This study considers the performance of 7 of the Weather Research and Forecast model boundary-layer (BL) parameterization schemes in a complex...schemes performed best. The surface parameters, planetary BL structure, and vertical profiles are important for US Army Research Laboratory
Organimetallic Fluorescent Complex Polymers For Light Emitting Applications
Shi, Song Q.; So, Franky
1997-10-28
A fluorescent complex polymer with fluorescent organometallic complexes connected by organic chain spacers is utilized in the fabrication of light emitting devices on a substantially transparent planar substrate by depositing a first conductive layer having p-type conductivity on the planar surface of the substrate, depositing a layer of a hole transporting and electron blocking material on the first conductive layer, depositing a layer of the fluorescent complex polymer on the layer of hole transporting and electron blocking material as an electron transporting emissive layer and depositing a second conductive layer having n-type conductivity on the layer of fluorescent complex polymer.
Complexation of lysozyme with adsorbed PtBS-b-SCPI block polyelectrolyte micelles on silver surface.
Papagiannopoulos, Aristeidis; Christoulaki, Anastasia; Spiliopoulos, Nikolaos; Vradis, Alexandros; Toprakcioglu, Chris; Pispas, Stergios
2015-01-20
We present a study of the interaction of the positively charged model protein lysozyme with the negatively charged amphiphilic diblock polyelectrolyte micelles of poly(tert-butylstyrene-b-sodium (sulfamate/carboxylate)isoprene) (PtBS-b-SCPI) on the silver/water interface. The adsorption kinetics are monitored by surface plasmon resonance, and the surface morphology is probed by atomic force microscopy. The micellar adsorption is described by stretched-exponential kinetics, and the micellar layer morphology shows that the micelles do not lose their integrity upon adsorption. The complexation of lysozyme with the adsorbed micellar layers depends on the micelles arrangement and density in the underlying layer, and lysozyme follows the local morphology of the underlying roughness. When the micellar adsorbed amount is small, the layers show low capacity in protein complexation and low resistance in loading. When the micellar adsorbed amount is high, the situation is reversed. The adsorbed layers both with or without added protein are found to be irreversibly adsorbed on the Ag surface.
Effective electromagnetic properties of microheterogeneous materials with surface phenomena
NASA Astrophysics Data System (ADS)
Levin, Valery; Markov, Mikhail; Mousatov, Aleksandr; Kazatchenko, Elena; Pervago, Evgeny
2017-10-01
In this paper, we present an approach to calculate the complex dielectric permittivity of a micro-heterogeneous medium composed of non-conductive solid inclusions embedded into the conductive liquid continuous host. To take into account the surface effects, we approximate the inclusion by a layered ellipsoid consisting of a dielectric core and an infinitesimally thin outer shell corresponding to an electrical double layer (EDL). To predict the effective complex dielectric permittivity of materials with a high concentration of inclusions, we have modified the Effective Field Method (EFM) for the layered ellipsoidal particles with complex electrical properties. We present the results of complex permittivity calculations for the composites with randomly and parallel oriented ellipsoidal inclusions. To analyze the influence of surface polarization, we have accomplished modeling in a wide frequency range for different existing physic-chemical models of double electrical layer. The results obtained show that the tensor of effective complex permittivity of a micro-heterogeneous medium with surface effects has complicate dependences on the component electrical properties, spatial material texture, and the inclusion shape (ellipsoid aspect ratio) and size. The dispersion of dielectric permittivity corresponds to the frequency dependence for individual inclusion of given size, and does not depend on the inclusion concentration.
Most current electrostatic surface complexation models describing ionic binding at the particle/water interface rely on the use of Poisson - Boltzmann (PB) theory for relating diffuse layer charge densities to diffuse layer electrostatic potentials. PB theory is known to contain ...
Dan, Abhijit; Gochev, Georgi; Miller, Reinhard
2015-07-01
Oscillating drop tensiometry was applied to study adsorbed interfacial layers at water/air and water/hexane interfaces formed from mixed solutions of β-lactoglobulin (BLG, 1 μM in 10 mM buffer, pH 7 - negative net charge) and the anionic surfactant SDS or the cationic DoTAB. The interfacial pressure Π and the dilational viscoelasticity modulus |E| of the mixed layers were measured for mixtures of varying surfactant concentrations. The double capillary technique was employed which enables exchange of the protein solution in the drop bulk by surfactant solution (sequential adsorption) or by pure buffer (washing out). The first protocol allows probing the influence of the surfactant on a pre-adsorbed protein layer thus studying the protein/surfactant interactions at the interface. The second protocol gives access to the residual values of Π and |E| measured after the washing out procedure thus bringing information about the process of protein desorption. The DoTAB/BLG complexes exhibit higher surface activity and higher resistance to desorption in comparison with those for the SDS/BLG complexes due to hydrophobization via electrostatic binding of surfactant molecules. The neutral DoTAB/BLG complexes achieve maximum elastic response of the mixed layer. Mixed BLG/surfactant layers at the water/oil interface are found to reach higher surface pressure and lower maximum dilational elasticity than those at the water/air surface. The sequential adsorption mode experiments and the desorption study reveal that binding of DoTAB to pre-adsorbed BLG globules is somehow restricted at the water/air surface in comparison with the case of complex formation in the solution bulk and subsequently adsorbed at the water/air surface. Maximum elasticity is achieved with washed out layers obtained after simultaneous adsorption, i.e. isolation of the most surface active DoTAB/BLG complex. These specific effects are much less pronounced at the W/H interface. Copyright © 2015 Elsevier Inc. All rights reserved.
Structures of Cu surfaces developing in benzotriazole solutions: Effect of pH
NASA Astrophysics Data System (ADS)
Kondoh, Eiichi; Kawakami, Tatsuya; Watanabe, Mitsuhiro; Jin, Linhua; Hamada, Satomi; Shima, Shohei; Hiyama, Hirokuni
2017-07-01
The effect of pH on layer formation onto clean Cu surfaces in benzotriazole (BTA) aqueous solutions was studied by in situ spectroscopic ellipsometry. The effect of H2O2 addition was also investigated. Time changes in the ellipsometric parameters Ψ and Δ, which correspond to the structural changes of the layers on Cu, were discussed. In acidic solutions, a BTA or a Cu-BTA complex layer grows directly on Cu. The out-diffusion of Cu is suppressed at the Cu layer interface. When H2O2 was mixed, the Cu surface is eroded in acidic solutions. In alkaline solutions, the BTA layer grows on the oxidized Cu layer, or no growth occurs, depending on the composition of the solutions. In neutral solutions, the Cu-BTA complex layer forms on Cu, and the uncovered part is oxidized in the presence of H2O2.
Modulating surface rheology by electrostatic protein/polysaccharide interactions.
Ganzevles, Renate A; Zinoviadou, Kyriaki; van Vliet, Ton; Cohen, Martien A; de Jongh, Harmen H
2006-11-21
There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/polysaccharide complexes or by sequential adsorption of complexes or polysaccharides to a previously formed protein layer. Even though the final protein and polysaccharide bulk concentrations are the same, the behavior of the adsorbed layers can be very different, depending on the method of preparation. The surface shear modulus of a sequentially formed beta-lactoglobulin/pectin layer can be up to a factor of 6 higher than that of a layer made by simultaneous adsorption. Furthermore, the surface dilatational modulus and surface shear modulus strongly (up to factors of 2 and 7, respectively) depend on the bulk -lactoglobulin/pectin mixing ratio. On the basis of the surface rheological behavior, a mechanistic understanding of how the structure of the adsorbed layers depends on the protein/polysaccharide interaction in bulk solution, mixing ratio, ionic strength, and order of adsorption to the interface (simultaneous or sequential) is derived. Insight into the effect of protein/polysaccharide interactions on the properties of adsorbed layers provides a solid basis to modulate surface rheological behavior.
Surface plasmons based terahertz modulator consisting of silicon-air-metal-dielectric-metal layers
NASA Astrophysics Data System (ADS)
Wang, Wei; Yang, Dongxiao; Qian, Zhenhai
2018-05-01
An optically controlled modulator of the terahertz wave, which is composed of a metal-dielectric-metal structure etched with circular loop arrays on both the metal layers and a photoexcited silicon wafer separated by an air layer, is proposed. Simulation results based on experimentally measured complex permittivities predict that modification of complex permittivity of the silicon wafer through excitation laser leads to a significant tuning of transmission characteristics of the modulator, forming the modulation depths of 59.62% and 96.64% based on localized surface plasmon peak and propagating surface plasmon peak, respectively. The influences of the complex permittivity of the silicon wafer and the thicknesses of both the air layer and the silicon wafer are numerically studied for better understanding the modulation mechanism. This study proposes a feasible methodology to design an optically controlled terahertz modulator with large modulation depth, high speed and suitable insertion loss, which is useful for terahertz applications in the future.
Local structural ordering in surface-confined liquid crystals
NASA Astrophysics Data System (ADS)
Śliwa, I.; Jeżewski, W.; Zakharov, A. V.
2017-06-01
The effect of the interplay between attractive nonlocal surface interactions and attractive pair long-range intermolecular couplings on molecular structures of liquid crystals confined in thin cells with flat solid surfaces has been studied. Extending the McMillan mean field theory to include finite systems, it has been shown that confining surfaces can induce complex orientational and translational ordering of molecules. Typically, local smectic A, nematic, and isotropic phases have been shown to coexist in certain temperature ranges, provided that confining cells are sufficiently thick, albeit finite. Due to the nonlocality of surface interactions, the spatial arrangement of these local phases can display, in general, an unexpected complexity along the surface normal direction. In particular, molecules located in the vicinity of surfaces can still be organized in smectic layers, even though nematic and/or isotropic order can simultaneously appear in the interior of cells. The resulting surface freezing of smectic layers has been confirmed to occur even for rather weak surface interactions. The surface interactions cannot, however, prevent smectic layers from melting relatively close to system boundaries, even when molecules are still arranged in layers within the central region of the system. The internal interfaces, separating individual liquid-crystal phases, are demonstrated here to form fronts of local finite-size transitions that move across cells under temperature changes. Although the complex molecular ordering in surface confined liquid-crystal systems can essentially be controlled by temperature variations, specific thermal properties of these systems, especially the nature of the local transitions, are argued to be strongly conditioned to the degree of molecular packing.
Self-organizing layers from complex molecular anions
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...
2018-05-14
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
Ions are promising building blocks for tunable self-organizing materials with advanced technological applications. However, because of strong Coulomb attraction with counterions, the intrinsic properties of ions are difficult to exploit for preparation of bulk materials. Here, we report the precisely-controlled preparation of macroscopic surface layers by soft landing of mass selected complex anions which determine the self organization of the layers with their molecular properties. The family of halogenated dodecaborates [B12X12]2- (X = F, Cl, Br, I), in which the internal charge distribution between core and shell regions of the molecular ions systematically vary, was deposited on different self assembledmore » monolayer surfaces (SAMs) on gold at high coverage. Layers of anions were found to be stabilized by accumulation of neutral molecules. Different phases, self-organization mechanisms and optical properties were observed to depend upon the internal charge distribution of the deposited anions, the underlying surface and the coadsorbed molecules. This demonstrates rational control of the properties of anion based layers.« less
Evolution of surface structure in laser-preheated, perturbed materials
Di Stefano, Carlos; Merritt, Elizabeth Catherine; Doss, Forrest William; ...
2017-02-03
Here, we report an experimental and computational study investigating the effects of laser preheat on the hydrodynamic behavior of a material layer. In particular, we find that perturbation of the surface of the layer results in a complex interaction, in which the bulk of the layer develops density, pressure, and temperature structure and in which the surface experiences instability-like behavior, including mode coupling. A uniform one-temperature preheat model is used to reproduce the experimentally observed behavior, and we find that this model can be used to capture the evolution of the layer, while also providing evidence of complexities in themore » preheat behavior. Lastly, this result has important consequences for inertially confined fusion plasmas, which can be difficult to diagnose in detail, as well as for laser hydrodynamics experiments, which generally depend on assumptions about initial conditions in order to interpret their results.« less
NASA Astrophysics Data System (ADS)
Lan, Xiwei; Xin, Yue; Wang, Libin; Hu, Xianluo
2018-03-01
Li-rich layered oxides (LLOs) have been developed as a high-capacity cathode material for Li-ion batteries, but the structural complexity and unique initial charging behavior lead to several problems including large initial capacity loss, capacity and voltage fading, poor cyclability, and inferior rate capability. Since the surface conditions are critical to electrochemical performance and the drawbacks, nanoscale surface modification for improving LLO's properties is a general strategy. This review mainly summarizes the surface modification of LLOs and classifies them into three types of surface pre-treatment, surface gradient doping, and surface coating. Surface pre-treatment usually introduces removal of Li2O for lower irreversible capacity while surface doping is aimed to stabilize the structure during electrochemical cycling. Surface coating layers with different properties, protective layers to suppress the interface side reaction, coating layers related to structural transformation, and electronic/ionic conductive layers for better rate capability, can avoid the shortcomings of LLOs. In addition to surface modification for performance enhancement, other strategies can also be investigated to achieve high-performance LLO-based cathode materials.
Preliminary results on complex ceramic layers deposition by atmospheric plasma spraying
NASA Astrophysics Data System (ADS)
Florea, Costel; Bejinariu, Costicǎ; Munteanu, Corneliu; Cimpoeşu, Nicanor
2017-04-01
In this article we obtain thin layers from complex ceramic powders using industrial equipment based on atmospheric plasma spraying. We analyze the influence of the substrate material roughness on the quality of the thin layers using scanning electron microscopy (SEM) and X-ray dispersive energy analyze (EDAX). Preliminary results present an important dependence between the surface state and the structural and chemical homogeneity.
Although detailed thermodynamic analyses of the 2-pK diffuse layer surface complexation model generally specify bound site activity coefficients for the purpose of accounting for those non-ideal excess free energies contributing to bound site electrochemical potentials, in applic...
Dust transportation in bounday layers on complex areas
NASA Astrophysics Data System (ADS)
Karelsky, Kirill; Petrosyan, Arakel
2017-04-01
This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high field gradients with the aid of scheme viscosity of numerical algorithm used to model near-surface phenomena. This idea is implemented in the model of ideal gas equations with variable equation of state describing particulates transportation within boundary layer with obstacles.
NASA Astrophysics Data System (ADS)
Tsivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardyshev, I. I.; Gorbunov, A. M.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Novikov, A. K.; Petrova, N. V.
2016-07-01
Aquacomplexes of sulfuric acid and sodium hydroxide with aza-crown groups are synthesized in cavities of a sorbent from the porous layer of a PVC cyclam-derivative grafted onto fibers of asbestos fabric. The structure of sorbents with complexes is studied and their adsorption characteristics are determined. It is shown that the affinity of the developed surface toward ethanol, benzene, and hexane depends on the nature of complexes in the pore walls, and the volume of cavities formed as a result of the pores on the developed asbestos surface being coated with networks of aza-crown groups is larger than that of cavities with walls of aza-crown groups in the layers of a PVC cyclam derivative. Indicators of H+- and OH--conductivity of sorbents with complexes as electrochemical bridges are determined. It is shown that the major part of H+- and OH--ions moves through complexes with aza-crown groups in the region of cavities formed of pores on the surface of asbestos.
Morphology and FT IR spectra of porous silicon
NASA Astrophysics Data System (ADS)
Kopani, Martin; Mikula, Milan; Kosnac, Daniel; Gregus, Jan; Pincik, Emil
2017-12-01
The morphology and chemical bods of p-type and n-type porous Si was compared. The surface of n-type sample is smooth, homogenous without any features. The surface of p-type sample reveals micrometer-sized islands. FTIR investigation reveals various distribution of SiOxHy complexes in both p-and n-type samples. From the conditions leading to porous silicon layer formation (the presence of holes) we suggest both SiOxHy and SiFxHy complexes in the layer.
Modelling the evolution of complex conductivity during calcite precipitation on glass beads
NASA Astrophysics Data System (ADS)
Leroy, Philippe; Li, Shuai; Jougnot, Damien; Revil, André; Wu, Yuxin
2017-04-01
When pH and alkalinity increase, calcite frequently precipitates and hence modifies the petrophysical properties of porous media. The complex conductivity method can be used to directly monitor calcite precipitation in porous media because it is sensitive to the evolution of the mineralogy, pore structure and its connectivity. We have developed a mechanistic grain polarization model considering the electrochemical polarization of the Stern and diffuse layers surrounding calcite particles. Our complex conductivity model depends on the surface charge density of the Stern layer and on the electrical potential at the onset of the diffuse layer, which are computed using a basic Stern model of the calcite/water interface. The complex conductivity measurements of Wu et al. on a column packed with glass beads where calcite precipitation occurs are reproduced by our surface complexation and complex conductivity models. The evolution of the size and shape of calcite particles during the calcite precipitation experiment is estimated by our complex conductivity model. At the early stage of the calcite precipitation experiment, modelled particles sizes increase and calcite particles flatten with time because calcite crystals nucleate at the surface of glass beads and grow into larger calcite grains. At the later stage of the calcite precipitation experiment, modelled sizes and cementation exponents of calcite particles decrease with time because large calcite grains aggregate over multiple glass beads and only small calcite crystals polarize.
Alibardi, Lorenzo
2002-02-01
The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25-30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5-6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6-10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10-11 days before hatching. In hatchlings 6-10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7-9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer. Copyright 2002 Wiley-Liss, Inc.
Wear of carbide inserts with complex surface treatment when milling nickel alloy
NASA Astrophysics Data System (ADS)
Fedorov, Sergey; Swe, Min Htet; Kapitanov, Alexey; Egorov, Sergey
2018-03-01
One of the effective ways of strengthening hard alloys is the creating structure layers on their surface with the gradient distribution of physical and mechanical properties between the wear-resistant coating and the base material. The article discusses the influence of the near-surface layer which is modified by low-energy high-current electron-beam alloying and the upper anti-friction layer in a multi-component coating on the wear mechanism of the replaceable multifaceted plates in the dry milling of the difficult to machine nickel alloys.
Application of surface complexation models to anion adsorption by natural materials
USDA-ARS?s Scientific Manuscript database
Various chemical models of ion adsorption will be presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model w...
Formation mechanism of a silane-PVA/PVAc complex film on a glass fiber surface.
Repovsky, Daniel; Jane, Eduard; Palszegi, Tibor; Slobodnik, Marek; Velic, Dusan
2013-10-21
Mechanical properties of glass fiber reinforced composite materials are affected by fiber sizing. A complex film formation, based on a silane film and PVA/PVAc (polyvinyl alcohol/polyvinyl acetate) microspheres on a glass fiber surface is determined at 1) the nanoscale by using atomic force microscopy (AFM), and 2) the macroscale by using the zeta potential. Silane groups strongly bind through the Si-O-Si bond to the glass surface, which provides the attachment mechanism as a coupling agent. The silane groups form islands, a homogeneous film, as well as empty sites. The average roughness of the silanized surface is 6.5 nm, whereas it is only 0.6 nm for the non-silanized surface. The silane film vertically penetrates in a honeycomb fashion from the glass surface through the deposited PVA/PVAc microspheres to form a hexagonal close pack structure. The silane film not only penetrates, but also deforms the PVA/PVAc microspheres from the spherical shape in a dispersion to a ellipsoidal shape on the surface with average dimensions of 300/600 nm. The surface area value Sa represents an area of PVA/PVAc microspheres that are not affected by the silane penetration. The areas are found to be 0.2, 0.08, and 0.03 μm(2) if the ellipsoid sizes are 320/570, 300/610, and 270/620 nm for silane concentrations of 0, 3.8, and 7.2 μg mL(-1), respectively. The silane film also moves PVA/PVAc microspheres in the process of complex film formation, from the low silane concentration areas to the complex film area providing enough silane groups to stabilize the structure. The values for the residual silane honeycomb structure heights (Ha ) are 6.5, 7, and 12 nm for silane concentrations of 3.8, 7.2, and 14.3 μg mL(-1), respectively. The pH-dependent zeta-potential results suggest a specific role of the silane groups with effects on the glass fiber surface and also on the PVA/PVAc microspheres. The non-silanized glass fiber surface and the silane film have similar zeta potentials ranging from -64 to -12 mV at pH's of 10.5 and 3, respectively. The zeta potentials for the PVA/PVAc microspheres on the glass fiber surface and within the silane film significantly decrease and range from -25 to -5 mV. The shapes of the pH-dependent zeta potentials are different in the cases of silane groups over a pH range from 7 to 4. A triple-layer model is used to fit the non-silanized glass surface and the silane film. The value of the surface-site density for Γ(Xglass) and Γ(Xsilane), in which X denotes the Al-O-Si group, differs by a factor of 10(-4), which suggests an effective coupling of the silane film. A soft-layer model is used to fit the silane-PVA/PVAc complex film, which is approximated as four layers. Such a simplification and compensation of the microsphere shape gives an approximation of the relevant widths of the layers as the follows: 1) the layer of the silane groups makes up 10% of the total length (27 nm), 2) the layer of the first PVA shell contributes 30% to the total length (81 nm), 3) the layer of the PVAc core contributes 30% to the total length (81 nm), and finally 4) the layer of the second PVA shell provides 30% of the total length (81 nm). The coverage simulation resulted in a value of 0.4, which corresponds with the assumption of low-order coverage, and is supported by the AFM scans. Correlating the results of the AFM scans, and the zeta potentials sheds some light on the formation mechanism of the silane-PVA/PVAc complex film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles
NASA Astrophysics Data System (ADS)
Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.
2005-02-01
The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.
Fainerman, V B; Aksenenko, E V; Krägel, J; Miller, R
2016-07-01
Proteins and their mixtures with surfactants are widely used in many applications. The knowledge of their solution bulk behavior and its impact on the properties of interfacial layers made great progress in the recent years. Different mechanisms apply to the formation process of protein/surfactant complexes for ionic and non-ionic surfactants, which are governed mainly by electrostatic and hydrophobic interactions. The surface activity of these complexes is often remarkably different from that of the individual protein and has to be considered in respective theoretical models. At very low protein concentration, small amounts of added surfactants can change the surface activity of proteins remarkably, even though no strongly interfacial active complexes are observed. Also small added amounts of non-ionic surfactants change the surface activity of proteins in the range of small bulk concentrations or surface coverages. The modeling of the equilibrium adsorption behavior of proteins and their mixtures with surfactants has reached a rather high level. These models are suitable also to describe the high frequency limits of the dilational viscoelasticity of the interfacial layers. Depending on the nature of the protein/surfactant interactions and the changes in the interfacial layer composition rather complex dilational viscoelasticities can be observed and described by the available models. The differences in the interfacial behavior, often observed in literature for studies using different experimental methods, are at least partially explained by a depletion of proteins, surfactants and their complexes in the range of low concentrations. A correction of these depletion effects typically provides good agreement between the data obtained with different methods, such as drop and bubble profile tensiometry. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Mora K.; Hiemstra, T; Machesky, Michael L.
2012-01-01
The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3 11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Sternmore » layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (110) rutile surface (Zhang et al., 2004b). TheMDsimulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.« less
NASA Astrophysics Data System (ADS)
Ridley, Moira K.; Hiemstra, Tjisse; Machesky, Michael L.; Wesolowski, David J.; van Riemsdijk, Willem H.
2012-10-01
The adsorption of Y3+ and Nd3+ onto rutile has been evaluated over a wide range of pH (3-11) and surface loading conditions, as well as at two ionic strengths (0.03 and 0.3 m), and temperatures (25 and 50 °C). The experimental results reveal the same adsorption behavior for the two trivalent ions onto the rutile surface, with Nd3+ first adsorbing at slightly lower pH values. The adsorption of both Y3+ and Nd3+ commences at pH values below the pHznpc of rutile. The experimental results were evaluated using a charge distribution (CD) and multisite complexation (MUSIC) model, and Basic Stern layer description of the electric double layer (EDL). The coordination geometry of possible surface complexes were constrained by molecular-level information obtained from X-ray standing wave measurements and molecular dynamic (MD) simulation studies. X-ray standing wave measurements showed an inner-sphere tetradentate complex for Y3+ adsorption onto the (1 1 0) rutile surface (Zhang et al., 2004b). The MD simulation studies suggest additional bidentate complexes may form. The CD values for all surface species were calculated based on a bond valence interpretation of the surface complexes identified by X-ray and MD. The calculated CD values were corrected for the effect of dipole orientation of interfacial water. At low pH, the tetradentate complex provided excellent fits to the Y3+ and Nd3+ experimental data. The experimental and surface complexation modeling results show a strong pH dependence, and suggest that the tetradentate surface species hydrolyze with increasing pH. Furthermore, with increased surface loading of Y3+ on rutile the tetradentate binding mode was augmented by a hydrolyzed-bidentate Y3+ surface complex. Collectively, the experimental and surface complexation modeling results demonstrate that solution chemistry and surface loading impacts Y3+ surface speciation. The approach taken of incorporating molecular-scale information into surface complexation models (SCMs) should aid in elucidating a fundamental understating of ion-adsorption reactions.
Design of a sensor for the blood AB0 group antibodies detection
NASA Astrophysics Data System (ADS)
Kolesov, D. V.; Kiselev, G. A.; Moiseev, M. A.; Kudrinskiy, A. A.; Yaminskiy, I. V.
2012-02-01
Control the content of the blood group antibodies in the plasma of the recipient is an important task in modern transplantation. In this paper we proposed to use micromechanical cantilever sensors for detection of the low concentrations of AB0 blood group antibodies in serum. The technique of chemical modification of cantilever surface to create the receptor layer was developed. The apparatus, which provides data acquisition from multiple microconsoles simultaneously was created. We carried out experiments by the detection in a solution the β antibodies with a concentration of 300 times less than the native content of antibodies in the blood. Change in surface stress due to formation of antigen-antibody complexes on the cantilever surface was 0.075 N/m. The resulting lateral strain, apparently, induced by repulsion between the complexes during the sorption of antibodies in layer of antigens, immobilized on the surface. The possibility of regeneration of sensory layer for repeated measurements was shown.
NASA Technical Reports Server (NTRS)
McKinzie, Daniel J., Jr.
1996-01-01
A vane oscillating about a fixed point at the inlet to a two-dimensional 20 deg rearward-facing ramp proved effective in delaying the detachment of a turbulent boundary layer. Flow-field, surface static pressure, and smoke-wire flow visualization measurements were made. Surface pressure coefficient distributions revealed that two different effects occurred with axial distance along the ramp surface. The surface pressure coefficient varied as a complex function of the vane oscillation frequency and its trailing edge displacement amplitude; that is, it varied as a function of the vane oscillation frequency throughout the entire range of frequencies covered during the test, but it varied over only a limited range of the trailing edge displacement amplitudes covered.The complexity of these findings prompted a detailed investigation, the results of which revealed a combination of phenomena that explain qualitatively how the mechanically generated, periodic, sinusoidal perturbing signal produced by the oscillating vane reacts with the fluid flow to delay the detachment of a turbulent boundary layer experiencing transitory detachment.
Extending the diffuse layer model of surface acidity behavior: I. Model development
Considerable disenchantment exists within the environmental research community concerning our current ability to accurately model surface-complexation-mediated low-porewater-concentration ionic contaminant partitioning with natural surfaces. Several authors attribute this unaccep...
Atomically Defined Templates for Epitaxial Growth of Complex Oxide Thin Films
Dral, A. Petra; Dubbink, David; Nijland, Maarten; ten Elshof, Johan E.; Rijnders, Guus; Koster, Gertjan
2014-01-01
Atomically defined substrate surfaces are prerequisite for the epitaxial growth of complex oxide thin films. In this protocol, two approaches to obtain such surfaces are described. The first approach is the preparation of single terminated perovskite SrTiO3 (001) and DyScO3 (110) substrates. Wet etching was used to selectively remove one of the two possible surface terminations, while an annealing step was used to increase the smoothness of the surface. The resulting single terminated surfaces allow for the heteroepitaxial growth of perovskite oxide thin films with high crystalline quality and well-defined interfaces between substrate and film. In the second approach, seed layers for epitaxial film growth on arbitrary substrates were created by Langmuir-Blodgett (LB) deposition of nanosheets. As model system Ca2Nb3O10- nanosheets were used, prepared by delamination of their layered parent compound HCa2Nb3O10. A key advantage of creating seed layers with nanosheets is that relatively expensive and size-limited single crystalline substrates can be replaced by virtually any substrate material. PMID:25549000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; ...
2017-10-06
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonitemore » edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites (‘spillover’ effect).« less
Kaliginedi, Veerabhadrarao; Ozawa, Hiroaki; Kuzume, Akiyoshi; Maharajan, Sivarajakumar; Pobelov, Ilya V; Kwon, Nam Hee; Mohos, Miklos; Broekmann, Peter; Fromm, Katharina M; Haga, Masa-aki; Wandlowski, Thomas
2015-11-14
Here we report the first study on the electrochemical energy storage application of a surface-immobilized ruthenium complex multilayer thin film with anion storage capability. We employed a novel dinuclear ruthenium complex with tetrapodal anchoring groups to build well-ordered redox-active multilayer coatings on an indium tin oxide (ITO) surface using a layer-by-layer self-assembly process. Cyclic voltammetry (CV), UV-Visible (UV-Vis) and Raman spectroscopy showed a linear increase of peak current, absorbance and Raman intensities, respectively with the number of layers. These results indicate the formation of well-ordered multilayers of the ruthenium complex on ITO, which is further supported by the X-ray photoelectron spectroscopy analysis. The thickness of the layers can be controlled with nanometer precision. In particular, the thickest layer studied (65 molecular layers and approx. 120 nm thick) demonstrated fast electrochemical oxidation/reduction, indicating a very low attenuation of the charge transfer within the multilayer. In situ-UV-Vis and resonance Raman spectroscopy results demonstrated the reversible electrochromic/redox behavior of the ruthenium complex multilayered films on ITO with respect to the electrode potential, which is an ideal prerequisite for e.g. smart electrochemical energy storage applications. Galvanostatic charge-discharge experiments demonstrated a pseudocapacitor behavior of the multilayer film with a good specific capacitance of 92.2 F g(-1) at a current density of 10 μA cm(-2) and an excellent cycling stability. As demonstrated in our prototypical experiments, the fine control of physicochemical properties at nanometer scale, relatively good stability of layers under ambient conditions makes the multilayer coatings of this type an excellent material for e.g. electrochemical energy storage, as interlayers in inverted bulk heterojunction solar cell applications and as functional components in molecular electronics applications.
A study on the applications of AI in finishing of additive manufacturing parts
NASA Astrophysics Data System (ADS)
Fathima Patham, K.
2017-06-01
Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.
NASA Astrophysics Data System (ADS)
Ridley, Moira K.; Hiemstra, Tjisse; van Riemsdijk, Willem H.; Machesky, Michael L.
2009-04-01
Acid-base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral-aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488-508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca 2+ and Sr 2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Předota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile-water interface: linking molecular and macroscopic properties. Langmuir20, 4954-4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl - which was common to all solutions, but also for Rb + and K +. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na + ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb +, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Mora K.; Hiemstra, T; Van Riemsdijk, Willem H.
Acid base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multicomponent mineral aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise,more » molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488 508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 110 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Pr edota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Be ne zeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile water interface: linking molecular and macroscopic properties. Langmuir 20, 4954 4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy.« less
Wu, Mengchun; An, Ni; Li, Yang; Sun, Junqi
2016-11-29
Fluorine-free self-healing superhydrophobic films are of significance for practical applications because of their extended service life and cost-effective and eco-friendly preparation process. In this study, we report the fabrication of fluorine-free self-healing superhydrophobic films by layer-by-layer (LbL) assembly of poly(sodium 4-styrenesulfonate) (PSS)-1-octadecylamine (ODA) complexes (PSS-ODA) and poly(allylamine hydrochloride) (PAH)-sodium dodecyl sulfonate (SDS) (PAH-SDS) complexes. The wettability of the LbL-assembled PSS-ODA/PAH-SDS films depends on the film structure and can be tailored by changing the NaCl concentration in aqueous dispersions of PSS-ODA complexes and the number of film deposition cycles. The freshly prepared PSS-ODA/PAH-SDS film with micro- and nanoscaled hierarchical structures is hydrophilic and gradually changes to superhydrophobic in air because the polyelectrolyte-complexed ODA and SDS surfactants tend to migrate to the film surface to cover the film with hydrophobic alkyl chains to lower its surface energy. The large amount of ODA and SDS surfactants loaded in the superhydrophobic PSS-ODA/PAH-SDS films and the autonomic migration of these surfactants to the film surface endow the resultant superhydrophobic films with an excellent self-healing ability to restore the damaged superhydrophobicity. The self-healing superhydrophobic PSS-ODA/PAH-SDS films are mechanically robust and can be deposited on various flat and nonflat substrates. The LbL assembly of oppositely charged polyelectrolyte-surfactant complexes provides a new way for the fabrication of fluorine-free self-healing superhydrophobic films with satisfactory mechanical stability, enhanced reliability, and extended service life.
NASA Astrophysics Data System (ADS)
Rusinov, P. O.; Blednova, Zh M.; Borovets, O. I.
2017-05-01
The authors studied a complex method of surface modification of steels for materials with shape memory effect (SME) Ti-Ni-Zr with a high-velocity oxygen-fuel spraying (HVOF) of mechanically activated (MA) powder in a protective medium. We assessed the functional properties and X-ray diffraction studies, which showed that the formation of surface layers according to the developed technology ensures the manifestation of the shape memory effect.
Hou, Binyang; Kim, Seunghyun; Kim, Taeho; ...
2016-06-15
The interfacial hydration structure of yttria-stabilized cubic zirconia (110) surface in contact with water was determined with ~0.5 Å resolution by high-resolution X-ray reflectivity measurement. The terminal layer shows a reduced electron density compared to the following substrate lattice layers, which indicates there are additional defects generated by metal depletion as well as intrinsic oxygen vacancies, both of which are apparently filled by water species. Above this top surface layer, two additional adsorbed layers are observed forming a characteristic interfacial hydration structure. The first adsorbed layer shows abnormally high density as pure water and likely includes metal species, whereas themore » second layer consists of pure water. The observed interfacial hydration structure seems responsible for local equilibration of the defective surface in water and eventually regulating the long-term degradation processes. As a result, the multitude of water interactions with the zirconia surface results in the complex but highly ordered interfacial structure constituting the reaction front.« less
Lewis acid properties of alumina based catalysts: study by paramagnetic complexes of probe molecules
NASA Astrophysics Data System (ADS)
Fionov, Alexander V.
2002-06-01
Lewis acid properties of LiAl 5O 8/Al 2O 3 (2 wt.% Li) and MgAl 2O 4/Al 2O 3 (3 wt.% Mg) catalysts were studied by EPR of adsorbed probe molecules--anthraquinone and 2,2,6,6-tetramethylpiperidine- N-oxyl (TEMPO). The lesser (in comparison with γ-Al 2O 3) concentration and the strength of Lewis acid sites (LAS) formed on the surface of aluminate layer has been shown. The stability of this layer plays important role in the change of Lewis acid properties during the calcination of modified alumina. The lithium aluminate layer was stable at used calcination temperature, 773 K, meanwhile magnesium aluminate layer observed only at calcination temperature below 723 K. The increase of the calcination temperature to 773 K caused the segregation of MgAl 2O 4 on the surface resulted in the release of alumina surface and recovery of the Lewis acid properties. The differences in the LAS manifestations towards TEMPO and anthraquinone was discussed. The mechanism of the formation of anthraquinone paramagnetic complexes with LAS--three-coordinated aluminum ions--was proposed. This mechanism includes the formation of anthrasemiquinone, and then--anthrasemiquinone ion pair or triple ion. Fragments like -O-Al +-O- play the role of cations in these ion pairs and triple ions. Proposed mechanism can also be applied for the consideration of similar anthraquinone paramagnetic complexes on the surface of gallium oxide containing systems.
NASA Astrophysics Data System (ADS)
Tzivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Petukhova, G. A.; Bardishev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, V. N.; Yavich, A. A.; Petrova, N. V.
2016-08-01
The synthesis of bilayer materials with porous upper layers composed of PVC hydroxyethylcyclam derivatives filled with carbon and a layer consisting of hydroxyethylcyclam, cross-linked via Si-O-C groups with the silica chains of a developed surface of asbestos fabric, is described. The aza-crown groups in these materials are bound with aqua complexes of H2SO4 or NaOH. The structure of the materials is examined, their adsorption characteristics are determined, and the rate of motion of H+ or OH- ions in electrochemical bridges is measured, while the formation of H2 and O2 in their cathodic and anodic polarization is determined as a function of voltage. It is shown that the upper layer of these materials is adsorption-active and electronand H+- or OH-- conductive, while the bottom layer is only H+- or OH-- conductive; through it, the upper layer is supplied with the H+ or OH- ions needed for the regeneration of the aqua complexes broken down to H2 and O2 on carbon particles.
Non-interacting surface solvation and dynamics in protein-protein interactions.
Visscher, Koen M; Kastritis, Panagiotis L; Bonvin, Alexandre M J J
2015-03-01
Protein-protein interactions control a plethora of cellular processes, including cell proliferation, differentiation, apoptosis, and signal transduction. Understanding how and why proteins interact will inevitably lead to novel structure-based drug design methods, as well as design of de novo binders with preferred interaction properties. At a structural and molecular level, interface and rim regions are not enough to fully account for the energetics of protein-protein binding, even for simple lock-and-key rigid binders. As we have recently shown, properties of the global surface might also play a role in protein-protein interactions. Here, we report on molecular dynamics simulations performed to understand solvent effects on protein-protein surfaces. We compare properties of the interface, rim, and non-interacting surface regions for five different complexes and their free components. Interface and rim residues become, as expected, less mobile upon complexation. However, non-interacting surface appears more flexible in the complex. Fluctuations of polar residues are always lower compared with charged ones, independent of the protein state. Further, stable water molecules are often observed around polar residues, in contrast to charged ones. Our analysis reveals that (a) upon complexation, the non-interacting surface can have a direct entropic compensation for the lower interface and rim entropy and (b) the mobility of the first hydration layer, which is linked to the stability of the protein-protein complex, is influenced by the local chemical properties of the surface. These findings corroborate previous hypotheses on the role of the hydration layer in shielding protein-protein complexes from unintended protein-protein interactions. © 2014 Wiley Periodicals, Inc.
Superficial Macromolecular Arrays on the Cell Wall of Spirillum putridiconchylium
Beveridge, T. J.; Murray, R. G. E.
1974-01-01
Electron microscopy of the cell envelope of Spirillum putridiconchylium, using negatively stained, thin-sectioned, and replicated freeze-etched preparations, showed two superficial wall layers forming a complex macromolecular pattern on the external surface. The outer structured layer was a linear array of particles overlying an inner tetragonal array of larger subunits. They were associated in a very regular fashion, and the complex was bonded to the outer, pitted surface of the lipopolysaccharide tripartite layer of the cell wall. The relationship of the components of the two structured layers was resolved with the aid of optical diffraction, combined with image filtering and reconstruction and linear and rotary integration techniques. The outer structural layer consisted of spherical 1.5-nm units set in double lines determined by the size and arrangement of 6- by 3-nm inner structural layer subunits, which bore one outer structural layer unit on each outer corner. The total effect of this arrangement was a double-ridged linear structure that was evident in surface replicas and negatively stained fragments of the whole wall. The packing of these units was not square but skewed by 2° off the perpendicular so that the “unit array” described by optical diffraction and linear integration appeared to be a deformed tetragon. The verity of the model was checked by using a photographically reduced image to produce an optical diffraction pattern for comparison with that of the actual layers. The correspondence was nearly perfect. Images PMID:4137219
Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers.
Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy
2017-12-01
Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO 2 -PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.
Metal Surface Modification for Obtaining Nano- and Sub-Nanostructured Protective Layers
NASA Astrophysics Data System (ADS)
Ledovskykh, Volodymyr; Vyshnevska, Yuliya; Brazhnyk, Igor; Levchenko, Sergiy
2017-03-01
Regularities of the phase protective layer formation in multicomponent systems involving inhibitors with different mechanism of protective action have been investigated. It was shown that optimization of the composition of the inhibition mixture allows to obtain higher protective efficiency owing to improved microstructure of the phase layer. It was found that mechanism of the film formation in the presence of NaNO2-PHMG is due to deposition of slightly soluble PHMG-Fe complexes on the metal surface. On the basis of the proposed mechanism, the advanced surface engineering methods for obtaining nanoscaled and sub-nanostructured functional coatings may be developed.
Buried oxide and defects in oxygen implanted Si monitored by positron annihilation
NASA Astrophysics Data System (ADS)
Kruseman, A. C.; van Veen, A.; Schut, H.; Mijnarends, P. E.; Fujinami, M.
2001-08-01
One- and two-detector Doppler broadening measurements performed on low (˜1014 to 1015O+/cm2) and high dose (˜1017 to 1018O+/cm2) oxygen-irradiated Si using variable-energy slow positrons are analyzed in terms of S and W parameters. After annealing the low-dose samples at 800 °C, large VxOy complexes are formed at depths around 400 nm. These complexes produce a clear-cut signature when the ratio of S to that of defect-free bulk Si is plotted. Similar behavior is found for samples irradiated with 2 and 4×1017O+/cm2 and annealed at 1000 °C. After irradiation with 1.7×1018O+/cm2 and anneal at 1350 °C a 170 nm thick almost-bulk-quality Si surface layer is formed on top of a 430 nm thick buried oxide layer. This method of preparation is called separation by implantation of oxygen. S-W measurements show that the surface layer contains electrically inactive VxOy complexes not seen by electron microscopy. A method is presented to decompose the Doppler broadening line shape into contributions of the bulk, surface, and defect.
NASA Astrophysics Data System (ADS)
Sodemann, H.; Foken, Th.
2003-04-01
General Circulation Models calculate the energy exchange between surface and atmosphere by means of parameterisations for turbulent fluxes of momentum and heat in the surface layer. However, currently implemented parameterisations after Louis (1979) create large discrepancies between predictions and observational data, especially in stably stratified surface layers. This work evaluates a new surface layer parameterisation proposed by Zilitinkevich et al. (2002), which was specifically developed to improve energy flux predictions in stable stratification. The evaluation comprises a detailed study of important surface layer characteristics, a sensitivity study of the parameterisation, and a direct comparison to observational data from Antarctica and predictions by the Louis (1979) parameterisation. The stability structure of the stable surface layer was found to be very complex, and strongly influenced fluxes in the surface layer. The sensitivity study revealed that the new parameterisation depends strongly on the ratio between roughness length and roughness temperature, which were both observed to be very variable parameters. The comparison between predictions and measurements showed good agreement for momentum fluxes, but large discrepancies for heat fluxes. A stability dependent evaluation of selected data showed better agreement for the new parameterisation of Zilitinkevich et al. (2002) than for the Louis (1979) scheme. Nevertheless, this comparison underlines the need for more detailed and physically sound concepts for parameterisations of heat fluxes in stably stratified surface layers. Zilitinkevich, S. S., V. Perov and J. C. King (2002). "Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in General Circulation Models." Q. J. R. Meteorol. Soc. 128(583): 1571--1587. Louis, J. F. (1979). "A Parametric Model of Vertical Eddy Fluxes in the Atmosphere." Bound.-Layer Meteor. 17(2): 187--202.
Balani, Kantesh; Patel, Riken R; Keshri, Anup K; Lahiri, Debrupa; Agarwal, Arvind
2011-10-01
Carapace, the protective shell of a freshwater snapping turtle, Chelydra serpentina, shields them from ferocious attacks of their predators while maintaining light-weight and agility for a swim. The microstructure and mechanical properties of the turtle shell are very appealing to materials scientists and engineers for bio-mimicking, to obtain a multi-functional surface. In this study, we have elucidated the complex microstructure of a dry Chelydra serpentina's shell which is very similar to a multi-layered composite structure. The microstructure of a turtle shell's carapace elicits a sandwich structure of waxy top surface with a harder sub-surface layer serving as a shielding structure, followed by a lamellar carbonaceous layer serving as shock absorber, and the inner porous matrix serves as a load-bearing scaffold while acting as reservoir of retaining water and nutrients. The mechanical properties (elastic modulus and hardness) of various layers obtained via nanoindentation corroborate well with the functionality of each layer. Elastic modulus ranged between 0.47 and 22.15 GPa whereas hardness varied between 53.7 and 522.2 MPa depending on the microstructure of the carapace layer. Consequently, the modulus of each layer was represented into object oriented finite element (OOF2) modeling towards extracting the overall effective modulus of elasticity (~4.75 GPa) of a turtle's carapace. Stress distribution of complex layered structure was elicited with an applied strain of 1% in order to understand the load sharing of various composite layers in the turtle's carapace. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shooting method for solution of boundary-layer flows with massive blowing
NASA Technical Reports Server (NTRS)
Liu, T.-M.; Nachtsheim, P. R.
1973-01-01
A modified, bidirectional shooting method is presented for solving boundary-layer equations under conditions of massive blowing. Unlike the conventional shooting method, which is unstable when the blowing rate increases, the proposed method avoids the unstable direction and is capable of solving complex boundary-layer problems involving mass and energy balance on the surface.
Complexation of Uranium by Cells and S-Layer Sheets of Bacillus sphaericus JG-A12
Merroun, Mohamed L.; Raff, Johannes; Rossberg, André; Hennig, Christoph; Reich, Tobias; Selenska-Pobell, Sonja
2005-01-01
Bacillus sphaericus JG-A12 is a natural isolate recovered from a uranium mining waste pile near the town of Johanngeorgenstadt in Saxony, Germany. The cells of this strain are enveloped by a highly ordered crystalline proteinaceous surface layer (S-layer) possessing an ability to bind uranium and other heavy metals. Purified and recrystallized S-layer proteins were shown to be phosphorylated by phosphoprotein-specific staining, inductive coupled plasma mass spectrometry analysis, and a colorimetric method. We used extended X-ray absorption fine-structure (EXAFS) spectroscopy to determine the structural parameters of the uranium complexes formed by purified and recrystallized S-layer sheets of B. sphaericus JG-A12. In addition, we investigated the complexation of uranium by the vegetative bacterial cells. The EXAFS analysis demonstrated that in all samples studied, the U(VI) is coordinated to carboxyl groups in a bidentate fashion with an average distance between the U atom and the C atom of 2.88 ± 0.02 Å and to phosphate groups in a monodentate fashion with an average distance between the U atom and the P atom of 3.62 ± 0.02 Å. Transmission electron microscopy showed that the uranium accumulated by the cells of this strain is located in dense deposits at the cell surface. PMID:16151146
Investigation of formation of cut off layers and productivity of screw milling process
NASA Astrophysics Data System (ADS)
Ambrosimov, S. K.; Morozova, A. V.
2018-03-01
The article presents studies of a new method for complex milling surfaces with a screw feed motion. Using the apparatus of algebra of logic, the process of formation of cut metal layers and processing capacity is presented.
NASA Astrophysics Data System (ADS)
Kuznetsov, V. P.; Lesnikov, V. P.; Muboyadzhyan, S. A.; Repina, O. V.
2007-05-01
Complex diffusion-condensation protective coatings characterized by gradient distribution of alloying elements over the thickness due to formation of a diffusion barrier layer on the surface of blades followed by deposition of condensation alloyed layers based on the Ni-Co-Cr-Al-Y system and an external layer based on a NiAl alloyed β-phase and a ZrO2: Y2O3 ceramics are presented. A complex gradient coating possessing unique protective properties at t = 1100-1200°C for single-crystal blades from alloy ZhS36VI for advanced gas turbine engines with gas temperature of 1550°C at the inlet to the turbine is described.
NASA Technical Reports Server (NTRS)
Kaplan, M. L.; Zack, J. W.; Wong, V. C.; Coats, G. D.
1984-01-01
Surface analyses and numerical simulation sensitivity studies are compared in order to determine the role played by deep, well-mixed, and well-heated boundary layers in perturbing a weak jet streak in proximity to the development of an isolated but intense convective complex associated with the Grand Island, Nebraska tornado outbreak of June 3-4, 1980. A brief description of the case is first presented, emphasizing three-hourly surface analyses, radar, and satellite data. The results of numerical experiments comparing differences in the runs with and without diurnal surface sensible heating are discussed and related to observations. The dynamical processes responsible for these simulation differences are discussed, and the significance of these differences are considered in terms of their effect on the preconvective environment.
Methods for producing thin film charge selective transport layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria
Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Povinelli, Louis A.; Liu, Nan-Suey; Potapczuk, Mark G.; Lumley, J. L.
1999-01-01
The asymptotic solutions, described by Tennekes and Lumley (1972), for surface flows in a channel, pipe or boundary layer at large Reynolds numbers are revisited. These solutions can be extended to more complex flows such as the flows with various pressure gradients, zero wall stress and rough surfaces, etc. In computational fluid dynamics (CFD), these solutions can be used as the boundary conditions to bridge the near-wall region of turbulent flows so that there is no need to have the fine grids near the wall unless the near-wall flow structures are required to resolve. These solutions are referred to as the wall functions. Furthermore, a generalized and unified law of the wall which is valid for whole surface layer (including viscous sublayer, buffer layer and inertial sublayer) is analytically constructed. The generalized law of the wall shows that the effect of both adverse and favorable pressure gradients on the surface flow is very significant. Such as unified wall function will be useful not only in deriving analytic expressions for surface flow properties but also bringing a great convenience for CFD methods to place accurate boundary conditions at any location away from the wall. The extended wall functions introduced in this paper can be used for complex flows with acceleration, deceleration, separation, recirculation and rough surfaces.
Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus.
Liu, Jun; Falke, Sven; Drobot, Bjoern; Oberthuer, Dominik; Kikhney, Alexey; Guenther, Tobias; Fahmy, Karim; Svergun, Dmitri; Betzel, Christian; Raff, Johannes
2017-01-01
The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg 2+ and Ca 2+ . Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.
Stewart, Russell J.; Ransom, Todd C.; Hlady, Vladimir
2011-01-01
The general topic of this review is protein-based underwater adhesives produced by aquatic organisms. The focus is on mechanisms of interfacial adhesion to native surfaces and controlled underwater solidification of natural water-borne adhesives. Four genera that exemplify the broad range of function, general mechanistic features, and unique adaptations are discussed in detail: blue mussels, acorn barnacles, sandcastle worms, and freshwater caddisfly larva. Aquatic surfaces in nature are charged and in equilibrium with their environment, populated by an electrical double layer of ions as well as adsorbed natural polyelectrolytes and microbial biofilms. Surface adsorption of underwater bioadhesives likely occurs by exchange of surface bound ligands by amino acid sidechains, driven primarily by relative affinities and effective concentrations of polymeric functional groups. Most aquatic organisms exploit modified amino acid sidechains, in particular phosphorylated serines and hydroxylated tyrosines (dopa), with high-surface affinity that form coordinative surface complexes. After delivery to the surfaces as a fluid, permanent natural adhesives solidify to bear sustained loads. Mussel plaques are assembled in a manner superficially reminiscent of in vitro layer-by-layer strategies, with sequentially delivered layers associated through Fe(dopa)3 coordination bonds. The adhesives of sandcastle worms, caddisfly larva, and barnacles may be delivered in a form somewhat similar to in vitro complex coacervation. Marine adhesives are secreted, or excreted, into seawater that has a significantly higher pH and ionic strength than the internal environment. Empirical evidence suggests these environment triggers could provide minimalistic, fail-safe timing mechanisms to prevent premature solidification (insolubilization) of the glue within the secretory system, yet allow rapid solidification after secretion. Underwater bioadhesives are further strengthened by secondary covalent curing. PMID:21643511
Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; ...
2015-07-20
In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less
NASA Astrophysics Data System (ADS)
Fernandes, B. B.; Mändl, S.; Oliveira, R. M.; Ueda, M.
2014-08-01
The formation of hard and wear resistant surface regions for austenitic stainless steel through different nitriding and nitrogen implantation processes at intermediate temperatures is an established technology. As the inserted nitrogen remains in solid solution, an expanded austenite phase is formed, accounting for these surface improvements. However, experiments on long-term behavior and exact wear processes within the expanded austenite layer are still missing. Here, the modified layers were produced using plasma immersion ion implantation with nitrogen gas and had a thickness of up to 4 μm, depending on the processing temperature. Thicker layers or those with higher surface nitrogen contents presented better wear resistance, according to detailed microscopic investigation on abrasion, plastic deformation, cracking and redeposition of material inside the wear tracks. At the same time, cyclic fatigue testing employing a nanoindenter equipped with a diamond ball was carried out at different absolute loads and relative unloadings. As the stress distribution between the modified layer and the substrate changes with increasing load, additional simulations were performed for obtaining these complex stress distributions. While high nitrogen concentration and/or thicker layers improve the wear resistance and hardness, these modifications simultaneously reduce the surface fatigue resistance.
3-D readout-electronics packaging for high-bandwidth massively paralleled imager
Kwiatkowski, Kris; Lyke, James
2007-12-18
Dense, massively parallel signal processing electronics are co-packaged behind associated sensor pixels. Microchips containing a linear or bilinear arrangement of photo-sensors, together with associated complex electronics, are integrated into a simple 3-D structure (a "mirror cube"). An array of photo-sensitive cells are disposed on a stacked CMOS chip's surface at a 45.degree. angle from light reflecting mirror surfaces formed on a neighboring CMOS chip surface. Image processing electronics are held within the stacked CMOS chip layers. Electrical connections couple each of said stacked CMOS chip layers and a distribution grid, the connections for distributing power and signals to components associated with each stacked CSMO chip layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomov, A. A., E-mail: lomov@ftian.ru; Myakon’kikh, A. V.; Chesnokov, Yu. M.
The surface layers of Si(001) substrates subjected to plasma-immersion implantation of helium ions with an energy of 2–5 keV and a dose of 5 × 10{sup 17} cm{sup –2} have been investigated using high-resolution X-ray reflectivity, Rutherford backscattering, and transmission electron microscopy. The electron density depth profile in the surface layer formed by helium ions is obtained, and its elemental and phase compositions are determined. This layer is found to have a complex structure and consist of an upper amorphous sublayer and a layer with a porosity of 30–35% beneath. It is shown that the porous layer has the sharpestmore » boundaries at a lower energy of implantable ions.« less
Modeling of reduced secondary electron emission yield from a foam or fuzz surface
Swanson, Charles; Kaganovich, Igor D.
2018-01-10
Complex structures on a material surface can significantly reduce the total secondary electron emission yield from that surface. A foam or fuzz is a solid surface above which is placed a layer of isotropically aligned whiskers. Primary electrons that penetrate into this layer produce secondary electrons that become trapped and do not escape into the bulk plasma. In this manner the secondary electron yield (SEY) may be reduced. We developed an analytic model and conducted numerical simulations of secondary electron emission from a foam to determine the extent of SEY reduction. We find that the relevant condition for SEY minimization ismore » $$\\bar{u}$$≡AD/2>>1 while D <<1, where D is the volume fill fraction and A is the aspect ratio of the whisker layer, the ratio of the thickness of the layer to the radius of the fibers. As a result, we find that foam cannot reduce the SEY from a surface to less than 0.3 of its flat value.« less
Modeling of reduced secondary electron emission yield from a foam or fuzz surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Charles; Kaganovich, Igor D.
Complex structures on a material surface can significantly reduce the total secondary electron emission yield from that surface. A foam or fuzz is a solid surface above which is placed a layer of isotropically aligned whiskers. Primary electrons that penetrate into this layer produce secondary electrons that become trapped and do not escape into the bulk plasma. In this manner the secondary electron yield (SEY) may be reduced. We developed an analytic model and conducted numerical simulations of secondary electron emission from a foam to determine the extent of SEY reduction. We find that the relevant condition for SEY minimization ismore » $$\\bar{u}$$≡AD/2>>1 while D <<1, where D is the volume fill fraction and A is the aspect ratio of the whisker layer, the ratio of the thickness of the layer to the radius of the fibers. As a result, we find that foam cannot reduce the SEY from a surface to less than 0.3 of its flat value.« less
Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes.
Zhu, Linyi; Seror, Jasmine; Day, Anthony J; Kampf, Nir; Klein, Jacob
2017-09-01
The boundary layers coating articular cartilage in synovial joints constitute unique biomaterials, providing lubricity at levels unmatched by any human-made materials. The underlying molecular mechanism of this lubricity, essential to joint function, is not well understood. Here we study the interactions between surfaces bearing attached hyaluronan (hyaluronic acid, or HA) to which different phosphatidylcholine (PC) lipids had been added, in the form of small unilamellar vesicles (SUVs or liposomes), using a surface force balance, to shed light on possible cartilage boundary lubrication by such complexes. Surface-attached HA was complexed with different PC lipids (hydrogenated soy PC (HSPC), 1,2-dimyristoyl-sn-glycero-3-PC (DMPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-PC (POPC)), followed by rinsing. Atomic force microscopy (AFM) and cryo-scanning electron microscopy (Cryo-SEM) were used to image the HA-PC surface complexes following addition of the SUVs. HA-HSPC complexes provide very efficient lubrication, with friction coefficients as low as μ∼0.001 at physiological pressures P≈150atm, while HA-DMPC and HA-POPC complexes are efficient only at low P (up to 10-20atm). The friction reduction in all cases is attributed to hydration lubrication by highly-hydrated phosphocholine groups exposed by the PC-HA complexes. The greater robustness at high P of the HSPC (C 16(15%) ,C 18(85%) ) complexes relative to the DMPC ((C 14 ) 2 ) or POPC (C 16 , C 18:1 ) complexes is attributed to the stronger van der Waals attraction between the HSPC acyl tails, relative to the shorter or un-saturated tails of the other two lipids. Our results shed light on possible lubrication mechanisms at the articular cartilage surface in joints. Can designed biomaterials emulate the unique lubrication ability of articular cartilage, and thus provide potential alleviation to friction-related joint diseases? This is the motivation behind the present study. The principles of cartilage lubrication have attracted considerable attention for decades, and several models have been proposed to elucidate it, however, the mechanism of this ultralow friction is still not clear. In this paper we explore the recent suggestion that its efficient lubrication arises from boundary layers of hyaluronan-lipid complexes at its surface, in particular exploring a range of different phosphatidylcholines (PCs) mimicking the wide range of PCs in synovial joints. The present study suggests a synergistic lubricating behavior of the different lipids in living joints, and potential treatment directions using such biomaterial complexes for widespread cartilage-friction-related diseases such as osteoarthritis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Turbulence structure of the near-surface boundary layer in complex terrain
NASA Astrophysics Data System (ADS)
Sfyri, Eleni; Rotach, Mathias Walter; Stiperski, Ivana; Bosveld, Fred; Lehner, Manuela; Obleitner, Friedrich
2017-04-01
Monin-Obukhov Similarity Theory (MOST) is evaluated in two cases: truly complex terrain (CT) and horizontally inhomogeneous and flat (HIF) terrain. CT data are derived from 5 measurement sites, which differ in terms of slope, orientation and surface roughness at the Inn Valley of Austria (i-Box) and HIF data come from one measurement site at the Cabauw experimental site (Netherlands). The applicability of the surface-layer, 'ideal' similarity relations is examined for both data-sets and the non-dimensional variances of temperature and humidity as a function of stability (z/L, where L is the Obukhov length) are compared for each type of terrain. Large deviations from the reference curves in case of temperature are observed in both CT and HIF, leading to the conclusion that these deviations are not due to the complex terrain but due to inappropriate near-neutral description of the reference curves. It is found here that the non-dimensional temperature variance exhibits a -1 slope in the near-neutral region, for both CT and HIF datasets. In addition, the constant-fluxes hypothesis of the MOST is evaluated at one i-Box site. It is found that only about 1% of the data show constant momentum, sensible and latent heat fluxes with height. Therefore, local scaling instead of surface layer scaling is being used in this study.
NASA Astrophysics Data System (ADS)
Berman, N. S.; Fernando, H. J. S.; Colomer, J.; Levy, M.; Zieren, L.
1997-11-01
In order to extend our understanding of the thermally driven atmospheric winds and their influence on pollutant transport, a hot air balloon experiment was conducted over a four day period in June, 1997 near Nogales, Arizona. The focus was on the early morning break-up of the stable down-slope and down-valley flow and the establishment of a convective boundary layer near the surface in the absence of synoptic winds. Temperature, elevation, position and particulate matter concentration were measured aloft and temperature gradient and wind velocity were measured at ground level. The wind velocity within the stable layer was generally less than 1.5 m/s. Just above the stable layer (about 300 meters above the valley) the wind shifted leading to an erosion of the stable layer from above. Surface heating after sunrise created a convective layer which rose from the ground until the stable layer was destroyed. Examples of temperature fluctuation measurements at various elevations during the establishment of the convective flow will be presented. Implications of results for turbulence parameterizations needed for numerical models of wind fields in complex terrain will be discussed.
Magnetomechanical effect in silicon (Cz-Si) surface layers
NASA Astrophysics Data System (ADS)
Koplak, O. V.; Dmitriev, A. I.; Morgunov, R. B.
2012-07-01
The mechanical properties of near-surface layers of Czochralski-grown silicon crystals Cz- n-Si(111) have been found to undergo changes in response to an external constant magnetic field ( B ˜ 0.1 T). A magnetically induced variation in the microhardness, Young's modulus, and coefficient of plasticity of silicon crystals correlates with the change in the lattice parameter and internal stresses of the sample. The growth of an oxide film under exposure to a magnetic field plays the principal role in the magnetomechanical effect due to a decrease in the concentration of oxygen complexes in the near-surface layers of the sample. In microstructured silicon, where the surface is considerably more developed, the magnetic field induces more profound changes in the internal stresses as compared to single crystals.
Interface Engineering for Atomic Layer Deposited Alumina Gate Dielectric on SiGe Substrates.
Zhang, Liangliang; Guo, Yuzheng; Hassan, Vinayak Vishwanath; Tang, Kechao; Foad, Majeed A; Woicik, Joseph C; Pianetta, Piero; Robertson, John; McIntyre, Paul C
2016-07-27
Optimization of the interface between high-k dielectrics and SiGe substrates is a challenging topic due to the complexity arising from the coexistence of Si and Ge interfacial oxides. Defective high-k/SiGe interfaces limit future applications of SiGe as a channel material for electronic devices. In this paper, we identify the surface layer structure of as-received SiGe and Al2O3/SiGe structures based on soft and hard X-ray photoelectron spectroscopy. As-received SiGe substrates have native SiOx/GeOx surface layers, where the GeOx-rich layer is beneath a SiOx-rich surface. Silicon oxide regrows on the SiGe surface during Al2O3 atomic layer deposition, and both SiOx and GeOx regrow during forming gas anneal in the presence of a Pt gate metal. The resulting mixed SiOx-GeOx interface layer causes large interface trap densities (Dit) due to distorted Ge-O bonds across the interface. In contrast, we observe that oxygen-scavenging Al top gates decompose the underlying SiOx/GeOx, in a selective fashion, leaving an ultrathin SiOx interfacial layer that exhibits dramatically reduced Dit.
Fabrication and characterization of iron oxide dextran composite layers
NASA Astrophysics Data System (ADS)
Iconaru, S. L.; Predoi, S. A.; Beuran, M.; Ciobanu, C. S.; Trusca, R.; Ghita, R.; Negoi, I.; Teleanu, G.; Turculet, S. C.; Matei, M.; Badea, Monica; Prodan, A. M.
2018-02-01
Super paramagnetic iron oxide nanoparticles such as maghemite have been shown to exhibit antimicrobial properties [1-5]. Moreover, the iron oxide nanoparticles have been proposed as a potential magnetically controllable antimicrobial agent which could be directed to a specific infection [3-5]. The present research has focused on studies of the surface and structure of iron oxide dextran (D-IO) composite layers surface and structure. These composite layers were deposited on Si substrates. The structure of iron oxide dextran composite layers was investigated by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) while the surface morphology was evaluated by Scanning Electron Microscopy (SEM). The structural characterizations of the iron oxide dextran composite layers revealed the basic constituents of both iron and dextran structure. Furthermore, the in vitro evaluation of the antifungal effect of the complex layers, which have been shown revealed to be active against C. albicans cells at distinct intervals of time, is exhibited. Our research came to confirm the fungicidal effect of iron oxide dextran composite layers. Also, our results suggest that iron oxide dextran surface may be used for medical treatment of biofilm associated Candida infections.
Molecular Simulation of Cesium Adsorption at the Basal Surface of Phyllosilicate Minerals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerisit, Sebastien N.; Okumura, Masahiko; Rosso, Kevin M.
2016-08-16
A better understanding of the thermodynamics of radioactive cesium uptake at the surfaces of phyllosilicate minerals is needed to understand mechanisms of its selective adsorption and help guide the development of practical and inexpensive decontamination techniques. In this work, molecular dynamics simulations were carried out to determine the thermodynamics of adsorption of Cs + at the basal surface of six 2:1 phyllosilicate minerals, namely pyrophyllite, illite, muscovite, phlogopite, celadonite, and margarite. These minerals were selected to isolate the effects of the magnitude of the permanent layer charge (≤ 2), its location (tetrahedral versus octahedral sheet), and the structure of themore » octahedral sheet (dioctahedral versus trioctahedral). Good agreement was obtained with experiment in terms of the hydration free energy of Cs + and the structure and thermodynamics of Cs + adsorption at the muscovite basal surface, for which published data were available for comparison. With the exception of pyrophyllite, which did not exhibit an inner-sphere free energy minimum, all phyllosilicate minerals showed similar behavior with respect to Cs + adsorption; notably, Cs + adsorption was predominantly inner-sphere whereas outer-sphere adsorption was very weak with the simulations predicting the formation of an extended outer-sphere complex. For a given location of the layer charge, the free energy of adsorption as an inner-sphere complex was found to vary linearly with the magnitude of the layer charge. For a given location and magnitude of the layer charge, adsorption at phlogopite (trioctahedral sheet structure) was much less favorable than at muscovite (dioctahedral sheet structure) due to the electrostatic repulsion between the adsorbed Cs + and the hydrogen atom of the hydroxyl group directly below the six-membered siloxane ring cavity. For a given magnitude of the layer charge and structure of the octahedral sheet, adsorption at celadonite (layer charge located in the octahedral sheet) was favored over muscovite (layer charge located in the tetrahedral sheet) due to the increased distance with surface potassium ions.« less
Johnson, Brant R.; Hymes, Jeffrey; Sanozky-Dawes, Rosemary; Henriksen, Emily DeCrescenzo
2015-01-01
The Lactobacillus acidophilus homology group comprises Gram-positive species that include L. acidophilus, L. helveticus, L. crispatus, L. amylovorus, L. gallinarum, L. delbrueckii subsp. bulgaricus, L. gasseri, and L. johnsonii. While these bacteria are closely related, they have varied ecological lifestyles as dairy and food fermenters, allochthonous probiotics, or autochthonous commensals of the host gastrointestinal tract. Bacterial cell surface components play a critical role in the molecular dialogue between bacteria and interaction signaling with the intestinal mucosa. Notably, the L. acidophilus complex is distinguished in two clades by the presence or absence of S-layers, which are semiporous crystalline arrays of self-assembling proteinaceous subunits found as the outermost layer of the bacterial cell wall. In this study, S-layer-associated proteins (SLAPs) in the exoproteomes of various S-layer-forming Lactobacillus species were proteomically identified, genomically compared, and transcriptionally analyzed. Four gene regions encoding six putative SLAPs were conserved in the S-layer-forming Lactobacillus species but not identified in the extracts of the closely related progenitor, L. delbrueckii subsp. bulgaricus, which does not produce an S-layer. Therefore, the presence or absence of an S-layer has a clear impact on the exoproteomic composition of Lactobacillus species. This proteomic complexity and differences in the cell surface properties between S-layer- and non-S-layer-forming lactobacilli reveal the potential for SLAPs to mediate intimate probiotic interactions and signaling with the host intestinal mucosa. PMID:26475115
Greathouse, Jeffery A; Cygan, Randall T
2006-06-15
Molecular dynamics simulations were performed to provide a systematic study of aqueous uranyl adsorption onto the external surface of 2:1 dioctahedral clays. Our understanding of this key process is critical in predicting the fate of radioactive contaminants in natural groundwaters. These simulations provide atomistic detail to help explain experimental trends in uranyl adsorption onto natural media containing smectite clays. Aqueous uranyl concentrations ranged from 0.027 to 0.162 M. Sodium ions and carbonate ions (0.027-0.243 M) were also present in the aqueous regions to more faithfully model a stream of uranyl-containing groundwater contacting a mineral system comprised of Na-smectite. No adsorption occurred near the pyrophyllite surface, and there was little difference in uranyl adsorption onto the beidellite and montmorillonite, despite the difference in location of clay layer charge between the two. At low uranyl concentration, the pentaaquouranyl complex dominates in solution and readily adsorbs to the clay basal plane. At higher uranyl (and carbonate) concentrations, the mono(carbonato) complex forms in solution, and uranyl adsorption decreases. Sodium adsorption onto beidellite occurred both as inner- and outer-sphere surface complexes, again with little effect on uranyl adsorption. Uranyl surface complexes consisted primarily of the pentaaquo cation (85%) and to a lesser extent the mono(carbonato) species (15%). Speciation diagrams of the aqueous region indicate that the mono(carbonato)uranyl complex is abundant at high ionic strength. Oligomeric uranyl complexes are observed at high ionic strength, particularly near the pyrophyllite and montmorillonite surfaces. Atomic density profiles of water oxygen and hydrogen atoms are nearly identical near the beidellite and montmorillonite surfaces. Water structure therefore appears to be governed by the presence of adsorbed ions and not by the location of layer charge associated with the substrate. The water oxygen density near the pyrophyllite surface is similar to the other cases, but the hydrogen density profile indicates reduced hydrogen bonding between adsorbed water molecules and the surface.
NASA Astrophysics Data System (ADS)
Wagenbrenner, N. S.; Forthofer, J.; Butler, B.; Shannon, K.
2014-12-01
Near-surface wind predictions are important for a number of applications, including transport and dispersion, wind energy forecasting, and wildfire behavior. Researchers and forecasters would benefit from a wind model that could be readily applied to complex terrain for use in these various disciplines. Unfortunately, near-surface winds in complex terrain are not handled well by traditional modeling approaches. Numerical weather prediction models employ coarse horizontal resolutions which do not adequately resolve sub-grid terrain features important to the surface flow. Computational fluid dynamics (CFD) models are increasingly being applied to simulate atmospheric boundary layer (ABL) flows, especially in wind energy applications; however, the standard functionality provided in commercial CFD models is not suitable for ABL flows. Appropriate CFD modeling in the ABL requires modification of empirically-derived wall function parameters and boundary conditions to avoid erroneous streamwise gradients due to inconsistences between inlet profiles and specified boundary conditions. This work presents a new version of a near-surface wind model for complex terrain called WindNinja. The new version of WindNinja offers two options for flow simulations: 1) the native, fast-running mass-consistent method available in previous model versions and 2) a CFD approach based on the OpenFOAM modeling framework and optimized for ABL flows. The model is described and evaluations of predictions with surface wind data collected from two recent field campaigns in complex terrain are presented. A comparison of predictions from the native mass-consistent method and the new CFD method is also provided.
Nylon surface modification: 2. Nylon-supported composite films.
Herrera-Alonso, Margarita; McCarthy, Thomas J; Jia, Xinqiao
2006-02-14
We have developed techniques for the introduction of reactive functional groups to nylon surfaces via site-specific reactions targeting at the naturally abundant amide repeating units on the surface. In this report, we describe the fabrication of nylon-supported composite surfaces using the most efficient modification methods we have developed. N-Alkylation with (3-glycidoxypropyl)triethoxysilane (GPTES) in the presence of potassium tert-butoxide (t-BuOK) leads to surfaces with silica-like reactivity. Subsequent chemical vapor deposition using tetrachlorosilane (SiCl4) and water results in composite films with a thin layer of silica, which was made hydrophobic by reaction with a fluorinated silane reagent. Reduction of the amide groups with borane-THF (BH3-THF) complex leads to a 69% conversion of surface amides to the corresponding secondary amine groups. Alginate was chosen as the model polyelectrolyte for the introduction of a hydrated surface layer. Because of the strong electrostatic interaction between alginate and the amine-enriched nylon surfaces, the adsorption is fast and concentration-independent (within the concentration range studied). The polysaccharide coats the surface homogeneously, without the formation of large aggregates. The amine surfaces obtained by reduction with BH3-THF ((BH3-THF)nylon-NH) and by alkylation with 2-bromoethylamine hydrobromide (BEA-HBr, (EBA-HBr)nylon-NH2) were also used to study gold deposition through electroless plating. Immobilization of a negatively charged metal complex (AuCl4(-)) was achieved through electrostatic interaction. Gold particles disperse preferentially in the bulk of (EBA-HBr)nylon-NH2 films, while they remain confined to the outer surface layer of (BH3-THF)nylon-NH films.
Farci, Domenica; Slavov, Chavdar; Piano, Dario
2018-01-17
Deinococcus radiodurans is well known for its unusual resistance to different environmental stresses. Recently, we have described a novel complex composed of the surface (S)-layer protein DR_2577 and the carotenoid deinoxanthin. We also showed a role of this complex in the UV resistance under desiccation. Both these properties, UV and desiccation resistance, suggest a selective pressure generated by Sun irradiation. In order to confirm this hypothesis we checked whether this S-layer Deinoxanthin Binding Complex (SDBC) has features of thermo-resistance, a property also expected in proteins evolved under solar irradiative pressure. We performed the spectroscopic characterization of the SDBC by means of thermal shift assay, circular dichroism and related in silico analysis. Our findings identify a stability typical of thermo-adapted proteins and provide a new insight into the origin of specific S-layer types. The results are discussed in terms of co-evolutionary mechanisms related to Sun-induced desiccation and heat.
Pavlyk, Bohdan; Kushlyk, Markiyan; Slobodzyan, Dmytro
2017-12-01
Changes of the defect structure of silicon p-type crystal surface layer under the influence of plastic deformation and high temperature annealing in oxygen atmosphere were investigated by deep-level capacitance-modulation spectroscopy (DLCMS) and IR spectroscopy of molecules and atom vibrational levels. Special role of dislocations in the surface layer of silicon during the formation of its energy spectrum and rebuilding the defective structure was established. It is shown that the concentration of linear defects (N ≥ 10 4 cm -2 ) enriches surface layer with electrically active complexes (dislocation-oxygen, dislocation-vacancy, and dislocation-interstitial atoms of silicon) which are an effective radiative recombination centers.
Atomic and molecular layer deposition for surface modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi; Sievänen, Jenni; Salo, Erkki
2014-06-01
Atomic and molecular layer deposition (ALD and MLD, respectively) techniques are based on repeated cycles of gas–solid surface reactions. A partial monolayer of atoms or molecules is deposited to the surface during a single deposition cycle, enabling tailored film composition in principle down to molecular resolution on ideal surfaces. Typically ALD/MLD has been used for applications where uniform and pinhole free thin film is a necessity even on 3D surfaces. However, thin – even non-uniform – atomic and molecular deposited layers can also be used to tailor the surface characteristics of different non-ideal substrates. For example, print quality of inkjetmore » printing on polymer films and penetration of water into porous nonwovens can be adjusted with low-temperature deposited metal oxide. In addition, adhesion of extrusion coated biopolymer to inorganic oxides can be improved with a hybrid layer based on lactic acid. - Graphical abstract: Print quality of a polylactide film surface modified with atomic layer deposition prior to inkjet printing (360 dpi) with an aqueous ink. Number of printed dots illustrated as a function of 0, 5, 15 and 25 deposition cycles of trimethylaluminum and water. - Highlights: • ALD/MLD can be used to adjust surface characteristics of films and fiber materials. • Hydrophobicity after few deposition cycles of Al{sub 2}O{sub 3} due to e.g. complex formation. • Same effect on cellulosic fabrics observed with low temperature deposited TiO{sub 2}. • Different film growth and oxidation potential with different precursors. • Hybrid layer on inorganic layer can be used to improve adhesion of polymer melt.« less
Characterization of chemical interactions during chemical mechanical polishing (CMP) of copper
NASA Astrophysics Data System (ADS)
Lee, Seung-Mahn
2003-10-01
Chemical mechanical polishing (CMP) has received much attention as an unique technique to provide a wafer level planarization in semiconductor manufacturing. However, despite the extensive use of CMP, it still remains one of the least understood areas in semiconductor processing. The lack of the fundamental understanding is a significant barrier to further advancements in CMP technology. One critical aspect of metal CMP is the formation of a thin surface layer on the metal surface. The formation and removal of this layer controls all the aspects of the CMP process, including removal rate, surface finish, etc. In this dissertation, we focus on the characterization of the formation and removal of the thin surface layer on the copper surface. The formation dynamics was investigated using static and dynamic electrochemical techniques, including potentiodynamic scans and chronoamperometry. The results were validated using XPS measurements. The mechanical properties of the surface layer were investigated using nanoindentation measurements. The electrochemical investigation showed that the thickness of the surface layer is controlled by the chemicals such as an oxidizer (hydrogen peroxide), a corrosion inhibitor (benzotriazole), a complexing agent (citric acid), and their concentrations. The dynamic electrochemical measurements indicated that the initial layer formation kinetics is unaffected by the corrosion inhibitors. The passivation due to the corrosion inhibitor becomes important only on large time scales (>200 millisecond). The porosity and the density of the chemically modified surface layer can be affected by additives of other chemicals such as citric acid. An optimum density of the surface layer is required for high polishing rate while at the same time maintaining a high degree of surface finish. Nanoindentation measurements indicated that the mechanical properties of the surface layer are strongly dependent on the chemical additives in the slurry. The CMP removal rates were found to be in good agreement with the initial reaction kinetics as well as the mechanical properties of the chemically modified surface layer. In addition, the material removal model based on the micro- and nano-scale interactions, which were measured experimentally, has been developed.
Laser-assisted electrochemical micromachining of mould cavity on the stainless steel surface
NASA Astrophysics Data System (ADS)
Li, Xiaohai; Wang, Shuming; Wang, Dong; Tong, Han
2018-02-01
In order to fabricate the micro mould cavities with complex structures on 304 stainless steel, laser-assisted electrochemical micromachining (EMM) based on surface modification by fiber laser masking was studied,and a new device of laser-assisted EMM was developed. Laser marking on the surface of 304 stainless steel can first be realized by fiber laser heating scanning. Through analysis of X ray diffraction analysis (XRD), metal oxide layer with predefined pattern can be formed by laser marking, and phase transformation can also occur on the 304 stainless steel surface, which produce the laser masking layer with corrosion resistance. The stainless steel surface with laser masking layer is subsequently etched by EMM, the laser masking layer severs as the temporary protective layer without relying on lithography mask, the fabrication of formed electrodes is also avoided, so micro pattern cavities can fast be fabricated. The impacts on machining accuracy during EMM with laser masking were discussed to optimize machining parameters, such as machining voltage, electrolyte concentration, duty cycle of pulse power supply and electrode gap size, the typical mould cavities 23μm deep were fabricated under the optimized parameters.
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke; ...
2016-04-27
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Adam S.; Wen, Hua; Ohta, Taisuke
Here, we report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by X-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 Å. Moreover, transport measurements of exfoliated graphene, after SrO deposition, show a strong dependence between the Dirac point and Sr oxidation. As a result, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.
NASA Astrophysics Data System (ADS)
Marcovitz, Amir; Naftaly, Aviv; Levy, Yaakov
2015-02-01
Water molecules are abundant in protein-DNA interfaces, especially in their nonspecific complexes. In this study, we investigated the organization and energetics of the interfacial water by simplifying the geometries of the proteins and the DNA to represent them as two equally and oppositely charged planar surfaces immersed in water. We found that the potential of mean force for bringing the two parallel surfaces into close proximity comprises energetic barriers whose properties strongly depend on the charge density of the surfaces. We demonstrated how the organization of the water molecules into discretized layers and the corresponding energetic barriers to dehydration can be modulated by the charge density on the surfaces, salt, and the structure of the surfaces. The 1-2 layers of ordered water are tightly bound to the charged surfaces representing the nonspecific protein-DNA complex. This suggests that water might mediate one-dimensional diffusion of proteins along DNA (sliding) by screening attractive electrostatic interactions between the positively charged molecular surface on the protein and the negatively charged DNA backbone and, in doing so, reduce intermolecular friction in a manner that smoothens the energetic landscape for sliding, and facilitates the 1D diffusion of the protein.
NASA Astrophysics Data System (ADS)
Mao, Zhangwen; Guo, Wei; Ji, Dianxiang; Zhang, Tianwei; Gu, Chenyi; Tang, Chao; Gu, Zhengbin; Nie*, Yuefeng; Pan, Xiaoqing
In situ reflection high-energy electron diffraction (RHEED) and its intensity oscillations are extremely important for the growth of epitaxial thin films with atomic precision. The RHEED intensity oscillations of complex oxides are, however, rather complicated and a general model is still lacking. Here, we report the unusual phase inversion and frequency doubling of RHEED intensity oscillations observed in the layer-by-layer growth of SrTiO3 using oxide molecular beam epitaxy. In contacts to the common understanding that the maximum(minimum) intensity occurs at SrO(TiO2) termination, respectively, we found that both maximum or minimum intensities can occur at SrO, TiO2, or even incomplete terminations depending on the incident angle of the electron beam, which raises a fundamental question if one can rely on the RHEED intensity oscillations to precisely control the growth of thin films. A general model including surface roughness and termination dependent mean inner potential qualitatively explains the observed phenomena, and provides the answer to the question how to prepare atomically and chemically precise surface/interfaces using RHEED oscillations for complex oxides. We thank National Basic Research Program of China (No. 11574135, 2015CB654901) and the National Thousand-Young-Talents Program.
Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations
Pierce, Eric M.; Frugier, Pierre; Criscenti, Louise J.; ...
2014-07-12
Describing the reactions that occur at the glass-water interface and control the development of the altered layer constitutes one of the main scientific challenges impeding existing models from providing accurate radionuclide release estimates. Radionuclide release estimates are a critical component of the safety basis for geologic repositories. The altered layer (i.e., amorphous hydrated surface layer and crystalline reaction products) represents a complex region, both physically and chemically, sandwiched between two distinct boundaries pristine glass surface at the inner most interface and aqueous solution at the outer most interface. Computational models, spanning different length and time-scales, are currently being developed tomore » improve our understanding of this complex and dynamic process with the goal of accurately describing the pore-scale changes that occur as the system evolves. These modeling approaches include geochemical simulations [i.e., classical reaction path simulations and glass reactivity in allowance for alteration layer (GRAAL) simulations], Monte Carlo simulations, and Molecular Dynamics methods. Finally, in this manuscript, we discuss the advances and limitations of each modeling approach placed in the context of the glass-water reaction and how collectively these approaches provide insights into the mechanisms that control the formation and evolution of altered layers.« less
Characteristics of Boundary Layer Transition in a Multi-Stage Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Wisler, Dave; Halstead, David E.; Okiishi, Ted
2007-01-01
An experimental investigation of boundary layer transition in a multi-stage turbine has been completed using surface-mounted hot-film sensors. Tests were carried out using the two-stage Low Speed Research Turbine of the Aerodynamics Research Laboratory of GE Aircraft Engines. Blading in this facility models current, state-of-the-art low pressure turbine configurations. The instrumentation technique involved arrays of densely-packed hot-film sensors on the surfaces of second stage rotor and nozzle blades. The arrays were located at mid-span on both the suction and pressure surfaces. Boundary layer measurements were acquired over a complete range of relevant Reynolds numbers. Data acquisition capabilities provided means for detailed data interrogation in both time and frequency domains. Data indicate that significant regions of laminar and transitional boundary layer flow exist on the rotor and nozzle suction surfaces. Evidence of relaminarization both near the leading edge of the suction surface and along much of the pressure surface was observed. Measurements also reveal the nature of the turbulent bursts occuring within and between the wake segments convecting through the blade row. The complex character of boundary layer transition resulting from flow unsteadiness due to nozzle/nozzle, rotor/nozzle, and nozzle/rotor wake interactions are elucidated using these data. These measurements underscore the need to provide turbomachinery designers with models of boundary layer transition to facilitate accurate prediction of aerodynamic loss and heat transfer.
Adsorbed Layers of Ferritin at Solid and Fluid Interfaces Studied by Atomic Force Microscopy.
Johnson; Yuan; Lenhoff
2000-03-15
The adsorption of the iron storage protein ferritin was studied by liquid tapping mode atomic force microscopy in order to obtain molecular resolution in the adsorbed layer within the aqueous environment in which the adsorption was carried out. The surface coverage and the structure of the adsorbed layer were investigated as functions of ionic strength and pH on two different charged surfaces, namely chemically modified glass slides and mixed surfactant films at the air-water interface, which were transferred to graphite substrates after adsorption. Surface coverage trends with both ionic strength and pH indicate the dominance of electrostatic effects, with the balance shifting between intermolecular repulsion and protein-surface attraction. The resulting behavior is more complex than that seen for larger colloidal particles, which appear to follow a modified random sequential adsorption model monotonically. The structure of the adsorbed layers at the solid surfaces is random, but some indication of long-range order is apparent at fluid interfaces, presumably due to the higher protein mobility at the fluid interface. Copyright 2000 Academic Press.
Zhang, Lei; Shi, Jiafu; Jiang, Zhongyi; Jiang, Yanjun; Meng, Ruijie; Zhu, Yuanyuan; Liang, Yanpeng; Zheng, Yang
2011-02-01
A novel approach combining biomimetic mineralization and bioadhesion is proposed to prepare robust and versatile organic-inorganic hybrid microcapsules. More specifically, these microcapsules are fabricated by sequential deposition of inorganic layer and organic layer on the surface of CaCO(3) microparticles, followed by the dissolution of CaCO(3) microparticles using EDTA. During the preparation process, protamine induces the hydrolysis and condensation of titania or silica precursor to form the inorganic layer or the biomineral layer. The organic layer or bioadhesive layer was formed through the rapid, spontaneous oxidative polymerization of dopamine into polydopamine (PDA) on the surface of the biomineral layer. There exist multiple interactions between the inorganic layer and the organic layer. Thus, the as-prepared organic-inorganic hybrid microcapsules acquire much higher mechanical stability and surface reactivity than pure titania or pure silica microcapsules. Furthermore, protamine/titania/polydopamine hybrid microcapsules display superior mechanical stability to protamine/silica/polydopamine hybrid microcapsules because of the formation of Ti(IV)-catechol coordination complex between the biomineral layer and the bioadhesive layer. As an example of application, three enzymes are respectively immobilized through physical encapsulation in the lumen, in situ entrapment within the wall and chemical attachment on the out surface of the hybrid microcapsules. The as-constructed multienzyme system displays higher catalytic activity and operational stability. Hopefully, the approach developed in this study will evolve as a generic platform for facile and controllable preparation of organic-inorganic hybrid materials with different compositions and shapes for a variety of applications in catalysis, sensor, drug/gene delivery.
First-principles study of stability of helium-vacancy complexes below tungsten surfaces
NASA Astrophysics Data System (ADS)
Yang, L.; Bergstrom, Z. J.; Wirth, B. D.
2018-05-01
Density function theory calculations have been performed to study the stability of small helium-vacancy (He-V) complexes near tungsten (W) surfaces of different orientations. The results show that the stability of vacancies and He-V complexes near W surfaces depends on surface orientation. However, as the depth below the surface increased beyond about 0.65-0.8 nm, the stability of He-V complexes is similar to the bulk. The formation energies of single vacancies and di-vacancies at depths less than 0.2 nm below the W(110) surface are higher than for W(100) or W(111) surfaces, but have lower energies at depths between 0.2 and 0.65 nm. The formation energies of He-V complexes below W surfaces are sensitive to the geometric orientation of the He and vacancy, especially below the W(111) surface. Within about 0.2 nm of the top layer of the three W surfaces, neither a vacancy nor a di-vacancy can trap He. Because of the lower formation energy of He-V complexes and higher He binding energy to vacancies below the W(110) surface, the He desorption from the W(110) surface is less likely to occur than from the W(100) and W(111) surfaces. Our results provide fundamental insight into the differences in surface morphology changes observed in single W crystals with different surface orientations under He plasma exposure.
NASA Astrophysics Data System (ADS)
Han, D.; Wang, J.
2015-12-01
The moon-plasma interactions and the resulting surface charging have been subjects of extensive recent investigations. While many particle-in-cell (PIC) based simulation models have been developed, all existing PIC simulation models treat the surface of the Moon as a boundary condition to the plasma flow. In such models, the surface of the Moon is typically limited to simple geometry configurations, the surface floating potential is calculated from a simplified current balance condition, and the electric field inside the regolith layer cannot be resolved. This paper presents a new full particle PIC model to simulate local scale plasma flow and surface charging. A major feature of this new model is that the surface is treated as an "interface" between two mediums rather than a boundary, and the simulation domain includes not only the plasma but also the regolith layer and the bedrock underneath it. There are no limitations on the surface shape. An immersed-finite-element field solver is applied which calculates the regolith surface floating potential and the electric field inside the regolith layer directly from local charge deposition. The material property of the regolith layer is also explicitly included in simulation. This new model is capable of providing a self-consistent solution to the plasma flow field, lunar surface charging, the electric field inside the regolith layer and the bedrock for realistic surface terrain. This new model is applied to simulate lunar surface-plasma interactions and surface charging under various ambient plasma conditions. The focus is on the lunar terminator region, where the combined effects from the low sun elevation angle and the localized plasma wake generated by plasma flow over a rugged terrain can generate strongly differentially charged surfaces and complex dust dynamics. We discuss the effects of the regolith properties and regolith layer charging on the plasma flow field, dust levitation, and dust transport.
Impedance of Barrier-Type Oxide Layer on Aluminum
NASA Astrophysics Data System (ADS)
Oh, Han-Jun; Kim, Jung-Gu; Jeong, Yong-Soo; Chi, Choong-Soo
2000-12-01
The impedance characteristics of barrier-type oxide layers on aluminum was studied using impedance spectroscopy. Since anodic films on Al have a variable stoichiometry with a gradual reduction of oxygen deficiency towards the oxide-electrolyte interface, the interpretation of impedance spectra for oxide layers is complex and the impedance of surface layers differs from those of ideal capacitors. This frequency response of the layer with conductance gradients cannot be described by a single resistance-capacitance (RC) element. The oxide layers of Al are properly described by the Young model of dielectric constant with a vertical decay of conductivity.
Radiometric Measurements of the Thermal Conductivity of Complex Planetary-like Materials
NASA Astrophysics Data System (ADS)
Piqueux, S.; Christensen, P. R.
2012-12-01
Planetary surface temperatures and thermal inertias are controlled by the physical and compositional characteristics of the surface layer material, which result from current and past geological activity. For this reason, temperature measurements are often acquired because they provide fundamental constraints on the geological history and habitability. Examples of regolith properties affecting surface temperatures and inertias are: grain sizes and mixture ratios, solid composition in the case of ices, presence of cement between grains, regolith porosity, grain roughness, material layering etc.. Other important factors include volatile phase changes, and endogenic or exogenic heat sources (i.e. geothermal heat flow, impact-related heat, biological activity etc.). In the case of Mars, the multitude of instruments observing the surface temperature at different spatial and temporal resolutions (i.e. IRTM, Thermoskan, TES, MiniTES, THEMIS, MCS, REMS, etc.) in conjunction with other instruments allows us to probe and characterize the thermal properties of the surface layer with an unprecedented resolution. While the derivation of thermal inertia values from temperature measurements is routinely performed by well-established planetary regolith numerical models, constraining the physical properties of the surface layer from thermal inertia values requires the additional step of laboratory measurements. The density and specific heat are usually constant and sufficiently well known for common geological materials, but the bulk thermal conductivity is highly variable as a function of the physical characteristics of the regolith. Most laboratory designs do not allow an investigation of the thermal conductivity of complex regolith configurations similar to those observed on planetary surfaces (i.e. cemented material, large grains, layered material, and temperature effects) because the samples are too small and need to be soft to insert heating or measuring devices. For this reason, we have built a new type of apparatus to measure the thermal conductivity of sample significantly larger than previous apparatus under planetary conditions of atmosphere and gas composition. Samples' edges are cooled down from room to LN2 temperature and the surface material temperature is recorded by an infrared camera without inserting thermocouples or heat sources. Sample surface cooling trends are fit with finite element models of heat transfer to retrieve the material thermal conductivity. Preliminary results confirm independent numerical modeling results predicting the thermal conductivity of complex materials: the thermal inertia of particulate material under Mars conditions is temperature-dependent, small amounts of cements significantly increase the bulk conductivity and inertia of particulate material, and one-grain-thick armors similar to those observed by the Mars Exploration Rovers behave like a thin highly conductive layer that does not significantly influence apparent thermal inertias. These results are used to further our interpretation of Martian temperature observations. For example local amounts of subsurface water ice or the fraction of cementing phase in the global Martian duricrust can be constrained; the search for subtle changes in near-surface heat flow can be performed more accurately, and surface thermal inertias under various atmospheric conditions of pressure and gas composition can be predicted.
Photoluminescence Probing of Complex H2O Adsorption on InGaN/GaN Nanowires.
Maier, Konrad; Helwig, Andreas; Müller, Gerhard; Hille, Pascal; Teubert, Jörg; Eickhoff, Martin
2017-02-08
We demonstrate that the complex adsorption behavior of H 2 O on InGaN/GaN nanowire arrays is directly revealed by their ambient-dependent photoluminescence properties. Under low-humidity, ambient-temperature, and low-excitation-light conditions, H 2 O adsorbates cause a quenching of the photoluminescence. In contrast, for high humidity levels, elevated temperature, and high excitation intensity, H 2 O adsorbates act as efficient photoluminescence enhancers. We show that this behavior, which can only be detected due to the low operation temperature of the InGaN/GaN nanowires, can be explained on the basis of single H 2 O adsorbates forming surface recombination centers and multiple H 2 O adsorbates forming surface passivation layers. Reversible creation of such passivation layers is induced by the photoelectrochemical splitting of adsorbed water molecules and by the interaction of reactive H 3 O + and OH - ions with photoactivated InGaN surfaces. Due to electronic coupling of adsorbing molecules with photoactivated surfaces, InGaN/GaN nanowires act as sensitive nanooptical probes for the analysis of photoelectrochemical surface processes.
Brown, Philip S.; Bhushan, Bharat
2015-01-01
Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716
Wastl, Daniel S; Judmann, Michael; Weymouth, Alfred J; Giessibl, Franz J
2015-01-01
Characterization and imaging at the atomic scale with atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomically resolved imaging of the calcite (101̅4) surface plane using stiff quartz cantilevers ("qPlus sensors", stiffness k = 1280 N/m) equipped with sapphire tips in ambient conditions without any surface preparation. With 10 atoms in one surface unit cell, calcite has a highly complex surface structure comprising three different chemical elements (Ca, C, and O). We obtain true atomic resolution of calcite in air at relative humidity ranging from 20% to 40%, imaging atomic steps and single atomic defects. We observe a great durability of sapphire tips with their Mohs hardness of 9, only one step below diamond. Depending on the state of the sapphire tip, we resolve either the calcium or the oxygen sublattice. We determine the tip termination by comparing the experimental images with simulations and discuss the possibility of chemical tip identification in air. The main challenges for imaging arise from the presence of water layers, which form on almost all surfaces and have the potential to dissolve the crystal surface. Frequency shift versus distance spectra show the presence of at least three ordered hydration layers. The measured height of the first hydration layer corresponds well to X-ray diffraction data and molecular dynamic simulations, namely, ∼220 pm. For the following hydration layers we measure ∼380 pm for the second and third layer, ending up in a total hydration layer thickness of at least 1 nm. Understanding the influence of water layers and their structure is important for surface segregation, surface reactions including reconstructions, healing of defects, and corrosion.
Zhao, Xinyu; Tang, Xuexi; Zhang, Huanxin; Qu, Tongfei; Wang, Ying
2016-10-01
For 8 consecutive years, a green tide has originated in the southern Yellow Sea and spread to the Qingdao offshore area. The causative species, Ulva prolifera, always forms a very thick thallus mat that is capable of drifting long distances over long periods. During this process, although the thalli face disturbance by complex environmental factors, they maintain high biomass and proliferation. We hypothesized that some form of photosynthetic adaptation strategy must exist to protect the thalli. Therefore, we studied the different photosynthetic response characteristics of the surface and lower layers of the floating thallus mats, and investigated the physiological and molecular-level adaptation mechanisms. The results showed that: (1) U. prolifera has strong photosynthetic capability that ensures it can gain sufficient energy to increase its biomass and adapt to long-distance migration. (2) Surface layer thalli adapt to the complex environment by dissipating excess energy via photosynthetic quantum control (energy quenching and energy redistribution between PSII/PSI) to avoid irreversible damage to the photosynthetic system. (3) Lower layer thalli increase their contents of Chlorophyll a (Chl a) and Chlorophyll b (Chl b) and decrease their Chl a/Chl b ratio to improve their ability to use light energy. (4) U. prolifera has strong photosynthetic plasticity and can adapt to frequent exchange between the surface and lower layer environments because of wave disturbance. Pigment component changes, energy quenching, and energy redistribution between PSII/PSI contribute to this photosynthetic plasticity. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Reflectance analysis of porosity gradient in nanostructured silicon layers
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru
2017-12-01
In this work we study optical properties of nanostructured layers formed on silicon surface. Nanostructured layers on Si are formed in order to reach high suppression of the light reflectance. Low spectral reflectance is important for improvement of the conversion efficiency of solar cells and for other optoelectronic applications. Effective method of forming nanostructured layers with ultralow reflectance in a broad interval of wavelengths is in our approach based on metal assisted etching of Si. Si surface immersed in HF and H2O2 solution is etched in contact with the Pt mesh roller and the structure of the mesh is transferred on the etched surface. During this etching procedure the layer density evolves gradually and the spectral reflectance decreases exponentially with the depth in porous layer. We analyzed properties of the layer porosity by incorporating the porosity gradient into construction of the layer spectral reflectance theoretical model. Analyzed layer is splitted into 20 sublayers in our approach. Complex dielectric function in each sublayer is computed by using Bruggeman effective media theory and the theoretical spectral reflectance of modelled multilayer system is computed by using Abeles matrix formalism. Porosity gradient is extracted from the theoretical reflectance model optimized in comparison to the experimental values. Resulting values of the structure porosity development provide important information for optimization of the technological treatment operations.
NASA Astrophysics Data System (ADS)
Chavan, Vivek; Agarwal, Chhavi; Shinde, Rakesh N.
2018-06-01
In present work, an approach has been used to form a phosphate groups bearing surface barrier on a cation-exchange membrane (CEM). Using optimized conditions, the phosphate bearing monomer bis[2-(methacryloyloxy)ethyl] phosphate has been grafted on the surface of the host poly(ethersulfone) membranes using UV light induced polymerization. The detailed characterizations have shown that less than a micron layer of phosphate barrier is formed without disturbing the original microporous structure of the host membrane. The pores of thus formed membrane have been blocked by cationic-gel formed by in situ UV-initiator induced polymerization of 2-acrylamido-2-methyl-1-propane sulphonic acid along with crosslinker ethylene glycol dimethacrylate in the pores of the membrane. UV-initiator is required for pore-filling as UV light would not penetrate the interior matrix of the membrane. The phosphate functionalized barrier membrane has been examined for permselectivity using a mixture of representative complexing Am3+ ions and non-complexing Cs+ ions. This experiment has demonstrated that complex forming Am3+ ions are blocked by phosphate barrier layer while non-complexing Cs+ ions are allowed to pass through the channels formed by the crosslinked cationic gel.
Canopy-wake dynamics: the failure of the constant flux layer
NASA Astrophysics Data System (ADS)
Stefan, H. G.; Markfort, C. D.; Porte-Agel, F.
2013-12-01
The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) was investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the data interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35 - 100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest to a clearing or lake is proposed.
Complex technology of vacuum-arc processing of structural material surface
NASA Astrophysics Data System (ADS)
Arustamov, V. N.; Ashurov, Kh. B.; Kadyrov, Kh. Kh.; Khudoikulov, I. Kh.
2015-08-01
The development of environmentally friendly and energy-resource-saving technologies based on vacuum arc discharge is a topical problem in science and engineering. In view of their unique properties, cathode spots of a vacuum arc induce cleaning of the surface of an article (cathode) from various contaminations and pulsed thermal action on the surface layers. These processes occur in complex with vacuum-arc deposition of coatings in the same technological cycle, which makes it possible to considerably increase the efficiency of methods for changing physical, mechanical, and chemical properties of the surface of steel articles, which considerably increase their service life. Analysis of the formation of the temperature regime of the surface during vacuum arc action and of the parameters of the deposited coating will make it possible to optimize the regimes of complex treatment of the surfaces of articles and is of considerable theoretical and practical importance.
NASA Astrophysics Data System (ADS)
Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando
2014-11-01
Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).
NASA Astrophysics Data System (ADS)
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
NASA Astrophysics Data System (ADS)
Alves, Marta M.; Marques, Luísa M.; Nogueira, Isabel; Santos, Catarina F.; Salazar, Sara B.; Eugénio, Sónia; Mira, Nuno P.; Montemor, M. F.
2018-07-01
Zinc (Zn) has been proposed as an alternative metallic biodegradable material to support transient wound-healing processes. Once a Zn piece is implanted inside the organism the degradation will depend upon the physiological surrounding environment. This, by modulating the composition of the surface layers formed on Zn devices, will govern the subsequent interactions with the surrounding living cells (e.g. biocompatibility and/or antifungal behaviour). In silico simulation of an implanted Zn piece at bone-muscle interface or inside the bone yielded the preferential precipitation of simonkolleite or zincite, respectively. To study the impact of these surface layers in the in vitro behaviour of Zn biomaterials, simonkolleite and zincite where synthesised. The successful production of simonkolleite or zincite was confirmed by an extensive physicochemical characterization. An in vitro layer formed on the top of these surface layers revealed that simonkolleite was rather inert, while zincite yielded a complex matrix containing hydroxyapatite, an important bone analogue. When analysing the "anti-biofilm" activity simonkolleite stood out for its activity against an important pathogenic fungi involved in implant-device infections, Candida albicans. The possible physiological implications of these findings are discussed.
Extrinsic curvature, geometric optics, and lamellar order on curved substrates
NASA Astrophysics Data System (ADS)
Kamien, Randall D.; Nelson, David R.; Santangelo, Christian D.; Vitelli, Vincenzo
2009-11-01
When thermal energies are weak, two-dimensional lamellar structures confined on a curved substrate display complex patterns arising from the competition between layer bending and compression in the presence of geometric constraints. We present broad design principles to engineer the geometry of the underlying substrate so that a desired lamellar pattern can be obtained by self-assembly. Two distinct physical effects are identified as key factors that contribute to the interaction between the shape of the underlying surface and the resulting lamellar morphology. The first is a local ordering field for the direction of each individual layer, which tends to minimize its curvature with respect to the three-dimensional embedding. The second is a nonlocal effect controlled by the intrinsic geometry of the surface that forces the normals to the (nearly incompressible) layers to lie on geodesics, leading to caustic formation as in optics. As a result, different surface morphologies with predominantly positive or negative Gaussian curvature can act as converging or diverging lenses, respectively. By combining these ingredients, as one would with different optical elements, complex lamellar morphologies can be obtained. This smectic optometry enables the manipulation of lamellar configurations for the design of materials.
Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition
Sunny, Steffi; Vogel, Nicolas; Howell, Caitlin; ...
2014-09-01
Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. As a result, the LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less
Lubricant-Infused Nanoparticulate Coatings Assembled by Layer-by-Layer Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunny, S; Vogel, N; Howell, C
2014-09-01
Omniphobic coatings are designed to repel a wide range of liquids without leaving stains on the surface. A practical coating should exhibit stable repellency, show no interference with color or transparency of the underlying substrate and, ideally, be deposited in a simple process on arbitrarily shaped surfaces. We use layer-by-layer (LbL) deposition of negatively charged silica nanoparticles and positively charged polyelectrolytes to create nanoscale surface structures that are further surface-functionalized with fluorinated silanes and infiltrated with fluorinated oil, forming a smooth, highly repellent coating on surfaces of different materials and shapes. We show that four or more LbL cycles introducemore » sufficient surface roughness to effectively immobilize the lubricant into the nanoporous coating and provide a stable liquid interface that repels water, low-surface-tension liquids and complex fluids. The absence of hierarchical structures and the small size of the silica nanoparticles enables complete transparency of the coating, with light transmittance exceeding that of normal glass. The coating is mechanically robust, maintains its repellency after exposure to continuous flow for several days and prevents adsorption of streptavidin as a model protein. The LbL process is conceptually simple, of low cost, environmentally benign, scalable, automatable and therefore may present an efficient synthetic route to non-fouling materials.« less
NASA Astrophysics Data System (ADS)
Litt, Maxime; Steiner, Jakob F.; Stigter, Emmy E.; Immerzeel, Walter; Shea, Joseph Michael
2017-04-01
Over debris-covered glaciers, water content variations in the debris layer can drive significant changes in its thermal conductivity and significantly impact melt rates. Since sublimation and evaporation are favoured in high-altitude conditions, e.g., low atmospheric pressure and high wind speeds, they are expected to strongly influence the water balance of the debris-layer. Dedicated latent heat fluxes measurements at the debris surface are essential to characterize the debris heat conductivity in order to assess underlying ice melt. Furthermore, the contribution of the turbulent fluxes in the surface energy balance over debris covered glacier remains uncertain since they are generally evaluated through similarity methods which might not be valid in complex terrain. We present the first results of a 15-day eddy-covariance experiment installed at the end of the monsoon (September-October) on a 3-m tower above the debris-covered Lirung glacier in Nepal. The tower also included measurements of the 4 radiation components. The eddy covariance measurements allowed for the characterization of the turbulence in the atmospheric surface layer, as well as the direct measurements of evaporation, sublimation and turbulent sensible heat fluxes. The experiment helps us to evaluate the contribution of turbulent fluxes to the surface energy balance over this debris-covered glacier, through a precise characterization of the overlying turbulent atmospheric surface layer. It also helps to study the role of the debris-layer water content changes through evaporation and sublimation and its feedback on heat conduction in this layer. The large observed turbulent fluxes play a significant role in the energy balance at the debris surface and significantly influence debris moisture, conductivity and subsequently underlying ice melt.
Review: the atmospheric boundary layer
NASA Astrophysics Data System (ADS)
Garratt, J. R.
1994-10-01
An overview is given of the atmospheric boundary layer (ABL) over both continental and ocean surfaces, mainly from observational and modelling perspectives. Much is known about ABL structure over homogeneous land surfaces, but relatively little so far as the following are concerned, (i) the cloud-topped ABL (over the sea predominantly); (ii) the strongly nonhomogeneous and nonstationary ABL; (iii) the ABL over complex terrain. These three categories present exciting challenges so far as improved understanding of ABL behaviour and improved representation of the ABL in numerical models of the atmosphere are concerned.
NASA Astrophysics Data System (ADS)
Czajkowski, Klaus; Ratzke, Markus; Varlamova, Olga; Reif, Juergen
2017-09-01
We investigate femtosecond laser induced periodic surface structures (LIPSS) on a complex multilayer target, namely a 20-GB computer hard disk (HD), consisting of a metallic substrate, a magnetic layer, and a thin polymeric protective layer. Depending on the dose (fluence × number of pulses) first the polymeric cover layer is completely removed, revealing a periodic surface modulation of the magnetic layer which seems not to be induced by the laser action. At higher dose, the magnetic layer morphology is strongly modified by laser-induced periodic structures (LIPS) and, finally, kind of an etch stop is reached at the bottom of the magnetic layer. The LIPS shows very high modulation depth below and above the original surface level. In the present work, the role of magnetization and magneto-mechanic forces in the structure formation process is studied by monitoring the bit-wise magnetization of the HD with a magnetic force microscope. It is shown that the structures at low laser dose are reflecting the magnetic bits. At higher dose the magnetic influence appears to be extinguished on the account of LIPS. This suggests a transient overcoming the Curie temperature and an associated loss of magnetic order. The results compare well with our model of LIPS/LIPSS formation by self-organized relaxation from a laser-induced thermodynamic instability.
Boundary Layer Flow Over a Moving Wavy Surface
NASA Astrophysics Data System (ADS)
Hendin, Gali; Toledo, Yaron
2016-04-01
Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.
Temperature Controlled Electrostatic Disorder and Polymorphism in Ultrathin Films of α-Sexithiophene
NASA Astrophysics Data System (ADS)
Hoffman, Benjamin; Jafari, Sara; McAfee, Terry; Apperson, Aubrey; O'Connor, Brendan; Dougherty, Daniel
Competing phases in well-ordered alpha-sexithiophene (α-6T) are shown to contribute to electrostatic disorder observed by differences in surface potential between mono- and bi-layer crystallites. Ultrathin films are of key importance to devices in which charge transport occurs in the first several monolayers nearest to a dielectric interface (e.g. thin film transistors) and complex structures in this regime impact the general electrostatic landscape. This study is comprised of 1.5 ML sample crystals grown via organic molecular beam deposition onto a temperature controlled hexamethyldisilazane (HMDS) passivated SiO2 substrate to produce well-ordered layer-by-layer type growth. Sample topography and surface potential were characterized simultaneously using Kelvin Probe Force Microscopy to then isolate contact potential differences by first and second layer α-6T regions. Films grown on 70° C, 120° C substrates are observed to have a bilayer with lower, higher potential than the monolayer, respectively. Resulting interlayer potential differences are a clear source of electrostatic disorder and are explained as subtle shifts in tilt-angles between layers relative to the substrate. These empirical results continue our understanding of how co-existing orientations contribute to the complex electrostatics influencing charge transport. NSF CAREER award DMR-1056861.
NASA Astrophysics Data System (ADS)
Romankov, S.; Park, Y. C.; Shchetinin, I. V.
2017-11-01
Cobalt (Co), molybdenum (Mo), and nickel (Ni) components were simultaneously introduced onto titanium (Ti) surfaces from a composed target using ball collisions. Tungsten carbide (WC) balls were selected for processing as the source of a cemented carbide reinforcement phase. During processing, ball collisions continuously introduced components from the target and the grinding media onto the Ti surface and induced mechanical intermixing of the elements, resulting in formation of a complex nanocomposite structure onto the Ti surface. The as-fabricated microstructure consisted of uniformly dispersed WC particles embedded within an integrated metallic matrix composed of an amorphous phase with nanocrystalline grains. The phase composition of the alloyed layers, atomic reactions, and the matrix grain sizes depended on the combination of components introduced onto the Ti surface during milling. The as-fabricated layer exhibited a very high hardness compared to industrial metallic alloys and tool steel materials. This approach could be used for the manufacture of both cemented carbides and amorphous matrix composite layers.
Tear Film Dynamics: the roles of complex structure and rheology
NASA Astrophysics Data System (ADS)
Dey, Mohar; Feng, James; Vivek, Atul S.; Dixit, Harish N.; Richhariya, Ashutosh
2016-11-01
Ocular surface infections such as microbial and fungal keratitis are among leading causes of blindness in the world. A thorough understanding of the pre-corneal tear film dynamics is essential to comprehend the role of various tear layer components in the escalation of such ocular infections. The pre-corneal tear film comprises of three layers of complex fluids, viz. the innermost mucin layer, a hydrophilic protective cover over the sensitive corneal epithelium, the intermediate aqueous layer that forms the bulk of the tear film and is often embedded with large number of bio-polymers either in the form of soluble mucins or pathogens, and finally the outermost lipid layer that stabilizes the film by decreasing the air/tear film interfacial tension. We have developed a comprehensive mathematical model to describe such a film by incorporating the effects of the non-uniform mucin distribution along with the complex rheology of the aqueous layer with/without pathogens, Marangoni effects from the lipid layer and the slip effects at the base of the tear film. A detailed linear stability analysis and a fully non-linear solution determine the break up time (BUT) of such a tear film. We also probe the role of the various components of the pre-corneal tear film in the dynamics of rupture.
Tang, Céline; Giaume, Domitille; Guerlou-Demourgues, Liliane; Lefèvre, Grégory; Barboux, Philippe
2018-05-30
To design novel layered materials, bottom-up strategy is very promising. It consists of (1) synthesizing various layered oxides, (2) exfoliating them, then (3) restacking them in a controlled way. The last step is based on electrostatic interactions between different layered oxides and is difficult to control. The aim of this study is to facilitate this step by predicting the isoelectric point (IEP) of exfoliated materials. The Multisite Complexation model (MUSIC) was used for this objective and was shown to be able to predict IEP from the mean oxidation state of the metal in the (hydr)oxides, as the main parameter. Moreover, the effect of exfoliation on IEP has also been calculated. Starting from platelets with a high basal surface area over total surface area, we show that the exfoliation process has no impact on calculated IEP value, as verified with experiments. Moreover, the restacked materials containing different monometallic (hydr)oxide layers also have an IEP consistent with values calculated with the model. This study proves that MUSIC model is a useful tool to predict IEP of various complex metal oxides and hydroxides.
Electrostatic Interactions and Self-Assembly in Polymeric Systems
NASA Astrophysics Data System (ADS)
Dobrynin, Andrey
Electrostatic interactions between macroions play an important role in different areas ranging from materials science to biophysics. They are main driving forces behind layer-by-layer assembly technique that allows self-assembly of multilayer films from synthetic polyelectrolytes, DNA, proteins and nanoparticles. They are responsible for complexation and reversible gelation between polyelectrolytes and proteins. In this talk, using results of the molecular dynamics simulations and analytical calculations, I will demonstrate what effect electrostatic interactions, counterion condensation and polymer solvent affinity have on a collapse of polyelectrolyte chain in a poor solvent conditions for the polymer backbone, on complexations and reversible gelation between polyelectrolytes and polyamholytes (unstructured proteins), on microphase separation transitions in spherical and planar charged brushes, and on a layer-by-layer assembly of charged nanoparticles and linear polyelectrolytes on charged surfaces. NSF DMR-1004576 DMR-1409710.
Large eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1993-01-01
One of the most exciting recent developments in the field of large eddy simulation (LES) is the dynamic subgrid-scale model. The dynamic model concept is a general procedure for evaluating model constants by sampling a band of the smallest scales actually resolved in the simulation. To date, the procedure has been used primarily in conjunction with the Smagorinsky model. The dynamic procedure has the advantage that the value of the model constant need not be specified a priori, but rather is calculated as a function of space and time as the simulation progresses. This feature makes the dynamic model especially attractive for flows in complex geometries where it is difficult or impossible to calibrate model constants. The dynamic model was highly successful in benchmark tests involving homogeneous and channel flows. Having demonstrated the potential of the dynamic model in these simple flows, the overall direction of the LES effort at CTR shifted toward an evaluation of the model in more complex situations. The current test cases are basic engineering-type flows for which Reynolds averaged approaches were unable to model the turbulence to within engineering accuracy. Flows currently under investigation include a backward-facing step, wake behind a circular cylinder, airfoil at high angles of attack, separated flow in a diffuser, and boundary layer over a concave surface. Preliminary results from the backward-facing step and cylinder wake simulations are encouraging. Progress on the LES of a boundary layer on a concave surface is discussed. Although the geometry of a concave wall is not very complex, the boundary layer that develops on its surface is difficult to model due to the presence of streamwise Taylor-Gortler vortices. These vortices arise as a result of a centrifugal instability associated with the convex curvature.
Mesh-based Monte Carlo code for fluorescence modeling in complex tissues with irregular boundaries
NASA Astrophysics Data System (ADS)
Wilson, Robert H.; Chen, Leng-Chun; Lloyd, William; Kuo, Shiuhyang; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann
2011-07-01
There is a growing need for the development of computational models that can account for complex tissue morphology in simulations of photon propagation. We describe the development and validation of a user-friendly, MATLAB-based Monte Carlo code that uses analytically-defined surface meshes to model heterogeneous tissue geometry. The code can use information from non-linear optical microscopy images to discriminate the fluorescence photons (from endogenous or exogenous fluorophores) detected from different layers of complex turbid media. We present a specific application of modeling a layered human tissue-engineered construct (Ex Vivo Produced Oral Mucosa Equivalent, EVPOME) designed for use in repair of oral tissue following surgery. Second-harmonic generation microscopic imaging of an EVPOME construct (oral keratinocytes atop a scaffold coated with human type IV collagen) was employed to determine an approximate analytical expression for the complex shape of the interface between the two layers. This expression can then be inserted into the code to correct the simulated fluorescence for the effect of the irregular tissue geometry.
A complex guided spectral transform Lanczos method for studying quantum resonance states
Yu, Hua-Gen
2014-12-28
A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to compute both bound and resonance states including energies, widths and wavefunctions. The algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials. They are used to span the guided spectral transform function determined by a retarded Green operator. An outer layer iteration is then carried out with the transform function to compute the eigen-pairs of the system. The guided spectral transform function is designed to have the same wavefunctions as the eigenstates of the originalmore » Hamiltonian in the spectral range of interest. Therefore the energies and/or widths of bound or resonance states can be easily computed with their wavefunctions or by using a root-searching method from the guided spectral transform surface. The new cGSTL algorithm is applied to bound and resonance states of HO₂, and compared to previous calculations.« less
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-01-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius. PMID:28008987
Stern Layer Structure and Energetics at Mica-Water Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourg, Ian C.; Lee, Sang Soo; Fenter, Paul
2017-04-11
The screening of surface charge by dissolved ions at solid liquid interfaces in the region of interfacial fluid known as the electrical double layer (EDL)-plays a recurrent role in surface science, from ion adsorption to colloidal mechanics to the transport properties of nanoporous media. A persistent unknown in theories of EDL-related phenomena is the structure of the Stern layer, the near-surface portion of the EDL where water molecules and adsorbed ions form specific short-range interactions with surface atoms. Here, we describe a set of synchrotron X-ray reflectivity (XRR) experiments and molecular dynamics (MD) simulations carried out under identical conditions formore » a range of 0.1 M alkali chloride (Li-, Na-, K-, Rb-, or CsCl) solutions on the basal surface of muscovite mica, a mineral isostructural to phyllosilicate clay minerals and one of the most widely studied reference surfaces in interfacial science. Our XRR and MD simulation results provide a remarkably consistent view of the structure and energetics of the Stern layer, with some discrepancy on the fraction of the minor outer-sphere component of Rb and on the adsorption energetics of Li. The results of both techniques, along with surface complexation model calculations, provide insight into the sensitivity of water structure and ion adsorption to surface topography and the type of adsorbed counterion.« less
NASA Astrophysics Data System (ADS)
Fang, Yunnan; Hester, Jimmy G. D.; Su, Wenjing; Chow, Justin H.; Sitaraman, Suresh K.; Tentzeris, Manos M.
2016-12-01
A bio-enabled, environmentally-friendly, and maximally mild layer-by-layer approach has been developed to surface modify inherently hydrophobic Kapton HN substrates to allow for great printability of both water- and organic solvent-based inks thus facilitating the full-inkjet-printing of flexible electronic devices. Different from the traditional Kapton surface modification approaches which are structure-compromising and use harsh conditions to target, and oxidize and/or remove part of, the surface polyimide of Kapton, the present Kapton surface modification approach targeted the surface electric charges borne by its additive particles, and was not only the first to utilize environmentally-friendly clinical biomolecules to build up a thin film of protamine-heparin complex on Kapton, but also the first to be conducted under minimally destructive and maximally mild conditions. Besides, for electrically charged ink particles, the present surface modification method can enhance the uniformity of the inkjet-printed films by reducing the “coffee ring effect”. As a proof-of-concept demonstration, reduced graphene oxide-based gas sensors, which were flexible, ultra-lightweight, and miniature-sized, were fully-inkjet-printed on surface modified Kapton HN films and tested for their sensitivity to dimethyl methylphosphonate (a nerve agent simulant). Such fabricated sensors survived a Scotch-tape peel test and were found insensitive to repeated bending to a small 0.5 cm radius.
NASA Astrophysics Data System (ADS)
Solanki, Raman; Dhaka, Surendra; Rajeev, Kunjukrishnapillai; Singh, Narendra; Nadimpally, Kirankumar
Diurnal evolution of atmospheric boundary layer over hilly terrains is highly complex and least understood. Fast-response micrometeorological observations carried out at Manora Peak, Nainital (29.2°N, 79.3°E, 1960 m ASL), a hill station located in the Central Himalayas during March-2013 to February-2014 has been used to investigate diurnal variations in the surface layer characteristics, energy budget and atmospheric circulation over complex terrains. This study mainly employs tower-based sonic anemometer observations (25 Hz) carried out at two levels (12 m and 27 m above the ground level) which are used to derive the variations of zonal, meridional and vertical winds, virtual temperature, momentum flux, turbulent kinetic energy, and Monin-Obukhov stability parameter during fair-weather conditions. In general, this station is manifested by warm and dry conditions as well as relatively high wind speed during pre-monsoon season (March-May); while highly moist conditions prevail during the summer monsoon season (June-September). The sensible heat flux (SHF) undergoes a prominent diurnal variation during winter and pre-monsoon seasons with peak values (200 to 400 Wm-2) occurring between 11-15 Local Time (LT) and weakly negative values (typically -20 Wm-2) during night, the latter indicating a downward transfer of heat from atmosphere to surface. The noon-time peak values systematically increases from winter to pre-monsoon season. Remarkably, the large noon-time values of SHF observed during the pre-monsoon season over this station (peak SHF of more than 400 Wm-2 during May) arise from the forced lifting of air masses, caused by the prevailing horizontal winds that blow perpendicular to the mountain. The intricate details of the surface layer parameters and fluxes over this site will assist in investigating how such a complex topography influences the flux generation process.
Structural investigations of human hairs by spectrally resolved ellipsometry
NASA Astrophysics Data System (ADS)
Chan, Danny; Schulz, Benjamin; Rübhausen, Michael; Wessel, Sonya; Wepf, Roger
2006-01-01
Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters Ψ and Δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair's structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we describe a dielectric model of hair that explains the spectra in terms of the dielectric properties of the major parts of hair and their associated layer thicknesses. In addition, surface roughness effects modeled by a roughness layer with a complex refractive index given by an effective medium approach can be seen to have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu=273 to 360 nm and the air inclusion fA=0.6 to 5.7%.
NASA Astrophysics Data System (ADS)
Lethuillier, A.; Le Gall, A.; Hamelin, M.; Caujolle-Bert, S.; Schreiber, F.; Carrasco, N.; Cernogora, G.; Szopa, C.; Brouet, Y.; Simões, F.; Correia, J. J.; Ruffié, G.
2018-04-01
In 2005, the complex permittivity of the surface of Saturn's moon Titan was measured by the PWA-MIP/HASI (Permittivity Wave Altimetry-Mutual Impedance Probe/Huygens Atmospheric Structure Instrument) experiment on board the Huygens probe. The analysis of these measurements was recently refined but could not be interpreted in terms of composition due to the lack of knowledge on the low-frequency/low-temperature electrical properties of Titan's organic material, a likely key ingredient of the surface composition. In order to fill that gap, we developed a dedicated measurement bench and investigated the complex permittivity of analogs of Titan's organic aerosols called "tholins." These laboratory measurements, together with those performed in the microwave domain, are then used to derive constraints on the composition of Titan's first meter below the surface based on both the PWA-MIP/HASI and the Cassini Radar observations. Assuming a ternary mixture of water ice, tholin-like dust and pores (filled or not with liquid methane), we find that at least 10% of water ice and 15% of porosity are required to explain observations. On the other hand, there should be at most 50-60% of organic dust. PWA-MIP/HASI measurements also suggest the presence of a thin conductive superficial layer at the Huygens landing site. Using accurate numerical simulations, we put constraints on the electrical conductivity of this layer as a function of its thickness (e.g., in the range 7-40 nS/m for a 7-mm thick layer). Potential candidates for the composition of this layer are discussed.
Smear layer-deproteinizing improves bonding of one-step self-etch adhesives to dentin.
Thanatvarakorn, Ornnicha; Prasansuttiporn, Taweesak; Thittaweerat, Suppason; Foxton, Richard M; Ichinose, Shizuko; Tagami, Junji; Hosaka, Keiichi; Nakajima, Masatoshi
2018-03-01
Smear layer deproteinizing was proved to reduce the organic phase of smear layer covered on dentin surface. It was shown to eliminate hybridized smear layer and nanoleakage expression in resin-dentin bonding interface of two-step self-etch adhesive. This study aimed to investigate those effects on various one-step self-etch adhesives. Four different one-step self-etch adhesives were used in this study; SE One (SE), Scotchbond™ Universal (SU), BeautiBond Multi (BB), and Bond Force (BF). Flat human dentin surfaces with standardized smear layer were prepared. Smear layer deproteinizing was carried out by the application of 50ppm hypochlorous acid (HOCl) on dentin surface for 15s followed by Accel ® (p-toluenesulfinic acid salt) for 5s prior to adhesive application. No surface pretreatment was used as control. Microtensile bond strength (μTBS) and nanoleakage under TEM observation were investigated. The data were analyzed by two-way ANOVA and Tukey's post-hoc test and t-test at the significant level of 0.05. Smear layer deproteinizing significantly improved μTBS of SE, SU, and BB (p<0.001). Hybridized smear layer observed in control groups of SE, BB, and BF, and reticular nanoleakage presented throughout the hybridized complex in control groups of BB and BF were eliminated upon the smear layer deproteinizing. Smear layer deproteinizing by HOCl and Accel ® application could enhance the quality of dentin for bonding to one-step self-etch adhesives, resulting in the improving μTBS, eliminating hybridized smear layer and preventing reticular nanoleakage formation in resin-dentin bonding interface. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Nanosecond Surface Microdischarges in Multilayer Structures
NASA Astrophysics Data System (ADS)
Dubinov, A. E.; Lyubimtseva, V. A.
2018-05-01
Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.
Modelling study of sea breezes in a complex coastal environment
NASA Astrophysics Data System (ADS)
Cai, X.-M.; Steyn, D. G.
This study investigates a mesoscale modelling of sea breezes blowing from a narrow strait into the lower Fraser valley (LFV), British Columbia, Canada, during the period of 17-20 July, 1985. Without a nudging scheme in the inner grid, the CSU-RAMS model produces satisfactory wind and temperature fields during the daytime. In comparison with observation, the agreement indices for surface wind and temperature during daytime reach about 0.6 and 0.95, respectively, while the agreement indices drop to 0.4 at night. In the vertical, profiles of modelled wind and temperature generally agree with tethersonde data collected on 17 and 19 July. The study demonstrates that in late afternoon, the model does not capture the advection of an elevated warm layer which originated from land surfaces outside of the inner grid. Mixed layer depth (MLD) is calculated from model output of turbulent kinetic energy field. Comparison of MLD results with observation shows that the method generates a reliable MLD during the daytime, and that accurate estimates of MLD near the coast require the correct simulation of wind conditions over the sea. The study has shown that for a complex coast environment like the LFV, a reliable modelling study depends not only on local surface fluxes but also on elevated layers transported from remote land surfaces. This dependence is especially important when local forcings are weak, for example, during late afternoon and at night.
Intercalated layered clay composites and their applications
NASA Astrophysics Data System (ADS)
Phukan, Anjali
Supported inorganic reagents are rapidly emerging as new and environmentally acceptable reagents and catalysts. The smectite group of layered clay minerals, such as, Montmorillonite, provides promising character for adsorption, catalytic activity, supports etc. for their large surface area, swelling behavior and ion exchange properties. Aromatic compounds intercalated in layered clays are useful in optical molecular devices. Clay is a unique material for adsorption of heavy metals and various toxic substances. Clay surfaces are known to be catalytically active due to their surface acidity. Acid activated clays possess much improved surface areas and acidities and have higher pore volumes so that can absorb large molecules in the pores. The exchangeable cations in clay minerals play a key role in controlling surface acidity and catalytic activity. Recently, optically active metal-complex-Montmorillonite composites are reported to be active in antiracemization purposes. In view of the above, a research work, relating to the preparation of different modified clay composites and their catalytic applications were carried out. The different aspects and results of the present work have been reported in four major chapters. Chapter I: This is an introductory chapter, which contains a review of the literature regarding clay-based materials. Clay minerals are phyllosilicates with layer structure. Montmorillonite, a member of smectite group of clay, is 2:1 phyllosilicate, where a layer is composed of an octahedral sheet sandwiched by two tetrahedral sheets. Such clay shows cation exchange capacity (CEC) and is expressed in milli-equivalents per 100 gm of dry clay. Clays can be modified by interaction with metal ion, metal complexes, metal cluster and organic cations for various applications. Clays are also modified by treating with acid followed by impregnation with metal salts or ions. Montmorillonite can intercalate suitable metal complexes in excess of CEC to form double or pseudo-trilayer composites. Metal ion and metal ion metal salts intercalated on Montmorillonite are efficient catalysts for Friedel-Crafts (FC) reactions, such as benzylation of benzene, synthesis of Raspberry ketone [4-(4'-hydroxyphenyl)butan-2-one] etc. Montmorillonite clay can be used as a good support for controlled release of pesticides and medicinal drugs, adsorbent for cationic dyes, toxic substances and heavy metals effective adsorbent for radioactive and toxic industrial wastes,...
Tearing modes induced by perpendicular electron cyclotron resonance heating in the KSTAR tokamak
NASA Astrophysics Data System (ADS)
Lee, H. H.; Lee, S. G.; Seol, J.; Aydemir, A. Y.; Bae, C.; Yoo, J. W.; Na, Y. S.; Kim, H. S.; Woo, M. H.; Kim, J.; Joung, M.; You, K. I.; Park, B. H.
2014-10-01
This paper reports on experimental evidence that shows perpendicular electron cyclotron resonance heating (ECRH) can trigger classical tearing modes when deposited near a rational flux surface. The complex evolution of an m = 2 island is followed during current ramp-up in KSTAR plasmas, from its initial onset as the rational surface enters the ECRH resonance layer to its eventual lock on the wall after the rational surface leaves the layer. Stability analysis coupled to a transport calculation of the current profile with ECRH shows that the perpendicular ECRH may play a significant role in triggering and destabilizing classical m = 2 tearing modes, in agreement with our experimental observation.
Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D
2018-03-22
Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.
Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear
NASA Astrophysics Data System (ADS)
Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.
2018-01-01
The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.
Kari, Otto K; Rojalin, Tatu; Salmaso, Stefano; Barattin, Michela; Jarva, Hanna; Meri, Seppo; Yliperttula, Marjo; Viitala, Tapani; Urtti, Arto
2017-04-01
When nanocarriers are administered into the blood circulation, a complex biomolecular layer known as the "protein corona" associates with their surface. Although the drivers of corona formation are not known, it is widely accepted that this layer mediates biological interactions of the nanocarrier with its surroundings. Label-free optical methods can be used to study protein corona formation without interfering with its dynamics. We demonstrate the proof-of-concept for a multi-parametric surface plasmon resonance (MP-SPR) technique in monitoring the formation of a protein corona on surface-immobilized liposomes subjected to flowing 100 % human serum. We observed the formation of formulation-dependent "hard" and "soft" coronas with distinct refractive indices, layer thicknesses, and surface mass densities. MP-SPR was also employed to determine the affinity (K D ) of a complement system molecule (C3b) with cationic liposomes with and without polyethylene glycol. Tendency to create a thick corona correlated with a higher affinity of opsonin C3b for the surface. The label-free platform provides a fast and robust preclinical tool for tuning nanocarrier surface architecture and composition to control protein corona formation.
Outer brain barriers in rat and human development
Brøchner, Christian B.; Holst, Camilla B.; Møllgård, Kjeld
2015-01-01
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer. PMID:25852456
Outer brain barriers in rat and human development.
Brøchner, Christian B; Holst, Camilla B; Møllgård, Kjeld
2015-01-01
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6-21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.
Zhu, Xiaojing; He, Jiangtao; Su, Sihui; Zhang, Xiaoliang; Wang, Fei
2016-05-01
To explore the interactions between soil organic matter and minerals, humic acid (HA, as organic matter), kaolin (as a mineral component) and Ca(2+) (as metal ions) were used to prepare HA-kaolin and Ca-HA-kaolin complexes. These complexes were used in trichloroethylene (TCE) sorption experiments and various characterizations. Interactions between HA and kaolin during the formation of their complexes were confirmed by the obvious differences between the Qe (experimental sorbed TCE) and Qe_p (predicted sorbed TCE) values of all detected samples. The partition coefficient kd obtained for the different samples indicated that both the organic content (fom) and Ca(2+) could significantly impact the interactions. Based on experimental results and various characterizations, a concept model was developed. In the absence of Ca(2+), HA molecules first patched onto charged sites of kaolin surfaces, filling the pores. Subsequently, as the HA content increased and the first HA layer reached saturation, an outer layer of HA began to form, compressing the inner HA layer. As HA loading continued, the second layer reached saturation, such that an outer-third layer began to form, compressing the inner layers. In the presence of Ca(2+), which not only can promote kaolin self-aggregation but can also boost HA attachment to kaolin, HA molecules were first surrounded by kaolin. Subsequently, first and second layers formed (with inner layer compression) via the same process as described above in the absence of Ca(2+), except that the second layer continued to load rather than reach saturation, within the investigated conditions, because of enhanced HA aggregation caused by Ca(2+). Copyright © 2016 Elsevier Ltd. All rights reserved.
Triton - Scattering models and surface/atmosphere constraints
NASA Technical Reports Server (NTRS)
Thompson, W. Reid
1989-01-01
Modeling of Triton's spectrum indicates a bright scattering layer of optical depth tau about 3 overlying an optically deep layer of CH4 with high absorption and little scattering. UV absorption in the spectrum indicates tau about 0.3 of red-yellow haze, although some color may also arise from complex organics partially visible on the surface. An analysis of this and other (spectro)photometric evidence indicates that Triton most likely has a bright surface, which was partially visible in 1977-1980. Geometric albedo p = 0.62 + 0.18 or - 0.12 radius r = 1480 + or - 180 km, and temperature T = 48 + or - 6 K. With scattering optical depths of 0.3-3 and about 1-10 mb of N2, a Mars-like atmospheric density and surface visibility pertain.
Natural and pyrogenic humic acids at goethite and natural oxide surfaces interacting with phosphate.
Hiemstra, Tjisse; Mia, Shamim; Duhaut, Pierre-Benoît; Molleman, Bastiaan
2013-08-20
Fulvic and humic acids have a large variability in binding to metal (hydr) oxide surfaces and interact differently with oxyanions, as examined here experimentally. Pyrogenic humic acid has been included in our study since it will be released to the environment in the case of large-scale application of biochar, potentially creating Darks Earths or Terra Preta soils. A surface complexation approach has been developed that aims to describe the competitive behavior of natural organic matter (NOM) in soil as well as model systems. Modeling points unexpectedly to a strong change of the molecular conformation of humic acid (HA) with a predominant adsorption in the Stern layer domain at low NOM loading. In soil, mineral oxide surfaces remain efficiently loaded by mineral-protected organic carbon (OC), equivalent with a layer thickness of ≥ ~0.5 nm that represents at least 0.1-1.0% OC, while surface-associated OC may be even three times higher. In natural systems, surface complexation modeling should account for this pervasive NOM coverage. With our charge distribution model for NOM (NOM-CD), the pH-dependent oxyanion competition of the organo-mineral oxide fraction can be described. For pyrogenic HA, a more than 10-fold increase in dissolved phosphate is predicted at long-term applications of biochar or black carbon.
Modeling liquid organic thin films on substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.; Johnson, Timothy J.; Myers, Tanya L.
We present the rationale, methods, and results of modeling of thin film organic liquids on various substrates. These liquids may coat surfaces (substrates) either as a result of their production, dispersal via aerosols or spills. Identification of unknown coated surfaces using either reflectance or emittance spectroscopy cannot be accomplished simply through reference to reflectance signature libraries since neither the thickness of the liquid layer nor the substrate type is known beforehand and both contribute to the signature. Liquid spectral libraries offer the complex index of refraction (n,k) as a function of wavelength which by itself is useful only for thickmore » (bulk) liquid layers via computation of reflectance and transmittance coefficients using the Fresnel equations. Thin liquid layers both reflect and refract incident light in combination with reflectance from the substrate. We show modeling of various organic liquids on substrates using commercial thin film design and modeling software, as well as Monte Carlo ray tracing software to demonstrate the variety of potential signatures encountered that depend on the thickness of the liquid layer as well as the characteristics of the substrate (metal or dielectric). These substrates give rise to transflectance behavior, while many dielectric substrates have rich absorption features that provide complex signatures that combine attributes of both the liquid and the substrate. Knowledge of the complex index of refraction of both target liquids and substrates is essential in order to synthesize spectra necessary in the application of target identification algorithms.« less
Jiang, Lei; Han, Juan; Yang, Limin; Ma, Hongchao; Huang, Bo
2015-10-07
Vocal folds are complex and multilayer-structured where the main layer is widely composed of hyaluronan (HA). The viscoelasticity of HA is key to voice production in the vocal fold as it affects the initiation and maintenance of phonation. In this study a simple layer-structured surface model was set up to mimic the structure of the vocal folds. The interactions between two opposing surfaces bearing HA were measured and characterised to analyse HA's response to the normal and shear compression at a stress level similar to that in the vocal fold. From the measurements of the quartz crystal microbalance, atomic force microscopy and the surface force balance, the osmotic pressure, normal interactions, elasticity change, volume fraction, refractive index and friction of both HA and the supporting protein layer were obtained. These findings may shed light on the physical mechanism of HA function in the vocal fold and the specific role of HA as an important component in the effective treatment of the vocal fold disease.
Zach-Maor, Adva; Semiat, Raphael; Shemer, Hilla
2011-11-15
Phosphate adsorption mechanism by a homogenous porous layer of nano-sized magnetite particles immobilized onto granular activated carbon (nFe-GAC) was studied for both interface and bulk structures. X-ray Photoelectron Spectroscopy (XPS) analysis revealed phosphate bonding to the nFe-GAC predominantly through bidentate surface complexes. It was established that phosphate was adsorbed to the magnetite surface mainly via ligand exchange mechanism. Initially, phosphate was adsorbed by the active sites on the magnetite surface, after which it diffused into the interior of the nano-magnetite layer, as indicated by intraparticle diffusion model. This diffusion process continues regardless of interface interactions, revealing some of the outer magnetite binding sites for further phosphate uptake. Desorption, using NaOH solution, was found to be predominantly a surface reaction, at which hydroxyl ions replace the adsorbed phosphate ions only at the surface outer biding sites. Five successive fix-bed adsorption/regeneration cycles were successfully applied, without significant reduction in the nFe-GAC adsorption capacity and at high regeneration efficiency. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Dietz, Nikolaus; Bachmann, Klaus J.
1995-01-01
This paper describes the results of real-time optical monitoring of epitaxial growth processes by p-polarized reflectance spectroscopy (PRS) using a single wavelength application under pulsed chemical beam epitaxy (PCBE) condition. The high surface sensitivity of PRS allows the monitoring of submonolayer precursors coverage on the surface as shown for GaP homoepitaxy and GaP on Si heteroepitaxy as examples. In the case of heteroepitaxy, the growth rate and optical properties are revealed by PRS using interference oscillations as they occur during growth. Super-imposed on these interference oscillations, the PRS signal exhibits a fine structure caused by the periodic alteration of the surface chemistry by the pulsed supply of chemical precursors. This fine structure is modeled under conditions where the surface chemistry cycles between phosphorus supersaturated and phosphorus depleted surfaces. The mathematical model describes the fine structure using a surface layer that increases during the tertiarybutyl phosphine (TBP) supply and decreases during and after the triethylgallium (TEG) pulse, which increases the growing GaP film thickness. The imaginary part of the dielectric function of the surface layer is revealed from the turning points in the fine structure, where the optical response to the first precursor pulse in the cycle sequence changes sign. The amplitude of the fine structure is determined by the surface layer thickness and the complex dielectric functions for the surface layer with the underlying bulk film. Surface kinetic data can be obtained by analyzing the rise and decay transients of the fine structure.
NASA Astrophysics Data System (ADS)
Malyar, Ivan V.; Gorin, Dmitry A.; Stetsyura, Svetlana V.
2013-01-01
In this report we present the analysis of I-V curves for MIS-structures like silicon substrate / nanodimensional polyelectrolyte layer / metal probe (contact) which is promising for biosensors, microfluidic chips, different devices of molecular electronics, such as OLEDs, solar cells, where polyelectrolyte layers can be used to modify semiconductor surface. The research is directed to investigate the contact phenomena which influence the resulting signal of devices mentioned above. The comparison of I-V characteristics of such structures measured by scanning tunnel microscopy (contactless technique) and using contact areas deposited by thermal evaporation onto the organic layer (the contact one) was carried out. The photoassisted I-V measurements and complex analysis based on Simmons and Schottky models allow one to extract the potential barriers and to observe the changes of charge transport in MIS-structures under illumination and after polyelectrolyte adsorption. The direct correlation between the thickness of the deposited polyelectrolyte layer and both equilibrium tunnel barrier and Schottky barrier height was observed for hybrid structures with polyethylenimine. The possibility of control over the I-V curves of hybrid structure and the height of the potential barriers (for different charge transports) by illumination was confirmed. Based on experimental data and complex analysis the band diagrams were plotted which illustrate the changes of potential barriers for MIS-structures due to the polyelectrolyte adsorption and under the illumination.
NASA Astrophysics Data System (ADS)
Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.
2005-03-01
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.
Kim, Yebyeol; Bae, Jaehyun; Song, Hyun Woo; An, Tae Kyu; Kim, Se Hyun; Kim, Yun-Hi; Park, Chan Eon
2017-11-15
Electrohydrodynamic-jet (EHD-jet) printing provides an opportunity to directly assembled amorphous polymer chains in the printed pattern. Herein, an EHD-jet printed amorphous polymer was employed as the active layer for fabrication of organic field-effect transistors (OFETs). Under optimized conditions, the field-effect mobility (μ FET ) of the EHD-jet printed OFETs was 5 times higher than the highest μ FET observed in the spin-coated OFETs, and this improvement was achieved without the use of complex surface templating or additional pre- or post-deposition processing. As the chain alignment can be affected by the surface energy of the dielectric layer in EHD-jet printed OFETs, dielectric layers with varying wettability were examined. Near-edge X-ray absorption fine structure measurements were performed to compare the amorphous chain alignment in OFET active layers prepared by EHD-jet printing and spin coating.
Wake Dynamics in the Atmospheric Boundary Layer Over Complex Terrain
NASA Astrophysics Data System (ADS)
Markfort, Corey D.
The goal of this research is to advance our understanding of atmospheric boundary layer processes over heterogeneous landscapes and complex terrain. The atmospheric boundary layer (ABL) is a relatively thin (˜ 1 km) turbulent layer of air near the earth's surface, in which most human activities and engineered systems are concentrated. Its dynamics are crucially important for biosphere-atmosphere couplings and for global atmospheric dynamics, with significant implications on our ability to predict and mitigate adverse impacts of land use and climate change. In models of the ABL, land surface heterogeneity is typically represented, in the context of Monin-Obukhov similarity theory, as changes in aerodynamic roughness length and surface heat and moisture fluxes. However, many real landscapes are more complex, often leading to massive boundary layer separation and wake turbulence, for which standard models fail. Trees, building clusters, and steep topography produce extensive wake regions currently not accounted for in models of the ABL. Wind turbines and wind farms also generate wakes that combine in complex ways to modify the ABL. Wind farms are covering an increasingly significant area of the globe and the effects of large wind farms must be included in regional and global scale models. Research presented in this thesis demonstrates that wakes caused by landscape heterogeneity must be included in flux parameterizations for momentum, heat, and mass (water vapor and trace gases, e.g. CO2 and CH4) in ABL simulation and prediction models in order to accurately represent land-atmosphere interactions. Accurate representation of these processes is crucial for the predictions of weather, air quality, lake processes, and ecosystems response to climate change. Objectives of the research reported in this thesis are: 1) to investigate turbulent boundary layer adjustment, turbulent transport and scalar flux in wind farms of varying configurations and develop an improved modeling framework for wind farm - atmosphere interaction, 2) to determine how heterogeneous patches of forest affect the structure of the ABL and its interactions with clearings and water bodies, 3) to investigate how landscape heterogeneity, including wakes, may be parameterized in regional-scale weather and climate models to improve the representation of surface fluxes, e.g. from lakes/wetlands and forest clearings. To achieve these objectives, this research employs an interdisciplinary strategy, utilizing concepts and methods from fluid mechanics, micrometeorology, ecosystem ecology and environmental sciences, and combines laboratory and field experiments. In particular, a) wind tunnel experiments of flow through and over model wind farms and model forest canopies were used to improve our fundamental understanding of how wakes affect land-atmosphere coupling, including surface fluxes, after wind farm installation and for heterogeneous landscapes of canopies and clearings or lakes, and b) extensive field studies over lakes and wetlands were undertaken to study the effects of wakes downwind of forest canopies and the effect of wind sheltering on lake stratification dynamics and gas fluxes. These experiments were also used to improve and validate numerical simulation techniques for the atmospheric boundary layer, specifically the large eddy simulation technique, which is used to simulate flow in wind farms and flow over heterogeneous terrain.
Integration of Electrodeposited Ni-Fe in MEMS with Low-Temperature Deposition and Etch Processes
Schiavone, Giuseppe; Murray, Jeremy; Perry, Richard; Mount, Andrew R.; Desmulliez, Marc P. Y.; Walton, Anthony J.
2017-01-01
This article presents a set of low-temperature deposition and etching processes for the integration of electrochemically deposited Ni-Fe alloys in complex magnetic microelectromechanical systems, as Ni-Fe is known to suffer from detrimental stress development when subjected to excessive thermal loads. A selective etch process is reported which enables the copper seed layer used for electrodeposition to be removed while preserving the integrity of Ni-Fe. In addition, a low temperature deposition and surface micromachining process is presented in which silicon dioxide and silicon nitride are used, respectively, as sacrificial material and structural dielectric. The sacrificial layer can be patterned and removed by wet buffered oxide etch or vapour HF etching. The reported methods limit the thermal budget and minimise the stress development in Ni-Fe. This combination of techniques represents an advance towards the reliable integration of Ni-Fe components in complex surface micromachined magnetic MEMS. PMID:28772683
Modification of Low-Alloy Steel Surface by High-Temperature Gas Nitriding Plus Tempering
NASA Astrophysics Data System (ADS)
Jiao, Dongling; Li, Minsong; Ding, Hongzhen; Qiu, Wanqi; Luo, Chengping
2018-02-01
The low-alloy steel was nitrided in a pure NH3 gas atmosphere at 640 660 °C for 2 h, i.e., high-temperature gas nitriding (HTGN), followed by tempering at 225 °C, which can produce a high property surface coating without brittle compound (white) layer. The steel was also plasma nitriding for comparison. The composition, microstructure and microhardness of the nitrided and tempered specimens were examined, and their tribological behavior investigated. The results showed that the as-gas-nitrided layer consisted of a white layer composed of FeN0.095 phase (nitrided austenite) and a diffusional zone underneath the white layer. After tempering, the white layer was decomposed to a nano-sized (α-Fe + γ'-Fe4N + retained austenite) bainitic microstructure with a high hardness of 1150HV/25 g. Wear test results showed that the wear resistance and wear coefficient yielded by the complex HTGN plus tempering were considerably higher and lower, respectively, than those produced by the conventional plasma nitriding.
A pitfall in shallow shear-wave refraction surveying
Xia, J.; Miller, R.D.; Park, C.B.; Wightman, E.; Nigbor, R.
2002-01-01
The shallow shear-wave refraction method works successfully in an area with a series of horizontal layers. However, complex near-surface geology may not fit into the assumption of a series of horizontal layers. That a plane SH-wave undergoes wave-type conversion along an interface in an area of nonhorizontal layers is theoretically inevitable. One real example shows that the shallow shear-wave refraction method provides velocities of a converted wave rather than an SH- wave. Moreover, it is impossible to identify the converted wave by refraction data itself. As most geophysical engineering firms have limited resources, an additional P-wave refraction survey is necessary to verify if velocities calculated from a shear-wave refraction survey are velocities of converted waves. The alternative at this time may be the surface wave method, which can provide reliable S-wave velocities, even in an area of velocity inversion (a higher velocity layer underlain by a lower velocity layer). ?? 2002 Elsevier Science B.V. All rights reserved.
Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM
Johnson, Brant; Selle, Kurt; O’Flaherty, Sarah; Goh, Yong Jun
2013-01-01
Bacterial surface (S-) layers are crystalline arrays of self-assembling, proteinaceous subunits called S-layer proteins (Slps), with molecular masses ranging from 40 to 200 kDa. The S-layer-forming bacterium Lactobacillus acidophilus NCFM expresses three major Slps: SlpA (46 kDa), SlpB (47 kDa) and SlpX (51 kDa). SlpA has a demonstrated role in adhesion to Caco-2 intestinal epithelial cells in vitro, and has been shown to modulate dendritic cell (DC) and T-cell functionalities with murine DCs. In this study, a modification of a standard lithium chloride S-layer extraction revealed 37 proteins were solubilized from the S-layer wash fraction. Of these, 30 have predicted cleavage sites for secretion, 24 are predicted to be extracellular, six are lipid-anchored, three have N-terminal hydrophobic membrane spanning regions and four are intracellular, potentially moonlighting proteins. Some of these proteins, designated S-layer associated proteins (SLAPs), may be loosely associated with or embedded within the bacterial S-layer complex. Lba-1029, a putative SLAP gene, was deleted from the chromosome of L. acidophilus. Phenotypic characterization of the deletion mutant demonstrated that the SLAP LBA1029 contributes to a pro-inflammatory TNF-α response from murine DCs. This study identified extracellular proteins and putative SLAPs of L. acidophilus NCFM using LC-MS/MS. SLAPs appear to impart important surface display features and immunological properties to microbes that are coated by S-layers. PMID:24002751
NASA Technical Reports Server (NTRS)
Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy
1997-01-01
A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.
Capacitance-based damage detection sensing for aerospace structural composites
NASA Astrophysics Data System (ADS)
Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.
2014-04-01
Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (< 0.1 mm), but their detection capabilities is limited by defect locations and orientations and require massive inspection devices. System health monitoring (SHM) methods are often paired with NDE technologies to signal out sensed damage, but their data collection and analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.
Marean, C W; Goldberg, P; Avery, G; Grine, F E; Klein, R G
2000-01-01
Die Kelders Cave 1, first excavated under the direction of Franz Schweitzer in 1969-1973, was re-excavated between 1992 and 1995 by a combined team from the South African Museum, SUNY at Stony Brook, and Stanford University. These renewed excavations enlarged the artefactual and faunal samples from the inadequately sampled and less intensively excavated lower Middle Stone Age (MSA) layers, increased our understanding of the complex site formation processes within the cave, enlarged the hominid sample from the MSA deposits, and generated ESR, TL, and OSL dates for the MSA layers. Importantly, these new excavations dramatically improved our comprehension of the vertical and lateral characteristics of the MSA stratigraphy. Surface plotting of the MSA layers has led to the identification of at least two major zones of subsidence that significantly warped the layers, draping some along the eroding surface contours of major blocks of fallen limestone roof rock. A third zone of subsidence is probably present in the older excavations. Dramatic roof falls of very large limestone blocks occurred at least twice-once in the middle of Layer 4/5 where the roof blocks were only slightly weathered after collapse, and at the top of Layer 6 where the blocks weathered heavily after collapse, producing a zone of decomposed rock around the blocks. Many of the sandy strata are cut by small and localized faults and slippages. All of the strata documented by Schweitzer's excavations are present throughout the exposed area to the west of his excavated area, where many of them thicken and become more complex. Layer 6, the thickest MSA layer, becomes less diagenetically altered and compressed to the west. Copyright 2000 Academic Press.
Forced convection in the wakes of sliding bubbles
NASA Astrophysics Data System (ADS)
Meehan, O'Reilly; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.
2016-09-01
Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. However, the complex wake structures means that the surface cooling is not fully understood. The current study uses high speed infra-red thermography to measure the surface temperature and convective heat flux enhancement associated with an air bubble sliding under an inclined surface, with a particular focus on the wake. Enhancement levels of 6 times natural convection levels are observed, along with cooling patterns consistent with a possible hairpin vortex structure interacting with the thermal boundary layer. Local regions of suppressed convective heat transfer highlight the complexity of the bubble wake in two-phase applications.
Effects of Alternating Hydrogenated and Protonated Segments in polymers on their Wettability.
NASA Astrophysics Data System (ADS)
Smith, Dennis; Traiphol, Rakchart; Cheng, Gang; Perahia, Dvora
2003-03-01
Polymers consisting of alternating hydrogenated and fluorinated segments exhibit unique interfacial characteristics governed by the components that dominate the interface. Presence of fluorine reduces the interfacial energy and is expected to decrease the adhesion to the polymer surface. Thin liquid crystalline (LC) layers of 4,4?-octyl-cyanobiphenyl, cast on top of a polymeric layer consisting of alternating methylstylbine protonated segments bridged by a fluorinated group was used as a mechanistic tool to study of interfacial effects on three parameters: wetting, interfacial alignment and surface induces structures. The liquid crystal cast on a low interfacial energy fluorinated polymeric film exhibits bulk homeotropic alignment as expected. However it fully wetted the polymer surface despite the incompatibility of the protonated LC and mainly fluorinated polymer interface. Further more, it was found to stabilize the interfacial Semitic layers to a higher temperature and induce different surface ordering that was not observed at the same temperature neither in the bulk nor at the interfaces with silicon or glass surface. These results indicate that the interfacial interactions of polymers with liquid crystals are a complex function of both surface energies and the interfacial structure of the polymer.
Enhanced light extraction in tunnel junction-enabled top emitting UV LEDs
Zhang, Yuewei; Allerman, Andrew A.; Krishnamoorthy, Sriram; ...
2016-04-11
The efficiency of ultra violet LEDs has been critically limited by the absorption losses in p-type and metal layers. In this work, surface roughening based light extraction structures are combined with tunneling based p-contacts to realize highly efficient top-side light extraction efficiency in UV LEDs. Surface roughening of the top n-type AlGaN contact layer is demonstrated using self-assembled Ni nano-clusters as etch mask. The top surface roughened LEDs were found to enhance external quantum efficiency by over 40% for UV LEDs with a peak emission wavelength of 326 nm. The method described here can enable highly efficient UV LEDs withoutmore » the need for complex manufacturing methods such as flip chip bonding.« less
NASA Astrophysics Data System (ADS)
Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara
2016-04-01
We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.
The dynamics of heatwave over a coastal megacity
NASA Astrophysics Data System (ADS)
Ramamurthy, P.
2017-12-01
A majority of the current population in the U.S. resides in urban areas and nearly 40% live in urban coastal communities. These cities are disproportionately affected by extreme events such as heatwaves, hurricanes and extreme precipitation. The microclimate of the coastal cities is profoundly influenced by the interaction between the highly convective urban core and the moist sea breeze advection. However, such interactions are poorly characterized due to lack of observations over these complex terrains. Herein we use a comprehensive observational platform and numerical simulations to characterize the impact of heatwaves over New York City. As part of the campaign the urban boundary layer over New York City was continuously monitored during July 2016, a period that witnessed three heatwave events. Surface weather stations and indoor sensors were also used to characterize the urban heat island intensity. Our results reveal that during the month, the urban heat island intensity was nearly twice as compared to the decadal average. During the heatwave episodes urban heat island intensities as high as 10 ˚C were observed. The thermal profiles indicate elevated temperatures in much of the boundary layer between 800-2500 m during the heatwave episodes. The profiles indicate a complex thermal structure and high intra-city variability. Thermal internal boundary layer was observed in neighborhoods populated by tall buildings. The results show that heat released from buildings heating and air conditioning system during extreme heat events can be as high as 18 percent of the overall available energy. Overall the high-pressure system during the heatwave episodes acted as a thermal block and much of the heat generated in the urban surface layer remained within the boundary layer, thereby amplifying the near surface air temperature.
Photoactive Gel for Assisted Cleaning during Olive Mill Wastewater Membrane Microfiltration
Han, Yilong
2017-01-01
A photoactive gel has been fabricated on the surface of polyethylene membranes for enhancing the fouling resistance during olive mill wastewater treatment. Light and pH responsive materials have been introduced in the membrane surface through the build up of a layer-by-layer pattern, which is formed by photocatalytic nanoparticles and ionic polyelectrolytes. The best working conditions to contrast foulants adsorption have been explored and identified. Repulsive interfacial forces and assisted transfer of foulants to catalytic sites have been envisaged as crucial factors for contrasting the decline of the flux during microfiltration. Tests in submerged configuration have been implemented for six continuous hours under irradiation at two different pH conditions. As a result, a worthy efficiency of the photoactive gel has been reached when suitable chemical microenvironments have been generated along the shell side of the membranes. No additional chemical reagents or expensive back-flushing procedures have been necessary to further clean the membranes; rather, fast and reversible pH switches have been enough to remove residues, thereby preserving the integrity of the layer-by-layer (LBL) complex onto the membrane surface. PMID:29186819
Simulation of dynamic processes when machining transition surfaces of stepped shafts
NASA Astrophysics Data System (ADS)
Maksarov, V. V.; Krasnyy, V. A.; Viushin, R. V.
2018-03-01
The paper addresses the characteristics of stepped surfaces of parts categorized as "solids of revolution". It is noted that in the conditions of transition modes during the switch to end surface machining, there is cutting with varied load intensity in the section of the cut layer, which leads to change in cutting force, onset of vibrations, an increase in surface layer roughness, a decrease of size precision, and increased wear of a tool's cutting edge. This work proposes a method that consists in developing a CNC program output code that allows one to process complex forms of stepped shafts with only one machine setup. The authors developed and justified a mathematical model of a technological system for mechanical processing with consideration for the resolution of tool movement at the stages of transition processes to assess the dynamical stability of a system in the process of manufacturing stepped surfaces of parts of “solid of revolution” type.
Interaction of Vascular Smooth Muscle Cells Under Low Shear Stress
NASA Technical Reports Server (NTRS)
Seidel, Charles L.
1998-01-01
The blood vessel wall consists of three cellular layers, an outer adventitial, a middle medial and an inner intimal layer. When the blood vessel forms in the embryo it begins as a tube composed of a single cell type called endothelial cells. Over time, other cells are recruited from the surrounding tissue to form additional layers on the outer surface of the endothelial tube. The cells that are recruited are called mesenchymal cells. Mesenchymal cells are responsible for the production of connective tissue that holds the blood vessel together and for developing into vascular smooth muscle cells that are responsible for regulating the diameter of the vessel (1) and therefore, blood flow. In a fully developed blood vessel, the endothelial cells make- up the majority of cells in the intimal layer while the mesenchymal cells make-up the majority of cells in the medial and adventitial layers. Within the medial layer of a mature vessel, cells are organized into multiple circular layers of alternating bands of connective tissue and cells. The cell layer is composed of a mixture of mesenchymal cells that have not developed into smooth muscle cells and fully developed smooth muscle cells (2). The assembly and organization of complex tissues is directed in part by a signaling system composed of proteins on the cell surface called adhesion molecules. Adhesion molecules enable cells to recognize each other as well as the composition of the connective tissue in which they reside (3). It was hypothesized that the different cell types that compose the vascular wall possess different adhesion molecules that enable them to recognize each other and through this recognition system, form the complex layered organization of the vascular wall. In other words, the layered organization is an intrinsic property of the cells. If this hypothesis is correct then the different cells that make up the vessel wall, when mixed together, should organize themselves into a layered structure resembling an intact blood vessel. Experiments described below were designed to test this hypothesis.
Preparation and analysis of multilayer composites based on polyelectrolyte complexes
NASA Astrophysics Data System (ADS)
Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.; Baklagina, Yu. G.; Romanov, D. P.; Kononova, S. V.; Volod'ko, A. V.; Ermak, I. M.; Klechkovskaya, V. V.; Skorik, Yu. A.
2016-11-01
A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan-hyaluronic acid, chitosan-alginic acid, and chitosan-carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.
Structural investigations of human hairs by spectrally resolved ellipsometry
NASA Astrophysics Data System (ADS)
Schulz, Benjamin; Chan, D.; Ruebhausen, M.; Wessel, S.; Wepf, R.
2006-03-01
Human hair is a biological layered system composed of two major layers, the cortex and the cuticle. We show spectrally resolved ellipsometry measurements of the ellipsometric parameters ψ and δ of single human hairs. The spectra reflect the layered nature of hair and the optical anisotropy of the hair’s structure. In addition, measurements on strands of human hair show a high reproducibility of the ellipsometric parameters for different hair fiber bundles from the same person. Based on the measurements, we develop a model of the dielectric function of hair that explains the spectra. This model includes the dielectric properties of the cuticle and cortex as well as their associated layer thicknesses. In addition, surface roughness effects modelled by a roughness layer with an complex refractive index given by an effective medium approach can have a significant effect on the measurements. We derive values for the parameters of the cuticle surface roughness layer of the thickness dACu= 273-360 nm and the air inclusion fA= 0.6 -5.7%. [1] accepted for publication in J. Biomed Opt., 2005
Zhou, Lijie; Zhang, Zhiqiang; Xia, Siqing; Jiang, Wei; Ye, Biao; Xu, Xiaoyin; Gu, Zaoli; Guo, Wenshan; Ngo, Huu-Hao; Meng, Xiangzhou; Fan, Jinhong; Zhao, Jianfu
2014-01-01
Effects of the suspended titanium dioxide nanoparticles (TiO2 NPs, 50 mg/L) on the cake layer formation in a submerged MBR were systematically investigated. With nanometer sizes, TiO2 NPs were found to aggravate membrane pore blocking but postpone cake layer fouling. TiO2 NPs showed obvious effects on the structure and the distribution of the organic and the inorganic compounds in cake layer. Concentrations of fatty acids and cholesterol in the cake layer increased due to the acute response of bacteria to the toxicity of TiO2 NPs. Line-analysis and dot map of energy-dispersive X-ray were also carried out. Since TiO2 NPs inhibited the interactions between the inorganic and the organic compounds, the inorganic compounds (especially SiO2) were prevented from depositing onto the membrane surface. Thus, the postponed cake layer fouling was due to the changing features of the complexes on the membrane surface caused by TiO2 NPs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun
2017-11-01
The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.
NASA Astrophysics Data System (ADS)
Zhang, Wen; Liu, Peiqing; Guo, Hao; Wang, Jinjun
2017-11-01
The permutation entropy and the statistical complexity are employed to study the boundary-layer transition induced by the surface roughness. The velocity signals measured in the transition process are analyzed with these symbolic quantifiers, as well as the complexity-entropy causality plane, and the chaotic nature of the instability fluctuations is identified. The frequency of the dominant fluctuations has been found according to the time scales corresponding to the extreme values of the symbolic quantifiers. The laminar-turbulent transition process is accompanied by the evolution in the degree of organization of the complex eddy motions, which is also characterized with the growing smaller and flatter circles in the complexity-entropy causality plane. With the help of the permutation entropy and the statistical complexity, the differences between the chaotic fluctuations detected in the experiments and the classical Tollmien-Schlichting wave are shown and discussed. It is also found that the chaotic features of the instability fluctuations can be approximated with a number of regular sine waves superimposed on the fluctuations of the undisturbed laminar boundary layer. This result is related to the physical mechanism in the generation of the instability fluctuations, which is the noise-induced chaos.
A unified account of perceptual layering and surface appearance in terms of gamut relativity.
Vladusich, Tony; McDonnell, Mark D
2014-01-01
When we look at the world--or a graphical depiction of the world--we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance--based on a boarder theoretical framework called gamut relativity--that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications.
A Unified Account of Perceptual Layering and Surface Appearance in Terms of Gamut Relativity
Vladusich, Tony; McDonnell, Mark D.
2014-01-01
When we look at the world—or a graphical depiction of the world—we perceive surface materials (e.g. a ceramic black and white checkerboard) independently of variations in illumination (e.g. shading or shadow) and atmospheric media (e.g. clouds or smoke). Such percepts are partly based on the way physical surfaces and media reflect and transmit light and partly on the way the human visual system processes the complex patterns of light reaching the eye. One way to understand how these percepts arise is to assume that the visual system parses patterns of light into layered perceptual representations of surfaces, illumination and atmospheric media, one seen through another. Despite a great deal of previous experimental and modelling work on layered representation, however, a unified computational model of key perceptual demonstrations is still lacking. Here we present the first general computational model of perceptual layering and surface appearance—based on a boarder theoretical framework called gamut relativity—that is consistent with these demonstrations. The model (a) qualitatively explains striking effects of perceptual transparency, figure-ground separation and lightness, (b) quantitatively accounts for the role of stimulus- and task-driven constraints on perceptual matching performance, and (c) unifies two prominent theoretical frameworks for understanding surface appearance. The model thereby provides novel insights into the remarkable capacity of the human visual system to represent and identify surface materials, illumination and atmospheric media, which can be exploited in computer graphics applications. PMID:25402466
Viscous drag reduction in boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)
1990-01-01
The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.
NASA Astrophysics Data System (ADS)
Herman, K.; Mircescu, N. E.; Szabo, L.; Leopold, L. F.; Chiş, V.; Leopold, N.
2013-05-01
An improved approach for surface-enhanced Raman scattering (SERS) detection of mixture constituents after thin layer chromatography (TLC) separation is presented. A SERS active silver substrate was prepared under open air conditions, directly on the thin silica film by photo-reduction of silver nitrate, allowing the detection of binary mixtures of cresyl violet, bixine, crystal violet, and Cu(II) complex of 4-(2-pyridylazo)resorcinol. The recorded SERS spectrum provides a unique spectral fingerprint for each molecule; therefore the use of analyte standards is avoided, thus rendering the presented procedure advantageous compared to the conventional detection methodology in TLC.
NASA Astrophysics Data System (ADS)
Yan, Ru; He, Wei; Zhai, Tianhua; Ma, Houyi
2018-06-01
Seeing that amino trimethylene phosphonic acid (ATMP) possesses very strong complexation ability to metal ions and the phosphonic acid group has good affinity for the oxidized iron surface, herein a simple and rapid film-forming method (one-step assembly method) was developed to construct the ATMP-Zn complex conversion layers (ATMP-Zn layers for short) on the cold-rolled steel (CRS) substrate. Zinc ions were found to participate in the formation process of ATMP-based composite film, which made the Zn-containing ATMP film significantly different in appearance, thickness, microstructure and film-forming mechanisms from the Zn-free ATMP film. There was mainly iron (ш) phosphonate in the Zn-free ATMP film, whereas there were Zn2+-ATMP complex and a certain amount of ZnO in the ATMP-Zn composite film. In addition, electrochemical test results clearly indicate that corrosion resistance of ATMP-Zn composite film was greatly enhanced due to the presence of Zn component. Moreover, the corrosion resistance performance could be controlled by adjusting film-forming time, pH and ATMP concentration in the film-forming solutions. The present study provides a new method for the design and fabrication of high-quality environmentally-friendly conversion layers.
Effects of boundary-layer separation controllers on a desktop fume hood.
Huang, Rong Fung; Chen, Jia-Kun; Hsu, Ching Min; Hung, Shuo-Fu
2016-10-02
A desktop fume hood installed with an innovative design of flow boundary-layer separation controllers on the leading edges of the side plates, work surface, and corners was developed and characterized for its flow and containment leakage characteristics. The geometric features of the developed desktop fume hood included a rearward offset suction slot, two side plates, two side-plate boundary-layer separation controllers on the leading edges of the side plates, a slanted surface on the leading edge of the work surface, and two small triangular plates on the upper left and right corners of the hood face. The flow characteristics were examined using the laser-assisted smoke flow visualization technique. The containment leakages were measured by the tracer gas (sulphur hexafluoride) detection method on the hood face plane with a mannequin installed in front of the hood. The results of flow visualization showed that the smoke dispersions induced by the boundary-layer separations on the leading edges of the side plates and work surface, as well as the three-dimensional complex flows on the upper-left and -right corners of the hood face, were effectively alleviated by the boundary-layer separation controllers. The results of the tracer gas detection method with a mannequin standing in front of the hood showed that the leakage levels were negligibly small (≤0.003 ppm) at low face velocities (≥0.19 m/s).
NASA Astrophysics Data System (ADS)
Loria Salazar, S. M.; Holmes, H.; Panorska, A. K.; Arnott, W. P.; Barnard, J.
2016-12-01
Previous investigations have used satellite remote sensing to estimate surface air pollution concentrations. While most of these studies rely on models developed for the dark-vegetated eastern U.S., they are being used in the semi-arid western U.S without modifications. These models are not robust in the western U.S. due to: 1. Irregular topography that leads to complicated boundary layer physics, 2. Pollutant mixtures, 3. Heterogeneous vertical profile of aerosol concentrations, and 4. High surface reflectance. Here, results from Nevada and California demonstrate poor AOD correlation between AERONET MODIS retrievals. Smoke from wildfires strengthened the aerosol signal, but the MODIS versus AERONET AOD correlation did not improve significantly during fire events [r2 0.17 (non-fire), r2 0.2 (fire)]. Furthermore, aerosol from fires increased the normalized mean bias (NMB) of MODIS retrievals of AOD[NMB 82% (non-fire), NMB 146% (fire)]. Additional results of this investigation found that aerosol plumes confined with the boundary layer improves MODIS AOD retrievals. However, when this condition is not met (i.e., 70% of the time downwind of mountains regions) MODIS AOD has a poor correlation and high bias with respect to AERONET AOD. Fire injection height, complicated boundary layer mixing, and entrainment disperse smoke plumes into the free atmosphere. Therefore, smoke plumes exacerbate the complex aerosol transport typical in the western U.S. and the non-linear relationship between surface pollutant concentrations and conditions aloft. This work uses stochastic methods, including regression to investigate the influence of each of these physical behaviors on the MODIS, AERONET AOD discrepancy using surrogates for each physical phenomenon, e.g., surface albedo for surface reflectance, boundary layer height and elevation for complex mixing, aerosol optical height for vertical aerosol concentrations, and fire radiative power for smoke plume injection height.
Atom-scale depth localization of biologically important chemical elements in molecular layers.
Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean
2016-08-23
In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers' global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces.
Nanobiotechnology with S-layer proteins as building blocks.
Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola
2011-01-01
One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1998-01-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Surface plasmon resonance application for herbicide detection
NASA Astrophysics Data System (ADS)
Chegel, Vladimir I.; Shirshov, Yuri M.; Piletskaya, Elena V.; Piletsky, Sergey A.
1997-12-01
The optoelectronic biosensor, based on Surface Plasmon Resonance (SPR) for detection of photosynthesis-inhibiting herbicides in aqueous solutions is presented. The pesticide capability to replace plastoquinone from its complex with D1 protein is used for the detection. This replacement reaction results in the changes of the optical characteristics of protein layer, immobilized on the gold surface. Monitoring of these changes with SPR-technique permit to determine 0.1 - 5.0 mkg/ml herbicide in solution within one hour.
Three-dimensional printing and porous metallic surfaces: a new orthopedic application.
Melican, M C; Zimmerman, M C; Dhillon, M S; Ponnambalam, A R; Curodeau, A; Parsons, J R
2001-05-01
As-cast, porous surfaced CoCr implants were tested for bone interfacial shear strength in a canine transcortical model. Three-dimensional printing (3DP) was used to create complex molds with a dimensional resolution of 175 microm. 3DP is a solid freeform fabrication technique that can generate ceramic pieces by printing binder onto a bed of ceramic powder. A printhead is rastered across the powder, building a monolithic mold, layer by layer. Using these 3DP molds, surfaces can be textured "as-cast," eliminating the need for additional processing as with commercially available sintered beads or wire mesh surfaces. Three experimental textures were fabricated, each consisting of a surface layer and deep layer with distinct individual porosities. The surface layer ranged from a porosity of 38% (Surface Y) to 67% (Surface Z), whereas the deep layer ranged from 39% (Surface Z) to 63% (Surface Y). An intermediate texture was fabricated that consisted of 43% porosity in both surface and deep layers (Surface X). Control surfaces were commercial sintered beaded coatings with a nominal porosity of 37%. A well-documented canine transcortical implant model was utilized to evaluate these experimental surfaces. In this model, five cylindrical implants were placed in transverse bicortical defects in each femur of purpose bred coonhounds. A Latin Square technique was used to randomize the experimental implants left to right and proximal to distal within a given animal and among animals. Each experimental site was paired with a porous coated control site located at the same level in the contralateral limb. Thus, for each of the three time periods (6, 12, and 26 weeks) five dogs were utilized, yielding a total of 24 experimental sites and 24 matched pair control sites. At each time period, mechanical push-out tests were used to evaluate interfacial shear strength. Other specimens were subjected to histomorphometric analysis. Macrotexture Z, with the highest surface porosity, failed at a significantly higher shear stress (p = 0.05) than the porous coated controls at 26 weeks. It is postulated that an increased volume of ingrown bone, resulting from a combination of high surface porosity and a high percentage of ingrowth, was responsible for the observed improvement in strength. Macrotextures X and Y also had significantly greater bone ingrowth than the controls (p = 0.05 at 26 weeks), and displayed, on average, greater interfacial shear strengths than controls, although they were not statistically significant. Copyright 2001 John Wiley & Sons
Furukawa, Yoko; Dale, Jason R
2013-04-08
We investigated the surface characteristics of two strains of Shewanella sp., S. oneidensis MR-1 and S. putrefaciens 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which Shewanella cells were considered to be soft particles with water- and ion-permeable outermost layers. The soft layer of p200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of Shewanella sp. is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown p200 than for p200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of p200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend. The Shewanella surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of p200 and lypopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of Shewanella sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria's surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.
Anuracpreeda, Panat; Phutong, Sumittra; Ngamniyom, Arin; Panyarachun, Busaba; Sobhon, Prasert
2015-03-01
Adult Carmyerius spatiosus or stomach fluke has an elongate, cylindrical-shaped, straight to slightly curved body, with conical anterior end and truncated posterior end. The worm measures about 8.7-11.2mm in body length and 2.3-3.0mm in body width across the mid-section. When observed by SEM, the tegumental surface in all part of the body appears highly corrugated with ridges and furrows, and having no spines. The ventral surface has more complex corrugation than those of the dorsal surface. Both anterior and posterior suckers have thick edges covered with transverse folds and appear spineless. The genital pore is located at the anterior part of the body. There are two types of sensory papillae on the surface: type 1 is bulbous in shape with nipple-like tips; type 2 has a similar shape with short cilia on the tip. The dorsal surface exhibits similar surface features, but papillae appear less numerous and are smaller. When observed by TEM, the tegument is divided into four layers. The first layer includes the ridges and furrows which are covered by a trilaminate membrane underlined by a dense lamina and coated externally with the glycocalyx. The second layer of the tegument is a narrow region of cytoplasm that contains high concentrations of ovoid electron lucent tegumental granules (TG1), and disc-shaped electron dense tegumental granules (TG2) as well as lysosomes. TG1 close to the surface invariably exocytose their content into bottoms of the ridges, while some TG2 are fused and have their membrane joined up with the surface membrane. The third layer is the widest middle area of the tegument which contains numerous and evenly distributed mitochondria. Both TG1 and TG2 granules are present but in much fewer number than in the first and second layers. The fourth layer is the innermost zone that rests on and couples with a thick basal lamina. The cytoplasm in this layer is loosely packed and contains numerous infoldings of the basal plasma membrane with closely associated mitochondria. It also contains fairly large numbers of TG1 and TG2 granules which are produced and transported to the tegument by one type of tegumental cells lying in rows underneath the muscular layers. Copyright © 2014 Elsevier B.V. All rights reserved.
Youn, Il Seung; Kim, Dong Young; Singh, N Jiten; Park, Sung Woo; Youn, Jihee; Kim, Kwang S
2012-01-10
Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by δ bonds which originate from the interaction of π-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments.
Large scale magmatic event, magnetic anomalies and ore exploration in northern Norway
NASA Astrophysics Data System (ADS)
Pastore, Z.; Church, N. S.; ter Maat, G. W.; Michels, A.; McEnroe, S. A.; Fichler, C.; Larsen, R. B.
2016-12-01
More than 17000 km3of igneous melts intruded into the deep crust at ca. 560-580 Ma and formed the Seiland Igneous Province (SIP), the largest complex of mafic and ultramafic intrusions in northern Fennoscandia. The original emplacement of the SIP is matter of current discussion. The SIP is now located within the Kalak Nappe Complex (KNC), a part of the Middle Allochthon of the North Norwegian Caledonides. The province is believed to represent a cross section of the deep plumbing system of a large igneous province and it is known for its layered intrusions sharing geological features with large ore-forming exploration provinces. In this study we investigate one of the four major ultramafic complexes of the province, the Reinfjord Complex. This was emplaced during three magmatic events in a time span of 4 Ma, and consists in a cylindrically zoned complex with a slightly younger dunite core (Central Series) surrounded by wehrlite and lherzolite dominated series (Upper and Lower Layered Series). Sulphides are present throughout the complex, and an electromagnetic survey identified a Ni-Cu-and a PGE reef deposit within the dunite, 100 meters below the surface. This discovery increased the ore potential of the complex and subsequently 4 deep drill cores were made. High-resolution magnetic helicopter survey was later followed up with ground magnetic and gravity surveys. Extensive sampling of surface rocks and drill cores were made to measure the rock-magnetic and physical properties of the samples and to explore the subsurface structure of the complex. Here, we developed a magnetic model for the Reinfjord complex integrating petrophysical data from both oriented surface samples and from the deep drill cores, with the new ground magnetic, and helicopter data (SkyTEM survey). A 3D model of the geometry of the ultramafic intrusion is presented and a refinement of the geological interpretation of the Reinfjord ultramafic intrusion.
Song, Ji Hyun; Kim, Ji Yeon; Piao, Chunxian; Lee, Seonyeong; Kim, Bora; Song, Su Jeong; Choi, Joon Sig; Lee, Minhyung
2016-07-28
In this study, the efficacy of the high-mobility group box-1 box A (HMGB1A)/heparin complex was evaluated for the treatment of acute lung injury (ALI). HMGB1A is an antagonist against wild-type high-mobility group box-1 (wtHMGB1), a pro-inflammatory cytokine that is involved in ALIs. HMGB1A has positive charges and can be captured in the mucus layer after intratracheal administration. To enhance the delivery and therapeutic efficiency of HMGB1A, the HMGB1A/heparin complex was produced using electrostatic interactions, with the expectation that the nano-sized complex with a negative surface charge could efficiently penetrate the mucus layer. Additionally, heparin itself had an anti-inflammatory effect. Complex formation with HMGB1A and heparin was confirmed by atomic force microscopy. The particle size and surface charge of the HMGB1A/heparin complex at a 1:1 weight ratio were 113nm and -25mV, respectively. Intratracheal administration of the complex was performed into an ALI animal model. The results showed that the HMGB1A/heparin complex reduced pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β, more effectively than HMGB1A or heparin alone. Hematoxylin and eosin staining confirmed the decreased inflammatory reaction in the lungs after delivery of the HMGB1A/heparin complex. In conclusion, the HMGB1A/heparin complex might be useful to treat ALI. Copyright © 2016 Elsevier B.V. All rights reserved.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
Development of advanced micromirror arrays by flip-chip assembly
NASA Astrophysics Data System (ADS)
Michalicek, M. Adrian; Bright, Victor M.
2001-10-01
This paper presents the design, commercial prefabrication, modeling and testing of advanced micromirror arrays fabricated using a novel, simple and inexpensive flip-chip assembly technique. Several polar piston arrays and rectangular cantilever arrays were fabricated using flip-chip assembly by which the upper layers of the array are fabricated on a separate chip and then transferred to a receiving module containing the lower layers. Typical polar piston arrays boast 98.3% active surface area, highly planarized surfaces, low address potentials compatible with CMOS electronics, highly standardized actuation between devices, and complex segmentation of mirror surfaces which allows for custom aberration configurations. Typical cantilever arrays boast large angles of rotation as well as an average surface planarity of only 1.779 nm of RMS roughness across 100 +m mirrors. Continuous torsion devices offer stable operation through as much as six degrees of rotation while binary operation devices offer stable activated positions with as much as 20 degrees of rotation. All arrays have desirable features of costly fabrication services like five structural layers and planarized mirror surfaces, but are prefabricated in the less costly MUMPs process. Models are developed for all devices and used to compare empirical data.
NASA Astrophysics Data System (ADS)
Chu, Minghan; Meng, Fanxiao; Bergstrom, Donald J.
2017-11-01
An in-house computational fluid dynamics code was used to simulate turbulent flow over a flat plate with a step change in roughness, exhibiting a smooth-rough-smooth configuration. An internal boundary layer (IBL) is formed at the transition from the smooth to rough (SR) and then the rough to smooth (RS) surfaces. For an IBL the flow far above the surface has experienced a wall shear stress that is different from the local value. Within a Reynolds-Averaged-Navier-Stokes (RANS) formulation, the two-layer k- ɛ model of Durbin et al. (2001) was implemented to analyze the response of the flow to the change in surface condition. The numerical results are compared to experimental data, including some in-house measurements and the seminal work of Antonia and Luxton (1971,72). This problem captures some aspects of roughness in industrial and environmental applications, such as corrosion and the earth's surface heterogeneity, where the roughness is often encountered as discrete distributions. It illustrates the challenge of incorporating roughness models in RANS that are capable of responding to complex surface roughness profiles.
Pokrovsky, O S; Pokrovski, G S; Schott, J
2004-11-15
Adsorption of Ga on calcite, magnesite, amorphous silica, and manganese oxide as a function of pH and gallium concentration in solution was studied using a batch adsorption technique. Adsorbed complexes of Ga on calcite, magnesite, and delta-MnO2 were further characterized using XAFS spectroscopy. At high surface loadings from supersaturated solutions, Ga is likely to form a polymeric network at the surface (edge- and corner-sharing octahedra). At low surface loadings, Ga presents as isolated octahedra, probably attached to the Me-O sites on the surface, and coordinated by water molecules and hydroxide groups at 1.90-1.94 A. At pH>6, Ga therefore changes its coordination from 4 to 6 when adsorbing from solution (Ga(OH)(-)4(aq)) onto metal surface sites (MeOGa(OH)n(H2O)2-n(5-n), Me = Ca, Mg, or Mn, and n=1 and 2 for carbonate minerals and MnO2, respectively). Because the EXAFS is not capable of seeing hydrogen atoms, the protonation of surface complexes was determined by fitting the experimental pH-dependent Ga adsorption edge. A surface complexation model which assumes the constant capacitance of the electric double layer (CCM) and postulates the formation of positively charged, neutral and negatively charged surface complexes for carbonates, manganese oxide and silica, respectively, was used to describe the dependence of adsorption equilibria on aqueous solution composition in a wide range of pH and Ga concentration.
NASA Astrophysics Data System (ADS)
Dilawary, Shaikh Asad Ali; Motallebzadeh, Amir; Afzal, Muhammad; Atar, Erdem; Cimenoglu, Huseyin
2018-05-01
Laser surface melting (LSM) process has been applied on the plasma transferred arc (PTA) deposited Stellite 12 and 10 wt% Mo alloyed Stellite 12 in this study. Following the LSM process, structural and mechanical property comparison of the LSM'ed surfaces has been made. Hardness of the LSM'ed surfaces was measured as 549 HV and 623 HV for the Stellite 12 and Stellite 12 + 10 wt% Mo deposits, respectively. Despite their different hardness and structural features, the LSM'ed surfaces exhibited similar tribological performance at room temperature (RT), where fatigue wear mechanism operates. However, the wear at 500 °C promotes tribo-oxide layer formation whose composition depended on the alloying with Mo. Thus, addition of 10 wt% Mo into Stellite 12 PTA deposit has remarkably enhanced the high temperature wear performance of the LSM'ed surface as a result of participation of complex oxide (CoMoO4) in tribo-oxide layer.
NASA Technical Reports Server (NTRS)
2004-01-01
11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles). The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.A revised surface age for the North Polar Layered Deposits of Mars
Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.
2016-01-01
The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.
Growth of carbon structured over Pd, Pt and Ni: A comparative DFT study
NASA Astrophysics Data System (ADS)
Quiroga, Matías Abel
2013-03-01
To elucidate the graphene-like structures mechanisms growth over the M(1 1 1) surface (M = Pd, Pt and Ni) we performed ab initio calculus in the frame of density functional theory with the exchange-correlation functional treated according to the Generalized Gradient Approximation (GGA). In order to avoid the problem that represent the complex interaction between the well formed graphene layer and the metallic surface, we recreate the carbon rings formation initial steps, by adding one by one carbon atoms over M(1 1 1) surface. With this strategy, the chemical bonding is always present until the graphene layer is well formed, in which case the GGA neglects van der Waals dispersive forces. We investigate the electronic properties by studying the band structure and the density of states.
Detection of Threat Materials Using Terahertz Waveguides and Long Pathlength Terahertz Spectroscopy
2015-05-01
intramolecular modes. Therefore a complex spectrum is anticipated. In the range between 0.2 THz and 3.0 THz there have been several free space THz...narrowing. A more complex underlying spectrum is only suggested, but not resolved. A PETN layer was formed on an Au-coated PPWG surface by drop casting...structure of the analyte, or complex formation where metal ions incorporate into the lattice of the analyte. In each of these cases the resulting THz
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
Mitran, Sorin
2013-01-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale. PMID:23729842
Influence of interfacial rheology on stabilization of the tear film
NASA Astrophysics Data System (ADS)
Bhamla, M. Saad; Fuller, Gerald G.
2014-11-01
The tear film that protecting the ocular surface is a complex, thin film comprised of a collection of proteins and lipids that come together to provide a number of important functions. Of particular interest in this presentation is meibum, an insoluble layer that is spread from glands lining our eyelids. Past work has focussed on the role of this layer in reducing evaporation, although conflicting evidence on its ability to reduce evaporative loss has been published. We present here the beneficial effects that are derived through the interfacial viscoelasticity of the meibomian lipid film. This is a duplex film is comprised of a rich mixture of phospholipids, long chain fatty esters, and cholesterol esters. Using interfacial rheology measurements, meibum has been shown to be highly viscoelastic. By measuring the drainage and dewetting dynamics of thin aqueous films from hemispherical surfaces where those films are laden with insoluble layers of lipids at controlled surface pressure, we offer evidence that these layers strongly stabilize the films because of their ability to support surface shearing stresses. This alternative view of the role of meibum can help explain the origin of meibomian gland dysfunction, or dry eye disease, where improper compositions of this lipid mixture do not offer the proper mechanical resistance to breakage and dewetting of the tear film.
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitran, Sorin, E-mail: mitran@unc.edu
2013-07-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough,more » upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.« less
Continuum-kinetic-microscopic model of lung clearance due to core-annular fluid entrainment
NASA Astrophysics Data System (ADS)
Mitran, Sorin
2013-07-01
The human lung is protected against aspirated infectious and toxic agents by a thin liquid layer lining the interior of the airways. This airway surface liquid is a bilayer composed of a viscoelastic mucus layer supported by a fluid film known as the periciliary liquid. The viscoelastic behavior of the mucus layer is principally due to long-chain polymers known as mucins. The airway surface liquid is cleared from the lung by ciliary transport, surface tension gradients, and airflow shear forces. This work presents a multiscale model of the effect of airflow shear forces, as exerted by tidal breathing and cough, upon clearance. The composition of the mucus layer is complex and variable in time. To avoid the restrictions imposed by adopting a viscoelastic flow model of limited validity, a multiscale computational model is introduced in which the continuum-level properties of the airway surface liquid are determined by microscopic simulation of long-chain polymers. A bridge between microscopic and continuum levels is constructed through a kinetic-level probability density function describing polymer chain configurations. The overall multiscale framework is especially suited to biological problems due to the flexibility afforded in specifying microscopic constituents, and examining the effects of various constituents upon overall mucus transport at the continuum scale.
Cantilevered multilevel LIGA devices and methods
Morales, Alfredo Martin; Domeier, Linda A.
2002-01-01
In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.
On the Development of Models for Height Profiles of the Wind Speed in the Atmospheric Surface Layer
NASA Astrophysics Data System (ADS)
Nikolaev, V. G.; Ganaga, S. V.; Kudryashov, Yu. I.; Nikolaev, V. V.
2018-03-01
The reliability of the known models of a height profile of the wind speed V( h) in the atmospheric boundary layer (ABL) and near-surface layer (NSL) is analyzed using the data of long-term ABL measurements accumulated in Russia in the state network of meteorological and aerological stations and the data of multilevel measurements at mast wind-measuring complexes. A new multilayer semiempirical model of V( h) is proposed which is based on aerodynamic and physical representations of the ABL vertical structure and relies on the hypothesis that wind-speed profiles providing the minimum wind friction on the ground and satisfying the conditions of profile smoothness are feasible in the ABL. This model ensures the best agreement with the data of meteorological, aerological, and mast wind measurements.
Study of ion-irradiated tungsten in deuterium plasma
NASA Astrophysics Data System (ADS)
Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.
2013-07-01
Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.
Atmospheric stability and complex terrain: comparing measurements and CFD
NASA Astrophysics Data System (ADS)
Koblitz, T.; Bechmann, A.; Berg, J.; Sogachev, A.; Sørensen, N.; Réthoré, P.-E.
2014-12-01
For wind resource assessment, the wind industry is increasingly relying on Computational Fluid Dynamics models that focus on modeling the airflow in a neutrally stratified surface layer. So far, physical processes that are specific to the atmospheric boundary layer, for example the Coriolis force, buoyancy forces and heat transport, are mostly ignored in state-of-the-art flow solvers. In order to decrease the uncertainty of wind resource assessment, the effect of thermal stratification on the atmospheric boundary layer should be included in such models. The present work focuses on non-neutral atmospheric flow over complex terrain including physical processes like stability and Coriolis force. We examine the influence of these effects on the whole atmospheric boundary layer using the DTU Wind Energy flow solver EllipSys3D. To validate the flow solver, measurements from Benakanahalli hill, a field experiment that took place in India in early 2010, are used. The experiment was specifically designed to address the combined effects of stability and Coriolis force over complex terrain, and provides a dataset to validate flow solvers. Including those effects into EllipSys3D significantly improves the predicted flow field when compared against the measurements.
Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF 3SO 3 Media to 250 °C
Machesky, Michael L.; Předota, Milan; Ridley, Moira K.; ...
2015-06-01
In this paper, a comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF 3SO 3 –) electrolyte media from 25 to 250 °C. Rb + primarily occupies the innermost tetradentate binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (-0.1 and -0.2 C/m 2) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitancemore » values and intrinsic Rb + binding constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na + results in a more complex inner-sphere distribution, which shifts from bidentate to tetradentate binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. Finally, in particular, the CMD axial density profiles for Rb + and Na + reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC framework may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.« less
Constrained Surface Complexation Modeling: Rutile in RbCl, NaCl, and NaCF 3SO 3 Media to 250 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Machesky, Michael L.; Předota, Milan; Ridley, Moira K.
In this paper, a comprehensive set of molecular-level results, primarily from classical molecular dynamics (CMD) simulations, are used to constrain CD-MUSIC surface complexation model (SCM) parameters describing rutile powder titrations conducted in RbCl, NaCl, and NaTr (Tr = triflate, CF 3SO 3 –) electrolyte media from 25 to 250 °C. Rb + primarily occupies the innermost tetradentate binding site on the rutile (110) surface at all temperatures (25, 150, 250 °C) and negative charge conditions (-0.1 and -0.2 C/m 2) probed via CMD simulations, reflecting the small hydration energy of this large, monovalent cation. Consequently, variable SCM parameters (Stern-layer capacitancemore » values and intrinsic Rb + binding constants) were adjusted relatively easily to satisfactorily match the CMD and titration data. The larger hydration energy of Na + results in a more complex inner-sphere distribution, which shifts from bidentate to tetradentate binding with increasing negative charge and temperature, and this distribution was not matched well for both negative charge conditions, which may reflect limitations in the CMD and/or SCM approaches. Finally, in particular, the CMD axial density profiles for Rb + and Na + reveal that peak binding distances shift toward the surface with increasing negative charge, suggesting that the CD-MUSIC framework may be improved by incorporating CD or Stern-layer capacitance values that vary with charge.« less
A shape-based inter-layer contours correspondence method for ICT-based reverse engineering
Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui
2017-01-01
The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research. PMID:28489867
A shape-based inter-layer contours correspondence method for ICT-based reverse engineering.
Duan, Liming; Yang, Shangpeng; Zhang, Gui; Feng, Fei; Gu, Minghui
2017-01-01
The correspondence of a stack of planar contours in ICT (industrial computed tomography)-based reverse engineering, a key step in surface reconstruction, is difficult when the contours or topology of the object are complex. Given the regularity of industrial parts and similarity of the inter-layer contours, a specialized shape-based inter-layer contours correspondence method for ICT-based reverse engineering was presented to solve the above problem based on the vectorized contours. In this paper, the vectorized contours extracted from the slices consist of three graphical primitives: circles, arcs and segments. First, the correspondence of the inter-layer primitives is conducted based on the characteristics of the primitives. Second, based on the corresponded primitives, the inter-layer contours correspond with each other using the proximity rules and exhaustive search. The proposed method can make full use of the shape information to handle industrial parts with complex structures. The feasibility and superiority of this method have been demonstrated via the related experiments. This method can play an instructive role in practice and provide a reference for the related research.
Measuring Plume Meander in the Nighttime Stable Boundary Layer with Lidar
NASA Astrophysics Data System (ADS)
Hiscox, A.; Miller, D. R.; Nappo, C. J.
2009-12-01
Complex dynamics of the stable planetary boundary layer (PBL), such as the effects of density currents, intermittent turbulence, surface-layer decoupling, internal gravity waves, cold air pooling, and katabatic flows affect plume transport and diffusion. A better understanding of these effects is needed for nighttime transport model development. The JORNADA (Joint Observational Research on Nocturnal Atmospheric Dispersion of Aerosols) field campaign, conducted in the New Mexico desert during April 2005, sought to address some of these issues The JORNADA data set includes simultaneous micrometeorological measurements of the boundary layer structure, turbulence, and wave activity along with continuous lidar measurement of aerosol plume releases. What makes JORNADA unique is the real-time monitoring of an elevated plume with a lidar. The quantification of plume meander will be presented in this paper. The application of these techniques to the JORNADA data allows for a more complete understanding of the nocturnal boundary layer (NBL). We will present an in-depth analysis of lidar measurements of plume meander and dispersion and their relationship to the complexities of NBL structure.
NASA Astrophysics Data System (ADS)
Tota, J.; Santos, R.; Fisch, G.; Querino, C.; Silva Dias, M.; Artaxo, P.; Guenther, A.; Martin, S.; Manzi, A.
2008-12-01
To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23°C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.
NASA Astrophysics Data System (ADS)
Tota, J.; Fisch, G.; Santos, R.; Silva Dias, M.
2009-05-01
To characterize the Nocturnal Boundary Layer (NBL) hourly profiles of wind, pressure, temperature, humidity and 5 sizes particles concentration, were made by using tethered balloon at INPA tropical Amazon rainforest Reserve (Cuieiras) 100 km northwest from Manaus city. The measurements were made during the wet season March/2008. The NBL height was 100 to 150m, with a very well mixed layer close to surface associate with temperature inversion. The wind profiles shows a very clear low level in two nights, about 500 to 900 m, and, in general, all nights show an stable and cooler air layer close the surface uncoupled with outer residual boundary layer above. At the site a very clear drainage flow from north quadrant down slope eastward quadrant during very the stable cases. This findings is correlates with particles profiles where was commonly trapped by stable layer presenting high concentrations, for all 5 sizes measured, close to the surface at vegetation level and just above it. All nights presents high humidity with fog formation in three cases, associates with temperature below the 23C. The wind speed were very low about 0.5 to calm, in generally associate with drainage flow down hill. The NBL dynamics is a discussion issue associate to the aerosol nocturnal mixing in complex terrain with tall vegetation, the currently AMAZE site case.
Interpolymer complexation: comparisons of bulk and interfacial structures.
Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W
2015-04-14
The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.
The effect of mechano-chemical treatment on structural properties of the drawn TiNi-based alloy wire
NASA Astrophysics Data System (ADS)
Anikeev, Sergey; Hodorenko, Valentina; Gunther, Victor; Chekalkin, Timofey; Kang, Ji-hoon; Kang, Seung-baik
2018-01-01
The rapid development of biomedical materials with the advanced functional characteristics is a challenging task because of the growing demands for better material properties in-clinically employed. Modern medical devices that can be implanted into humans have evolved steadily by replacing TiNi-based alloys for titanium and stainless steel. In this study, the effect of the mechano-chemical treatment on structural properties of the matrix and surface layer of the drawn TiNi-based alloy wire was assessed. A range of samples have been prepared using different drawing and etching procedures. It is clear from the results obtained that the fabricated samples show a composite structure comprising the complex matrix and textured oxycarbonitride spitted surface layer. The suggested method of surface treatment is a concept to increase the surface roughness for the enhanced bio-performance and better in vivo integration.
NASA Astrophysics Data System (ADS)
Mi, Binbin; Xia, Jianghai; Shen, Chao; Wang, Limin
2018-03-01
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ``jumping'' appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P-SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.
Self-assembled virus-membrane complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lihua; Liang, Hongjun; Angelini, Thomas
Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlatedmore » arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.« less
Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe 2O 3 nanoparticles
Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; ...
2015-10-27
Disorder among surface spins largely dominates the magnetic response of ultrafine magnetic particle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8±0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and becomes frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point tomore » highly frustrated surface spins that rearrange much more slowly than interior spins with bulk coordination. Monte Carlo simulations of a hollow particle reproducing the experimental morphology corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Lastly, our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures.« less
Spin-glass-like freezing of inner and outer surface layers in hollow γ-Fe2O3 nanoparticles
Khurshid, Hafsa; Lampen-Kelley, Paula; Iglesias, Òscar; Alonso, Javier; Phan, Manh-Huong; Sun, Cheng-Jun; Saboungi, Marie-Louise; Srikanth, Hariharan
2015-01-01
Disorder among surface spins is a dominant factor in the magnetic response of magnetic nanoparticle systems. In this work, we examine time-dependent magnetization in high-quality, monodisperse hollow maghemite nanoparticles (NPs) with a 14.8 ± 0.5 nm outer diameter and enhanced surface-to-volume ratio. The nanoparticle ensemble exhibits spin-glass-like signatures in dc magnetic aging and memory protocols and ac magnetic susceptibility. The dynamics of the system slow near 50 K, and become frozen on experimental time scales below 20 K. Remanence curves indicate the development of magnetic irreversibility concurrent with the freezing of the spin dynamics. A strong exchange-bias effect and its training behavior point to highly frustrated surface spins that rearrange much more slowly than interior spins. Monte Carlo simulations of a hollow particle corroborate strongly disordered surface layers with complex energy landscapes that underlie both glass-like dynamics and magnetic irreversibility. Calculated hysteresis loops reveal that magnetic behavior is not identical at the inner and outer surfaces, with spins at the outer surface layer of the 15 nm hollow particles exhibiting a higher degree of frustration. Our combined experimental and simulated results shed light on the origin of spin-glass-like phenomena and the important role played by the surface spins in magnetic hollow nanostructures. PMID:26503506
Alibardi, L; Thompson, M B
2003-04-01
Differentiation and localization of keratin in the epidermis during embryonic development and up to 3 months posthatching in the Australian water python, Liasis fuscus, was studied by ultrastructural and immunocytochemical methods. Scales arise from dome-like folds in the skin that produce tightly imbricating scales. The dermis of these scales is completely differentiated before any epidermal differentiation begins, with a loose dermis made of mesenchymal cells beneath the differentiating outer scale surface. At this stage (33) the embryo is still unpigmented and two layers of suprabasal cells contain abundant glycogen. At Stage 34 (beginning of pigmentation) the first layers of cells beneath the bilayered periderm (presumptive clear and oberhautchen layers) have not yet formed a shedding complex, within which prehatching shedding takes place. At Stage 35 the shedding complex, consisting of the clear and oberhautchen layers, is discernible. The clear layer contains a fine fibrous network that faces the underlying oberhautchen, where the spinulae initially contain a core of fibrous material and small beta-keratin packets. Differentiation continues at Stage 36 when the beta-layer forms and beta-keratin packets are deposited both on the fibrous core of the oberhautchen and within beta-cells. Mesos cells are produced from the germinal layer but remain undifferentiated. At Stage 37, before hatching, the beta-layer is compact, the mesos layer contains mesos granules, and cells of the alpha-layer are present but are not yet keratinized. They are still only partially differentiated a few hours after hatching, when a new shedding complex is forming underneath. Using antibodies against chick scale beta-keratin resolved at high magnification with immunofluorescent or immunogold conjugates, we offer the first molecular confirmation that in snakes only the oberhautchen component of the shedding complex and the underlying beta cells contain beta-keratin. Initially, there is little immunoreactivity in the small beta-packets of the oberhautchen, but it increases after fusion with the underlying cells to produce the syncytial beta layer. The beta-keratin packets coalesce with the tonofilaments, including those attached to desmosomes, which rapidly disappear in both oberhautchen and beta-cells as differentiation progresses. The labeling is low to absent in forming mesos-cells beneath the beta-layer. This study further supports the hypothesis that the shedding complex in lepidosaurian reptiles evolved after there was a segregation between alpha-keratogenic cells from beta-keratogenic cells during epidermal renewal. Copyright 2003 Wiley-Liss, Inc.
A new model for the spectral induced polarization signature of bacterial growth in porous media
NASA Astrophysics Data System (ADS)
Zhang, C.; Revil, A.; Atekwana, E. A.; Jardani, A.; Smith, S.
2012-12-01
Recent biogeophysics studies demonstrated the sensitivity of complex conductivity to bacterial growth and microbial mediated mineral transformations in porous media. Frequency-domain induced polarization is a minimally invasive manner to measure the complex conductivity of a material over a broad range of frequencies. The real component of complex conductivity is associated with electromigration of the charge carriers, and the imaginary component represents reversible energy storage of charge carriers at polarization length scales. Quantitative relationship between frequency-domain induced polarization responses and bacterial growth and decay in porous media is analyzed in this study using a new developed model. We focus on the direct contribution of bacteria themselves to the complex conductivity in porous media in the absence of biomineralization. At low frequencies, the induced polarization of bacteria (α-polarization) is related to the properties of the electrical double layer surrounding the membrane surface of bacteria. Surface conductivity and α-polarization are due to the Stern layer of the counterions occurring in a brush of polymers coating the surface of the bacteria, and can be related to the cation exchange capacity of the bacteria. From the modeling results, at low frequencies (< 10 Hz), the mobility of the counterions (K+) in the Stern layer of bacteria is found to be extremely small (4.7×10-10 m2s-1 V-1 at 25°C), and is close to the mobility of the same counterions along the surface of clay minerals (Na+, 1.5×10-10 m2s-1 V-1 at 25°C). This result is in agreement with experimental observations and it indicates a very low relaxation frequency for the α-polarization of the bacteria cells (typically around 0.1 to 5 Hertz). By coupling this new model with reactive transport modeling in which the evolution of bacterial populations are usually described by Monod kinetics, we show that the changes in imaginary conductivity with time can be used to determine bacterial growth kinetics parameters such as the growth and endogenous decay coefficient.
NASA Astrophysics Data System (ADS)
Song, Peng; He, Xuan; Xiong, Xiping; Ma, Hongqing; Song, Qunling; Lü, Jianguo; Lu, Jiansheng
2018-03-01
To investigate the effect of water vapor on the novel Pt-containing oxide growth behavior, Pt-addition within the oxide layer on the surface of NiCoCrAl coating and furnace cycle tests were carried out at 1050 °C in air and air plus water vapor. The thick Pt-containing oxide layer on NiCoCrAl exhibits a different oxidation growth behavior compared to the conventional Pt-diffusion metallic coatings. The Pt-containing oxide after oxidation in air plus water vapor showed a much thicker oxide layer compare to the ones without Pt addition, and also presented a much better coating adhesion. During the oxidation process in air, Pt promotes the spinel (NiCr2O4) formation. However, the Cr2O3 formed in air with water vapor and fixed Pt within the complex oxide layer. The water vapor promoted the Ni and Co outer-diffusion, and combined with Pt to form CoPt compounds on the surface of the NiCoCrAl coating system.
Comparative study of the interfaces of graphene and hexagonal boron nitride with silver
NASA Astrophysics Data System (ADS)
Garnica, Manuela; Schwarz, Martin; Ducke, Jacob; He, Yuanqin; Bischoff, Felix; Barth, Johannes V.; Auwärter, Willi; Stradi, Daniele
2016-10-01
Silver opens up interesting perspectives in the fabrication of complex systems based on heteroepitaxial layers after the growth of a silicene layer on its (111) face has been proposed. In this work we explore different synthesis methods of hexagonal boron nitride (h -BN) and graphene sheets on silver. The resulting layers have been examined by high-resolution scanning tunneling microscopy. A comparison of the interfacial electronic band structure upon growth of the distinct two-dimensional (2D) layers has been performed by scanning tunneling spectroscopy and complementary first-principle calculations. We demonstrate that the adsorption of the 2D layers has an effect on the binding energy of the Shockley state and the surface potential by lowering the local work function. These effects are larger in the case of graphene where the surface state of Ag(111) is depopulated due to charge transfer to the graphene. Furthermore, we show that the electronic properties of the h -BN/silver system can be tuned by employing different thicknesses of silver ranging from a few monolayers on Cu(111) to the single crystal Ag substrate.
Formation of mixed organic layers by stepwise electrochemical reduction of diazonium compounds.
Santos, Luis; Ghilane, Jalal; Lacroix, Jean Christophe
2012-03-28
This work describes the formation of a mixed organic layer covalently attached to a carbon electrode. The strategy adopted is based on two successive electrochemical reductions of diazonium salts. First, bithiophene phenyl (BTB) diazonium salt is reduced using host/guest complexation in a water/cyclodextrin (β-CD) solution. The resulting layer consists of grafted BTB oligomers and cyclodextrin that can be removed from the surface. The electrochemical response of several outer-sphere redox probes on such BTB/CD electrodes is close to that of a diode, thanks to the easily p-dopable oligo(BTB) moieties. When CD is removed from the surface, pinholes are created and this diode like behavior is lost. Following this, nitrophenyl (NP) diazonium is reduced to graft a second component. Electrochemical study shows that upon grafting NP insulating moieties, the diode-like behavior of the layer is restored which demonstrates that NP is grafted predominately in the empty spaces generated by β-CD desorption. As a result, a mixed BTB/NP organic layer covalently attached to a carbon electrode is obtained using a stepwise electrochemical reduction of two diazonium compounds.
Complex dispersion relation of surface acoustic waves at a lossy metasurface
NASA Astrophysics Data System (ADS)
Schwan, Logan; Geslain, Alan; Romero-García, Vicente; Groby, Jean-Philippe
2017-01-01
The complex dispersion relation of surface acoustic waves (SAWs) at a lossy resonant metasurface is theoretically and experimentally reported. The metasurface consists of the periodic arrangement of borehole resonators in a rigid substrate. The theoretical model relies on a boundary layer approach that provides the effective metasurface admittance governing the complex dispersion relation in the presence of viscous and thermal losses. The model is experimentally validated by measurements in the semi-anechoic chamber. The complex SAW dispersion relation is experimentally retrieved from the analysis of the spatial Laplace transform of the pressure scanned along a line at the metasurface. The geometrical spreading of the energy from the speaker is accounted for, and both the real and imaginary parts of the SAW wavenumber are obtained. The results show that the strong reduction of the SAW group velocity occurs jointly with a drastic attenuation of the wave, leading to the confinement of the field close to the source and preventing the efficient propagation of such slow-sound surface modes. The method opens perspectives to theoretically predict and experimentally characterize both the dispersion and the attenuation of surface waves at structured surfaces.
Brown, Matthew A; Duyckaerts, Nicolas; Redondo, Amaia Beloqui; Jordan, Inga; Nolting, Frithjof; Kleibert, Armin; Ammann, Markus; Wörner, Hans Jakob; van Bokhoven, Jeroen A; Abbas, Zareen
2013-04-23
Using in-situ X-ray photoelectron spectroscopy at the vapor-water interface, the affinity of nanometer-sized silica colloids to adsorb at the interface is shown to depend on colloid surface charge density. In aqueous suspensions at pH 10 corrected Debye-Hückel theory for surface complexation calculations predict that smaller silica colloids have increased negative surface charge density that originates from enhanced screening of deprotonated silanol groups (≡Si-O(-)) by counterions in the condensed ion layer. The increased negative surface charge density results in an electrostatic repulsion from the vapor-water interface that is seen to a lesser extent for larger particles that have a reduced charge density in the XPS measurements. We compare the results and interpretation of the in-situ XPS and corrected Debye-Hückel theory for surface complexation calculations with traditional surface tension measurements. Our results show that controlling the surface charge density of colloid particles can regulate their adsorption to the interface between two dielectrics.
Behavior of sphingomyelin and ceramide in a tear film lipid layer model.
Olżyńska, Agnieszka; Cwiklik, Lukasz
2017-03-01
Tear film lipid layer is a complex lipid mixture forming the outermost interface between eye and environment. Its key characteristics, such as surface tension and structural stability, are governed by the presence of polar lipids. The origin of these lipids and exact composition of the mixture are still elusive. We focus on two minor polar lipid components of the tear film lipid later: sphingomyelin and ceramide. By employing coarse grain molecular dynamics in silico simulations accompanied by Langmuir balance experiments we provide molecular-level insight into behavior of these two lipids in a tear film lipid layer model. Sphingomyelin headgroups are significantly exposed at the water-lipids boundary while ceramide molecules are incorporated between other lipids frequently interacting with nonpolar lipids. Even though these two lipids increase surface tension of the film, their molecular-level behavior suggests that they have a stabilizing effect on the tear film lipid layer. Copyright © 2016 Elsevier GmbH. All rights reserved.
Jiang, Xi Zhuo; Feng, Muye; Ventikos, Yiannis; Luo, Kai H
2018-04-10
Flow patterns on surfaces grafted with complex structures play a pivotal role in many engineering and biomedical applications. In this research, large-scale molecular dynamics (MD) simulations are conducted to study the flow over complex surface structures of an endothelial glycocalyx layer. A detailed structure of glycocalyx has been adopted and the flow/glycocalyx system comprises about 5,800,000 atoms. Four cases involving varying external forces and modified glycocalyx configurations are constructed to reveal intricate fluid behaviour. Flow profiles including temporal evolutions and spatial distributions of velocity are illustrated. Moreover, streamline length and vorticity distributions under the four scenarios are compared and discussed to elucidate the effects of external forces and glycocalyx configurations on flow patterns. Results show that sugar chain configurations affect streamline length distributions but their impact on vorticity distributions is statistically insignificant, whilst the influence of the external forces on both streamline length and vorticity distributions are trivial. Finally, a regime diagram for flow over complex surface structures is proposed to categorise flow patterns.
NASA Astrophysics Data System (ADS)
Halios, Christos H.; Barlow, Janet F.
2018-03-01
The study of the boundary layer can be most difficult when it is in transition and forced by a complex surface, such as an urban area. Here, a novel combination of ground-based remote sensing and in situ instrumentation in central London, UK, is deployed, aiming to capture the full evolution of the urban boundary layer (UBL) from night-time until the fully-developed convective phase. In contrast with the night-time stable boundary layer observed over rural areas, the night-time UBL is weakly convective. Therefore, a new approach for the detection of the morning-transition and rapid-growth phases is introduced, based on the sharp, quasi-linear increase of the mixing height. The urban morning-transition phase varied in duration between 0.5 and 4 h and the growth rate of the mixing layer during the rapid-growth phase had a strong positive relationship with the convective velocity scale, and a weaker, negative relationship with wind speed. Wind shear was found to be higher during the night-time and morning-transition phases than the rapid-growth phase and the shear production of turbulent kinetic energy near the mixing-layer top was around six times larger than surface shear production in summer, and around 1.5 times larger in winter. In summer under low winds, low-level jets dominated the UBL, and shear production was greater than buoyant production during the night-time and the morning-transition phase near the mixing-layer top. Within the rapid-growth phase, buoyant production dominated at the surface, but shear production dominated in the upper half of the UBL. These results imply that regional flows such as low-level jets play an important role alongside surface forcing in determining UBL structure and growth.
Surface modification of cellulose fibers: towards wood composites by biomimetics.
Gradwell, Sheila E; Renneckar, Scott; Esker, Alan R; Heinze, Thomas; Gatenholm, Paul; Vaca-Garcia, Carlos; Glasser, Wolfgang
2004-01-01
A biomimetic approach was taken for studying the adsorption of a model copolymer (pullulan abietate, DS 0.027), representing the lignin-carbohydrate complex, to a model surface for cellulose fibers (Langmuir-Blodgett thin films of regenerated cellulose). Adsorption results were assayed using surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM). Rapid, spontaneous, and desorption-resistant surface modification resulted. This effort is viewed as a critical first step towards the permanent surface modification of cellulose fibers with a layer of molecules amenable to either enzymatic crosslinking for improved wood composites or thermoplastic consolidation.
NASA Astrophysics Data System (ADS)
Omar, Artur; Benmakhlouf, Hamza; Marteinsdottir, Maria; Bujila, Robert; Nowik, Patrik; Andreo, Pedro
2014-03-01
Complex interventional and diagnostic x-ray angiographic (XA) procedures may yield patient skin doses exceeding the threshold for radiation induced skin injuries. Skin dose is conventionally determined by converting the incident air kerma free-in-air into entrance surface air kerma, a process that requires the use of backscatter factors. Subsequently, the entrance surface air kerma is converted into skin kerma using mass energy-absorption coefficient ratios tissue-to-air, which for the photon energies used in XA is identical to the skin dose. The purpose of this work was to investigate how the cranial bone affects backscatter factors for the dosimetry of interventional neuroradiology procedures. The PENELOPE Monte Carlo system was used to calculate backscatter factors at the entrance surface of a spherical and a cubic water phantom that includes a cranial bone layer. The simulations were performed for different clinical x-ray spectra, field sizes, and thicknesses of the bone layer. The results show a reduction of up to 15% when a cranial bone layer is included in the simulations, compared with conventional backscatter factors calculated for a homogeneous water phantom. The reduction increases for thicker bone layers, softer incident beam qualities, and larger field sizes, indicating that, due to the increased photoelectric crosssection of cranial bone compared to water, the bone layer acts primarily as an absorber of low-energy photons. For neurointerventional radiology procedures, backscatter factors calculated at the entrance surface of a water phantom containing a cranial bone layer increase the accuracy of the skin dose determination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadomsky, O. N., E-mail: gadomsky@mail.ru; Shchukarev, I. A., E-mail: blacxpress@gmail.com
2016-08-15
It is shown that external optical radiation in the 450–1200 nm range can be efficiently transformed under the action of bounded light beams to a surface wave that propagates along the external and internal boundaries of a plane-parallel layer with a quasi-zero refractive index. Reflection regimes with complex and real angles of refraction in the layer are considered. The layer with a quasi-zero refractive index in this boundary problem is located on a highly reflective metal substrate; it is shown that the uniform low reflection of light is achieved in the wavelength range under study.
NASA Astrophysics Data System (ADS)
Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.
2015-07-01
Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.
Colloidal and electrochemical aspects of copper-CMP
NASA Astrophysics Data System (ADS)
Sun, Yuxia
Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.
Li, Xiansen; Michaelis, Vladimir K.; Ong, Ta-Chung; Smith, Stacey J.; Griffin, Robert G.; Wang, Evelyn N.
2014-01-01
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. We report the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes via a novel transesterification mechanism. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building units (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+-O2− ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10ī)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counterions as a result of unique atomic arrangement in its structure. On the other hand, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7 m2 g−1 for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity. PMID:24737615
Atom-scale depth localization of biologically important chemical elements in molecular layers
Schneck, Emanuel; Scoppola, Ernesto; Drnec, Jakub; Mocuta, Cristian; Felici, Roberto; Novikov, Dmitri; Fragneto, Giovanna; Daillant, Jean
2016-01-01
In nature, biomolecules are often organized as functional thin layers in interfacial architectures, the most prominent examples being biological membranes. Biomolecular layers play also important roles in context with biotechnological surfaces, for instance, when they are the result of adsorption processes. For the understanding of many biological or biotechnologically relevant phenomena, detailed structural insight into the involved biomolecular layers is required. Here, we use standing-wave X-ray fluorescence (SWXF) to localize chemical elements in solid-supported lipid and protein layers with near-Ångstrom precision. The technique complements traditional specular reflectometry experiments that merely yield the layers’ global density profiles. While earlier work mostly focused on relatively heavy elements, typically metal ions, we show that it is also possible to determine the position of the comparatively light elements S and P, which are found in the most abundant classes of biomolecules and are therefore particularly important. With that, we overcome the need of artificial heavy atom labels, the main obstacle to a broader application of high-resolution SWXF in the fields of biology and soft matter. This work may thus constitute the basis for the label-free, element-specific structural investigation of complex biomolecular layers and biological surfaces. PMID:27503887
NASA Astrophysics Data System (ADS)
Cai, Liheng
Numerous infectious particles such as bacteria and pathogens are deposited on the airway surface of the human lungs during our daily breathing. To avoid infection the lung has evolved to develop a smart and powerful defense system called mucociliary clearance. The airway surface layer is a critical component of this mucus clearance system, which consists of two parts: (1) a mucus layer, that traps inhaled particles and transports them out of the lung by cilia-generated flow; and (2) a periciliary layer, that provides a favorable environment for ciliary beating and cell surface lubrication. For 75 years, it has been dogma that a single gel-like mucus layer, which is composed of secreted mucin glycoproteins, is transported over a "watery" periciliary layer. This one-gel model, however, does not explain fundamental features of the normal system, e.g. formation of a distinct mucus layer, nor accurately predict how the mucus clearance system fails in disease. In the first part of this thesis we propose a novel "Gel-on-Brush" model with a mucus layer (the "gel") and a "brush-like" periciliary layer, composed of mucins tethered to the luminal of airway surface, and supporting data accurately describes both the biophysical and cell biological bases for normal mucus clearance and its failure in disease. Our "Gel-on-Brush" model describes for the first time how and why mucus is efficiently cleared in health and unifies the pathogenesis of major human diseases, including cystic fibrosis and chronic obstructive pulmonary disease. It is expected that this "Gel-on-Brush" model of airway surface layer opens new directions for treatments of airway diseases. A dilemma regarding the function of mucus is that, although mucus traps any inhaled harmful particulates, it also poses a long-time problem for drug delivery: mobility of cargos carrying pharmaceutical agents is slowed down in mucus. The second part of this thesis aims to answer the question: can we theoretically understand the relation between the motion of a probe particle and the local structure and dynamics of complex fluids such as mucus, or even one step back, simple polymer solutions and gels? It is well known that the thermal motion of a particle in simple solutions like water can be described by Stokes-Einstein relation, in which the mean-square displacement of the particle is (1) linearly proportional to time and (2) inversely proportional to the bulk viscosity of the solution. We found that these two statements become questionable if the particle size is relatively small and the solutions become complex fluids such as polymer solutions and gels. The motion of small particles with size smaller than the entanglement length (network mesh size) of a polymer solution (gel) is sub-diffusive with mean-square displacement proportional to the square root of time at relatively short time scales. Even at long time scales at which the mean-square displacement of the particles is diffusive, the mean-square displacement of the particles is not necessarily determined by the bulk viscosity, and is inversely proportional to an effective viscosity that is much smaller than the bulk value. An interesting question related to the particle motion in polymer gels is whether particles with size larger than the network mesh size can move through the gel? An intuitive answer would be that such large particles are trapped by the local network cages. We argue that the large particles can still diffuse via hopping mechanism, i.e., particles can wait for fluctuations of surrounding network cages that could be large enough to allow them to slip though. This hopping diffusion can be applied to understand the motion of large particles subjected to topological constraints such as permanent or reversible crosslinked networks as well as entanglements in high molecular weight polymer solutions, melts, and networks.
Bacterial adhesion to protein-coated surfaces: An AFM and QCM-D study
NASA Astrophysics Data System (ADS)
Strauss, Joshua; Liu, Yatao; Camesano, Terri A.
2009-09-01
Bacterial adhesion to biomaterials, mineral surfaces, or other industrial surfaces is strongly controlled by the way bacteria interact with protein layers or organic matter and other biomolecules that coat the materials. Despite this knowledge, many studies of bacterial adhesion are performed under clean conditions, instead of in the presence of proteins or organic molecules. We chose fetal bovine serum (FBS) as a model protein, and prepared FBS films on quartz crystals. The thickness of the FBS layer was characterized using atomic force microscopy (AFM) imaging under liquid and quartz crystal microbalance with dissipation (QCM-D). Next, we characterized how the model biomaterial surface would interact with the nocosomial pathogen Staphylococcus epidermidis. An AFM probe was coated with S. epidermidis cells and used to probe a gold slide that had been coated with FBS or another protein, fibronectin (FN). These experiments show that AFM and QCM-D can be used in complementary ways to study the complex interactions between bacteria, proteins, and surfaces.
Surface Topographical Modification of Coronary Stent: A Review
NASA Astrophysics Data System (ADS)
Tan, C. H.; Muhamad, N.; Abdullah, M. M. A. B.
2017-06-01
Driven by the urge of mediating the inflammatory response from coronary stent implant to improve patency rates of the current coronary stent, concern has been focusing on reducing the risk of in-stent restenosis and thrombosis for long-term safety. Surface modification approach has been found to carry great potential due to the surface is the vital parts that act as a buffer layer between the biomaterial and the organic material like blood and vessel tissues. Nevertheless, manipulating cell response in situ using physical patterning is very complex as the exact mechanism were yet elucidated. Thus, the aim of this review is to summarise the recent efforts on modifying the surface topography of coronary stent at the micro- and nanometer scale with the purpose of inducing rapid in situ endothelialization to regenerate a healthy endothelium layer on biomaterial surface. In particular, a discussion on the surface patterns that have been investigated on cell selective behaviour together with the methods used to generate them are presented. Furthermore, the probable future work involving the surface modification of coronary stent were indicated.
Study of solid/liquid and solid/gas interfaces in Cu-isoleucine complex by surface X-ray diffraction
NASA Astrophysics Data System (ADS)
Ferrer, Pilar; Rubio-Zuazo, Juan; Castro, German R.
2013-02-01
The enzymes could be understood like structures formed by amino acids bonded with metals, which act as active sites. The research on the coordination of metal-amino acid complexes will bring light on the behavior of metal enzymes, due to the close relation existing between the atomic structure and the functionality. The Cu-isoleucine bond is considered as a good model system to attain a better insight into the characteristics of naturally occurring copper metalloproteins. The surface structure of metal-amino acid complex could be considered as a more realistic model for real systems under biologic working conditions, since the molecular packing is decreased. In the surface, the structural constrains are reduced, keeping the structural capability of surface complex to change as a function of the surrounding environment. In this work, we present a surface X-ray diffraction study on Cu-isoleucine complex under different ambient conditions. Cu(Ile)2 crystals of about 5 mm × 5 mm × 1 mm have been growth, by seeding method in a supersaturated solution, presenting a surface of high quality. The sample for the surface diffraction study was mounted on a cell specially designed for solid/liquid or solid/gas interface analysis. The Cu-isoleucine crystal was measured under a protective dry N2 gas flow and in contact with a saturated metal amino acid solution. The bulk and the surface signals were compared, showing different atomic structures. In both cases, from surface diffraction data, it is observed that the atomic structure of the top layer undergoes a clear structural deformation. A non-uniform surface relaxation is observed producing an inhomogeneous displacement of the surface atoms towards the surface normal.
On Complex Nuclei Energetics in LENR
NASA Astrophysics Data System (ADS)
Miley, George H.; Hora, Heinz
2005-03-01
Swimming Electron Layer (SEL) theory plus fission of ``complex nuclei'' were proposed earlier to explain reaction products observed in electrolysis with multi-layer thin-film metallic electrodesootnotetext1.G.H. Miley, and J.A. Patterson, J. New Energy, Vol. 1, pp.11-15, (1996).. SEL was then extended to treat gas-diffusion driven transmutation experimentsootnotetextG. H. Miley and H. Hora, ``Nuclear Reactions in Solids,'' APS DNP Mtg., East Lansing, MI, Oct (2002).. It is also consistent with measured charged-particle emission during thin-film electrolysis and x-ray emission during plasma bombardment experimentsootnotetextA. Karabut, ``X-ray emission in high-current glow discharge,'' Proc., ICCF-9, Beijing China, May (2002).. The binding energy per complex nucleon can be estimated by an energy balance combined with identification of products for each complex e.g. complexes of A 39 have ˜ 0.05 MeV/Nucleon, etc, in thin film electrolysis. Energies in gas diffusion experiments are lower due to the reduced trap site potential at the multi-atom surface. In the case of x-ray emission, complexes involve subsurface defect center traps, giving only a few keV/Nucleon, consistent with experiments^3.
Apparent thermal inertia and the surface heterogeneity of Mars
NASA Astrophysics Data System (ADS)
Putzig, Nathaniel E.; Mellon, Michael T.
2007-11-01
Thermal inertia derivation techniques generally assume that surface properties are uniform at horizontal scales below the footprint of the observing instrument and to depths of several decimeters. Consequently, surfaces with horizontal or vertical heterogeneity may yield apparent thermal inertia which varies with time of day and season. To investigate these temporal variations, we processed three Mars years of Mars Global Surveyor Thermal Emission Spectrometer observations and produced global nightside and dayside seasonal maps of apparent thermal inertia. These maps show broad regions with diurnal and seasonal differences up to 200 J m -2 K -1s -1/2 at mid-latitudes (60° S to 60° N) and 600 J m -2 K -1s -1/2 or greater in the polar regions. We compared the seasonal mapping results with modeled apparent thermal inertia and created new maps of surface heterogeneity at 5° resolution, delineating regions that have thermal characteristics consistent with horizontal mixtures or layers of two materials. The thermal behavior of most regions on Mars appears to be dominated by layering, with upper layers of higher thermal inertia (e.g., duricrusts or desert pavements over fines) prevailing in mid-latitudes and upper layers of lower thermal inertia (e.g., dust-covered rock, soils with an ice table at shallow depths) prevailing in polar regions. Less common are regions dominated by horizontal mixtures, such as those containing differing proportions of rocks, sand, dust, and duricrust or surfaces with divergent local slopes. Other regions show thermal behavior that is more complex and not well-represented by two-component surface models. These results have important implications for Mars surface geology, climate modeling, landing-site selection, and other endeavors that employ thermal inertia as a tool for characterizing surface properties.
Effect of an isolated semi-arid pine forest on the boundary layer height
NASA Astrophysics Data System (ADS)
Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias
2017-04-01
Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).
The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
NASA Astrophysics Data System (ADS)
Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Lenschow, D. H.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jiménez, M. A.; Jonassen, M.; van den Kroonenberg, A.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.
2014-10-01
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective boundary layer to the night-time stable boundary layer, still has a number of unanswered scientific questions. This phase of the diurnal cycle is challenging from both modelling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary-Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of instrumented platforms including full-size aircraft, remotely piloted aircraft systems, remote-sensing instruments, radiosoundings, tethered balloons, surface flux stations and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observation periods that were conducted from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, such as new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary-layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the previous day's residual layer, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and documented the evolution of the turbulence characteristic length scales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
Early Stage of Oxidation on Titanium Surface by Reactive Molecular Dynamics Simulation
Yang, Liang; Wang, C. Z.; Lin, Shiwei; ...
2018-01-01
Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titaniummore » (0001) surface and further prevented oxidation in the deeper layers. As a result, the mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.« less
NASA Technical Reports Server (NTRS)
Iyer, Venkit
1990-01-01
A solution method, fourth-order accurate in the body-normal direction and second-order accurate in the stream surface directions, to solve the compressible 3-D boundary layer equations is presented. The transformation used, the discretization details, and the solution procedure are described. Ten validation cases of varying complexity are presented and results of calculation given. The results range from subsonic flow to supersonic flow and involve 2-D or 3-D geometries. Applications to laminar flow past wing and fuselage-type bodies are discussed. An interface procedure is used to solve the surface Euler equations with the inviscid flow pressure field as the input to assure accurate boundary conditions at the boundary layer edge. Complete details of the computer program used and information necessary to run each of the test cases are given in the Appendix.
Stably Stratified Atmospheric Boundary Layers
NASA Astrophysics Data System (ADS)
Mahrt, L.
2014-01-01
Atmospheric boundary layers with weak stratification are relatively well described by similarity theory and numerical models for stationary horizontally homogeneous conditions. With common strong stratification, similarity theory becomes unreliable. The turbulence structure and interactions with the mean flow and small-scale nonturbulent motions assume a variety of scenarios. The turbulence is intermittent and may no longer fully satisfy the usual conditions for the definition of turbulence. Nonturbulent motions include wave-like motions and solitary modes, two-dimensional vortical modes, microfronts, intermittent drainage flows, and a host of more complex structures. The main source of turbulence may not be at the surface, but rather may result from shear above the surface inversion. The turbulence is typically not in equilibrium with the nonturbulent motions, sometimes preventing the formation of an inertial subrange. New observational and analysis techniques are expected to advance our understanding of the very stable boundary layer.
Micro-electro-optical devices in a five-level polysilicon surface-micromachining technology
NASA Astrophysics Data System (ADS)
Smith, James H.; Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; Hetherington, Dale L.; McWhorter, Paul J.; Warren, Mial E.
1998-09-01
We recently reported on the development of a 5-level polysilicon surface micromachine fabrication process consisting of four levels of mechanical poly plus an electrical interconnect layer and its application to complex mechanical systems. This paper describes the application of this technology to create micro-optical systems-on-a-chip. These are demonstration systems, which show that give levels of polysilicon provide greater performance, reliability, and significantly increased functionality. This new technology makes it possible to realize levels of system complexity that have so far only existed on paper, while simultaneously adding to the robustness of many of the individual subassemblies.
NASA Astrophysics Data System (ADS)
Steiner, J. F.; Stigter, E.; Litt, M.; Shea, J.; Bierkens, M. F.; Immerzeel, W. W.
2017-12-01
Debris-covered glaciers play an important role in the water cycle in high altitude catchments in the Himalaya. The melt dynamics of these glaciers are complex as a result of the debris. A thin debris layer (up to a few cm) may act as a facilitator of melt, whereas a thick layer serves primarily as an insulator. The debris cover itself shows a strong diurnal variation in temperature and humidity resulting in a complex interaction with the atmospheric boundary layer (ABL). Energy balance models are a common way to quantify sub-debris melt, but the importance of turbulent fluxes in this energy balance have so far been poorly investigated. We hypothesize that they may play a substantial role during phases of wetting and drying. In this study, ABL characteristics and surface turbulent fluxes are measured using an automatic weather station including an eddy-correlation (EC) system on the debris-covered Lirung glacier in Nepal over a 10 day period in late 2016, during the transition period from monsoon to the drier post-monsoon. The measurements are combined with surface temperature measurements and thermal UAV flights covering the footprint area of the EC tower to quantify the surface fluxes over a larger area. Our results show that turbulent fluxes do play a substantial role in the energy balance of debris-covered glaciers, and need to be accounted for to accurately simulate glacier melt. The EC tower results are subsequently evaluated against a number of different bulk approaches to quantify sensible and latent heat fluxes and are evaluated against turbulence characteristics. If found accurate enough, these approaches require less advanced measurement set-ups and can be applied on a wider scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.
The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 10 5 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less
Characterization of an aluminum alloy hemispherical shell fabricated via direct metal laser melting
Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; ...
2016-01-11
The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependentmore » microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 10 5 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Moreover, subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.« less
Characterization of an Aluminum Alloy Hemispherical Shell Fabricated via Direct Metal Laser Melting
NASA Astrophysics Data System (ADS)
Holesinger, T. G.; Carpenter, J. S.; Lienert, T. J.; Patterson, B. M.; Papin, P. A.; Swenson, H.; Cordes, N. L.
2016-03-01
The ability of additive manufacturing to directly fabricate complex shapes provides characterization challenges for part qualification. The orientation of the microstructures produced by these processes will change relative to the surface normal of a complex part. In this work, the microscopy and x-ray tomography of an AlSi10Mg alloy hemispherical shell fabricated using powder bed metal additive manufacturing are used to illustrate some of these challenges. The shell was manufactured using an EOS M280 system in combination with EOS-specified powder and process parameters. The layer-by-layer process of building the shell with the powder bed additive manufacturing approach results in a position-dependent microstructure that continuously changes its orientation relative to the shell surface normal. X-ray tomography was utilized to examine the position-dependent size and distribution of porosity and surface roughness in the 98.6% dense part. Optical and electron microscopy were used to identify global and local position-dependent structures, grain morphologies, chemistry, and precipitate sizes and distributions. The rapid solidification processes within the fusion zone (FZ) after the laser transit results in a small dendrite size. Cell spacings taken from the structure in the middle of the FZ were used with published relationships to estimate a cooling rate of ~9 × 105 K/s. Uniformly-distributed, nanoscale Si precipitates were found within the primary α-Al grains. A thin, distinct boundary layer containing larger α-Al grains and extended regions of the nanocrystalline divorced eutectic material surrounds the FZ. Subtle differences in the composition between the latter layer and the interior of the FZ were noted with scanning transmission electron microscopy (STEM) spectral imaging.
NASA Astrophysics Data System (ADS)
Lopez, Juan Manuel
Layer-by-layer self-assembly (LbL) is a technique that generates engineered nano-scale films, coatings, and particles. These nanoscale films have recently been used in multiple biomedical applications. Concurrently, microfabrication methods and advances in microfluidics are being developed and combined to create "Lab-on-a-Chip" technologies. The potential to perform complex biological assays in vitro as a first-line screening technique before moving on to animal models has made the concept of lab on a chip a valuable research tool. Prior studies in the Biofluids Laboratory at Louisiana Tech have used layer-by-layer and in vitro biological assays to study thrombogenesis in a controlled, repeatable, engineered environment. The reliability of these previously established techniques was unsatisfactory for more complex cases such as chemical and shear stress interactions. The work presented in this dissertation was performed to test the principal assumptions behind the established laboratory methodologies, suggest improvements where needed, and test the impact of these improvements on accuracy and repeatability. The assumptions to be tested were: (1) The fluorescence microscopy (FM) images of acridine orange-tagged platelets accurately provide a measure of percent area of surface covered by platelets; (2) fibrinogen coatings can be accurately controlled, interact with platelets, and do not interfere with the ability to quantify platelet adhesion; and (3) the dependence of platelet adhesion on chemical agents, as measured with the modified methods, generally agrees with results obtained from our previous methods and with known responses of platelets that have been documented in the literature. The distribution of fibrinogen on the final LbL surface generated with the standard, static process (s-LbL) was imaged by tagging the fibrinogen with an anti-fibrinogen antibody bound to fluorescein isothiocyanate (FITC). FITC FM images and acridine orange FM images were taken sequentially at selected surface locations to generate a composite overlap of presumed platelet adhesion as a function of fibrinogen distribution. The method was unable to distinguish the surface from the adhered cells. The surface inhomogeneity and porosity retained a large amount of acridine orange stain, even in the absence of platelets, and components in the platelet-rich plasma (PRP) were found to fix acridine orange in a mode that fluoresced in the FITC imaging FM. Both of these problems obfuscated the platelet adhesion FM results when using s-LbL surfaces and acridine orange staining of platelets. A dynamic process (d-LbL) was developed in which a solution of the molecule to be layered was constantly washed over the surface, and was constantly mixed to maintain a more homogeneous distribution of solute relative to the surface during the layering process. The d-LbL surfaces were tested as described above, and found to reduce the size and number of regions of anomalous acridine orange pooling trapped by the surface, providing a greater consistency and reliability in identifying platelets. The improved surface was then used in a series of platelet adhesion experiments under static and dynamic flow conditions, and with and without the chemical additive L-arginine. The complex microcharmel system used in prior studies was replaced with a simpler system involving fewer nuisance variables for these tests. The tests were performed on both collagen and fibrinogen surfaces. Collagen has been used as a thrombogenic surface in multiple studies in the literature, but produces additional variables in thrombogenesis control that are avoided when fibrinogen is used. In these tests, fibrinogen was found to be as thrombogenic as collagen, and platelet coverage of both biointerfaces was reduced by L-arginine in a manner similar to previously reported work. The simpler system differed from the previous microchannel system in important factors: (1) It exposed the platelets to much lower shear stresses; (2) It introduced an oscillatory flow, which introduced a higher degree of variability in the adhesion than previously reported; (3) the previous work had not removed the acridine orange surface problems. Therefore, a direct comparison between results was not possible. The new d-LbL surface process was successful in testing the basic assumptions. Testing showed that the new process eliminated the anomalous acridine orange retention problem during fluorescence imaging. This improvement in fluorescence response meant that the FM results matched the platelet adhesion on plain glass slides and adhesion reported by others in microfluidic flows. The chemical additive responses behaved as expected, with an increase in L-arginine contributing to a decrease in thrombogenesis under dynamic conditions, but not under static conditions.
Application of surface complexation models to anion adsorption by natural materials.
Goldberg, Sabine
2014-10-01
Various chemical models of ion adsorption are presented and discussed. Chemical models, such as surface complexation models, provide a molecular description of anion adsorption reactions using an equilibrium approach. Two such models, the constant capacitance model and the triple layer model, are described in the present study. Characteristics common to all the surface complexation models are equilibrium constant expressions, mass and charge balances, and surface activity coefficient electrostatic potential terms. Methods for determining parameter values for surface site density, capacitances, and surface complexation constants also are discussed. Spectroscopic experimental methods of establishing ion adsorption mechanisms include vibrational spectroscopy, nuclear magnetic resonance spectroscopy, electron spin resonance spectroscopy, X-ray absorption spectroscopy, and X-ray reflectivity. Experimental determinations of point of zero charge shifts and ionic strength dependence of adsorption results and molecular modeling calculations also can be used to deduce adsorption mechanisms. Applications of the surface complexation models to heterogeneous natural materials, such as soils, using the component additivity and the generalized composite approaches are described. Emphasis is on the generalized composite approach for predicting anion adsorption by soils. Continuing research is needed to develop consistent and realistic protocols for describing ion adsorption reactions on soil minerals and soils. The availability of standardized model parameter databases for use in chemical speciation-transport models is critical. Published 2014 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and as such, is in the public domain in the in the United States of America.
Nanoplasmonic sensing of metal-halide complex formation and the electric double layer capacitor.
Dahlin, Andreas B; Zahn, Raphael; Vörös, Janos
2012-04-07
Many nanotechnological devices are based on implementing electrochemistry with plasmonic nanostructures, but these systems are challenging to understand. We present a detailed study of the influence of electrochemical potentials on plasmon resonances, in the absence of surface coatings and redox active molecules, by synchronized voltammetry and spectroscopy. The experiments are performed on gold nanodisks and nanohole arrays in thin gold films, which are fabricated by improved methods. New insights are provided by high resolution spectroscopy and variable scan rates. Furthermore, we introduce new analytical models in order to understand the spectral changes quantitatively. In contrast to most previous literature, we find that the plasmonic signal is caused almost entirely by the formation of ionic complexes on the metal surface, most likely gold chloride in this study. The refractometric sensing effect from the ions in the electric double layer can be fully neglected, and the charging of the metal gives a surprisingly small effect for these systems. Our conclusions are consistent for both localized nanoparticle plasmons and propagating surface plasmons. We consider the results in this work especially important in the context of combined electrochemical and optical sensors. This journal is © The Royal Society of Chemistry 2012
Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.
Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P
2013-07-01
Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. Copyright © 2013 Elsevier Ltd. All rights reserved.
Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan
2015-01-01
Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162
NASA Astrophysics Data System (ADS)
Jeziorowski, H.; Moser, B.
1985-09-01
The Raman spectra of the liquid-solid interface recorded in situ show the formation of a salt complex of the inhibitor molecules and the copper ions. This suggests that this chemisorbed surface species produces the protective layer.
Assessing sea wave and spray effects on Marine Boundary Layer structure
NASA Astrophysics Data System (ADS)
Stathopoulos, Christos; Galanis, George; Patlakas, Platon; Kallos, George
2017-04-01
Air sea interface is characterized by several mechanical and thermodynamical processes. Heat, moisture and momentum exchanges increase the complexity in modeling the atmospheric-ocean system. Near surface atmospheric levels are subject to sea surface roughness and sea spray. Sea spray fluxes can affect atmospheric stability and induce microphysical processes such as sea salt particle formation and condensation/evaporation of water in the boundary layer. Moreover, presence of sea spray can alter stratification over the ocean surface with further insertion of water vapor. This can lead to modified stability conditions and to wind profiles that deviate significantly from the logarithmic approximation. To model these effects, we introduce a fully coupled system consisting of the mesoscale atmospheric model RAMS/ICLAMS and the wave model WAM. The system encompasses schemes for ocean surface roughness, sea salt aerosols and droplet thermodynamic processes and handles sea salt as predictive quantity. Numerical experiments using the developed atmospheric-ocean system are performed over the Atlantic and Mediterranean shoreline. Emphasis is given to the quantification of the improvement obtained in the description of the marine boundary layer, particularly in its lower part as well as in wave characteristics.
NASA Astrophysics Data System (ADS)
Yang, Liu; Xiao-Jing, Yu; Jian-Ming, Ma; Yi-Wen, Guan; Jiang, Li; Qiang, Li; Sa, Yang
2017-06-01
A volumetric ablation model for EPDM (ethylene- propylene-diene monomer) is established in this paper. This model considers the complex physicochemical process in the porous structure of a char layer. An ablation physics model based on a porous structure of a char layer and another model of heterogeneous volumetric ablation char layer physics are then built. In the model, porosity is used to describe the porous structure of a char layer. Gas diffusion and chemical reactions are introduced to the entire porous structure. Through detailed formation analysis, the causes of the compact or loose structure in the char layer and chemical vapor deposition (CVD) reaction between pyrolysis gas and char layer skeleton are introduced. The Arrhenius formula is adopted to determine the methods for calculating carbon deposition rate C which is the consumption rate caused by thermochemical reactions in the char layer, and porosity evolution. The critical porosity value is used as a criterion for char layer porous structure failure under gas flow and particle erosion. This critical porosity value is obtained by fitting experimental parameters and surface porosity of the char layer. Linear ablation and mass ablation rates are confirmed with the critical porosity value. Results of linear ablation and mass ablation rate calculations generally coincide with experimental results, suggesting that the ablation analysis proposed in this paper can accurately reflect practical situations and that the physics and mathematics models built are accurate and reasonable.
NASA Astrophysics Data System (ADS)
Mirambet, F.; Reguer, S.; Rocca, E.; Hollner, S.; Testemale, D.
2010-05-01
Metallic artefacts of the cultural heritage are often stored in uncontrolled environmental conditions. They are very sensitive to atmospheric corrosion caused by a succession of wet and dry periods due to variations of relative humidity and temperature. To avoid the complete degradation of the metallic artefacts, new preventive strategies must be developed. In this context, we have studied new compounds based on sodium carboxylates solutions CH3(CH2) n-2COO-, Na+ hereafter called NaC n . They allow the formation of a passive layer at the metallic surface composed of a metal-carboxylate complex. To understand the action of those inhibitors in the passivation process of iron we have performed electrochemical measurements and surface characterisation. Moreover, to monitor in real time the growth of the coating, in situ X-ray absorption spectroscopy (XAS) experiments at iron K-edge were carried out in an electrochemical cell. These analyses have shown that in the case of NaC10 solution, the protection of iron surface is correlated to the precipitation of a well-organised layer of FeC10. These experiments confirmed that this compound is a fully oxidised trinuclear Fe(III) complex containing decanoate anions as ligands. Such information concerning the passive layer is a key factor to evaluate its stability and finally the long-term efficiency of the protection treatment.
NASA Astrophysics Data System (ADS)
Hao, Na; Moysey, Stephen M. J.; Powell, Brian A.; Ntarlagiannis, Dimitrios
2016-12-01
Surface complexation models are widely used with batch adsorption experiments to characterize and predict surface geochemical processes in porous media. In contrast, the spectral induced polarization (SIP) method has recently been used to non-invasively monitor in situ subsurface chemical reactions in porous media, such as ion adsorption processes on mineral surfaces. Here we compare these tools for investigating surface site density changes during pH-dependent sodium adsorption on a silica gel. Continuous SIP measurements were conducted using a lab scale column packed with silica gel. A constant inflow of 0.05 M NaCl solution was introduced to the column while the influent pH was changed from 7.0 to 10.0 over the course of the experiment. The SIP measurements indicate that the pH change caused a 38.49 ± 0.30 μS cm- 1 increase in the imaginary conductivity of the silica gel. This increase is thought to result from deprotonation of silanol groups on the silica gel surface caused by the rise in pH, followed by sorption of Na+ cations. Fitting the SIP data using the mechanistic model of Leroy et al. (Leroyet al., 2008), which is based on the triple layer model of a mineral surface, we estimated an increase in the silica gel surface site density of 26.9 × 1016 sites m- 2. We independently used a potentiometric acid-base titration data for the silica gel to calibrate the triple layer model using the software FITEQL and observed a total increase in the surface site density for sodium sorption of 11.2 × 1016 sites m- 2, which is approximately 2.4 times smaller than the value estimated using the SIP model. By simulating the SIP response based on the calibrated surface complexation model, we found a moderate association between the measured and estimated imaginary conductivity (R2 = 0.65). These results suggest that the surface complexation model used here does not capture all mechanisms contributing to polarization of the silica gel captured by the SIP data.
Discrete model of gas-free spin combustion of a powder mixture
NASA Astrophysics Data System (ADS)
Klimenok, Kirill L.; Rashkovskiy, Sergey A.
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
An in situ XPS study of L-cysteine co-adsorbed with water on polycrystalline copper and gold
NASA Astrophysics Data System (ADS)
Jürgensen, Astrid; Raschke, Hannes; Esser, Norbert; Hergenröder, Roland
2018-03-01
The interactions of biomolecules with metal surfaces are important because an adsorbed layer of such molecules introduces complex reactive functionality to the substrate. However, studying these interactions is challenging: they usually take place in an aqueous environment, and the structure of the first few monolayers on the surface is of particular interest, as these layers determine most interfacial properties. Ideally, this requires surface sensitive analysis methods that are operated under ambient conditions, for example ambient pressure x-ray photoelectron spectroscopy (AP-XPS). This paper focuses on an AP-XPS study of the interaction of water vapour and l-Cysteine on polycrystalline copper and gold surfaces. Thin films of l-Cysteine were characterized with XPS in UHV and in a water vapour atmosphere (P ≤ 1 mbar): the structure of the adsorbed l-Cysteine layer depended on substrate material and deposition method, and exposure of the surface to water vapour led to the formation of hydrogen bonds between H2O molecules and the COO- and NH2 groups of adsorbed l-Cysteine zwitterions and neutral molecules, respectively. This study also proved that it is possible to investigate monolayers of biomolecules in a gas atmosphere with AP-XPS using a conventional laboratory Al-Kα x-ray source.
Universal Method for Creating Hierarchical Wrinkles on Thin-Film Surfaces.
Jung, Woo-Bin; Cho, Kyeong Min; Lee, Won-Kyu; Odom, Teri W; Jung, Hee-Tae
2018-01-10
One of the most interesting topics in physical science and materials science is the creation of complex wrinkled structures on thin-film surfaces because of their several advantages of high surface area, localized strain, and stress tolerance. In this study, a significant step was taken toward solving limitations imposed by the fabrication of previous artificial wrinkles. A universal method for preparing hierarchical three-dimensional wrinkle structures of thin films on a multiple scale (e.g., nanometers to micrometers) by sequential wrinkling with different skin layers was developed. Notably, this method was not limited to specific materials, and it was applicable to fabricating hierarchical wrinkles on all of the thin-film surfaces tested thus far, including those of metals, two-dimensional and one-dimensional materials, and polymers. The hierarchical wrinkles with multiscale structures were prepared by sequential wrinkling, in which a sacrificial layer was used as the additional skin layer between sequences. For example, a hierarchical MoS 2 wrinkle exhibited highly enhanced catalytic behavior because of the superaerophobicity and effective surface area, which are related to topological effects. As the developed method can be adopted to a majority of thin films, it is thought to be a universal method for enhancing the physical properties of various materials.
Discrete model of gas-free spin combustion of a powder mixture.
Klimenok, Kirill L; Rashkovskiy, Sergey A
2015-01-01
We propose a discrete model of gas-free combustion of a cylindrical sample which reproduces in detail a spin combustion mode. It is shown that a spin combustion, in its classical sense as a continuous spiral motion of heat release zones on the surface of the sample, does not exist. Such a concept has arisen due to the misinterpretation of the experimental data. This study shows that in fact a spinlike combustion is realized, at which two energy release zones appear on the lateral surface of the sample and propagate circumferentially in the opposite directions. After some time two new heat release zones are formed on the next layer of the cylinder surface and make the same counter-circular motion. This process continues periodically and from a certain angle it looks like a spiral movement of the luminous zone along the lateral surface of the sample. The model shows that on approaching the combustion limit the process becomes more complicated and the spinlike combustion mode shifts to a more complex mode with multiple zones of heat release moving in different directions along the lateral surface. It is shown that the spin combustion mode appears due to asymmetry of initial conditions and always transforms into a layer-by-layer combustion mode with time.
NASA Astrophysics Data System (ADS)
Parsakhoo, Zahra; Shao, Yaping
2017-04-01
Near-surface turbulent mixing has considerable effect on surface fluxes, cloud formation and convection in the atmospheric boundary layer (ABL). Its quantifications is however a modeling and computational challenge since the small eddies are not fully resolved in Eulerian models directly. We have developed a Lagrangian stochastic model to demonstrate multi-scale interactions between convection and land surface heterogeneity in the atmospheric boundary layer based on the Ito Stochastic Differential Equation (SDE) for air parcels (particles). Due to the complexity of the mixing in the ABL, we find that linear Ito SDE cannot represent convections properly. Three strategies have been tested to solve the problem: 1) to make the deterministic term in the Ito equation non-linear; 2) to change the random term in the Ito equation fractional, and 3) to modify the Ito equation by including Levy flights. We focus on the third strategy and interpret mixing as interaction between at least two stochastic processes with different Lagrangian time scales. The model is in progress to include the collisions among the particles with different characteristic and to apply the 3D model for real cases. One application of the model is emphasized: some land surface patterns are generated and then coupled with the Large Eddy Simulation (LES).
Modeling and in Situ Probing of Surface Reactions in Atomic Layer Deposition.
Zheng, Yuanxia; Hong, Sungwook; Psofogiannakis, George; Rayner, G Bruce; Datta, Suman; van Duin, Adri C T; Engel-Herbert, Roman
2017-05-10
Atomic layer deposition (ALD) has matured into a preeminent thin film deposition technique by offering a highly scalable and economic route to integrate chemically dissimilar materials with excellent thickness control down to the subnanometer regime. Contrary to its extensive applications, a quantitative and comprehensive understanding of the reaction processes seems intangible. Complex and manifold reaction pathways are possible, which are strongly affected by the surface chemical state. Here, we report a combined modeling and experimental approach utilizing ReaxFF reactive force field simulation and in situ real-time spectroscopic ellipsometry to gain insights into the ALD process of Al 2 O 3 from trimethylaluminum and water on hydrogenated and oxidized Ge(100) surfaces. We deciphered the origin for the different peculiarities during initial ALD cycles for the deposition on both surfaces. While the simulations predicted a nucleation delay for hydrogenated Ge(100), a self-cleaning effect was discovered on oxidized Ge(100) surfaces and resulted in an intermixed Al 2 O 3 /GeO x layer that effectively suppressed oxygen diffusion into Ge. In situ spectroscopic ellipsometry in combination with ex situ atomic force microscopy and X-ray photoelectron spectroscopy confirmed these simulation results. Electrical impedance characterizations evidenced the critical role of the intermixed Al 2 O 3 /GeO x layer to achieve electrically well-behaved dielectric/Ge interfaces with low interface trap density. The combined approach can be generalized to comprehend the deposition and reaction kinetics of other ALD precursors and surface chemistry, which offers a path toward a theory-aided rational design of ALD processes at a molecular level.
Yang, Ben; Qian, Yun; Berg, Larry K.; ...
2016-07-21
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Qian, Yun; Berg, Larry K.
We evaluate the sensitivity of simulated turbine-height wind speeds to 26 parameters within the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme and MM5 surface-layer scheme of the Weather Research and Forecasting model over an area of complex terrain. An efficient sampling algorithm and generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of simulated turbine-height wind speeds. The results indicate that most of the variability in the ensemble simulations is due to parameters related to the dissipation of turbulent kinetic energy (TKE), Prandtl number, turbulent length scales, surface roughness, and the von Kármán constant. Themore » parameter associated with the TKE dissipation rate is found to be most important, and a larger dissipation rate produces larger hub-height wind speeds. A larger Prandtl number results in smaller nighttime wind speeds. Increasing surface roughness reduces the frequencies of both extremely weak and strong airflows, implying a reduction in the variability of wind speed. All of the above parameters significantly affect the vertical profiles of wind speed and the magnitude of wind shear. Lastly, the relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability.« less
Böttger, Angelika; Doxey, Andrew C; Hess, Michael W; Pfaller, Kristian; Salvenmoser, Willi; Deutzmann, Rainer; Geissner, Andreas; Pauly, Barbara; Altstätter, Johannes; Münder, Sandra; Heim, Astrid; Gabius, Hans-Joachim; McConkey, Brendan J; David, Charles N
2012-01-01
The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.
Böttger, Angelika; Doxey, Andrew C.; Hess, Michael W.; Pfaller, Kristian; Salvenmoser, Willi; Deutzmann, Rainer; Geissner, Andreas; Pauly, Barbara; Altstätter, Johannes; Münder, Sandra; Heim, Astrid; Gabius, Hans-Joachim; McConkey, Brendan J.; David, Charles N.
2012-01-01
The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment. PMID:23300632
NASA Astrophysics Data System (ADS)
Tu, Xiuwen
2008-10-01
Several novel phenomena at the single-atom and single-molecule level occurring on the surfaces of single crystals were studied with home-built low temperature scanning tunneling microscopes. The results revealed intriguing properties of single atoms and single molecules, including nonlinearity, resonance, charging, and motion. First, negative differential resistance (NDR) was observed in the dI/dV spectra for single copper-phthalocyanine (CuPc) molecules adsorbed on one- and two-layer sodium bromide (NaBr), but not for single CuPc molecules adsorbed on three-layer NaBr, all grown on a NiAl(110) surface. This transition from NDR to the absence of NDR was explained as the result of competing effects in the double-barrier tunnel junction (DBTJ) and was reproduced in a calculation based on a resonant-tunneling model. Second, the nonlinearity of the STM junction due to a single manganese (Mn) atom or MnCO molecule adsorbed on a NiAl(110) surface was used to rectify microwave irradiation. The resulting rectification current was shown to be sensitive to the spin-splitting of the electronic states of the Mn atom and to the vibrations of the MnCO molecule. Next, the ordering of cesium (Cs) atoms adsorbed on a Au(111) surface and a NiAl(110) surface was imaged in real space. Because of charge transfer to the substrates, Cs adatoms were positively charged on both surfaces. Even at 12 K, Cs adatoms were able to move and adjust according to coverage. On Au(111), the Cs first layer had a quasi-hexagonal lattice and islands of the second Cs layer did not appear until the first was completed. On NiAl(110), a locally disordered Cs first layer was observed before a locally ordered layer appeared at higher coverages. The cation-pi interactions were then studied at the single molecular level. We were able to form cation-pi complexes such as Cs···DSB, Cs···DSB···Cs, Rb···DSB, and Rb···ZnEtiol controllably by manipulation with the STM tip. We could also separate these complexes controllably by voltage pulses. STM imaging and spectroscopy revealed precise information about the atomic and electronic structure of these cation-pi complexes. Finally, electron transport through single atoms and molecules in a double-barrier tunnel junction (DBTJ) was examined. Charge bistability was observed for single ZnEtioI molecules adsorbed in several different conformations on ultrathin aluminum oxide. A sudden decrease in local apparent barrier height (LABH) was observed at the onset of an adsorbate electronic orbital for single ZnEtioI molecules and Cs atoms supported by the ultrathin aluminum oxide. The resonant-tunneling model, which was proposed to explain the transition from NDR to the absence of NDR, was found useful in explaining the sudden decrease in LABH, too. NDR, bipolar tunneling, and vibronic states were also observed and discussed in the context of DBTJ.
Lectures in Complex Systems (1991)
1992-08-05
momentum term and the line required to reach termination criterion. Fig- ture 2 shows this function for the case where Lcarninglate = 1.0. Peeling and...Soc. Am., in press. 17. Peeling , S. M., and R. K. Moore. "Isolated Digit Recognition Experiments using the Multi-Layer Perceptron." Speech Comm. 7...surfaces which form the focal conic defects seen in Figure 1. These are the cyclides of Dupin. The surfaces go from banana -shaped to squashed doughnuts to
A three-dimensional modelling of the layered structure of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Penasa, L.; Massironi, M.; Naletto, G.; Simioni, E.; Ferrari, S.; Pajola, M.; Lucchetti, A.; Preusker, F.; Scholten, F.; Jorda, L.; Gaskell, R.; Ferri, F.; Marzari, F.; Davidsson, B.; Mottola, S.; Sierks, H.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Rickman, H.; Keller, H. U.; Agarwal, J.; A'Hearn, M. F.; Barucci, M. A.; Bertaux, J. L.; Bertini, I.; Cremonese, G.; Da Deppo, V.; Debei, S.; De Cecco, M.; Deller, J.; Feller, C.; Fornasier, S.; Frattin, E.; Fulle, M.; Groussin, O.; Gutierrez, P. J.; Güttler, C.; Hofmann, M.; Hviid, S. F.; Ip, W. H.; Knollenberg, J.; Kramm, J. R.; Kührt, E.; Küppers, M.; La Forgia, F.; Lara, L. M.; Lazzarin, M.; Lee, J.-C.; Lopez Moreno, J. J.; Oklay, N.; Shi, X.; Thomas, N.; Tubiana, C.; Vincent, J. B.
2017-07-01
We provide a three-dimensional model of the inner layered structure of comet 67P based on the hypothesis of an extended layering independently wrapping each lobe. A large set of terrace orientations was collected on the latest shape model and then used as a proxy for the local orientation of the surfaces of discontinuity which defines the layers. We modelled the terraces as a family of concentric ellipsoidal shells with fixed axis ratios, producing a model that is completely defined by just eight free parameters. Each lobe of 67P has been modelled independently, and the two sets of parameters have been estimated by means of non-linear optimization of the measured terrace orientations. The proposed model is able to predict the orientation of terraces, the elongation of cliffs, the linear traces observed in the Wosret and Hathor regions and the peculiar alignment of boulder-like features which has been observed in the Hapi region, which appears to be related to the inner layering of the big lobe. Our analysis allowed us to identify a plane of junction between the two lobes, further confirming the independent nature of the lobes. Our layering models differ from the best-fitting topographic ellipsoids of the surface, demonstrating that the terraces are aligned to an internal structure of discontinuities, which is unevenly exposed on the surface, suggesting a complex history of localized material removal from the nucleus.
Spin crossover in Fe(phen)2(NCS)2 complexes on metallic surfaces
NASA Astrophysics Data System (ADS)
Gruber, Manuel; Miyamachi, Toshio; Davesne, Vincent; Bowen, Martin; Boukari, Samy; Wulfhekel, Wulf; Alouani, Mebarek; Beaurepaire, Eric
2017-03-01
In this review, we give an overview on the spin crossover of Fe(phen)2(NCS)2 complexes adsorbed on Cu(100), Cu2N/Cu(100), Cu(111), Co/Cu(111), Co(100), Au(100), and Au(111) surfaces. Depending on the strength of the interaction of the molecules with the substrates, the spin crossover behavior can be drastically changed. Molecules in direct contact with non-magnetic metallic surfaces coexist in both the high- and low-spin states but cannot be switched between the two. Our analysis shows that this is due to a strong interaction with the substrate in the form of a chemisorption that dictates the spin state of the molecules through its adsorption geometry. Upon reducing the interaction to the surface either by adding a second molecular layer or inserting an insulating thin film of Cu2N, the spin crossover behavior is restored and molecules can be switched between the two states with the help of scanning tunneling microscopy. Especially on Cu2N, the two states of single molecules are stable at low temperature and thus allow the realization of a molecular memory. Similarly, the molecules decoupled from metallic substrates in the second or higher layers display thermally driven spin crossover as has been revealed by X-ray absorption spectroscopy. Finally, we discuss the situation when the complex is brought into contact with a ferromagnetic substrate. This leads to a strong exchange coupling between the Fe spin in the high-spin state and the magnetization of the substrate as deduced from spin-polarized scanning tunneling spectroscopy and ab initio calculation.
NASA Astrophysics Data System (ADS)
Zhao, Jianlin; Zhang, Jiwei; Dai, Siqing; Di, Jianglei; Xi, Teli
2018-02-01
Surface plasmon microscopy (SPM) is widely applied for label-free detection of changes of refractive index and concentration, as well as mapping thin films in near field. Traditionally, the SPM systems are based on the detection of light intensity or phase changes. Here, we present two kinds of surface plasmon holographic microscopy (SPHM) systems for amplitude- and phase-contrast imaging simultaneously. Through recording off-axis holograms and numerical reconstruction, the complex amplitude distributions of surface plasmon resonance (SPR) images can be obtained. According to the Fresnel's formula, in a prism/ gold/ dielectric structure, the reflection phase shift is uniquely decided by refractive index of the dielectric. By measuring the phase shift difference of the reflected light exploiting prism-coupling SPHM system based on common-path interference configuration, monitoring tiny refractive index variation and imaging biological tissue are performed. Furthermore, to characterize the thin film thickness in near field, we employ a four-layer SPR model in which the third film layer is within the evanescent field. The complex reflection coefficient, including the reflectivity and reflection phase shift, is uniquely decided by the film thickness. By measuring the complex amplitude distributions of the SPR images exploiting objective-coupling SPHM system based on common-path interference configuration, the thickness distributions of thin films are mapped with sub-nanometer resolution theoretically. Owing to its high temporal stability, the recommended SPHMs show great potentials for monitoring tiny refractive index variations, imaging biological tissues and mapping thin films in near field with dynamic, nondestructive and full-field measurement capabilities in chemistry, biomedicine field, etc.
NASA Astrophysics Data System (ADS)
Frasconi, Marco; Mazzei, Franco
2009-07-01
This paper describes the characterization of a self-assembled β-cyclodextrin (β-CD)-derivative monolayer (β-CD-SAM) on a gold surface and the study of their inclusion complexes with glucocorticoids. To this aim the arrangement of a self-assembled β-cyclodextrin-derivative monolayer on a gold surface was monitored in situ by means of surface plasmon resonance (SPR) spectroscopy and double-layer capacitance measurements. Film thickness and dielectric constant were evaluated for a monolayer of β-CD using one-color-approach SPR. The selectivity of the β-CD host surface was verified by using electroactive species permeable and impermeable in the β-CD cavity. The redox probe was selected according to its capacity to permeate the β-CD monolayer and its electrochemical behavior. In order to evaluate the feasibility of an inclusion complex between β-CD-SAM with some steroids such as cortisol and cortisone, voltammetric experiments in the presence of the redox probes as molecules competitive with the steroids have been performed. The formation constant of the surface host-guest by β-CD-SAM and the steroids under study was calculated.
NASA Astrophysics Data System (ADS)
Tournassat, C.; Tinnacher, R. M.; Grangeon, S.; Davis, J. A.
2018-01-01
The prediction of U(VI) adsorption onto montmorillonite clay is confounded by the complexities of: (1) the montmorillonite structure in terms of adsorption sites on basal and edge surfaces, and the complex interactions between the electrical double layers at these surfaces, and (2) U(VI) solution speciation, which can include cationic, anionic and neutral species. Previous U(VI)-montmorillonite adsorption and modeling studies have typically expanded classical surface complexation modeling approaches, initially developed for simple oxides, to include both cation exchange and surface complexation reactions. However, previous models have not taken into account the unique characteristics of electrostatic surface potentials that occur at montmorillonite edge sites, where the electrostatic surface potential of basal plane cation exchange sites influences the surface potential of neighboring edge sites ('spillover' effect). A series of U(VI) - Na-montmorillonite batch adsorption experiments was conducted as a function of pH, with variable U(VI), Ca, and dissolved carbonate concentrations. Based on the experimental data, a new type of surface complexation model (SCM) was developed for montmorillonite, that specifically accounts for the spillover effect using the edge surface speciation model by Tournassat et al. (2016a). The SCM allows for a prediction of U(VI) adsorption under varying chemical conditions with a minimum number of fitting parameters, not only for our own experimental results, but also for a number of published data sets. The model agreed well with many of these datasets without introducing a second site type or including the formation of ternary U(VI)-carbonato surface complexes. The model predictions were greatly impacted by utilizing analytical measurements of dissolved inorganic carbon (DIC) concentrations in individual sample solutions rather than assuming solution equilibration with a specific partial pressure of CO2, even when the gas phase was laboratory air. Because of strong aqueous U(VI)-carbonate solution complexes, the measurement of DIC concentrations was even important for systems set up in the 'absence' of CO2, due to low levels of CO2 contamination during the experiment.
Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen
NASA Astrophysics Data System (ADS)
Zhao, Ni; Nie, Yongjie; Li, Shengtao
2018-04-01
Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.
Blacker, Teddy D.
1994-01-01
An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Kuppan, Saravanan
2015-11-10
Immersion of a solid into liquid often leads to the modification of both the structure and chemistry of surface of the solid, which subsequently affects the chemical and physical properties of the system. For the case of the rechargeable lithium ion battery, such a surface modification is termed as solid electrolyte interphase (SEI) layer, which has been perceived to play critical role for the stable operation of the batteries. However, the structure and chemical composition of SEI layer and its spatial distribution and dependence on the battery operating condition remain unclear. By using aberration corrected scanning transmission electron microscopy coupledmore » with ultra-high sensitive energy dispersive x-ray spectroscopy, we probed the structure and chemistry of SEI layer on several high voltage cathodes. We show that layer-structured cathodes, when cycled at a high cut off voltage, can form a P-rich SEI layer on their surface, which is a direct evidence of Li-salt (LiPF6) decomposition. Our systematical investigations indicate such cathode/Li-salt side reaction shows strong dependence on structure of the cathode materials, operating voltage and temperature, indicating the feasibility of SEI engineering. These findings provide us valuable insights into the complex interface between the high-voltage cathode and the electrolyte.« less
NASA Astrophysics Data System (ADS)
Shao, Yangfan; Pang, Rui; Pan, Hui; Shi, Xingqiang
2018-03-01
The interfaces between organic molecules and magnetic metals have gained increasing interest for both fundamental reasons and applications. Among them, the C60/layered antiferromagnetic (AFM) interfaces have been studied only for C60 bonded to the outermost ferromagnetic layer [S. L. Kawahara et al., Nano Lett. 12, 4558 (2012) and D. Li et al., Phys. Rev. B 93, 085425 (2016)]. Here, via density functional theory calculations combined with evidence from the literature, we demonstrate that C60 adsorption can reconstruct the layered-AFM Cr(001) surface at elevated annealing temperatures so that C60 bonds to both the outermost and the subsurface Cr layers in opposite spin directions. Surface reconstruction drastically changes the adsorbed molecule spintronic properties: (1) the spin-split p-d hybridization involves multi-orbitals of C60 and top two layers of Cr with opposite spin-polarization, (2) the subsurface Cr atom dominates the C60 electronic properties, and (3) the reconstruction induces a large magnetic moment of 0.58 μB in C60 as a synergistic effect of the top two Cr layers. The induced magnetic moment in C60 can be explained by the magnetic direct-exchange mechanism, which can be generalized to other C60/magnetic metal systems. Understanding these complex hybridization behaviors is a crucial step for molecular spintronic applications.
NASA Astrophysics Data System (ADS)
Hsieh, S. Y.; Neubauer, F.; Willingshofer, E.; Sokoutis, D.
2014-12-01
The internal structure of major strike-slip faults is still poorly understood, particularly how the deep structure could be inferred from its surface expression (Molnar and Dayem, 2011). Previous analogue experiments suggest that the convergence angle is the most influential factor (Leever et al., 2011). Further analogue modeling may allow a better understanding how to extrapolate surface structures to the subsurface geometry of strike-slip faults. Various scenarios of analogue experiments were designed to represent strike-slip faults in nature from different geological settings. As such key parameters, which are investigated in this study include: (a) the angle of convergence, (b) the thickness of brittle layer, (c) the influence of a rheological weak layer within the crust, and (d) influence of a thick and rheologically weak layer at the base of the crust. The latter aimed to simulate the effect of a hot metamorphic core complex or an alignment of uprising plutons bordered by a transtensional/transpressional strike-slip fault. The preliminary results show that convergence angle significantly influences the overall geometry of the transpressive system with greater convergence angles resulting in wider fault zones and higher elevation. Different positions, densities and viscosities of weak rheological layers have not only different surface expressions but also affect the fault geometry in the subsurface. For instance, rheological weak material in the bottom layer results in stretching when experiment reaches a certain displacement and a buildup of a less segmented, wide positive flower structure. At the surface, a wide fault valley in the middle of the fault zone is the reflection of stretching along the velocity discontinuity at depth. In models with a thin and rheologically weaker layer in the middle of the brittle layer, deformation is distributed over more faults and the geometry of the fault zone below and above the weak zone shows significant differences. This latter experiment has significantly similar phenomena in reality, such as few pressure ridges along Altyn fault. The experimental results underline the need to understand the role of the convergence angle and the influence of rheology on fault evolution, in order to connect between surface deformation and subsurface geometry.
Hu, Hang; Reven, Linda; Rey, Alejandro
2013-10-17
The structure and mechanical properties of gold nanorods and their interactions with alkenthiolate self-assembled monolayers have been determined using a novel first-principle density functional theory simulation approach. The multifaceted, 1-dimensional, octagonal nanorod has alternate Au100 and Au110 surfaces. The structural optimization of the gold nanorods was performed with a mixed basis: the outermost layer of gold atoms used double-ζ plus polarization (DZP), the layer below used double-ζ (DZ), and the inner layers used single-ζ (SZ). The final structure compares favorably with simulations using DZP for all atoms. Phonon dispersion calculations and ab initio molecular dynamics (AIMD) were used to establish the dynamic and thermal stability of the system. From the AIMD simulations it was found that the nanorod system will undergo significant surface reconstruction at 300 K. In addition, when subjected to mechanical stress in the axial direction, the nanorod responds as an orthotropic material, with uniform expansion along the radial direction. The Young's moduli are 207 kbar in the axial direction and 631 kbar in the radial direction. The binding of alkanethiolates, ranging from methanethiol to pentanethiol, caused formation of surface point defects on the Au110 surfaces. On the Au100 surfaces, the defects occurred in the inner layer, creating a small surface island. These defects make positive and negative concavities on the gold nanorod surface, which helps the ligand to achieve a more stable state. The simulation results narrowed significant knowledge gaps on the alkanethiolate adsorption process and on their mutual interactions on gold nanorods. The mechanical characterization offers a new dimension to understand the physical chemistry of these complex nanoparticles.
Serafin, Stefano; De Wekker, Stephan F J; Knievel, Jason C
Nocturnal boundary-layer phenomena in regions of complex topography are extremely diverse and respond to a multiplicity of forcing factors, acting primarily at the mesoscale and microscale. The interaction between different physical processes, e.g., drainage promoted by near-surface cooling and ambient flow over topography in a statically stable environment, may give rise to special flow patterns, uncommon over flat terrain. Here we present a climatography of boundary-layer flows, based on a 2-year archive of simulations from a high-resolution operational mesoscale weather modelling system, 4DWX. The geographical context is Dugway Proving Ground, in north-western Utah, USA, target area of the field campaigns of the MATERHORN (Mountain Terrain Atmospheric Modeling and Observations Program) project. The comparison between model fields and available observations in 2012-2014 shows that the 4DWX model system provides a realistic representation of wind speed and direction in the area, at least in an average sense. Regions displaying strong spatial gradients in the field variables, thought to be responsible for enhanced nocturnal mixing, are typically located in transition areas from mountain sidewalls to adjacent plains. A key dynamical process in this respect is the separation of dynamically accelerated downslope flows from the surface.
Adsorption, aggregation, and desorption of proteins on smectite particles.
Kolman, Krzysztof; Makowski, Marcin M; Golriz, Ali A; Kappl, Michael; Pigłowski, Jacek; Butt, Hans-Jürgen; Kiersnowski, Adam
2014-10-07
We report on adsorption of lysozyme (LYS), ovalbumin (OVA), or ovotransferrin (OVT) on particles of a synthetic smectite (synthetic layered aluminosilicate). In our approach we used atomic force microscopy (AFM) and quartz crystal microbalance (QCM) to study the protein-smectite systems in water solutions at pH ranging from 4 to 9. The AFM provided insights into the adhesion forces of protein molecules to the smectite particles, while the QCM measurements yielded information about the amounts of the adsorbed proteins, changes in their structure, and conditions of desorption. The binding of the proteins to the smectite surface was driven mainly by electrostatic interactions, and hence properties of the adsorbed layers were controlled by pH. At high pH values a change in orientation of the adsorbed LYS molecules and a collapse or desorption of OVA layer were observed. Lowering pH to the value ≤ 4 caused LYS to desorb and swelling the adsorbed OVA. The stability of OVT-smectite complexes was found the lowest. OVT revealed a tendency to desorb from the smectite surface at all investigated pH. The minimum desorption rate was observed at pH close to the isoelectric point of the protein, which suggests that nonspecific interactions between OVT and smectite particles significantly contribute to the stability of these complexes.
About complex refractive index of black Si
NASA Astrophysics Data System (ADS)
Pinčík, Emil; Brunner, Robert; Kobayashi, Hikaru; Mikula, Milan
2017-12-01
The paper deals with the complex refractive index in the IR light region of two types of samples (i) as prepared black silicon, and (ii) thermally oxidized black silicon (BSi) nano-crystalline specimens produced both by the surface structure chemical transfer method using catalytic Ag evaporated spots (as prepared sample) and by the catalytic Pt catalytic mesh (thermally oxidized sample). We present, compare, and discuss the values of the IR complex refractive index obtained by calculation using the Kramers-Krönig transformation. Results indicate that small differences between optical properties of as prepared black Si and thermally oxidized BSi are given by: (i) - oxidation procedure, (ii) - thickness of the formed black Si layer, mainly, not by utilization of different catalytic metals, and by iii) the different thickness. Contamination of the surface by different catalytic metals contributes almost equally to the calculated values of the corresponding complex refractive index.
NASA Astrophysics Data System (ADS)
Lesyk, D. A.; Martinez, S.; Mordyuk, B. N.; Dzhemelinskyi, V. V.; Lamikiz, A.; Prokopenko, G. I.; Grinkevych, K. E.; Tkachenko, I. V.
2018-02-01
This paper is focused on the effects of the separately applied laser heat treatment (LHT) and ultrasonic impact treatment (UIT) and the combined LHT + UIT process on the wear and friction behaviors of the hardened surface layers of the tool steel AISI D2. In comparison with the initial state, wear losses of the treated specimens after long-term wear tests were decreased by 68, 41, and 77% at the LHT, UIT, and combined LHT + UIT processes, respectively. The Abbott-Firestone bearing curves were used to analyze the material ratio and functional characterization (bearing capacity and oil capacitance) of the studied surface specimens. The wear losses registered after short (15 min) tests correlate well with the changes in experimental surface roughness Ra, and the predictive Rpk, and bearing capacity B C parameters, respectively, evaluated using the Abbott-Firestone curves and Kragelsky-Kombalov formula. The wear losses after the long-term (45 min) tests are in good correlation with the reciprocal surface microhardness HV and with the W L and W P wear parameters, respectively, estimated using Archard-Rabinowicz formula and complex roughness-and-strength approach. The observed HV increase is supported by nanotwins (LHT), by dense dislocation nets (UIT), and by dislocation cells/nanograins fixed with fine carbides (LHT + UIT) formed in the surface layers of the steel.
Liu, Chunyu; Zhang, Dezhong; Li, Zhiqi; Zhang, Xinyuan; Guo, Wenbin; Zhang, Liu; Ruan, Shengping; Long, Yongbing
2017-07-05
To overcome drawbacks of the electron transport layer, such as complex surface defects and unmatched energy levels, we successfully employed a smart semiconductor-metal interfacial nanojunciton in organic solar cells by evaporating an ultrathin Al interlayer onto annealing-free ZnO electron transport layer, resulting in a high fill factor of 73.68% and power conversion efficiency of 9.81%. The construction of ZnO-Al nanojunction could effectively fill the surface defects of ZnO and reduce its work function because of the electron transfer from Al to ZnO by Fermi level equilibrium. The filling of surface defects decreased the interfacial carrier recombination in midgap trap states. The reduced surface work function of ZnO-Al remodulated the interfacial characteristics between ZnO and [6,6]-phenyl C71-butyric acid methyl ester (PC 71 BM), decreasing or even eliminating the interfacial barrier against the electron transport, which is beneficial to improve the electron extraction capacity. The filled surface defects and reduced interfacial barrier were realistically observed by photoluminescence measurements of ZnO film and the performance of electron injection devices, respectively. This work provides a simple and effective method to simultaneously solve the problems of surface defects and unmatched energy level for the annealing-free ZnO or other metal oxide semiconductors, paving a way for the future popularization in photovoltaic devices.
Tonkin, J.W.; Balistrieri, L.S.; Murray, J.W.
2004-01-01
Manganese oxides are important scavengers of trace metals and other contaminants in the environment. The inclusion of Mn oxides in predictive models, however, has been difficult due to the lack of a comprehensive set of sorption reactions consistent with a given surface complexation model (SCM), and the discrepancies between published sorption data and predictions using the available models. The authors have compiled a set of surface complexation reactions for synthetic hydrous Mn oxide (HMO) using a two surface site model and the diffuse double layer SCM which complements databases developed for hydrous Fe (III) oxide, goethite and crystalline Al oxide. This compilation encompasses a range of data observed in the literature for the complex HMO surface and provides an error envelope for predictions not well defined by fitting parameters for single or limited data sets. Data describing surface characteristics and cation sorption were compiled from the literature for the synthetic HMO phases birnessite, vernadite and ??-MnO2. A specific surface area of 746 m2g-1 and a surface site density of 2.1 mmol g-1 were determined from crystallographic data and considered fixed parameters in the model. Potentiometric titration data sets were adjusted to a pH1EP value of 2.2. Two site types (???XOH and ???YOH) were used. The fraction of total sites attributed to ???XOH (??) and pKa2 were optimized for each of 7 published potentiometric titration data sets using the computer program FITEQL3.2. pKa2 values of 2.35??0.077 (???XOH) and 6.06??0.040 (???YOH) were determined at the 95% confidence level. The calculated average ?? value was 0.64, with high and low values ranging from 1.0 to 0.24, respectively. pKa2 and ?? values and published cation sorption data were used subsequently to determine equilibrium surface complexation constants for Ba2+, Ca2+, Cd 2+, Co2+, Cu2+, Mg2+, Mn 2+, Ni2+, Pb2+, Sr2+ and Zn 2+. In addition, average model parameters were used to predict additional sorption data for which complementary titration data were not available. The two-site model accounts for variability in the titration data and most metal sorption data are fit well using the pKa2 and ?? values reported above. A linear free energy relationship (LFER) appears to exist for some of the metals; however, redox and cation exchange reactions may limit the prediction of surface complexation constants for additional metals using the LFER. ?? 2003 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mahalov, M. S.; Blumenstein, V. Yu
2017-10-01
The mechanical condition and residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The mechanical state and RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.
A Systematic Procedure to Describe Shale Gas Permeability Evolution during the Production Process
NASA Astrophysics Data System (ADS)
Jia, B.; Tsau, J. S.; Barati, R.
2017-12-01
Gas flow behavior in shales is complex due to the multi-physics nature of the process. Pore size reduces as the in-situ stress increases during the production process, which will reduce intrinsic permeability of the porous media. Slip flow/pore diffusion enhances gas apparent permeability, especially under low reservoir pressures. Adsorption not only increases original gas in place but also influences gas flow behavior because of the adsorption layer. Surface diffusion between free gas and adsorption phase enhances gas permeability. Pore size reduction and the adsorption layer both have complex impacts on gas apparent permeability and non-Darcy flow might be a major component in nanopores. Previously published literature is generally incomplete in terms of coupling of all these four physics with fluid flow during gas production. This work proposes a methodology to simultaneously take them into account to describe a permeability evolution process. Our results show that to fully describe shale gas permeability evolution during gas production, three sets of experimental data are needed initially: 1) intrinsic permeability under different in-situ stress, 2) adsorption isotherm under reservoir conditions and 3) surface diffusivity measurement by the pulse-decay method. Geomechanical effects, slip flow/pore diffusion, adsorption layer and surface diffusion all play roles affecting gas permeability. Neglecting any of them might lead to misleading results. The increasing in-situ stress during shale gas production is unfavorable to shale gas flow process. Slip flow/pore diffusion is important for gas permeability under low pressures in the tight porous media. They might overwhelm the geomechanical effect and enhance gas permeability at low pressures. Adsorption layer reduces the gas permeability by reducing the effective pore size, but the effect is limited. Surface diffusion increases gas permeability more under lower pressures. The total gas apparent permeability might keep increasing during the gas production process when the surface diffusivity is larger than a critical value. We believe that our workflow proposed in this study will help describe shale gas permeability evolution considering all the underlying physics altogether.
Chemistry in protoplanetary disks
NASA Astrophysics Data System (ADS)
Semenov, D. A.
2012-01-01
In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.
Surface Complexation Modeling of Eu(III) and U(VI) Interactions with Graphene Oxide.
Xie, Yu; Helvenston, Edward M; Shuller-Nickles, Lindsay C; Powell, Brian A
2016-02-16
Graphene oxide (GO) has great potential for actinide removal due to its extremely high sorption capacity, but the mechanism of sorption remains unclear. In this study, the carboxylic functional group and an unexpected sulfonate functional group on GO were characterized as the reactive surface sites and quantified via diffuse layer modeling of the GO acid/base titrations. The presence of sulfonate functional group on GO was confirmed using elemental analysis and X-ray photoelectron spectroscopy. Batch experiments of Eu(III) and U(VI) sorption to GO as the function of pH (1-8) and as the function of analyte concentration (10-100, 000 ppb) at a constant pH ≈ 5 were conducted; the batch sorption results were modeled simultaneously using surface complexation modeling (SCM). The SCM indicated that Eu(III) and U(VI) complexation to carboxylate functional group is the main mechanism for their sorption to GO; their complexation to the sulfonate site occurred at the lower pH range and the complexation of Eu(III) to sulfonate site are more significant than that of U(VI). Eu(III) and U(VI) facilitated GO aggregation was observed with high Eu(III) and U(VI) concentration and may be caused by surface charge neutralization of GO after sorption.
Numerical modeling of mineral dissolution - precipitation kinetics integrating interfacial processes
NASA Astrophysics Data System (ADS)
Azaroual, M. M.
2016-12-01
The mechanisms of mineral dissolution/precipitation are complex and interdependent. Within a same rock, the geochemical modelling may have to manage kinetic reactions with high ratios between the most reactive minerals (i.e., carbonates, sulfate salts, etc.) and less reactive minerals (i.e., silica, alumino-silicates, etc.). These ratios (higher than 10+6) induce numerical instabilities for calculating mass and energy transfers between minerals and aqueous phases at the appropriate scales of time and space. The current scientific debate includes: i) changes (or not) of the mineral reactive surface with the progress of the dissolution/precipitation reactions; ii) energy jumps (discontinuity) in the thermodynamic affinity function of some dissolution/precipitation reactions and iii) integration of processes at the "mineral - aqueous solution" interfaces for alumino-silicates, silica and carbonates. In recent works dealing with the specific case of amorphous silica, measurements were performed on nano-metric cross-sections indicating the presence of surface layer between the bulk solution and the mineral. This thin layer is composed by amorphous silica and hydrated silica "permeable" to the transfer of water and ionic chemical constituents. The boundary/interface between the initial mineral and the silica layer is characterized by a high concentration jump of chemical products at the nanoscale and some specific interfacial dissolution/precipitation processes.In this study, the results of numerical simulations dealing with different mechanisms of silicate and carbonate dissolution/precipitation reactions and integrating interfacial processes will be discussed. The application of this approach to silica precipitation is based on laboratory experiments and it highlights the significant role of the "titration" surface induced by surface complexation reactions in the determination of the kinetics of precipitation.
New concepts for Reynolds stress transport equation modeling of inhomogeneous flows
NASA Technical Reports Server (NTRS)
Perot, J. Blair; Moin, Parviz
1993-01-01
The ability to model turbulence near solid walls and other types of boundaries is important in predicting complex engineering flows. Most turbulence modeling has concentrated either on flows which are nearly homogeneous or isotropic, or on turbulent boundary layers. Boundary layer models usually rely very heavily on the presence of mean shear and the production of turbulence due to that mean shear. Most other turbulence models are based on the assumption of quasi-homogeneity. However, there are many situations of engineering interest which do not involve large shear rates and which are not quasi-homogeneous or isotropic. Shear-free turbulent boundary layers are the prototypical example of such flows, with practical situations being separation and reattachment, bluff body flow, high free-stream turbulence, and free surface flows. Although these situations are not as common as the variants of the flat plate turbulent boundary layer, they tend to be critical factors in complex engineering situations. The models developed are intended to extend classical quasi-homogeneous models into regions of large inhomogeneity. These models do not rely on the presence of mean shear or production, but are still applicable when those additional effects are included. Although the focus is on shear-free boundary layers as tests for these models, results for standard shearing boundary layers are also shown.
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios
2017-07-01
We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.
The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence
NASA Astrophysics Data System (ADS)
Lothon, M.; Lohou, F.; Pino, D.; Couvreux, F.; Pardyjak, E. R.; Reuder, J.; Vilà-Guerau de Arellano, J.; Durand, P.; Hartogensis, O.; Legain, D.; Augustin, P.; Gioli, B.; Faloona, I.; Yagüe, C.; Alexander, D. C.; Angevine, W. M.; Bargain, E.; Barrié, J.; Bazile, E.; Bezombes, Y.; Blay-Carreras, E.; van de Boer, A.; Boichard, J. L.; Bourdon, A.; Butet, A.; Campistron, B.; de Coster, O.; Cuxart, J.; Dabas, A.; Darbieu, C.; Deboudt, K.; Delbarre, H.; Derrien, S.; Flament, P.; Fourmentin, M.; Garai, A.; Gibert, F.; Graf, A.; Groebner, J.; Guichard, F.; Jimenez Cortes, M. A.; Jonassen, M.; van den Kroonenberg, A.; Lenschow, D. H.; Magliulo, V.; Martin, S.; Martinez, D.; Mastrorillo, L.; Moene, A. F.; Molinos, F.; Moulin, E.; Pietersen, H. P.; Piguet, B.; Pique, E.; Román-Cascón, C.; Rufin-Soler, C.; Saïd, F.; Sastre-Marugán, M.; Seity, Y.; Steeneveld, G. J.; Toscano, P.; Traullé, O.; Tzanos, D.; Wacker, S.; Wildmann, N.; Zaldei, A.
2014-04-01
Due to the major role of the sun in heating the earth's surface, the atmospheric planetary boundary layer over land is inherently marked by a diurnal cycle. The afternoon transition, the period of the day that connects the daytime dry convective to the night-time stable boundary layer, still raises several scientific issues. This phase of the diurnal cycle is challenging from both modeling and observational perspectives: it is transitory, most of the forcings are small or null and the turbulence regime changes from fully convective regime, close to homogeneous and isotropic, toward a more heterogeneous and intermittent state. These issues motivated the BLLAST (Boundary Layer Late Afternoon and Sunset Turbulence) field campaign that was conducted from 14 June to 8 July 2011 in southern France, in an area of complex and heterogeneous terrain. A wide range of integrated instrument platforms including full-size aircraft, remotely piloted aircraft systems (RPAS), remote sensing instruments, radiosoundings, tethered balloons, surface flux stations, and various meteorological towers were deployed over different surface types. The boundary layer, from the earth's surface to the free troposphere, was probed during the entire day, with a focus and intense observations from midday until sunset. The BLLAST field campaign also provided an opportunity to test innovative measurement systems, like new miniaturized sensors, and a new technique for frequent radiosoundings of the low troposphere. Twelve fair weather days displaying various meteorological conditions were extensively documented during the field experiment. The boundary layer growth varied from one day to another depending on many contributions including stability, advection, subsidence, the state of the residual layer of the previous day, as well as local, meso- or synoptic scale conditions. Ground-based measurements combined with tethered-balloon and airborne observations captured the turbulence decay from the surface throughout the whole boundary layer and evidenced the evolution of the turbulence characteristic lengthscales during the transition period. Closely integrated with the field experiment, numerical studies are now underway with a complete hierarchy of models to support the data interpretation and improve the model representations.
Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed
2013-06-01
Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hicks, Micheal M.
A comprehensive analysis of surface-atmosphere flux exchanges over a mixed rural and urban convective environment is conducted at Howard University Beltsville, MD Research Campus. This heterogeneous site consists of rural, suburban and industrial surface covers to its south, east and west, within a 2 km radius of a flux sensor. The eddy covariance method is utilized to estimate surface-atmosphere flux exchanges of momentum, heat and moisture. The attributes of these surface flux exchanges are contrasted to those of classical homogeneous sites and assessed for accuracy, to evaluate the following: (I) their similarity to conventional convective boundary layer (CBL) processes and (II) their representativeness of the surrounding environment's turbulent properties. Both evaluations are performed as a function of upwind surface conditions. In particular, the flux estimates' obedience to spectrum power laws and similarity theory relationships is used for performing the first evaluation, and their ability to close the surface energy balance and accurately model CBL heights is used for the latter. An algorithm that estimates atmospheric boundary layer heights from observed lidar extinction backscatter was developed, tested and applied in this study. The derived lidar based CBL heights compared well with those derived from balloon borne soundings, with an overall Pearson correlation coefficient and standard deviation of 0.85 and 223 m, respectively. This algorithm assisted in the evaluation of the response of CBL processes to surface heterogeneity, by deriving high temporal CBL heights and using them as independent references of the surrounding area averaged sensible heat fluxes. This study found that the heterogeneous site under evaluation was rougher than classical homogeneous sites, with slower dissipation rates of turbulent kinetic energy. Flux measurements downwind of the industrial complexes exhibited enhanced efficiency in surface-atmosphere momentum, heat, and moisture transport relative to their similarity theory predictions. In addition, these enhanced heat flux estimates ingested into the CBL slab model overestimated observed CBL heights. More spatial flux observations are needed to better understand the role that the industrial complexes are playing in enhancing the efficiency of turbulent processes, which may have important implications on the role humans are assuming in regional climate change.
Unraveling the Complexity of the Evolution of the Sun's Photospheric Magnetic Field
NASA Astrophysics Data System (ADS)
Hathaway, David H.
2016-10-01
Given the emergence of tilted, bipolar active regions, surface flux transport has been shown to reproduce much of the complex evolution of the Sun's photospheric magnetic field. Surface flux is transported by flows in the surface shear layer - the axisymmetric differential rotation and meridional flow and the non-axisymmetric convective motions (granules, supergranules, and giant cells). We have measured these flows by correlation tracking of the magnetic elements themselves, correlation tracking of the Doppler features (supergranules), and by direct Doppler measurements using SDO/HMI data. These measurements fully constrain (with no free parameters) the flows used in our surface flux transport code - the Advective Flux Transport or AFT code. Here we show the up-to-date evolution of these flows, their impact on the detailed evolution of the Sun's photospheric magnetic field, and predictions for what the polar fields will be at the next minimum in 2020.
Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin
2011-05-03
In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.
The structure of the S-layer of Clostridium difficile.
Bradshaw, William J; Roberts, April K; Shone, Clifford C; Acharya, K Ravi
2018-03-01
The nosocomially acquired pathogen Clostridium difficile is the primary causative agent of antibiotic associated diarrhoea and causes tens of thousands of deaths globally each year. C. difficile presents a paracrystalline protein array on the surface of the cell known as an S-layer. S-layers have been demonstrated to possess a wide range of important functions, which, combined with their inherent accessibility, makes them a promising drug target. The unusually complex S-layer of C. difficile is primarily comprised of the high- and low- molecular weight S-layer proteins, HMW SLP and LMW SLP, formed from the cleavage of the S-layer precursor protein, SlpA, but may also contain up to 28 SlpA paralogues. A model of how the S-layer functions as a whole is required if it is to be exploited in fighting the bacterium. Here, we provide a summary of what is known about the S-layer of C. difficile and each of the paralogues and, considering some of the domains present, suggest potential roles for them.
NASA Technical Reports Server (NTRS)
2003-01-01
[figure removed for brevity, see original site] (Released 28 June 2002) The Science This THEMIS visible image illustrates the complex terrains within Terra Meridiani. This general region is one of the more complex on Mars, with a rich array of sedimentary, volcanic, and impact surfaces that span a wide range of martian history. This image lies at the eastern edge of a unique geologic unit that was discovered by the Mars Global Surveyor Thermal Emission Spectrometer (TES) Science Team to have high concentrations of a unique mineral called grey (crystalline) hematite. As discussed by the TES Science Team, this mineral typically forms by processes associated with water, and this region appears to have undergone alteration by hydrothermal (hot water) or other water-related processes. As a result of this evidence for water activity, this region is a leading candidate for further exploration by one of NASA's upcoming Mars Exploration Rovers. The brightness and texture of the surface varies remarkably throughout this image. These differences are associated with different rock layers or ?units?, and can be used to map the occurrence of these layers. The number of layers indicates that extensive deposition by volcanic and sedimentary processes has occurred in this region. Since that time, however, extensive erosion has occurred to produce the patchwork of different layers exposed across the surface. Several distinct layers can be seen within the 20 km diameter crater at the bottom (south) of the image, indicating that this crater once contained layers of sedimentary material that has since been removed. THEMIS infrared images of this region show that many of these rock layers have distinctly different temperatures, indicating that the physical properties vary from layer to layer. These differences suggest that the environment and the conditions under which these layers were deposited or solidified varied through time as these layers were formed. The Story Mars exploration is all about following the signs of past or present water on the red planet. That's because water is the key to understanding the history of the Martian environment (climate and geology), the potential for life to have developed there, and the potential for human exploration some day far in the future. All of the missions in the Mars Exploration Program contribute something special to science investigations about water on Mars and complement each other nicely. For instance, take the above image. Given the contrasts, you can tell that this area is pretty complex. You've got a really old crater that's been eroded, and a rich array of volcanic surfaces and layers where material has been deposited through other processes. Now, that might make this area seem like any number of images you've already seen, but this terrain holds special appeal. A science instrument on the Mars Global Surveyor spacecraft recently discovered that this area has really high concentrations of a unique mineral called grey (crystalline) hematite. That discovery was REALLY exciting to scientists, because hematite found on Earth typically develops in the presence of water. So, did this region have water on the surface long enough for the mineral to have formed sometime in the past? And if so, could that water have been around long enough for life to have developed at some point? After all, if water was around long enough for this mineral to have formed, then maybe, just maybe . . . . Studies of this area by Odyssey and Mars Global Surveyor are helping to pave the way for the Mars Exploration Rovers, which are scheduled to land on Mars in 2004. This alluring, hematite-rich area above is called Terra Meridiani, and is one of the leading candidates among potential landing sites. At least one of the rovers may end up exploring this very terrain! While the rover won't have instruments for detecting signs of past or present life, it will be able to use its science instruments to study the rocks up close and to determine better under what environment conditions they formed. By comparing the rover's surface data with the orbital data, scientists will be able to refine their understanding of the area. Depending on what a rover finds if it lands there, who knows what the long line of future missions to this area might look like? In the meantime, the above THEMIS image will give scientists more opportunities to study this exciting area right now. The brightness and texture of the surface varies remarkably throughout. That's because different rock layers settled on top of one another through a long history of changing environmental conditions before extensive erosion came along to strip layers unevenly away. That's what has produce the patchwork of different exposed layers seen above. Perhaps one layer formed during a wet period of history, and then another layer formed on top of it because of volcanic activity, and then another through wind deposits. Or some other combination. Any future rover fortunate enough to go here will have a field day, as it could potentially study them all! THEMIS's concurrent analyses in the infrared also help in understanding the sequence of layering events through time. THEMIS's infrared studies essentially measure the temperatures of all of the rock layers. Not surprisingly, it turns out that they all have varying temperatures, indicating that the physical properties also differ from layer to layer. By mapping what type of material occurs where, scientists can add to their knowledge of climatic and geologic change through time . . . and maybe have even more to say on the question of water!
NASA Astrophysics Data System (ADS)
Lambropoulos, John C.; Fang, Tong; Xu, Su; Gracewski, Sheryl M.
1995-09-01
We discuss a constitutive model describing the permanent densification of fused silica under large applied pressures and shear stresses. The constitutive law is assumed to be rate- independent, and uses a yield function coupling hydrostatic pressure and shear stress, a flow rule describing the evolution of permanent strains after initial densification, and a hardening rule describing the dependence of the incremental densification on the levels of applied stresses. The constitutive law accounts for multiaxial states of stress, since during polishing and grinding operations complex stress states occur in a thin surface layer due to the action of abrasive particles. Due to frictional and other abrasive forces, large shear stresses are present near the surface during manufacturing. We apply the constitutive law in estimating the extent of the densified layer during the mechanical interaction of an abrasive grain and a flat surface.
Aricò, Antonino S; Stassi, Alessandro; D'Urso, Claudia; Sebastián, David; Baglio, Vincenzo
2014-08-18
A composite Pd-based electrocatalyst consisting of a surface layer of Pt (5 wt.%) supported on a core Pd3Co1 alloy (95 wt.%) and dispersed as nanoparticles on a carbon black support (50 wt.% metal content) was prepared by using a sulphite-complex route. The structure, composition, morphology, and surface properties of the catalyst were investigated by XRD, XRF, TEM, XPS and low-energy ion scattering spectroscopy (LE-ISS). The catalyst showed an enrichment of Pt on the surface and a smaller content of Co in the outermost layers. These characteristics allow a decrease the Pt content in direct methanol fuel cell cathode electrodes (from 1 to 0.06 mg cm(-2)) without significant decay in performance, due also to a better tolerance to methanol permeated through the polymer electrolyte membrane. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids.
Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter
2016-05-25
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only.
Conidial Hydrophobins of Aspergillus fumigatus
Paris, Sophie; Debeaupuis, Jean-Paul; Crameri, Reto; Carey, Marilyn; Charlès, Franck; Prévost, Marie Christine; Schmitt, Christine; Philippe, Bruno; Latgé, Jean Paul
2003-01-01
The surface of Aspergillus fumigatus conidia, the first structure recognized by the host immune system, is covered by rodlets. We report that this outer cell wall layer contains two hydrophobins, RodAp and RodBp, which are found as highly insoluble complexes. The RODA gene was previously characterized, and ΔrodA conidia do not display a rodlet layer (N. Thau, M. Monod, B. Crestani, C. Rolland, G. Tronchin, J. P. Latgé, and S. Paris, Infect. Immun. 62:4380-4388, 1994). The RODB gene was cloned and disrupted. RodBp was highly homologous to RodAp and different from DewAp of A. nidulans. ΔrodB conidia had a rodlet layer similar to that of the wild-type conidia. Therefore, unlike RodAp, RodBp is not required for rodlet formation. The surface of ΔrodA conidia is granular; in contrast, an amorphous layer is present at the surface of the conidia of the ΔrodA ΔrodB double mutant. These data show that RodBp plays a role in the structure of the conidial cell wall. Moreover, rodletless mutants are more sensitive to killing by alveolar macrophages, suggesting that RodAp or the rodlet structure is involved in the resistance to host cells. PMID:12620846
Metamaterial bricks and quantization of meta-surfaces
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-01-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units—which we call metamaterial bricks—each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators. PMID:28240283
Metamaterial bricks and quantization of meta-surfaces
NASA Astrophysics Data System (ADS)
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R.; Drinkwater, Bruce W.; Subramanian, Sriram
2017-02-01
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units--which we call metamaterial bricks--each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Metamaterial bricks and quantization of meta-surfaces.
Memoli, Gianluca; Caleap, Mihai; Asakawa, Michihiro; Sahoo, Deepak R; Drinkwater, Bruce W; Subramanian, Sriram
2017-02-27
Controlling acoustic fields is crucial in diverse applications such as loudspeaker design, ultrasound imaging and therapy or acoustic particle manipulation. The current approaches use fixed lenses or expensive phased arrays. Here, using a process of analogue-to-digital conversion and wavelet decomposition, we develop the notion of quantal meta-surfaces. The quanta here are small, pre-manufactured three-dimensional units-which we call metamaterial bricks-each encoding a specific phase delay. These bricks can be assembled into meta-surfaces to generate any diffraction-limited acoustic field. We apply this methodology to show experimental examples of acoustic focusing, steering and, after stacking single meta-surfaces into layers, the more complex field of an acoustic tractor beam. We demonstrate experimentally single-sided air-borne acoustic levitation using meta-layers at various bit-rates: from a 4-bit uniform to 3-bit non-uniform quantization in phase. This powerful methodology dramatically simplifies the design of acoustic devices and provides a key-step towards realizing spatial sound modulators.
Abrasive-assisted Nickel Electroforming Process with Moving Cathode
NASA Astrophysics Data System (ADS)
REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di
2017-03-01
In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.
NASA Astrophysics Data System (ADS)
Marschall, R.; Su, C. C.; Liao, Y.; Thomas, N.; Wu, J. S.; Altwegg, K.; Sierks, H.; Ip, W.-H.; Keller, H. U.; Knollenberg, J.; Kührt, E.; Lai, I. L.; Rubin, M.; Skorov, Y.; Jorda, L.; Preusker, F.; Scholten, F.; Gicquel, A.; Gracia-Berná, A.; Naletto, G.
2015-10-01
The physics of the outflow above the surface of comets is somewhat complex. Ice sublimating into vacuum forms a non-equilibrium boundary layer, the "Knudsen layer" (Kn-layer), with a scale height of #20 mean free paths. If the production rate is low, the Kn-layer becomes infinitely thick and the velocity distribution function (VDF) remains strongly non-Maxwellian. Thus our preferred method for gas dynamics simulations of the coma is Direct Simulation Monte Carlo DSMC. Here we report on the first results of models of the outflow from the Rosetta target, comet67P/Churyumov-Gerasimenko (C-G). Our aims are to (1) determine the gas flow-field of H2O and CO2 in the innermost coma and compare the results to the in-situ measurements of the ROSINA/COPS instrument (2) produce artificial images of the dust brightnesses that can be compared to the OSIRIS cameras. The comparison with ROSINA/COPS and OSIRIS data help to constrain the initial conditions of the simulations and thus yield information on the surface processes.
Rectifying the output of vibrational piezoelectric energy harvester using quantum dots
NASA Astrophysics Data System (ADS)
Li, Lijie
2017-03-01
Piezoelectric energy harvester scavenges mechanical vibrations and generates electricity. Researchers have strived to optimize the electromechanical structures and to design necessary external power management circuits, aiming to deliver high power and rectified outputs ready for serving as batteries. Complex deformation of the mechanical structure results in charges with opposite polarities appearing on same surface, leading to current loss in the attached metal electrode. External power management circuits such as rectifiers comprise diodes that consume power and have undesirable forward bias. To address the above issues, we devise a novel integrated piezoelectric energy harvesting device that is structured by stacking a layer of quantum dots (QDs) and a layer of piezoelectric material. We find that the QD can rectify electrical charges generated from the piezoelectric material because of its adaptable conductance to the electrochemical potentials of both sides of the QDs layer, so that electrical current causing energy loss on the same surface of the piezoelectric material can be minimized. The QDs layer has the potential to replace external rectification circuits providing a much more compact and less power-consumption solution.
Mathematical Modeling of Dual Layer Shell Type Recuperation System for Biogas Dehumidification
NASA Astrophysics Data System (ADS)
Gendelis, S.; Timuhins, A.; Laizans, A.; Bandeniece, L.
2015-12-01
The main aim of the current paper is to create a mathematical model for dual layer shell type recuperation system, which allows reducing the heat losses from the biomass digester and water amount in the biogas without any additional mechanical or chemical components. The idea of this system is to reduce the temperature of the outflowing gas by creating two-layered counter-flow heat exchanger around the walls of biogas digester, thus increasing a thermal resistance and the gas temperature, resulting in a condensation on a colder surface. Complex mathematical model, including surface condensation, is developed for this type of biogas dehumidifier and the parameter study is carried out for a wide range of parameters. The model is reduced to 1D case to make numerical calculations faster. It is shown that latent heat of condensation is very important for the total heat balance and the condensation rate is highly dependent on insulation between layers and outside temperature. Modelling results allow finding optimal geometrical parameters for the known gas flow and predicting the condensation rate for different system setups and seasons.
NASA Astrophysics Data System (ADS)
Sayin, Mustafa; Dahint, Reiner
2017-03-01
Nanostructure formation via self-assembly processes offers a fast and cost-effective approach to generate surface patterns on large lateral scale. In particular, if the high precision of lithographic techniques is not required, a situation typical of many biotechnological and biomedical applications, it may be considered as the method of choice as it does not require any sophisticated instrumentation. However, in many cases the variety and complexity of the surface structures accessible with a single self-assembly based technique is limited. Here, we report on a new approach which combines two different self-assembly strategies, colloidal lithography and layer-by-layer deposition of polyelectrolytes, in order to significantly expand the spectrum of accessible patterns. In particular, flat and donut-like charge-patterned templates have been generated, which facilitate subsequent deposition of gold nanoparticles in dot, grid, ring, out-of-ring and circular patch structures. Potential applications are e.g. in the fields of biofunctional interfaces with well-defined lateral dimensions, optical devices with tuned properties, and controlled three-dimensional material growth.
Optical response of nanostructured metal/dielectric composites and multilayers
NASA Astrophysics Data System (ADS)
Smith, Geoffrey B.; Maaroof, Abbas I.; Allan, Rodney S.; Schelm, Stefan; Anstis, Geoffrey R.; Cortie, Michael B.
2004-08-01
The homogeneous optical response in conducting nanostructured layers, and in insulating layers containing dense arrays of self assembled conducting nanoparticles separated by organic linkers, is examined experimentally through their effective complex indices (n*, k*). Classical effective medium models, modified to account for the 3-phase nanostructure, are shown to explain (n*, k*) in dense particulate systems but not inhomogeneous layers with macroscopic conductance for which a different approach to homogenisation is discussed. (n*, k*) data on thin granular metal films, thin mesoporous gold, and on thin metal layers containing ordered arrays of voids, is linked to properties of the surface plasmon states which span the nanostructured film. Coupling between evanescent waves at either surface counterbalanced by electron scattering losses must be considered. Virtual bound states for resonant photons result, with the associated transit delay leading to a large rise in n* in many nanostructures. Overcoating n-Ag with alumina is shown to alter (n*, k*) through its impact on the SP coupling. In contrast to classical optical homogenisation, effective indices depend on film thickness. Supporting high resolution SEM images are presented.
Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.
Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun
2016-10-01
By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Khalil, T T; Boulanouar, O; Heintz, O; Fromm, M
2017-02-01
We have investigated the ability of diamines as well as basic amino acids to condense DNA onto highly ordered pyrolytic graphite with minimum damage after re-dissolution in water. Based on a bibliographic survey we briefly summarize DNA binding properties with diamines as compared to basic amino acids. Thus, solutions of DNA complexed with these linkers were drop-cast in order to deposit ultra-thin layers on the surface of HOPG in the absence or presence of Tris buffer. Atomic Force Microscopy analyses showed that, at a fixed ligand-DNA mixing ratio of 16, the mean thickness of the layers can be statistically predicted to lie in the range 0-50nm with a maximum standard deviation ±6nm, using a simple linear law depending on the DNA concentration. The morphology of the layers appears to be ligand-dependent. While the layers containing diamines present holes, those formed in the presence of basic amino acids, except for lysine, are much more compact and dense. X-ray Photoelectron Spectroscopy measurements provide compositional information indicating that, compared to the maximum number of DNA sites to which the ligands may bind, the basic amino acids Arg and His are present in large excess. Conservation of the supercoiled topology of the DNA plasmids was studied after recovery of the complex layers in water. Remarkably, arginine has the best protection capabilities whether Tris was present or not in the initial solution. Copyright © 2016 Elsevier B.V. All rights reserved.
Unstructured Cartesian/prismatic grid generation for complex geometries
NASA Technical Reports Server (NTRS)
Karman, Steve L., Jr.
1995-01-01
The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.
Large eddy simulation modeling of particle-laden flows in complex terrain
NASA Astrophysics Data System (ADS)
Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.
2017-12-01
The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.
Nanotechnology use with cosmeceuticals.
Golubovic-Liakopoulos, Nevenka; Simon, Sanford R; Shah, Bhavdeep
2011-09-01
The skin is a complex organ and its aging is a complex process. Cutaneous aging is influenced by factors such as sun exposure, genetics, stress and the environment. While skin laxity, rhytides, and dyschromia appear on the surface, these processes originate in deeper layers including the dermis and subcutaneous tissues. Until recently, most topical skin treatments were applied to, and consequently only affected the skin surface. Skin care has evolved to be scientifically based, and as knowledge increases about the physiology of the skin, novel methods of maintaining its health and appearance are developed. New generation skin care products are targeting multiple aging mechanisms by utilizing functional active ingredients in combination with innovative delivery systems. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kozak, J.; Gulbinowicz, D.; Gulbinowicz, Z.
2009-05-01
The need for complex and accurate three dimensional (3-D) microcomponents is increasing rapidly for many industrial and consumer products. Electrochemical machining process (ECM) has the potential of generating desired crack-free and stress-free surfaces of microcomponents. This paper reports a study of pulse electrochemical micromachining (PECMM) using ultrashort (nanoseconds) pulses for generating complex 3-D microstructures of high accuracy. A mathematical model of the microshaping process with taking into consideration unsteady phenomena in electrical double layer has been developed. The software for computer simulation of PECM has been developed and the effects of machining parameters on anodic localization and final shape of machined surface are presented.
NASA Astrophysics Data System (ADS)
Lemonsu, A.; Pigeon, G.; Masson, V.; Moppert, C.
2006-02-01
3D numerical simulations with the Meso-NH atmospheric model including the Town Energy Balance urban parameterization, are conducted over the south-east of France and the one million inhabitants city of Marseille in the frameworks of the ESCOMPTE-UBL program. The geographic situation of the area is relatively complex, because of the proximity of the Mediterranean Sea and the presence of numerous massifs, inducing complex meteorological flows. The present work is focused on six days of the campaign, characterized by the development of strong summer sea-breeze circulations. A complete evaluation of the model is initially realized at both regional- and city-scales, by using the large available database. The regional evaluation shows a good behavior of the model, during the six days of simulation, either for the parameters near the surface or for the vertical profiles describing the structure of the atmosphere. The urban-scale evaluation indicates that the fine structure of the horizontal fields of air temperature above the city is correctly simulated by the model. A specific attention is then pointed to the 250-m horizontal resolution outputs, focused on the Marseille area, for two days of the campaign. From the study of the vertical structure of the Urban Boundary Layer and the thermodynamic fields near the surface, one underscores the important differences due to the regional and local flows, and the complex interactions that occur between the urban effects and the effects of sea breezes.
Forced convection in the wakes of impacting and sliding bubbles
NASA Astrophysics Data System (ADS)
O'Reilly Meehan, R.; Williams, N. P.; Donnelly, B.; Persoons, T.; Nolan, K.; Murray, D. B.
2017-09-01
Both vapour and gas bubbles are known to significantly increase heat transfer rates between a heated surface and the surrounding fluid, even with no phase change. The cooling structures observed are highly temporal, intricate and complex, with a full description of the surface cooling phenomena not yet available. The current study uses high speed infrared thermography to measure the surface temperature and determine the convective heat flux enhancement associated with the interaction of a single air bubble with a heated, inclined surface. This process can be discretised into the initial impact, in which enhancement levels in excess of 20 times natural convection are observed, and the subsequent sliding behaviour, with more moderate maximum enhancement levels of 8 times natural convection. In both cases, localised regions of suppressed heat transfer are also observed due to the recirculation of warm fluid displaced from the thermal boundary layer with the surface. The cooling patterns observed herein are consistent with the interaction between an undulating wake containing multiple hairpin vortex loops and the thermal boundary layer that exists under the surface, with the initial nature of this enhancement and suppression dependent on the particular point on its rising path at which the bubble impacts the surface.
New horizons in selective laser sintering surface roughness characterization
NASA Astrophysics Data System (ADS)
Vetterli, M.; Schmid, M.; Knapp, W.; Wegener, K.
2017-12-01
Powder-based additive manufacturing of polymers and metals has evolved from a prototyping technology to an industrial process for the fabrication of small to medium series of complex geometry parts. Unfortunately due to the processing of powder as a basis material and the successive addition of layers to produce components, a significant surface roughness inherent to the process has been observed since the first use of such technologies. A novel characterization method based on an elastomeric pad coated with a reflective layer, the Gelsight, was found to be reliable and fast to characterize surfaces processed by selective laser sintering (SLS) of polymers. With help of this method, a qualitative and quantitative investigation of SLS surfaces is feasible. Repeatability and reproducibility investigations are performed for both 2D and 3D areal roughness parameters. Based on the good results, the Gelsight is used for the optimization of vertical SLS surfaces. A model built on laser scanning parameters is proposed and after confirmation could achieve a roughness reduction of 10% based on the S q parameter. The Gelsight could be successfully identified as a fast, reliable and versatile surface topography characterization method as it applies to all kind of surfaces.
Making Complex Electrically Conductive Patterns on Cloth
NASA Technical Reports Server (NTRS)
Chu, Andrew; Fink, Patrick W.; Dobbins, Justin A.; Lin, Greg Y.; Scully, Robert C.; Trevino, Robert
2008-01-01
A method for automated fabrication of flexible, electrically conductive patterns on cloth substrates has been demonstrated. Products developed using this method, or related prior methods, are instances of a technology known as 'e-textiles,' in which electrically conductive patterns ar formed in, and on, textiles. For many applications, including high-speed digital circuits, antennas, and radio frequency (RF) circuits, an e-textile method should be capable of providing high surface conductivity, tight tolerances for control of characteristic impedances, and geometrically complex conductive patterns. Unlike prior methods, the present method satisfies all three of these criteria. Typical patterns can include such circuit structures as RF transmission lines, antennas, filters, and other conductive patterns equivalent to those of conventional printed circuits. The present method overcomes the limitations of the prior methods for forming the equivalent of printed circuits on cloth. A typical fabrication process according to the present method involves selecting the appropriate conductive and non-conductive fabric layers to build the e-textile circuit. The present method uses commercially available woven conductive cloth with established surface conductivity specifications. Dielectric constant, loss tangent, and thickness are some of the parameters to be considered for the non-conductive fabric layers. The circuit design of the conductive woven fabric is secured onto a non-conductive fabric layer using sewing, embroidery, and/or adhesive means. The portion of the conductive fabric that is not part of the circuit is next cut from the desired circuit using an automated machine such as a printed-circuit-board milling machine or a laser cutting machine. Fiducials can be used to align the circuit and the cutting machine. Multilayer circuits can be built starting with the inner layer and using conductive thread to make electrical connections between layers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrova, V. A.; Orekhov, A. S.; Chernyakov, D. D.
A method for preparing multilayer film composites based on chitosan has been developed by the example of polymer pairs: chitosan–hyaluronic acid, chitosan–alginic acid, and chitosan–carrageenan. The structure of the composite films is characterized by X-ray diffractometry and scanning electron microscopy. It is shown that the deposition of a solution of hyaluronic acid, alginic acid, or carrageenan on a chitosan gel film leads to the formation of a polyelectrolyte complex layer at the interface, which is accompanied by the ordering of chitosan chains in the surface region; the microstructure of this layer depends on the nature of contacting polymer pairs.
XPS studies of water and oxygen on iron-sputtered natural ilmenite
NASA Technical Reports Server (NTRS)
Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.
1985-01-01
The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.
Stollenwerk, Kenneth G.
1998-01-01
A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.
Surface nucleation in complex rheological systems
NASA Astrophysics Data System (ADS)
Herfurth, J.; Ulrich, J.
2017-07-01
Forced nucleation induced by suitable foreign seeds is an important tool to control the production of defined crystalline products. The quality of a surface provided by seed materials represents an important variable in the production of crystallizing layers that means for the nucleation process. Parameters like shape and surface structure, size and size distribution of the seed particles as well as the ability to hold up the moisture (the solvent), can have an influence on the nucleation process of different viscous supersaturated solutions. Here the properties of different starch powders as seeds obtained from corn, potato, rice, tapioca and wheat were tested. It could be found, that the best nucleation behavior of a sugar solution could be reached with the use of corn starch as seed material. Here the surface of the crystallized sugar layer is smooth, crystallization time is short (<3 h) and the shape of the product is easily reproducible. Beneficial properties of seed materials are therefore an edged, uneven surface, small particle sizes as well as low moisture content at ambient conditions within the seed materials.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Ahmed, Mostaid
2017-01-01
The paper environs the study of Rayleigh-type surface waves in an orthotropic crustal layer over a transversely isotropic dissipative semi-infinite medium under the effect of prestress and corrugated boundary surfaces. Separate displacement components for both media have been derived in order to characterize the dynamics of individual materials. Suitable boundary conditions have been employed upon the surface wave solutions of the elasto-dynamical equations that are taken into consideration in the light of corrugated boundary surfaces. From the real part of the sixth-order complex determinantal expression, we obtain the frequency equation for Rayleigh waves concerning the proposed earth model. Possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. Numerical computations have been performed in order to graphically demonstrate the role of the thickness of layer, prestress, corrugation parameters and dissipation on Rayleigh wave velocity. The study may be regarded as important due to its possible applications in delay line services and investigating deformation characteristics of solids as well as typical rock formations.
Detection of biomolecules in complex media using surface plasmon resonance sensors
NASA Astrophysics Data System (ADS)
Malone, Michael R.; Masson, Jean-Francois; Barhnart, Margaret; Beaudoin, Stephen; Booksh, Karl S.
2005-11-01
Detection of multiple biologically relevant molecules was accomplished at sub-ng/mL levels in highly fouling media using fiber- optic based surface plasmon resonance sensors. Myocardial infarction markers, myoglobin and cTnI, were quantified in full serum with limits of detection below 1 ng/mL. Biologically relevant levels are between 15-30 ng/mL and 1-5 ng/mL for myoglobin and cTnI respectively. Cytokines involved in chronic wound healing, Interleukin 1, Interleukin 6, and tumor necrosis factor α, were detected at around 1 ng/mL in cell culture media. Preliminary results in monitoring these cytokines in cell cultures expressing the cytokines were obtained. The protein diagnostic of spinal muscular atrophy, survival motor neuron protein, was quantified from cell lysate. To obtain such results in complex media, the sensor's stability to non-specific protein adsorption had to be optimized. A layer of the N-hydroxysuccinimide ester of 16-mercaptohexadecanoic acid is attached to the sensor. This layer optimizes the antibody attachment to the sensor while minimizing the non-specific signal from serum proteins.
Effects of Temperature on Microstructure and Wear of Salt Bath Nitrided 17-4PH Stainless Steel
NASA Astrophysics Data System (ADS)
Wang, Jun; Lin, Yuanhua; Fan, Hongyuan; Zeng, Dezhi; Peng, Qian; Shen, Baoluo
2012-08-01
Salt bath nitriding of 17-4 PH martensitic precipitation hardening stainless steels was conducted at 610, 630, and 650 °C for 2 h using a complex salt bath heat-treatment, and the properties of the nitrided surface were systematically evaluated. Experimental results revealed that the microstructure and phase constituents of the nitrided surface alloy are highly process condition dependent. When 17-4PH stainless steel was subjected to complex salt bathing nitriding, the main phase of the nitrided layer was expanded martensite (α'), expanded austenite (γN), CrN, Fe4N, and (Fe,Cr) x O y . In the sample nitrided above 610 °C, the expanded martensite transformed into expanded austenite. But in the sample nitrided at 650 °C, the expanded austenite decomposed into αN and CrN. The decomposed αN then disassembled into CrN and alpha again. The nitrided layer depth thickened intensively with the increasing nitriding temperature. The activation energy of nitriding in this salt bath was 125 ± 5 kJ/mol.
Surface complexation modeling calculation of Pb(II) adsorption onto the calcined diatomite
NASA Astrophysics Data System (ADS)
Ma, Shu-Cui; Zhang, Ji-Lin; Sun, De-Hui; Liu, Gui-Xia
2015-12-01
Removal of noxious heavy metal ions (e.g. Pb(II)) by surface adsorption of minerals (e.g. diatomite) is an important means in the environmental aqueous pollution control. Thus, it is very essential to understand the surface adsorptive behavior and mechanism. In this work, the Pb(II) apparent surface complexation reaction equilibrium constants on the calcined diatomite and distributions of Pb(II) surface species were investigated through modeling calculations of Pb(II) based on diffuse double layer model (DLM) with three amphoteric sites. Batch experiments were used to study the adsorption of Pb(II) onto the calcined diatomite as a function of pH (3.0-7.0) and different ionic strengths (0.05 and 0.1 mol L-1 NaCl) under ambient atmosphere. Adsorption of Pb(II) can be well described by Freundlich isotherm models. The apparent surface complexation equilibrium constants (log K) were obtained by fitting the batch experimental data using the PEST 13.0 together with PHREEQC 3.1.2 codes and there is good agreement between measured and predicted data. Distribution of Pb(II) surface species on the diatomite calculated by PHREEQC 3.1.2 program indicates that the impurity cations (e.g. Al3+, Fe3+, etc.) in the diatomite play a leading role in the Pb(II) adsorption and dominant formation of complexes and additional electrostatic interaction are the main adsorption mechanism of Pb(II) on the diatomite under weak acidic conditions.
Kononova, Svetlana V; Kruchinina, Elena V; Petrova, Valentina A; Baklagina, Yulia G; Romashkova, Kira A; Orekhov, Anton S; Klechkovskaya, Vera V; Skorik, Yury A
2017-12-14
Two-ply composite membranes with separation layers from chitosan and sulfoethylcellulose were developed on a microporous support based on poly(diphenylsulfone- N -phenylphthalimide) and investigated by use of X-ray diffraction and scanning electron microscopy methods. The pervaporation properties of the membranes were studied for the separation of aqueous alcohol (ethanol, propan-2-ol) mixtures of different compositions. When the mixtures to be separated consist of less than 15 wt % water in propan-2-ol, the membranes composed of polyelectrolytes with the same molar fraction of ionogenic groups (-NH₃⁺ for chitosan and -SO₃ - for sulfoethylcellulose) show high permselectivity (the water content in the permeate was 100%). Factors affecting the structure of a non-porous layer of the polyelectrolyte complex formed on the substrate surface and the contribution of that complex to changes in the transport properties of membranes are discussed. The results indicate significant prospects for the use of chitosan and sulfoethylcellulose for the formation of highly selective pervaporation membranes.
Preparation and properties of chrome-free colored Ti/Zr based conversion coating on aluminum alloy
NASA Astrophysics Data System (ADS)
Yi, AiHua; Li, WenFang; Du, Jun; Mu, SongLin
2012-06-01
A golden conversion coating on the surface of aluminum alloy was prepared by adding tannic acid and coating-forming accelerator in the treatment solution containing titanium and zirconium ions. The growth process, main component and corrosion resistance of the conversion coating were characterized by EDS, SEM, XRD, XPS, FIIR and electrochemical workstation. The results showed that the main components of the conversion coating were Na3AlF6 and the conversion coating owns a double-layer structure. The outer layer consists of metal-organic complex and the inner layer is mainly made up of Na3AlF6. The mechanism of the formation of the golden conversion coating can be deemed as nucleation, growth of Na3AlF6 crystal and formation of metal-organic complex. In potentiodynamic polarization test, the corrosion current density decreases to 0.283 μA cm-2 from 5.894 μA cm-2, which indicates an obvious improvement of corrosion resistance.
NASA Astrophysics Data System (ADS)
Block, K. A.; Katz, A.; LeBlanc, J.; Peña, S.; Gottlieb, P.
2015-12-01
Understanding how organic compounds interact with clay minerals and which functional groups result in the strongest bonds is pivotal to achieving a better understanding of how mineral composition affects the residence time of carbon and nitrogen in soils. In this work, we describe how small peptides derived from tryptone casein digest are dissolved and suspended with clay minerals to examine the nature of OM adsorption to mineral surfaces and the resulting effect on clay mineral structure. XRD analyses indicate that peptides intercalation results in expansion of the d001 spacing of montmorillonite (Mt) and the smectite component of a 70-30 illite-smectite mixed layer clay (I-S) and poorer crystallinity overall as a result of exfoliation of tactoids. Peptide adsorption is concentration-dependent, however, surface adsorption appears to mediate interlayer adsorption in Mt reaching a maximum of 16% of the mass of the organoclay complex, indicating that at a critical concentration, peptide intercalation will supersede surface adsorption resulting in a more stable attachment. In I-S the degree of surface adsorption and intercalation is proportional to concentration, however, surface adsorption is not a priming mechanism for interlayer adsorption. Thermogravimetric analysis of the organoclay complexes determined by TGA coupled to GC-MS indicate that the most prominent product species measured was 1-(1-Trimethylsiloxyethenyl)-3-trimethylsiloxy-benzene, likely from tryptophan monomer decomposition. The compound was detected over a broad temperature range, greater than 300 oC, during pyrolysis and suggests a carbon-silicon covalent bond formed between the peptide and tetrahedral layers in the clay. An additional silicon-bearing VOC detected at lower pyrolysis temperature by GC was N,N-Diethyl-1-(trimethylsilyl)-9,10-didehydroergoline-8-carboxamide, likely derived from a lysine-bearing peptide derivative. We hypothesize that hydrophobic (non-ionic) peptides react with silanol at the clay platelet edges to induce exfoliation and subsequent formation of stable nanocomposite clays.
NASA Astrophysics Data System (ADS)
Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios
2018-03-01
We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.
Solar cell modules with improved backskin and methods for forming same
Hanoka, Jack I.
1998-04-21
A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.
Accurate elevation and normal moveout corrections of seismic reflection data on rugged topography
Liu, J.; Xia, J.; Chen, C.; Zhang, G.
2005-01-01
The application of the seismic reflection method is often limited in areas of complex terrain. The problem is the incorrect correction of time shifts caused by topography. To apply normal moveout (NMO) correction to reflection data correctly, static corrections are necessary to be applied in advance for the compensation of the time distortions of topography and the time delays from near-surface weathered layers. For environment and engineering investigation, weathered layers are our targets, so that the static correction mainly serves the adjustment of time shifts due to an undulating surface. In practice, seismic reflected raypaths are assumed to be almost vertical through the near-surface layers because they have much lower velocities than layers below. This assumption is acceptable in most cases since it results in little residual error for small elevation changes and small offsets in reflection events. Although static algorithms based on choosing a floating datum related to common midpoint gathers or residual surface-consistent functions are available and effective, errors caused by the assumption of vertical raypaths often generate pseudo-indications of structures. This paper presents the comparison of applying corrections based on the vertical raypaths and bias (non-vertical) raypaths. It also provides an approach of combining elevation and NMO corrections. The advantages of the approach are demonstrated by synthetic and real-world examples of multi-coverage seismic reflection surveys on rough topography. ?? The Royal Society of New Zealand 2005.
NASA Astrophysics Data System (ADS)
Vinnichenko, M.; Chevolleau, Th; Pham, M. T.; Poperenko, L.; Maitz, M. F.
2002-11-01
Surface modification of austenitic stainless steel (SS) 316L after incubation in growing cell cultures and cell-free media as control has been studied. The following treatments were applied: mouse fibrosarcoma cells L929 for 3 and 7 days, polymorphonuclear neutrophils for 3 and 7 days and human osteosarcoma cells SAOS-2 for 7 and 14 days. Cells were enzymatically removed in all cases. The modified surfaces were probed in comparison with untreated ones by means of spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). XPS shows the appearance of the peak of bonded nitrogen at 400.5 eV characteristic for adsorbed proteins on the surface for each type of cells and for the cell-free medium. Migration of Ni in the adsorbed layer is observed in all cases for samples after the cell cultures. The protein layer thickness is ellipsometrically determined to be within 2.5-6.0 nm for all treated samples with parameterization of its optical constants in Cauchy approach. The study showed that for such biological treatments of the SS the protein layer adsorption is the dominating process in the first 2 weeks, which could play a role in the process of corrosion by complex forming properties with metal ions.
Impact of Langmuir Turbulence on Upper Ocean Response to Hurricane Edouard: Model and Observations
NASA Astrophysics Data System (ADS)
Blair, A.; Ginis, I.; Hara, T.; Ulhorn, E.
2017-12-01
Tropical cyclone intensity is strongly affected by the air-sea heat flux beneath the storm. When strong storm winds enhance upper ocean turbulent mixing and entrainment of colder water from below the thermocline, the resulting sea surface temperature cooling may reduce the heat flux to the storm and weaken the storm. Recent studies suggest that this upper ocean turbulence is strongly affected by different sea states (Langmuir turbulence), which are highly complex and variable in tropical cyclone conditions. In this study, the upper ocean response under Hurricane Edouard (2014) is investigated using a coupled ocean-wave model with and without an explicit sea state dependent Langmuir turbulence parameterization. The results are compared with in situ observations of sea surface temperature and mixed layer depth from AXBTs, as well as satellite sea surface temperature observations. Overall, the model results of mixed layer deepening and sea surface temperature cooling under and behind the storm are consistent with observations. The model results show that the effects of sea state dependent Langmuir turbulence can be significant, particularly on the mixed layer depth evolution. Although available observations are not sufficient to confirm such effects, some observed trends suggest that the sea state dependent parameterization might be more accurate than the traditional (sea state independent) parameterization.
Campbell, Richard A; Yanez Arteta, Marianna; Angus-Smyth, Anna; Nylander, Tommy; Varga, Imre
2011-12-29
We show for the oppositely charged system poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate that the cliff edge peak in its surface tension isotherm results from the comprehensive precipitation of bulk complexes into sediment, leaving a supernatant that is virtually transparent and a depleted adsorption layer at the air/water interface. The aggregation and settling processes take about 3 days to reach completion and occur at bulk compositions around charge neutrality of the complexes which lack long-term colloidal stability. We demonstrate excellent quantitative agreement between the measured surface tension values and a peak calculated from the surface excess of surfactant in the precipitation region measured by neutron reflectometry, using the approximation that there is no polymer left in the liquid phase. The nonequilibrium nature of the system is emphasized by the production of very different interfacial properties from equivalent aged samples that are handled differently. We go on to outline our perspective on the "true equilibrium" state of this intriguing system and conclude with a comment on its practical relevance given that the interfacial properties can be so readily influenced by the handling of kinetically trapped bulk aggregates. © 2011 American Chemical Society
Si, Jiaqi; Ouyang, Wenbing; Zhang, Yanji; Xu, Wentao; Zhou, Jicheng
2017-04-28
Supported metal as a type of heterogeneous catalysts are the most widely used in industrial processes. High dispersion of the metal particles of supported catalyst is a key factor in determining the performance of such catalysts. Here we report a novel catalyst Pd/Ⓕ-MeO x /AC with complex nanostructured, Pd nanoparticles supported on the platelike nano-semiconductor film/activated carbon, prepared by the photocatalytic reduction method, which exhibited high efficient catalytic performance for selective hydrogenation of phenol to cyclohexanone. Conversion of phenol achieved up to more than 99% with a lower mole ratio (0.5%) of active components Pd and phenol within 2 h at 70 °C. The synergistic effect of metal nanoparticles and nano-semiconductors support layer and the greatly increasing of contact interface of nano-metal-semiconductors may be responsible for the high efficiency. This work provides a clear demonstration that complex nanostructured catalysts with nano-metal and nano-semiconductor film layer supported on high specific surface AC can yield enhanced catalytic activity and can afford promising approach for developing new supported catalyst.
Bellucci, Francesco; Lee, Sang Soo; Kubicki, James D.; ...
2015-01-29
We study adsorption of Rb + to the quartz(101)–aqueous interface at room temperature with specular X-ray reflectivity, resonant anomalous X-ray reflectivity, and density functional theory. The interfacial water structures observed in deionized water and 10 mM RbCl solution at pH 9.8 were similar, having a first water layer at height of 1.7 ± 0.1 Å above the quartz surface and a second layer at 4.8 ± 0.1 Å and 3.9 ± 0.8 Å for the water and RbCl solutions, respectively. The adsorbed Rb + distribution is broad and consists of presumed inner-sphere (IS) and outer-sphere (OS) complexes at heights ofmore » 1.8 ± 0.1 and 6.4 ± 1.0 Å, respectively. Projector-augmented planewave density functional theory (DFT) calculations of potential configurations for neutral and negatively charged quartz(101) surfaces at pH 7 and 12, respectively, reveal a water structure in agreement with experimental results. These DFT calculations also show differences in adsorbed speciation of Rb + between these two conditions. At pH 7, the lowest energy structure shows that Rb + adsorbs dominantly as an IS complex, whereas at pH 12 IS and OS complexes have equivalent energies. The DFT results at pH 12 are generally consistent with the two site Rb distribution observed from the X-ray data at pH 9.8, albeit with some differences that are discussed. In conclusion, surface charge estimated on the basis of the measured total Rb + coverage was -0.11 C/m 2, in good agreement with the range of the surface charge magnitudes reported in the literature.« less
Surface Modification of Melamine-Formaldehyde (MF-R) Macroparticles in Complex Plasma
NASA Astrophysics Data System (ADS)
Semenov, A. V.; Pergament, A. L.; Scherbina, A. I.; Pikalev, A. A.
2018-04-01
The surface modification of melamine-formaldehyde (MF-R) macroparticles (4.12 ± 0.09 μm in diameter) in dc glow discharges in neon, argon, and an argon-oxygen mixture (90% Ar, 10% O2) was studied experimentally. The macroparticles were treated in the discharge plasma for 10, 20, 40, and 60 min. The macroparticles were placed in ordered plasma-dust structures and then extracted from them. The results of atomic force microscopy of the surface profile are presented. Quantitative data on destruction of the surface layer and aspects of its modification are discussed. The amount of substance removed from the particle surface for the exposure time was calculated using the fractal analysis method.
The global distribution and dynamics of surface soil moisture
NASA Astrophysics Data System (ADS)
McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara
2017-01-01
Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.
NASA Astrophysics Data System (ADS)
Popovs, K.; Saks, T.; Ukass, J.; Jatnieks, J.
2012-04-01
Interpretation of geological structures in 3D geological models is a relatively new research topic that is already standardized in many geological branches. Due to its wide practical application, these models are indispensable and become one of the dominant interpretation methods in reducing geological uncertainties in many geology fields. Traditionally, geological concepts complement quantitative as much as qualitative data to obtain a model deemed acceptable, however, available data very often is insufficient and modeling methods primarily focus on spatial data but geological history usually is mostly neglected for the modeling of large sedimentary basins. A need to better integrate the long and often complex geological history and geological knowledge into modeling procedure is very acute to gain geological insight and improve the quality of geological models. During this research, 3D geological model of the Baltic basin (BB) was created. Because of its complex regional geological setting - wide range of the data sources with multiple scales, resolution and density as well as its various source formats, the study area provides a challenge for the 3D geological modeling. In order to create 3D regional geometrical model for the study area algorithmic genetic approach for model geometry reconstruction was applied. The genetic approach is based on the assumption that post-depositional deformation produce no significant change in sedimentary strata volume, assuming that the strata thickness and its length in a cross sectional plane remains unchanged except as a result of erosion. Assuming that the tectonic deformation occurred in sequential cycles and subsequent tectonic stage strata is separated by regional unconformity as is the case of the BB, there is an opportunity for algorithmic approach in reconstructing these conditions by sequentially reconstructing the layer original thickness. Layer thicknesses were sliced along fault lines, where applicable layer thickness was adjusted by taking into account amount of erosion by the presence of the regional unconformities. Borehole data and structural maps of some surfaces were used in creating geological model of the BB. Used approach allowed creating geologically sound geometric model. At first borehole logs were used to reconstruct initial thicknesses of different strata in every tectonic stage, where topography of each strata was obtained sequentially summing thickness to the initial reference surface from structural maps. Thereby each layer reflects the topography and amount of slip along the fault of the overlying layer. Overlying tectonic cycle sequence is implemented into the model structure by using unconformity surface as an initial reference surface. Applied techniques made possible reliably reconstructing and predicting in areas of sparse data layer surface geometry, its thickness distribution and evaluating displacements along the fault planes. Overall results indicate that the used approach has a good potential in development of regional geological models for the sedimentary basins and is valid for spatial interpretation of geological structures, subordinating this process to geological evolution prerequisites. This study is supported by the European Social Fund project No. 2009/0212/1DP/1.1.1.2.0/09/APIA/VIAA/060.
Ha, Chul-Won; Kim, Jin A; Heo, Jin-Chul; Han, Woo-Jung; Oh, Soo-Young; Choi, Suk-Joo
2017-01-01
Background The placenta is a very attractive source of mesenchymal stem cells (MSCs) for regenerative medicine due to readily availability, non-invasive acquisition, and avoidance of ethical issues. Isolating MSCs from parts of placenta tissue has obtained growing interest because they are assumed to exhibit different proliferation and differentiation potentials due to complex structures and functions of the placenta. The objective of this study was to isolate MSCs from different parts of the placenta and compare their characteristics. Methods Placenta was divided into amniotic epithelium (AE), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), chorionic trophoblast without villi (CT-V), decidua (DC), and whole placenta (Pla). Cells isolated from each layer were subjected to analyses for their morphology, proliferation ability, surface markers, and multi-lineage differentiation potential. MSCs were isolated from all placental layers and their characteristics were compared. Findings Surface antigen phenotype, morphology, and differentiation characteristics of cells from all layers indicated that they exhibited properties of MSCs. MSCs from different placental layers had different proliferation rates and differentiation potentials. MSCs from CM, CT-V, CV, and DC had better population doubling time and multi-lineage differentiation potentials compared to those from other layers. Conclusions Our results indicate that MSCs with different characteristics can be isolated from all layers of term placenta. These finding suggest that it is necessary to appropriately select MSCs from different placental layers for successful and consistent outcomes in clinical applications. PMID:28225815
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Liang; Wang, C. Z.; Lin, Shiwei
Understanding of metal oxidation is very critical to corrosion control, catalysis synthesis, and advanced materials engineering. Metal oxidation is a very complex phenomenon, with many different processes which are coupled and involved from the onset of reaction. In this work, the initial stage of oxidation on titanium surface was investigated in atomic scale by molecular dynamics (MD) simulations using a reactive force field (ReaxFF). We show that oxygen transport is the dominant process during the initial oxidation. Our simulation also demonstrate that a compressive stress was generated in the oxide layer which blocked the oxygen transport perpendicular to the Titaniummore » (0001) surface and further prevented oxidation in the deeper layers. As a result, the mechanism of initial oxidation observed in this work can be also applicable to other self-limiting oxidation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Rongming; Cao, Yu; Li, Zijian
2018-02-20
A diode includes: a semiconductor substrate; a cathode metal layer contacting a bottom of the substrate; a semiconductor drift layer on the substrate; a graded aluminum gallium nitride (AlGaN) semiconductor barrier layer on the drift layer and having a larger bandgap than the drift layer, the barrier layer having a top surface and a bottom surface between the drift layer and the top surface, the barrier layer having an increasing aluminum composition from the bottom surface to the top surface; and an anode metal layer directly contacting the top surface of the barrier layer.
Measurement of tidal and residual currents in the Strait of Hormuz
NASA Astrophysics Data System (ADS)
Azizpour, Jafar; Siadatmousavi, Seyed Mostafa; Chegini, Vahid
2016-09-01
Quantifying the current in the Strait of Hormuz (SH) is vital for understanding the circulation in the Persian Gulf. To measure the current in the strait, four subsurface moorings were deployed at four different stations close to SH from early November 2012 to the end of January 2013. Tidal current were dominant in the SH. The tides in the SH were complex partially standing waves and the dominant pattern varied from being primarily semi-diurnal to diurnal. The phase difference between tidal constituents of current and sea level elevation time series was used as an index to show the partially progressive wave pattern inside the study area. At mooring positions 3 and 4, located to the left of SH, the phase differences were close to 160° and 100°, respectively. It indicates partially progressive waves in opposite direction at these stations. K1 and M2 were the two main constituents at all stations inside the study area. At surface, the magnitude of semi-major axis of ellipses for M2 constituent was larger than corresponding value for K1 whereas at the bottom layer, the opposite pattern was observed. The M2 rotary coefficients at mooring 1 illustrated that current vector at the bottom layer rotated in opposite direction compared to current vectors at the middle and surface layers. The rotation was counterclockwise in the bottom layer, while it was clockwise in the surface and middle layers.
Effects of reuse and bleach/formaldehyde reprocessing on polysulfone and polyamide hemodialyzers.
Cornelius, Rena M; McClung, W Glenn; Barre, Paul; Esguerra, Fe; Brash, John L
2002-01-01
The surface features, morphology, and blood interactions of fibers from pristine, bleach/formaldehyde reprocessed, and reused Fresenius Polysulfone High Flux (Hemoflow F80B) hemodialyzers and Gambro Polyflux 21S Polyamide hemodialyzers have been studied. SEM images of fibers from both hemodialyzer types revealed a dense skin layer on the inner surface and a relatively thick porous layer on the outer surface. The 21S polyamide support layer consisted of interconnected highly porous structures. Environmental scanning electron microscopy and atomic force microscopy images of both membrane types showed alterations in morphology due to reprocessing and reuse; however the changes were more marked for the 21S polyamide dialyzers. Fluorescence microscopy images showed only minimal fluorescence associated with the fibers after patient use and reprocessing, suggesting that blood derived deposits were removed by processing. The protein layers formed on pristine and reused hemodialyzer membranes during clinical use were studied using SDS-PAGE and immunoblotting. Before bleach/formaldehyde treatment, protein layers of considerable amount and complexity were found on the blood side of singly and multiply used dialyzers. Proteins adsorbed on the dialysate side were predominantly in the molecular mass region below 30 kDa. However, some higher molecular mass proteins were detected on the dialysate side of the 21 S polyamide dialyzers. Very little protein was detected on dialyzers that were treated with bleach/formaldehyde after dialysis, regardless of whether they had been used/reprocessed once or 12 times.
Microbiome dynamics of human epidermis following skin barrier disruption
2012-01-01
Background Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury. Results We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes. Conclusions We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis. PMID:23153041
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotov, V. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Makushenko, R. K.
2013-10-15
The interaction mechanisms between NO{sub 2} molecules and the surface of por-Si/SnO{sub x} nanocomposites obtained by magnetron deposition and chemical vapor deposition (CVD) are studied by infrared absorption spectroscopy and electron paramagnetic resonance methods. The observed increase in the free carrier concentration in the por-Si/SnO{sub x} nanocomposite layers is explained by a change in the charge state of P{sub b} centers due to the formation of neutral 'surface defect-adsorbed NO{sub 2} molecule' complexes with free carrier generation in the crystallite bulk. In the nanocomposite layers grown by the CVD method, the increase in the free hole concentration during NO{sub 2}more » adsorption is much less pronounced in comparison with the composite grown by magnetron deposition, which is caused by the competing interaction channel of NO{sub 2} molecules with electrically neutral P{sub b} centers.« less
Molecular lego for the assembly of biosensing layers.
Mano, N; Kuhn, A
2005-03-31
We propose a procedure to assemble monolayers of redox mediator, coenzyme, enzyme and stabilizing polyelectrolyte on an electrode surface using essentially electrostatic and complexing interactions. In a first step a monolayer of redox mediator, substituted nitrofluorenones, is adsorbed. In a second step, a layer of calcium cations is immobilized at the interface. It establishes a bridge between the redox mediator and the subsequently adsorbed coenzyme NAD(+). In the next step we use the intrinsic affinity of the NAD(+) monolayer for dehydrogenases to build up a multilayer composed of mediator/Ca(2+)/NAD(+)/dehydrogenase. The so obtained modified electrode can be used as a biosensor. Quartz crystal microbalance measurements allowed us to better understand the different parameters responsible for the adsorption. A more detailed investigation of the system made it possible to finally stabilize the assembly sufficiently by the adsorption of a polyelectrolyte layer in order to perform rotating disk electrode measurements with the whole supramolecular architecture on the electrode surface.
Chemical surface alteration of biodegradable magnesium exposed to corrosion media.
Willumeit, Regine; Fischer, Janine; Feyerabend, Frank; Hort, Norbert; Bismayer, Ulrich; Heidrich, Stefanie; Mihailova, Boriana
2011-06-01
The understanding of corrosion processes of metal implants in the human body is a key problem in modern biomaterial science. Because of the complicated and adjustable in vivo environment, in vitro experiments require the analysis of various physiological corrosion media to elucidate the underlying mechanism of "biological" metal surface modification. In this paper magnesium samples were incubated under cell culture conditions (i.e. including CO(2)) in electrolyte solutions and cell growth media, with and without proteins. Chemical mapping by high-resolution electron-induced X-ray emission spectroscopy and infrared reflection microspectroscopy revealed a complex structure of the formed corrosion layer. The presence of CO(2) in concentrations close to that in blood is significant for the chemistry of the oxidised layer. The presence of proteins leads to a less dense but thicker passivation layer which is still ion and water permeable, as osmolality and weight measurements indicate. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario
2016-01-01
Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation. PMID:26909071
Farci, Domenica; Slavov, Chavdar; Tramontano, Enzo; Piano, Dario
2016-01-01
Deinococcus radiodurans has the puzzling ability to withstand over a broad range of extreme conditions including high doses of ultraviolet radiation and deep desiccation. This bacterium is surrounded by a surface layer (S-layer) built of a regular repetition of several proteins, assembled to form a paracrystalline structure. Here we report that the deletion of a main constituent of this S-layer, the gene DR_2577, causes a decrease in the UVC resistance, especially in desiccated cells. Moreover, we show that the DR_2577 protein binds the carotenoid deinoxanthin, a strong protective antioxidant specific of this bacterium. A further spectroscopical characterization of the deinoxanthin-DR_2577 complex revealed features which could suggest a protective role of DR_2577. We propose that, especially under desiccation, the S-layer shields the bacterium from incident ultraviolet light and could behave as a first lane of defense against UV radiation.
Spatial and layer-controlled variability in fracture networks
NASA Astrophysics Data System (ADS)
Procter, Andrew; Sanderson, David J.
2018-03-01
Topological sampling, based on 1) node counting and 2) circular sampling areas, is used to measure fracture intensity in surface exposures of a layered limestone/shale sequence in north Somerset, UK. This method provides similar levels of precision as more traditional line samples, but is about 10 times quicker and allows characterization of the network topology. Georeferencing of photographs of the sample sites allows later analysis of trace lengths and orientations, and identification of joint set development. ANOVA tests support a complex interaction of within-layer, between-layer and between-location variability in fracture intensity, with the different layers showing anomalous intensity at different locations. This variation is not simply due to bed thickness, nor can it be related to any obvious compositional or textural variation between the limestone beds. These results are used to assess approaches to the spatial mapping of fracture intensity.
NASA Astrophysics Data System (ADS)
Vaněk, P.; Kolská, Z.; Luxbacher, T.; García, J. A. L.; Lehocký, M.; Vandrovcová, M.; Bačáková, L.; Petzelt, J.
2016-05-01
Ferroelectrics have been, among others, studied as electroactive implant materials. Previous investigations have indicated that such implants induce improved bone formation. If a ferroelectric is immersed in a liquid, an electric double layer and a diffusion layer are formed at the interface. This is decisive for protein adsorption and bioactive behaviour, particularly for the adhesion and growth of cells. The charge distribution can be characterized, in a simplified way, by the zeta potential. We measured the zeta potential in dependence on the surface polarity on poled ferroelectric single crystalline LiNbO3 plates. Both our results and recent results of colloidal probe microscopy indicate that the charge distribution at the surface can be influenced by the surface polarity of ferroelectrics under certain ‘ideal’ conditions (low ionic strength, non-contaminated surface, very low roughness). However, suggested ferroelectric coatings on the surface of implants are far from ideal: they are rough, polycrystalline, and the body fluid is complex and has high ionic strength. In real cases, it can therefore be expected that there is rather low influence of the sign of the surface polarity on the electric diffusion layer and thus on the specific adsorption of proteins. This is supported by our results from studies of the adhesion, growth and the activity of alkaline phosphatase of human osteoblast-like Saos-2 cells on ferroelectric LiNbO3 plates in vitro.
Lichtenberg, Mads; Nørregaard, Rasmus Dyrmose; Kühl, Michael
2017-03-01
The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O 2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O 2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O 2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O 2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant-microbe interactions. © 2017 The Author(s).
Nørregaard, Rasmus Dyrmose
2017-01-01
The role of hyaline hairs on the thallus of brown algae in the genus Fucus is long debated and several functions have been proposed. We used a novel motorized set-up for two-dimensional and three-dimensional mapping with O2 microsensors to investigate the spatial heterogeneity of the diffusive boundary layer (DBL) and O2 flux around single and multiple tufts of hyaline hairs on the thallus of Fucus vesiculosus. Flow was a major determinant of DBL thickness, where higher flow decreased DBL thickness and increased O2 flux between the algal thallus and the surrounding seawater. However, the topography of the DBL varied and did not directly follow the contour of the underlying thallus. Areas around single tufts of hyaline hairs exhibited a more complex mass-transfer boundary layer, showing both increased and decreased thickness when compared with areas over smooth thallus surfaces. Over thallus areas with several hyaline hair tufts, the overall effect was an apparent increase in the boundary layer thickness. We also found indications for advective O2 transport driven by pressure gradients or vortex shedding downstream from dense tufts of hyaline hairs that could alleviate local mass-transfer resistances. Mass-transfer dynamics around hyaline hair tufts are thus more complex than hitherto assumed and may have important implications for algal physiology and plant–microbe interactions. PMID:28330986
Bifunctional redox tagging of carbon nanoparticles
NASA Astrophysics Data System (ADS)
Poon, Jeffrey; Batchelor-McAuley, Christopher; Tschulik, Kristina; Palgrave, Robert G.; Compton, Richard G.
2015-01-01
Despite extensive work on the controlled surface modification of carbon with redox moieties, to date almost all available methodologies involve complex chemistry and are prone to the formation of polymerized multi-layer surface structures. Herein, the facile bifunctional redox tagging of carbon nanoparticles (diameter 27 nm) and its characterization is undertaken using the industrial dye Reactive Blue 2. The modification route is demonstrated to be via exceptionally strong physisorption. The modified carbon is found to exhibit both well-defined oxidative and reductive voltammetric redox features which are quantitatively interpreted. The method provides a generic approach to monolayer modifications of carbon and carbon nanoparticle surfaces.
Detection of sialomucin complex (MUC4) in human ocular surface epithelium and tear fluid.
Pflugfelder, S C; Liu, Z; Monroy, D; Li, D Q; Carvajal, M E; Price-Schiavi, S A; Idris, N; Solomon, A; Perez, A; Carraway, K L
2000-05-01
To evaluate human ocular surface epithelium and tear fluid for the presence of sialomucin complex (MUC4), a high-molecular-weight heterodimeric glycoprotein composed of mucin (ASGP-1) and transmembrane (ASGP-2) subunits. Reverse transcription-polymerase chain reaction (RT-PCR) and Northern blot analysis assays were used to identify sialomucin complex RNA in ocular surface epithelia. Immunoprecipitation and immunoblot analysis were used to identify immunoreactive species in human tears and in the corneal and conjunctival epithelia using antibodies specific for carbohydrate and peptide epitopes on the sialomucin complex subunits. Immunofluorescence staining was used to detect sialomucin complex in frozen sections and impression cytology specimens of human cornea and conjunctival epithelia. ASGP-1- and ASGP-2-specific sequences were amplified from RNA extracted from both conjunctival and corneal epithelial biopsies by RT-PCR. Sialomucin complex transcripts were also detected in these tissues by Northern blot analysis, with a greater level of RNA detected in the peripheral than the central corneal epithelium. Sialomucin complex was immunoprecipitated from tear fluid samples and both corneal and conjunctival epithelia and detected by immunoblot analysis with specific anti-ASGP-1 and anti-ASGP-2 antibodies. The ASGP-1 peptide antibody HA-1 stained the full thickness of the corneal and conjunctival epithelia. In contrast, antibody 15H10, which reacts against a carbohydrate epitope on ASGP-1, stained only the superficial epithelial layers of these tissues. No staining was observed in the conjunctival goblet cells. Sialomucin complex was originally identified in rat mammary adenocarcinoma cells and has recently been shown to be produced by the ocular surface epithelia of rats. Furthermore, it has been identified as the rat homologue of human MUC4 mucin. The present studies show that it is expressed in the stratified epithelium covering the surface of the human eye and is present in human tear fluid. Expression of a carbohydrate-dependent epitope on the mucin subunit (ASGP-1) of sialomucin complex occurs in a differentiation-dependent fashion. Sialomucin complex joins MUC1 as another membrane mucin produced by the human ocular surface epithelia but is also found in the tear fluid, presumably in a soluble form, as found on the rat ocular surface.
Complex conductivity of organic-rich shales
NASA Astrophysics Data System (ADS)
Woodruff, W. F.; Revil, A.; Torres-Verdin, C.
2013-12-01
We can accurately determine the intrinsic anisotropy and material properties in the laboratory, providing empirical evidence of transverse isotropy and the polarization of the organic and metallic fractions in saturated and unsaturated shales. We develop two distinct approaches to obtain the complex conductivity tensor from spectral induced polarization (SIP) measurements. Experimental results indicate clear anisotropy, and characterize the effects of thermal maturation, TOC, and pyrite, aiding in the calibration and interpretation of geophysical data. SIP is a non-intrusive measurement, sensitive to the surface conductance of mineral grains, frequency-dependent polarization of the electrical double layer, and bulk conductivity of the pore water. The in-phase and quadrature components depend upon parameters of principal importance in unconventional shale formation evaluation (e.g., the distribution of pore throat sizes, formation factor, permeability, salinity and cation exchange capacity (CEC), fluid saturation and wettability). In addition to the contribution of the electrical double layer of non-conducting minerals to surface conductivity, we have observed a clear relaxation associated with kerogen pyrolysis, pyrite distribution, and evidence that the CEC of the kerogen fraction may also contribute, depending on thermal maturation history. We utilize a recent model for anisotropic complex conductivity, and rigorous experimental protocols to quantify the role of kerogen and pyrolysis on surface and quadrature conductivity in mudrocks. The complex conductivity tensor σ* describes the directional dependence of electrical conduction in a porous medium, and accounts for both conduction and polarization. The complex-valued tensor components are given as σ*ij , where σ'ij represents in-phase and σ"ij denotes quadrature conductivities. The directional dependence of the complex conductivity tensor is relegated to the textural properties of the material. The components of the formation factor and connectivity (tortuosity) tensors Fij and Tij (affecting the bulk and surface conductivity, respectively) are correlated as Fij=TijΦ. Both conductivity and connectivity tensors share the same eigenvectors; the anisotropy ratio is equivalent in TI media. At high pore water salinity, surface and quadrature conductivity share the same bulk tortuosity; when surface conductivity dominates (low salinity), conductivity is controlled by the surface conductance, and the tortuosity of electrical current along mineral surfaces usually higher than that of the pore water. We developed two distinct SIP measurement protocols to obtain the tensor: (1) azimuthal sampling and inversion of phasor potentials through the full-field solution of the Laplace equation; (2) direct measurement of complex conductivity eigenvalues by polarized, single-component stimulus current. Experiments also include unsaturated and saturated measurements with three brines of known salinity and pH, at log-distributed frequencies ranging 1 mHz to 45 kHz. Both azimuthal spectra and eigenvalue spectra validate the theoretical model and illustrate the effectiveness of the protocols themselves. We obtain the textural tensors and invert key parameters including Archie exponents and CEC, and characterize the relaxation phenomena associated with kerogen content and maturity for multiphase fluid systems.
Influence of a forest canopy on velocity and temperature profiles under synoptic conditions
NASA Astrophysics Data System (ADS)
Pattantyus, A.; Hocut, C. M.; Wang, Y.; Creegan, E.; Krishnamurthy, R.; Otarola-Bust, S.; Leo, L. S.; Fernando, H. J. S.
2017-12-01
Numerous field campaigns have found the importance of surface conditions on boundary layer evolution. Specifically, soil properties were found to control surface fluxes of heat, moisture, and momentum that significantly modulated the atmospheric boundary layer (ABL) over flat and sparsely vegetated surfaces. There have been increasing numbers of studies related to canopy impacts on the boundary layer, such as CHATS, however few canopy studies over complex terrain have been performed with limited instrumentation. The recent Perdigão campaign greatly augmented the previous datasets available by instrumenting a unique, parallel ridge mountain in Perdigão, Portugal in unprecedented spatial and temporal resolution using traditional mast mounted sensors, instrumented aerial platforms, and remote sensing instrumentation. To aid the canopy studies, the Army Research Laboratory deployed sonic anemometers within the canopy transecting the ridges perpendicularly and placed five additional heavily instrumented meteorological masts on the northeast facing slope to investigate detailed slope flows. At each of these towers, there was an average of six levels of temperature, relative humidity, and wind sensors located above & below the canopy height which allowed a detailed study of the sub-canopy layer. In addition to the towers, two scanning Doppler LiDARs were oriented such that they performed synchronized dual Doppler virtual tower scans, extending from the canopy interface to several hundred meters above. Synoptically forced periods were analyzed to examine: the ABL structure of temperature, moisture, wind, and turbulent kinetic energy. Of particular interest are the shear layer at the canopy interface, recirculation events, as well as ejection and sweep events within the canopy and how these modify surface fluxes along the slopes.
Raoufi, Mohammad; Schönherr, Holger
2014-02-18
We report on the fabrication of unprecedented free-standing complex polymeric nanoobjects, which possess both concave and convex curvatures, by exploiting the layer-by-layer (LBL) deposition of polyelectrolytes. In a combined top-down/bottom-up replication approach pore diameter-modulated anodic aluminum oxide (AAO) templates, fabricated by temperature modulation hard anodization (TMHA), were replicated with multilayers of poly(styrene sulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) to yield open nanotubes with diameters in the wide and narrow segments of 210 and 150 nm, respectively. To obtain stable pore diameter-modulated nanopores, which possess segment lengths between 1 and 5 μm and 5 and 10 μm in the narrow and wide pore portion, respectively, conventional hard anodization of aluminum was followed by a subsequent temperature-modulated anodization. After removing the backside aluminum electrode, silanizing the aluminum oxide, and passivating the exposed membrane surface with a thin layer of gold, PSS and PAH were deposited alternatingly to yield LBL multilayers. For optimized LBL multilayer thicknesses and compactness, established in separate experiments on silicon substrates and nanoporous AAO with straight pores, free-standing polymeric nanoobjects with concave and convex curvatures, were obtained. These were stable for wall thickness to pore diameter ratios of ≥0.08.
Faenza, Nicholas V.; Lebens-Higgins, Zachary W.; Mukherjee, Pinaki; ...
2017-06-08
Here, enabling practical utilization of layered Rmore » $$\\bar{3}$$ m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode–electrolyte interactions that often induce failure. Using Li[Ni 0.8Co 0.15Al 0.05]O 2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li 2CO 3 content on the magnitude and character of the dissolution reaction was studied.« less
Faenza, Nicholas V; Lebens-Higgins, Zachary W; Mukherjee, Pinaki; Sallis, Shawn; Pereira, Nathalie; Badway, Fadwa; Halajko, Anna; Ceder, Gerbrand; Cosandey, Frederic; Piper, Louis F J; Amatucci, Glenn G
2017-09-19
Enabling practical utilization of layered R3̅m positive electrodes near full delithiation requires an enhanced understanding of the complex electrode-electrolyte interactions that often induce failure. Using Li[Ni 0.8 Co 0.15 Al 0.05 ]O 2 (NCA) as a model layered compound, the chemical and structural stability in a strenuous thermal and electrochemical environment was explored. Operando microcalorimetry and electrochemical impedance spectroscopy identified a fingerprint for a structural decomposition and transition-metal dissolution reaction that occurs on the positive electrode at full delithiation. Surface-sensitive characterization techniques, including X-ray absorption spectroscopy and high-resolution transmission electron microscopy, measured a structural and morphological transformation of the surface and subsurface regions of NCA. Despite the bulk structural integrity being maintained, NCA surface degradation at a high state of charge induces excessive transition-metal dissolution and significant positive electrode impedance development, resulting in a rapid decrease in electrochemical performance. Additionally, the impact of electrolyte salt, positive electrode surface area, and surface Li 2 CO 3 content on the magnitude and character of the dissolution reaction was studied.
X-ray diffraction analysis of residual stress in zirconia dental composites
NASA Astrophysics Data System (ADS)
Allahkarami, Masoud
Dental restoration ceramic is a complex system to be characterized. Beside its essential biocompatibility, and pleasant appearance, it requires being mechanically strong in a catastrophic loading environment. Any design is restricted with geometry boundary and material property limits. Inspired by natural teeth, a multilayer ceramic is a smart way of achieving an enhanced restoration. Bi-layers of zirconia core covered by porcelain are known as one of the best multilayer restorations. Residual stresses may be introduced into a bi-layer dental ceramic restoration during its entire manufacturing process due to thermal expansion and elastic property mismatch. It is impossible to achieve a free of residual stresses bi-layer zirconia-porcelain restoration. The idea is to take the advantage of residual stress in design in such a way to prevent the crack initiation and progression. The hypothesis is a compressive residual stress at external contact surface would be enabling the restoration to endure a greater tensile stress. Optimizing the layers thickness, manufacturing process, and validating 3D simulations require development of new techniques of thickness, residual stresses and phase transformation measurement. In the present work, a combined mirco-tomography and finite element based method were adapted for thickness measurement. Two new 2D X-ray diffraction based techniques were adapted for phase transformation area mapping and combined phase transformation and residual stress measurement. Concerning the complex geometry of crown, an efficient method for X-ray diffraction data collection mapping on a given curved surface was developed. Finally a novel method for 3D dimensional x-ray diffraction data collection and visualization were introduced.
Mesophilic Aeromonas sp. serogroup O:11 resistance to complement-mediated killing.
Merino, S; Rubires, X; Aguilar, A; Albertí, S; Hernandez-Allés, S; Benedí, V J; Tomas, J M
1996-01-01
The complement activation by and resistance to complement-mediated killing of Aeromonas sp. strains from serogroup O:11 were investigated by using different wild-type strains (with an S-layer characteristic of this serogroup) and their isogenic mutants characterized for their surface components (S-layer and lipopolysaccharide [LPS]). All of the Aeromonas sp. serogroup O:11 wild-type strains are unable to activate complement, which suggested that the S-layer completely covered the LPS molecules. We found that the classical complement pathway is involved in serum killing of susceptible Aeromonas sp. mutant strains of serogroup O11, while the alternative complement pathway seems not to be involved, and that the complement activation seems to be independent of antibody. The smooth mutant strains devoid of the S-layer (S-layer isogenic mutants) or isogenic LPS mutant strains with a complete or rather complete LPS core (also without the S-layer) are able to activate complement but are resistant to complement-mediated killing. The reasons for this resistance are that C3b is rapidly degraded, and therefore the lytic membrane attack complex (C5b-9) is not formed. Isogenic LPS rough mutants with an incomplete LPS core are serum sensitive because they bind more C3b than the resistant strains, the C3b is not completely degraded, and therefore the lytic complex (C5b-9) is formed. PMID:8945581
Mobile Bay river plume mixing in the inner shelf
NASA Astrophysics Data System (ADS)
Parra, S. M.; Book, J. W.; Warner, S. J.; Moum, J.
2017-12-01
The microtidal region (0.5 m spring tides) of the inner shelf outside Mobile Bay presented a complex circulation pattern driven by the pulsed river discharge and winds. Currents, salinity, temperature, and turbulence profiles were measured for up to three weeks in April 2016 at six moorings outside Mobile Bay. Currents varied between locations and with depth. During neap and spring tides the currents were reliably >0.4 and <0.4 m/s, respectively. The outflow from Mobile Bay generated a complex density circulation, where two to three layers were normally present. Multiple density layers included a thicker brackish middle layer (5-10 m thickness), and a salty bottom layer (5-10 m thickness), with a thin ( 1-3 m) freshwater surface layer found intermittently. The multilayer currents were strongest at neap tides (>0.5 m/s) and toward deeper waters, concurrent with the strongest stratification. The possible flow drivers considered include tides, winds, inertial oscillations, waves, and stratification. Turbulent kinetic energy production and dissipation were calculated with multiple methods using data from bottom-mounted, upward-looking acoustic Doppler current profilers sampling at 1 Hz, and using data from line-moored chi-pod turbulent temperature microstructure instruments sampling at 100 Hz. This work explores different forcing mechanisms involved in modulating the circulation and turbulence in a multi-layered pulsed-river inner shelf region in the Gulf of Mexico.
The temperature characteristics of biological active period of the peat soils of Bakchar swamp
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-01-01
The results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016 are presented. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface to 240 cm. All sites were divided into two groups according the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). Waterlogged sites are better warmed in the summer period, and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is observed in July. The minimum temperature on the surface observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C·cm-1 in February and 1.1 °C·cm-1 in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn, beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but degradation from the top is faster.
Simulation of the ocean's spectral radiant thermal source and boundary conditions
NASA Astrophysics Data System (ADS)
Merzlikin, Vladimir; Krass, Maxim; Cheranev, Svyatoslav; Aloric, Aleksandra
2013-05-01
This article considers the analysis of radiant heat transfer for semitransparent natural and polluted seawaters and its physical interpretations. Technogenic or natural pollutions are considered as ensembles of selective scattering, absorbing and emitting particles with complex refractive indices in difference spectral ranges of external radiation. Simulation of spectral radiant thermal sources within short wavelength of solar penetrating radiation for upper oceanic depth was carried out for deep seawater on regions from ˜ 300 to ˜ 600 nm and for subsurface layers (not more ˜ 1 m) - on one ˜ 600 - 1200 nm. Model boundary conditions on exposed oceanic surface are defined by (1) emittance of atmosphere and seawater within long wavelength radiation ˜ 9000 nm, (2) convection, and (3) thermal losses due to evaporation. Spatial and temporal variability of inherent optical properties, temperature distributions of the upper overheated layer of seawater, the appearance of a subsurface temperature maximum and a cool surface skin layer in response to penetrating solar radiation are explained first of all by the effects of volumetric scattering (absorption) and surface cooling of polluted seawater. The suggested analysis can become an important and useful subject of research for oceanographers and climatologists.
Experimental and modeling study of the uranium (VI) sorption on goethite.
Missana, Tiziana; García-Gutiérrez, Miguel; Maffiotte, Cesar
2003-04-15
Acicular goethite was synthesized in the laboratory and its main physicochemical properties (composition, microstructure, surface area, and surface charge) were analyzed as a previous step to sorption experiments. The stability of the oxide, under the conditions used in sorption studies, was also investigated. The sorption of U(VI) onto goethite was studied under O(2)- and CO(2)-free atmosphere and in a wide range of experimental conditions (pH, ionic strength, radionuclide, and solid concentration), in order to assess the validity of different surface complexation models available for the interpretation of sorption data. Three different models were used to fit the experimental data. The first two models were based on the diffuse double layer concept. The first one (Model 1) considered two different monodentate complexes with the goethite surface and the second (Model 2) a single binuclear bidentate complex. A nonelectrostatic (NE) approach was used as a third model and, in that case, the same species considered in Model 1 were used. The results showed that all the models are able to describe the sorption behavior fairly well as a function of pH, electrolyte concentration, and U(VI) concentration. However, Model 2 fails in the description of the uranium sorption behavior as a function of the sorbent concentration. This demonstrates the importance of checking the validity of any surface complexation model under the widest possible range of experimental conditions.
Surface effects and desorption of tetracycline supramolecular complex on bovine dentine.
Pataro, A L; Franco, C F; Santos, V R; Cortés, M E; Sinisterra, R D
2003-03-01
The aim of this in vitro study was to evaluate the antimicrobial activity, the substantivity, and surface effects of the inclusion compound tetracycline: beta-cyclodextrin on bovine roots. The antimicrobial activity was assessed by dentine slabs which had been immersed in the inclusion complex in concentrations 8.0%, 4.0%, 2.0%, 1.0%, 0.5% and 0.25% for 5min compared to a control of tetracycline hydrochloride. Each slab was tested in a broth of overnight culture of Actinobacillus actinomycetemcomitans (Y4-FDC). The inclusion complex significantly inhibited the A. actinomycetemcomitans (p<0.01) verified at concentrations from 1.0% to 8.0%. The substantivity of tetracycline was evaluated by the measure of desorption from the slabs previously immersed in solution samples and removed at 24h intervals. The tetracycline encapsulated in beta-cyclodextrin showed a flow rate near to zero order in comparison to free tetracycline. The surface morphology determined by SEM showed a more homogeneous and integrated layer with the complex compared to the effect of free tetracycline. We concluded that the root surfaces treated with tetracycline: beta-cyclodextrin release lower concentrations of active drug over 5 days at inhibitory concentrations against A. actinomycetemcomitans with enhanced disponibility in comparison to tetracycline.
Duval, Jérôme F L; Farinha, José Paulo S; Pinheiro, José P
2013-11-12
In this work, the impact of electrostatics on the stability constant, the rate of association/dissociation, and the lability of complexes formed between Cd(II), Pb(II), and carboxyl-modified polymer nanoparticles (also known as latex particles) of radius ∼ 50 nm is systematically investigated via electroanalytical measurements over a wide range of pHs and NaNO3 electrolyte concentrations. The corresponding interfacial structure and key electrostatic properties of the particles are independently derived from their electrokinetic response, successfully interpreted using soft particle electrohydrodynamic formalism, and complemented by Förster resonance energy transfer (FRET) analysis. The results underpin the presence of an ∼0.7-1 nm thick permeable and highly charged shell layer at the surface of the polymer nanoparticles. Their electrophoretic mobility further exhibits a minimum versus NaNO3 concentration due to strong polarization of the electric double layer. Integrating these structural and electrostatic particle features with recent theory on chemodynamics of particulate metal complexes yields a remarkable recovery of the measured increase in complex stability with increasing pH and/or decreasing solution salinity. In the case of the strongly binding Pb(II), the discrepancy at pH > 5.5 is unambiguously assigned to the formation of multidendate complexes with carboxylate groups located in the particle shell. With increasing pH and/or decreasing electrolyte concentration, the theory further predicts a kinetically controlled formation of metal complexes and a dramatic loss of their lability (especially for lead) on the time-scale of diffusion toward a macroscopic reactive electrode surface. These theoretical findings are again shown to be in agreement with experimental evidence.
Surface transport processes in charged porous media
Gabitto, Jorge; Tsouris, Costas
2017-03-03
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Surface transport processes in charged porous media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabitto, Jorge; Tsouris, Costas
Surface transport processes are important in chemistry, colloidal sciences, engineering, biology, and geophysics. Natural or externally produced charges on surfaces create electrical double layers (EDLs) at the solid-liquid interface. The existence of the EDLs produces several complex processes including bulk and surface transport of ions. In this work, a model is presented to simulate bulk and transport processes in homogeneous porous media comprising big pores. It is based on a theory for capacitive charging by ideally polarizable porous electrodes without Faradaic reactions or specific adsorption of ions. A volume averaging technique is used to derive the averaged transport equations inmore » the limit of thin electrical double layers. Description of the EDL between the electrolyte solution and the charged wall is accomplished using the Gouy-Chapman-Stern (GCS) model. The surface transport terms enter into the average equations due to the use of boundary conditions for diffuse interfaces. Two extra surface transports terms appear in the closed average equations. One is a surface diffusion term equivalent to the transport process in non-charged porous media. The second surface transport term is a migration term unique to charged porous media. The effective bulk and transport parameters for isotropic porous media are calculated solving the corresponding closure problems.« less
Periodic density functional theory calculations of bulk and the (010) surface of goethite
Kubicki, James D; Paul, Kristian W; Sparks, Donald L
2008-01-01
Background Goethite is a common and reactive mineral in the environment. The transport of contaminants and anaerobic respiration of microbes are significantly affected by adsorption and reduction reactions involving goethite. An understanding of the mineral-water interface of goethite is critical for determining the molecular-scale mechanisms of adsorption and reduction reactions. In this study, periodic density functional theory (DFT) calculations were performed on the mineral goethite and its (010) surface, using the Vienna Ab Initio Simulation Package (VASP). Results Calculations of the bulk mineral structure accurately reproduced the observed crystal structure and vibrational frequencies, suggesting that this computational methodology was suitable for modeling the goethite-water interface. Energy-minimized structures of bare, hydrated (one H2O layer) and solvated (three H2O layers) (010) surfaces were calculated for 1 × 1 and 3 × 3 unit cell slabs. A good correlation between the calculated and observed vibrational frequencies was found for the 1 × 1 solvated surface. However, differences between the 1 × 1 and 3 × 3 slab calculations indicated that larger models may be necessary to simulate the relaxation of water at the interface. Comparison of two hydrated surfaces with molecularly and dissociatively adsorbed H2O showed a significantly lower potential energy for the former. Conclusion Surface Fe-O and (Fe)O-H bond lengths are reported that may be useful in surface complexation models (SCM) of the goethite (010) surface. These bond lengths were found to change significantly as a function of solvation (i.e., addition of two extra H2O layers above the surface), indicating that this parameter should be carefully considered in future SCM studies of metal oxide-water interfaces. PMID:18477389
Copper-phospholipid interaction at cell membrane model hydrophobic surfaces.
Mlakar, Marina; Cuculić, Vlado; Frka, Sanja; Gašparović, Blaženka
2018-04-01
Detailed investigation of Cu (II) binding with natural lipid phosphatidylglycerol (PG) in aqueous solution was carried out by voltammetric measurements at the mercury drop electrode, complemented by monolayer studies in a Langmuir trough and electrophoretic measurements, all used as models for hydrophobic cell membranes. Penetration of copper ions into the PG layer was facilitated by the formation of hydrophilic Cu-Phenanthroline (Phen) complex in the subphase, followed by the mixed ligand Cu-Phen-PG complex formation at the hydrophobic interface. Electrophoretic measurements indicated a comparatively low abundance of the formed mixed ligand complex within the PG vesicles, resulting it the zeta potential change of +0.83mV, while monolayer studies confirmed their co-existence at the interface. The Cu-Phen-PG complex was identified in the pH range from 6 to 9. The stoichiometry of the complex ([PhenCuOHPG]), as well as its stability and kinetics of formation, were determined at the mercury drop electrode. Cu-Phen-PG reduces quasireversibly at about -0.7V vs. Ag/AgCl including reactant adsorption, followed by irreversible mixed complex dissociation, indicating a two-electron transfer - chemical reaction (EC mechanism). Consequently, the surface concentration (γ) of the adsorbed [PhenCuOHPG] complex at the hydrophobic electrode surface was calculated to be (3.35±0.67)×10 -11 molcm -2 . Information on the mechanism of Cu (II) - lipid complex formation is a significant contribution to the understanding of complex processes at natural cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles.
Zou, Yuan; Guo, Jian; Yin, Shou-Wei; Wang, Jin-Mei; Yang, Xiao-Quan
2015-08-26
Food-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization. Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements, which were used to characterize the structure of zein/TA complexes in ethanol solution, clearly showed that TA binding generated a conformational change of zein without altering their supramolecular structure at pH 5.0 and intermediate TA concentrations. Consequently, the resultant ZTP had tuned near neutral wettability (θ(ow) ∼ 86°) and enhanced interfacial reactivity, but without significantly decreased surface charge. These allowed the ZTP to stabilize the oil droplets and further triggered cross-linking to form a continuous network among and around the oil droplets and protein particles, leading to the formation of stable Pickering emulsion gels. Layer-by-layer (LbL) interfacial architecture on the oil-water surface of the droplets was observed, which implied a possibility to fabricate hierarchical interface microstructure via modulation of the noncovalent interaction between hydrophobic protein and natural polyphenol.
NASA Astrophysics Data System (ADS)
Guala, M.; Hu, S. J.; Chamorro, L. P.
2011-12-01
Turbulent boundary layer measurements in both wind tunnel and in the near-neutral atmospheric surface layer revealed in the last decade the significant contribution of the large scales of motions to both turbulent kinetic energy and Reynolds stresses, for a wide range of Reynolds number. These scales are known to grow throughout the logarithmic layer and to extend several boundary layer heights in the streamwise direction. Potentially, they are a source of strong unsteadiness in the power output of wind turbines and in the aerodynamic loads of wind turbine blades. However, the large scales in realistic atmospheric conditions deserves further study, with well controlled boundary conditions. In the atmospheric wind tunnel of the St. Anthony Falls Laboratory, with a 16 m long test section and independently controlled incoming flow and floor temperatures, turbulent boundary layers in a range of stability conditions, from the stratified to the convective case, can be reproduced and monitored. Measurements of fluctuating temperature, streamwise and wall normal velocity components are simultaneously obtained by an ad hoc calibrated and customized triple-wire sensor. A wind turbine model with constant loading DC motor, constant tip speed ratio, and a rotor diameter of 0.128m is used to mimic a large full scale turbine in the atmospheric boundary layer. Measurements of the fluctuating voltage generated by the DC motor are compared with measurements of the blade's angular velocity by laser scanning, and eventually related to velocity measurements from the triple-wire sensor. This study preliminary explores the effect of weak stability and complex terrain (through a set of spanwise aligned topographic perturbations) on the large scales of the flow and on the fluctuations in the wind turbine(s) power output.
NASA Astrophysics Data System (ADS)
Haase, Fabian; Manova, Darina; Hirsch, Dietmar; Mändl, Stephan; Kersten, Holger
2018-04-01
A passive thermal probe has been used to detect dynamic changes in the secondary electron emission (SEE). Oxidized and nitrided materials have been studied during argon ion sputtering in a plasma immersion ion implantation process. Identical measurements have been performed for the metallic state with high voltage pulses accelerating nitrogen ions towards the surface, supposedly forming a nitride layer. Energy flux data were combined with scanning electron microscopy images of the surface to obtain information about the actual surface composition as well as trends and changes during the process. Within the measurements, a direct comparison of the SEE within both employed ion species (argon and nitrogen) is possible while an absolute quantification is still open. Additionally, the nominal composition of the investigated oxide and nitride layers does not always correspond to stoichiometric compounds. Nevertheless, the oxides showed a remarkably higher SEE compared to the pure metals, while an indistinct behavior was observed for the nitrides: some higher, some lower than the clean metal surfaces. For the aluminum alloy AlMg3 a complex time dependent evolution was observed with consecutive oxidation/sputtering cycles leading to a very rough surface with a diminished oxide layer, leading to an almost black surface of the metal and non-reproducible changes in the SEE. The presented method is a versatile technique for measuring dynamic changes of the surface for materials commonly used in PVD processes with a time resolution of about 1 min, e.g. magnetron sputtering or HiPIMS, where changes in the target or electrode composition are occurring but cannot be measured directly.
Sensitivity of complex cells in cat striate cortex to relative motion.
Hammond, P; Smith, A T
1984-06-03
Sensitivity of 95 complex cells to relative motion between oriented bars and textured backgrounds was investigated monocularly in the striate cortex of lightly anesthetized, paralyzed cats. Cells were classified conventionally. Those in deep layers were either direction-selective, or strongly preferred one direction of motion, and responded well to background texture motion alone: backgrounds potentiated the response to the bar in the cell's preferred direction when moved in phase, or in the opposite direction when moved in antiphase; other combinations depressed the level of response compared with that for the bar alone. The majority of direction-selective or strongly direction-biased cells in superficial layers behaved similarly. The most interesting superficial-layer cells were bidirectional or weakly direction-biased, and recorded closer to the cortical surface than the direction-selective neurons. A majority showed preference for relative motion, some for antiphase, others for in-phase motion, regardless of the absolute direction of motion across the receptive field, which could not be accounted for on the basis of separate responses to bars and backgrounds alone. Three of the superficial-layer direction-selective cells also showed preference for antiphase relative motion. In a few complex cells from superficial laminae, backgrounds were either without influence on responses to oriented stimuli, or purely suppressive. Visual backgrounds against which objects are perceived are usually neither featureless nor motionless: the results suggest that most complex cells in striate cortex are sensitive to the context in which objects are seen and susceptible to relationships between objects and their backgrounds in relative motion.
Amperometric Enzyme Electrodes
1989-12-01
form of carbon (glascy carbon , graphite, reticulated vitreous carbon , carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...the surface for covalent bonding. The most frequently used electrode material, glassy carbon , often displays complex behavior. Although attempts have...Mixed Carbon Paste Electrode with an Immobilized Layer of D-Gluconate Dehydrogenase from Bacteral Membranes," Agric. Biol. Chelm., 51 (1987), 747-754
Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John
2015-08-15
Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.
2003-01-01
Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, XS; Michaelis, VK; Ong, TC
The controllable synthesis of well-ordered layered materials with specific nanoarchitecture poses a grand challenge in materials chemistry. Here the solvothermal synthesis of two structurally analogous 5-coordinate organosilicate complexes through a novel transesterification mechanism is reported. Since the polycrystalline nature of the intrinsic hypervalent Si complex thwarts the endeavor in determining its structure, a novel strategy concerning the elegant addition of a small fraction of B species as an effective crystal growth mediator and a sacrificial agent is proposed to directly prepare diffraction-quality single crystals without disrupting the intrinsic elemental type. In the determined crystal structure, two monomeric primary building unitsmore » (PBUs) self-assemble into a dimeric asymmetric secondary BU via strong Na+O2- ionic bonds. The designed one-pot synthesis is straightforward, robust, and efficient, leading to a well-ordered (10)-parallel layered Si complex with its principal interlayers intercalated with extensive van der Waals gaps in spite of the presence of substantial Na+ counter-ions as a result of unique atomic arrangement in its structure. However, upon fast pyrolysis, followed by acid leaching, both complexes are converted into two SiO2 composites bearing BET surface areas of 163.3 and 254.7m(2)g(-1) for the pyrolyzed intrinsic and B-assisted Si complexes, respectively. The transesterification methodology merely involving alcoholysis but without any hydrolysis side reaction is designed to have generalized applicability for use in synthesizing new layered metal-organic compounds with tailored PBUs and corresponding metal oxide particles with hierarchical porosity.« less
NASA Astrophysics Data System (ADS)
Elder, K. R.; Achim, C. V.; Granato, E.; Ying, S. C.; Ala-Nissila, T.
2017-11-01
Atomistically thin adsorbate layers on surfaces with a lattice mismatch display complex spatial patterns and ordering due to strain-driven self-organization. In this work, a general formalism to model such ultrathin adsorption layers that properly takes into account the competition between strain and adhesion energy of the layers is presented. The model is based on the amplitude expansion of the two-dimensional phase field crystal (PFC) model, which retains atomistic length scales but allows relaxation of the layers at diffusive time scales. The specific systems considered here include cases where both the film and the adsorption potential can have either honeycomb (H) or triangular (T) symmetry. These systems include the so-called (1 ×1 ) , (√{3 }×√{3 }) R 30∘ , (2 ×2 ) , (√{7 }×√{7 }) R 19 .1∘ , and other higher order states that can contain a multitude of degenerate commensurate ground states. The relevant phase diagrams for many combinations of the H and T systems are mapped out as a function of adhesion strength and misfit strain. The coarsening patterns in some of these systems is also examined. The predictions are in good agreement with existing experimental data for selected strained ultrathin adsorption layers.
PALADYN v1.0, a comprehensive land surface-vegetation-carbon cycle model of intermediate complexity
NASA Astrophysics Data System (ADS)
Willeit, Matteo; Ganopolski, Andrey
2016-10-01
PALADYN is presented; it is a new comprehensive and computationally efficient land surface-vegetation-carbon cycle model designed to be used in Earth system models of intermediate complexity for long-term simulations and paleoclimate studies. The model treats in a consistent manner the interaction between atmosphere, terrestrial vegetation and soil through the fluxes of energy, water and carbon. Energy, water and carbon are conserved. PALADYN explicitly treats permafrost, both in physical processes and as an important carbon pool. It distinguishes nine surface types: five different vegetation types, bare soil, land ice, lake and ocean shelf. Including the ocean shelf allows the treatment of continuous changes in sea level and shelf area associated with glacial cycles. Over each surface type, the model solves the surface energy balance and computes the fluxes of sensible, latent and ground heat and upward shortwave and longwave radiation. The model includes a single snow layer. Vegetation and bare soil share a single soil column. The soil is vertically discretized into five layers where prognostic equations for temperature, water and carbon are consistently solved. Phase changes of water in the soil are explicitly considered. A surface hydrology module computes precipitation interception by vegetation, surface runoff and soil infiltration. The soil water equation is based on Darcy's law. Given soil water content, the wetland fraction is computed based on a topographic index. The temperature profile is also computed in the upper part of ice sheets and in the ocean shelf soil. Photosynthesis is computed using a light use efficiency model. Carbon assimilation by vegetation is coupled to the transpiration of water through stomatal conductance. PALADYN includes a dynamic vegetation module with five plant functional types competing for the grid cell share with their respective net primary productivity. PALADYN distinguishes between mineral soil carbon, peat carbon, buried carbon and shelf carbon. Each soil carbon type has its own soil carbon pools generally represented by a litter, a fast and a slow carbon pool in each soil layer. Carbon can be redistributed between the layers by vertical diffusion and advection. For the vegetated macro surface type, decomposition is a function of soil temperature and soil moisture. Carbon in permanently frozen layers is assigned a long turnover time which effectively locks carbon in permafrost. Carbon buried below ice sheets and on flooded ocean shelves is treated differently. The model also includes a dynamic peat module. PALADYN includes carbon isotopes 13C and 14C, which are tracked through all carbon pools. Isotopic discrimination is modelled only during photosynthesis. A simple methane module is implemented to represent methane emissions from anaerobic carbon decomposition in wetlands (including peatlands) and flooded ocean shelf. The model description is accompanied by a thorough model evaluation in offline mode for the present day and the historical period.
Polyhydroxyalkanoate (PHA) Granules Have no Phospholipids
Bresan, Stephanie; Sznajder, Anna; Hauf, Waldemar; Forchhammer, Karl; Pfeiffer, Daniel; Jendrossek, Dieter
2016-01-01
Polyhydroxybutyrate (PHB) granules, also designated as carbonosomes, are supra-molecular complexes in prokaryotes consisting of a PHB polymer core and a surface layer of structural and functional proteins. The presence of suspected phospholipids in the surface layer is based on in vitro data of isolated PHB granules and is often shown in cartoons of the PHB granule structure in reviews on PHB metabolism. However, the in vivo presence of a phospholipid layer has never been demonstrated. We addressed this topic by the expression of fusion proteins of DsRed2EC and other fluorescent proteins with the phospholipid-binding domain (LactC2) of lactadherin in three model organisms. The fusion proteins specifically localized at the cell membrane of Ralstonia eutropha but did not co-localize with PHB granules. The same result was obtained for Pseudomonas putida, a species that accumulates another type of polyhydroxyalkanoate (PHA) granules related to PHB. Notably, DsRed2EC-LactC2 expressed in Magnetospirillum gryphiswaldense was detected at the position of membrane-enclosed magnetosome chains and at the cytoplasmic membrane but not at PHB granules. In conclusion, the carbonosomes of representatives of α-proteobacteria, β-proteobacteria and γ-proteobacteria have no phospholipids in vivo and we postulate that the PHB/PHA granule surface layers in natural producers generally are free of phospholipids and consist of proteins only. PMID:27222167
NASA Astrophysics Data System (ADS)
Chen, Yiying; Ryder, James; Bastrikov, Vladislav; McGrath, Matthew J.; Naudts, Kim; Otto, Juliane; Ottlé, Catherine; Peylin, Philippe; Polcher, Jan; Valade, Aude; Black, Andrew; Elbers, Jan A.; Moors, Eddy; Foken, Thomas; van Gorsel, Eva; Haverd, Vanessa; Heinesch, Bernard; Tiedemann, Frank; Knohl, Alexander; Launiainen, Samuli; Loustau, Denis; Ogée, Jérôme; Vessala, Timo; Luyssaert, Sebastiaan
2016-09-01
Canopy structure is one of the most important vegetation characteristics for land-atmosphere interactions, as it determines the energy and scalar exchanges between the land surface and the overlying air mass. In this study we evaluated the performance of a newly developed multi-layer energy budget in the ORCHIDEE-CAN v1.0 land surface model (Organising Carbon and Hydrology In Dynamic Ecosystems - CANopy), which simulates canopy structure and can be coupled to an atmospheric model using an implicit coupling procedure. We aim to provide a set of acceptable parameter values for a range of forest types. Top-canopy and sub-canopy flux observations from eight sites were collected in order to conduct this evaluation. The sites crossed climate zones from temperate to boreal and the vegetation types included deciduous, evergreen broad-leaved and evergreen needle-leaved forest with a maximum leaf area index (LAI; all-sided) ranging from 3.5 to 7.0. The parametrization approach proposed in this study was based on three selected physical processes - namely the diffusion, advection, and turbulent mixing within the canopy. Short-term sub-canopy observations and long-term surface fluxes were used to calibrate the parameters in the sub-canopy radiation, turbulence, and resistance modules with an automatic tuning process. The multi-layer model was found to capture the dynamics of sub-canopy turbulence, temperature, and energy fluxes. The performance of the new multi-layer model was further compared against the existing single-layer model. Although the multi-layer model simulation results showed few or no improvements to both the nighttime energy balance and energy partitioning during winter compared with a single-layer model simulation, the increased model complexity does provide a more detailed description of the canopy micrometeorology of various forest types. The multi-layer model links to potential future environmental and ecological studies such as the assessment of in-canopy species vulnerability to climate change, the climate effects of disturbance intensities and frequencies, and the consequences of biogenic volatile organic compound (BVOC) emissions from the terrestrial ecosystem.
Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach
Wang, Gang; Zhang, Miao; Liu, Su; ...
2015-05-04
Layer-tunable graphene has attracted broad interest for its potentials in nanoelectronics applications. However, synthesis of layer-tunable graphene by using traditional chemical vapor deposition (CVD) method still remains a great challenge due to the complex experimental parameters and the carbon precipitation process. Herein, by performing ion implantation into a Ni/Cu bilayer substrate, the number of graphene layers, especially single or double layer, can be controlled precisely by adjusting the carbon ion implant fluence. The growth mechanism of the layer-tunable graphene is revealed by monitoring the growth process is observed that the entire implanted carbon atoms can be expelled towards the substratemore » surface and thus graphene with designed layer number can be obtained. Such a growth mechanism is further confirmed by theoretical calculations. The proposed approach for the synthesis of layer-tunable graphene offers more flexibility in the experimental conditions. Being a core technology in microelectronics processing, ion implantation can be readily implemented in production lines and is expected to expedite the application of graphene to nanoelectronics.« less
Nitrogen-doped carbon capsules via poly(ionic liquid)-based layer-by-layer assembly.
Zhao, Qiang; Fellinger, Tim-Patrick; Antonietti, Markus; Yuan, Jiayin
2012-07-13
Layer-by-layer (LbL) assembly technique is applied for the first time for the preparation of nitrogen-doped carbon capsules. This approach uses colloid silica as template and two polymeric deposition components, that is, poly(ammonium acrylate) and a poly (ionic liquid) poly(3-cyanomethyl-1-vinylimidazolium bromide), which acts as both the carbon precursor and nitrogen source. Nitrogen-doped carbon capsules are prepared successfully by polymer wrapping, subsequent carbonization and template removal. The as-synthesized carbon capsules contain ≈7 wt% of nitrogen and have a structured specific surface area of 423 m(2) g(-1). Their application as supercapacitor has been briefly introduced. This work proves that LbL assembly methodology is available for preparing carbon structures of complex morphology. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Piculell, Lennart
2013-08-20
Complexes of oppositely charged polymers and surfactants (OCPS) in water come in many varieties, including liquid-crystalline materials, soluble complexes, structured nanoparticles, and water-insoluble surface layers. The range of available structures and properties increases even further with the addition of other amphiphilic substances that may enter, or even dissolve, the complexes, depending on the nature of the additive. Simple operations may change the properties of OCPS systems dramatically. For instance, dilution with water can induce a phase separation in an initially stable OCPS solution. More complicated processes, involving chemical reactions, can be used to either create or disintegrate OCPS particles or surface layers. The richness of their properties has made OCPS mixtures ubiquitous in everyday household products, such as shampoos and laundry detergents, and also attractive ingredients in the design of new types of responsive particles, surfaces, and delivery agents of potential use in future applications. A challenge for the rational design of an OCPS system is, however, to obtain a good fundamental understanding of how to select molecular shapes and sizes and how to tune the hydrophobic and electrostatic interactions such that the desired properties are obtained. Recent studies of OCPS phase equilibria, using a strategy where the minimum number of components is always used to address a particular question, have brought out general rules and trends that can be used for such a rational design. Those fundamental studies are reviewed here, together with more application-oriented studies where fundamental learning has been put to use.
Systems and methods for advanced ultra-high-performance InP solar cells
Wanlass, Mark
2017-03-07
Systems and Methods for Advanced Ultra-High-Performance InP Solar Cells are provided. In one embodiment, an InP photovoltaic device comprises: a p-n junction absorber layer comprising at least one InP layer; a front surface confinement layer; and a back surface confinement layer; wherein either the front surface confinement layer or the back surface confinement layer forms part of a High-Low (HL) doping architecture; and wherein either the front surface confinement layer or the back surface confinement layer forms part of a heterointerface system architecture.
The role played by alternative splicing in antigenic variability in human endo-parasites.
Hull, Rodney; Dlamini, Zodwa
2014-01-28
Endo-parasites that affect humans include Plasmodium, the causative agent of malaria, which remains one of the leading causes of death in human beings. Despite decades of research, vaccines to this and other endo-parasites remain elusive. This is in part due to the hyper-variability of the parasites surface proteins. Generally these surface proteins are encoded by a large family of genes, with only one being dominantly expressed at certain life stages. Another layer of complexity can be introduced through the alternative splicing of these surface proteins. The resulting isoforms may differ from each other with regard to cell localisation, substrate affinities and functions. They may even differ in structure to the extent that they are no longer recognised by the host's immune system. In many cases this leads to changes in the N terminus of these proteins. The geographical localisation of endo-parasitic infections around the tropics and the highest incidences of HIV-1 infection in the same areas, adds a further layer of complexity as parasitic infections affect the host immune system resulting in higher HIV infection rates, faster disease progression, and an increase in the severity of infections and complications in HIV diagnosis. This review discusses some examples of parasite surface proteins that are alternatively spliced in trypanosomes, Plasmodium and the parasitic worm Schistosoma as well as what role alternate splicing may play in the interaction between HIV and these endo-parasites.
Modeling the feedback between aerosol and boundary layer processes: a case study in Beijing, China.
Miao, Yucong; Liu, Shuhua; Zheng, Yijia; Wang, Shu
2016-02-01
Rapid development has led to frequent haze in Beijing. With mountains and sea surrounding Beijing, the pollution is found to be influenced by the mountain-plain breeze and sea-land breeze in complex ways. Meanwhile, the presence of aerosols may affect the surface energy balance and impact these boundary layer (BL) processes. The effects of BL processes on aerosol pollution and the feedback between aerosol and BL processes are not yet clearly understood. Thus, the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) is used to investigate the possible effects and feedbacks during a haze episode on 23 September 2011. Influenced by the onshore prevailing wind, sea-breeze, and upslope breeze, about 45% of surface particulate matter (PM)2.5 in Beijing are found to be contributed by its neighbor cities through regional transport. In the afternoon, the development of upslope breeze suppresses the growth of BL in Beijing by imposing a relatively low thermal stable layer above the BL, which exacerbates the pollution. Two kinds of feedback during the daytime are revealed as follows: (1) as the aerosols absorb and scatter the solar radiation, the surface net radiation and sensible heat flux are decreased, while BL temperature is increased, resulting in a more stable and shallower BL, which leads to a higher surface PM2.5 concentration in the morning and (2) in the afternoon, as the presence of aerosols increases the BL temperature over plains, the upslope breeze is weakened, and the boundary layer height (BLH) over Beijing is heightened, resulting in the decrease of the surface PM2.5 concentration there.
Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces
Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.
2016-01-26
Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, Glenn Edward; Bao, J; Huang, M
Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less
Incorporating microorganisms into polymer layers provides bioinspired functional living materials
Gerber, Lukas C.; Koehler, Fabian M.; Grass, Robert N.; Stark, Wendelin J.
2012-01-01
Artificial two-dimensional biological habitats were prepared from porous polymer layers and inoculated with the fungus Penicillium roqueforti to provide a living material. Such composites of classical industrial ingredients and living microorganisms can provide a novel form of functional or smart materials with capability for evolutionary adaptation. This allows realization of most complex responses to environmental stimuli. As a conceptual design, we prepared a material surface with self-cleaning capability when subjected to standardized food spill. Fungal growth and reproduction were observed in between two specifically adapted polymer layers. Gas exchange for breathing and transport of nutrient through a nano-porous top layer allowed selective intake of food whilst limiting the microorganism to dwell exclusively in between a confined, well-enclosed area of the material. We demonstrated a design of such living materials and showed both active (eating) and waiting (dormant, hibernation) states with additional recovery for reinitiation of a new active state by observing the metabolic activity over two full nutrition cycles of the living material (active, hibernation, reactivation). This novel class of living materials can be expected to provide nonclassical solutions in consumer goods such as packaging, indoor surfaces, and in biotechnology. PMID:22198770
NASA Astrophysics Data System (ADS)
Tsivadze, A. Yu.; Fridman, A. Ya.; Morozova, E. M.; Sokolova, N. P.; Voloshchuk, A. M.; Bardyshev, I. I.; Gorbunov, A. M.; Novikov, A. K.; Polyakova, I. Ya.; Titova, B. N.; Yavich, A. A.
2018-02-01
Materials are produced with porous layers based on ethanolamine derivatives of PVC or compounds of active carbon with hydroxyethylcyclam derivatives of PVC with aqua complexes of chloride hydrogen cross-linked with the surface of cellulose or asbestos fabric. Their capacity for sorption with respect to hexane and benzene in the saturated vapor and liquid phases is determined. The dependences of current on voltage in a circuit are determined for bridges composed of these materials in air, and in the vapor and liquid phases of benzene and hexane between 3 M HCl solutions and 3 M HCl solutions containing 3 M CaCl2. It is established that only H+ ions migrate along the bridges between the HCl solutions, and H+ and Cl- ions were the only species that moved along the bridges between the HCl solutions containing CaCl2. The voltages at which the movement of ions starts are determined, and constants characterizing the conductivity of the layers are found. It is shown that these parameters depend on the structure of a layer, the nature of the fabric, and the medium surrounding a bridge.
Defects in Arsenic Implanted p + -n- and n + -p- Structures Based on MBE Grown CdHgTe Films
NASA Astrophysics Data System (ADS)
Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytskyy, H. V.; Świątek, Z.
2018-02-01
Complex studies of the defect structure of arsenic-implanted (with the energy of 190 keV) Cd x Hg 1-x Te ( x = 0.22) films grown by molecular-beam epitaxy are carried out. The investigations were performed using secondary-ion mass spectroscopy, transmission electron microscopy, optical reflection in the visible region of the spectrum, and electrical measurements. Radiation donor defects were studied in n +- p- and n +- n-structures obtained by implantation and formed on the basis of p-type and n-type materials, respectively, without activation annealing. It is shown that in the layer of the distribution of implanted ions, a layer of large extended defects with low density is formed in the near-surface region followed by a layer of smaller extended defects with larger density. A different character of accumulation of electrically active donor defects in the films with and without a protective graded-gap surface layer has been revealed. It is demonstrated that p +- n- structures are formed on the basis of n-type material upon activation of arsenic in the process of postimplantation thermal annealing with 100% activation of impurity and complete annihilation of radiation donor defects.
Modelling hazardous surface hoar layers in the mountain snowpack over space and time
NASA Astrophysics Data System (ADS)
Horton, Simon Earl
Surface hoar layers are a common failure layer in hazardous snow slab avalanches. Surface hoar crystals (frost) initially form on the surface of the snow, and once buried can remain a persistent weak layer for weeks or months. Avalanche forecasters have difficulty tracking the spatial distribution and mechanical properties of these layers in mountainous terrain. This thesis presents numerical models and remote sensing methods to track the distribution and properties of surface hoar layers over space and time. The formation of surface hoar was modelled with meteorological data by calculating the downward flux of water vapour from the atmospheric boundary layer. The timing of surface hoar formation and the modelled crystal size was verified at snow study sites throughout western Canada. The major surface hoar layers over several winters were predicted with fair success. Surface hoar formation was modelled over various spatial scales using meteorological data from weather forecast models. The largest surface hoar crystals formed in regions and elevation bands with clear skies, warm and humid air, cold snow surfaces, and light winds. Field surveys measured similar regional-scale patterns in surface hoar distribution. Surface hoar formation patterns on different slope aspects were observed, but were not modelled reliably. Mechanical field tests on buried surface hoar layers found layers increased in shear strength over time, but had persistent high propensity for fracture propagation. Layers with large crystals and layers overlying hard melt-freeze crusts showed greater signs of instability. Buried surface hoar layers were simulated with the snow cover model SNOWPACK and verified with avalanche observations, finding most hazardous surface hoar layers were identified with a structural stability index. Finally, the optical properties of surface hoar crystals were measured in the field with spectral instruments. Large plate-shaped crystals were less reflective at shortwave infrared wavelengths than other common surface snow grains. The methods presented in this thesis were developed into operational products that model hazardous surface hoar layers in western Canada. Further research and refinements could improve avalanche forecasts in regions prone to hazardous surface hoar layers.
NASA Astrophysics Data System (ADS)
Popovic, M. P.; Yang, Y.; Bolind, A. M.; Ozdol, V. B.; Olmsted, D. L.; Asta, M.; Hosemann, P.
2018-06-01
Liquid lead-bismuth eutectic (LBE) can serve as a heat transfer fluid for advanced nuclear applications as well as concentrated solar power but poses corrosion challenges for the structural materials at elevated temperatures. Oxide passivation of the surfaces of these materials during exposure to liquid LBE can inhibit such material degradation. In this study, transmission electron microscopy of oxides formed on Fe-Cr-Al alloy during exposure to low-oxygenated LBE at 800°C has been performed. A complex structure of the oxide film has been revealed, consisting of a homogeneous inner layer of mostly Al2O3 and a heterogeneous outer layer.
Out-of-Plane Designed Soft Metasurface for Tunable Surface Plasmon Polariton.
Liu, Xin; Huang, Zhao; Zhu, Chengkai; Wang, Li; Zang, Jianfeng
2018-02-14
Reliable and repeatable tunability gives functional diversity for reconfigurable plasmonics devices, while reversible and large mechanical deformation enabled by soft materials provides a new way for the global or partial regulation of metadevices. Here, we demonstrate a soft metasurface with an out-of-plane design for tuning the energy of surface plasmon polaritons (SPPs) bloch wave using theory, simulation, and experiments. Our metasurface is composed of two-layered gold nanoribbon arrays (2GNRs) on a soft substrate. The out-of-plane coupling mechanism is systematically analyzed in terms of separation height effect. Moreover, by harnessing mechanical deformation, continuously tunable plasmonic resonance has been achieved in the visible and near-infrared ranges. We further studied the angle-dependent reflection spectra of our metastructure. Compared with its planar counterpart, our soft and two-layered metastructure exhibits diverse tunability and significant field enhancement by out-of-plane interactions. Our approach in designing soft metasurface with out-of-plane structures can be extended to more-complex photonic devices and finds prominent applications such as biosensing, high-density plasmonic circuits, surface-enhanced luminescence, and surface-enhanced Raman scattering.
Preliminary study of the interactions caused by crossing shock waves and a turbulent boundary layer
NASA Technical Reports Server (NTRS)
Ketchum, A. C.; Bogdonoff, S. M.; Fernando, E. M.; Batcho, P. F.
1989-01-01
The subject research, the first phase of an extended study of the interaction of crossing shock waves with a turbulent boundary layer, has revealed the complexity of the resulting flow. Detailed surface visualization and mean wall static pressure distributions show little resemblance to the inviscid flow approximation, and the exploratory high frequency measurements show that the flow downstream of the theoretical inviscid shock crossing position has a significant unsteady characteristic. Further developments of the (unsteady) high frequency measurements are required to fully characterize the unsteadiness and the requirements to include this component in flowfield modeling.
Real-Time, Single-Step Bioassay Using Nanoplasmonic Resonator With Ultra-High Sensitivity
NASA Technical Reports Server (NTRS)
Zhang, Xiang (Inventor); Chen, Fanqing Frank (Inventor); Su, Kai-Hang (Inventor); Wei, Qi-Huo (Inventor); Ellman, Jonathan A. (Inventor); Sun, Cheng (Inventor)
2014-01-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies
Sun, Yugang; Hu, Yongxing
2015-05-26
A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.
Real-time, single-step bioassay using nanoplasmonic resonator with ultra-high sensitivity
Zhang, Xiang; Ellman, Jonathan A; Chen, Fanqing Frank; Su, Kai-Hang; Wei, Qi-Huo; Sun, Cheng
2014-04-01
A nanoplasmonic resonator (NPR) comprising a metallic nanodisk with alternating shielding layer(s), having a tagged biomolecule conjugated or tethered to the surface of the nanoplasmonic resonator for highly sensitive measurement of enzymatic activity. NPRs enhance Raman signals in a highly reproducible manner, enabling fast detection of protease and enzyme activity, such as Prostate Specific Antigen (paPSA), in real-time, at picomolar sensitivity levels. Experiments on extracellular fluid (ECF) from paPSA-positive cells demonstrate specific detection in a complex bio-fluid background in real-time single-step detection in very small sample volumes.
Probing semiconductor gap states with resonant tunneling.
Loth, S; Wenderoth, M; Winking, L; Ulbrich, R G; Malzer, S; Döhler, G H
2006-02-17
Tunneling transport through the depletion layer under a GaAs {110} surface is studied with a low temperature scanning tunneling microscope (STM). The observed negative differential conductivity is due to a resonant enhancement of the tunneling probability through the depletion layer mediated by individual shallow acceptors. The STM experiment probes, for appropriate bias voltages, evanescent states in the GaAs band gap. Energetically and spatially resolved spectra show that the pronounced anisotropic contrast pattern of shallow acceptors occurs exclusively for this specific transport channel. Our findings suggest that the complex band structure causes the observed anisotropies connected with the zinc blende symmetry.
Collective cell behavior on basement membranes floating in space
NASA Astrophysics Data System (ADS)
Ellison, Sarah; Bhattacharjee, Tapomoy; Morley, Cameron; Sawyer, W.; Angelini, Thomas
The basement membrane is an essential part of the polarity of endothelial and epithelial tissues. In tissue culture and organ-on-chip devices, monolayer polarity can be established by coating flat surfaces with extracellular matrix proteins and tuning the trans-substrate permeability. In epithelial 3D culture, spheroids spontaneously establish inside-out polarity, morphing into hollow shell-like structures called acini, generating their own basement membrane on the inner radius of the shell. However, 3D culture approaches generally lack the high degree of control provided by the 2D culture plate or organ-on-chip devices, making it difficult to create more faithful in vitro tissue models with complex surface curvature and morphology. Here we present a method for 3D printing complex basement membranes covered in cells. We 3D print collagen-I and Matrigel into a 3D growth medium made from jammed microgels. This soft, yielding material allows extracellular matrix to be formed as complex surfaces and shapes, floating in space. We then distribute MCF10A epithelial cells across the polymerized surface. We envision employing this strategy to study 3D collective cell behavior in numerous model tissue layers, beyond this simple epithelial model.
NASA Technical Reports Server (NTRS)
Pani, Shantau Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi
2016-01-01
The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (omega) approx. = 0.92 at 440nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the omega (approx. = 0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6W/sq m2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.
NASA Astrophysics Data System (ADS)
Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Tsay, Si-Chee; Lolli, Simone; Chuang, Ming-Tung; Lee, Chung-Te; Chantara, Somporn; Yu, Jin-Yi
2016-05-01
The aerosol radiative effect can be modulated by the vertical distribution and optical properties of aerosols, particularly when aerosol layers are decoupled. Direct aerosol radiative effects over the northern South China Sea (SCS) were assessed by incorporating an observed data set of aerosol optical properties obtained from the Seven South East Asian Studies (7-SEAS)/Dongsha Experiment into a radiative transfer model. Aerosol optical properties for a two-layer structure of aerosol transport were estimated. In the radiative transfer calculations, aerosol variability (i.e., diversity of source region, aerosol type, and vertical distribution) for the complex aerosol environment was also carefully quantified. The column-integrated aerosol optical depth (AOD) at 500 nm was 0.1-0.3 for near-surface aerosols and increased 1-5 times in presence of upper layer biomass-burning aerosols. A case study showed the strong aerosol absorption (single-scattering albedo (ω) ≈ 0.92 at 440 nm wavelength) exhibited by the upper layer when associated with predominantly biomass-burning aerosols, and the ω (≈0.95) of near-surface aerosols was greater than that of the upper layer aerosols because of the presence of mixed type aerosols. The presence of upper level aerosol transport could enhance the radiative efficiency at the surface (i.e., cooling) and lower atmosphere (i.e., heating) by up to -13.7 and +9.6 W m-2 per AOD, respectively. Such enhancement could potentially modify atmospheric stability, can influence atmospheric circulation, as well as the hydrological cycle over the tropical and low-latitude marginal northern SCS.
MBE growth of highly reproducible VCSELs
NASA Astrophysics Data System (ADS)
Houng, Y. M.; Tan, M. R. T.
1997-05-01
Advances in the design of heterojunction devices have placed stringent demands on the epitaxial material technologies required to fabricate these structures. The increased demand for more stringent tolerance and complex device structures have resulted in a situation where acceptable growth yields will be realized only if epitaxial growth is directly monitored and controlled in real time. We report the growth of 980- and 850-nm vertical cavity surface emitting lasers (VCSEL's) by gas-source molecular beam epitaxy (GSMBE), in which the pyrometric interferometry technique is used for in situ monitoring and feedback control of layer thickness to obtain the highly reproducible distributed Bragg reflectors (DBR) for VCSEL structures. This technique uses an optical pyrometer to measure emissivity oscillations of the growing epi-layer surface. The growing layer thickness can then be related to the emissivity oscillation signals. When the layer reaches the desired thickness, the growth of the subsequent layer is initiated. By making layer thickness measurements and control in real-time throughout the entire growth cycle of the structure, the Fabry-Perot resonance at the desired wavelength is reproducibly obtained. The run-to-run variation of the Fabry-Perot wavelength of VCSEL structures is < ± 0.4%. Using this technique, the group III fluxes can also be calibrated and corrected for flux drifts, thus we are able to control the gain peak of the active region with a run-to-run variation of less than 0.3%. Surface emitting laser diodes were fabricated and operated CW at room temperature. CW threshold currents of 3 and 5 mA are measured at room temperature for 980- and 850-nm lasers, respectively. Output powers higher than 25 mW for 980-nm and 12 mW for 850-nm devices are obtained.
NASA Astrophysics Data System (ADS)
Markfort, C. D.
2017-12-01
Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.
Impact of initial surface parameters on the final quality of laser micro-polished surfaces
NASA Astrophysics Data System (ADS)
Chow, Michael; Bordatchev, Evgueni V.; Knopf, George K.
2012-03-01
Laser micro-polishing (LμP) is a new laser-based microfabrication technology for improving surface quality during a finishing operation and for producing parts and surfaces with near-optical surface quality. The LμP process uses low power laser energy to melt a thin layer of material on the previously machined surface. The polishing effect is achieved as the molten material in the laser-material interaction zone flows from the elevated regions to the local minimum due to surface tension. This flow of molten material then forms a thin ultra-smooth layer on the top surface. The LμP is a complex thermo-dynamic process where the melting, flow and redistribution of molten material is significantly influenced by a variety of process parameters related to the laser, the travel motions and the material. The goal of this study is to analyze the impact of initial surface parameters on the final surface quality. Ball-end micromilling was used for preparing initial surface of samples from H13 tool steel that were polished using a Q-switched Nd:YAG laser. The height and width of micromilled scallops (waviness) were identified as dominant parameter affecting the quality of the LμPed surface. By adjusting process parameters, the Ra value of a surface, having a waviness period of 33 μm and a peak-to-valley value of 5.9 μm, was reduced from 499 nm to 301 nm, improving the final surface quality by 39.7%.
NASA Astrophysics Data System (ADS)
Tempas, Christopher D.
Self-assembled nanostructures at surfaces show promise for the development of next generation technologies including organic electronic devices and heterogeneous catalysis. In many cases, the functionality of these nanostructures is not well understood. This thesis presents strategies for the structural design of new on-surface metal-organic networks and probes their chemical reactivity. It is shown that creating uniform metal sites greatly increases selectivity when compared to ligand-free metal islands. When O2 reacts with single-site vanadium centers, in redox-active self-assembled coordination networks on the Au(100) surface, it forms one product. When O2 reacts with vanadium metal islands on the same surface, multiple products are formed. Other metal-organic networks described in this thesis include a mixed valence network containing Pt0 and PtII and a network where two Fe centers reside in close proximity. This structure is stable to temperatures >450 °C. These new on-surface assemblies may offer the ability to perform reactions of increasing complexity as future heterogeneous catalysts. The functionalization of organic semiconductor molecules is also shown. When a few molecular layers are grown on the surface, it is seen that the addition of functional groups changes both the film's structure and charge transport properties. This is due to changes in both first layer packing structure and the pi-electron distribution in the functionalized molecules compared to the original molecule. The systems described in this thesis were studied using high-resolution scanning tunneling microscopy, non-contact atomic force microscopy, and X-ray photoelectron spectroscopy. Overall, this work provides strategies for the creation of new, well-defined on-surface nanostructures and adds additional chemical insight into their properties.
NASA Astrophysics Data System (ADS)
Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan
2018-04-01
Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.
NASA Astrophysics Data System (ADS)
Physick, W. L.; Garratt, J. R.
1995-04-01
For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.
Silicon micro-mold and method for fabrication
Morales, Alfredo M.
2005-01-11
The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon micro-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.
Morales, Alfredo M [Livermore, CA
2006-10-24
The present invention describes a method for rapidly fabricating a robust 3-dimensional silicon-mold for use in preparing complex metal micro-components. The process begins by depositing a conductive metal layer onto one surface of a silicon wafer. A thin photoresist and a standard lithographic mask are then used to transfer a trace image pattern onto the opposite surface of the wafer by exposing and developing the resist. The exposed portion of the silicon substrate is anisotropically etched through the wafer thickness down to conductive metal layer to provide an etched pattern consisting of a series of rectilinear channels and recesses in the silicon which serve as the silicon micro-mold. Microcomponents are prepared with this mold by first filling the mold channels and recesses with a metal deposit, typically by electroplating, and then removing the silicon micro-mold by chemical etching.
NASA Astrophysics Data System (ADS)
Park, Il-Seok; Tiwari, Rashi; Kim, Kwang J.
2008-03-01
In this paper we are reporting a newely developed IPMC fabrication method, "IPMC Paint", which can be directly sprayed onto any complex surface. In order to fabricate the IPMC paint, liquid Nafion TM was used for the ionic conducting polymer instead of the typical film/sheet type Nafion TM. The viscosity of liquid Nafion TM was adjusted by adding Polyvinylpyrrolidone (PVP) to perform spray painting. Modified Nafion was sprayed onto the conducting substrate, Polyfoil TM which acts as base electrode layer. After three times spraying, ionic polymer layer has 45 μm thickness and 10 μm of surface roughness. Sensing tests show that IPMC paint sensor has more sensitivity (+/- 0.06 of producing voltage) than that of the typical IPMC (+/- 0.005 of producing voltage) when dynamic bending with 10 Hz frequency and 1.3 cm of displacement is applied to.
Laser-induced phase separation of silicon carbide
Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae
2016-01-01
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015
Light-Activated Gigahertz Ferroelectric Domain Dynamics
NASA Astrophysics Data System (ADS)
Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman
2018-03-01
Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Ben; Qian, Yun; Berg, Larry K.
We evaluate the sensitivity of simulated turbine-height winds to 26 parameters applied in a planetary boundary layer (PBL) scheme and a surface layer scheme of the Weather Research and Forecasting (WRF) model over an area of complex terrain during the Columbia Basin Wind Energy Study. An efficient sampling algorithm and a generalized linear model are used to explore the multiple-dimensional parameter space and quantify the parametric sensitivity of modeled turbine-height winds. The results indicate that most of the variability in the ensemble simulations is contributed by parameters related to the dissipation of the turbulence kinetic energy (TKE), Prandtl number, turbulencemore » length scales, surface roughness, and the von Kármán constant. The relative contributions of individual parameters are found to be dependent on both the terrain slope and atmospheric stability. The parameter associated with the TKE dissipation rate is found to be the most important one, and a larger dissipation rate can produce larger hub-height winds. A larger Prandtl number results in weaker nighttime winds. Increasing surface roughness reduces the frequencies of both extremely weak and strong winds, implying a reduction in the variability of the wind speed. All of the above parameters can significantly affect the vertical profiles of wind speed, the altitude of the low-level jet and the magnitude of the wind shear strength. The wind direction is found to be modulated by the same subset of influential parameters. Remainder of abstract is in attachment.« less
Rayleigh-wave diffractions due to a void in the layered half space
Xia, J.; Xu, Y.; Miller, R.D.; Nyquist, Jonathan E.
2006-01-01
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four two-dimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves. ?? 2005 Society of Exploration Geophysicists.
Schulz, H; Neue, H-U
2005-03-01
The sorption potential for SO4(2-) in humus layer samples from field sites along a deposition gradient was determined experimentally in batch experiments. The Freundlich equation was used to quantify the sorption of added SO4(2-) in humus layer samples and to determine site-dependent sorption parameters. SO4(2-) sorption in humus layers is a concentration-dependent process. The linearity of isotherms reveals that SO4(2-) is reversibly bound in the organic surface layer, as long as soil solution concentrations remain above 26 to 44 mg SO4(2-) L(-1). Natural isotope variations of sulfur in SO4(2-) were analysed to investigate the degree of sorption of dissolved atmospheric and added SO4(2-). Both sulfate species differed significantly in their isotope composition. The pattern of delta34S values for SO4(2-) in all equilibrium solutions confirm the findings from sorption isotherms, showing a close relationship between the sulfur isotope ratios of SO4(2-) in soil solutions and the amount of SO4(2-) sorbed at the humus layer matrix. Stored atmospheric SO4(2-) in humus layers is released at sites where sulfate concentration in throughfall drops below 26 mg SO4(2-) L(-1). Concentration of soluble Fe decreased with increasing sulfate sorption, thus supporting the assumption that active Fe for example is important. Iron probably stabilizes the reactive surface of humus complexes and therefore has a positive influence on the SO4(2-) sorption in humus layers.
Protecting the surface of a light absorber in a photoanode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shu; Lewis, Nathan S.
A photoanode includes a passivation layer on a light absorber. The passivation layer is more resistant to corrosion than the light absorber. The photoanode includes a surface modifying layer that is location on the passivation layer such that the passivation layer is between the light absorber and the surface modifying layer. The surface modifying layer reduces a resistance of the passivation layer to conduction of holes out of the passivation layer.
NASA Astrophysics Data System (ADS)
Zhang, Lili; Merényi, Erzsébet; Grundy, William M.; Young, Eliot F.
2010-07-01
The near-infrared spectra of icy volatiles collected from planetary surfaces can be used to infer surface parameters, which in turn may depend on the recent geologic history. The high dimensionality and complexity of the spectral data, the subtle differences between the spectra, and the highly nonlinear interplay between surface parameters make it often difficult to accurately derive these surface parameters. We use a neural machine, with a Self-Organizing Map (SOM) as its hidden layer, to infer the latent physical parameters, temperature and grain size from near-infrared spectra of crystalline H2O ice. The output layer of the SOM-hybrid machine is customarily trained with only the output from the SOM winner. We show that this scheme prevents simultaneous achievement of high prediction accuracies for both parameters. We propose an innovative neural architecture we call Conjoined Twins that allows multiple (k) SOM winners to participate in the training of the output layer and in which the customization of k can be limited automatically to a small range. With this novel machine we achieve scientifically useful accuracies, 83.0 ± 2.7% and 100.0 ± 0.0%, for temperature and grain size, respectively, from simulated noiseless spectra. We also show that the performance of the neural model is robust under various noisy conditions. A primary application of this prediction capability is planned for spectra returned from the Pluto-Charon system by New Horizons.
Hyeon, Jeong Eun; Jeon, Sang Duck; Han, Sung Ok
2013-11-01
The cellulosome is one of nature's most elegant and elaborate nanomachines and a key biological and biotechnological macromolecule that can be used as a multi-functional protein complex tool. Each protein module in the cellulosome system is potentially useful in an advanced biotechnology application. The high-affinity interactions between the cohesin and dockerin domains can be used in protein-based biosensors to improve both sensitivity and selectivity. The scaffolding protein includes a carbohydrate-binding module (CBM) that attaches strongly to cellulose substrates and facilitates the purification of proteins fused with the dockerin module through a one-step CBM purification method. Although the surface layer homology (SLH) domain of CbpA is not present in other strains, replacement of the cell surface anchoring domain allows a foreign protein to be displayed on the surface of other strains. The development of a hydrolysis enzyme complex is a useful strategy for consolidated bioprocessing (CBP), enabling microorganisms with biomass hydrolysis activity. Thus, the development of various configurations of multi-functional protein complexes for use as tools in whole-cell biocatalyst systems has drawn considerable attention as an attractive strategy for bioprocess applications. This review provides a detailed summary of the current achievements in Clostridium-derived multi-functional complex development and the impact of these complexes in various areas of biotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ryu, S.; Zhou, H.; Paudel, T. R.; Irwin, J.; Podkaminer, J. P.; Bark, C. W.; Lee, D.; Kim, T. H.; Fong, D. D.; Rzchowski, M. S.; Tsymbal, E. Y.; Eom, C. B.
2017-10-01
Microscopic understanding of the surface-controlled conductivity of the two dimensional electron gas at complex oxide interfaces is crucial for developing functional interfaces. We observe conductivity and structural modification using in-situ synchrotron surface x-ray diffraction as the surface of a model LaAlO3/SrTiO3 (001) heterostructure is changed by polar adsorbates. We find that polar adsorbate-induced interfacial metallicity reduces polar distortions in the LaAlO3 layer. First-principles density functional theory calculations show that surface dipoles introduced by polar adsorbates lead to additional charge transfer and the reduction of polar displacements in the LaAlO3 layer, consistent with the experimental observations. Our study supports that internal structural deformations controlling functionalities can be driven without the application of direct electrical or thermal bias and offers a route to tuning interfacial properties. These results also highlight the important role of in-situ x-ray scattering with atomic resolution in capturing and exploring structural distortions and charge density changes caused by external perturbations such as chemical adsorption, redox reaction, and generation and/or annihilation of surface defects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, S.; Zhou, H.; Paudel, T. R.
Microscopic understanding of the surface-controlled conductivity of the two dimensional electron gas at complex oxide interfaces is crucial for developing functional interfaces. We observe conductivity and structural modification using in-situ synchrotron surface x-ray diffraction as the surface of a model LaAlO3/SrTiO3 (001) heterostructure is changed by polar adsorbates. We find that polar adsorbate-induced interfacial metallicity reduces polar distortions in the LaAlO3 layer. First-principles density functional theory calculations show that surface dipoles introduced by polar adsorbates lead to additional charge transfer and the reduction of polar displacements in the LaAlO3 layer, consistent with the experimental observations. Our study supports that internalmore » structural deformations controlling functionalities can be driven without the application of direct electrical or thermal bias and offers a route to tuning interfacial properties. These results also highlight the important role of in-situ x-ray scattering with atomic resolution in capturing and exploring structural distortions and charge density changes caused by external perturbations such as chemical adsorption, redox reaction, and generation and/or annihilation of surface defects.« less
Kataoka, Yu; Tamaki, Yukimichi; Miyazaki, Takashi
2011-01-01
Wire-type electric discharge machining has been applied to the manufacture of endosseous titanium implants as this computer associated technique allows extremely accurate complex sample shaping with an optimal micro textured surface during the processing. Since the titanium oxide layer is sensitively altered by each processing, the authors hypothesized that this technique also up-regulates biological responses through the synergistic effects of the superficial chemistry and micro topography. To evaluate the respective in vitro cellular responses on the superficial chemistry and micro topography of titanium surface processed by wire-type electric discharge, we used titanium-coated epoxy resin replica of the surface. An oxide layer on the titanium surface processed by wire-type electric discharge activated the initial responses of osteoblastic cells through an integrin-mediated mechanism. Since the mRNA expression of ALP on those replicas was up-regulated compared to smooth titanium samples, the micro topography of a titanium surface processed by wire-type electric discharge promotes the osteogenic potential of cells. The synergistic response of the superficial chemistry and micro topography of titanium processed by wire-type electric discharge was demonstrated in this study.
Electrical sensing of the dynamical structure of the planetary boundary layer
NASA Astrophysics Data System (ADS)
Nicoll, K. A.; Harrison, R. G.; Silva, H. G.; Salgado, R.; Melgâo, M.; Bortoli, D.
2018-04-01
Turbulent and convective processes within the planetary boundary layer are responsible for the transport of moisture, momentum and particulate matter, but are also important in determining the electrical charge transport of the lower atmosphere. This paper presents the first high resolution vertical charge profiles during fair weather conditions, obtained with instrumented radiosonde balloons over Alqueva, Portugal during the summer of 2014. The short intervals (4 h) between balloon flights enabled the diurnal variation in the vertical profile of charge within the boundary layer to be examined in detail, with much smaller charges (up to 20 pC m- 3) observed during stable night time periods than during the day. Following sunrise, the evolution of the charge profile was complex, demonstrating charged ultrafine aerosol, lofted upwards by daytime convection. This produced charge up to 92 pC m- 3 up to 500 m above the surface. The diurnal variation in the integrated column of charge above the site tracked closely with the diurnal variation in near surface charge as derived from a nearby electric field sensor, confirming the importance of the link between surface charge generation processes and aloft. The local aerosol vertical profiles were estimated using backscatter measurements from a collocated ceilometer. These were utilised in a simple model to calculate the charge expected due to vertical conduction current flow in the global electric circuit through aerosol layers. The analysis presented here demonstrates that charge can provide detailed information about boundary layer transport, particularly in regard to the ultrafine aerosol structure, that conventional thermodynamic and ceilometer measurements do not.
D, Nancy; N, Rajendran
2018-04-15
Commercially pure Titanium (Cp-Ti) was electrophoretically modified using double layer coatings consisting of TiO 2 -SrHAP as the first layer (TH) followed by vancomycin incorporated Chitosan/Gelatin as the second layer (THV). The nano crystalline phase of coated Strontium incorporated hydroxyapatite (Sr-HAP) confirmed through X-ray diffraction studies (XRD). The polyelectrolyte complex formation between chitosan and gelatin, the stability of the drug, the bonding between chitosan and Sr-HAP were confirmed through infra-red spectroscopic studies (IR). The average roughness (R a ) value calculated from atomic force microscopy (AFM) corroborates with the water contact angle data, which clearly confirms the tuning property of the surface in relation to the surface energy and roughness of the coated samples. The total amount of vancomycin encapsulated was calculated to be 11.5 μg. Antibacterial activity was found against both Staphylococcus aureus strains methicillin resistant Staphylococcus aureus (MRSA) and methicillin sensitive Staphylococcus aureus (MRSA) for a drug concentration of 2.74 μg released after 12 h of immersion. The in-vitro cell culture studies showed enhanced cellular activity for THV samples. Thus, THV samples have a dual action at the surface, by resisting the bacterial adhesion and enhancing cellular interaction at the bio-interface, making it a promising candidate to treat osteomyelitis infection. Copyright © 2018. Published by Elsevier B.V.
Modeling the growth processes of polyelectrolyte multilayers using a quartz crystal resonator.
Salomäki, Mikko; Kankare, Jouko
2007-07-26
The layer-by-layer buildup of chitosan/hyaluronan (CH/HA) and poly(l-lysine)/hyaluronan (PLL/HA) multilayers was followed on a quartz crystal resonator (QCR) in different ionic strengths and at different temperatures. These polyelectrolytes were chosen to demonstrate the method whereby useful information is retrieved from acoustically thick polymer layers during their buildup. Surface acoustic impedance recorded in these measurements gives a single or double spiral when plotted in the complex plane. The shape of this spiral depends on the viscoelasticity of the layer material and regularity of the growth process. The polymer layer is assumed to consist of one or two zones. A mathematical model was devised to represent the separation of the layer to two zones with different viscoelastic properties. Viscoelastic quantities of the layer material and the mode and parameters of the growth process were acquired by fitting a spiral to the experimental data. In all the cases the growth process was mainly exponential as a function of deposition cycles, the growth exponent being between 0.250 and 0.275.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soudani, S.; Ferretti, V.; Jelsch, C.
The chemical preparation, crystal structure, Hirshfeld surface analysis and spectroscopic characterization of the novel cadmium (II) 4-hydroxy-1-methylpiperidine complex, Cd{sub 4}Cl{sub 10}(C{sub 6}H{sub 14}NO){sub 2}·2H{sub 2}O, have been reported. The atomic arrangement can be described as built up by an anionic framework, formed by edge sharing CdCl{sub 6} and CdCl{sub 5}O octahedral linear chains spreading along the a-axis. These chains are interconnected by water molecules via O–H⋯Cl and O–H⋯O hydrogen bonds to form layers parallel to (011) plane. The organic cations are inserted between layers through C–H⋯Cl hydrogen bonds. Investigation of intermolecular interactions and crystal packing via Hirshfeld surface analysis revealsmore » that the H{sub C}⋯Cl and H{sub C}⋯H{sub C} intermolecular interactions are the most abundant contacts of the organic cation in the crystal packing. The statistical analysis of crystal contacts reveals the driving forces in the packing formation. The {sup 13}C and {sup 15}N CP-MAS NMR spectra are in agreement with the X-ray structure. The vibrational absorption bands were identified by infrared spectroscopy. DFT calculations allowed the attribution of the NMR peaks and of the IR bands.« less
Management of laser welding based on analysis informative signals
NASA Astrophysics Data System (ADS)
Zvezdin, V. V.; Rakhimov, R. R.; Saubanov, Ruz R.; Israfilov, I. H.; Akhtiamov, R. F.
2017-09-01
Features of formation precision weld of metal were presented. It has been shown that the quality of the welding process depends not only on the energy characteristics of the laser processing facility, the temperature of the surface layer, but also on the accuracy of positioning laser focus relative to seam and the workpiece surface. So the laser focus positioning accuracy is an estimate of the quality of the welding process. This approach allows to build a system automated control of the laser technological complex with the stabilization of the setpoint accuracy of of positioning of the laser beam relative to the workpiece surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shesterikov, A. B.; Gubin, M. Yu.; Gladush, M. G.
The formation of pulses of surface electromagnetic waves at a metal–dielectric boundary is considered in the process of cooperative decay of excitons of quantum dots distributed near a metal surface in a dielectric layer. It is shown that the efficiency of exciton energy transfer to excited plasmons can, in principle, be increased by selecting the dielectric material with specified values of the complex permittivity. It is found that in the mean field approximation, the semiclassical model of formation of plasmon pulses in the system under study is reduced to the pendulum equation with the additional term of nonlinear losses.
Energy-beam-driven rapid fabrication system
Keicher, David M.; Atwood, Clinton L.; Greene, Donald L.; Griffith, Michelle L.; Harwell, Lane D.; Jeantette, Francisco P.; Romero, Joseph A.; Schanwald, Lee P.; Schmale, David T.
2002-01-01
An energy beam driven rapid fabrication system, in which an energy beam strikes a growth surface to form a molten puddle thereon. Feed powder is then injected into the molten puddle from a converging flow of feed powder. A portion of the feed powder becomes incorporated into the molten puddle, forcing some of the puddle contents to freeze on the growth surface, thereby adding an additional layer of material. By scanning the energy beam and the converging flow of feed powder across the growth surface, complex three-dimensional shapes can be formed, ready or nearly ready for use. Nearly any class of material can be fabricated using this system.
Dennis W. Hallema; Jonathan A. Lafond; Yann Périard; Silvio J. Gumiere; Ge Sun; Jean Caron
2015-01-01
Organic soils are an excellent substrate for commercial lettuce (Lactuca sativa L.) farming; however, drainage accelerates oxidation of the surface layer and reduces the water holding capacity, which is often lethal for crops that are sensitive to water stress. In this case study, we analyzed 942 peat samples from a large cultivated peatland complex...
FUN3D Grid Refinement and Adaptation Studies for the Ares Launch Vehicle
NASA Technical Reports Server (NTRS)
Bartels, Robert E.; Vasta, Veer; Carlson, Jan-Renee; Park, Mike; Mineck, Raymond E.
2010-01-01
This paper presents grid refinement and adaptation studies performed in conjunction with computational aeroelastic analyses of the Ares crew launch vehicle (CLV). The unstructured grids used in this analysis were created with GridTool and VGRID while the adaptation was performed using the Computational Fluid Dynamic (CFD) code FUN3D with a feature based adaptation software tool. GridTool was developed by ViGYAN, Inc. while the last three software suites were developed by NASA Langley Research Center. The feature based adaptation software used here operates by aligning control volumes with shock and Mach line structures and by refining/de-refining where necessary. It does not redistribute node points on the surface. This paper assesses the sensitivity of the complex flow field about a launch vehicle to grid refinement. It also assesses the potential of feature based grid adaptation to improve the accuracy of CFD analysis for a complex launch vehicle configuration. The feature based adaptation shows the potential to improve the resolution of shocks and shear layers. Further development of the capability to adapt the boundary layer and surface grids of a tetrahedral grid is required for significant improvements in modeling the flow field.
Urban Modification of Convection and Rainfall in Complex Terrain
NASA Astrophysics Data System (ADS)
Freitag, B. M.; Nair, U. S.; Niyogi, D.
2018-03-01
Despite a globally growing proportion of cities located in regions of complex terrain, interactions between urbanization and complex terrain and their meteorological impacts are not well understood. We utilize numerical model simulations and satellite data products to investigate such impacts over San Miguel de Tucumán, Argentina. Numerical modeling experiments show urbanization results in 20-30% less precipitation downwind of the city and an eastward shift in precipitation upwind. Our experiments show that changes in surface energy, boundary layer dynamics, and thermodynamics induced by urbanization interact synergistically with the persistent forcing of atmospheric flow by complex terrain. With urbanization increasing in mountainous regions, land-atmosphere feedbacks can exaggerate meteorological forcings leading to weather impacts that require important considerations for sustainable development of urban regions within complex terrain.
NASA Astrophysics Data System (ADS)
Kadioglu, Selma; Kadioglu, Yusuf K.
2010-05-01
Suleymaniye complex located on the banks of the Barada River was built by Sultan Suleyman I of the Ottoman Empire or Suleiman the Magnificent (1520-1566) between 1554 and 1560, locally known as the Takiyya. This complex represents a direct implantation of architectural style of the Ottoman capital, Istanbul, in the plan of its buildings with their exterior configurations and decorative features. Its main part composes of a mosque, caravanserai, public kitchen and hospice, was designed by Sinan (the 'Great Architect Sinan'), In 1566 a madrasa including a mosque called Selimiye Madrasa was added to the East of the group of buildings by Selim II (1566-1574) of the Ottoman Empire and was linked to the Suleymaniye complex by a souk (arasta). Basic elements of architectural iconography of the complex and the madrasa are hemispherical lead-covered dome, cylindrical minaret, domed portico, courtyard, a large regtangular pool in the courtyard. First restoration was done in the mosque during French occupation in Syria. But then the dome was inclined about 56 cm in 1920. The second restoration was done and the colons were fastened by hawsers to avoid collapsing of the dome in 1928. The network of the drainage around the complex has been changed 25 years ago. After 5 years passed, according to the Syrian engineers saying, the first subsidence deformations have started on the courtyards and the porticos surface and some fractures have been occupied on the wall of the buildings of the madrasa and the Suleymaniye complex. Now these subsidences threaten the madrasa. The aim of the study was to determine the reason of the subsidences in the courtyards especially in the madrasa. Therefore ground penetrating radar (GPR) method was used to reveal ground structure of the whole complex, to determine buried drainage locations, and In addition to research basement of the Suleymaniye mosque. Two dimensional (2D) GPR data were acquired on the parallel GPR profiles on the courtyards around of the pools in the Selimiye madrasa and Suleymaniye complex, arasta, and some special areas around the complex using 500 MHz shielded antennas. Secondly, the GPR data measurements were also carried out on spaced 1 m parallel profiles in the Suleymaniye mosque. The results showed that the first very shallow ductile layer was approximately 1 m thick and included some water pipes or drain pipes. The second layer was until 2.5 m depth and included buried human made structures in the Suleymaniye courtyard. They could be restoration traces in the early time or could be archaeological remains. The third layer was a more compact layer seen until the end of profile sections. However, it was seen on the profile section that third layer included more effective vertical fracture groups and some of them reached to the surface in the courtyard and the portico of the Selimiye madrasa. This result could be the reason of the deformation in the courtyard and the portico. There was no important anomaly in the profile sections of the Suleymaniye mosque to find the reason of the fractures on its dome. This study were supported by Turkish International Cooperation and Development Acency (TIKA) and Earth Sciences Application and Research Center of Ankara University (YEBIM).
Asao, Shinichi; Bedoya-Arrieta, Ricardo; Ryan, Michael G
2015-02-01
As tropical forests respond to environmental change, autotrophic respiration may consume a greater proportion of carbon fixed in photosynthesis at the expense of growth, potentially turning the forests into a carbon source. Predicting such a response requires that we measure and place autotrophic respiration in a complete carbon budget, but extrapolating measurements of autotrophic respiration from chambers to ecosystem remains a challenge. High plant species diversity and complex canopy structure may cause respiration rates to vary and measurements that do not account for this complexity may introduce bias in extrapolation more detrimental than uncertainty. Using experimental plantations of four native tree species with two canopy layers, we examined whether species and canopy layers vary in foliar respiration and wood CO2 efflux and whether the variation relates to commonly used scalars of mass, nitrogen (N), photosynthetic capacity and wood size. Foliar respiration rate varied threefold between canopy layers, ∼0.74 μmol m(-2) s(-1) in the overstory and ∼0.25 μmol m(-2) s(-1) in the understory, but little among species. Leaf mass per area, N and photosynthetic capacity explained some of the variation, but height explained more. Chamber measurements of foliar respiration thus can be extrapolated to the canopy with rates and leaf area specific to each canopy layer or height class. If area-based rates are sampled across canopy layers, the area-based rate may be regressed against leaf mass per area to derive the slope (per mass rate) to extrapolate to the canopy using the total leaf mass. Wood CO2 efflux varied 1.0-1.6 μmol m(-2) s(-1) for overstory trees and 0.6-0.9 μmol m(-2) s(-1) for understory species. The variation in wood CO2 efflux rate was mostly related to wood size, and little to species, canopy layer or height. Mean wood CO2 efflux rate per surface area, derived by regressing CO2 efflux per mass against the ratio of surface area to mass, can be extrapolated to the stand using total wood surface area. The temperature response of foliar respiration was similar for three of the four species, and wood CO2 efflux was similar between wet and dry seasons. For these species and this forest, vertical sampling may yield more accurate estimates than would temporal sampling. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Vilumaa, Kadri; Tõnisson, Hannes; Orviku, Kaarel
2014-05-01
Ground Penetrating Radar (GPR) is mainly used for scientific research in coastal geology in the Institute of Ecology at Tallinn University. We currently use SIR-3000 radar with 100, 270 , 300 and 500 MHz antennae. Our main targets have been detecting the thickness of soil and sand layers and finding out the layers in coastal sediments which reflect extreme storm events. Our GPR studies in various settings have suggested that the internal structures of the ridge-dune complexes are dominated by numerous layers dipping in various directions. Such information helps us to reconstruct and understand prevailing processes during their formation (e.g. seaward dipping lamination in coastal ridge-dune complexes indicating cross-shore and wave-induced transport of the sediments). Currently, we are trying to elaborate methodology for distinguishing the differences between aeolian and wave transported sediments by using GPR. However, paludified landscapes (often covered by water), very rough surface (numerous bushes and soft surface), moderate micro topography has slowed this process significantly. Moreover, we have been able to use GPR during the winter period (applied on ice or snow) and compare the quality of our results with the measurements taken during the summer period. We have found that smooth surface (in winter) helps detecting very strong signal differences (border between different sediment types - sand, peat, silt, etc.) but reduces the quality of the signal to the level where the detection of sedimentation patterns within one material (e.g. tilted layers in sand) is difficult. We have carried out several other science-related studies using GPR. These studies include determining the thickness of peat layer in bogs (to calculate the volume of accumulated peat or to find most suitable locations for coring), measuring the thickness of mud and gyttja layer in lakes (to find most suitable locations for coring, reconstructing initial water level of the lake or calculating the volume of stored carbon in the lake). Additionally, we have done several archaeology-related research including the search of buried city walls and caves (Tallinn old town), buried Viking ship (Saaremaa Island) and several other archaeological objects. We have also done some applied studies including the search of underground power cables, heating pipes, melioration systems, ammunition warehouses (from World War II) and buried ammunition from the military training fields. Aknowledgement: The authors acknowledge COST for funding Action TU1208 'Civil Engineering Applications of Ground Penetrating Radar', supporting part of this work.
Geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin
NASA Astrophysics Data System (ADS)
Vibhava, F.; Graham, W. D.; Maxwell, R. M.
2012-12-01
Streamflow at any given location and time is representative of surface and subsurface contributions from various sources. The ability to fully identify the factors controlling these contributions is key to successfully understanding the transport of contaminants through the system. In this study we developed a fully integrated 3D surface water-groundwater-land surface model, PARFLOW, to evaluate geologic and climatic controls on streamflow generation processes in a complex eogenetic karst basin in North Central Florida. In addition to traditional model evaluation criterion, such as comparing field observations to model simulated streamflow and groundwater elevations, we quantitatively evaluated the model's predictions of surface-groundwater interactions over space and time using a suite of binary end-member mixing models that were developed using observed specific conductivity differences among surface and groundwater sources throughout the domain. Analysis of model predictions showed that geologic heterogeneity exerts a strong control on both streamflow generation processes and land atmospheric fluxes in this watershed. In the upper basin, where the karst aquifer is overlain by a thick confining layer, approximately 92% of streamflow is "young" event flow, produced by near stream rainfall. Throughout the upper basin the confining layer produces a persistent high surficial water table which results in high evapotranspiration, low groundwater recharge and thus negligible "inter-event" streamflow. In the lower basin, where the karst aquifer is unconfined, deeper water tables result in less evapotranspiration. Thus, over 80% of the streamflow is "old" subsurface flow produced by diffuse infiltration through the epikarst throughout the lower basin, and all surface contributions to streamflow originate in the upper confined basin. Climatic variability provides a secondary control on surface-subsurface and land-atmosphere fluxes, producing significant seasonal and interannual variability in these processes. Spatial and temporal patterns of evapotranspiration, groundwater recharge and streamflow generation processes reveal potential hot spots and hot moments for surface and groundwater contamination in this basin.
Use Of Vertical Electrical Sounding Survey For Study Groundwater In NISSAH Region, SAUDI ARABIA
NASA Astrophysics Data System (ADS)
Alhenaki, Bander; Alsoma, Ali
2015-04-01
The aim of this research is to investigate groundwater depth in desert and dry environmental conditions area . The study site located in Wadi Nisah-eastern part of Najd province (east-central of Saudi Arabia), Generally, the study site is underlain by Phanerozoic sedimentary rocks of the western edge of the Arabian platform, which rests on Proterozoic basement at depths ranged between 5-8km. Another key objective of this research is to assess the water-table and identify the bearing layers structures study area by using Vertical Electrical Sounding (VES) 1D imaging technique. We have been implemented and acquired a sections of 315 meter vertical electrical soundings using Schlumberger field arrangements . These dataset were conducted along 9 profiles. The resistivity Schlumberger sounding was carried with half-spacing in the range 500 . The VES survey intend to cover several locations where existing wells information may be used for correlations. also location along the valley using the device Syscal R2 The results of this study concluded that there are at least three sedimentary layers to a depth of 130 meter. First layer, extending from the surface to a depth of about 3 meter characterized by dry sandy layer and high resistivity value. The second layer, underlain the first layer to a depth of 70 meter. This layer has less resistant compare to the first layer. Last layer, has low resistivity values of 20 ohm .m to a depth of 130 meter blow ground surface. We have observed a complex pattern of groundwater depth (ranging from 80 meter to 120 meter) which may reflect the lateral heterogeneity of study site. The outcomes of this research has been used to locate the suitable drilling locations.
Synthesis and colloidal properties of anisotropic hydrothermal barium titanate
NASA Astrophysics Data System (ADS)
Yosenick, Timothy James
2005-11-01
Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a <111> zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the <111> direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface suitable for the use of a cationic dispersant, polyethylenimine (PEI). Rheological properties indicate the presence of an oxalate-PEI interaction which can be detrimental to dispersion. With a better understanding of the aqueous surface chemistry of BaTiO3 the surface chemistry was manipulated to control the adsorption of aqueous soluble complexes of Co, Nb, and Bi, three common dopants in the processing of BaTiO3 Surface charge, TEM, and EDS analysis showed that while in suspension the dopants selectively absorbed onto the particle surface forming an engineered coating. (Abstract shortened by UMI.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeill, Jason Douglas
Electronic states of a thin layer of material on a surface possess unique physical and chemical properties. Some of these properties arise from the reduced dimensionality of the thin layer with respect to the bulk or the properties of the electric field where two materials of differing dielectric constants meet at an interface. Other properties are related to the nature of the surface chemical bond. Here, the properties of excess electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and the bound state energies and effective masses of the excess electrons are determined using two-photon photoemission. Formore » Xenon, the dependence of bound state energy, effective mass, and lifetime on layer thickness from one to nine layers is examined. Not all quantities were measured at each coverage. The two photon photoemission spectra of thin layers of Xenon on a Ag(111) substrate exhibit a number of sharp, well-defined peaks. The binding energy of the excess electronic states of Xenon layers exhibited a pronounced dependence on coverage. A discrete energy shift was observed for each additional atomic layer. At low coverage, a series of states resembling a Rydberg series is observed. This series is similar to the image state series observed on clean metal surfaces. Deviations from image state energies can be described in terms of the dielectric constant of the overlayer material and its effect on the image potential. For thicker layers of Xe (beyond the first few atomic layers), the coverage dependence of the features begins to resemble that of quantum well states. Quantum well states are related to bulk band states. However, the finite thickness of the layer restricts the perpendicular wavevector to a discrete set of values. Therefore, the spectrum of quantum well states contains a series of peaks which correspond to the various allowed values of the perpendicular wavevector. Analysis of the quantum well spectrum yields electronic band structure information. In this case, the quantum well states examined are derived from the Xenon conduction band. Measurements of the energies as a function of coverage yield the dispersion along the axis perpendicular to the surface while angle-resolved two-photon photoemission measurements yield information about dispersion along the surface parallel. The relative importance of the image potential and the overlayer band structure also depends on the quantum number and energy of the state. Some members of the image series may have an energy which is in an energy gap of the layer material, therefore such states may tend to remain physically outside the layer and retain much of their image character even at higher coverages. This is the case for the n = 1 image state of the Xe/Ag(111) system. The energies of image states which are excluded from the layer have a complex dependence on the thickness of the layer and its dielectric constant. The population decay kinetics of excited electronic states of the layer were also determined. Lifetimes are reported for the first three excited states for 1-6 atomic layers of Xe on Ag(111). As the image states evolve into quantum well states with increasing coverage, the lifetimes undergo an oscillation which marks a change in the spatial extent of the state. For example, the n = 2 quantum well state decreases substantially at 3-5 layers as the electron probability density in the layer increases. The lifetime data are modeled by extending the two-band nearly-free-electron approximation to account for the insulating Xe layer.« less
Kharazian, B; Hadipour, N L; Ejtehadi, M R
2016-06-01
Nanoparticles (NP) have capability to adsorb proteins from biological fluids and form protein layer, which is called protein corona. As the cell sees corona coated NPs, the protein corona can dictate biological response to NPs. The composition of protein corona is varied by physicochemical properties of NPs including size, shape, surface chemistry. Processing of protein adsorption is dynamic phenomena; to that end, a protein may desorb or leave a surface vacancy that is rapidly filled by another protein and cause changes in the corona composition mainly by the Vroman effect. In this review, we discuss the interaction between NP and proteins and the available techniques for identification of NP-bound proteins. Also we review current developed computational methods for understanding the NP-protein complex interactions. Copyright © 2016. Published by Elsevier Ltd.
Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities.
Hahn, C; Hans, M; Hein, C; Mancinelli, R L; Mücklich, F; Wirth, R; Rettberg, P; Hellweg, C E; Moeller, R
2017-12-01
Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of antimicrobial activity. Key Words: Contact killing-E. coli-S. cohnii-Antimicrobial copper surfaces-Copper oxide layers-Human health-Planetary protection. Astrobiology 17, 1183-1191.
Tomina, Veronika V; Melnyk, Inna V; Zub, Yuriy L; Kareiva, Aivaras; Vaclavikova, Miroslava; Kessler, Vadim G
2017-01-01
Spherical silica particles with bifunctional (≡Si(CH2)3NH2/≡SiCH3, ≡Si(CH2)3NH2/≡Si(CH2)2(CF2)5CF3) surface layers were produced by a one-step approach using a modified Stöber method in three-component alkoxysilane systems, resulting in greatly increased contents of functional components. The content of functional groups and thermal stability of the surface layers were analyzed by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, and 13C and 29Si solid-state NMR spectroscopy revealing their composition and organization. The fine chemical structure of the surface in the produced hybrid adsorbent particles and the ligand distribution were further investigated by electron paramagnetic resonance (EPR) and electron spectroscopy of diffuse reflectance (ESDR) spectroscopy using Cu2+ ion coordination as a probe. The composition and structure of the emerging surface complexes were determined and used to provide an insight into the molecular structure of the surfaces. It was demonstrated that the introduction of short hydrophobic (methyl) groups improves the kinetic characteristics of the samples during the sorption of copper(II) ions and promotes fixation of aminopropyl groups on the surface of silica microspheres. The introduction of long hydrophobic (perfluoroctyl) groups changes the nature of the surface, where they are arranged in alternately hydrophobic/hydrophilic patches. This makes the aminopropyl groups huddled and less active in the sorption of metal cations. The size and aggregation/morphology of obtained particles was optimized controlling the synthesis conditions, such as concentrations of reactants, basicity of the medium, and the process temperature. PMID:28243572
NASA Astrophysics Data System (ADS)
Burov, E.; Guillou-Frottier, L.
2005-05-01
Current debates on the existence of mantle plumes largely originate from interpretations of supposed signatures of plume-induced surface topography that are compared with predictions of geodynamic models of plume-lithosphere interactions. These models often inaccurately predict surface evolution: in general, they assume a fixed upper surface and consider the lithosphere as a single viscous layer. In nature, the surface evolution is affected by the elastic-brittle-ductile deformation, by a free upper surface and by the layered structure of the lithosphere. We make a step towards reconciling mantle- and tectonic-scale studies by introducing a tectonically realistic continental plate model in large-scale plume-lithosphere interaction. This model includes (i) a natural free surface boundary condition, (ii) an explicit elastic-viscous(ductile)-plastic(brittle) rheology and (iii) a stratified structure of continental lithosphere. The numerical experiments demonstrate a number of important differences from predictions of conventional models. In particular, this relates to plate bending, mechanical decoupling of crustal and mantle layers and tension-compression instabilities, which produce transient topographic signatures such as uplift and subsidence at large (>500 km) and small scale (300-400, 200-300 and 50-100 km). The mantle plumes do not necessarily produce detectable large-scale topographic highs but often generate only alternating small-scale surface features that could otherwise be attributed to regional tectonics. A single large-wavelength deformation, predicted by conventional models, develops only for a very cold and thick lithosphere. Distinct topographic wavelengths or temporarily spaced events observed in the East African rift system, as well as over French Massif Central, can be explained by a single plume impinging at the base of the continental lithosphere, without evoking complex asthenospheric upwelling.
Different Effects of Roughness (Granularity) and Hydrophobicity
NASA Astrophysics Data System (ADS)
Shirtcliffe, Neil; McHale, Glen; Hamlett, Christopher; Newton, Michael
2010-05-01
With thanks to Stefan Doerr and Jorge Mataix-Solera for their invitation Superhydrophobicity is an interesting effect that appears to be simple on the outset; increased surface area from roughness increases interfacial area and therefore energy loss or gain. More extreme roughness prevents total wetting, resulting in gas pockets present at the surface and a drastic change in the properties of the system. Increases in complexity of the system, by adding porosity (granularity), allowing the structures to move, varying the shape of the roughness or the composition of the liquid used often has unexpected effects. Here we will consider a few of these related to complex topography. Overhanging features are commonly used in test samples as they perform better in some tests than simple roughness. It has been shown to be a prerequisite for superoleophobic surfaces as it allows liquids to be suspended for contact angles considerably below 90°. It also allows trapping of gas in lower layers even if the first layer is flooded. This is important in soils as a fixed bed of granules behaves just like a surface with overhanging roughness. Using simple geometry it is possible to predict at what contact angle penetration will occur. Plants have some structured superhydrophobic surfaces and we have shown that some use them in conjunction with other structured surfaces to control water flows. This allows some plants to survive in difficult environments and shows us how subtly different structures interact completely differently with water. Long fibres can either cause water droplets to roll over a plant surface or halt it in its tracks. Implications of this in soils include predicting when particles will adhere more strongly to water drops and why organic fibrous material may play a greater role in the behaviour of water in soils than may be expected from the amount present. The garden snail uses a biosurfactant that is very effective at wetting surfaces and can crawl over most superhydrophobic surfaces. There are some, however, that defeat even the snail's complex slime. Looking at these surfaces in more detail reveals that some superhydrophobic surfaces are much more resistant to the effects of surfactants than others. As mentioned above, overhanging structures, such as those found in granular materials are particularly effective at suspending liquids. This does not, however, always translate to them being more effective against surfactants, unfortunately, however, surfactants are not always as effective as we would like them to be, although drops do not skate across superhydrophobic surfaces they often do not penetrate into them fully either.
Observed ocean thermal response to Hurricanes Gustav and Ike
NASA Astrophysics Data System (ADS)
Meyers, Patrick C.; Shay, Lynn K.; Brewster, Jodi K.; Jaimes, Benjamin
2016-01-01
The 2008 Atlantic hurricane season featured two hurricanes, Gustav and Ike, crossing the Gulf of Mexico (GOM) within a 2 week period. Over 400 airborne expendable bathythermographs (AXBTs) were deployed in a GOM field campaign before, during, and after the passage of Gustav and Ike to measure the evolving upper ocean thermal structure. AXBT and drifter deployments specifically targeted the Loop Current (LC) complex, which was undergoing an eddy-shedding event during the field campaign. Hurricane Gustav forced a 50 m deepening of the ocean mixed layer (OML), dramatically altering the prestorm ocean conditions for Hurricane Ike. Wind-forced entrainment of colder thermocline water into the OML caused sea surface temperatures to cool by over 5°C in GOM common water, but only 1-2°C in the LC complex. Ekman pumping and a near-inertial wake were identified by fluctuations in the 20°C isotherm field observed by AXBTs and drifters following Hurricane Ike. Satellite estimates of the 20° and 26°C isotherm depths and ocean heat content were derived using a two-layer model driven by sea surface height anomalies. Generally, the satellite estimates correctly characterized prestorm conditions, but the two-layer model inherently could not resolve wind-forced mixing of the OML. This study highlights the importance of a coordinated satellite and in situ measurement strategy to accurately characterize the ocean state before, during, and after hurricane passage, particularly in the case of two consecutive storms traveling through the same domain.
Experimental investigation of biomimetic self-pumping and self-adaptive transpiration cooling.
Jiang, Pei-Xue; Huang, Gan; Zhu, Yinhai; Xu, Ruina; Liao, Zhiyuan; Lu, Taojie
2017-09-01
Transpiration cooling is an effective way to protect high heat flux walls. However, the pumps for the transpiration cooling system make the system more complex and increase the load, which is a huge challenge for practical applications. A biomimetic self-pumping transpiration cooling system was developed inspired by the process of trees transpiration that has no pumps. An experimental investigation showed that the water coolant automatically flowed from the water tank to the hot surface with a height difference of 80 mm without any pumps. A self-adaptive transpiration cooling system was then developed based on this mechanism. The system effectively cooled the hot surface with the surface temperature kept to about 373 K when the heating flame temperature was 1639 K and the heat flux was about 0.42 MW m -2 . The cooling efficiency reached 94.5%. The coolant mass flow rate adaptively increased with increasing flame heat flux from 0.24 MW m -2 to 0.42 MW m -2 while the cooled surface temperature stayed around 373 K. Schlieren pictures showed a protective steam layer on the hot surface which blocked the flame heat flux to the hot surface. The protective steam layer thickness also increased with increasing heat flux.
Self-assemblies of luminescent rare earth compounds in capsules and multilayers.
Zhang, Renjie; Shang, Juanjuan; Xin, Jing; Xie, Beibei; Li, Ya; Möhwald, Helmuth
2014-05-01
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out. Copyright © 2014 Elsevier B.V. All rights reserved.
Galandová, Júlia; Ovádeková, Renáta; Ferancová, Adriana; Labuda, Ján
2009-06-01
A screen-printed carbon working electrode within a commercially available screen-printed three-electrode assembly was modified by using a composite of multiwalled carbon nanotubes (MWCNT) dispersed in polyethylenimine (PEI) followed by covering with the calf thymus dsDNA layer. Several electrochemical methods were used to characterize the biosensor and to evaluate damage to the surface-attached DNA: square wave voltammetry of the [Ru(bpy)(3)](2+) redox indicator and mediator of the guanine moiety oxidation, cyclic voltammetry and electrochemical impedance spectroscopy in the presence of the [Fe(CN)(6)](3-/4-) indicator in solution. Due to high electroconductivity and large surface area of MWCNT and positive charge of PEI, the MWCNT-PEI composite is an advantageous platform for the DNA immobilization by the polyelectrolyte complexation and its voltammetric and impedimetric detection. In this respect, the MWCNT-PEI interface exhibited better properties than the MWCNT-chitosan one reported from our laboratory previously. A deep DNA layer damage at incubation of the biosensor in quinazoline solution was found, which depends on the quinazoline concentration and incubation time.
NASA Astrophysics Data System (ADS)
Park, Sun-Ah; Kim, Seon-Hong; Yoo, Yun-Ha; Kim, Jung-Gu
2015-05-01
The influence of the addition of HCl on the corrosion behavior of low-alloy steel containing copper and antimony was investigated using electrochemical (potentiodynamic and potentiostatic polarization tests, and electrochemical impedance spectroscopy) and weight loss tests in a 1.6M H2SO4 solution with different concentrations of hydrochloric acid (0.00, 0.08, 0.15 and 0.20 M HCl) at 60 °C. The result showed that the corrosion rate decreased with increasing HCl by the formation of protective layers. SEM, EDS and XPS examinations of the corroded surfaces after the immersion test indicated that the corrosion production layer formed in the solution containing HCl was highly comprised of metallic Cu, Cu chloride and metallic (Fe, Cu, Sb) compounds. The corrosion resistance was improved by the Cu-enriched layer, in which chloride ions are an accelerator for cupric ion reduction during copper deposition. Furthermore, cuprous and antimonious chloride species are complex salts for cuprous ions adsorbed on the surface during copper deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridley, Mora K.; Machesky, Michael L.; Wesolowski, David J
2005-01-01
The adsorption of Nd{sup 3+} onto rutile surfaces was examined by potentiometric titration from 25 to 250 C, in 0.03 and 0.30m NaCl background electrolyte. Experimental results show that Nd{sup 3+} sorbs strongly, even at low temperature, with adsorption commencing below the pHznpc of rutile. In addition, there is a systematic increase in Nd{sup 3+} adsorption with increasing temperature. The experimental results were rationalized and described using surface oxygen proton affinities computed from the MUlti SIte Complexation or MUSIC model, coupled with a Stern-based three-layer description of the oxide/water interface. Moreover, molecular-scale information was incorporated successfully into the surface complexationmore » model, providing a unique geometry for the adsorption of Nd{sup 3+} on rutile. The primary mode of Nd{sup 3+} adsorption was assumed to be the tetradentate configuration found for Y{sup 3+} adsorption on the rutile (110) surface from previously described in situ X-ray standing wave experiments, wherein the sorbing cations bond directly with two adjacent ''terminal'' and two adjacent ''bridging'' surface oxygen atoms. Similarly, the adsorption of Na{sup +} counterions was also assumed to be tetradentate, as supported by MD simulations of Na{sup +} interactions with the rutile (110) surface, and by analogous X-ray standing wave results for Rb{sup +} adsorption on rutile. Fitting parameters for Nd{sup 3+} adsorption included binding constants for the tetradentate adsorption complex and capacitance values for the inner-sphere binding plane. In addition, hydrolysis of the tetradentate adsorption complex was permitted and resulted in significantly improved model fits at higher temperature and pH values. The modeling results indicate that the Stern-based MUSIC surface-complexation model adequately accommodates molecular-scale information to uniquely rationalize and describe multivalent ion adsorption systematically into the hydrothermal regime.« less
NASA Astrophysics Data System (ADS)
Avolio, E.; Federico, S.; Miglietta, M. M.; Lo Feudo, T.; Calidonna, C. R.; Sempreviva, A. M.
2017-08-01
The sensitivity of boundary layer variables to five (two non-local and three local) planetary boundary-layer (PBL) parameterization schemes, available in the Weather Research and Forecasting (WRF) mesoscale meteorological model, is evaluated in an experimental site in Calabria region (southern Italy), in an area characterized by a complex orography near the sea. Results of 1 km × 1 km grid spacing simulations are compared with the data collected during a measurement campaign in summer 2009, considering hourly model outputs. Measurements from several instruments are taken into account for the performance evaluation: near surface variables (2 m temperature and relative humidity, downward shortwave radiation, 10 m wind speed and direction) from a surface station and a meteorological mast; vertical wind profiles from Lidar and Sodar; also, the aerosol backscattering from a ceilometer to estimate the PBL height. Results covering the whole measurement campaign show a cold and moist bias near the surface, mostly during daytime, for all schemes, as well as an overestimation of the downward shortwave radiation and wind speed. Wind speed and direction are also verified at vertical levels above the surface, where the model uncertainties are, usually, smaller than at the surface. A general anticlockwise rotation of the simulated flow with height is found at all levels. The mixing height is overestimated by all schemes and a possible role of the simulated sensible heat fluxes for this mismatching is investigated. On a single-case basis, significantly better results are obtained when the atmospheric conditions near the measurement site are dominated by synoptic forcing rather than by local circulations. From this study, it follows that the two first order non-local schemes, ACM2 and YSU, are the schemes with the best performance in representing parameters near the surface and in the boundary layer during the analyzed campaign.
MEMS based pyroelectric thermal energy harvester
Hunter, Scott R; Datskos, Panagiotis G
2013-08-27
A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.
NASA Astrophysics Data System (ADS)
Kiselev, M. V.; Dyukarev, E. A.; Voropay, N. N.
2018-03-01
The work presents the results of the study of the peculiarities of the temperature regime in the five basic ecosystems of oligotrophic bogs in the south taiga zone of Western Siberia in 2011-2016. The soil temperature regime was studied using the atmospheric-soil measuring complex at different depths from surface down to 240 cm. All sites were divided into two groups according to the bog water level: flooded sites (hollow and open fen) and drained sites (ridge, tall and low ryam). The waterlogged sites are better warmed in the summer period and slowly freeze in the winter period. The analysis of the annual cycle of temperature showed that the maximum surface temperature is in July. The minimum temperature on the surface is observed in February or January. The greatest temperature gradient was recorded in the upper 2 cm layer. The gradient at the open fen was -2 °C/cm in February and 1.1 °C/cm in October. The peak of formation of the seasonally frozen layer occurs at the end of autumn or in the beginning of winter. The degradation of the seasonally frozen layer was observed both from top and bottom, but the degradation rate from the top is faster.
High-resolution dynamics of the spring bloom in the Gulf of Finland of the Baltic Sea
NASA Astrophysics Data System (ADS)
Lips, Inga; Rünk, Nelli; Kikas, Villu; Meerits, Aet; Lips, Urmas
2014-01-01
During the period from March to the end of May in 2009 and 2010, intensive measurements and sampling were undertaken in the Gulf of Finland. The compiled results indicate a high variability of the phytoplankton distribution both temporally and spatially. The spring bloom dynamics and heterogeneity was influenced by physical forcing, such as prevailing circulation in the surface layer and the development of stratification, including the upward and downward movement of the seasonal thermocline. The estimated ratio of nitrogen to phosphorus consumption during the growth phase of the spring bloom was close to the Redfield ratio during both springs. The maximum phytoplankton carbon biomass was observed after the depletion of inorganic nitrogen from the surface layer, which coincides with the transition in the community dominance from diatoms to dinoflagellates. Diatoms exhibited a short, well-defined period of high biomass, and we argue that measurements with low temporal resolution can overlook this period of diatom dominance in the Gulf of Finland. The observed dominance of dinoflagellates (Peridiniella catenata and the Scrippsiella/Biecheleria complex) and the ciliate Myrionecta rubra might have a substantial biogeochemical impact because these species increase the retention time of newly produced material in the nutrient-limited surface layer in late spring.
Sato, Katsuhiko; Kodama, Daisuke; Naka, Yukihisa; Anzai, Jun-ichi
2006-12-01
A layer-by-layer assembly composed of avidin and 2-iminobiotin-labeled poly(ethyleneimine) (ib-PEI) was prepared on the surface of a platinum (Pt) film-coated quartz resonator, and an electrochemically induced disintegration of the avidin-ib-PEI assembly was studied using a quartz crystal microbalance. The resonance frequency of a five-bilayer (avidin-ib-PEI)5 film-coated quartz resonator was increased upon application of an electric potential to the Pt layer of the quartz resonator, suggesting that the mass on the quartz resonator was decreased as a result of disintegration of the (avidin-ib-PEI)5 film, due to a pH change in the vicinity of the surface of the Pt-coated quartz resonator. It may be that the (avidin-ib-PEI)5 film assembly was decomposed by acidification of the local pH on the surface of the Pt layer, which in turn was induced through electrolysis of water on Pt, because ib-PEI forms complexes with avidin only in basic media. In pH 9 solution, the (avidin-ib-PEI)5 film was decomposed under the influence of an applied potential of 0.6-1.0 V versus Ag/AgCl. The (avidin-ib-PEI)5 film was decomposed almost completely within a minute in a low concentration buffer (1 mM, pH 9), while the decomposition was slower in 10 and 100 mM buffer solutions at the same pH. The decomposition of the assembly was rapid when the electrode potential was applied in pH 9 solutions, while the response was relatively slow in pH 10 and 11 solutions. All the results are rationalized on the basis of an electrochemically induced acidification of the local environment around the (avidin-ib-PEI)5 film on the Pt layer.
NASA Astrophysics Data System (ADS)
Carreira, Santiago J.; Aguirre, Myriam H.; Briatico, Javier; Weschke, Eugen; Steren, Laura B.
2018-01-01
The possibility of controlling the interfacial properties of artificial oxide heterostructures is still attracting researchers in the field of materials engineering. Here, we used surface sensitive techniques and high-resolution transmission electron microscopy to investigate the evolution of the surface spin-polarization and lattice strains across the interfaces between La0.66Sr0.33MnO3 thin films and low-doped manganites as capping layers. We have been able to fine tune the interfacial spin-polarization by changing the capping layer thickness and composition. The spin-polarization was found to be the highest at a critical capping thickness that depends on the Sr doping. We explain the non-trivial magnetic profile by the combined effect of two mechanisms: On the one hand, the extra carriers supplied by the low-doped manganites that tend to compensate the overdoped interface, favouring locally a ferromagnetic double-exchange coupling. On the other hand, the evolution from a tensile-strained structure of the inner layers to a compressed structure at the surface that changes gradually the orbital occupation and hybridization of the 3d-Mn orbitals, being detrimental for the spin polarization. The finding of an intrinsic spin-polarization at the A-site cation observed in x-ray magnetic circular dichroism (XMCD) measurements also reveals the existence of a complex magnetic configuration at the interface, different from the magnetic phases observed at the inner layers.
Identifying structural styles in Colombia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, W.P.; Van Nieuwenhuise, R.E.; Steuer, M.R.
1996-08-01
Much of our understanding of the Earth is from the study of surface geology and seismic, but many surface structures are responses to deformation which occurred below sedimentary layers. The practice within the petroleum industry is to use top-down processes of analyzing the surface to understand the subsurface, and observed surface structural styles tend to influence seismic interpretations. Yet many conditions which influenced the structural styles seen at the surface are different at depth. Since seismic is a time representation of the Earth, many interpretation pitfalls may exist within areas of complex geology. Also, its reliability decreases with depth andmore » with increasing geologic complexity. Forward modeling and pre-stack depth migration technologies are used to provide true depth images of the seismic data. Even with these advances in seismic imaging technology, the interpreter needs to incorporate additional data into the interpretation. Accurate structural identification requires the interpreter to integrate seismic with surface geology, remote sensing, gravity, magnetic data, geochemistry, fault-plane solutions from earthquakes, and regional tectonic studies. Incorporating these types of data into the interpretation will help us learn how basement is involved in the deformation of overlying sediments. A study of the Eastern Cordillera of Colombia shows the deformation to be dominantly transpressional in style. Euler deconvolution of the areomagnetic data shows a highly fractured basement, steep fault lineaments, en echelon structures, and complex fault patterns, all of which would be typical of wrench-type deformation. Available surface geology, regional studies, earthquake data, and forward modeling support this interpretation.« less
NASA Technical Reports Server (NTRS)
Schunk, Richard Gregory; Chung, T. J.
2001-01-01
A parallelized version of the Flowfield Dependent Variation (FDV) Method is developed to analyze a problem of current research interest, the flowfield resulting from a triple shock/boundary layer interaction. Such flowfields are often encountered in the inlets of high speed air-breathing vehicles including the NASA Hyper-X research vehicle. In order to resolve the complex shock structure and to provide adequate resolution for boundary layer computations of the convective heat transfer from surfaces inside the inlet, models containing over 500,000 nodes are needed. Efficient parallelization of the computation is essential to achieving results in a timely manner. Results from a parallelization scheme, based upon multi-threading, as implemented on multiple processor supercomputers and workstations is presented.
NASA Technical Reports Server (NTRS)
Anders, John B.; Walsh, Michael J.; Bushnell, Dennis M.
1988-01-01
Modern turbulence-control techniques are discussed. Particular atention is given to retrofit techniques such as riblets and large-eddy breakup (LEBU) devices which use passive elements suitable for a variety of existing vehicles with minimum added complexity. Riblets are small flow-aligned grooves in the aircraft skin that damp turbulence and reduce skin friction; the mechanism of riblet drag reduction derives from the enhancement of turbulence-altering, transverse viscous forces by strong spanwise surface geometry gradients. LEBUs are thin plates or ribbons suspended in a turbulent boundary layer to sever or break up the large vortices that form the convoluted outer edge of the layer. Other turbulence-control techniques are discussed, including one that involves the injection of control vortices into the turbulent boundary layer to modify or substitute for large-eddy structures.
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-06
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO 2 , NO, H 2 O, as well as the related fragments during the O 2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO 2 during the complex surface chemical reaction of the ligand and O 2 plasma were monitored using the QCM. The remote PEALD ZrO 2 /zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10 -5 g/m 2 /day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
NASA Astrophysics Data System (ADS)
Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu
2017-01-01
Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10-5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.
Looking Into and Through the Ross Ice Shelf - ROSETTA-ICE
NASA Astrophysics Data System (ADS)
Bell, R. E.
2015-12-01
Our current understanding of the structure and stability of the Ross Ice Shelf is based on satellite studies of the ice surface and the 1970's RIGGS program. The study of the flowlines evident in the MODIS imagery combined with surface geophysics has revealed a complex history with ice streams Mercer, Whillans and Kamb changing velocity over the past 1000 years. Here, we present preliminary IcePod and IceBridge radar data acquired in December 2014 and November 2013 across the Ross Ice Shelf that show clearly, for the first time, the structure of the ice shelf and provide insights into ice-ocean interaction. The three major layers of the ice shelf are (1) the continental meteoric ice layer), ice formed on the grounded ice sheet that entered the ice shelf where ice streams and outlet glaciers crossed the grounding line (2) the locally accumulating meteoric ice layer, ice and snow that forms from snowfall on the floating ice shelf and (3) a basal marine ice layer. The locally accumulating meteoric ice layer contains well-defined internal layers that are generally parallel to the ice surface and thickens away from the grounding line and reaches a maximum thickness of 220m along the line crossing Roosevelt Island. The continental meteoric layer is located below a broad irregular internal reflector, and is characterized by irregular internal layers. These internal layers are often folded, likely a result of deformation as the ice flowed across the grounding line. The basal marine ice layer, up to 50m thick, is best resolved in locations where basal crevasses are present, and appears to thicken along the flow at rates of decimeters per year. Each individual flowband of the ice shelf contains layers that are distinct in their structure. For example, the thickness of the locally accumulated layer is a function of both the time since crossing the grounding line and the thickness of the incoming ice. Features in the meteoric ice, such as distinct folds, can be traced between the two IceBridge lines located 47 km apart. The ROSETTA-ICE program will begin a systematic mapping of the Ross Ice Shelf and sub-ice topography using the IcePod system beginning in 2015. Together the new gravity-derived bathymetry and the mapping of the ice shelf structure will provide key insights into the stability of the ice shelf.
In situ x-ray surface diffraction chamber for pulsed laser ablation film growth studies
NASA Astrophysics Data System (ADS)
Tischler, J. Z.; Eres, G.; Lowndes, D. H.; Larson, B. C.; Yoon, M.; Chiang, T.-C.; Zschack, Paul
2000-06-01
Pulsed laser deposition is highly successful for growing complex films such as oxides for substrate buffer layers and HiTc oxide superconductors. A surface diffraction chamber has been constructed to study fundamental aspects of non-equilibrium film growth using pulsed laser deposition. Due to the pulsed nature of the ablating laser, the deposited atoms arrive on the substrate in short sub-millisecond pulses. Thus monitoring the surface x-ray diffraction following individual laser pulses (with resolution down to ˜1 ms) provides direct information on surface kinetics and the aggregation process during film growth. The chamber design, based upon a 2+2 surface diffraction geometry with the modifications necessary for laser ablation, is discussed, and initial measurements on homo-epitaxial growth of SrTiO3 are presented.
Structure and chemical composition of layers adsorbed at interfaces with champagne.
Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R
2009-11-11
The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.
On-stack two-dimensional conversion of MoS2 into MoO3
NASA Astrophysics Data System (ADS)
Yeoung Ko, Taeg; Jeong, Areum; Kim, Wontaek; Lee, Jinhwan; Kim, Youngchan; Lee, Jung Eun; Ryu, Gyeong Hee; Park, Kwanghee; Kim, Dogyeong; Lee, Zonghoon; Lee, Min Hyung; Lee, Changgu; Ryu, Sunmin
2017-03-01
Chemical transformation of existing two-dimensional (2D) materials can be crucial in further expanding the 2D crystal palette required to realize various functional heterostructures. In this work, we demonstrate a 2D ‘on-stack’ chemical conversion of single-layer crystalline MoS2 into MoO3 with a precise layer control that enables truly 2D MoO3 and MoO3/MoS2 heterostructures. To minimize perturbation of the 2D morphology, a nonthermal oxidation using O2 plasma was employed. The early stage of the reaction was characterized by a defect-induced Raman peak, drastic quenching of photoluminescence (PL) signals and sub-nm protrusions in atomic force microscopy images. As the reaction proceeded from the uppermost layer to the buried layers, PL and optical second harmonic generation signals showed characteristic modulations revealing a layer-by-layer conversion. The plasma-generated 2D oxides, confirmed as MoO3 by x-ray photoelectron spectroscopy, were found to be amorphous but extremely flat with a surface roughness of 0.18 nm, comparable to that of 1L MoS2. The rate of oxidation quantified by Raman spectroscopy decreased very rapidly for buried sulfide layers due to protection by the surface 2D oxides, exhibiting a pseudo-self-limiting behavior. As exemplified in this work, various on-stack chemical transformations can be applied to other 2D materials in forming otherwise unobtainable materials and complex heterostructures, thus expanding the palette of 2D material building blocks.
Stably stratified canopy flow in complex terrain
NASA Astrophysics Data System (ADS)
Xu, X.; Yi, C.; Kutter, E.
2015-07-01
Stably stratified canopy flow in complex terrain has been considered a difficult condition for measuring net ecosystem-atmosphere exchanges of carbon, water vapor, and energy. A long-standing advection error in eddy-flux measurements is caused by stably stratified canopy flow. Such a condition with strong thermal gradient and less turbulent air is also difficult for modeling. To understand the challenging atmospheric condition for eddy-flux measurements, we use the renormalized group (RNG) k-ϵ turbulence model to investigate the main characteristics of stably stratified canopy flows in complex terrain. In this two-dimensional simulation, we imposed persistent constant heat flux at ground surface and linearly increasing cooling rate in the upper-canopy layer, vertically varying dissipative force from canopy drag elements, buoyancy forcing induced from thermal stratification and the hill terrain. These strong boundary effects keep nonlinearity in the two-dimensional Navier-Stokes equations high enough to generate turbulent behavior. The fundamental characteristics of nighttime canopy flow over complex terrain measured by the small number of available multi-tower advection experiments can be reproduced by this numerical simulation, such as (1) unstable layer in the canopy and super-stable layers associated with flow decoupling in deep canopy and near the top of canopy; (2) sub-canopy drainage flow and drainage flow near the top of canopy in calm night; (3) upward momentum transfer in canopy, downward heat transfer in upper canopy and upward heat transfer in deep canopy; and (4) large buoyancy suppression and weak shear production in strong stability.
Multifunctional-layered materials for creating membrane-restricted nanodomains and nanoscale imaging
NASA Astrophysics Data System (ADS)
Srinivasan, P.
2016-01-01
Experimental platform that allows precise spatial positioning of biomolecules with an exquisite control at nanometer length scales is a valuable tool to study the molecular mechanisms of membrane bound signaling. Using micromachined thin film gold (Au) in layered architecture, it is possible to add both optical and biochemical functionalities in in vitro. Towards this goal, here, I show that docking of complementary DNA tethered giant phospholiposomes on Au surface can create membrane-restricted nanodomains. These nanodomains are critical features to dissect molecular choreography of membrane signaling complexes. The excited surface plasmon resonance modes of Au allow label-free imaging at diffraction-limited resolution of stably docked DNA tethered phospholiposomes, and lipid-detergent bicelle structures. Such multifunctional building block enables realizing rigorously controlled in vitro set-up to model membrane anchored biological signaling, besides serving as an optical tool for nanoscale imaging.
Deep Raman spectroscopy for the non-invasive standoff detection of concealed chemical threat agents.
Izake, Emad L; Cletus, Biju; Olds, William; Sundarajoo, Shankaran; Fredericks, Peter M; Jaatinen, Esa
2012-05-30
Deep Raman spectroscopy has been utilized for the standoff detection of concealed chemical threat agents from a distance of 15 m under real life background illumination conditions. By using combined time and space resolved measurements, various explosive precursors hidden in opaque plastic containers were identified non-invasively. Our results confirm that combined time and space resolved Raman spectroscopy leads to higher selectivity towards the sub-layer over the surface layer as well as enhanced rejection of fluorescence from the container surface when compared to standoff spatially offset Raman spectroscopy. Raman spectra that have minimal interference from the packaging material and good signal-to-noise ratio were acquired within 5 s of measurement time. A new combined time and space resolved Raman spectrometer has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than picosecond-based laboratory systems. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Wen-Xiang
2012-03-01
The frequency dependence of electric modulus of polycrystalline CaCu3Ti4O12 (CCTO) ceramics has been investigated. The experimental data have also been analyzed in the complex plane of impedance and electric modulus, and a suitable equivalent circuit has been proposed to explain the dielectric response. Four dielectric responses are first distinguished in the impedance and modulus spectroscopies. The results are well interpreted in terms of a triple insulating barrier capacitor model. Using this model, these four dielectric relaxations are attributed to the domain, domain-boundary, grain-boundary, and surface layer effects with three Maxwell-Wagner relaxations. Moreover, the values of the resistance and capacitance of bulk CCTO phase, domain-boundary, grain-boundary and surface layer contributions have been calculated directly from the peak characteristics of spectroscopic plots.
Multilayer coating of optical substrates by ion beam sputtering
NASA Astrophysics Data System (ADS)
Daniel, M. V.; Demmler, M.
2017-10-01
Ion beam sputtering is well established in research and industry, despite its relatively low deposition rates compared to electron beam evaporation. Typical applications are coatings of precision optics, like filters, mirrors and beam splitter. Anti-reflective or high-reflective multilayer stacks benefit from the high mobility of the sputtered particles on the substrate surface and the good mechanical characteristics of the layers. This work gives the basic route from single layer optimization of reactive ion beam sputtered Ta2O5 and SiO2 thin films towards complex multilayer stacks for high-reflective mirrors and anti-reflective coatings. Therefore films were deposited using different oxygen flow into the deposition chamber Afterwards, mechanical (density, stress, surface morphology, crystalline phases) and optical properties (reflectivity, absorption and refractive index) were characterized. These knowledge was used to deposit a multilayer coating for a high reflective mirror.
Light-activated Gigahertz Ferroelectric Domain Dynamics
Akamatsu, Hirofumii; Yuan, Yakun; Stoica, Vladimir A.; ...
2018-02-26
Using time- and spatially-resolved hard X-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO 3 are simultaneously captured on sub-nanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photo-induced electric field of up to 20 million volts per meter is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling (DPFM) method is developed that reveals the microscopic origin of these dynamics, leading to GHz polarization andmore » elastic waves travelling in the crystal with sonic speeds and spatially varying frequencies. The advance of spatiotemporal imaging and dynamical modeling tools open opportunities of disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains« less
Spreading granular material with a blade
NASA Astrophysics Data System (ADS)
Dressaire, Emilie; Singh, Vachitar; Grimaldi, Emma; Sauret, Alban
2015-11-01
The spreading of a complex fluid with a blade is encountered in applications that range from the bulldozing of granular material in construction projects to the coating of substrates with fluids in industrial applications. This spreading process is also present in everyday life, when we use a knife to turn a lump of peanut butter into a thin layer over our morning toast. In this study, we rely on granular media in a model experiment to describe the three-dimensional spreading of the material. Our experimental set-up allows tracking the spreading of a sandpile on a translating flat surface as the blade remains fixed. We characterize the spreading dynamics and the shape of the spread fluid layer when varying the tilt of the blade, its spacing with the surface and its speed. Our findings suggest that it is possible to tune the spreading parameters to optimize the coating.
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Tainger, Karen M.
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E
2015-11-01
A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lanthanide luminescence enhancements in porous silicon resonant microcavities.
Jenie, S N Aisyiyah; Pace, Stephanie; Sciacca, Beniamino; Brooks, Robert D; Plush, Sally E; Voelcker, Nicolas H
2014-08-13
In this paper, the covalent immobilization and luminescence enhancement of a europium (Eu(III)) complex in a porous silicon (pSi) layer with a microcavity (pSiMC) structure are demonstrated. The alkyne-pendant arm of the Eu(III) complex was covalently immobilized on the azide-modified surface via ligand-assisted "click" chemistry. The design parameters of the microcavity were optimized to obtain an efficient luminescence-enhancing device. Luminescence enhancements by a factor of 9.5 and 3.0 were observed for Eu(III) complex bound inside the pSiMC as compared to a single layer and Bragg reflector of identical thickness, respectively, confirming the increased interaction between the immobilized molecules and the electric field in the spacer of the microcavity. When comparing pSiMCs with different resonance wavelength position, luminescence was enhanced when the resonance wavelength overlapped with the maximum emission wavelength of the Eu(III) complex at 614 nm, allowing for effective coupling between the confined light and the emitting molecules. The pSiMC also improved the spectral color purity of the Eu(III) complex luminescence. The ability of a pSiMC to act as an efficient Eu(III) luminescence enhancer, combined with the resulting sharp linelike emission, can be exploited for the development of ultrasensitive optical biosensors.
Solare Cell Roof Tile And Method Of Forming Same
Hanoka, Jack I.; Real, Markus
1999-11-16
A solar cell roof tile includes a front support layer, a transparent encapsulant layer, a plurality of interconnected solar cells and a backskin layer. The front support layer is formed of light transmitting material and has first and second surfaces. The transparent encapsulant layer is disposed adjacent the second surface of the front support layer. The interconnected solar cells has a first surface disposed adjacent the transparent encapsulant layer. The backskin layer has a first surface disposed adjacent a second surface of the interconnected solar cells, wherein a portion of the backskin layer wraps around and contacts the first surface of the front support layer to form the border region. A portion of the border region has an extended width. The solar cell roof tile may have stand-offs disposed on the extended width border region for providing vertical spacing with respect to an adjacent solar cell roof tile.
Controlled ionic condensation at the surface of a native extremophile membrane
NASA Astrophysics Data System (ADS)
Contera, Sonia Antoranz; Voïtchovsky, Kislon; Ryan, John F.
2010-02-01
At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces.At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces. Electronic supplementary information (ESI) available: Figs. S1 and S2: amplitude- and phase-extension curves used to derive the data presented in Figs. 2 and 4. See DOI: 10.1039/b9nr00248k
NASA Astrophysics Data System (ADS)
Wulfmeyer, V.; Turner, D. D.; Mauder, M.; Behrendt, A.; Ingwersen, J.; Streck, T.
2015-12-01
Improved simulations of land-surface-atmosphere interaction are fundamental for improving weather forecast and climate models. This requires observations of 2D fields of surface fluxes and the 3D structure of the atmospheric boundary layer simultaneously. A novel strategy is introduced for studying land-surface exchange and entrainment processes in the convective boundary layer (CBL) over complex terrain by means of a new generation of remote sensing systems. The sensor synergy consists of scanning Doppler lidar (DL), water-vapor differential absorption lidar (WVDIAL), and temperature rotational Raman lidar (TRRL) systems supported by surface in-situ measurements. The 2D measurements of surface fluxes are realized by the operation of a DL, a WVDIAL, and a TRRL along the same line-of-sight (LOS) in a range-height-indicator (RHI) mode whereas the other DL is performing a series of cross track RHI scans along this LOS. This new setup enables us to determine the friction velocity as well as surface sensible and latent heat fluxes by closing the complete set of Monin-Obukhov similarity relationships under a variety of surface layer stability conditions and different land cover and soil properties. As this closure is performed at all DL crossing points along the LOS, this is a strategy towards a 2D mapping of surface fluxes entirely based on remote sensing systems. Further details are presented at the conference. The second configuration is the simultaneous vertical profiling of vertical wind, humidity and temperature by DL, WVDIAL and TRRL so that latent heat and sensible heat flux profiles as well as a variety of different turbulent moments can be measured in the CBL. Consequently, by alternating of RHI scanning and vertical pointing modes, entrainment fluxes and surface fluxes can be measured almost simultaneously. This novel strategy has been realized for the first time during the Surface Atmospheric Boundary Layer Exchange (SABLE) campaign in the Kraichgau region, north of the Black Forest low mountain region, in Southern Germany in August 2014 (see https://klimawandel.uni-hohenheim.de/start?&L=1). A further refined design of this experiment is planned at the Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site in summer 2016.
Planetary Boundary Layer Dynamics over Reno, Nevada in Summer
NASA Astrophysics Data System (ADS)
Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.
2014-12-01
Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang,Z.; Fenter, P.; Cheng, L.
2006-01-01
The X-ray standing wave technique was used to probe the sensitivity of Zn{sup 2+} and Sr{sup 2+} ion adsorption to changes in both the adsorbed ion coverage and the background electrolyte species and concentrations at the rutile ({alpha}-TiO{sub 2}) (110)-aqueous interface. Measurements were made with various background electrolytes (NaCl, NaTr, RbCl, NaBr) at concentrations as high as 1 m. The results demonstrate that Zn{sub 2+} and Sr{sub 2+} reside primarily in the condensed layer and that the ion heights above the Ti-O surface plane are insensitive to ionic strength and the choice of background electrolyte (with <0.1 Angstroms changes overmore » the full compositional range). The lack of any specific anion coadsorption upon probing with Br{sup -}, coupled with the insensitivity of Zn{sup 2+} and Sr{sup 2+} cation heights to changes in the background electrolyte, implies that anions do not play a significant role in the adsorption of these divalent metal ions to the rutile (110) surface. Absolute ion coverage measurements for Zn{sup 2+} and Sr{sup 2+} show a maximum Stern-layer coverage of {approx}0.5 monolayer, with no significant variation in height as a function of Stern-layer coverage. These observations are discussed in the context of Gouy-Chapman-Stern models of the electrical double layer developed from macroscopic sorption and pH-titration studies of rutile powder suspensions. Direct comparison between these experimental observations and the MUltiSIte Complexation (MUSIC) model predictions of cation surface coverage as a function of ionic strength revealed good agreement between measured and predicted surface coverages with no adjustable parameters.« less
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2011-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392
NASA Astrophysics Data System (ADS)
Gali, Olufisayo A.
Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.
Multi-modality nanoparticles having optically responsive shape
Chen, Fanqing; Bouchard, Louis-Serge
2015-05-19
In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.
Park, Seong-Hyo; Kim, Hyeon Jin; Lee, Junmin; Jeong, You Kyeong; Choi, Jang Wook; Lee, Hochun
2016-06-08
Despite two decades of commercial history, it remains very difficult to simultaneously achieve both high rate capability and thermal stability in the graphite anodes of Li-ion batteries because the stable solid electrolyte interphase (SEI) layer, which is essential for thermal stability, impedes facile Li(+) ion transport at the interface. Here, we resolve this longstanding challenge using a mussel-inspired polydopamine (PD) coating via a simple immersion process. The nanometer-thick PD coating layer allows the formation of an SEI layer on the coating surface without perturbing the intrinsic properties of the SEI layer of the graphite anodes. PD-coated graphite exhibits far better performances in cycling test at 60 °C and storage test at 90 °C than bare graphite. The PD-coated graphite also displays superior rate capability during both lithiation and delithiation. As evidenced by surface free energy analysis, the enhanced performance of the PD-coated graphite can be ascribed to the Lewis basicity of the PD, which scavenges harmful hydrofluoric acid and forms an intermediate triple-body complex among a Li(+) ion, solvent molecules, and the PD's basic site. The usefulness of the proposed PD coating can be expanded to various electrodes in rechargeable batteries that suffer from poor thermal stability and interfacial kinetics.
NASA Astrophysics Data System (ADS)
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
Synthesis and characterization of 2D graphene sheets from graphite powder
NASA Astrophysics Data System (ADS)
Patel, Rakesh V.; Patel, R. H.; Chaki, S. H.
2018-05-01
Graphene is 2D material composed of one atom thick hexagonal layer. This material has attracted great attention among scientific community because of its high surface area, excellent mechanical properties and conductivity due to free electrons in the 2D lattice. There are various approaches to prepare graphene nanosheets such as top-down approach where graphite exfoliation and nanotube unwrapping can be done. The bottom up approach involves deposition of hydrocarbon through CVD, epitaxial method and organo-synthesis etc.. In present studies top down approach method was used to prepare graphene. The graphite powder with around 20 µm to 150µm particle size was subjected to concentrated strong acid in presence of strong oxidizing agent in order to increase the d-spacing between layers which leads to the disruption of crystal lattice as confirmed by XRD (X'pert Philips). FT Raman spectra taken via (Renishaw InVia microscope) of pristine powder and Graphene oxide revealed the increase in D-band and reduction in G-Band. These exfoliated sheets have oxygen rich complexes at the surface of the layers as characterised by FTIR technique. The GO powder was ultrasonicated to prepare the stable suspension of Graphene. The graphene layers were observed under TEM (Philips Tecnai 20) as 2dimensional sheets with around 1µm sizes.
Influence of the molecular architecture on the adsorption onto solid surfaces: comb-like polymers.
Guzmán, Eduardo; Ortega, Francisco; Prolongo, Margarita G; Starov, Victor M; Rubio, Ramón G
2011-09-28
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.
Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.
2005-10-18
An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.
Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.
2003-09-09
An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.