common problem in sliding mode control. In order to improve the tracking performance, an integral sliding surface is designed. An energy saving effect because of chattering reduction is also evaluated. First, the dynamics of the quad-rotor helicopter is derived by the Newton-Euler formulation for a rigid body. Second, a constant plus proportional reaching law is introduced to increase the reaching rate of the sliding mode controller. Global stability of the proposed control strategy is guaranteed based on the Lyapunov's stability theory. Finally, the robustness and effectiveness of the proposed control system are demonstrated experimentally under wind gusts, and are compared with a regular sliding mode controller, a proportional-differential controller, and a proportional-integral-differential controller.
Akhmal Saadon, Syaiful; Sathishkumar, Palanivel; Mohd Yusoff, Abdull Rahim; Hakim Wirzal, Mohd Dzul; Rahmalan, Muhammad Taufiq; Nur, Hadi
2016-08-01
In this study, the zinc oxide (ZnO) layer was synthesised on the surface of Zn plates by three different techniques, i.e. electrolysis, hydrogen peroxide and heat treatment. The synthesised ZnO layers were characterised using scanning electron microscopy, X-ray diffraction, UV-visible diffuse reflectance and photoluminescence spectroscopy. The photocatalytic activity of the ZnO layer was further assessed against methylene blue (MB) degradation under UV irradiation. The photocatalytic degradation of MB was achieved up to 84%, 79% and 65% within 1 h for ZnO layers synthesised by electrolysis, heat and hydrogen peroxide treatment, respectively. The reusability results show that electrolysis and heat-treated ZnO layers have considerable photocatalytic stability. Furthermore, the results confirmed that the photocatalytic efficiency of ZnO was directly associated with the thickness and enlarged surface area of the layer. Finally, this study proved that the ZnO layers synthesised by electrolysis and heat treatment had shown better operational stability and reusability.
NASA Technical Reports Server (NTRS)
Fieno, D.
1972-01-01
The perturbation theory for fixed sources was applied to radiation shielding problems to determine changes in neutron and gamma ray doses due to changes in various shield layers. For a given source and detector position the perturbation method enables dose derivatives due to all layer changes to be determined from one forward and one inhomogeneous adjoint calculation. The direct approach requires two forward calculations for the derivative due to a single layer change. Hence, the perturbation method for obtaining dose derivatives permits an appreciable savings in computation for a multilayered shield. For an illustrative problem, a comparison was made of the fractional change in the dose per unit change in the thickness of each shield layer as calculated by perturbation theory and by successive direct calculations; excellent agreement was obtained between the two methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Guangmin; Sun, Jie; Jin, Yang
A 3D graphene cage with a thin layer of electrodeposited nickel phosphosulfide for Li 2S impregnation, using ternary nickel phosphosulphide as a highly conductive coating layer for stabilized polysulfide chemistry, is accomplished by the combination of theoretical and experimental studies. As a result, the 3D interconnected graphene cage structure leads to high capacity, good rate capability and excellent cycling stability in a Li 2S cathode.
Liu, Mingkai; Meng, Qinghua; Yang, Zhiyuan; Zhao, Xinsheng; Liu, Tianxi
2018-05-15
An integrated carbon-sulfur (CSG/PC) membrane with dual shuttle-inhibiting layers was prepared by inserting graphene "nets" and a porous carbon (PC) skin, and the membrane achieved an extraordinary cycling stability up to 1000 cycles with an average Coulombic efficiency of ∼100%.
Buffer layer enhanced stability of sodium-ion storage
NASA Astrophysics Data System (ADS)
Wang, Xusheng; Yang, Zhanhai; Wang, Chao; Chen, Dong; Li, Rui; Zhang, Xinxiang; Chen, Jitao; Xue, Mianqi
2017-11-01
Se-Se buffer layers are introduced into tin sequences as SnSe2 single crystal to enhance the cycling stability for long-term sodium-ion storage by blazing a trail of self-defence strategy to structural pulverization especially at high current density. Specifically, under half-cell test, the SnSe2 electrodes could yield a high discharge capacity of 345 mAh g-1 after 300 cycles at 1 A g-1 and a high discharge capacity of 300 mAh g-1 after 2100 cycles at 5 A g-1 with stable coulombic efficiency and no capacity fading. Even with the ultrafast sodium-ion storage at 10 A g-1, the cycling stability still makes a positive response and a high discharge capacity of 221 mAh g-1 is demonstrated after 2700 cycles without capacity fading. The full-cell test for the SnSe2 electrodes also demonstrates the superior cycling stability. The flexible and tough Se-Se buffer layers are favourable to accommodate the sodium-ion intercalation process, and the autogenous Na2Se layers could confine the structural pulverization of further sodiated tin sequences by the slip along the Na2Se-NaxSn interfaces.
Stability of organic carbon in deep soil layers controlled by fresh carbon supply.
Fontaine, Sébastien; Barot, Sébastien; Barré, Pierre; Bdioui, Nadia; Mary, Bruno; Rumpel, Cornelia
2007-11-08
The world's soils store more carbon than is present in biomass and in the atmosphere. Little is known, however, about the factors controlling the stability of soil organic carbon stocks and the response of the soil carbon pool to climate change remains uncertain. We investigated the stability of carbon in deep soil layers in one soil profile by combining physical and chemical characterization of organic carbon, soil incubations and radiocarbon dating. Here we show that the supply of fresh plant-derived carbon to the subsoil (0.6-0.8 m depth) stimulated the microbial mineralization of 2,567 +/- 226-year-old carbon. Our results support the previously suggested idea that in the absence of fresh organic carbon, an essential source of energy for soil microbes, the stability of organic carbon in deep soil layers is maintained. We propose that a lack of supply of fresh carbon may prevent the decomposition of the organic carbon pool in deep soil layers in response to future changes in temperature. Any change in land use and agricultural practice that increases the distribution of fresh carbon along the soil profile could however stimulate the loss of ancient buried carbon.
Kindermann, Christoph; Matthée, Karin; Sievert, Frank; Breitkreutz, Jörg
2012-10-01
Recently introduced drug-polyelectrolyte complexes prepared by hot-melt extrusion should be processed to solid dosage forms with tailor-made release properties. Their potential of stability enhancement should be investigated. Milled hot-melt extruded naproxen-EUDRAGIT® E PO polyelectrolyte complexes were subsequently processed to double-layer tablets with varying complex loadings on a rotary-die press. Physicochemical interactions were studied under ICH guideline conditions and using the Gordon-Taylor equation. Sorption and desorption were determined to investigate the influence of moisture and temperature on the complex and related to stability tests under accelerated conditions. Naproxen release from the drug-polyelectrolyte complex is triggered by electrolyte concentration. Depending on the complex loading, phosphate buffer pH 6.8 stimulated a biphasic dissolution profile of the produced double-layer tablets: immediate release from the first layer with 65% loading and prolonged release from the second layer within 24 h (98.5% loading). XRPD patterns proved pseudopolymorphism for tablets containing the pure drug under common storage conditions whereas the drug-complex was stable in the amorphous state. Drug-polyelectrolyte complexes enable tailor-made dissolution profiles of solid dosage forms by electrolyte stimulation and increase stability under common storage conditions.
Triple-layer configuration for stable high-speed lubricated pipeline transport
NASA Astrophysics Data System (ADS)
Sarmadi, Parisa; Hormozi, Sarah; Frigaard, Ian A.
2017-04-01
Lubricated transport of heavy viscous oils is a popular technology in the pipelining industry, where pumping pressures can be reduced significantly by concentrating the strain rate in a lubricating layer. However, the interface between the lubricating layer and heavy oil is vulnerable to any perturbations in the system as well as transients due to start up, shut down, temperature change, etc. We present a method in which we purposefully position an unyielded skin of a viscoplastic fluid between the oil and the lubricating fluid. The objective is to reduce the frictional pressure gradient while avoiding interfacial instability. We study this methodology in both concentric and eccentric configurations and show its feasibility for a wide range of geometric and flow parameters found in oil pipelining. The eccentric configuration benefits the transport process via generating lift forces to balance the density differences among the layers. We use classical lubrication theory to estimate the leading order pressure distribution in the lubricating layer and calculate the net force on the skin. We explore the effects of skin shape, viscosity ratio, and geometry on the pressure drop, the flow rates of skin and lubricant fluids, and the net force on the skin. We show that the viscosity ratio and the radius of the core fluid are the main parameters that control the pressure drop and consumptions of outer fluids, respectively. The shape of the skin and the eccentricity mainly affect the lubrication pressure. These predictions are essential in designing a stable transport process. Finally, we estimate the yield stress required in order that the skin remain unyielded and ensure interfacial stability.
Shear layer excitation, experiment versus theory
NASA Technical Reports Server (NTRS)
Bechert, D. W.; Stahl, B.
1984-01-01
The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds.
Influence of growth conditions on exchange bias of NiMn-based spin valves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz
2015-05-07
As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction onmore » Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.« less
NASA Technical Reports Server (NTRS)
Loitsianskii. L. G.
1956-01-01
The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.
Attitude stability of spinning satellites
NASA Technical Reports Server (NTRS)
Caughey, T. K.
1980-01-01
Some problems of attitude stability of spinning satellites are treated in a rigorous manner. With certain restrictions, linearized stability analysis correctly predicts the attitude stability of spinning satellites, even in the critical cases of the Liapunov-Poincare stability theory.