Wafer-scale layer transfer of GaAs and Ge onto Si wafers using patterned epitaxial lift-off
NASA Astrophysics Data System (ADS)
Mieda, Eiko; Maeda, Tatsuro; Miyata, Noriyuki; Yasuda, Tetsuji; Kurashima, Yuichi; Maeda, Atsuhiko; Takagi, Hideki; Aoki, Takeshi; Yamamoto, Taketsugu; Ichikawa, Osamu; Osada, Takenori; Hata, Masahiko; Ogawa, Arito; Kikuchi, Toshiyuki; Kunii, Yasuo
2015-03-01
We have developed a wafer-scale layer-transfer technique for transferring GaAs and Ge onto Si wafers of up to 300 mm in diameter. Lattice-matched GaAs or Ge layers were epitaxially grown on GaAs wafers using an AlAs release layer, which can subsequently be transferred onto a Si handle wafer via direct wafer bonding and patterned epitaxial lift-off (ELO). The crystal properties of the transferred GaAs layers were characterized by X-ray diffraction (XRD), photoluminescence, and the quality of the transferred Ge layers was characterized using Raman spectroscopy. We find that, after bonding and the wet ELO processes, the quality of the transferred GaAs and Ge layers remained the same compared to that of the as-grown epitaxial layers. Furthermore, we realized Ge-on-insulator and GaAs-on-insulator wafers by wafer-scale pattern ELO technique.
Transfer of micro and nano-photonic silicon nanomembrane waveguide devices on flexible substrates.
Ghaffari, Afshin; Hosseini, Amir; Xu, Xiaochuan; Kwong, David; Subbaraman, Harish; Chen, Ray T
2010-09-13
This paper demonstrates transfer of optical devices without extra un-patterned silicon onto low-cost, flexible plastic substrates using single-crystal silicon nanomembranes. Employing this transfer technique, stacking two layers of silicon nanomembranes with photonic crystal waveguide in the first layer and multi mode interference couplers in the second layer is shown, respectively. This technique is promising to realize high density integration of multilayer hybrid structures on flexible substrates.
Advanced germanium layer transfer for ultra thin body on insulator structure
NASA Astrophysics Data System (ADS)
Maeda, Tatsuro; Chang, Wen-Hsin; Irisawa, Toshifumi; Ishii, Hiroyuki; Hattori, Hiroyuki; Poborchii, Vladimir; Kurashima, Yuuichi; Takagi, Hideki; Uchida, Noriyuki
2016-12-01
We present the HEtero-Layer Lift-Off (HELLO) technique to obtain ultra thin body (UTB) Ge on insulator (GeOI) substrates. The transferred ultra thin Ge layers are characterized by the Raman spectroscopy measurements down to the thickness of ˜1 nm, observing a strong Raman intensity enhancement for high quality GeOI structure in ultra thin regime due to quantum size effect. This advanced Ge layer transfer technique enabled us to demonstrate UTB-GeOI nMOSFETs with the body thickness of only 4 nm.
NASA Astrophysics Data System (ADS)
Sakaike, Kohei; Akazawa, Muneki; Nakagawa, Akitoshi; Higashi, Seiichiro
2015-04-01
A novel low-temperature technique for transferring a silicon-on-insulator (SOI) layer with a midair cavity (supported by narrow SiO2 columns) by meniscus force has been proposed, and a single-crystalline Si (c-Si) film with a midair cavity formed in dog-bone shape was successfully transferred to a poly(ethylene terephthalate) (PET) substrate at its heatproof temperature or lower. By applying this proposed transfer technique, high-performance c-Si-based complementary metal-oxide-semiconductor (CMOS) transistors were successfully fabricated on the PET substrate. The key processes are the thermal oxidation and subsequent hydrogen annealing of the SOI layer on the midair cavity. These processes ensure a good MOS interface, and the SiO2 layer works as a “blocking” layer that blocks contamination from PET. The fabricated n- and p-channel c-Si thin-film transistors (TFTs) on the PET substrate showed field-effect mobilities of 568 and 103 cm2 V-1 s-1, respectively.
NASA Technical Reports Server (NTRS)
Porro, A. Robert; Keith, Theo G., Jr.; Hingst, Warren R.; Chriss, Randall M.; Seablom, Kirk D.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the load surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimental results agreed reasonably well with theoretical predictions of convective heat transfer of flat plate laminar boundary layers. The results indicate that this non-intrusive optical measurement technique has the potential to obtain high quality surface convective heat transfer measurements in high speed flowfields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.
A laser-induced heat flux technique for convective heat transfer measurements in high speed flows
NASA Technical Reports Server (NTRS)
Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.
1991-01-01
A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high-speed flowfields.
Photovoltaic cells with a graded active region achieved using stamp transfer printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lee, Jun Yeob; Cho, Yong Joo
Disclosed herein are processes for fabricating organic photosensitive optoelectronic devices with a vertical compositionally graded organic active layer. The processes use either a single-stamp or double-stamp printing technique to transfer the vertical compositionally graded organic active layer from a starting substrate to a device layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo
2013-12-02
A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobilitymore » of 609 cm{sup 2} V{sup −1} s{sup −1}.« less
Semantic layers for illustrative volume rendering.
Rautek, Peter; Bruckner, Stefan; Gröller, Eduard
2007-01-01
Direct volume rendering techniques map volumetric attributes (e.g., density, gradient magnitude, etc.) to visual styles. Commonly this mapping is specified by a transfer function. The specification of transfer functions is a complex task and requires expert knowledge about the underlying rendering technique. In the case of multiple volumetric attributes and multiple visual styles the specification of the multi-dimensional transfer function becomes more challenging and non-intuitive. We present a novel methodology for the specification of a mapping from several volumetric attributes to multiple illustrative visual styles. We introduce semantic layers that allow a domain expert to specify the mapping in the natural language of the domain. A semantic layer defines the mapping of volumetric attributes to one visual style. Volumetric attributes and visual styles are represented as fuzzy sets. The mapping is specified by rules that are evaluated with fuzzy logic arithmetics. The user specifies the fuzzy sets and the rules without special knowledge about the underlying rendering technique. Semantic layers allow for a linguistic specification of the mapping from attributes to visual styles replacing the traditional transfer function specification.
Double-layered cell transfer technology for bone regeneration
Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo
2016-01-01
For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174
Delaminated Transfer of CVD Graphene
NASA Astrophysics Data System (ADS)
Clavijo, Alexis; Mao, Jinhai; Tilak, Nikhil; Altvater, Michael; Andrei, Eva
Single layer graphene is commonly synthesized by dissociation of a carbonaceous gas at high temperatures in the presence of a metallic catalyst in a process known as Chemical Vapor Deposition or CVD. Although it is possible to achieve high quality graphene by CVD, the standard transfer technique of etching away the metallic catalyst is wasteful and jeopardizes the quality of the graphene film by contamination from etchants. Thus, development of a clean transfer technique and preservation of the parent substrate remain prominent hurdles to overcome. In this study, we employ a copper pretreatment technique and optimized parameters for growth of high quality single layer graphene at atmospheric pressure. We address the transfer challenge by utilizing the adhesive properties between a polymer film and graphene to achieve etchant-free transfer of graphene films from a copper substrate. Based on this concept we developed a technique for dry delamination and transferring of graphene to hexagonal boron nitride substrates, which produced high quality graphene films while at the same time preserving the integrity of the copper catalyst for reuse. DOE-FG02-99ER45742, Ronald E. McNair Postbaccalaureate Achievement Program.
Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method
NASA Astrophysics Data System (ADS)
Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon
2008-06-01
For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.
Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers
NASA Astrophysics Data System (ADS)
Dürr, Michael; Schmid, Andreas; Obermaier, Markus; Rosselli, Silvia; Yasuda, Akio; Nelles, Gabriele
2005-08-01
Dye-sensitized solar cells have established themselves as a potential low-cost alternative to conventional solar cells owing to their remarkably high power-conversion efficiency combined with `low-tech' fabrication processes. As a further advantage, the active layers consisting of nanoporous TiO2 are only some tens of micrometres thick and are therefore in principle suited for flexible applications. However, typical flexible plastic substrates cannot withstand the process temperatures of up to 500 ∘C commonly used for sintering the TiO2 nanoparticles together. Even though some promising routes for low-temperature sintering have been proposed, those layers cannot compete as regards electrical properties with layers obtained with the standard high-temperature process. Here we show that by a lift-off technique, presintered porous layers can be transferred to an arbitrary second substrate, and the original electrical properties of the transferred porous layers are maintained. The transfer process is greatly assisted by the application of composite layers comprising nanoparticles and nanorods.
Measurement of the oxygen mass transfer through the air-water interface.
Mölder, Erik; Mashirin, Alelxei; Tenno, Toomas
2005-01-01
Gas mass transfer through the liquid-gas interface has enormous importance in various natural and industrial processes. Surfactants or insoluble compounds adsorbed onto an interface will inhibit the gas mass transfer through the liquid-gas surface. This study presents a technique for measuring the oxygen mass transfer through the air-water interface. Experimental data obtained with the measuring device were incorporated into a novel mathematical model, which allowed one to calculate diffusion conduction of liquid surface layer and oxygen mass transfer coefficient in the liquid surface layer. A special measurement cell was constructed. The most important part of the measurement cell is a chamber containing the electrochemical oxygen sensor inside it. Gas exchange between the volume of the chamber and the external environment takes place only through the investigated surface layer. Investigated liquid was deoxygenated, which triggers the oxygen mass transfer from the chamber through the liquid-air interface into the liquid phase. The decrease of oxygen concentration in the cell during time was measured. By using this data it is possible to calculate diffusional parameters of the water surface layer. Diffusion conduction of oxygen through the air-water surface layer of selected wastewaters was measured. The diffusion conduction of different wastewaters was about 3 to 6 times less than in the unpolluted water surface. It was observed that the dilution of wastewater does not have a significant impact on the oxygen diffusion conduction through the wastewater surface layer. This fact can be explained with the presence of the compounds with high surface activity in the wastewater. Surfactants achieved a maximum adsorption and, accordingly, the maximum decrease of oxygen permeability already at a very low concentration of surfactants in the solution. Oxygen mass transfer coefficient of the surface layer of the water is found to be Ds/ls = 0.13 x 10(-3) x cm/s. A simple technique for measuring oxygen diffusion parameters through the air-water solution surface has been developed. Derived equations enable the calculation of diffusion parameters of the surface layer at current conditions. These values of the parameters permit one to compare the resistances of the gas-liquid interface to oxygen mass transfer in the case of adsorption of different substances on the surface layer. This simple technique may be used for a determination of oxygen permeability of different water-solution surface layers. It enables one to measure the resistance to the oxygen permeability of all inflowing wastewater surface layers in the wastewater treatment plant, and to initiate a preliminary cleaning of this wastewater if required. Similarly, we can measure oxygen permeability of natural waterbodies. Especially in the case of pollution, it is important to know to what extent the oxygen permeability of the water surface layer has been decreased. Based on the tehnique presented in this research, fieldwork equipment will be developed.
NASA Astrophysics Data System (ADS)
Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop
2018-01-01
The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.
Organic doping of rotated double layer graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
George, Lijin; Jaiswal, Manu, E-mail: manu.jaiswal@iitm.ac.in
2016-05-06
Charge transfer techniques have been extensively used as knobs to tune electronic properties of two- dimensional systems, such as, for the modulation of conductivity \\ mobility of single layer graphene and for opening the bandgap in bilayer graphene. The charge injected into the graphene layer shifts the Fermi level away from the minimum density of states point (Dirac point). In this work, we study charge transfer in rotated double-layer graphene achieved by the use of organic dopant, Tetracyanoquinodimethane. Naturally occurring bilayer graphene has a well-defined A-B stacking whereas in rotated double-layer the two graphene layers are randomly stacked with differentmore » rotational angles. This rotation is expected to significantly alter the interlayer interaction. Double-layer samples are prepared using layer-by-layer assembly of chemical vapor deposited single-layer graphene and they are identified by characteristic resonance in the Raman spectrum. The charge transfer and distribution of charges between the two graphene layers is studied using Raman spectroscopy and the results are compared with that for single-layer and A-B stacked bilayer graphene doped under identical conditions.« less
Environmentally-assisted technique for transferring devices onto non-conventional substrates
Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin
2016-05-10
A device fabrication method includes: (1) providing a growth substrate including an oxide layer; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing fluid-assisted interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
Environmentally-assisted technique for transferring devices onto non-conventional substrates
Lee, Chi-Hwan; Kim, Dong Rip; Zheng, Xiaolin
2014-08-26
A device fabrication method includes: (1) providing a growth substrate including a base and an oxide layer disposed over the base; (2) forming a metal layer over the oxide layer; (3) forming a stack of device layers over the metal layer; (4) performing interfacial debonding of the metal layer to separate the stack of device layers and the metal layer from the growth substrate; and (5) affixing the stack of device layers to a target substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buongiorno, J; Cahill, DG; Hidrovo, CH
2014-07-23
In this opinion piece, we discuss recent advances in experimental methods for characterizing phase change heat transfer. We begin with a survey of techniques for high-resolution measurements of temperature and heat flux at the solid surface and in the working fluid. Next, we focus on diagnostic tools for boiling heat transfer and describe techniques for visualizing the temperature and velocity fields, as well as measurements at the single bubble level. Finally, we discuss techniques to probe the kinetics of vapor formation within a few molecular layers of the interface. We conclude with our outlook for future progress in experimental methodsmore » for phase change heat transfer.« less
NASA Astrophysics Data System (ADS)
Carles, R.; Bayle, M.; Bonafos, C.
2018-04-01
Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.
Carles, R; Bayle, M; Bonafos, C
2018-04-27
Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers. In particular electronic Raman scattering is shown as notably efficient to analyze the optical transfer of charge carriers between the systems and the presence of intrinsic and extrinsic defects.
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Dlugach, Janna M.; Yanovitsku, Edgard G.; Zakharova, Nadia T.
1999-01-01
We describe a simple and highly efficient and accurate radiative transfer technique for computing bidirectional reflectance of a macroscopically flat scattering layer composed of nonabsorbing or weakly absorbing, arbitrarily shaped, randomly oriented and randomly distributed particles. The layer is assumed to be homogeneous and optically semi-infinite, and the bidirectional reflection function (BRF) is found by a simple iterative solution of the Ambartsumian's nonlinear integral equation. As an exact Solution of the radiative transfer equation, the reflection function thus obtained fully obeys the fundamental physical laws of energy conservation and reciprocity. Since this technique bypasses the computation of the internal radiation field, it is by far the fastest numerical approach available and can be used as an ideal input for Monte Carlo procedures calculating BRFs of scattering layers with macroscopically rough surfaces. Although the effects of packing density and coherent backscattering are currently neglected, they can also be incorporated. The FORTRAN implementation of the technique is available on the World Wide Web at http://ww,,v.giss.nasa.gov/-crmim/brf.html and can be applied to a wide range of remote sensing, engineering, and biophysical problems. We also examine the potential effect of ice crystal shape on the bidirectional reflectance of flat snow surfaces and the applicability of the Henyey-Greenstein phase function and the 6-Eddington approximation in calculations for soil surfaces.
"Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.
Tai, Yanlong; Lubineau, Gilles
2017-04-01
Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on the McDonnell Douglas Booster configuration are presented. Heat-transfer rates were determined by the phase-change paint technique on 0.009-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers 5 million and 7.3 million, and angles of attack of 40, 50, and 60 deg. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described.
NASA Astrophysics Data System (ADS)
Robinson, Tyler D.; Crisp, David
2018-05-01
Solar and thermal radiation are critical aspects of planetary climate, with gradients in radiative energy fluxes driving heating and cooling. Climate models require that radiative transfer tools be versatile, computationally efficient, and accurate. Here, we describe a technique that uses an accurate full-physics radiative transfer model to generate a set of atmospheric radiative quantities which can be used to linearly adapt radiative flux profiles to changes in the atmospheric and surface state-the Linearized Flux Evolution (LiFE) approach. These radiative quantities describe how each model layer in a plane-parallel atmosphere reflects and transmits light, as well as how the layer generates diffuse radiation by thermal emission and by scattering light from the direct solar beam. By computing derivatives of these layer radiative properties with respect to dynamic elements of the atmospheric state, we can then efficiently adapt the flux profiles computed by the full-physics model to new atmospheric states. We validate the LiFE approach, and then apply this approach to Mars, Earth, and Venus, demonstrating the information contained in the layer radiative properties and their derivatives, as well as how the LiFE approach can be used to determine the thermal structure of radiative and radiative-convective equilibrium states in one-dimensional atmospheric models.
NASA Astrophysics Data System (ADS)
Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian
2017-04-01
In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the "soft" SU8 bonding in comparison to the "hard" bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers.
Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian
2017-01-01
In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the “soft” SU8 bonding in comparison to the “hard” bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers. PMID:28522879
Ziss, Dorian; Martín-Sánchez, Javier; Lettner, Thomas; Halilovic, Alma; Trevisi, Giovanna; Trotta, Rinaldo; Rastelli, Armando; Stangl, Julian
2017-04-01
In this paper, strain transfer efficiencies from a single crystalline piezoelectric lead magnesium niobate-lead titanate substrate to a GaAs semiconductor membrane bonded on top are investigated using state-of-the-art x-ray diffraction (XRD) techniques and finite-element-method (FEM) simulations. Two different bonding techniques are studied, namely, gold-thermo-compression and polymer-based SU8 bonding. Our results show a much higher strain-transfer for the "soft" SU8 bonding in comparison to the "hard" bonding via gold-thermo-compression. A comparison between the XRD results and FEM simulations allows us to explain this unexpected result with the presence of complex interface structures between the different layers.
NASA Technical Reports Server (NTRS)
Cook, W. J.
1972-01-01
The unsteady laminar boundary layer induced by the flow-initiating shock wave passing over a flat plate mounted in a shock tube was theoretically and experimentally studied in terms of heat transfer rates to the plate for shock speeds ranging from 1.695 to 7.34 km/sec. The theory presented by Cook and Chapman for the shock-induced unsteady boundary layer on a plate is reviewed with emphasis on unsteady heat transfer. A method of measuring time-dependent heat-transfer rates using thin-film heat-flux gages and an associated data reduction technique are outlined in detail. Particular consideration is given to heat-flux measurement in short-duration ionized shocktube flows. Experimental unsteady plate heat transfer rates obtained in both air and nitrogen using thin-film heat-flux gages generally agree well with theoretical predictions. The experimental results indicate that the theory continues to predict the unsteady boundary layer behavior after the shock wave leaves the trailing edge of the plate even though the theory is strictly applicable only for the time interval in which the shock remains on the plate.
A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983
NASA Technical Reports Server (NTRS)
Moffat, R. J.; Kays, W. M.
1984-01-01
For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.
Multilayer graphene as an effective corrosion protection coating for copper
NASA Astrophysics Data System (ADS)
Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu
2018-04-01
Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.
Guo, Lichao; Li, Jiajun; Cao, Tingting; Wang, Huayu; Zhao, Naiqin; He, Fang; Shi, Chunsheng; He, Chunnian; Liu, Enzuo
2016-09-21
Sluggish surface reaction kinetics hinders the power density of Li-ion battery. Thus, various surface modification techniques have been applied to enhance the electronic/ionic transfer kinetics. However, it is challenging to obtain a continuous and uniform surface modification layer on the prime particles with structure integration at the interface. Instead of classic physical-adsorption/deposition techniques, we propose a novel chemical-adsorption strategy to synthesize double-shell modified lithium-rich layered cathodes with enhanced mass transfer kinetics. On the basis of experimental measurement and first-principles calculation, MoO2S2 ions are proved to joint the layered phase via chemical bonding. Specifically, the Mo-O or Mo-S bonds can flexibly rotate to bond with the cations in the layered phase, leading to the good compatibility between the thiomolybdate adsorption layer and layered cathode. Followed by annealing treatment, the lithium-excess-spinel inner shell forms under the thiomolybdate adsorption layer and functions as favorable pathways for lithium and electron. Meanwhile, the nanothick MoO3-x(SO4)x outer shell protects the transition metal from dissolution and restrains electrolyte decomposition. The double-shell modified sample delivers an enhanced discharge capacity almost twice as much as that of the unmodified one at 1 A g(-1) after 100 cycles, demonstrating the superiority of the surface modification based on chemical adsorption.
Van Ngoc, Huynh; Qian, Yongteng; Han, Suk Kil; Kang, Dae Joon
2016-01-01
We have explored a facile technique to transfer large area 2-Dimensional (2D) materials grown by chemical vapor deposition method onto various substrates by adding a water-soluble Polyvinyl Alcohol (PVA) layer between the polymethyl-methacrylate (PMMA) and the 2D material film. This technique not only allows the effective transfer to an arbitrary target substrate with a high degree of freedom, but also avoids PMMA etching thereby maintaining the high quality of the transferred 2D materials with minimum contamination. We applied this method to transfer various 2D materials grown on different rigid substrates of general interest, such as graphene on copper foil, h-BN on platinum and MoS2 on SiO2/Si. This facile transfer technique has great potential for future research towards the application of 2D materials in high performance optical, mechanical and electronic devices. PMID:27616038
Extending radiative transfer models by use of Bayes rule. [in atmospheric science
NASA Technical Reports Server (NTRS)
Whitney, C.
1977-01-01
This paper presents a procedure that extends some existing radiative transfer modeling techniques to problems in atmospheric science where curvature and layering of the medium and dynamic range and angular resolution of the signal are important. Example problems include twilight and limb scan simulations. Techniques that are extended include successive orders of scattering, matrix operator, doubling, Gauss-Seidel iteration, discrete ordinates and spherical harmonics. The procedure for extending them is based on Bayes' rule from probability theory.
Removal of GaAs growth substrates from II-VI semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Bieker, S.; Hartmann, P. R.; Kießling, T.; Rüth, M.; Schumacher, C.; Gould, C.; Ossau, W.; Molenkamp, L. W.
2014-04-01
We report on a process that enables the removal of II-VI semiconductor epilayers from their GaAs growth substrate and their subsequent transfer to arbitrary host environments. The technique combines mechanical lapping and layer selective chemical wet etching and is generally applicable to any II-VI layer stack. We demonstrate the non-invasiveness of the method by transferring an all-II-VI magnetic resonant tunneling diode. High resolution x-ray diffraction proves that the crystal integrity of the heterostructure is preserved. Transport characterization confirms that the functionality of the device is maintained and even improved, which is ascribed to completely elastic strain relaxation of the tunnel barrier layer.
Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions
NASA Technical Reports Server (NTRS)
Wood, William A.; Erickson, David W.; Greene, Francis A.
2007-01-01
Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.
NASA Technical Reports Server (NTRS)
Lawing, P. L.
1981-01-01
Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.
Linear increases in carbon nanotube density through multiple transfer technique.
Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish
2011-05-11
We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.
NASA Astrophysics Data System (ADS)
Arakeri, V. H.
1980-04-01
Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).
Kim, Yoon Jae; Kim, Yoon Young
2010-10-01
This paper presents a numerical method for the optimization of the sequencing of solid panels, perforated panels and air gaps and their respective thickness for maximizing sound transmission loss and/or absorption. For the optimization, a method based on the topology optimization formulation is proposed. It is difficult to employ only the commonly-used material interpolation technique because the involved layers exhibit fundamentally different acoustic behavior. Thus, an optimization method formulation using a so-called unified transfer matrix is newly proposed. The key idea is to form elements of the transfer matrix such that interpolated elements by the layer design variables can be those of air, perforated and solid panel layers. The problem related to the interpolation is addressed and bench mark-type problems such as sound transmission or absorption maximization problems are solved to check the efficiency of the developed method.
Nonvascularized toe phalangeal transfer and distraction lengthening for symbrachydactyly.
Patterson, Ryan W; Seitz, William H
2010-04-01
Symbrachydactyly describes a spectrum of congenital hand differences consisting of digital loss resulting in fused short fingers. As the principles for distraction lengthening have evolved, the technique of nonvascularized toe phalangeal transfer to the hand with shortened digits has provided patients with improved outcomes. Nonvascularized toe phalanx to hand transplant with distraction lengthening restores functional length to a skeletally deficient, poorly functioning hand while maintaining an overlying layer of vascular and sensate tissue. The primary goal is improvement of digital length to enhance mechanical advantage and prehension. We describe the technique of nonvascularized toe phalangeal transfer and distraction lengthening for symbrachydactyly, including the following steps: nonvascularized proximal toe phalanx harvest, toe phalanx transfer to hand, pin placement, osteotomy, and closure.
NASA Technical Reports Server (NTRS)
Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.
1972-01-01
The results of a wind tunnel test program to determine aerodynamic heat transfer distributions on an orbiter configuration are presented. Heat-transfer rates were determined by the phase change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were; Mach 8, length Reynolds numbers of 6.0 x 1 million and 8.9 x 1 million, and angles of attack from 10 to 50 deg in 10-deg increments. At the higher Reynolds number, data were obtained with and without boundary layer trips. Model details, test conditions, and reduced heat-transfer data are presented. Data reduction of the phase-change paint photographs was performed by utilizing a new technique which is described in the data presentation section.
NASA Astrophysics Data System (ADS)
Pagliarini, G.; Vocale, P.; Mocerino, A.; Rainieri, S.
2017-01-01
Passive convective heat transfer enhancement techniques are well known and widespread tool for increasing the efficiency of heat transfer equipment. In spite of the ability of the first principle approach to forecast the macroscopic effects of the passive techniques for heat transfer enhancement, namely the increase of both the overall heat exchanged and the head losses, a first principle analysis based on energy, momentum and mass local conservation equations is hardly able to give a comprehensive explanation of how local modifications in the boundary layers contribute to the overall effect. A deeper insight on the heat transfer enhancement mechanisms can be instead obtained within a second principle approach, through the analysis of the local exergy dissipation phenomena which are related to heat transfer and fluid flow. To this aim, the analysis based on the second principle approach implemented through a careful consideration of the local entropy generation rate seems the most suitable, since it allows to identify more precisely the cause of the loss of efficiency in the heat transfer process, thus providing a useful guide in the choice of the most suitable heat transfer enhancement techniques.
Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials.
Ma, Xuezhi; Liu, Qiushi; Xu, Da; Zhu, Yangzhi; Kim, Sanggon; Cui, Yongtao; Zhong, Lanlan; Liu, Ming
2017-11-08
A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 10 10 cm -2 ) and high carrier mobility (up to 48 820 cm 2 V -1 s -1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.
Layer-by-Layer Enabled Nanomaterials for Chemical Sensing and Energy Conversion
NASA Astrophysics Data System (ADS)
Paterno, Leonardo G.; Soler, Maria A. G.
2013-06-01
The layer-by-layer (LbL) technique is a wet chemical method for the assembly of ultrathin films, with thicknesses up to 100 nm. This method is based on the successive transfer of molecular layers to a solid substrate that is dipped into cationic and anionic solutions in an alternating fashion. The adsorption is mainly driven by electrostatic interactions so that many molecular and nanomaterial systems can be engineered under this method. Moreover, it is inexpensive, can be easily performed, and does not demand sophisticated equipment or clean rooms. The most explored use of the LbL technique is to build up molecular devices for chemical sensing and energy conversion. Both applications require ultrathin films where specific elements must be organized with high control of thickness and spatial distribution, preferably in the nanolength and mesolength scales. In chemical sensors, the LbL technique is employed to assemble specific sensoactive materials such as conjugated polymers, enzymes, and immunological elements onto appropriated electrodes. Molecular recognition events are thus transduced by the assembled sensoactive layer. In energy-conversion devices, the LbL technique can be employed to fabricate different device's parts including electrodes, active layers, and auxiliary layers. In both applications, the devices' performance can be fully modulated and improved by simply varying film thickness and molecular architecture. The present review article highlights the main features of the LbL technique and provides a brief description of different (bio)chemical sensors, solar cells, and organic light-emitting diodes enabled by the LbL approach.
Inverse problems and optimal experiment design in unsteady heat transfer processes identification
NASA Technical Reports Server (NTRS)
Artyukhin, Eugene A.
1991-01-01
Experimental-computational methods for estimating characteristics of unsteady heat transfer processes are analyzed. The methods are based on the principles of distributed parameter system identification. The theoretical basis of such methods is the numerical solution of nonlinear ill-posed inverse heat transfer problems and optimal experiment design problems. Numerical techniques for solving problems are briefly reviewed. The results of the practical application of identification methods are demonstrated when estimating effective thermophysical characteristics of composite materials and thermal contact resistance in two-layer systems.
Combining light-harvesting with detachability in high-efficiency thin-film silicon solar cells.
Ram, Sanjay K; Desta, Derese; Rizzoli, Rita; Bellettato, Michele; Lyckegaard, Folmer; Jensen, Pia B; Jeppesen, Bjarke R; Chevallier, Jacques; Summonte, Caterina; Larsen, Arne Nylandsted; Balling, Peter
2017-06-01
Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.
Sacrificial-layer free transfer of mammalian cells using near infrared femtosecond laser pulses
Zhang, Jun; Hartmann, Bastian; Siegel, Julian; Marchi, Gabriele; Clausen-Schaumann, Hauke; Sudhop, Stefanie; Huber, Heinz P.
2018-01-01
Laser-induced cell transfer has been developed in recent years for the flexible and gentle printing of cells. Because of the high transfer rates and the superior cell survival rates, this technique has great potential for tissue engineering applications. However, the fact that material from an inorganic sacrificial layer, which is required for laser energy absorption, is usually transferred to the printed target structure, constitutes a major drawback of laser based cell printing. Therefore alternative approaches using deep UV laser sources and protein based acceptor films for energy absorption, have been introduced. Nevertheless, deep UV radiation can introduce DNA double strand breaks, thereby imposing the risk of carcinogenesis. Here we present a method for the laser-induced transfer of hydrogels and mammalian cells, which neither requires any sacrificial material for energy absorption, nor the use of UV lasers. Instead, we focus a near infrared femtosecond (fs) laser pulse (λ = 1030 nm, 450 fs) directly underneath a thin cell layer, suspended on top of a hydrogel reservoir, to induce a rapidly expanding cavitation bubble in the gel, which generates a jet of material, transferring cells and hydrogel from the gel/cell reservoir to an acceptor stage. By controlling laser pulse energy, well-defined cell-laden droplets can be transferred with high spatial resolution. The transferred human (SCP1) and murine (B16F1) cells show high survival rates, and good cell viability. Time laps microscopy reveals unaffected cell behavior including normal cell proliferation. PMID:29718923
Kim, Yong-Kwan; Kim, Dae-Il; Park, Jaehyun; Shin, Gunchul; Kim, Gyu Tae; Ha, Jeong Sook
2008-12-16
We report on the facile patterning of poly(methyl methacrylate) (PMMA) layers onto SiO2 substrates via microcontact printing combined with the simplified Langmuir-Schaefer (LS) technique. Langmuir film of PMMA was formed just by dropping a dilute PMMA solution onto the air/water surface in a glass Petri dish via self-assembly, and it was used as an ink for the patterned poly(dimethylsilioxane) (PDMS) stamp. The transferred film properties were systematically investigated with variation of postannealing temperature, molecular weight of PMMA, and the inking number. The patterned PMMA film surface was smooth with no vacancy defect in a few micrometers scale AFM images over the whole film area after post-annealing process. The thickness of the PMMA patterns was controlled on the nanometer scale by the number of inkings of the LS layer of PMMA on the PDMS stamp. By using the PMMA patterns as a barrier and a sacrificial layer against the chemical etching and metal deposition, SiO2 and metal patterns were fabricated, respectively. The PMMA layers also worked as a passivation layer against the patterning of V2O5 nanowires and the selective adsorption of single-walled carbon nanotubes (SWCNTs). We also fabricated thin film transistors using patterned SWCNTs with different percolation states and investigated the electrical properties.
Discussion of flight experiments with an entry research vehicle
NASA Technical Reports Server (NTRS)
Potter, J. L.
1985-01-01
The focus of interest is the maneuvering flight of advanced entry vehicles operating at altitudes above 50 km and at velocities of 5 to 8 km/s. Information resulting in more accurate aerodynamic analysis is sought and measurement techniques that appear to be applicable are identified. Measurements discussed include: shock layer or boundary layer profiles of velocity, temperature, species mass fractions, and other gas properties associated with aerodynamic heating; surface energy transfer process; nonequilibrium flow processes and pressure distribution; separated, vortic leeside flow of nonequilibrium fluid; boundary layer transition on highly swept configurations; and shock and surface slip and gas/surface interaction. Further study should focus on evolving measurement techniques, installation requirements, and on identification of the portions of flights where successful results seem probable.
Spectral Analysis and Experimental Modeling of Ice Accretion Roughness
NASA Technical Reports Server (NTRS)
Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.
1996-01-01
A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.
Direct transfer of metallic photonic structures onto end facets of optical fibers
NASA Astrophysics Data System (ADS)
Zhang, Xinping; Liu, Feifei; Lin, Yuanhai
2016-07-01
We present a flexible approach to transfer metallic photonic crystals (MPCs) onto end facets of optical fibers. The MPCs were initially fabricated on a glass substrate with a spacer layer of indium tin oxide (ITO), which was used as a buffer layer in the transferring process. The fiber ends were firstly welded on the top surface of the MPCs by a drop of polymer solution after the solvent evaporated. The ITO layer was then etched by hydrochloric acid (HCl), so that the MPCs got off the substrate and were transferred to the fiber ends. Alternatively, the MPCs may be also etched off the substrate first by immersing the sample in HCl. The ultra-thin MPC sheet consisting of gold nanolines interlaced with photoresist gratings was then transferred to cap the fiber ends. In the later approach, we can choose which side of the MPCs to be used as the contact with the fiber facet. Such methods enabled convenient nanostructuring on optical fiber tips and achieving miniaturized MPC devices with compact integration, extending significantly applications of MPCs. In particular, the fabrications presented in this manuscript enrich the lab-on-fiber engineering techniques and the resultant devices have potential applications in remote sensing and detection systems.
Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P
2018-08-15
Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.
Instrumentation development for study of Reynolds Analogy in reacting flows
NASA Technical Reports Server (NTRS)
Deturris, Dianne J.
1995-01-01
Boundary layers in supersonic reacting flows are not well understood. Recently a technique has been developed which makes more extensive surface measurements practical, increasing the capability to understand the turbulent boundary layer. A significant advance in this understanding would be the formulation of an analytic relation between the transfer of momentum and the transfer of heat for this flow, similar to the Reynolds Analogy that exists for laminar flow. A gauge has been designed and built which allows a thorough experimental investigation of the relative effects of heat transfer and skin friction in the presence of combustion. Direct concurrent measurements made at the same location, combined with local flow conditions, enable a quantitative analysis to obtain a relation between the surface drag and wall heating, as well as identifying possible ways of reducing both.
Mustafa, Meraj; Mushtaq, Ammar; Hayat, Tasawar; Ahmad, Bashir
2014-01-01
The problem of natural convective boundary layer flow of nanofluid past a vertical plate is discussed in the presence of nonlinear radiative heat flux. The effects of magnetic field, Joule heating and viscous dissipation are also taken into consideration. The governing partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations via similarity transformations and then solved numerically using the Runge–Kutta fourth-fifth order method with shooting technique. The results reveal an existence of point of inflection for the temperature distribution for sufficiently large wall to ambient temperature ratio. Temperature and thermal boundary layer thickness increase as Brownian motion and thermophoretic effects intensify. Moreover temperature increases and heat transfer from the plate decreases with an increase in the radiation parameter. PMID:25251242
Synthetic Graphene Grown by Chemical Vapor Deposition on Copper Foils
2013-04-11
b) Transparent PMMA /graphene membrane floating on copper etchant. (c) Three layers of stacked CVD graphene on a cover glass made by consecutively...insulating substrate is a critical step for fabricating electronic devices. PMMA -assisted transfer techniques are commonly applied because of their...simplicity and repeatability.13 In a typical transfer, a graphene film on Cu substrate was first coated with PMMA (950PMMA-A4, MicroChem)b by spin
Perovskite solar cells in N-I-P structure with four slot-die-coated layers
Burkitt, Daniel; Searle, Justin
2018-01-01
The fabrication of perovskite solar cells in an N-I-P structure with compact titanium dioxide blocking, mesoporous titanium dioxide scaffold, single-step perovskite and hole-transport layers deposited using the slot-die coating technique is reported. Devices on fluorine-doped tin oxide-coated glass substrates with evaporated gold top contacts and four slot-die-coated layers are demonstrated, and best cells reach stabilized power conversion efficiencies of 7%. This work demonstrates the suitability of slot-die coating for the production of layers within this perovskite solar cell stack and the potential to transfer to large area and roll-to-roll manufacturing processes. PMID:29892402
García Raya, Daniel; Madueño, Rafael; Blázquez, Manuel; Pineda, Teresa
2010-07-20
A characterization of the 1,8-octanedithiol (ODT) self-assembled monolayer (SAM) formed from a Triton X-100 lyotropic medium has been conducted by electrochemical techniques. It is found that an ODT layer of standing-up molecules is obtained at short modification time without removing oxygen from the medium. The electrochemical study shows that the ODT layer formed after 15 min of modification time has similar electron-transfer blocking properties to the layers formed from organic solvents at much longer modification times. On the basis of XPS data, it is demonstrated that the inability to bind gold nanoparticles (AuNPs) is due to the presence of extra ODT molecules either interdigited or on top of the layer. Treatment consisting of an acid washing step following the formation of the ODT-Au(111) SAM produces a layer that is able to attach AuNPs as demonstrated by electrochemical techniques and atomic force microscopy (AFM) images.
Deng, Wei; Zhang, Xiujuan; Pan, Huanhuan; Shang, Qixun; Wang, Jincheng; Zhang, Xiaohong; Zhang, Xiwei; Jie, Jiansheng
2014-01-01
Single-crystal organic nanostructures show promising applications in flexible and stretchable electronics, while their applications are impeded by the large incompatibility with the well-developed photolithography techniques. Here we report a novel two-step transfer printing (TTP) method for the construction of organic nanowires (NWs) based devices onto arbitrary substrates. Copper phthalocyanine (CuPc) NWs are first transfer-printed from the growth substrate to the desired receiver substrate by contact-printing (CP) method, and then electrode arrays are transfer-printed onto the resulting receiver substrate by etching-assisted transfer printing (ETP) method. By utilizing a thin copper (Cu) layer as sacrificial layer, microelectrodes fabricated on it via photolithography could be readily transferred to diverse conventional or non-conventional substrates that are not easily accessible before with a high transfer yield of near 100%. The ETP method also exhibits an extremely high flexibility; various electrodes such as Au, Ti, and Al etc. can be transferred, and almost all types of organic devices, such as resistors, Schottky diodes, and field-effect transistors (FETs), can be constructed on planar or complex curvilinear substrates. Significantly, these devices can function properly and exhibit closed or even superior performance than the device counterparts fabricated by conventional approach. PMID:24942458
MRI temperature and velocity measurements in a fluid layer with heat transfer
NASA Astrophysics Data System (ADS)
Leclerc, S.; Métivier, C.
2018-02-01
Magnetic resonance thermometry (MRT) is an innovative technique which can provide 2D and 3D temperature measurements using magnetic resonance imaging (MRI). Despite the powerful advantages of MRT, this technique is sparcely developed and used in the engineering sciences. In this paper, we investigate the possibility to measure temperatures with MRI in a fluid layer submitted to heat transfer. By imposing a vertical temperature gradient, we study the temperature fields in both conductive and convective regimes. The temperature fields are obtained by measuring the transverse relaxation time T_2 in glycerol, a Newtonian fluid. The MRT protocol is described in detail and the results are presented. We show that for a conductive regime, temperature measurements are in very good agreement with the theoretical profile. In the convective regime, when comparing the temperature and velocity fields obtained by MRI, we get an excellent agreement in terms of flow structure. Temperature uncertainties are found to be less than 1°C for all our results.
Silicon on insulator achieved using electrochemical etching
McCarthy, A.M.
1997-10-07
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50 C or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense. 57 figs.
Silicon on insulator achieved using electrochemical etching
McCarthy, Anthony M.
1997-01-01
Bulk crystalline silicon wafers are transferred after the completion of circuit fabrication to form thin films of crystalline circuitry on almost any support, such as metal, semiconductor, plastic, polymer, glass, wood, and paper. In particular, this technique is suitable to form silicon-on-insulator (SOI) wafers, whereby the devices and circuits formed exhibit superior performance after transfer due to the removal of the silicon substrate. The added cost of the transfer process to conventional silicon fabrication is insignificant. No epitaxial, lift-off, release or buried oxide layers are needed to perform the transfer of single or multiple wafers onto support members. The transfer process may be performed at temperatures of 50.degree. C. or less, permits transparency around the circuits and does not require post-transfer patterning. Consequently, the technique opens up new avenues for the use of integrated circuit devices in high-brightness, high-resolution video-speed color displays, reduced-thickness increased-flexibility intelligent cards, flexible electronics on ultrathin support members, adhesive electronics, touch screen electronics, items requiring low weight materials, smart cards, intelligent keys for encryption systems, toys, large area circuits, flexible supports, and other applications. The added process flexibility also permits a cheap technique for increasing circuit speed of market driven technologies such as microprocessors at little added expense.
The metallurgy and processing science of metal additive manufacturing
Sames, William J.; List, III, Frederick Alyious; Pannala, Sreekanth; ...
2016-03-07
Here, additive Manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire, or sheets in a process that proceeds layer-by-layer.Many techniques (using many different names) have been developed to accomplish this via melting or solid - state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid- state precipitation, mechanical properties, and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Few alloys have been developedmore » for commercial production, but recent development efforts are presented as a path for the ongoing development of new materials for AM processes.« less
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1984-01-01
Aerodynamic surface heating rate distributions in three dimensional shock wave boundary layer interaction flow regions are presented for a generic set of model configurations representative of the aft portion of hypersonic aircraft. Heat transfer data were obtained using the phase change coating technique (paint) and, at particular spanwise and streamwise stations for sample cases, by the thin wall transient temperature technique (thermocouples). Surface oil flow patterns are also shown. The good accuracy of the detailed heat transfer data, as attested in part by their repeatability, is attributable partially to the comparatively high temperature potential of the NASA-Langley Mach 8 Variable Density Tunnel. The data are well suited to help guide heating analyses of Mach 8 aircraft, and should be considered in formulating improvements to empiric analytic methods for calculating heat transfer rate coefficient distributions.
NASA Astrophysics Data System (ADS)
Takahashi, K.; Ishida, H.; Sawada, K.
2018-01-01
We report the development of a microcavity drum sealed by suspended graphene. The drum is fabricated by using a low-pressure dry-transfer technique, which involves vacuum de-aeration between a graphene sheet and a substrate and raising the temperature to above the glass transition of the supporting poly(methyl methacrylate) film, which serves to increase the real contact area. The result is a suspended graphene sheet with a maximum diameter of 48.6 μm. The Raman spectrum of the suspended graphene has a 2D/G ratio of 1.79 and a few D peaks, which suggests that the material is high-quality single-layer graphene. The dry-transfer technique yields a vacuum-sealed microcavity drum 1.1 μm deep up to 4.5 μm in diameter. The Raman shift indicates that the suspended graphene is subjected to a tensile strain of 0.05%, which is attributed to the pressure difference between the evacuated cavity and the exterior gas.
Micro-Scale Regenerative Heat Exchanger
NASA Technical Reports Server (NTRS)
Moran, Matthew E.; Stelter, Stephan; Stelter, Manfred
2004-01-01
A micro-scale regenerative heat exchanger has been designed, optimized and fabricated for use in a micro-Stirling device. Novel design and fabrication techniques enabled the minimization of axial heat conduction losses and pressure drop, while maximizing thermal regenerative performance. The fabricated prototype is comprised of ten separate assembled layers of alternating metal-dielectric composite. Each layer is offset to minimize conduction losses and maximize heat transfer by boundary layer disruption. A grating pattern of 100 micron square non-contiguous flow passages were formed with a nominal 20 micron wall thickness, and an overall assembled ten-layer thickness of 900 microns. Application of the micro heat exchanger is envisioned in the areas of micro-refrigerators/coolers, micropower devices, and micro-fluidic devices.
Laser Material Processing for Microengineering Applications
NASA Technical Reports Server (NTRS)
Helvajian, H.
1995-01-01
The processing of materials via laser irradiation is presented in a brief survey. Various techniques currently used in laser processing are outlined and the significance to the development of space qualified microinstrumentation are identified. In general the laser processing technique permits the transferring of patterns (i.e. lithography), machining (i.e. with nanometer precision), material deposition (e.g., metals, dielectrics), the removal of contaminants/debris/passivation layers and the ability to provide process control through spectroscopy.
Zhang, Yongzhe; Liu, Yanxia; Li, Xiaodong; Wang, Qi Jie; Xie, Erqing
2011-10-14
Achieving red emission from ZnO-based materials has long been a goal for researchers in order to realize, for instance, full-color display panels and solid-state light-emitting devices. However, the current technique using Eu(3+) doped ZnO for red emission generation has a significant drawback in that the energy transfer from ZnO to Eu(3+) is inefficient, resulting in a low intensity red emission. In this paper, we report an efficient energy transfer scheme for enhanced red emission from Eu(3+) doped ZnO nanocrystals by fabricating polymer nanofibers embedded with Eu(3+) doped ZnO nanocrystals to facilitate the energy transfer. In the fabrication, ZnO nanocrystals are uniformly dispersed in polymer nanofibers prepared by the high electrical field electrospinning technique. Enhanced red emission without defect radiation from the ZnO matrix is observed. Three physical mechanisms for this observation are provided and explained, namely a small ZnO crystal size, uniformity distribution of ZnO nanocrystals in polymers (PVA in this case), and strong bonding between ZnO and polymer through the -OH group bonding. These explanations are supported by high resolution transmission emission microscopy measurements, resonant Raman scattering characterizations, photoluminescence spectra and photoluminescence excitation spectra measurements. In addition, two models exploring the 'accumulation layer' and 'depletion layer' are developed to explain the reasons for the more efficient energy transfer in our ZnO nanocrystal system compared to that in the previous reports. This study provides an important approach to achieve enhanced energy transfer from nanocrystals to ions which could be widely adopted in rare earth ion doped materials. These discoveries also provide more insights into other energy transfer problems in, for example, dye-sensitized solar cells and quantum dot solar cells.
Boundary Layer Measurements in a Supersonic Wind Tunnel Using Doppler Global Velocimetry
NASA Technical Reports Server (NTRS)
Meyers, James F.; Lee, Joseph W.; Cavone, Angelo A.
2010-01-01
A modified Doppler Global Velocimeter (DGV) was developed to measure the velocity within the boundary layer above a flat plate in a supersonic flow. Classic laser velocimetry (LV) approaches could not be used since the model surface was composed of a glass-ceramic insulator in support of heat-transfer measurements. Since surface flare limited the use of external LV techniques and windows placed in the model would change the heat transfer characteristics of the flat plate, a novel approach was developed. The input laser beam was divided into nine equal power beams and each transmitted through optical fibers to a small cavity within the model. The beams were then directed through 1.6-mm diameter orifices to form a series of orthogonal beams emitted from the model and aligned with the tunnel centerline to approximate a laser light sheet. Scattered light from 0.1-micron diameter water condensation ice crystals was collected by four 5-mm diameter lenses and transmitted by their respective optical fiber bundles to terminate at the image plane of a standard two-camera DGV receiver. Flow measurements were made over a range from 0.5-mm above the surface to the freestream at Mach 3.51 in steady state and heat pulse injected flows. This technique provides a unique option for measuring boundary layers in supersonic flows where seeding the flow is problematic or where the experimental apparatus does not provide the optical access required by other techniques.
NASA Technical Reports Server (NTRS)
Camci, C.; Kim, K.; Hippensteele, S. A.
1992-01-01
A new image processing based color capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies is presented. This method is highly applicable to the surfaces exposed to convective heating in gas turbine engines. It is shown that, in the single-crystal mode, many of the colors appearing on the heat transfer surface correlate strongly with the local temperature. A very accurate quantitative approach using an experimentally determined linear hue vs temperature relation is found to be possible. The new hue-capturing process is discussed in terms of the strength of the light source illuminating the heat transfer surface, the effect of the orientation of the illuminating source with respect to the surface, crystal layer uniformity, and the repeatability of the process. The present method is more advantageous than the multiple filter method because of its ability to generate many isotherms simultaneously from a single-crystal image at a high resolution in a very time-efficient manner.
NASA Astrophysics Data System (ADS)
Grafe, S.; Hengst, P.; Buchwalder, A.; Zenker, R.
2018-06-01
The electron beam hardening (EBH) process is one of today’s most innovative industrial technologies. Due to the almost inertia-free deflection of the EB (up to 100 kHz), the energy transfer function can be adapted locally to the component geometry and/or loading conditions. The current state-of-the-art technology is that of EBH with continuous workpiece feed. Due to the large range of parameters, the potentials and limitations of EBH using the flash technique (without workpiece feed) have not been investigated sufficiently to date. The aim of this research was to generate surface isothermal energy transfer within the flash field. This paper examines the effects of selected process parameters on the EBH surface layer microstructure and the properties achieved when treating hardened and tempered C45E steel. When using constant point distribution within the flash field and a constant beam current, surface isothermal energy input was not generated. However, by increasing the deflection frequency, point density and beam current, a more homogeneous EBH surface layer microstructure could be achieved, along with higher surface hardness and greater surface hardening depths. Furthermore, using temperature-controlled power regulation, surface isothermal energy transfer could be realised over a larger area in the centre of the sample.
NASA Astrophysics Data System (ADS)
Marchena, Miriam; Wagner, Frederic; Arliguie, Therese; Zhu, Bin; Johnson, Benedict; Fernández, Manuel; Lai Chen, Tong; Chang, Theresa; Lee, Robert; Pruneri, Valerio; Mazumder, Prantik
2018-07-01
We demonstrate the direct transfer of graphene from Cu foil to rigid and flexible substrates, such as glass and PET, using as an intermediate layer a thin film of polyimide (PI) mixed with an aminosilane (3-aminopropyltrimethoxysilane) or only PI, respectively. While the dry removal of graphene by an adhesive has been previously demonstrated—being removed from graphite by scotch tape or from a Cu foil by thick epoxy (~20 µm) on Si—our work is the first step towards making a substrate ready for device fabrication using the polymer-free technique. Our approach leads to an article that is transparent, thermally stable—up to 350 °C—and free of polymer residues on the device side of the graphene, which is contrary to the case of the standard wet-transfer process using PMMA. Also, in addition to previous novelty, our technique is fast and easier by using current industrial technology—a hot press and a laminator—with Cu recycling by its mechanical peel-off; it provides high interfacial stability in aqueous media and it is not restricted to a specific material—polyimide and polyamic acids can be used. All the previous reasons demonstrate a feasible process that enables device fabrication.
NASA Technical Reports Server (NTRS)
Dejarnette, F. R.
1972-01-01
A relatively simple method is presented for including the effect of variable entropy at the boundary-layer edge in a heat transfer method developed previously. For each inviscid surface streamline an approximate shockwave shape is calculated using a modified form of Maslen's method for inviscid axisymmetric flows. The entropy for the streamline at the edge of the boundary layer is determined by equating the mass flux through the shock wave to that inside the boundary layer. Approximations used in this technique allow the heating rates along each inviscid surface streamline to be calculated independent of the other streamlines. The shock standoff distances computed by the present method are found to compare well with those computed by Maslen's asymmetric method. Heating rates are presented for blunted circular and elliptical cones and a typical space shuttle orbiter at angles of attack. Variable entropy effects are found to increase heating rates downstream of the nose significantly higher than those computed using normal-shock entropy, and turbulent heating rates increased more than laminar rates. Effects of Reynolds number and angles of attack are also shown.
Control of Thermal Convection in Layered Fluids Using Magnetic fields
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Leslie, F. W.
2003-01-01
Immiscible fluid layers are found in a host of applications ranging from materials processing, for example the use of encapsulants in float zone crystal growth technique and a buffer layer in industrial Czochralski growth of crystals to prevent Marangoni convection, to heat transfer phenomena in day-to-day processes like the presence of air pockets in heat exchangers. In the microgravity and space processing realm, the exploration of other planets requires the development of enabling technologies in several fronts. The reduction in the gravity level poses unique challenges for fluid handling and heat transfer applications. The present work investigates the efficacy of controlling thermal convective flow using magnetic fluids and magnetic fields. The setup is a two-layer immiscible liquids system with one of the fluids being a diluted ferrofluid (super paramagnetic nano particles dispersed in carrier fluid). Using an external magnetic field one can essentially dial in a volumetric force - gravity level, on the magnetic fluid and thereby affect the system thermo-fluid behavior. The paper will describe the experimental and numerical modeling approach to the problem and discuss results obtained to date.
Crystallographic effects during radiative melting of semitransparent materials
NASA Astrophysics Data System (ADS)
Webb, B. W.; Viskanta, R.
1987-10-01
Experiments have been performed to illustrate crystallogrpahic effects during radiative melting of unconfined vertical layers of semitransparent material. Radiative melting of a polycrystalline paraffin was performed and the instantaneous layer weight and transmittance were measured using a cantilever beam technique and thermopile radiation detector, respectively. The effects of radiative flux, initial solid subcooling, spectral distribution of the irradiation, and crystal structure of the solid as determined qualitatively by the sample solidification rate were studied. Experimental results show conclusively the dominant influence of cystallographic effects in the form of multiple internal scattering of radiation during the melting process. A theoretical model is formulated to predict the melting rate of the material. Radiation transfer is treated by solving the one-dimensional radiative transfer equation for an absorbing-scattering medium using the discrete ordinates method. Melting rate and global layer reflectance as predicted by the model agree well with experimental data. Parametric studies conducted with the model illustrate the sensitivity of the melting behavior to such variables as incident radiative flux, initial layer opacity (material extinction coefficient), and scattering asymmetry factor.
Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng
2016-11-15
Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.
Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan Li; He Qiang; Max Planck Institute of Colloids and Interfaces, Golm/Potsdam D-14476
2007-03-09
Hemoglobin (Hb) protein microcapsules held together by cross-linker, glutaraldehyde (GA), were successfully fabricated by covalent layer-by-layer (LbL) technique. The Schiff base reaction occurred on the colloid templates between the aldehyde groups of GA and free amino sites of Hb results in the formation of GA/Hb microcapsules after the removal of the templates. The structure of obtained monodisperse protein microcapsule was characterized by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The UV-Vis spectra measurements demonstrate the existence of Hb in the assembled capsules. Cyclic voltammetry (CV) and potential-controlled amperometric measurements (I-t curve) confirm that hemoglobin microcapsules after fabricationmore » remain their heme electroactivity. Moreover, direct electron transfer process from protein to electrode surface was performed to detect the heme electrochemistry without using any mediator or promoter. The experiments of fluorescence recovery after photobleaching (FRAP) by CLSM demonstrate that the hemoglobin protein microcapsules have an improved permeability comparing to the conventional polyelectrolyte microcapsules.« less
Analytical and numerical solutions for mass diffusion in a composite cylindrical body
NASA Astrophysics Data System (ADS)
Kumar, A.
1980-12-01
The analytical and numerical solution techniques were investigated to study moisture diffusion problems in cylindrical bodies that are assumed to be composed of a finite number of layers of different materials. A generalized diffusion model for an n-layer cylindrical body with discontinuous moisture content at the interfaces was developed and the formal solutions were obtained. The model is to be used for describing mass transfer rates of any composite body, such as an ear of corn which could be assumed of consisting two different layers: the inner core represents the woody cob and the outer cylinder represents the kernel layer. Data describing the fully exposed drying characteristics of ear corn at high air velocity were obtained under different drying conditions. Ear corns were modeled as homogeneous bodies since composite model did not improve the fit substantially. A computer program using multidimensional optimization technique showed that diffusivity was an exponential function of moisture content and an arrhenius function of temperature of drying air.
NASA Astrophysics Data System (ADS)
Turner, Peter
2016-05-01
A 2-dimensional radiation analysis has been developed to analyse the radiative efficiency of an arrangement of heat transfer tubes distributed in layers but spaced apart to form a tubed, volumetric receiver. Such an arrangement could be suitable for incorporation into a cavity receiver. Much of the benefit of this volumetric approach is gained after using 5 layers although improvements do continue with further layers. The radiation analysis splits each tube into multiple segments in which each segment surface can absorb, reflect and radiate rays depending on its surface temperature. An iterative technique is used to calculate appropriate temperatures depending on the distribution of the net energy absorbed and assuming that the cool heat transfer fluid (molten salt) starts at the front layer and flows back through successive layers to the rear of the cavity. Modelling the finite diameter of each layer of tubes increases the ability of a layer to block radiation scattered at acute angles and this effect is shown to reduce radiation losses by nearly 25% compared to the earlier 1-d analysis. Optimum efficient designs tend to occur when the blockage factor is 0.2 plus the inverse of the number of tube layers. It is beneficial if the distance between successive layers is ≥ 2 times the diameter of individual tubes and in this situation, if the incoming radiation is spread over a range of angles, the performance is insensitive to the degree of any tube positional offset or stagger between layers.
NASA Astrophysics Data System (ADS)
Shekhar, Himanshu; Tzabari, Lior; Solomeshch, Olga; Tessler, Nir
2016-10-01
We have investigated the influence of the active layer thickness on the balance of the internal mechanisms affecting the efficiency of copper phthalocyanine - fullerene (C60) based vacuum deposited bulk heterojunction organic photocell. We fabricated a range of devices for which we varied the thickness of the active layer from 40 to 120 nm and assessed their performance using optical and electrical characterization techniques. As reported previously for phthalocyanine:C60, the performance of the device is highly dependent on the active layer thickness and of all the thicknesses we tried, the 40 nm thin active layer device showed the best solar cell characteristic parameters. Using the transfer matrix based optical model, which includes interference effects, we calculated the optical power absorbed in the active layers for the entire absorption band, and we found that this cannot explain the trend with thickness. Measurement of the cell quantum efficiency as a function of light intensity showed that the relative weight of the device internal processes changes when going from 40 nm to 120 nm thick active layer. Electrical modeling of the device, which takes different internal processes into account, allowed to quantify the changes in the processes affecting the generation - recombination balance. Sub gap external quantum efficiency and morphological analysis of the surface of the films agree with the model's result. We found that as the thickness grows the density of charge transfer states and of dark carriers goes up and the uniformity in the vertical direction is reduced.
NASA Technical Reports Server (NTRS)
Cheatwood, F. Mcneil; Dejarnette, Fred R.
1991-01-01
An approximate axisymmetric method was developed which can reliably calculate fully viscous hypersonic flows over blunt nosed bodies. By substituting Maslen's second order pressure expression for the normal momentum equation, a simplified form of the viscous shock layer (VSL) equations is obtained. This approach can solve both the subsonic and supersonic regions of the shock layer without a starting solution for the shock shape. The approach is applicable to perfect gas, equilibrium, and nonequilibrium flowfields. Since the method is fully viscous, the problems associated with a boundary layer solution with an inviscid layer solution are avoided. This procedure is significantly faster than the parabolized Navier-Stokes (PNS) or VSL solvers and would be useful in a preliminary design environment. Problems associated with a previously developed approximate VSL technique are addressed before extending the method to nonequilibrium calculations. Perfect gas (laminar and turbulent), equilibrium, and nonequilibrium solutions were generated for airflows over several analytic body shapes. Surface heat transfer, skin friction, and pressure predictions are comparable to VSL results. In addition, computed heating rates are in good agreement with experimental data. The present technique generates its own shock shape as part of its solution, and therefore could be used to provide more accurate initial shock shapes for higher order procedures which require starting solutions.
Solutal separation in a binary nanofluid due to thermodiffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saghir, M.Z.; Yousefi, T.; Farahbakhsh, B.
2015-03-10
Transport phenomena in porous media have received considerable attention due to an increasing interest in geothermal processes, chemical catalytic reactors, waste storage (especially geological or ocean storage of carbon dioxide), etc. Among others, oil industry has shown an increasing interest in studying diffusion phenomenon. Nanofluid is a term used to describe the suspension of low concentration of metallic and non-metallic nanoparticles in a base fluid. The size of a nanoparticle ranges from 10 to 100nm, and the conventional fluids used are water, ethylene glycol (C{sub 2}H{sub 6}O{sub 2}) or engine oil. Various studies have proven that nanoparticles improve the heatmore » transfer of a base fluid. However, using various nanofluids it has been shown that the results could vary depending on different initial concentrations. The main objective of this paper is to study the diffusion and the thermodiffusion effect in a nanofluid for different fluid/porous media configurations. In this configuration, a liquid layer surrounds a porous layer. The full Brinkman equation coupled with the heat and mass transfer equations have been solved numerically for the porous layer using the finite element technique. The full Navier stokes equation coupled with heat and mass transfer equations have been solved for the liquid layer using the finite element method. A constraint between the liquid and porous layer has been applied to ensure heat flow and mass transfer continuity is maintained. A square cavity filled with hydrocarbon nanofluid of a mixture of fullerene-toluene with varying concentration of fullerene has been subject to different heating conditions. The entire cavity has been considered to be fully wetted with nanofluid. Results have confirmed that in the presence of a nanofluid a heat transfer enhancement is present up to certain initial concentration of the fullerene. The heat convection coefficient has been found to be 16% higher when a nanofluid is used as the working fluid.« less
NASA Technical Reports Server (NTRS)
Clark, J. P.; Jones, T. V.; LaGraff, J. E.
2007-01-01
A series of experiments are described which examine the growth of turbulent spots on a flat plate at Reynolds and Mach numbers typical of gas-turbine blading. A short-duration piston tunnel is employed and rapid-response miniature surface-heat-transfer gauges are used to asses the state of the boundary layer. The leading- and trailing-edge velocities of spots are reported for different external pressure gradients and Mach numbers. Also, the lateral spreading angle is determined from the heat-transfer signals which demonstrate dramatically the reduction in spot growth associated with favorable pressure gradients. An associated experiment on the development of turbulent wedges is also reported where liquid-crystal heat-transfer techniques are employed in low-speed wind tunnel to visualize and measure the wedge characteristics. Finally, both liquid crystal techniques and hot-film measurements from flight tests at Mach number of 0.6 are presented.
NASA Technical Reports Server (NTRS)
Venable, D. D.
1980-01-01
A radiative transfer computer model was developed to characterize the total flux of chlorophyll a fluoresced or backscattered photons when laser radiation is incident on turbid water that contains a non-homogeneous suspension of inorganic sediments and phytoplankton. The radiative transfer model is based on the Monte Carlo technique and assumes that: (1) the aquatic medium can be represented by a stratified concentration profile; and (2) that appropriate optical parameters can be defined for each layer. The model was designed to minimize the required computer resources and run time. Results are presented for an anacystis marinus culture.
Xu, Zai-Quan; Zhang, Yupeng; Lin, Shenghuang; Zheng, Changxi; Zhong, Yu Lin; Xia, Xue; Li, Zhipeng; Sophia, Ponraj Joice; Fuhrer, Michael S; Cheng, Yi-Bing; Bao, Qiaoliang
2015-06-23
Two-dimensional layered transition metal dichalcogenides (TMDs) show intriguing potential for optoelectronic devices due to their exotic electronic and optical properties. Only a few efforts have been dedicated to large-area growth of TMDs. Practical applications will require improving the efficiency and reducing the cost of production, through (1) new growth methods to produce large size TMD monolayer with less-stringent conditions, and (2) nondestructive transfer techniques that enable multiple reuse of growth substrate. In this work, we report to employ atmospheric pressure chemical vapor deposition (APCVD) for the synthesis of large size (>100 μm) single crystals of atomically thin tungsten disulfide (WS2), a member of TMD family, on sapphire substrate. More importantly, we demonstrate a polystyrene (PS) mediated delamination process via capillary force in water which reduces the etching time in base solution and imposes only minor damage to the sapphire substrate. The transferred WS2 flakes are of excellent continuity and exhibit comparable electron mobility after several growth cycles on the reused sapphire substrate. Interestingly, the photoluminescence emission from WS2 grown on the recycled sapphire is much higher than that on fresh sapphire, possibly due to p-type doping of monolayer WS2 flakes by a thin layer of water intercalated at the atomic steps of the recycled sapphire substrate. The growth and transfer techniques described here are expected to be applicable to other atomically thin TMD materials.
Experimental determination of heat transfer in a Poiseuille-Rayleigh-Bénard flow
NASA Astrophysics Data System (ADS)
Taher, R.; Abid, C.
2018-05-01
This paper deals with an experimental study of heat transfer in a Poiseuille-Rayleigh-Bénard flow. This situation corresponds to a mixed convection phenomenon in a horizontal rectangular channel uniformly heated from below. Flow visualisation and temperature measurements were achieved in order to describe the flow regimes and heat transfer behaviour. The classical measurement techniques such employing thermocouples give local measurement on one hand and on other hand they often disturb the flow. As the flow is three-dimensional, these techniques are not efficient. In order to not disturb the flow, a non-intrusive method is used for thermal measurement. The Planar laser Induced Fluorescence (PLIF) was implemented to determine thermal fields in the fluid. Experiments conducted for various Reynolds and Rayleigh numbers allow to determine the heat transfer and thus to propose correlation for Nusselt number for a mixed convection flow in Poiseuille-Rayleigh-Bénard configuration. First a description of the use of this technique in water flow is presented and then the obtained results for various Reynolds and Rayleigh numbers allow to propose a correlation for the Nusselt number for such configuration of mixed convection. The comparison between the obtained heat transfer and the pure forced convection one confirms the well-known result that the convective heat transfer is greatly enhanced in mixed convection. Indeed, secondary flow induced by buoyant forces contributes to the refreshment of thermal boundary layers and so acts like mixers, which significantly enhances heat transfer.
Heat and mass transfer in combustion - Fundamental concepts and analytical techniques
NASA Technical Reports Server (NTRS)
Law, C. K.
1984-01-01
Fundamental combustion phenomena and the associated flame structures in laminar gaseous flows are discussed on physical bases within the framework of the three nondimensional parameters of interest to heat and mass transfer in chemically-reacting flows, namely the Damkoehler number, the Lewis number, and the Arrhenius number which is the ratio of the reaction activation energy to the characteristic thermal energy. The model problems selected for illustration are droplet combustion, boundary layer combustion, and the propagation, flammability, and stability of premixed flames. Fundamental concepts discussed include the flame structures for large activation energy reactions, S-curve interpretation of the ignition and extinctin states, reaction-induced local-similarity and non-similarity in boundary layer flows, the origin and removal of the cold boundary difficulty in modeling flame propagation, and effects of flame stretch and preferential diffusion on flame extinction and stability. Analytical techniques introduced include the Shvab-Zeldovich formulation, the local Shvab-Zeldovich formulation, flame-sheet approximation and the associated jump formulation, and large activation energy matched asymptotic analysis. Potentially promising research areas are suggested.
Blade Heat Transfer Measurements and Prediction in a Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
Giel, P. W.; VanFossen, G. J.; Boyle, R. J.; Thurman, D. R.; Civinskas, K. C.
1999-01-01
Detailed heat transfer measurements and predictions are given for a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. Data were obtained for inlet Reynolds numbers of 0.5 and 1.0 x 10(exp 6), for isentropic exit Mach numbers of 1.0 and 1.3, and for inlet turbulence intensities of 0.25% and 7.0%. Measurements were made in a linear cascade having a highly three-dimensional flow field resulting from thick inlet boundary layers. The purpose of the work is to provide benchmark quality data for three-dimensional CFD code and model verification. Data were obtained by a steady-state technique using a heated, isothermal blade. Heat fluxes were determined from a calibrated resistance layer in conjunction with a surface temperature measured by calibrated liquid crystals. The results show the effects of strong secondary vortical flows, laminar-to-turbulent transition, shock impingement, and increased inlet turbulence on the surface heat transfer.
NASA Technical Reports Server (NTRS)
Wang, Chi R.; Yeh, Frederick C.
1987-01-01
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.
NASA Astrophysics Data System (ADS)
Xie, Qi
Heat transfer in a turbulent boundary layer downstream of junction with a cylinder has many engineering applications including controlling heat transfer to the endwall in gas turbine passages and cooling of protruding electronic chips. The main objective of this research is to study the fundamental process of heat transport and wall heat transfer in a turbulent three-dimensional flow superimposed with local large-scale periodic unsteadiness generated by vortex shedding from the cylinder. Direct measurements of the Reynolds heat fluxes (/line{utheta},\\ /line{vtheta}\\ and\\ /line{wtheta}) and time-resolved wall heat transfer rate will provide insight into unsteady flow behavior and data for advanced turbulence models for numerical simulation of complex engineering flows. Experiments were conducted in an open-circuit, low-speed wind tunnel. Reynolds stresses and heat fluxes were obtained from turbulent heat-flux probes which consisted of two hot wires, arranged in an X-wire configuration, and a cold wire located in front of the X-wire. Thin-film surface heat flux sensors were designed for measuring time-resolved wall heat flux. A reference probe and conditional-sampling technique connected the flow field dynamics to wall heat transfer. An event detecting and ensemble-averaging method was developed to separate effects of unsteadiness from those of background turbulence. Results indicate that unsteadiness affects both heat transport and wall heat transfer. The flow behind the cylinder can be characterized by three regions: (1) Wake region, where unsteadiness is observed to have modest effect; (2) Unsteady region, where the strongest unsteadiness effect is found; (3) Outer region, where the flow approaches the two-dimensional boundary-layer behavior. Vortex shedding from both sides of the cylinder contributes to mixing enhancement in the wake region. Unsteadiness contributes up to 51% of vertical and 59% of spanwise turbulent heat fluxes in the unsteady region. The instantaneous wall Stanton number increased up to 100% compared with an undisturbed flow. Large-scale fluctuations of wall Stanton number were due to the periodic thinning and thickening of the thermal layer caused by periodic vertical velocity fluctuations. This suggests that the outerlayer motion affects near-wall flow behavior and wall heat transfer.
NASA Technical Reports Server (NTRS)
Shoji, J. M.; Larson, V. R.
1976-01-01
The application of advanced liquid-bipropellant rocket engine analysis techniques has been utilized for prediction of the potential delivered performance and the design of thruster wall cooling schemes for laser-heated rocket thrusters. Delivered specific impulse values greater than 1000 lbf-sec/lbm are potentially achievable based on calculations for thrusters designed for 10-kW and 5000-kW laser beam power levels. A thruster wall-cooling technique utilizing a combination of regenerative cooling and a carbon-seeded hydrogen boundary layer is presented. The flowing carbon-seeded hydrogen boundary layer provides radiation absorption of the heat radiated from the high-temperature plasma. Also described is a forced convection thruster wall cooling design for an experimental test thruster.
NASA Astrophysics Data System (ADS)
Randolph, Steven Jeffrey
Electron-beam-induced deposition (EBID) is a highly versatile nanofabrication technique that allows for growth of a variety of materials with nanoscale precision and resolution. While several applications and studies of EBID have been reported and published, there is still a significant lack of understanding of the complex mechanisms involved in the process. Consequently, EBID process control is, in general, limited and certain common experimental results regarding nanofiber growth have yet to be fully explained. Such anomalous results have been addressed in this work both experimentally and by computer simulation. Specifically, a correlation between SiOx nanofiber deposition observations and the phenomenon of electron beam heating (EBH) was shown by comparison of thermal computer models and experimental results. Depending on the beam energy, beam current, and nanostructure geometry, the heat generated can be substantial and may influence the deposition rate. Temperature dependent EBID growth experiments qualitatively verified the results of the EBH model. Additionally, EBID was used to produce surface image layers for maskless, direct-write lithography (MDL). A single layer process used directly written SiOx features as a masking layer for amorphous silicon thin films. A bilayer process implemented a secondary masking layer consisting of standard photoresist into which a pattern---directly written by EBID tungsten---was transferred. The single layer process was found to be extremely sensitive to the etch selectivity of the plasma etch. In the bilayer process, EBID tungsten was written onto photoresist and the pattern transferred by means of oxygen plasma dry development following a brief refractory descum. Conditions were developed to reduce the spatial spread of electrons in the photoresist layer and obtain ˜ 35 nm lines. Finally, an EBID-based technique for field emitter repair was applied to the Digital Electrostatically focused e-beam Array Lithography (DEAL) parallel electron beam lithography configuration to repair damaged or missing carbon nanofiber cathodes. The I-V response and lithography results from EBID tungsten-based devices were comparable to CNF-based DEAL devices indicating a successful repair technique.
NASA Astrophysics Data System (ADS)
Gladden, H. J.; Proctor, M. P.
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Proctor, M. P.
1985-01-01
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer
NASA Astrophysics Data System (ADS)
Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.
2017-12-01
The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.
Vertical Photon Transport in Cloud Remote Sensing Problems
NASA Technical Reports Server (NTRS)
Platnick, S.
1999-01-01
Photon transport in plane-parallel, vertically inhomogeneous clouds is investigated and applied to cloud remote sensing techniques that use solar reflectance or transmittance measurements for retrieving droplet effective radius. Transport is couched in terms of weighting functions which approximate the relative contribution of individual layers to the overall retrieval. Two vertical weightings are investigated, including one based on the average number of scatterings encountered by reflected and transmitted photons in any given layer. A simpler vertical weighting based on the maximum penetration of reflected photons proves useful for solar reflectance measurements. These weighting functions are highly dependent on droplet absorption and solar/viewing geometry. A superposition technique, using adding/doubling radiative transfer procedures, is derived to accurately determine both weightings, avoiding time consuming Monte Carlo methods. Superposition calculations are made for a variety of geometries and cloud models, and selected results are compared with Monte Carlo calculations. Effective radius retrievals from modeled vertically inhomogeneous liquid water clouds are then made using the standard near-infrared bands, and compared with size estimates based on the proposed weighting functions. Agreement between the two methods is generally within several tenths of a micrometer, much better than expected retrieval accuracy. Though the emphasis is on photon transport in clouds, the derived weightings can be applied to any multiple scattering plane-parallel radiative transfer problem, including arbitrary combinations of cloud, aerosol, and gas layers.
The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutherland, Kevin Jerome
Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronicmore » devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.« less
Thin Film Catalyst Layers for Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.
2000-01-01
One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.
NASA Astrophysics Data System (ADS)
Hung, L. S.; Zheng, L. R.
1992-05-01
Fine line structures of ceramic thin films were fabricated by patterning of metalorganic precursors using photolithography and ion beams. A trilevel structure was developed with an outer resist layer to transfer patterns, a silver delineated layer as an implantation mask, and a planar resist layer protecting the precursor film from chemical attacking and sputtering. Ion irradiation through the Ag stencil rendered metal carboxylates insoluble in 2-ethylhexanoic acid, permitting patterning of the precursor film with patterning features on micron scales. The potential of this technique was demonstrated in patterning of Bi2Sr2CaCu2O(8+x) and Pb(Zr(0.53)Ti(0.47) thin films.
NASA Astrophysics Data System (ADS)
Marta, Bogdan; Leordean, Cosmin; Istvan, Todor; Botiz, Ioan; Astilean, Simion
2016-02-01
Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.
Self-focused ZnO transducers for ultrasonic biomicroscopy
NASA Astrophysics Data System (ADS)
Cannata, J. M.; Williams, J. A.; Zhou, Q. F.; Sun, L.; Shung, K. K.; Yu, H.; Kim, E. S.
2008-04-01
A simple fabrication technique was developed to produce high frequency (100MHz) self-focused single element transducers with sputtered zinc oxide (ZnO) crystal films. This technique requires the sputtering of a ZnO film directly onto a curved backing substrate. Transducers were fabricated by sputtering an 18μm thick ZnO layer on 2mm diameter aluminum rods with ends shaped and polished to produce a 2mm focus or f-number equal to one. The aluminum rod served a dual purpose as the backing layer and positive electrode for the resultant transducers. A 4μm Parylene matching layer was deposited on the transducers after housing and interconnect. This matching layer was used to protect the substrate and condition the transfer of acoustic energy between the ZnO film and the load medium. The pulse-echo response for a representative transducer was centered at 101MHz with a -6dB bandwidth of 49%. The measured two way insertion loss was 44dB. A tungsten wire phantom and an adult zebrafish eye were imaged to show the capability of these transducers.
NASA Astrophysics Data System (ADS)
Kasikov, Aarne; Kahro, Tauno; Matisen, Leonard; Kodu, Margus; Tarre, Aivar; Seemen, Helina; Alles, Harry
2018-04-01
Graphene layers grown by chemical vapour deposition (CVD) method and transferred from Cu-foils to the oxidized Si-substrates were investigated by spectroscopic ellipsometry (SE), Raman and X-Ray Photoelectron Spectroscopy (XPS) methods. The optical properties of transferred CVD graphene layers do not always correspond to the ones of the exfoliated graphene due to the contamination from the chemicals used in the transfer process. However, the real thickness and the mean properties of the transferred CVD graphene layers can be found using ellipsometry if a real thickness of the SiO2 layer is taken into account. The pulsed laser deposition (PLD) and atomic layer deposition (ALD) methods were used to grow dielectric layers on the transferred graphene and the obtained structures were characterized using optical methods. The approach demonstrated in this work could be useful for the characterization of various materials grown on graphene.
Laser induced forward transfer of SnO2 for sensing applications using different precursors systems
NASA Astrophysics Data System (ADS)
Mattle, Thomas; Hintennach, Andreas; Lippert, Thomas; Wokaun, Alexander
2013-02-01
This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 ∘C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.
Macroscale Transformation Optics Enabled by Photoelectrochemical Etching.
Barth, David S; Gladden, Christopher; Salandrino, Alessandro; O'Brien, Kevin; Ye, Ziliang; Mrejen, Michael; Wang, Yuan; Zhang, Xiang
2015-10-28
Photoelectrochemical etching of silicon can be used to form lateral refractive index gradients for transformation optical devices. This technique allows the fabrication of macroscale devices with large refractive index gradients. Patterned porous layers can also be lifted from the substrate and transferred to other materials, creating more possibilities for novel devices. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kavitha, M K; Gopinath, Pramod; John, Honey
2015-06-14
ZnO is a wide direct bandgap semiconductor; its absorption can be tuned to the visible spectral region by controlling the intrinsic defect levels. Combining graphene with ZnO can improve its performance by photo-induced charge separation by ZnO and electronic transport through graphene. When reduced graphene oxide-ZnO is prepared by a hydrothermal method, the photophysical studies indicate that oxygen vacancy defect states are healed out by diffusion of oxygen from GO to ZnO during its reduction. Because of the passivation of oxygen vacancies, the visible light photoconductivity of the hybrid is depleted, compared to pure ZnO. In order to overcome this reduction in photocurrent, a photoelectrode is fabricated by layer-by-layer (LBL) self-assembly of ZnO and reduced graphene oxide. The multilayer films are fabricated by the electrostatic LBL self-assembly technique using negatively charged poly(sodium 4-styrene sulfonate)-reduced graphene oxide (PSS-rGO) and positively charged polyacrylamide-ZnO (PAM-ZnO) as building blocks. The multilayer films fabricated by this technique will be highly interpenetrating; it will enhance the interaction between the ZnO and rGO perpendicular to the electrode surface. Upon illumination under bias voltage defect assisted excitation occurs in ZnO and the photogenerated charge carriers can transfer to graphene. The electron transferred to graphene sheets can recombine in two ways; either it can recombine with the holes in the valence band of ZnO in its bilayer or the ZnO in the next bilayer. This type of tunnelling of electrons from graphene to the successive bilayers will result in efficient charge transfer. This transfer and propagation of electron will enhance as the number of bilayers increases, which in turn improve the photocurrent of the multilayer films. Therefore this self-assembly technique is an effective approach to fabricate semiconductor-graphene films with excellent conductivity.
Photonic band structures solved by a plane-wave-based transfer-matrix method.
Li, Zhi-Yuan; Lin, Lan-Lan
2003-04-01
Transfer-matrix methods adopting a plane-wave basis have been routinely used to calculate the scattering of electromagnetic waves by general multilayer gratings and photonic crystal slabs. In this paper we show that this technique, when combined with Bloch's theorem, can be extended to solve the photonic band structure for 2D and 3D photonic crystal structures. Three different eigensolution schemes to solve the traditional band diagrams along high-symmetry lines in the first Brillouin zone of the crystal are discussed. Optimal rules for the Fourier expansion over the dielectric function and electromagnetic fields with discontinuities occurring at the boundary of different material domains have been employed to accelerate the convergence of numerical computation. Application of this method to an important class of 3D layer-by-layer photonic crystals reveals the superior convergency of this different approach over the conventional plane-wave expansion method.
NASA Technical Reports Server (NTRS)
Carollo, S. F.; Davis, J. M.; Dance, W. E.
1973-01-01
Two types of sensor designs were investigated: (1)a polysulfone dielectric film with vapor-deposited aluminum and gold sensor plates, bonded to a relatively thick aluminum substrate, and (2) an aluminum oxide (A1203) dielectric layer prepared on an aluminum substrate by anodization, with a layer of vapor-deposited aluminum providing one sensor plate and the substrate serving as the other plate. In the first design, specimens were prepared which indicate the state of the art for application of this type of sensor for elements of a meteoroid detection system having an area as large as 10 sq M. Techniques were investigated for casting large-area polysulfone films on the surface of water and for transferring the films from the water. Methods of preparing sensors by layering of films, the deposition of capacitor plates, and sensor film-to-substrate bonding, as well as techniques for making electrical connections to the capacitor plates, were studied.
Evaluation of analytical procedures for prediction of turbulent boundary layers on a porous wall
NASA Technical Reports Server (NTRS)
Towne, C. E.
1974-01-01
An analytical study has been made to determine how well current boundary layer prediction techniques work when there is mass transfer normal to the wall. The data that were considered in this investigation were for two-dimensional, incompressible, turbulent boundary layers with suction and blowing. Some of the bleed data were taken in an adverse pressure gradient. An integral prediction method was used three different porous wall skin friction relations, in addition to a solid-surface relation for the suction cases. A numerical prediction method was also used. Comparisons were made between theoretical and experimental skin friction coefficients, displacement and momentum thicknesses, and velocity profiles. The integral method with one of the porous wall skin friction laws gave very good agreement with data for most of the cases considered. The use of the solid-surface skin friction law caused the integral to overpredict the effectiveness of the bleed. The numerical techniques also worked well for most of the cases.
Langmuir-Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles.
Lo, Chi Kin; Wang, Cheng-Yin; Oosterhout, Stefan D; Zheng, Zilong; Yi, Xueping; Fuentes-Hernandez, Canek; So, Franky; Coropceanu, Veaceslav; Brédas, Jean-Luc; Toney, Michael F; Kippelen, Bernard; Reynolds, John R
2018-04-11
We report on two π-conjugated donor-acceptor-donor (D-A-D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir-Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on the LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D-A-D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.
Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles
Lo, Chi Kin; Wang, Cheng -Yin; Oosterhout, Stefan D.; ...
2018-03-30
Here, we report on two π-conjugated donor–acceptor–donor (D–A–D) molecules of amphiphilic nature, aiming to promote intermolecular ordering and carrier mobility in organic electronic devices. Diketopyrrolopyrrole was selected as the acceptor moiety that was disubstituted with nonpolar and polar functional groups, thereby providing the amphiphilic structures. This structural design resulted in materials with a strong intermolecular order in the solid state, which was confirmed by differential scanning calorimetry and polarized optical microscopy. Langmuir–Blodgett (LB) films of ordered mono- and multilayers were transferred onto glass and silicon substrates, with layer quality, coverage, and intermolecular order controlled by layer compression pressure on themore » LB trough. Organic field-effect transistors and organic photovoltaics devices with active layers consisting of the amphiphilic conjugated D–A–D-type molecules were constructed to demonstrate that the LB technique is an effective layer-by-layer deposition approach to fabricate self-assembled, ordered thin films.« less
Giancane, G; Basova, T; Hassan, A; Gümüş, G; Gürek, A G; Ahsen, V; Valli, L
2012-07-01
An octa-substituted copper phthalocyanine was dissolved in chloroform and spread on ultrapure water subphase in a Langmuir trough. The floating films were characterized at the air-water interface by the Langmuir isotherm, Brewster angle microscopy, and UV-Vis reflection spectroscopy and transferred by Langmuir-Schäfer technique on a silicon substrate, and thickness, refractive index, and extinction coefficient of the phthalocyanine derivative thin film were calculated by means of spectroscopic ellipsometry. A different number of layers were deposited using Langmuir-Schäfer method onto QCM crystals, and the active layers were tested as sensors for the detection of phenols in aqueous solution. The piezoelectric sensor response, totally reversible, is influenced by the number of transferred layers and by the nature of the substituent; on the contrary, the pK(a) value of the injected analytes slightly affects the device performances. Repeatability of the sensor responses was tested, and the frequency variation appears unchanged at least for 100 days. Copyright © 2012 Elsevier Inc. All rights reserved.
On radiative heat transfer in stagnation point flow of MHD Carreau fluid over a stretched surface
NASA Astrophysics Data System (ADS)
Khan, Masood; Sardar, Humara; Mudassar Gulzar, M.
2018-03-01
This paper investigates the behavior of MHD stagnation point flow of Carreau fluid in the presence of infinite shear rate viscosity. Additionally heat transfer analysis in the existence of non-linear radiation with convective boundary condition is performed. Moreover effects of Joule heating is observed and mathematical analysis is presented in the presence of viscous dissipation. The suitable transformations are employed to alter the leading partial differential equations to a set of ordinary differential equations. The subsequent non-straight common ordinary differential equations are solved numerically by an effective numerical approach specifically Runge-Kutta Fehlberg method alongside shooting technique. It is found that the higher values of Hartmann number (M) correspond to thickening of the thermal and thinning of momentum boundary layer thickness. The analysis further reveals that the fluid velocity is diminished by increasing the viscosity ratio parameter (β∗) and opposite trend is observed for temperature profile for both hydrodynamic and hydromagnetic flows. In addition the momentum boundary layer thickness is increased with velocity ratio parameter (α) and opposite is true for thermal boundary layer thickness.
Dye-sensitized solar cells using laser processing techniques
NASA Astrophysics Data System (ADS)
Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.
2004-07-01
Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.
Efthymiou, George S.; Shuler, Michael L.
1989-08-29
An improved multilayer continuous biological membrane reactor and a process to eliminate diffusional limitations in membrane reactors in achieved by causing a convective flux of nutrient to move into and out of an immobilized biocatalyst cell layer. In a pressure cycled mode, by increasing and decreasing the pressure in the respective layers, the differential pressure between the gaseous layer and the nutrient layer is alternately changed from positive to negative. The intermittent change in pressure differential accelerates the transfer of nutrient from the nutrient layers to the biocatalyst cell layer, the transfer of product from the cell layer to the nutrient layer and the transfer of byproduct gas from the cell layer to the gaseous layer. Such intermittent cycling substantially eliminates mass transfer gradients in diffusion inhibited systems and greatly increases product yield and throughput in both inhibited and noninhibited systems.
Studying Turbulence Using Numerical Simulation Databases, 2. Proceedings of the 1988 Summer Program
NASA Technical Reports Server (NTRS)
1988-01-01
The focus of the program was on the use of direct numerical simulations of turbulent flow for study of turbulence physics and modeling. A special interest was placed on turbulent mixing layers. The required data for these investigations were generated from four newly developed codes for simulation of time and spatially developing incompressible and compressible mixing layers. Also of interest were the structure of wall bounded turbulent and transitional flows, evaluation of diagnostic techniques for detection of organized motions, energy transfer in isotropic turbulence, optical propagation through turbulent media, and detailed analysis of the interaction of vortical structures.
Method of transferring a thin crystalline semiconductor layer
Nastasi, Michael A [Sante Fe, NM; Shao, Lin [Los Alamos, NM; Theodore, N David [Mesa, AZ
2006-12-26
A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.
Influence of metal bonding layer on strain transfer performance of FBG
NASA Astrophysics Data System (ADS)
Liu, Hao; Chen, Weimin; Zhang, Peng; Liu, Li; Shu, Yuejie; Wu, Jun
2013-01-01
Metal bonding layer seriously affects the strain transfer performance of Fiber Bragg Grating (FBG). Based on the mode of FBG strain transfer, the influence of the length, the thickness, Poisson's ratio, elasticity modulus of metal bonding layer on the strain transfer coefficient of FBG is analyzed by numerical simulation. FBG is packaged to steel wire using metal bonding technology of FBG. The tensile tests of different bonding lengths and elasticity modulus are carried out. The result shows the strain transfer coefficient of FBGs are 0.9848,0.962 and their average strain sensitivities are 1.076 pm/μɛ,1.099 pm/μɛ when the metal bonding layer is zinc, whose lengths are 15mm, 20mm, respectively. The strain transfer coefficient of FBG packaged by metal bonding layer raises 8.9 percent compared to epoxy glue package. The preliminary experimental results show that the strain transfer coefficient increases with the length of metal bonding layer, decreases with the thickness of metal bonding layer and the influence of Poisson's ratio can be ignored. The experiment result is general agreement with the analysis and provides guidance for metal package of FBG.
Release strategies for making transferable semiconductor structures, devices and device components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John A.; Nuzzo, Ralph G.; Meitl, Matthew
2016-05-24
Provided are methods for making a device or device component by providing a multi layer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
NASA Astrophysics Data System (ADS)
Kruithof, Maarten C.; Bouma, Henri; Fischer, Noëlle M.; Schutte, Klamer
2016-10-01
Object recognition is important to understand the content of video and allow flexible querying in a large number of cameras, especially for security applications. Recent benchmarks show that deep convolutional neural networks are excellent approaches for object recognition. This paper describes an approach of domain transfer, where features learned from a large annotated dataset are transferred to a target domain where less annotated examples are available as is typical for the security and defense domain. Many of these networks trained on natural images appear to learn features similar to Gabor filters and color blobs in the first layer. These first-layer features appear to be generic for many datasets and tasks while the last layer is specific. In this paper, we study the effect of copying all layers and fine-tuning a variable number. We performed an experiment with a Caffe-based network on 1000 ImageNet classes that are randomly divided in two equal subgroups for the transfer from one to the other. We copy all layers and vary the number of layers that is fine-tuned and the size of the target dataset. We performed additional experiments with the Keras platform on CIFAR-10 dataset to validate general applicability. We show with both platforms and both datasets that the accuracy on the target dataset improves when more target data is used. When the target dataset is large, it is beneficial to freeze only a few layers. For a large target dataset, the network without transfer learning performs better than the transfer network, especially if many layers are frozen. When the target dataset is small, it is beneficial to transfer (and freeze) many layers. For a small target dataset, the transfer network boosts generalization and it performs much better than the network without transfer learning. Learning time can be reduced by freezing many layers in a network.
Sušec, Maja; Ligon, Samuel Clark; Stampfl, Jürgen; Liska, Robert; Krajnc, Peter
2013-06-13
A combination of high internal phase emulsion (HIPE) templating and additive manufacturing technology (AMT) is applied for creating hierarchical porosity within an acrylate and acrylate/thiol-based polymer network. The photopolymerizable formulation is optimized to produce emulsions with a volume fraction of droplet phase greater than 80 vol%. Kinetic stability of the emulsions is sufficient enough to withstand in-mold curing or computer-controlled layer-by-layer stereolithography without phase separation. By including macroscale cellular cavities within the build file, a level of controlled porosity is created simultaneous to the formation of the porous microstructure of the polyHIPE. The hybrid HIPE-AMT technique thus provides hierarchically porous materials with mechanical properties tailored by the addition of thiol chain transfer agent. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of transferring strained semiconductor structure
Nastasi, Michael A [Santa Fe, NM; Shao, Lin [College Station, TX
2009-12-29
The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.
Epitaxial growth of silicon for layer transfer
Teplin, Charles; Branz, Howard M
2015-03-24
Methods of preparing a thin crystalline silicon film for transfer and devices utilizing a transferred crystalline silicon film are disclosed. The methods include preparing a silicon growth substrate which has an interface defining substance associated with an exterior surface. The methods further include depositing an epitaxial layer of silicon on the silicon growth substrate at the surface and separating the epitaxial layer from the substrate substantially along the plane or other surface defined by the interface defining substance. The epitaxial layer may be utilized as a thin film of crystalline silicon in any type of semiconductor device which requires a crystalline silicon layer. In use, the epitaxial transfer layer may be associated with a secondary substrate.
A method to estimate groundwater depletion from confining layers
Konikow, Leonard F.; Neuzil, Christopher E.
2007-01-01
Although depletion of storage in low‐permeability confining layers is the source of much of the groundwater produced from many confined aquifer systems, it is all too frequently overlooked or ignored. This makes effective management of groundwater resources difficult by masking how much water has been derived from storage and, in some cases, the total amount of water that has been extracted from an aquifer system. Analyzing confining layer storage is viewed as troublesome because of the additional computational burden and because the hydraulic properties of confining layers are poorly known. In this paper we propose a simplified method for computing estimates of confining layer depletion, as well as procedures for approximating confining layer hydraulic conductivity (K) and specific storage (Ss) using geologic information. The latter makes the technique useful in developing countries and other settings where minimal data are available or when scoping calculations are needed. As such, our approach may be helpful for estimating the global transfer of groundwater to surface water. A test of the method on a synthetic system suggests that the computational errors will generally be small. Larger errors will probably result from inaccuracy in confining layer property estimates, but these may be no greater than errors in more sophisticated analyses. The technique is demonstrated by application to two aquifer systems: the Dakota artesian aquifer system in South Dakota and the coastal plain aquifer system in Virginia. In both cases, depletion from confining layers was substantially larger than depletion from the aquifers.
NASA Astrophysics Data System (ADS)
Zaretski, Aliaksandr V.; Marin, Brandon C.; Moetazedi, Herad; Dill, Tyler J.; Jibril, Liban; Kong, Casey; Tao, Andrea R.; Lipomi, Darren J.
2015-09-01
This paper describes a new technique, termed "metal-assisted exfoliation," for the scalable transfer of graphene from catalytic copper foils to flexible polymeric supports. The process is amenable to roll-to-roll manufacturing, and the copper substrate can be recycled. We then demonstrate the use of single-layer graphene as a template for the formation of sub-nanometer plasmonic gaps using a scalable fabrication process called "nanoskiving." These gaps are formed between parallel gold nanowires in a process that first produces three-layer thin films with the architecture gold/single-layer graphene/gold, and then sections the composite films with an ultramicrotome. The structures produced can be treated as two gold nanowires separated along their entire lengths by an atomically thin graphene nanoribbon. Oxygen plasma etches the sandwiched graphene to a finite depth; this action produces a sub-nanometer gap near the top surface of the junction between the wires that is capable of supporting highly confined optical fields. The confinement of light is confirmed by surface-enhanced Raman spectroscopy measurements, which indicate that the enhancement of the electric field arises from the junction between the gold nanowires. These experiments demonstrate nanoskiving as a unique and easy-to-implement fabrication technique that is capable of forming sub-nanometer plasmonic gaps between parallel metallic nanostructures over long, macroscopic distances. These structures could be valuable for fundamental investigations as well as applications in plasmonics and molecular electronics.
Thompson, A J; Marks, L H; Goudie, M J; Rojas-Pena, A; Handa, H; Potkay, J A
2017-03-01
Artificial lungs have been used in the clinic for multiple decades to supplement patient pulmonary function. Recently, small-scale microfluidic artificial lungs (μAL) have been demonstrated with large surface area to blood volume ratios, biomimetic blood flow paths, and pressure drops compatible with pumpless operation. Initial small-scale microfluidic devices with blood flow rates in the μ l/min to ml/min range have exhibited excellent gas transfer efficiencies; however, current manufacturing techniques may not be suitable for scaling up to human applications. Here, we present a new manufacturing technology for a microfluidic artificial lung in which the structure is assembled via a continuous "rolling" and bonding procedure from a single, patterned layer of polydimethyl siloxane (PDMS). This method is demonstrated in a small-scale four-layer device, but is expected to easily scale to larger area devices. The presented devices have a biomimetic branching blood flow network, 10 μ m tall artificial capillaries, and a 66 μ m thick gas transfer membrane. Gas transfer efficiency in blood was evaluated over a range of blood flow rates (0.1-1.25 ml/min) for two different sweep gases (pure O 2 , atmospheric air). The achieved gas transfer data closely follow predicted theoretical values for oxygenation and CO 2 removal, while pressure drop is marginally higher than predicted. This work is the first step in developing a scalable method for creating large area microfluidic artificial lungs. Although designed for microfluidic artificial lungs, the presented technique is expected to result in the first manufacturing method capable of simply and easily creating large area microfluidic devices from PDMS.
Flow field predictions for a slab delta wing at incidence
NASA Technical Reports Server (NTRS)
Conti, R. J.; Thomas, P. D.; Chou, Y. S.
1972-01-01
Theoretical results are presented for the structure of the hypersonic flow field of a blunt slab delta wing at moderately high angle of attack. Special attention is devoted to the interaction between the boundary layer and the inviscid entropy layer. The results are compared with experimental data. The three-dimensional inviscid flow is computed numerically by a marching finite difference method. Attention is concentrated on the windward side of the delta wing, where detailed comparisons are made with the data for shock shape and surface pressure distributions. Surface streamlines are generated, and used in the boundary layer analysis. The three-dimensional laminar boundary layer is computed numerically using a specially-developed technique based on small cross-flow in streamline coordinates. In the rear sections of the wing the boundary layer decreases drastically in the spanwise direction, so that it is still submerged in the entropy layer at the centerline, but surpasses it near the leading edge. Predicted heat transfer distributions are compared with experimental data.
NASA Astrophysics Data System (ADS)
Kim, Munho; Cho, Sang June; Jayeshbhai Dave, Yash; Mi, Hongyi; Mikael, Solomon; Seo, Jung-Hun; Yoon, Jung U.; Ma, Zhenqiang
2018-01-01
Newly engineered substrates consisting of semiconductor-on-insulator are gaining much attention as starting materials for the subsequent transfer of semiconductor nanomembranes via selective etching of the insulating layer. Germanium-on-insulator (GeOI) substrates are critically important because of the versatile applications of Ge nanomembranes (Ge NMs) toward electronic and optoelectronic devices. Among various fabrication techniques, the Smart-CutTM technique is more attractive than other methods because a high temperature annealing process can be avoided. Another advantage of Smart-CutTM is the reusability of the donor Ge wafer. However, it is very difficult to realize an undamaged Ge wafer because there exists a large mismatch in the coefficient of thermal expansion among the layers. Although an undamaged donor Ge wafer is a prerequisite for its reuse, research related to this issue has not yet been reported. Here we report the fabrication of 4-inch GeOI substrates using the direct wafer bonding and Smart-CutTM process with a low thermal budget. In addition, a thermo-mechanical simulation of GeOI was performed by COMSOL to analyze induced thermal stress in each layer of GeOI. Crack-free donor Ge wafers were obtained by annealing at 250 °C for 10 h. Raman spectroscopy and x-ray diffraction (XRD) indicated similarly favorable crystalline quality of the Ge layer in GeOI compared to that of bulk Ge. In addition, Ge p-n diodes using transferred Ge NM indicate a clear rectifying behavior with an on and off current ratio of 500 at ±1 V. This demonstration offers great promise for high performance transferrable Ge NM-based device applications.
Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer
Yu, Yang; Fong, Patrick W. K.; Wang, Shifeng; Surya, Charles
2016-01-01
High quality wafer-scale free-standing WS2 grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS2 was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS2 onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS2 and hydrophilic property of sapphire. Our results show that vdWR is a reliable technique to obtain type-II textured crystallites in WS2, which is the key factor for the wafer-scale etching-free transfer. The transferred films were found to be free of observable wrinkles, cracks, or polymer residues. High quality p-n junctions fabricated by room-temperature transfer of the p-type WS2 onto an n-type GaN was demonstrated with a small leakage current density of 29.6 μA/cm2 at −1 V which shows superior performances compared to the directly grown WS2/GaN heterojunctions. PMID:27897210
Fabrication of WS2/GaN p-n Junction by Wafer-Scale WS2 Thin Film Transfer.
Yu, Yang; Fong, Patrick W K; Wang, Shifeng; Surya, Charles
2016-11-29
High quality wafer-scale free-standing WS 2 grown by van der Waals rheotaxy (vdWR) using Ni as a texture promoting layer is reported. The microstructure of vdWR grown WS 2 was significantly modified from mixture of crystallites with their c-axes both parallel to (type I) and perpendicular to (type II) the substrate to large type II crystallites. Wafer-scale transfer of vdWR grown WS 2 onto different substrates by an etching-free technique was demonstrated for the first time that utilized the hydrophobic property of WS 2 and hydrophilic property of sapphire. Our results show that vdWR is a reliable technique to obtain type-II textured crystallites in WS 2 , which is the key factor for the wafer-scale etching-free transfer. The transferred films were found to be free of observable wrinkles, cracks, or polymer residues. High quality p-n junctions fabricated by room-temperature transfer of the p-type WS 2 onto an n-type GaN was demonstrated with a small leakage current density of 29.6 μA/cm 2 at -1 V which shows superior performances compared to the directly grown WS 2 /GaN heterojunctions.
Indium-bump-free antimonide superlattice membrane detectors on silicon substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamiri, M., E-mail: mzamiri@chtm.unm.edu, E-mail: skrishna@chtm.unm.edu; Klein, B.; Schuler-Sandy, T.
2016-02-29
We present an approach to realize antimonide superlattices on silicon substrates without using conventional Indium-bump hybridization. In this approach, PIN superlattices are grown on top of a 60 nm Al{sub 0.6}Ga{sub 0.4}Sb sacrificial layer on a GaSb host substrate. Following the growth, the individual pixels are transferred using our epitaxial-lift off technique, which consists of a wet-etch to undercut the pixels followed by a dry-stamp process to transfer the pixels to a silicon substrate prepared with a gold layer. Structural and optical characterization of the transferred pixels was done using an optical microscope, scanning electron microscopy, and photoluminescence. The interface betweenmore » the transferred pixels and the new substrate was abrupt, and no significant degradation in the optical quality was observed. An Indium-bump-free membrane detector was then fabricated using this approach. Spectral response measurements provided a 100% cut-off wavelength of 4.3 μm at 77 K. The performance of the membrane detector was compared to a control detector on the as-grown substrate. The membrane detector was limited by surface leakage current. The proposed approach could pave the way for wafer-level integration of photonic detectors on silicon substrates, which could dramatically reduce the cost of these detectors.« less
NASA Astrophysics Data System (ADS)
Hussain, Sajid; Aziz, Asim; Khalique, Chaudhry Masood; Aziz, Taha
2017-12-01
In this paper, a numerical investigation is carried out to study the effect of temperature dependent viscosity and thermal conductivity on heat transfer and slip flow of electrically conducting non-Newtonian nanofluids. The power-law model is considered for water based nanofluids and a magnetic field is applied in the transverse direction to the flow. The governing partial differential equations(PDEs) along with the slip boundary conditions are transformed into ordinary differential equations(ODEs) using a similarity technique. The resulting ODEs are numerically solved by using fourth order Runge-Kutta and shooting methods. Numerical computations for the velocity and temperature profiles, the skin friction coefficient and the Nusselt number are presented in the form of graphs and tables. The velocity gradient at the boundary is highest for pseudoplastic fluids followed by Newtonian and then dilatant fluids. Increasing the viscosity of the nanofluid and the volume of nanoparticles reduces the rate of heat transfer and enhances the thickness of the momentum boundary layer. The increase in strength of the applied transverse magnetic field and suction velocity increases fluid motion and decreases the temperature distribution within the boundary layer. Increase in the slip velocity enhances the rate of heat transfer whereas thermal slip reduces the rate of heat transfer.
NASA Astrophysics Data System (ADS)
Cui, Yehui; Zeng, Xiangguo; Kou, Huaqin; Ding, Jun; Wang, Fang
2018-06-01
In this work a three-dimensional (3D) hydrogen absorption model was proposed to study the heat transfer behavior in thin double-layered annular ZrCo beds. Numerical simulations were performed to investigate the effects of conversion layer thickness, thermal conductivity, cooling medium and its flow velocity on the efficiency of heat transfer. Results reveal that decreasing the layer thickness and improving the thermal conductivity enhance the ability of heat transfer. Compared with nitrogen and helium, water appears to be a better medium for cooling. In order to achieve the best efficiency of heat transfer, the flow velocity needs to be maximized.
Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations
NASA Technical Reports Server (NTRS)
Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.
2003-01-01
Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.
NASA Astrophysics Data System (ADS)
Abdelkhalek, M. M.
2009-05-01
Numerical results are presented for heat and mass transfer effect on hydromagnetic flow of a moving permeable vertical surface. An analysis is performed to study the momentum, heat and mass transfer characteristics of MHD natural convection flow over a moving permeable surface. The surface is maintained at linear temperature and concentration variations. The non-linear coupled boundary layer equations were transformed and the resulting ordinary differential equations were solved by perturbation technique [Aziz A, Na TY. Perturbation methods in heat transfer. Berlin: Springer-Verlag; 1984. p. 1-184; Kennet Cramer R, Shih-I Pai. Magneto fluid dynamics for engineers and applied physicists 1973;166-7]. The solution is found to be dependent on several governing parameter, including the magnetic field strength parameter, Prandtl number, Schmidt number, buoyancy ratio and suction/blowing parameter, a parametric study of all the governing parameters is carried out and representative results are illustrated to reveal a typical tendency of the solutions. Numerical results for the dimensionless velocity profiles, the temperature profiles, the concentration profiles, the local friction coefficient and the local Nusselt number are presented for various combinations of parameters.
van Grinsven, Bart; Eersels, Kasper; Peeters, Marloes; Losada-Pérez, Patricia; Vandenryt, Thijs; Cleij, Thomas J; Wagner, Patrick
2014-08-27
In recent years, biosensors have become increasingly important in various scientific domains including medicine, biology, and pharmacology, resulting in an increased demand for fast and effective readout techniques. In this Spotlight on Applications, we report on the recently developed heat-transfer method (HTM) and illustrate the use of the technique by zooming in on four established bio(mimetic) sensor applications: (i) mutation analysis in DNA sequences, (ii) cancer cell identification through surface-imprinted polymers, (iii) detection of neurotransmitters with molecularly imprinted polymers, and (iv) phase-transition analysis in lipid vesicle layers. The methodology is based on changes in heat-transfer resistance at a functionalized solid-liquid interface. To this extent, the device applies a temperature gradient over this interface and monitors the temperature underneath and above the functionalized chip in time. The heat-transfer resistance can be obtained by dividing this temperature gradient by the power needed to achieve a programmed temperature. The low-cost, fast, label-free and user-friendly nature of the technology in combination with a high degree of specificity, selectivity, and sensitivity makes HTM a promising sensor technology.
Hitrik, Maria; Gutkin, Vitaly; Lev, Ovadia; Mandler, Daniel
2011-10-04
The essence of this study is to apply the Langmuir-Blodgett (LB) technique for assembling asymmetric membranes. Accordingly, Langmuir films of a (further) polymerizable polymer, 1,2-polybutadiene (1,2-pbd), were studied and transferred onto different solid supports, such as gold, indium tin oxide (ITO), and silicon. The layers were characterized both at the air/water interface as well as on different substrates using numerous methods including cyclic voltammetry, impedance spectroscopy, spectroscopic ellipsometry, atomic force microscopy, X-ray photoelectron spectroscopy, and reflection-absorption Fourier transform infrared spectroscopy. The Langmuir films were stable at the air-water interface as long as they were not exposed to UV irradiation. The LB films formed disorganized layers, which gradually blocked the permeation of different species with increasing the number of deposited layers. The thickness was ca. 4-7 Å per layer. Irradiating the Langmuir films caused their cross-linking at the air-water interface. Furthermore, we took advantage of the reactivity of the double bond of the LB films on the solid supports and graft polymerized acrylic acid on top of the 1,2-pbd layers. This approach is the basis of the formation of an asymmetric membrane that requires different porosity on both of its sides. © 2011 American Chemical Society
NASA Astrophysics Data System (ADS)
Soloviev, Alexander; Schluessel, Peter
The model presented contains interfacial, bubble-mediated, ocean mixed layer, and remote sensing components. The interfacial (direct) gas transfer dominates under conditions of low and—for quite soluble gases like CO2—moderate wind speeds. Due to the similarity between the gas and heat transfer, the temperature difference, ΔT, across the thermal molecular boundary layer (cool skin of the ocean) and the interfacial gas transfer coefficient, Kint are presumably interrelated. A coupled parameterization for ΔT and Kint has been derived in the context of a surface renewal model [Soloviev and Schluessel, 1994]. In addition to the Schmidt, Sc, and Prandtl, Pr, numbers, the important parameters are the surface Richardson number, Rƒ0, and the Keulegan number, Ke. The more readily available cool skin data are used to determine the coefficients that enter into both parameterizations. At high wind speeds, the Ke-number dependence is further verified with the formula for transformation of the surface wind stress to form drag and white capping, which follows from the renewal model. A further extension of the renewal model includes effects of solar radiation and rainfall. The bubble-mediated component incorporates the Merlivat et al. [1993] parameterization with the empirical coefficients estimated by Asher and Wanninkhof [1998]. The oceanic mixed layer component accounts for stratification effects on the air-sea gas exchange. Based on the example of GasEx-98, we demonstrate how the results of parameterization and modeling of the air-sea gas exchange can be extended to the global scale, using remote sensing techniques.
Laser induced forward transfer of graphene
NASA Astrophysics Data System (ADS)
Smits, Edsger C. P.; Walter, Arnaud; de Leeuw, Dago M.; Asadi, Kamal
2017-10-01
Transfer of graphene and other two-dimensional materials is still a technical challenge. The 2D-materials are typically patterned after transfer, which leads to a major loss of material. Here, we present laser induced forward transfer of chemical vapor deposition grown graphene layers with well-defined shapes and geometries. The transfer is based on photo-decomposition of a triazene-based transfer layer that produces N2 gas, which propels a graphene layer from the donor to the acceptor substrate. The functionality of the graphene-metal junction was verified by realizing functional bottom contact bottom gate field-effect transistors.
Fabrication of complex nanoscale structures on various substrates
NASA Astrophysics Data System (ADS)
Han, Kang-Soo; Hong, Sung-Hoon; Lee, Heon
2007-09-01
Polymer based complex nanoscale structures were fabricated and transferred to various substrates using reverse nanoimprint lithography. To facilitate the fabrication and transference of the large area of the nanostructured layer to the substrates, a water-soluble polyvinyl alcohol mold was used. After generation and transference of the nanostructured layer, the polyvinyl alcohol mold was removed by dissolving in water. A residue-free, UV-curable, glue layer was formulated and used to bond the nanostructured layer onto the substrates. As a result, nanometer scale patterned polymer layers were bonded to various substrates and three-dimensional nanostructures were also fabricated by stacking of the layers.
NASA Astrophysics Data System (ADS)
Gómez-Urrea, H. A.; Duque, C. A.; Mora-Ramos, M. E.
2015-11-01
The properties of the optical-phonon-associated polaritonic modes that appear under oblique light incidence in 1D superlattices made of photonic materials are studied. The investigated systems result from the periodic repetition of quasiregular Rudin-Shapiro (RS) multilayer units. It is assume that the structure consists of both passive non-dispersive layers of constant refraction index and active layers of uniaxial polar materials. In particular, we consider III-V wurtzite nitrides. The optical axis of these polaritonic materials is taken along the growth direction. Maxwell equations are solved using the transfer matrix technique for all admissible values of the incidence angle.
NASA Technical Reports Server (NTRS)
Scherrer, Richard
1951-01-01
An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer to space shuttle reusable surface insulation (RSI) tile array gaps under thick, turbulent boundary layer conditions. Heat transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel wall boundary layer at a nominal freestream Mach number of 10.3 and freestream unit Reynolds numbers of 1.6, 3.3, and and 6.1 million per meter. Transverse pressure gradients were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel wall boundary layer flow was obtained by measurement of boundary layer pitot pressure profiles, and flat plate wall pressure and heat transfer. Flat plate wall heat transfer data were correlated and a method was derived for prediction of smooth, curved array heat transfer in the highly three-dimensional tunnel wall boundary layer flow and simulation of full-scale space shuttle vehicle pressure gradient levels was assessed.
Thermal Analysis and Design of Multi-layer Insulation for Re-entry Aerodynamic Heating
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran
2001-01-01
The combined radiation/conduction heat transfer in high-temperature multi-layer insulations was modeled using a finite volume numerical model. The numerical model was validated by comparison with steady-state effective thermal conductivity measurements, and by transient thermal tests simulating re-entry aerodynamic heating conditions. A design of experiments technique was used to investigate optimum design of multi-layer insulations for re-entry aerodynamic heating. It was found that use of 2 mm foil spacing and locating the foils near the hot boundary with the top foil 2 mm away from the hot boundary resulted in the most effective insulation design. A 76.2 mm thick multi-layer insulation using 1, 4, or 16 foils resulted in 2.9, 7.2, or 22.2 percent mass per unit area savings compared to a fibrous insulation sample at the same thickness, respectively.
Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo
2011-12-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.
2011-01-01
A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653
Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago
A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less
Release strategies for making transferable semiconductor structures, devices and device components
Rogers, John A; Nuzzo, Ralph G; Meitl, Matthew; Ko, Heung Cho; Yoon, Jongseung; Menard, Etienne; Baca, Alfred J
2014-11-25
Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
Release strategies for making transferable semiconductor structures, devices and device components
Rogers, John A [Champaign, IL; Nuzzo, Ralph G [Champaign, IL; Meitl, Matthew [Raleigh, NC; Ko, Heung Cho [Urbana, IL; Yoon, Jongseung [Urbana, IL; Menard, Etienne [Durham, NC; Baca, Alfred J [Urbana, IL
2011-04-26
Provided are methods for making a device or device component by providing a multilayer structure having a plurality of functional layers and a plurality of release layers and releasing the functional layers from the multilayer structure by separating one or more of the release layers to generate a plurality of transferable structures. The transferable structures are printed onto a device substrate or device component supported by a device substrate. The methods and systems provide means for making high-quality and low-cost photovoltaic devices, transferable semiconductor structures, (opto-)electronic devices and device components.
Analysis of turbulent free-convection boundary layer on flat plate
NASA Technical Reports Server (NTRS)
Eckert, E R G; Jackson, Thomas W
1950-01-01
A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.
Development of Instrumentation for Boundary Layer Transition Detection
1991-01-01
assistance of Maj. Aaron Byerley were largely responsible for my decision to stay on. 4t Contents Abstract Acknowledgements Nomenclature Chapter 1...The use of shr sensitive liquid crystals in aerodynamic measurements has been a mor wPu imovation. Two different prcesses can be employed to...transition location. The steady-state heat transfer technique is unsuited for use on complex geometries, may be time consuming , and has an element of
Heat Transfer Measurements on Surfaces with Natural Ice Castings and Modeled Roughness
NASA Technical Reports Server (NTRS)
Breuer, Kenneth S.; Torres, Benjamin E.; Orr, D. J.; Hansman, R. John
1997-01-01
An experimental method is described to measure and compare the convective heat transfer coefficient of natural and simulated ice accretion roughness and to provide a rational means for determining accretion-related enhanced heat transfer coefficients. The natural ice accretion roughness was a sample casting made from accretions at the NASA Lewis Icing Research Tunnel (IRT). One of these castings was modeled using a Spectral Estimation Technique (SET) to produce three roughness elements patterns that simulate the actual accretion. All four samples were tested in a flat-plate boundary layer at angle of attack in a "dry" wind tunnel test. The convective heat transfer coefficient was measured using infrared thermography. It is shown that, dispite some problems in the current data set, the method does show considerable promise in determining roughness-induced heat transfer coefficients, and that, in addition to the roughness height and spacing in the flow direction, the concentration and spacing of elements in the spanwise direction are important parameters.
Orbital engineering of nickelates in three-component heterostructures
NASA Astrophysics Data System (ADS)
Disa, Ankit; Kumah, Divine; Malashevich, Andrei; Chen, Hanghui; Ismail-Beigi, Sohrab; Walker, Fred; Ahn, Charles; Specht, Eliot; Arena, Dario
2015-03-01
The orbital configuration of complex oxides dictates the emergence of a wide range of properties, including metal-insulator transitions, interfacial magnetism, and high-temperature superconductivity. In this work, we experimentally demonstrate a novel method for achieving large and tunable orbital polarizations in nickelates. The technique is based on leveraging three-component, atomically layered superlattices to yield a combination of inversion symmetry breaking, charge transfer, and polar distortions. In the system we studied, composed of LaTiO3/LaNiO3/LaAlO3, we use synchrotron x-ray diffraction and spectroscopy to characterize these properties and show that they lead to fully broken orbital degeneracy in the nickelate layer consistent with a single-band Fermi surface. Furthermore, we show that this system is widely tunable and enables quasi-continuous orbital control unachievable by conventional strain and confinement-based approaches. This technique provides an experimentally realizable route for accessing and studying novel orbitally dependent quantum phenomena.
Method for nanomachining high aspect ratio structures
Yun, Wenbing; Spence, John; Padmore, Howard A.; MacDowell, Alastair A.; Howells, Malcolm R.
2004-11-09
A nanomachining method for producing high-aspect ratio precise nanostructures. The method begins by irradiating a wafer with an energetic charged-particle beam. Next, a layer of patterning material is deposited on one side of the wafer and a layer of etch stop or metal plating base is coated on the other side of the wafer. A desired pattern is generated in the patterning material on the top surface of the irradiated wafer using conventional electron-beam lithography techniques. Lastly, the wafer is placed in an appropriate chemical solution that produces a directional etch of the wafer only in the area from which the resist has been removed by the patterning process. The high mechanical strength of the wafer materials compared to the organic resists used in conventional lithography techniques with allows the transfer of the precise patterns into structures with aspect ratios much larger than those previously achievable.
Huang, Shanjin; Zhang, Yu; Leung, Benjamin; Yuan, Ge; Wang, Gang; Jiang, Hao; Fan, Yingmin; Sun, Qian; Wang, Jianfeng; Xu, Ke; Han, Jung
2013-11-13
Nanoporous (NP) gallium nitride (GaN) as a new class of GaN material has many interesting properties that the conventional GaN material does not have. In this paper, we focus on the mechanical properties of NP GaN, and the detailed physical mechanism of porous GaN in the application of liftoff. A decrease in elastic modulus and hardness was identified in NP GaN compared to the conventional GaN film. The promising application of NP GaN as release layers in the mechanical liftoff of GaN thin films and devices was systematically studied. A phase diagram was generated to correlate the initial NP GaN profiles with the as-overgrown morphologies of the NP structures. The fracture toughness of the NP GaN release layer was studied in terms of the voided-space-ratio. It is shown that the transformed morphologies and fracture toughness of the NP GaN layer after overgrowth strongly depends on the initial porosity of NP GaN templates. The mechanical separation and transfer of a GaN film over a 2 in. wafer was demonstrated, which proves that this technique is useful in practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.
Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, themore » comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.« less
13-fold resolution gain through turbid layer via translated unknown speckle illumination
Guo, Kaikai; Zhang, Zibang; Jiang, Shaowei; Liao, Jun; Zhong, Jingang; Eldar, Yonina C.; Zheng, Guoan
2017-01-01
Fluorescence imaging through a turbid layer holds great promise for various biophotonics applications. Conventional wavefront shaping techniques aim to create and scan a focus spot through the turbid layer. Finding the correct input wavefront without direct access to the target plane remains a critical challenge. In this paper, we explore a new strategy for imaging through turbid layer with a large field of view. In our setup, a fluorescence sample is sandwiched between two turbid layers. Instead of generating one focus spot via wavefront shaping, we use an unshaped beam to illuminate the turbid layer and generate an unknown speckle pattern at the target plane over a wide field of view. By tilting the input wavefront, we raster scan the unknown speckle pattern via the memory effect and capture the corresponding low-resolution fluorescence images through the turbid layer. Different from the wavefront-shaping-based single-spot scanning, the proposed approach employs many spots (i.e., speckles) in parallel for extending the field of view. Based on all captured images, we jointly recover the fluorescence object, the unknown optical transfer function of the turbid layer, the translated step size, and the unknown speckle pattern. Without direct access to the object plane or knowledge of the turbid layer, we demonstrate a 13-fold resolution gain through the turbid layer using the reported strategy. We also demonstrate the use of this technique to improve the resolution of a low numerical aperture objective lens allowing to obtain both large field of view and high resolution at the same time. The reported method provides insight for developing new fluorescence imaging platforms and may find applications in deep-tissue imaging. PMID:29359102
NASA Astrophysics Data System (ADS)
Yu, Zhao; Bingfeng, Fan; Yiting, Chen; Yi, Zhuo; Zhoujun, Pang; Zhen, Liu; Gang, Wang
2016-07-01
We report an effective enhancement in light extraction of GaN-based light-emitting diodes (LEDs) with an Al-doped ZnO (AZO) transparent conductive layer by incorporating a top regular textured SiO2 layer. The 2 inch transparent through-pore anodic aluminum oxide (AAO) membrane was fabricated and used as the etching mask. The periodic pore with a pitch of about 410 nm was successfully transferred to the surface of the SiO2 layer without any etching damages to the AZO layer and the electrodes. The light output power was enhanced by 19% at 20 mA and 56% at 100 mA compared to that of the planar LEDs without a patterned surface. This approach offers a technique to fabricate a low-cost and large-area regular pattern on the LED chip for achieving enhanced light extraction without an obvious increase of the forward voltage. ).
Temperature Distribution in a Composite of Opaque and Semitransparent Spectral Layers
NASA Technical Reports Server (NTRS)
Siegel, Robert
1997-01-01
The analysis of radiative transfer becomes computationally complex for a composite when there are multiple layers and multiple spectral bands. A convenient analytical method is developed for combined radiation and conduction in a composite of alternating semitransparent and opaque layers. The semi- transparent layers absorb, scatter, and emit radiation, and spectral properties with large scattering are included. The two-flux method is used, and its applicability is verified by comparison with a basic solution in the literature. The differential equation in the two-flux method Is solved by deriving a Green's function. The solution technique is applied to analyze radiation effects in a multilayer zirconia thermal barrier coating with internal radiation shields for conditions in an aircraft engine combustor. The zirconia radiative properties are modeled by two spectral bands. Thin opaque layers within the coating are used to decrease radiant transmission that can degrade the zirconia insulating ability. With radiation shields, the temperature distributions more closely approach the opaque limit that provides the lowest metal wall temperatures.
NASA Astrophysics Data System (ADS)
Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.
2018-02-01
Hybrid inorganic/organic one dimensional photonic crystal based on alternating layers of Si/HMDSO is elaborated. The inorganic silicon is deposited by radiofrequency magnetron sputtering and the organic HMDSO is deposited by PECVD technique. As the Si refractive index is n = 3.4, and the refractive index of HMDSO layer depend on the deposition conditions, to get a photonic crystal with high and low refractive index presenting a good contrast, we have varied the radiofrequency power of PECVD process to obtain HMDSO layer with low refractive index (n = 1.45). Photonic band gap of this hybrid structure is obtained from the transmission and reflection spectra and appears after 9 alternative layers of Si/HMDSO. The introduction of defects in our photonic crystal leads to the emergence of localized modes within the photonic band gap. Our results are interpreted by using a theoretical model based on transfer matrix.
Corrections of Heat Flux Measurements on Launch Vehicles
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Matson, Monique L.; Walls, Laurie K.
2002-01-01
Knowledge of aerothermally induced convective heat transfer is important in the design of thermal protection systems for launch vehicles. Aerothermal models are typically calibrated via the data from circular, in-flight, flush-mounted surface heat flux gauges exposed to the thermal and velocity boundary layers of the external flow. Typically, copper or aluminum Schmidt- Boelter gauges, which take advantage of the one-dimensional Fourier's law of heat conduction, are used to measure the incident heat flux. This instrumentation, when surrounded by low-conductivity insulation, has a wall temperature significantly lower than the insulation. As a result of this substantial disturbance to the thermal boundary layer, the heat flux incident on the gauge tends to be considerably higher than it would have been on the insulation had the calorimeter not been there. In addition, radial conductive heat transfer from the hotter insulation can cause the calorimeter to indicate heat fluxes higher than actual. An overview of an effort to develop and calibrate gauge correction techniques for both of these effects will be presented.
Spin-transfer torque in spin filter tunnel junctions
NASA Astrophysics Data System (ADS)
Ortiz Pauyac, Christian; Kalitsov, Alan; Manchon, Aurelien; Chshiev, Mairbek
2014-12-01
Spin-transfer torque in a class of magnetic tunnel junctions with noncollinear magnetizations, referred to as spin filter tunnel junctions, is studied within the tight-binding model using the nonequilibrium Green's function technique within Keldysh formalism. These junctions consist of one ferromagnet (FM) adjacent to a magnetic insulator (MI) or two FM separated by a MI. We find that the presence of the magnetic insulator dramatically enhances the magnitude of the spin-torque components compared to conventional magnetic tunnel junctions. The fieldlike torque is driven by the spin-dependent reflection at the MI/FM interface, which results in a small reduction of its amplitude when an insulating spacer (S) is inserted to decouple MI and FM layers. Meanwhile, the dampinglike torque is dominated by the tunneling electrons that experience the lowest barrier height. We propose a device of the form FM/(S)/MI/(S)/FM that takes advantage of these characteristics and allows for tuning the spin-torque magnitudes over a wide range just by rotation of the magnetization of the insulating layer.
Stanis, Ronald J.; Lambert, Timothy N.
2016-12-06
An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.
Li, Han; Zheng, Xin; Liu, Yu; Zhang, Zhepeng; Jiang, Tian
2018-01-25
The idea of fabricating artificial solids with band structures tailored to particular applications has long fascinated condensed matter physicists. Heterostructure (HS) construction is viewed as an effective and appealing approach to engineer novel electronic properties in two dimensional (2D) materials. Different from common 2D/2D heterojunctions where energy transfer is rarely observed, CsPbBr 3 quantum dots (0D-QDs) interfaced with 2D materials have become attractive HSs for exploring the physics of charge transfer and energy transfer, due to their superior optical properties. In this paper, a new 0D/2D HS is proposed and experimentally studied, making it possible to investigate both light utilization and energy transfer. Specifically, this HS is constructed between monolayer WS 2 and CsPbBr 3 QDs, and exhibits a hybrid band alignment. The dynamics of energy transfer within the investigated 0D/2D HS is characterized by femtosecond transient absorption spectrum (TAS) measurements. The TAS results reveal that ultrafast energy transfer caused by optical excitation is observed from CsPbBr 3 QDs to the WS 2 layer, which can increase the exciton fluence within the WS 2 layer up to 69% when compared with pristine ML WS 2 under the same excitation fluence. Moreover, the formation and dynamics of interlayer excitons have also been investigated and confirmed in the HS, with a calculated recombination time of 36.6 ps. Finally, the overall phenomenological dynamical scenario for the 0D/2D HS is established within the 100 ps time region after excitation. The techniques introduced in this work can also be applied to versatile optoelectronic devices based on low dimensional materials.
Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar
2016-03-15
Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar
2016-03-01
Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.
1979-01-01
Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer
An investigation of the marine boundary layer during cold air outbreak
NASA Technical Reports Server (NTRS)
Stage, S. A.
1986-01-01
Methods for use in the remote estimation of ocean surface sensible and latent heat fluxes were developed and evaluated. Three different techniques were developed for determining these fluxes. These methods are: (1) Obtaining surface sensible and latent heat fluxes from satellite measurements; (2)Obtaining surface sensible and latent heat fluxes from an MABL model; (3) A method using horizontal transfer coefficients. These techniques are not very sensitive to errors in the data and therefore appear to hold promise of producing useful answers. Questions remain about how closely the structure of the real atmosphere agrees with the assumptions made for each of these techniques, and, therefore about how well these techniques can perform in actual use. The value of these techniques is that they promise to provide methods for the determination of fluxes over regions where very few traditional measurement exist.
Li, Minghua; Huan, Yahuan; Yan, Xiaoqin; Kang, Zhuo; Guo, Yan; Li, Yong; Liao, Xinqin; Zhang, Ruxiao; Zhang, Yue
2018-01-10
Hybrid organic-inorganic metal halide perovskite solar cells have attracted widespread attention, owing to their high performance, and have undergone rapid development. In perovskite solar cells, the charge transfer layer plays an important role for separating and transferring photogenerated carriers. In this work, an efficient YCl 3 -treated TiO 2 electron transfer layer (ETL) is used to fabricate perovskite solar cells with enhanced photovoltaic performance and less hysteresis. The YCl 3 -treated TiO 2 layers bring about an upward shift of the conduction band minimum (E CBM ), which results in a better energy level alignment for photogenerated electron transfer and extraction from the perovskite into the TiO 2 layer. After optimization, perovskite solar cells based on the YCl 3 -treated TiO 2 layers achieve a maximum power conversion efficiency of about 19.99 % (19.29 % at forward scan) and a steady-state power output of about 19.6 %. Steady-state and time-resolved photoluminescence measurements and impedance spectroscopy are carried out to investigate the charge transfer and recombination dynamics between the perovskite and the TiO 2 electron transfer layer interface. The improved perovskite/TiO 2 ETL interface with YCl 3 treatment is found to separate and extract photogenerated charge rapidly and suppress recombination effectively, which leads to the improved performance. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chaitoglou, Stefanos; Amade, Roger; Bertran, Enric
2017-12-01
The combination of graphene with transition metal oxides can result in very promising hybrid materials for use in energy storage applications thanks to its intriguing properties, i.e., highly tunable surface area, outstanding electrical conductivity, good chemical stability, and excellent mechanical behavior. In the present work, we evaluate the performance of graphene/metal oxide (WO3 and CeO x ) layered structures as potential electrodes in supercapacitor applications. Graphene layers were grown by chemical vapor deposition (CVD) on copper substrates. Single and layer-by-layer graphene stacks were fabricated combining graphene transfer techniques and metal oxides grown by magnetron sputtering. The electrochemical properties of the samples were analyzed and the results suggest an improvement in the performance of the device with the increase in the number of graphene layers. Furthermore, deposition of transition metal oxides within the stack of graphene layers further improves the areal capacitance of the device up to 4.55 mF/cm2, for the case of a three-layer stack. Such high values are interpreted as a result of the copper oxide grown between the copper substrate and the graphene layer. The electrodes present good stability for the first 850 cycles before degradation.
NASA Technical Reports Server (NTRS)
Cooper, Morton; Mayo, Edward E.; Julius, Jerome D.
1960-01-01
Measurements of the location of boundary-layer transition and the local heat transfer have been made on 2-inch-diameter hemispheres in the Langley gas dynamics laboratory at a Mach number of 4.95, a Reynolds number per foot of 73.2 x 10(exp 6), and a stagnation temperature of approximately 400 F. The transient-heating thin-skin calorimeter technique was used, and the initial values of the wall-to-stream stagnation- temperature ratios were 0.16 (cold-model tests) and 0.65 (hot-model test). During two of the four cold tests, the boundary-layer flow changed from turbulent to laminar over large regions of the hemisphere as the model heated. On the basis of a detailed consideration of the magnitude of roughness possibly present during these two cold tests, it appears that this destabilizing effect of low wall temperatures (cooling) was not caused by roughness as a dominant influence. This idea of a decrease in boundary-layer stability with cooling has been previously suggested. (See, for example, NASA Memorandum 10-8-58E.) For the laminar data obtained during the early part of the hot test, the correlation of the local-heating data with laminar theory was excellent.
Adhesive contact between a rigid spherical indenter and an elastic multi-layer coated substrate
Stan, Gheorghe; Adams, George G.
2016-01-01
In this work the frictionless, adhesive contact between a rigid spherical indenter and an elastic multi-layer coated half-space was investigated by means of an integral transform formulation. The indented multi-layer coats were considered as made of isotropic layers that are perfectly bonded to each other and to an isotropic substrate. The adhesive interaction between indenter and contacting surface was treated as Maugis-type adhesion to provide general applicability within the entire range of adhesive interactions. By using a transfer matrix method, the stress-strain equations of the system were reduced to two coupled integral equations for the stress distribution under the indenter and the ratio between the adhesion radius and the contact radius, respectively. These resulting integral equations were solved through a numerical collocation technique, with solutions for the load dependencies of the contact radius and indentation depth for various values of the adhesion parameter and layer composition. The method developed here can be used to calculate the force-distance response of adhesive contacts on various inhomogeneous half-spaces that can be modeled as multi-layer coated half-spaces. PMID:27574338
Film transfer enabled by nanosheet seed layers on arbitrary sacrificial substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dral, A. P.; Nijland, M.; Koster, G.
An approach for film transfer is demonstrated that makes use of seed layers of nanosheets on arbitrary sacrificial substrates. Epitaxial SrTiO{sub 3}, SrRuO{sub 3}, and BiFeO{sub 3} films were grown on Ca{sub 2}Nb{sub 3}O{sub 10} nanosheet seed layers on phlogopite mica substrates. Cleavage of the mica substrates enabled film transfer to flexible polyethylene terephthalate substrates. Electron backscatter diffraction, X-ray diffraction, and atomic force microscopy confirmed that crystal orientation and film morphology remained intact during transfer. The generic nature of this approach is illustrated by growing films on zinc oxide substrates with a nanosheet seed layer. Film transfer to a flexiblemore » substrate was accomplished via acid etching.« less
The Network Protocol Analysis Technique in Snort
NASA Astrophysics Data System (ADS)
Wu, Qing-Xiu
Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.
Fabrication of patterned surface by soft lithographic technique for confinement of lipid bilayer
NASA Astrophysics Data System (ADS)
Moulick, Ranjita Ghosh; Mayer, Dirk
2018-04-01
In this paper we demonstrated that a 3D pattern can be well transferred from a silicon Master to a gold substrate using µcontact printing. In this process 1-Octadecanthiol served as an ink and printing followed by etching generated the desired pattern on the gold substrate. The prepatterned substrate was also used for lipid vesicle fusion and revealed that lipid molecules selectively bind to the gold layer.
Heat Transfer Through Dipolar Coupling: Sympathetic cooling without contact
NASA Astrophysics Data System (ADS)
Oktel, Mehmet; Renklioglu, Basak; Tanatar, Bilal
We consider two parallel layers of dipolar ultracold gases at different temperatures and calculate the heat transfer through dipolar coupling. As the simplest model we consider a system in which both of the layers contain two-dimensional spin-polarized Fermi gases. The effective interactions describing the correlation effects and screening between the dipoles are obtained by the Euler-Lagrange Fermi-hypernetted-chain approximation in a single layer. We use the random-phase approximation (RPA) for the interactions across the layers. We find that heat transfer through dipolar coupling becomes efficient when the layer separation is comparable to dipolar interaction length scale. We characterize the heat transfer by calculating the time constant for temperature equilibration between the layers and find that for the typical experimental parameter regime of dipolar molecules this is on the order of milliseconds. We generalize the initial model to Boson-Boson and Fermion-Boson layers and suggest that contactless sympathetic cooling may be used for ultracold dipolar molecules. Supported by TUBITAK 1002-116F030.
Yokoyama, Sho; Matsui, Tsubasa S; Deguchi, Shinji
2017-06-19
Microcontact printing (μCPr) is one of the most popular techniques used for cell micropatterning. In conventional μCPr, a polydimethylsiloxane (PDMS) stamp with microfeatures is used to adsorb extracellular matrix (ECM) proteins onto the featured surface and transfer them onto particular areas of a cell culture substrate. However, some types of functional proteins other than ECM have been reported to denature upon direct adsorption to hydrophobic PDMS. Here we describe a detailed protocol of an alternative technique--microcontact peeling (μCPe)--that allows for cell micropatterning while circumventing the step of adsorbing proteins to bare PDMS. This technique employs microfeatured materials with a relatively high surface energy such as copper, instead of using a microfeatured PDMS stamp, to peel off a cell-adhesive layer present on the surface of substrates. Consequently, cell-nonadhesive substrates are exposed at the specific surface that undergoes the physical contact with the microfeatured material. Thus, although μCPe and μCPr are apparently similar, the former does not comprise a process of transferring biomolecules through hydrophobic PDMS. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
Comprehensive analysis of heat transfer of gold-blood nanofluid (Sisko-model) with thermal radiation
NASA Astrophysics Data System (ADS)
Eid, Mohamed R.; Alsaedi, Ahmed; Muhammad, Taseer; Hayat, Tasawar
Characteristics of heat transfer of gold nanoparticles (Au-NPs) in flow past a power-law stretching surface are discussed. Sisko bio-nanofluid flow (with blood as a base fluid) in existence of non-linear thermal radiation is studied. The resulting equations system is abbreviated to model the suggested problem in non-linear PDEs. Along with initial and boundary-conditions, the equations are made non-dimensional and then resolved numerically utilizing 4th-5th order Runge-Kutta-Fehlberg (RKF45) technique with shooting integration procedure. Various flow quantities behaviors are examined for parametric consideration such as the Au-NPs volume fraction, the exponentially stretching and thermal radiation parameters. It is observed that radiation drives to shortage the thermal boundary-layer thickness and therefore resulted in better heat transfer at surface.
Effect of temperature on anodic behavior of 13Cr martensitic steel in CO2 environment
NASA Astrophysics Data System (ADS)
Zhao, G. X.; Zheng, M.; Lv, X. H.; Dong, X. H.; Li, H. L.
2005-04-01
The corrosion behavior of 13Cr martensitic stainless steel in a CO2 environment in a stimulated oilfield was studied with potentiodynamic polarization and the impedance spectra technique. The results showed that the microstructure of the surface scale clearly changed with temperature. This decreased the sensitivity of pitting corrosion and increased the tendency toward general (or uniform) corrosion. The capacitance, the charge transfer resistance, and the polarization resistance of the corrosion product scale decrease with increasing temperature from 90 to 120 °C, and thus the corrosion is a thermal activation controlled process. Charge transfer through the scale is difficult and the corrosion is controlled by a diffusion process at a temperature of 150 °C. Resistance charge transfer through the corrosion product layer is higher than that in the passive film.
Electrostatic transfer of epitaxial graphene to glass.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohta, Taisuke; Pan, Wei; Howell, Stephen Wayne
2010-12-01
We report on a scalable electrostatic process to transfer epitaxial graphene to arbitrary glass substrates, including Pyrex and Zerodur. This transfer process could enable wafer-level integration of graphene with structured and electronically-active substrates such as MEMS and CMOS. We will describe the electrostatic transfer method and will compare the properties of the transferred graphene with nominally-equivalent 'as-grown' epitaxial graphene on SiC. The electronic properties of the graphene will be measured using magnetoresistive, four-probe, and graphene field effect transistor geometries [1]. To begin, high-quality epitaxial graphene (mobility 14,000 cm2/Vs and domains >100 {micro}m2) is grown on SiC in an argon-mediated environmentmore » [2,3]. The electrostatic transfer then takes place through the application of a large electric field between the donor graphene sample (anode) and the heated acceptor glass substrate (cathode). Using this electrostatic technique, both patterned few-layer graphene from SiC(000-1) and chip-scale monolayer graphene from SiC(0001) are transferred to Pyrex and Zerodur substrates. Subsequent examination of the transferred graphene by Raman spectroscopy confirms that the graphene can be transferred without inducing defects. Furthermore, the strain inherent in epitaxial graphene on SiC(0001) is found to be partially relaxed after the transfer to the glass substrates.« less
NASA Astrophysics Data System (ADS)
Wei, Linyang; Qi, Hong; Sun, Jianping; Ren, Yatao; Ruan, Liming
2017-05-01
The spectral collocation method (SCM) is employed to solve the radiative transfer in multi-layer semitransparent medium with graded index. A new flexible angular discretization scheme is employed to discretize the solid angle domain freely to overcome the limit of the number of discrete radiative direction when adopting traditional SN discrete ordinate scheme. Three radial basis function interpolation approaches, named as multi-quadric (MQ), inverse multi-quadric (IMQ) and inverse quadratic (IQ) interpolation, are employed to couple the radiative intensity at the interface between two adjacent layers and numerical experiments show that MQ interpolation has the highest accuracy and best stability. Variable radiative transfer problems in double-layer semitransparent media with different thermophysical properties are investigated and the influence of these thermophysical properties on the radiative transfer procedure in double-layer semitransparent media is also analyzed. All the simulated results show that the present SCM with the new angular discretization scheme can predict the radiative transfer in multi-layer semitransparent medium with graded index efficiently and accurately.
NASA Astrophysics Data System (ADS)
Feinaeugle, Matthias; Horak, Peter; Sones, Collin L.; Lippert, Thomas; Eason, Rob W.
2014-09-01
In this study, we investigate both experimentally and numerically laser-induced forward transfer (LIFT) of thin films to determine the role of a thin polymer layer coating the receiver with the aim of modifying the rate of deceleration and reduction of material stress preventing intact material transfer. A numerical model of the impact phase during LIFT shows that such a layer reduces the modelled stress. The evolution of stress within the transferred deposit and the substrate as a function of the thickness of the polymer layer, the transfer velocity and the elastic properties of the polymer are evaluated. The functionality of the polymer layer is verified experimentally by LIFT printing intact 1- m-thick bismuth telluride films and polymeric light-emitting diode pads onto a layer of 12-m-thick polydimethylsiloxane and 50-nm-thick poly(3,4-ethylenedioxythiophene) blended with poly(styrenesulfonate) (PEDOT:PSS), respectively. Furthermore, it is demonstrated experimentally that the introduction of such a compliant layer improves adhesion between the deposit and its substrate.
Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study
NASA Astrophysics Data System (ADS)
Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.
2015-12-01
We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.
Stacking of ZnSe/ZnCdSe Multi-Quantum Wells on GaAs (100) by Epitaxial Lift-Off
NASA Astrophysics Data System (ADS)
Eldose, N. M.; Zhu, J.; Mavridi, N.; Prior, Kevin; Moug, R. T.
2018-05-01
Here we present stacking of GaAs/ZnSe/ZnCdSe single-quantum well (QW) structures using epitaxial lift-off (ELO). Molecular beam epitaxy (MBE)-grown II-VI QW structure was lifted using our standard ELO technique. The QW structures were transferred onto glass plates and then subsequent layers stacked on top of each other to form a triple-QW structure. This was compared to an MBE-grown multiple-QW (MQW) structure of similar design. Low-temperature (77 K) photoluminescence (PL) spectroscopy was used to compare the two structures and showed no obvious degradation of the ELO stacked layer. It was observed that by stacking the single QW layer on itself we could increase the PL emission intensity beyond that of the grown MQW structure while maintaining narrow line width.
NASA Astrophysics Data System (ADS)
Brakensiek, Nickolas; Xu, Kui; Sweat, Daniel; Hockey, Mary Ann
2018-03-01
Directed self-assembly (DSA) of block copolymers (BCPs) is one of the most promising patterning technologies for future lithography nodes. However, one of the biggest challenges to DSA is the pattern transfer by plasma etching from BCP to hardmask (HM) because the etch selectivity between BCP and neutral brush layer underneath is usually not high enough to enable robust pattern transfer. This paper will explore the plasma etch conditions of both BCPs and neutral brush layers that may improve selectivity and allow a more robust pattern transfer of DSA patterns into the hardmask layer. The plasma etching parameters that are under investigation include the selection of oxidative or reductive etch chemistries, as well as plasma gas pressure, power, and gas mixture fractions. Investigation into the relationship between BCP/neutral brush layer materials with varying chemical compositions and the plasma etching conditions will be highlighted. The culmination of this work will demonstrate important etch parameters that allow BCPs and neutral brush layers to be etched into the underlying hardmask layer with a large process window.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, Jim; Penuelas, J.; Guenther, Alex B.
To survey landscape-scale fluxes of biogenic gases, a100-meterTeflon tube was attached to a tethered balloon as a sampling inlet for a fast response Proton Transfer Reaction Mass Spectrometer (PTRMS). Along with meteorological instruments deployed on the tethered balloon and at 3-mand outputs from a regional weather model, these observations were used to estimate landscape scale biogenic volatile organic compound fluxes with two micrometeorological techniques: mixed layer variance and surface layer gradients. This highly mobile sampling system was deployed at four field sites near Barcelona to estimate landscape-scale BVOC emission factors in a relatively short period (3 weeks). The two micrometeorologicalmore » techniques agreed within the uncertainty of the flux measurements at all four sites even though the locations had considerable heterogeneity in species distribution and complex terrain. The observed fluxes were significantly different than emissions predicted with an emission model using site-specific emission factors and land-cover characteristics. Considering the wide range in reported BVOC emission factors of VOCs for individual vegetation species (more than an order of magnitude), this flux estimation technique is useful for constraining BVOC emission factors used as model inputs.« less
Upright Imaging of Drosophila Egg Chambers
Manning, Lathiena; Starz-Gaiano, Michelle
2015-01-01
Drosophila melanogaster oogenesis provides an ideal context for studying varied developmental processes since the ovary is relatively simple in architecture, is well-characterized, and is amenable to genetic analysis. Each egg chamber consists of germ-line cells surrounded by a single epithelial layer of somatic follicle cells. Subsets of follicle cells undergo differentiation during specific stages to become several different cell types. Standard techniques primarily allow for a lateral view of egg chambers, and therefore a limited view of follicle cell organization and identity. The upright imaging protocol describes a mounting technique that enables a novel, vertical view of egg chambers with a standard confocal microscope. Samples are first mounted between two layers of glycerin jelly in a lateral (horizontal) position on a glass microscope slide. The jelly with encased egg chambers is then cut into blocks, transferred to a coverslip, and flipped to position egg chambers upright. Mounted egg chambers can be imaged on either an upright or an inverted confocal microscope. This technique enables the study of follicle cell specification, organization, molecular markers, and egg development with new detail and from a new perspective. PMID:25867882
Wafer-Level Membrane-Transfer Process for Fabricating MEMS
NASA Technical Reports Server (NTRS)
Yang, Eui-Hyeok; Wiberg, Dean
2003-01-01
A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.
NASA Astrophysics Data System (ADS)
Donovan, K. J.; Elliott, J. E.; Jeong, I. S.; Scott, K.; Wilson, E. G.
2000-11-01
The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is demonstrated to be dependent upon the applied electrostatic potential difference between the layers. This dependence is explored in light of the Marcus theory of charge transfer. That theory was developed to describe redox reactions where the driving force is supplied by a chemical potential difference between two chemically different parts of a more complex system. In the current work the electrostatic potential replaces the chemical potential as the driving potential. The field dependence of the exciton dissociation probability is also determined.
NASA Technical Reports Server (NTRS)
Bortner, M. H.; Alyea, F. N.; Grenda, R. N.; Liebling, G. R.; Levy, G. M.
1973-01-01
The feasibility of measuring atmospheric carbon monoxide from a remote platform using the correlation interferometry technique was considered. It has been determined that CO data can be obtained with an accuracy of 10 percent using this technique on the first overtone band of CO at 2.3 mu. That band has been found to be much more suitable than the stronger fundamental band at 4.6 mu. Calculations for both wavelengths are presented which illustrate the effects of atmospheric temperature profiles, inversion layers, ground temperature and emissivity, CO profile, reflectivity, and atmospheric pressure. The applicable radiative transfer theory on which these calculations are based is described together with the principles of the technique.
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1982-01-01
Measurements were made of the heat transfer rate through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20% to 50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15% to 20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: the effect of initial boundary layer thickness, the effect of freestream velocity, the effect of freestream acceleration, the effect of unheated starting length, and the effect of the maturity of the boundary layer. An existing curvature prediction model was tested against this broad heat transfer data base to determine where it could appropriately be used for heat transfer predictions.
Electronic nanobiosensors based on two-dimensional materials
NASA Astrophysics Data System (ADS)
Ping, Jinglei
Atomically-thick two-dimensional (2D) nanomaterials have tremendous potential to be applied as transduction elements in biosensors and bioelectronics. We developed scalable methods for synthesis and large-area transfer of two-dimensional nanomaterials, particularly graphene and metal dichalcogenides (so called ``MX2'' materials). We also developed versatile fabrication methods for large arrays of field-effect transistors (FETs) and micro-electrodes with these nanomaterials based on either conventional photolithography or innovative approaches that minimize contamination of the 2D layer. By functionalizing the FETs with a computationally redesigned water-soluble mu-opioid receptor, we created selective and sensitive biosensors suitable for detection of the drug target naltrexone and the neuropeptide enkephalin at pg/mL concentrations. We also constructed DNA-functionalized biosensors and nano-particle decorated biosensors by applying related bio-nano integration techniques. Our methodology paves the way for multiplexed nanosensor arrays with all-electronic readout suitable for inexpensive point-of-care diagnostics, drug-development and biomedical research. With graphene field-effect transistors, we investigated the graphene/solution interface and developed a quantitative model for the effect of ionic screening on the graphene carrier density based on theories of the electric double layer. Finally, we have developed a technique for measuring low-level Faradaic charge-transfer current (fA) across the graphene/solution interface via real-time charge monitoring of graphene microelectrodes in ionic solution. This technique enables the development of flexible and transparent pH sensors that are promising for in vivo applications. The author acknowledges the support from the Defense Advanced Research Projects Agency (DARPA) and the U. S. Army Research Office under Grant Number W911NF1010093.
Pressure gradient effects on heat transfer to reusable surface insulation tile-array gaps
NASA Technical Reports Server (NTRS)
Throckmorton, D. A.
1975-01-01
An experimental investigation was performed to determine the effect of pressure gradient on the heat transfer within space shuttle reusable surface insulation (RSI) tile-array gaps under thick, turbulent boundary-layer conditions. Heat-transfer and pressure measurements were obtained on a curved array of full-scale simulated RSI tiles in a tunnel-wall boundary layer at a nominal free-stream Mach number and free-stream Reynolds numbers. Transverse pressure gradients of varying degree were induced over the model surface by rotating the curved array with respect to the flow. Definition of the tunnel-wall boundary-layer flow was obtained by measurement of boundary-layer pitot pressure profiles, wall pressure, and heat transfer. Flat-plate heat-transfer data were correlated and a method was derived for prediction of heat transfer to a smooth curved surface in the highly three-dimensional tunnel-wall boundary-layer flow. Pressure on the floor of the RSI tile-array gap followed the trends of the external surface pressure. Heat transfer to the surface immediately downstream of a transverse gap is higher than that for a smooth surface at the same location. Heating to the wall of a transverse gap, and immediately downstream of it, at its intersection with a longitudinal gap is significantly greater than that for the simple transverse gap.
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-03
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.
Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang
2017-01-01
Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075
Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang
2015-12-21
Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.
NASA Astrophysics Data System (ADS)
Lin, Ziyuan; Zhao, Yuda; Zhou, Changjian; Zhong, Ren; Wang, Xinsheng; Tsang, Yuen Hong; Chai, Yang
2015-12-01
Two-dimensional MoS2 is a promising material for future nanoelectronics and optoelectronics. It has remained a great challenge to grow large-size crystalline and high surface coverage monolayer MoS2. In this work, we investigate the controllable growth of monolayer MoS2 evolving from triangular flakes to continuous thin films by optimizing the concentration of gaseous MoS2, which has been shown a both thermodynamic and kinetic growth factor. A single-crystal monolayer MoS2 larger than 300 μm was successfully grown by suppressing the nuclei density and supplying sufficient source. Furthermore, we present a facile process of transferring the centimeter scale MoS2 assisted with a copper thin film. Our results show the absence of observable residues or wrinkles after we transfer MoS2 from the growth substrates onto flat substrates using this technique, which can be further extended to transfer other two-dimensional layered materials.
Fabrication of non-hexagonal close packed colloidal array on a substrate by transfer
NASA Astrophysics Data System (ADS)
Banik, Meneka; Mukherjee, Rabibrata
Self-organized colloidal arrays find application in fabrication of solar cells with advanced light management strategies. We report a simple spincoating based approach for fabricating two dimensional colloidal crystals with hexagonal and non-hexagonal close packed assembly on flat and nanopatterned substrates. The non-HCP arrays were fabricated by spin coating the particles onto soft lithographically fabricated substrates. The substrate patterns impose directionality to the particles by confining them within the grooves. We have developed a technique by which the HCP and non-HCP arrays can be transferred to any surface. For this purpose the colloidal arrays were fabricated on a UV degradable PMMA layer, resulting in transfer of the particles on UV exposure. This allows the colloidal structures to be transported across substrates irrespective of their surface energy, wettability or morphology. Since the particles are transferred without exposing it to any kind of chemical or thermal environment, it can be utilized for placing particles on top of thin film solar cells for improving their absorption efficiency.
NASA Astrophysics Data System (ADS)
Stark, C. P.; Rudd, S.; Lall, U.; Hovius, N.; Dadson, S.; Chen, M.-C.
Off-Axis DOAS measurements with non-artificial scattered light, based upon the renowned DOAS technique, allow to optimize the sensitivity of the technique for the trace gas profile in question by strongly increasing the light's path through the relevant atmosphere layers. Multi-Axis-(MAX) DOAS probe several directions simultaneously or sequentially to increase the spatial resolution. Several devices (ground based, air- borne and ship-built) are operated by our group in the framework of the SCIAMACHY validation. Radiative transfer models are an essential requirement for the interpretation of these measurements and their conversion into detailed profile data. Apart from some existing Monte Carlo Models most codes use analytical algorithms to solve the radia- tive transfer equation for given atmospheric conditions. For specific circumstances, e.g. photon scattering within clouds, these approaches are not efficient enough to pro- vide sufficient accuracy. Also horizontal gradients in atmospheric parameters have to be taken into account. To meet the needs of measurement situations for all kinds of scattered light DOAS platforms, a three dimensional full spherical Monte Carlo model was devised. Here we present Air Mass Factors (AMF) to calculate vertical column densities (VCD) from measured slant column densities (SCD). Sensitivity studies on the influence of the wavelength and telescope direction used, of the altitude of profile layers, albedo, refraction and basic aerosols are shown. Also modelled intensity series are compared with radiometer data.
NASA Technical Reports Server (NTRS)
Gloss, R. J.
1971-01-01
A finite difference turbulent boundary layer computer program which allows for mass transfer wall cooling and equilibrium chemistry effects is presented. The program is capable of calculating laminar or turbulent boundary layer solutions for an arbitrary ideal gas or an equilibrium hydrogen oxygen system. Either two dimensional or axisymmetric geometric configurations may be considered. The equations are solved, in nondimension-alized physical coordinates, using the implicit Crank-Nicolson technique. The finite difference forms of the conservation of mass, momentum, total enthalpy and elements equations are linearized and uncoupled, thereby generating easily solvable tridiagonal sets of algebraic equations. A detailed description of the computer program, as well as a program user's manual is provided. Detailed descriptions of all boundary layer subroutines are included, as well as a section defining all program symbols of principal importance. Instructions are then given for preparing card input to the program and for interpreting the printed output. Finally, two sample cases are included to illustrate the use of the program.
In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes
NASA Astrophysics Data System (ADS)
Liu, Zheng; Ma, Lulu; Shi, Gang; Zhou, Wu; Gong, Yongji; Lei, Sidong; Yang, Xuebei; Zhang, Jiangnan; Yu, Jingjiang; Hackenberg, Ken P.; Babakhani, Aydin; Idrobo, Juan-Carlos; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M.
2013-02-01
Graphene and hexagonal boron nitride (h-BN) have similar crystal structures with a lattice constant difference of only 2%. However, graphene is a zero-bandgap semiconductor with remarkably high carrier mobility at room temperature, whereas an atomically thin layer of h-BN is a dielectric with a wide bandgap of ~5.9 eV. Accordingly, if precise two-dimensional domains of graphene and h-BN can be seamlessly stitched together, hybrid atomic layers with interesting electronic applications could be created. Here, we show that planar graphene/h-BN heterostructures can be formed by growing graphene in lithographically patterned h-BN atomic layers. Our approach can create periodic arrangements of domains with size ranging from tens of nanometres to millimetres. The resulting graphene/h-BN atomic layers can be peeled off the growth substrate and transferred to various platforms including flexible substrates. We also show that the technique can be used to fabricate two-dimensional devices, such as a split closed-loop resonator that works as a bandpass filter.
Self-assembly of a thin highly reduced graphene oxide film and its high electrocatalytic activity
NASA Astrophysics Data System (ADS)
Bai, Yan-Feng; Zhang, Yong-Fang; Zhou, An-Wei; Li, Hai-Wai; Zhang, Yu; Luong, John H. T.; Cui, Hui-Fang
2014-10-01
A thin highly reduced graphene oxide (rGO) film was self-assembled at the dimethyl formamide (DMF)-air interface through evaporation-induced water-assisted thin film formation at the pentane-DMF interface, followed by complete evaporation of pentane. The thin film was transferred onto various solid substrates for film characterization and electrochemical sensing. UV-visible spectrometry, scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemistry techniques were used to characterize the film. An rGO film showing 82.8% of the transmittance at 550 nm corresponds to a few layers of rGO nanosheets. The rGO nanosheets cross-stack with each other, lying approximately in the plane of the film. An rGO film collected on a glassy carbon (GC) electrode exhibited improved electrical conductivity compared to GC, with the electrode charge-transfer resistance (Rct) reduced from 31 Ω to 22 Ω. The as-formed rGO/GC electrode was mechanically very stable, exhibiting significantly enhanced electrocatalytic activity to H2O2 and dopamine. Multiple layers of the rGO films on the GC electrode showed even stronger electrocatalytic activity to dopamine than that of the single rGO film layer. The controllable formation of a stable rGO film on various solid substrates has potential applications for nanoelectronics and sensors/biosensors.
NASA Astrophysics Data System (ADS)
Iqbal, Z.; Azhar, Ehtsham; Maraj, E. N.
2017-12-01
In this study, we analyzed the induced magnetic field effect on stagnation-point flow of a Al2O3-Ag/water hybrid nanofluid over a stretching sheet. Hybrid nanofluid, a new type of conventional fluid has been used for enhancement of heat transfer within boundary layer flow. It is notable here that only 1% to 5% contribution of nanoparticles enhance thermal conductivity of water. Nonlinear governing equations are simplified into boundary layer equations under boundary layer approximation assumption. A coupled system of nonlinear partial differential equation is transformed into a nonlinear system of ordinary differential equation by implementing suitable similarity conversions. Numerical analysis is performed by means of Keller box scheme. Effects of different non-dimensional governing parameters on velocity, induced magnetic field and temperature profiles, along with skinfriction coefficient and local Nusselt number, are discussed and presented through graphs and tables. Hybrid nanofluid is considered by keeping the 0.1% volumetric fraction of silver. From this study it is observed that the heat transfer rate of hybrid nanofluid (Al2O3-Ag/water) is higher than nanofluid (Ag/water). Novel results computed are useful in academic studies of hybrid nanofluids in engineering and industry.
NASA Astrophysics Data System (ADS)
Podder, M. S.; Majumder, C. B.
2017-11-01
An artificial neural network (ANN) model was developed to predict the phycoremediation efficiency of Chlorella pyrenoidosa for the removal of both As(III) and As(V) from synthetic wastewater based on 49 data-sets obtained from experimental study and increased the data using CSCF technique. The data were divided into training (60%) validation (20%) and testing (20%) sets. The data collected was used for training a three-layer feed-forward back propagation (BP) learning algorithm having 4-5-1 architecture. The model used tangent sigmoid transfer function at input to hidden layer ( tansing) while a linear transfer function ( purelin) was used at output layer. Comparison between experimental results and model results gave a high correlation coefficient (R allANN 2 equal to 0.99987 for both ions and exhibited that the model was able to predict the phycoremediation of As(III) and As(V) from wastewater. Experimental parameters influencing phycoremediation process like pH, inoculum size, contact time and initial arsenic concentration [either As(III) or As(V)] were investigated. A contact time of 168 h was mainly required for achieving equilibrium at pH 9.0 with an inoculum size of 10% (v/v). At optimum conditions, metal ion uptake enhanced with increasing initial metal ion concentration.
Transport Phenomena in Thin Rotating Liquid Films Including: Nucleate Boiling
NASA Technical Reports Server (NTRS)
Faghri, Amir
2005-01-01
In this grant, experimental, numerical and analytical studies of heat transfer in a thin liquid film flowing over a rotating disk have been conducted. Heat transfer coefficients were measured experimentally in a rotating disk heat transfer apparatus where the disk was heated from below with electrical resistance heaters. The heat transfer measurements were supplemented by experimental characterization of the liquid film thickness using a novel laser based technique. The heat transfer measurements show that the disk rotation plays an important role on enhancement of heat transfer primarily through the thinning of the liquid film. Experiments covered both momentum and rotation dominated regimes of the flow and heat transfer in this apparatus. Heat transfer measurements have been extended to include evaporation and nucleate boiling and these experiments are continuing in our laboratory. Empirical correlations have also been developed to provide useful information for design of compact high efficiency heat transfer devices. The experimental work has been supplemented by numerical and analytical analyses of the same problem. Both numerical and analytical results have been found to agree reasonably well with the experimental results on liquid film thickness and heat transfer Coefficients/Nusselt numbers. The numerical simulations include the free surface liquid film flow and heat transfer under disk rotation including the conjugate effects. The analytical analysis utilizes an integral boundary layer approach from which
Chemical and charge transfer studies on interfaces of a conjugated polymer and ITO
NASA Astrophysics Data System (ADS)
David, Tanya M. S.; Arasho, Wondwosson; Smith, O'Neil; Hong, Kunlun; Bonner, Carl; Sun, Sam-Shajing
2017-08-01
Conjugated oligomers and polymers are very attractive for potential future plastic electronic and opto-electronic device applications such as plastic photo detectors and solar cells, thermoelectric devices, field effect transistors, and light emitting diodes. Understanding and optimizing charge transport between an active polymer layer and conductive substrate is critical to the optimization of polymer based electronic and opto-electronic devices. This study focused on the design, synthesis, self-assembly, and electron transfers and transports of a phosphonic acid end-functionalized polyphenylenevinylene (PPV) that was covalently attached and self-assembled onto an Indium Tin Oxide (ITO) substrate. This study demonstrated how atomic force microscopy (AFM) can be an effective characterization technique in conjunction with conventional electron transfer methods, including cyclic voltammetry (CV), towards determining electron transfer rates in polymer and polymer/conductor interface systems. This study found that the electron transfer rates of covalently attached and self-assembled films were much faster than the spin coated films. The knowledge from this study can be very useful for designing potential polymer based electronic and opto-electronic thin film devices.
A general stagnation-point convective heating equation for arbitrary gas mixtures
NASA Technical Reports Server (NTRS)
Sutton, K.; Graves, R. A., Jr.
1971-01-01
The stagnation-point convective heat transfer to an axisymmetric blunt body for arbitrary gases in chemical equilibrium was investigated. The gases considered were base gases of nitrogen, oxygen, hydrogen, helium, neon, argon, carbon dioxide, ammonia, and methane and 22 gas mixtures composed of the base gases. Enthalpies ranged from 2.3 to 116.2 MJ/kg, pressures ranged from 0.001 to 100 atmospheres, and the wall temperatures were 300 and 1111 K. A general equation for the stagnation-point convective heat transfer in base gases and gas mixtures was derived and is a function of the mass fraction, the molecular weight, and a transport parameter of the base gases. The relation compares well with present boundary-layer computer results and with other analytical and experimental results. In addition, the analysis verified that the convective heat transfer in gas mixtures can be determined from a summation relation involving the heat transfer coefficients of the base gases. The basic technique developed for the prediction of stagnation-point convective heating to an axisymmetric blunt body could be applied to other heat transfer problems.
Charge transfer at organic-inorganic interfaces—Indoline layers on semiconductor substrates
NASA Astrophysics Data System (ADS)
Meyenburg, I.; Falgenhauer, J.; Rosemann, N. W.; Chatterjee, S.; Schlettwein, D.; Heimbrodt, W.
2016-12-01
We studied the electron transfer from excitons in adsorbed indoline dye layers across the organic-inorganic interface. The hybrids consist of indoline derivatives on the one hand and different inorganic substrates (TiO2, ZnO, SiO2(0001), fused silica) on the other. We reveal the electron transfer times from excitons in dye layers to the organic-inorganic interface by analyzing the photoluminescence transients of the dye layers after femtosecond excitation and applying kinetic model calculations. A correlation between the transfer times and four parameters have been found: (i) the number of anchoring groups, (ii) the distance between the dye and the organic-inorganic interface, which was varied by the alkyl-chain lengths between the carboxylate anchoring group and the dye, (iii) the thickness of the adsorbed dye layer, and (iv) the level alignment between the excited dye ( π* -level) and the conduction band minimum of the inorganic semiconductor.
Kim, Yong-Kwan; Kang, Pil Soo; Kim, Dae-Il; Shin, Gunchul; Kim, Gyu Tae; Ha, Jeong Sook
2009-03-01
A printing-based lithographic technique for the patterning of V(2)O(5) nanowire channels with unidirectional orientation and controlled length is introduced. The simple, directional blowing of a patterned polymer stamp with N(2) gas, inked with randomly distributed V(2)O(5) nanowires, induces alignment of the nanowires perpendicular to the long axis of the line patterns. Subsequent stamping on the amine-terminated surface results in the selective transfer of the aligned nanowires with a controlled length corresponding to the width of the relief region of the polymer stamp. By employing such a gas-blowing-assisted, selective-transfer-printing technique, two kinds of device structures consisting of nanowire channels and two metal electrodes with top contact, whereby the nanowires were aligned either parallel (parallel device) or perpendicular (serial device) to the current flow in the conduction channel, are fabricated. The electrical properties demonstrate a noticeable difference between the two devices, with a large hysteresis in the parallel device but none in the serial device. Systematic analysis of the hysteresis and the electrical stability account for the observed hysteresis in terms of the proton diffusion in the water layer of the V(2)O(5) nanowires, induced by the application of an external bias voltage higher than a certain threshold voltage.
NASA Astrophysics Data System (ADS)
Yang, Erika; Ryu, Byunghoon; Nam, Hongsuk; Liang, Xiaogan
2017-03-01
Two dimensional layered transition metal dichalcogenides (TMDC) materials have the growing potential to upstage graphene in the next generation of biosensors in detecting lower-concentrated areas of biomolecules. The current gold-standard detection method is the enzyme-linked immunosorbent assay (ELISA), an immunological assay technique that makes use of an enzyme bonded to a particular antibody or antigen. However, this technique is not only bulky, labor-intensive, and time extensive, but more importantly, the ELISA has relatively low detection limits of only 600 femtomolar (fM). In this work, for the first time, we present a novel flexible, sensitive MoS2 (molybdenum disulfide) biosensor, as shown in Figure 1, composed of few-layer of MoS2 as the channel material, and flexible polyimide as the substrate. In order to nano-fabricate this flexible biosensor, we mechanically transferred a few layers of MoS2 onto the flexible substrate polyimide and photolithography to create a patterning on the surface, and as a result, we were able to create a transistor that used MoS2 as its conductance channel. We successfully fabricated this MoS2 biosensor onto a flexible polyimide substrate. Furthermore, the fabricated flexible MoS2 biosensor can be utilized for quantifying the time-dependent reaction kinetics of streptavidin-biotin binding. Figure 2 shows the transfer characteristics of flexible MoS2 biosensors measured under different concentrations of streptavidin. The flexible MoS2 biosensor could illustrate a faster detection time in matters of minutes, and higher sensitivity with detection limits as low as 10 fM. Time versus equilibrium constants will be presented in details.
Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography
NASA Astrophysics Data System (ADS)
Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.
2005-02-01
Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.
Incorporation of multiple cloud layers for ultraviolet radiation modeling studies
NASA Technical Reports Server (NTRS)
Charache, Darryl H.; Abreu, Vincent J.; Kuhn, William R.; Skinner, Wilbert R.
1994-01-01
Cloud data sets compiled from surface observations were used to develop an algorithm for incorporating multiple cloud layers into a multiple-scattering radiative transfer model. Aerosol extinction and ozone data sets were also incorporated to estimate the seasonally averaged ultraviolet (UV) flux reaching the surface of the Earth in the Detroit, Michigan, region for the years 1979-1991, corresponding to Total Ozone Mapping Spectrometer (TOMS) version 6 ozone observations. The calculated UV spectrum was convolved with an erythema action spectrum to estimate the effective biological exposure for erythema. Calculations show that decreasing the total column density of ozone by 1% leads to an increase in erythemal exposure by approximately 1.1-1.3%, in good agreement with previous studies. A comparison of the UV radiation budget at the surface between a single cloud layer method and a multiple cloud layer method presented here is discussed, along with limitations of each technique. With improved parameterization of cloud properties, and as knowledge of biological effects of UV exposure increase, inclusion of multiple cloud layers may be important in accurately determining the biologically effective UV budget at the surface of the Earth.
A novel integrated chassis controller for full drive-by-wire vehicles
NASA Astrophysics Data System (ADS)
Song, Pan; Tomizuka, Masayoshi; Zong, Changfu
2015-02-01
In this paper, a systematic design with multiple hierarchical layers is adopted in the integrated chassis controller for full drive-by-wire vehicles. A reference model and the optimal preview acceleration driver model are utilised in the driver control layer to describe and realise the driver's anticipation of the vehicle's handling characteristics, respectively. Both the sliding mode control and terminal sliding mode control techniques are employed in the vehicle motion control (MC) layer to determine the MC efforts such that better tracking performance can be attained. In the tyre force allocation layer, a polygonal simplification method is proposed to deal with the constraints of the tyre adhesive limits efficiently and effectively, whereby the load transfer due to both roll and pitch is also taken into account which directly affects the constraints. By calculating the motor torque and steering angle of each wheel in the executive layer, the total workload of four wheels is minimised during normal driving, whereas the MC efforts are maximised in extreme handling conditions. The proposed controller is validated through simulation to improve vehicle stability and handling performance in both open- and closed-loop manoeuvres.
NASA Astrophysics Data System (ADS)
Forstater, Jacob; Augustine, Brian; Hughes, Chris
2006-11-01
We have developed a new technique for the rapid fabrication of structures useful for microfluidic devices called micromolding by photopolymerization in capillaries (μ-PIC). The technique involves the replication of features from a silicon master in which features on the order of tens to hundreds of microns have been formed by crystallographic etching. The negative of the features is then transferred to a sheet of polymethylmethacrylate (PMMA) by placing the PMMA sheet over the silicon master and injecting a solution of methylmethacrylate monomer with a benzoin methyl ether photoinitiator. This solution is drawn between the PMMA and the silicon by capillary action forming a liquid layer that is no more than a few hundred microns thick. This liquid is then polymerized by exposure to ultraviolet light for less than a half hour. The features transferred in this manner have nearly identical surface structure and roughness. Analysis of these surfaces and structures by atomic force microscopy and scanning electron microscopy will be presented.
Increasing Saturated Electron-Drift Velocity in Donor-Acceptor Doped pHEMT Heterostructures
NASA Astrophysics Data System (ADS)
Protasov, D. Yu.; Gulyaev, D. V.; Bakarov, A. K.; Toropov, A. I.; Erofeev, E. V.; Zhuravlev, K. S.
2018-03-01
Field dependences of the electron-drift velocity in typical pseudomorphic high-electron-mobility transistor (pHEMT) heteroepitaxial structures (HESs) and in those with donor-acceptor doped (DApHEMT) heterostructures with quantum-well (QW) depth increased by 0.8-0.9 eV with the aid of acceptor layers have been studied by a pulsed technique. It is established that the saturated electron-drift velocity in DA-pHEMT-HESs is 1.2-1.3 times greater than that in the usual pHEMT-HESs. The electroluminescence (EL) spectra of DA-pHEMT-HESs do not contain emission bands related to the recombination in widebandgap layers (QW barriers). The EL intensity in these HESs is not saturated with increasing electric field. This is indicative of a suppressed real-space transfer of hot electrons from QW to barrier layers, which accounts for the observed increase in the saturated electron-drift velocity.
Analysis of unsteady compressible viscous layers
NASA Technical Reports Server (NTRS)
Power, G. D.; Verdon, J. M.; Kousen, K. A.
1990-01-01
The development of an analysis to predict the unsteady compressible flows in blade boundary layers and wakes is presented. The equations that govern the flows in these regions are transformed using an unsteady turbulent generalization of the Levy-Lees transformation. The transformed equations are solved using a finite difference technique in which the solution proceeds by marching in time and in the streamwise direction. Both laminar and turbulent flows are studied, the latter using algebraic turbulence and transition models. Laminar solutions for a flat plate are shown to approach classical asymptotic results for both high and low frequency unsteady motions. Turbulent flat-plate results are in qualitative agreement with previous predictions and measurements. Finally, the numerical technique is also applied to the stator and rotor of a low-speed turbine stage to determine unsteady effects on surface heating. The results compare reasonably well with measured heat transfer data and indicate that nonlinear effects have minimal impact on the mean and unsteady components of the flow.
Ayari, Taha; Bishop, Chris; Jordan, Matthew B; Sundaram, Suresh; Li, Xin; Alam, Saiful; ElGmili, Youssef; Patriarche, Gilles; Voss, Paul L; Salvestrini, Jean Paul; Ougazzaden, Abdallah
2017-11-09
The transfer of GaN based gas sensors to foreign substrates provides a pathway to enhance sensor performance, lower the cost and extend the applications to wearable, mobile or disposable systems. The main keys to unlocking this pathway is to grow and fabricate the sensors on large h-BN surface and to transfer them to the flexible substrate without any degradation of the performances. In this work, we develop a new generation of AlGaN/GaN gas sensors with boosted performances on a low cost flexible substrate. We fabricate 2-inch wafer scale AlGaN/GaN gas sensors on sacrificial two-dimensional (2D) nano-layered h-BN without any delamination or cracks and subsequently transfer sensors to an acrylic surface on metallic foil. This technique results in a modification of relevant device properties, leading to a doubling of the sensitivity to NO 2 gas and a response time that is more than 6 times faster than before transfer. This new approach for GaN-based sensor design opens new avenues for sensor improvement via transfer to more suitable substrates, and is promising for next-generation wearable and portable opto-electronic devices.
Ion beam-based studies for tribological phenomena
NASA Astrophysics Data System (ADS)
Racolta, P. M.; Popa-Simil, L.; Alexandreanu, B.
1996-06-01
Custom-designed experiments based on the Thin Layer Activation technique (TLA) were completed, providing information on the wear level of some engine components with additional data on transfer and adhesion of material between metallic friction couples using the RBS method. RBS experimental results concerning material transfer for a steel-brass friction couple are presented and discussed in the paper. Also, the types and concentrations of the wear products in used lubricant oils were determined by in-air PIXE. A sequential lubricant filtering-based procedure for determining the dimension distribution of the resulting radioactive wear particles by low level γ-spectrometry is presented. Experimental XRF spectra showing the non-homogeneous distribution of the retained waste particles on the filtering paper are shown.
NASA Astrophysics Data System (ADS)
Pal, Dulal; Mondal, Hiranmoy
2018-03-01
The paper is devoted to the study of thermophoresis and Soret-Dufour effects on magnetohydrodynamic mixed convective heat and mass transfer over an inclined flat plate with non-uniform heat source/sink. Governing non-linear coupled ordinary differential equations are solved numerically using Runge-Kutta Fehlberg technique with shooting scheme. The effects of various physical parameters on the velocity, temperature, and concentration profiles are depicted graphically. The values of skin-friction coefficient, Nusselt number and Sherwood number are presented in a tabular form. It is found that increase in thermophoretic and chemical reaction parameters retard the velocity and concentration distributions in the boundary layer.
Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang
2018-02-01
Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Madaki, A. G.; Roslan, R.; Kandasamy, R.; Chowdhury, M. S. H.
2017-04-01
In this paper, the effects of Brownian motion, thermophoresis, chemical reaction, heat generation, magnetohydrodynamic and thermal radiation has been included in the model of nanofluid flow and heat transfer over a moving surface with variable thickness. The similarity transformation is used to transform the governing boundary layer equations into ordinary differential equations (ODE). Both optimal homotopy asymptotic method (OHAM) and Runge-Kutta fourth order method with shooting technique are employed to solve the resulting ODEs. For different values of the pertinent parameters on the velocity, temperature and concentration profiles have been studied and details are given in tables and graphs respectively. A comparison with the previous study is made, where an excellent agreement is achieved. The results demonstrate that the radiation parameter N increases, with the increase in both the temperature and the thermal boundary layer thickness respectively. While the nanoparticles concentration profiles increase with the influence of generative chemical reaction γ < 0, while it decreases with destructive chemical reaction γ > 0.
Chalcogenide glass-on-graphene photonics
NASA Astrophysics Data System (ADS)
Lin, Hongtao; Song, Yi; Huang, Yizhong; Kita, Derek; Deckoff-Jones, Skylar; Wang, Kaiqi; Li, Lan; Li, Junying; Zheng, Hanyu; Luo, Zhengqian; Wang, Haozhe; Novak, Spencer; Yadav, Anupama; Huang, Chung-Che; Shiue, Ren-Jye; Englund, Dirk; Gu, Tian; Hewak, Daniel; Richardson, Kathleen; Kong, Jing; Hu, Juejun
2017-12-01
Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.
Gudra, Tadeusz; Opieliński, Krzysztof J
2002-05-01
In different solutions of ultrasonic transducers radiating acoustic energy into the air there occurs the problem of the proper selection of the acoustic impedance of one or more matching layers. The goal of this work was a computer analysis of the influence of acoustic impedance on the transfer function of piezoceramic transducers equipped with matching layers. Cases of resonance and non-resonance matching impedance in relation to the transfer function and the energy transmission coefficient for solid state-air systems were analysed. With stable thickness of matching layers the required shape of the transfer function can be obtained through proper choice of acoustic impedance were built (e.g. maximal flat function). The proper choice of acoustic impedance requires an elaboration of precise methods of synthesis of matching systems. Using the known matching criteria (Chebyshev's, DeSilets', Souquet's), the transfer function characteristics of transducers equipped with one, two, and three matching layers as well as the optimisation methods of the energy transmission coefficient were presented. The influence of the backside load of the transducer on the shape of transfer function was also analysed. The calculation results of this function for different loads of the transducer backside without and with the different matching layers were presented. The proper load selection allows us to obtain the desired shape of the transfer function, which determines the pulse shape generated by the transducer.
Tunable Transport Gap in Phosphorene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Saptarshi; Zhang, Wei; Demarteau, Marcel
2014-08-11
In this paper, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ~0.3 to ~1.0 eV when the flake thickness is scaled down from bulk to a single layer. As a consequence, the ON current, the OFF current, and the current ON/OFF ratios of phosphorene field effect transistors (FETs) were found to be significantly impacted by the layer thickness. The transport gap was determined from the transfer characteristics of phosphorene FETs using a robust technique that has not been reported before. The detailed mathematical model is also provided. By scaling the thickness of the gatemore » oxide, we were also able to demonstrate enhanced ambipolar conduction in monolayer and few layer phosphorene FETs. The asymmetry of the electron and the hole current was found to be dependent on the layer thickness that can be explained by dynamic changes of the metal Fermi level with the energy band of phosphorene depending on the layer number. We also extracted the Schottky barrier heights for both the electron and the hole injection as a function of the layer thickness. In conclusion, we discuss the dependence of field effect hole mobility of phosphorene on temperature and carrier concentration.« less
Battaglia, Corsin; Söderström, Karin; Escarré, Jordi; Haug, Franz-Josef; Despeisse, Matthieu; Ballif, Christophe
2013-01-01
We describe a nanomoulding technique which allows low-cost nanoscale patterning of functional materials, materials stacks and full devices. Nanomoulding combined with layer transfer enables the replication of arbitrary surface patterns from a master structure onto the functional material. Nanomoulding can be performed on any nanoimprinting setup and can be applied to a wide range of materials and deposition processes. In particular we demonstrate the fabrication of patterned transparent zinc oxide electrodes for light trapping applications in solar cells. PMID:23380874
Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery
NASA Technical Reports Server (NTRS)
Lee, George
1992-01-01
A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.
Xia, Xue; Zhang, Hui-Ming; Offler, Christina E.; Patrick, John W.
2017-01-01
Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans-differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta. Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated. PMID:29259611
Xia, Xue; Zhang, Hui-Ming; Offler, Christina E; Patrick, John W
2017-01-01
Transfer cells are characterized by wall labyrinths with either a flange or reticulate architecture. A literature survey established that reticulate wall ingrowth papillae ubiquitously arise from a modified component of their wall labyrinth, termed the uniform wall layer; a structure absent from flange transfer cells. This finding sparked an investigation of the deposition characteristics and role of the uniform wall layer using a Vicia faba cotyledon culture system. On transfer of cotyledons to culture, their adaxial epidermal cells spontaneously trans -differentiate to a reticulate architecture comparable to their abaxial epidermal transfer cell counterparts formed in planta . Uniform wall layer construction commenced once adaxial epidermal cell expansion had ceased to overlay the original outer periclinal wall on its inner surface. In contrast to the dense ring-like lattice of cellulose microfibrils in the original primary wall, the uniform wall layer was characterized by a sparsely dispersed array of linear cellulose microfibrils. A re-modeled cortical microtubule array exerted no influence on uniform wall layer formation or on its cellulose microfibril organization. Surprisingly, formation of the uniform wall layer was not dependent upon depositing a cellulose scaffold. In contrast, uniform wall cellulose microfibrils were essential precursors for constructing wall ingrowth papillae. On converging to form wall ingrowth papillae, the cellulose microfibril diameters increased 3-fold. This event correlated with up-regulated differential, and transfer-cell specific, expression of VfCesA3B while transcript levels of other cellulose biosynthetic-related genes linked with primary wall construction were substantially down-regulated.
Transfer Printing Method to Obtain Polarized Light Emission in Organic Light-Emitting Device
NASA Astrophysics Data System (ADS)
Noh, Hee Yeon; Park, Chang-sub; Park, Ji-Sub; Kang, Shin-Won; Kim, Hak-Rin
2012-06-01
We demonstrate a transfer printing method to obtain polarized light emission in organic light-emitting devices (OLEDs). On a rubbed self-assembled monolayer (SAM), a spin-coated liquid crystalline light-emissive polymer is aligned along the rubbing direction because of the anisotropic interfacial intermolecular interaction. Owing to the low surface energy of the SAM surface, the light-emissive layer was easily transferred to a patterned poly(dimethylsiloxane) (PDMS) stamp surface without degrading the ordering. Finally, a polarized light-emissive OLED device was prepared by transferring the patterned light-emissive layer to the charge transport layer of the OLED structure.
Membrane-Mediated Extraction and Biodegradation of Volatile Organic Compounds From Air
2005-01-01
side boundary-layer mass transfer resistance is a significant fraction of the total mass transfer resistance ( Raghunath , 1992). In some cases where...Sci. 59: 53–72. Raghunath , B., and S.–T. Hwang (1992). “Effect of boundary layer mass transfer resistance in the pervaporation of dilute organics
NASA Astrophysics Data System (ADS)
Rahman, Mohammad Azizur; Wiegand, Bettina A.; Badruzzaman, A. B. M.; Ptak, Thomas
2013-08-01
A preliminary feasibility assessment of managed aquifer-recharge (MAR) techniques was undertaken for Dhaka City, Bangladesh. Considering the top impermeable-layer (TIL) thickness and the land-use classification, four primary MAR techniques have been suggested: (1) soil-aquifer treatment (SAT) for TIL thickness 0-8 m, (2) cascade-type recharge trenches/pits for TIL thickness 9-30 m, (3) aquifer storage, transfer and recovery (ASR/ASTR) for TIL thickness 31-52 m, and (4) use of natural wetlands to recharge water collected from open spaces. The study suggests that recharge trenches and pits will be the most appropriate MAR techniques, which can be implemented in most parts of the recharge area (ca. 277 km2). In case of a recharge trench, the lower parts (15-20 m) that are in direct contact with the aquifer can be backfilled with biosand filters with a reactive layer containing metallic iron (Fe0) to offer pre-treatment of the infiltrated water. In addition to the suggested four techniques, the regional groundwater flow direction, from the northwest and northeast towards Dhaka City, may allow use of the aquifer as a natural treatment and transport medium for groundwater, if spreading basins are installed in the greater Dhaka area.
Cao, Dezhong; Xiao, Hongdi; Gao, Qingxue; Yang, Xiaokun; Luan, Caina; Mao, Hongzhi; Liu, Jianqiang; Liu, Xiangdong
2017-08-17
Herein, a lift-off mesoporous GaN-based thin film, which consisted of a strong phase-separated InGaN/GaN layer and an n-GaN layer, was fabricated via an electrochemical etching method in a hydrofluoric acid (HF) solution for the first time and then transferred onto quartz or n-Si substrates, acting as photoanodes during photoelectrochemical (PEC) water splitting in a 1 M NaCl aqueous solution. Compared to the as-grown GaN-based film, the transferred GaN-based thin films possess higher and blue-shifted light emission, presumably resulting from an increase in the surface area and stress relaxation in the InGaN/GaN layer embedded on the mesoporous n-GaN. The properties such as (i) high photoconversion efficiency, (ii) low turn-on voltage (-0.79 V versus Ag/AgCl), and (iii) outstanding stability enable the transferred films to have excellent PEC water splitting ability. Furthermore, as compared to the film transferred onto the quartz substrate, the film transferred onto the n-Si substrate exhibits higher photoconversion efficiency (2.99% at -0.10 V) due to holes (h + ) in the mesoporous n-GaN layer that originate from the n-Si substrate.
NASA Astrophysics Data System (ADS)
Mahesh, A.; Mudigonda, M.; Kim, S. K.; Kashinath, K.; Kahou, S.; Michalski, V.; Williams, D. N.; Liu, Y.; Prabhat, M.; Loring, B.; O'Brien, T. A.; Collins, W. D.
2017-12-01
Atmospheric rivers (ARs) can be the difference between CA facing drought or hurricane-level storms. ARs are a form of extreme weather defined as long, narrow columns of moisture which transport water vapor outside the tropics. When they make landfall, they release the vapor as rain or snow. Convolutional neural networks (CNNs), a machine learning technique that uses filters to recognize features, are the leading computer vision mechanism for classifying multichannel images. CNNs have been proven to be effective in identifying extreme weather events in climate simulation output (Liu et. al. 2016, ABDA'16, http://bit.ly/2hlrFNV). Here, we compare three different CNN architectures, tuned with different hyperparameters and training schemes. We compare two-layer, three-layer, four-layer, and sixteen-layer CNNs' ability to recognize ARs in Community Atmospheric Model version 5 output, and we explore the ability of data augmentation and pre-trained models to increase the accuracy of the classifier. Because pre-training the model with regular images (i.e. benches, stoves, and dogs) yielded the highest accuracy rate, this strategy, also known as transfer learning, may be vital in future scientific CNNs, which likely will not have access to a large labelled training dataset. By choosing the most effective CNN architecture, climate scientists can build an accurate historical database of ARs, which can be used to develop a predictive understanding of these phenomena.
Modeling of the heat transfer in bypass transitional boundary-layer flows
NASA Technical Reports Server (NTRS)
Simon, Frederick F.; Stephens, Craig A.
1991-01-01
A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.
Microfabrication using soft lithography
NASA Astrophysics Data System (ADS)
Zhao, Xiao-Mei
Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be less toxic, more efficient, and provide fewer defects in the SAM-protected metallic regions upon etching. Chapter 7 describes a technique to measure the surface density of defects in SAMs of hexadecanethiolates on gold and in the structures prepared by using the SAMs as resists and the aqueous ferricyanide solution as the etchant, under conditions that may be encountered in lithographic processing. This technique uses two steps of amplification through chemical reaction to convert pinhole defects in SAMs into easily imaged, micron-scale pits in an underlying Si support.
Frequency response of electrochemical cells
NASA Technical Reports Server (NTRS)
Thomas, Daniel L.
1990-01-01
The main objective was to examine the feasibility of using frequency response techniques (1) as a tool in destructive physical analysis of batteries, particularly for estimating electrode structural parameters such as specific area, porosity, and tortuosity and (2) as a non-destructive testing technique for obtaining information such as state of charge and acceptability for space flight. The phenomena that contribute to the frequency response of an electrode include: (1) double layer capacitance; (2) Faradaic reaction resistance; (3) mass transfer of Warburg impedance; and (4) ohmic solution resistance. Nickel cadmium cells were investigated in solutions of KOH. A significant amount of data was acquired. Quantitative data analysis, using the developed software, is planned for the future.
Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam
NASA Technical Reports Server (NTRS)
Sullins, Alan D.; Daryabeigi, Kamran
2001-01-01
The effective thermal conductivity of high-porosity open cell nickel foam samples was measured over a wide range of temperatures and pressures using a standard steady-state technique. The samples, measuring 23.8 mm, 18.7 mm, and 13.6 mm in thickness, were constructed with layers of 1.7 mm thick foam with a porosity of 0.968. Tests were conducted with the specimens subjected to temperature differences of 100 to 1000 K across the thickness and at environmental pressures of 10(exp -4) to 750 mm Hg. All test were conducted in a gaseous nitrogen environment. A one-dimensional finite volume numerical model was developed to model combined radiation/conduction heat transfer in the foam. The radiation heat transfer was modeled using the two-flux approximation. Solid and gas conduction were modeled using standard techniques for high porosity media. A parameter estimation technique was used in conjunction with the measured and predicted thermal conductivities at pressures of 10(exp -4) and 750 mm Hg to determine the extinction coefficient, albedo of scattering, and weighting factors for modeling the conduction thermal conductivity. The measured and predicted conductivities over the intermediate pressure values differed by 13%.
Cooling without contact in bilayer dipolar Fermi gases
NASA Astrophysics Data System (ADS)
Tanatar, Bilal; Renklioglu, Basak; Oktel, M. Ozgur
2016-05-01
We consider two parallel layers of dipolar ultracold Fermi gases at different temperatures and calculate the heat transfer between them. The effective interactions describing screening and correlation effects between the dipoles in a single layer are modelled within the Euler-Lagrange Fermi-hypernetted chain approximation. The random-phase approximation is employed for the interactions across the layers. We investigate the amount of transferred power between the layers as a function of the temperature difference. Energy transfer proceeds via the long-range dipole-dipole interactions. A simple thermal model is developed to investigate the feasibility of using the contactless sympathetic cooling of the ultracold polar atoms/molecules. Our calculations indicate that dipolar heat transfer is effective for typical polar molecule experiments and may be utilized as a cooling process. Supported by TUBA and TUBITAK (112T974).
SAM-based Cell Transfer to Photopatterned Hydrogels for Microengineering Vascular-Like Structures
Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali
2011-01-01
A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. PMID:21802723
Spin-Transfer Studies in Magnetic Multilayer Nanostructures
NASA Astrophysics Data System (ADS)
Emley, N. C.; Albert, F. J.; Ryan, E. M.; Krivorotov, I. N.; Ralph, D. C.; Buhrman, R. A.
2003-03-01
Numerous experiments have demonstrated current-induced magnetization reversal in ferromagnet/paramagnet/ferromagnet nanostructures with the current in the CPP geometry. The primary mechanism for this reversal is the transfer of angular momentum from the spin-polarized conduction electrons to the nanomagnet moment the spin transfer effect. This phenomenon has potential application in nanoscale, current-controlled non-volatile memory elements, but several challenges must be overcome for realistic device implementation. Typical Co/Cu/Co nanopillar devices, although effective for fundamental studies, are not advantageous for technological applications because of their large switching currents Ic ( 3-10 mA) and small R·A (< 1 mΩ·µm^2). Here we report initial results testing some possible approaches for enhancing spin-transfer device performance which involve the addition of more layers, and hence, more complexity, to the simple Co/Cu/Co trilayer structure. These additions include synthetic antiferromagnet layers (SAF), exchange biased layers, nano-oxide layers (NOL), and additional magnetic layers. Research supported by NSF and DARPA
NASA Astrophysics Data System (ADS)
Ebadi, Mehdi; Basirun, Wan J.; Sim, Yoke-L.; Mahmoudian, Mohammad R.
2013-11-01
Electrodeposition of nickel was studied by the AC (as a novel technique) and DC techniques in nickel chloride aqueous solutions, mixed with various amounts of cysteine (0 to 6 mM). Cyclic voltammetry and chronoamperometry data have shown that the electrodeposition of Ni in the presence of cysteine is not diffusion controlled, but is closer to instantaneous nucleation. However, the current distribution decreased with the addition of further cysteine. The nucleation sites were decreased from 1.72 × 106 to 0.190 × 106 (cm-2) when the concentration of cysteine was increased from 0 to 4 mM. AC impedance during electrodeposition shows that the charge transfer resistance is increased from 0.645 to 5.26 Ω cm2 when the concentration of cysteine is increased from 0.5 to 4 mM. The electro-corrosion tests were done to investigate the corrosion behavior of the electrodeposited layers. X-ray diffraction and scanning electron microscopy containing Energy dispersive X-ray were used to estimate the grain size of the electrodeposited layers and capture the micrograph images and roughness of the Ni-electrodeposited surface.
Li, Yuanyuan; Cui, Qiannan; Ceballos, Frank; Lane, Samuel D; Qi, Zeming; Zhao, Hui
2017-11-08
Two-dimensional materials, such as graphene, transition metal dichalcogenides, and phosphorene, can be used to construct van der Waals multilayer structures. This approach has shown potentials to produce new materials that combine novel properties of the participating individual layers. One key requirement for effectively harnessing emergent properties of these materials is electronic connection of the involved atomic layers through efficient interlayer charge or energy transfer. Recently, ultrafast charge transfer on a time scale shorter than 100 fs has been observed in several van der Waals bilayer heterostructures formed by two different materials. However, information on the transfer between two atomic layers of the same type is rare. Because these homobilayers are essential elements in constructing multilayer structures with desired optoelectronic properties, efficient interlayer transfer is highly desired. Here we show that electron transfer between two monolayers of MoSe 2 occurs on a picosecond time scale. Even faster transfer was observed in homobilayers of WS 2 and WSe 2 . The samples were fabricated by manually stacking two exfoliated monolayer flakes. By adding a graphene layer as a fast carrier recombination channel for one of the two monolayers, the transfer of the photoexcited carriers from the populated to the drained monolayers was time-resolved by femtosecond transient absorption measurements. The observed efficient interlayer carrier transfer indicates that such homobilayers can be used in van der Waals multilayers to enhance their optical absorption without significantly compromising the interlayer transport performance. Our results also provide valuable information for understanding interlayer charge transfer in heterostructures.
Direct-Write Laser Grayscale Lithography for Multilayer Lead Zirconate Titanate Thin Films.
Benoit, Robert R; Jordan, Delaney M; Smith, Gabriel L; Polcawich, Ronald G; Bedair, Sarah S; Potrepka, Daniel M
2018-05-01
Direct-write laser grayscale lithography has been used to facilitate a single-step patterning technique for multilayer lead zirconate titanate (PZT) thin films. A 2.55- -thick photoresist was patterned with a direct-write laser. The intensity of the laser was varied to create both tiered and sloped structures that are subsequently transferred into multilayer PZT(52/48) stacks using a single Ar ion-mill etch. Traditional processing requires a separate photolithography step and an ion mill etch for each layer of the substrate, which can be costly and time consuming. The novel process allows access to buried electrode layers in the multilayer stack in a single photolithography step. The grayscale process was demonstrated on three 150-mm diameter Si substrates configured with a 0.5- -thick SiO 2 elastic layer, a base electrode of Pt/TiO 2 , and a stack of four PZT(52/48) thin films of either 0.25- thickness per layer or 0.50- thickness per layer, and using either Pt or IrO 2 electrodes above and below each layer. Stacked capacitor structures were patterned and results will be reported on the ferroelectric and electromechanical properties using various wiring configurations and compared to comparable single layer PZT configurations.
Heat Transfer at the Reattachment Zone of Separated Laminar Boundary Layers
NASA Technical Reports Server (NTRS)
Chung, Paul M.; Viegas, John R.
1961-01-01
The flow and heat transfer are analyzed at the reattachment zone of two-dimensional separated laminar boundary layers. The fluid is considered to be flowing normal to the wall at reattachment. An approximate expression is derived for the heat transfer in the reattachment region and a calculated value is compared with an experimental measurement.
Predictive capabilities of series solutions for laminar free convection boundary layer heat transfer
NASA Technical Reports Server (NTRS)
Lin, F. N.; Chao, B. T.
1978-01-01
Various types of series solutions for predicting laminar, free-convection boundary-layer heat transfer over both isothermal and nonisothermal boundaries are reviewed. The methods include finite difference, Merk series, Blasius series, and Goertler series. Comparative results are presented for heat transfer over an isothermal, horizontal, elliptical cylinder in both slender and blunt configurations.
Photoinduced charge-transfer materials for nonlinear optical applications
McBranch, Duncan W.
2006-10-24
A method using polyelectrolyte self-assembly for preparing multi-layered organic molecular materials having individual layers which exhibit ultrafast electron and/or energy transfer in a controlled direction occurring over the entire structure. Using a high molecular weight, water-soluble, anionic form of poly-phenylene vinylene, self-assembled films can be formed which show high photoluminescence quantum efficiency (QE). The highest emission QE is achieved using poly(propylene-imine) (PPI) dendrimers as cationic binders. Self-quenching of the luminescence is observed as the solid polymer film thickness is increased and can be reversed by inserting additional spacer layers of transparent polyelectrolytes between each active conjugated layer, such that the QE grows with thickness. A red shift of the luminescence is also observed as additional PPV layers are added. This effect persists as self-quenching is eliminated. Charge transfer superlattices can be formed by additionally incorporating C.sub.60 acceptor layers.
Acoustic resonance scattering from a multilayered cylindrical shell with imperfect bonding.
Rajabi, M; Hasheminejad, Seyyed M
2009-12-01
The method of wave function expansion is adopted to study the three dimensional scattering of a time-harmonic plane progressive sound field obliquely incident upon a multi-layered hollow cylinder with interlaminar bonding imperfection. For the generality of solution, each layer is assumed to be cylindrically orthotropic. An approximate laminate model in the context of the modal state equations with variable coefficients along with the classical T-matrix solution technique is set up for each layer to solve for the unknown modal scattering and transmission coefficients. A linear spring model is used to describe the interlaminar adhesive bonding whose effects are incorporated into the global transfer matrix by introduction of proper interfacial transfer matrices. Following the classic acoustic resonance scattering theory (RST), the scattered field and response to surface waves are determined by constructing the partial waves and obtaining the non-resonance (backgrounds) and resonance components. The solution is first used to investigate the effect of interlayer imperfection of an air-filled and water submerged bilaminate aluminium cylindrical shell on the resonances associated with various modes of wave propagation (i.e., symmetric/asymmetric Lamb waves, fluid-borne A-type waves, Rayleigh and Whispering Gallery waves) appearing in the backscattered spectrum, according to their polarization and state of stress. An illustrative numerical example is also given for a multi-layered (five-layered) cylindrical shell for which the stiffness of the adhesive interlayers is artificially varied. The sensitivity of resonance frequencies associated with higher mode numbers to the stiffness coefficients is demonstrated to be a good measure of the bonding strength. Limiting cases are considered and fair agreements with solutions available in the literature are established.
The Nickel(111)/Alkaline Electrolyte Interface
NASA Technical Reports Server (NTRS)
Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.
1991-01-01
The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.
Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan
2016-06-01
The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.
Hybrid transfer-matrix FDTD method for layered periodic structures.
Deinega, Alexei; Belousov, Sergei; Valuev, Ilya
2009-03-15
A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new method is tested by comparing computed transmission spectra of a 32-layered photonic crystal composed of spherical or ellipsoidal scatterers with the results of direct FDTD and layer-multiple-scattering calculations.
Remote direct memory access over datagrams
Grant, Ryan Eric; Rashti, Mohammad Javad; Balaji, Pavan; Afsahi, Ahmad
2014-12-02
A communication stack for providing remote direct memory access (RDMA) over a datagram network is disclosed. The communication stack has a user level interface configured to accept datagram related input and communicate with an RDMA enabled network interface card (NIC) via an NIC driver. The communication stack also has an RDMA protocol layer configured to supply one or more data transfer primitives for the datagram related input of the user level. The communication stack further has a direct data placement (DDP) layer configured to transfer the datagram related input from a user storage to a transport layer based on the one or more data transfer primitives by way of a lower layer protocol (LLP) over the datagram network.
Design and fabrication of plasmonic cavities for magneto-optical sensing
NASA Astrophysics Data System (ADS)
Loughran, T. H. J.; Roth, J.; Keatley, P. S.; Hendry, E.; Barnes, W. L.; Hicken, R. J.; Einsle, J. F.; Amy, A.; Hendren, W.; Bowman, R. M.; Dawson, P.
2018-05-01
The design and fabrication of a novel plasmonic cavity, intended to allow far-field recovery of signals arising from near field magneto-optical interactions, is presented. Finite element modeling is used to describe the interaction between a gold film, containing cross-shaped cavities, with a nearby magnetic under-layer. The modeling revealed strong electric field confinement near the center of the cross structure for certain optical wavelengths, which may be tuned by varying the length of the cross through a range that is compatible with available fabrication techniques. Furthermore, the magneto optical Kerr effect (MOKE) response of the composite structure can be enhanced with respect to that of the bare magnetic film. To confirm these findings, cavities were milled within gold films deposited upon a soluble film, allowing relocation to a ferromagnetic film using a float transfer technique. Cross cavity arrays were fabricated and characterized by optical transmission spectroscopy prior to floating, revealing resonances at optical wavelengths in good agreement with the finite element modeling. Following transfer to the magnetic film, circular test apertures within the gold film yielded clear magneto-optical signals even for diameters within the sub-wavelength regime. However, no magneto-optical signal was observed for the cross cavity arrays, since the FIB milling process was found to produce nanotube structures within the soluble under-layer that adhered to the gold. Further optimization of the fabrication process should allow recovery of magneto-optical signal from cross cavity structures.
Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J
2013-01-01
Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.
NASA Astrophysics Data System (ADS)
Na, Jihoon; Noh, Heeso
2018-01-01
We investigated a multi-layer structure for a broadband coherent perfect absorber (CPA). The transfer matrix method (TMM) is useful for analyzing the optical properties of structures and optimizing multi-layer structures. The broadband CPA strongly depends on the phase of the light traveling in one direction and the light reflected within the structure. The TMM simulation shows that the absorption bandwidth is increased by 95% in a multi-layer CPA compared to that in a single-layer CPA.
Layer-by-Layer Assembly of Glucose Oxidase on Carbon Nanotube Modified Electrodes.
Suroviec, Alice H
2017-01-01
The use of enzymatically modified electrodes for the detection of glucose or other non-electrochemically active analytes is becoming increasingly common. Direct heterogeneous electron transfer to glucose oxidase has been shown to be kinetically difficult, which is why electron transfer mediators or indirect detection is usually used for monitoring glucose with electrochemical sensors. It has been found, however, that electrodes modified with single or multi-walled carbon nanotubes (CNTs) demonstrate fast heterogeneous electron transfer kinetics as compared to that found for traditional electrodes. Incorporating CNTs into the assembly of electrochemical glucose sensors, therefore, affords the possibility of facile electron transfer to glucose oxidase, and a more direct determination of glucose. This chapter describes the methods used to use CNTs in a layer-by-layer structure along with glucose oxidase to produce an enzymatically modified electrode with high turnover rates, increased stability and shelf-life.
NASA Astrophysics Data System (ADS)
Okamura, Rintaro; Iwabuchi, Hironobu; Schmidt, K. Sebastian
2017-12-01
Three-dimensional (3-D) radiative-transfer effects are a major source of retrieval errors in satellite-based optical remote sensing of clouds. The challenge is that 3-D effects manifest themselves across multiple satellite pixels, which traditional single-pixel approaches cannot capture. In this study, we present two multi-pixel retrieval approaches based on deep learning, a technique that is becoming increasingly successful for complex problems in engineering and other areas. Specifically, we use deep neural networks (DNNs) to obtain multi-pixel estimates of cloud optical thickness and column-mean cloud droplet effective radius from multispectral, multi-pixel radiances. The first DNN method corrects traditional bispectral retrievals based on the plane-parallel homogeneous cloud assumption using the reflectances at the same two wavelengths. The other DNN method uses so-called convolutional layers and retrieves cloud properties directly from the reflectances at four wavelengths. The DNN methods are trained and tested on cloud fields from large-eddy simulations used as input to a 3-D radiative-transfer model to simulate upward radiances. The second DNN-based retrieval, sidestepping the bispectral retrieval step through convolutional layers, is shown to be more accurate. It reduces 3-D radiative-transfer effects that would otherwise affect the radiance values and estimates cloud properties robustly even for optically thick clouds.
Uddin, Mohammed J.; Khan, Waqar A.; Ismail, Ahmed I.
2012-01-01
Steady two dimensional MHD laminar free convective boundary layer flows of an electrically conducting Newtonian nanofluid over a solid stationary vertical plate in a quiescent fluid taking into account the Newtonian heating boundary condition is investigated numerically. A magnetic field can be used to control the motion of an electrically conducting fluid in micro/nano scale systems used for transportation of fluid. The transport equations along with the boundary conditions are first converted into dimensionless form and then using linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. The effects of different controlling parameters, namely, Lewis number, Prandtl number, buoyancy ratio, thermophoresis, Brownian motion, magnetic field and Newtonian heating on the flow and heat transfer are investigated. The numerical results for the dimensionless axial velocity, temperature and nanoparticle volume fraction as well as the reduced Nusselt and Sherwood number have been presented graphically and discussed. It is found that the rate of heat and mass transfer increase as Newtonian heating parameter increases. The dimensionless velocity and temperature distributions increase with the increase of Newtonian heating parameter. The results of the reduced heat transfer rate is compared for convective heating boundary condition and found an excellent agreement. PMID:23166688
Strain transfer analysis of optical fiber based sensors embedded in an asphalt pavement structure
NASA Astrophysics Data System (ADS)
Wang, Huaping; Xiang, Ping
2016-07-01
Asphalt pavement is vulnerable to random damage, such as cracking and rutting, which can be proactively identified by distributed optical fiber sensing technology. However, due to the material nature of optical fibers, a bare fiber is apt to be damaged during the construction process of pavements. Thus, a protective layer is needed for this application. Unfortunately, part of the strain of the host material is absorbed by the protective layer when transferring the strain to the sensing fiber. To account for the strain transfer error, in this paper a theoretical analysis of the strain transfer of a three-layered general model has been carried out by introducing Goodman’s hypothesis to describe the interfacial shear stress relationship. The model considers the viscoelastic behavior of the host material and protective layer. The effects of one crack in the host material and the sensing length on strain transfer relationship are been discussed. To validate the effectiveness of the strain transfer analysis, a flexible asphalt-mastic packaged distributed optical fiber sensor was designed and tested in a laboratory environment to monitor the distributed strain and appearance of cracks in an asphalt concrete beam at two different temperatures. The experimental results indicated that the developed strain transfer formula can significantly reduce the strain transfer error, and that the asphalt-mastic packaged optical fiber sensor can successfully monitor the distributed strain and identify local cracks.
NASA Astrophysics Data System (ADS)
Gokhshtein, Aleksandr Ya
2000-07-01
The development of knowledge about electric current, potential, and the conversion of energy at the interface between electronic- and ionic-conductivity phases is briefly reviewed. Although soon after its discovery it was realized that electric current is the motion of charged particles, the double-layer field promoting charge transfer through the interface was considered for a long time to be as uniform as in a capacitor. One-dimensional ion discharge theory failed to explain the observed dependence of the current on the potential jump across the interface. The spatial segmentation of energy in the double layer due to the quantum evolution of the layer's periphery puts a limit on the charge transfer work the field may perform locally, and creates conditions for the ionic atmosphere being spontaneously compressed after the critical potential jump has been reached. A discrete interchange of states also occurs due to the adsorption of discharged particles and corresponds to the consecutive exclusion of the d-wave function nodes of metal surface atoms, the exclusion manifesting itself in the larger longitudinal and smaller lateral sizes of the atomic orbital. The elastic extension of the metal surface reduces the d-function overlap thus intensifying adsorption. Advances in experimentation, in particular new techniques capable of detecting alternating surface tension of solids, enabled these and some other phenomena to be observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, M.-L.; Qiao, X.-F.; Wu, J.-B.
Ultralow-frequency (ULF) Raman spectroscopy becomes increasingly important in the area of two-dimensional (2D) layered materials; however, such measurement usually requires expensive and nonstandard equipment. Here, the measurement of ULF Raman signal down to 10 cm{sup −1} has been realized with high throughput by combining a kind of longpass edge filters with a single monochromator, which are verified by the Raman spectrum of L-cystine using three laser excitations. Fine adjustment of the angle of incident laser beam from normal of the longpass edge filters and selection of polarization geometry are demonstrated how to probe ULF Raman signal with high signal-to-noise. Davydovmore » splitting of the shear mode in twisted (2+2) layer graphenes (t(2+2)LG) has been observed by such system in both exfoliated and transferred samples. We provide a direct evidence of twist-angle dependent softening of the shear coupling in t(2+2)LG, while the layer-breathing coupling at twisted interfaces is found to be almost identical to that in bulk graphite. This suggests that the exfoliation and transferring techniques are enough good to make a good 2D heterostructures to demonstrate potential device application. This Raman system will be potentially applied to the research field of ULF Raman spectroscopy.« less
Heterogonous Nanofluids for Nuclear Power Plants
NASA Astrophysics Data System (ADS)
Alammar, Khalid
2014-09-01
Nuclear reactions can be associated with high heat energy release. Extracting such energy efficiently requires the use of high-rate heat exchangers. Conventional heat transfer fluids, such as water and oils are limited in their thermal conductivity, and hence nanofluids have been introduced lately to overcome such limitation. By suspending metal nanoparticles with high thermal conductivity in conventional heat transfer fluids, thermal conductivity of the resulting homogeneous nanofluid is increased. Heterogeneous nanofluids offer yet more potential for heat transfer enhancement. By stratifying nanoparticles within the boundary layer, thermal conductivity is increased where temperature gradients are highest, thereby increasing overall heat transfer of a flowing fluid. In order to test the merit of this novel technique, a numerical study of a laminar pipe flow of a heterogeneous nanofluid was conducted. Effect of Iron-Oxide distribution on flow and heat transfer characteristics was investigated. With Iron-Oxide volume concentration of 0.009 in water, up to 50% local heat transfer enhancement was predicted for the heterogeneous compared to homogeneous nanofluids. Increasing the Reynolds number is shown to increase enhancement while having negligible effect on pressure drop. Using permanent magnets attached externally to the pipe, an experimental investigation conducted at MIT nuclear reactor laboratory for similar flow characteristics of a heterogeneous nanofluid have shown upto 160% enhancement in heat transfer. Such results show that heterogeneous nanofluids are promising for augmenting heat transfer rates in nuclear power heat exchanger systems.
Scalable alignment and transfer of nanowires in a Spinning Langmuir Film.
Zhu, Ren; Lai, Yicong; Nguyen, Vu; Yang, Rusen
2014-10-21
Many nanomaterial-based integrated nanosystems require the assembly of nanowires and nanotubes into ordered arrays. A generic alignment method should be simple and fast for the proof-of-concept study by a researcher, and low-cost and scalable for mass production in industries. Here we have developed a novel Spinning-Langmuir-Film technique to fulfill both requirements. We used surfactant-enhanced shear flow to align inorganic and organic nanowires, which could be easily transferred to other substrates and ready for device fabrication in less than 20 minutes. The aligned nanowire areal density can be controlled in a wide range from 16/mm(-2) to 258/mm(-2), through the compression of the film. The surface surfactant layer significantly influences the quality of alignment and has been investigated in detail.
Probability theory for 3-layer remote sensing radiative transfer model: univariate case.
Ben-David, Avishai; Davidson, Charles E
2012-04-23
A probability model for a 3-layer radiative transfer model (foreground layer, cloud layer, background layer, and an external source at the end of line of sight) has been developed. The 3-layer model is fundamentally important as the primary physical model in passive infrared remote sensing. The probability model is described by the Johnson family of distributions that are used as a fit for theoretically computed moments of the radiative transfer model. From the Johnson family we use the SU distribution that can address a wide range of skewness and kurtosis values (in addition to addressing the first two moments, mean and variance). In the limit, SU can also describe lognormal and normal distributions. With the probability model one can evaluate the potential for detecting a target (vapor cloud layer), the probability of observing thermal contrast, and evaluate performance (receiver operating characteristics curves) in clutter-noise limited scenarios. This is (to our knowledge) the first probability model for the 3-layer remote sensing geometry that treats all parameters as random variables and includes higher-order statistics. © 2012 Optical Society of America
Yu, Yan; Jiang, Shenglin; Zhou, Wenli; Miao, Xiangshui; Zeng, Yike; Zhang, Guangzu; Liu, Sisi
2013-01-01
The functional layers of few-layer two-dimensional (2-D) thin flakes on flexible polymers for stretchable applications have attracted much interest. However, most fabrication methods are “indirect” processes that require transfer steps. Moreover, previously reported “transfer-free” methods are only suitable for graphene and not for other few-layer 2-D thin flakes. Here, a friction based room temperature rubbing method is proposed for fabricating different types of few-layer 2-D thin flakes (graphene, hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2)) on flexible polymer substrates. Commercial 2-D raw materials (graphite, h-BN, MoS2, and WS2) that contain thousands of atom layers were used. After several minutes, different types of few-layer 2-D thin flakes were fabricated directly on the flexible polymer substrates by rubbing procedures at room temperature and without any transfer step. These few-layer 2-D thin flakes strongly adhere to the flexible polymer substrates. This strong adhesion is beneficial for future applications. PMID:24045289
Transferable and flexible thin film devices for engineering applications
NASA Astrophysics Data System (ADS)
Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun
2014-05-01
Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.
Model-based damage evaluation of layered CFRP structures
NASA Astrophysics Data System (ADS)
Munoz, Rafael; Bochud, Nicolas; Rus, Guillermo; Peralta, Laura; Melchor, Juan; Chiachío, Juan; Chiachío, Manuel; Bond, Leonard J.
2015-03-01
An ultrasonic evaluation technique for damage identification of layered CFRP structures is presented. This approach relies on a model-based estimation procedure that combines experimental data and simulation of ultrasonic damage-propagation interactions. The CFPR structure, a [0/90]4s lay-up, has been tested in an immersion through transmission experiment, where a scan has been performed on a damaged specimen. Most ultrasonic techniques in industrial practice consider only a few features of the received signals, namely, time of flight, amplitude, attenuation, frequency contents, and so forth. In this case, once signals are captured, an algorithm is used to reconstruct the complete signal waveform and extract the unknown damage parameters by means of modeling procedures. A linear version of the data processing has been performed, where only Young modulus has been monitored and, in a second nonlinear version, the first order nonlinear coefficient β was incorporated to test the possibility of detection of early damage. The aforementioned physical simulation models are solved by the Transfer Matrix formalism, which has been extended from linear to nonlinear harmonic generation technique. The damage parameter search strategy is based on minimizing the mismatch between the captured and simulated signals in the time domain in an automated way using Genetic Algorithms. Processing all scanned locations, a C-scan of the parameter of each layer can be reconstructed, obtaining the information describing the state of each layer and each interface. Damage can be located and quantified in terms of changes in the selected parameter with a measurable extension. In the case of the nonlinear coefficient of first order, evidence of higher sensitivity to damage than imaging the linearly estimated Young Modulus is provided.
NASA Technical Reports Server (NTRS)
Berger, Karen T.
2008-01-01
An experimental wind tunnel program is being conducted in support of a NASA wide effort to develop a Space Shuttle replacement and to support the Agency s long term objective of returning to the Moon and Mars. This report documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle Crew Module. The experimental data highlighted in this test report are to be used to assess numerical tools that will be used to generate the flight aerothermodynamic database. Global heat transfer images and heat transfer distributions were obtained over a range of freestream Reynolds numbers and angles of attack with the phosphor thermography technique. Heat transfer data were measured on the forebody and afterbody and were used to infer the heating on the vehicle as well as the boundary layer state on the forebody surface. Several model support configurations were assessed to minimize potential support interference. In addition, the ability of the global phosphor thermography method to provide quantitative heating measurements in the low temperature environment of the capsule base region was assessed. While naturally fully developed turbulent levels were not obtained on the forebody, the use of boundary layer trips generated fully developed turbulent flow. Laminar and turbulent computational results were shown to be in good agreement with the data. Backshell testing demonstrated the ability to obtain data in the low temperature region as well as demonstrating the lack of significant model support hardware influence on heating.
NASA Technical Reports Server (NTRS)
Berger, Karen T.
2009-01-01
An experimental wind tunnel program is being conducted in support of a NASA wide effort to develop a Space Shuttle replacement and to support the Agency s long term objective of returning to the Moon and Mars. This article documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle Crew Module. The experimental data highlighted in this article are to be used to assess numerical tools that will be used to generate the flight aerothermodynamic database. Global heat transfer images and heat transfer distributions were obtained over a range of freestream Reynolds numbers and angles of attack with the phosphor thermography technique. Heat transfer data were measured on the forebody and afterbody and were used to infer the heating on the vehicle as well as the boundary layer state on the forebody surface. Several model support configurations were assessed to minimize potential support interference. In addition, the ability of the global phosphor thermography method to provide quantitative heating measurements in the low temperature environment of the capsule base region was assessed. While naturally fully developed turbulent levels were not obtained on the forebody, the use of boundary layer trips generated fully developed turbulent flow. Laminar and turbulent computational results were shown to be in good agreement with the data. Backshell testing demonstrated the ability to obtain data in the low temperature region as well as demonstrating the lack of significant model support hardware influence on heating.
Mechanical exfoliation of two-dimensional materials
NASA Astrophysics Data System (ADS)
Gao, Enlai; Lin, Shao-Zhen; Qin, Zhao; Buehler, Markus J.; Feng, Xi-Qiao; Xu, Zhiping
2018-06-01
Two-dimensional materials such as graphene and transition metal dichalcogenides have been identified and drawn much attention over the last few years for their unique structural and electronic properties. However, their rise begins only after these materials are successfully isolated from their layered assemblies or adhesive substrates into individual monolayers. Mechanical exfoliation and transfer are the most successful techniques to obtain high-quality single- or few-layer nanocrystals from their native multi-layer structures or their substrate for growth, which involves interfacial peeling and intralayer tearing processes that are controlled by material properties, geometry and the kinetics of exfoliation. This procedure is rationalized in this work through theoretical analysis and atomistic simulations. We propose a criterion to assess the feasibility for the exfoliation of two-dimensional sheets from an adhesive substrate without fracturing itself, and explore the effects of material and interface properties, as well as the geometrical, kinetic factors on the peeling behaviors and the torn morphology. This multi-scale approach elucidates the microscopic mechanism of the mechanical processes, offering predictive models and tools for the design of experimental procedures to obtain single- or few-layer two-dimensional materials and structures.
The influence of tissue layering on microwave thermographic measurements.
Hawley, M S; Conway, J; Anderson, A P; Cudd, P A
1988-01-01
Non-invasive thermal imaging and temperature measurement by microwave radiometry has been investigated for medical diagnostic applications and monitoring hyperthermia treatment of cancer, in the context of heterogeneous body structure. The temperature measured by a radiometer is a function of the emission and propagation of microwaves in tissue and the receiving characteristics of the radiometric probe. Propagation of microwaves in lossy media was analysed by a spectral diffraction approach. Extension of this technique via a cascade transmission line model provides an efficient algorithm for predicting the field patterns of aperture antennas contacting multi-layered tissue. A coherent radiative transfer analysis was used to relate the field pattern of a radiating antenna to its receiving characteristics when used as a radiometer probe, leading to a method for simulating radiometric data. Measurements and simulations were used to assess the effect of overlying fat layers upon radiometer response to temperature hot spots in muscle-type media. Results suggest that dielectric layering in tissue greatly influences measured temperatures and should be accounted for in the interpretation of radiometric data.
Synthesis and Characterization of 2-D Materials
NASA Astrophysics Data System (ADS)
Pazos, S.; Sahoo, P.; Afaneh, T.; Rodriguez Gutierrez, H.
Atomically thin transition-metal dichacogenides (TMD), graphene, and boron nitride (BN) are two-dimensional materials where the charge carriers (electrons and holes) are confined to move in a plane. They exhibit distinctive optoelectronic properties compared to their bulk layered counterparts. When combined into heterostructures, these materials open more possibilities in terms of new properties and device functionality. In this work, WSe2 and graphene were grown using Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD) techniques. The quality and morphology of each material was checked using Raman, Photoluminescence Spectroscopy, and Scanning Electron Microscopy. Graphene had been successfully grown homogenously, characterized, and transferred from copper to silicon dioxide substrates; these films will be used in future studies to build 2-D devices. Different morphologies of WSe2 2-D islands were successfully grown on SiO2 substrates. Depending on the synthesis conditions, the material on each sample had single layer, double layer, and multi-layer areas. A variety of 2-D morphologies were also observed in the 2-D islands. This project is supported by the NSF REU Grant #1560090 and NSF Grant #DMR-1557434.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Shen, Hong-Lie; Yue, Zhi-Hao; Jiang, Feng; Wu, Tian-Ru; Pan, Yuan-Yuan
2013-01-01
A novel type of n/i/i/p heterojunction solar cell with a-Si:H(15 nm)/a-Si:H(10 nm)/ epitaxial c-Si(47 μm)/epitaxial c-Si(3 μm) structure is fabricated by using the layer transfer technique, and the emitter layer is deposited by hot wire chemical vapour deposition. The effect of the doping concentration of the emitter layer Sd (Sd=PH3/(PH3+SiH4+H2)) on the performance of the solar cell is studied by means of current density—voltage and external quantum efficiency. The results show that the conversion efficiency of the solar cell first increases to a maximum value and then decreases with Sd increasing from 0.1% to 0.4%. The best performance of the solar cell is obtained at Sd = 0.2% with an open circuit voltage of 534 mV, a short circuit current density of 23.35 mA/cm2, a fill factor of 63.3%, and a conversion efficiency of 7.9%.
Vandenabeele, Peter; Conti, Claudia; Rousaki, Anastasia; Moens, Luc; Realini, Marco; Matousek, Pavel
2017-09-05
Microspatially offset Raman spectroscopy (micro-SORS) has been proposed as a valuable approach to sample molecular information from layers that are covered by a turbid (nontransparent) layer. However, when large magnifications are involved, the approach is not straightforward, as spatial constraints exist to position the laser beam and the objective lens with the external beam delivery or, with internal beam delivery, the maximum spatial offset achievable is restricted. To overcome these limitations, we propose here a prototype of a new micro-SORS sensor, which uses bare glass fibers to transfer the laser radiation to the sample and to collect the Raman signal from a spatially offset zone to the Raman spectrometer. The concept also renders itself amenable to remote delivery and to the miniaturization of the probe head which could be beneficial for special applications, e.g., where access to sample areas is restricted. The basic applicability of this approach was demonstrated by studying several layered structure systems. Apart from proving the feasibility of the technique, also, practical aspects of the use of the prototype sensor are discussed.
Chen, Hongjie; Wang, Chunli; Yang, Xiao; Xiao, Zhanwen; Zhu, Xiangdong; Zhang, Kai; Fan, Yujiang; Zhang, Xingdong
2017-01-01
A simple approach to fabricating hydroxyxapatite/titanium dioxide (HA/TiO 2 ) coating on porous titanium (Ti) scaffolds was developed in the present study. Surface TiO 2 layer was firstly formed on porous Ti scaffolds with multi-scale pores by acid-alkali (AA) treatment. The outer HA layer was then formed on the TiO 2 layer by subsequent pulse electrochemical deposition (ED) technique. All the three main process parameters, i.e. deposition times, current density and mass transfer mode affected the properties of the HA coating notably. Under the conditions of 90 deposition cycles, -10mA/cm 2 of pulse current density and stirring, a thin layer of homogeneous and nanorod-like HA sediments was formed on the substrate surface of porous Ti scaffolds. The results of protein adsorption and cellular experiments showed that compared to the single TiO 2 surface, the HA/TiO 2 surface allowed more adsorption of serum proteins and further enhanced the alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts. Copyright © 2016 Elsevier B.V. All rights reserved.
Qiu, Dongri; Kim, Eun Kyu
2015-09-03
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
NASA Astrophysics Data System (ADS)
Qiu, Dongri; Kim, Eun Kyu
2015-09-01
We fabricated multi-layered graphene/MoS2 heterostructured devices by positioning mechanically exfoliated bulk graphite and single-crystalline 2H-MoS2 onto Au metal pads on a SiO2/Si substrate via a contamination-free dry transfer technique. We also studied the electrical transport properties of Au/MoS2 junction devices for systematic comparison. A previous work has demonstrated the existence of a positive Schottky barrier height (SBH) in the metal/MoS2 system. However, analysis of the SBH indicates that the contacts of the multi-layered graphene/MoS2 have tunable negative barriers in the range of 300 to -46 meV as a function of gate voltage. It is hypothesized that this tunable SBH is responsible for the modulation of the work function of the thick graphene in these devices. Despite the large number of graphene layers, it is possible to form ohmic contacts, which will provide new opportunities for the engineering of highly efficient contacts in flexible electronics and photonics.
Simulation of Vortex Structure in Supersonic Free Shear Layer Using Pse Method
NASA Astrophysics Data System (ADS)
Guo, Xin; Wang, Qiang
The method of parabolized stability equations (PSE) are applied in the analysis of nonlinear stability and the simulation of flow structure in supersonic free shear layer. High accuracy numerical techniques including self-similar basic flow, high order differential method, appropriate transformation and decomposition of nonlinear terms are adopted and developed to solve the PSE effectively for free shear layer. The spatial evolving unstable waves which dominate the flow structure are investigated through nonlinear coupling spatial marching methods. The nonlinear interactions between harmonic waves are further analyzed and instantaneous flow field are obtained by adding the harmonic waves into basic flow. Relevant data agree well with that of DNS. The results demonstrate that T-S wave does not keeping growing exponential as the linear evolution, the energy transfer to high order harmonic modes and finally all harmonic modes get saturation due to the nonlinear interaction; Mean flow distortion is produced by the nonlinear interaction between the harmonic and its conjugate harmonic, makes great change to the average flow and increases the thickness of shear layer; PSE methods can well capture the large scale nonlinear flow structure in the supersonic free shear layer such as vortex roll-up, vortex pairing and nonlinear saturation.
ZnO nanostructures as electron extraction layers for hybrid perovskite thin films
NASA Astrophysics Data System (ADS)
Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani
Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.
Spin-orbit torque based magnetization switching in Pt/Cu/[Co/Ni]5 multilayer structures
NASA Astrophysics Data System (ADS)
Ostwal, Vaibhav; Penumatcha, Ashish; Hung, Yu-Ming; Kent, Andrew D.; Appenzeller, Joerg
2017-12-01
Spin-Orbit Torque (SOT) in Heavy Metal/Ferromagnet (HM/FM) structures provides an important tool to control the magnetization of FMs and has been an area of interest for memory and logic implementation. Spin transfer torque on the FM in such structures is attributed to two sources: (1) the Spin Hall effect in the HM and (2) the Rashba-effect at the HM/FM interface. In this work, we study the SOT in a Pt/[Co,Ni] structure and compare its strength with the SOT in a Pt/Cu/[Co,Ni] structure where copper, a metal with a low spin-orbit interaction, is inserted between the Pt (HM) layer and the [Co,Ni] (FM) layer. We use an AC harmonic measurement technique to measure the strength of the SOT on the magnetic thin-film layer. Our measurements show that a significant SOT is exerted on the magnetization even after a 6 nm thick copper layer is inserted between the HM and the FM. Also, we find that this torque can be used to switch a patterned magnetic layer in the presence of an external magnetic field.
Hrma, Pavel
2014-12-18
The melter feed, slurry, or calcine charged on the top of a pool of molten glass forms a floating layer of reacting material called the cold cap. Between the cold-cap top, which is covered with boiling slurry, and its bottom, where bubbles separate it from molten glass, the temperature changes by up to 1000 K. The processes that occur over this temperature interval within the cold cap include liberation of gases, conduction and consumption of heat, dissolution of quartz particles, formation and dissolution of intermediate crystalline phases, and generation of foam and gas cavities. These processes have been investigated usingmore » thermal analyses, optical and electronic microscopies, x-ray diffraction, as well as other techniques. Properties of the reacting feed, such as heat conductivity and density, were measured as functions of temperature. Investigating the structure of quenched cold caps produced in a laboratory-scale melter complemented the crucible studies. The cold cap consists of two main layers. The top layer contains solid particles dissolving in the glass-forming melt and open pores through which gases are escaping. The bottom layer contains bubbly melt or foam where bubbles coalesce into larger cavities that move sideways and release the gas to the atmosphere. The feed-to-glass conversion became sufficiently understood for representing the cold-cap processes via mathematical models. These models, which comprise heat transfer, mass transfer, and reaction kinetics models, have been developed with the final goal to relate feed parameters to the rate of glass melting.« less
Stagnation-point heat-transfer rate predictions at aeroassist flight conditions
NASA Technical Reports Server (NTRS)
Gupta, Roop N.; Jones, Jim J.; Rochelle, William C.
1992-01-01
The results are presented for the stagnation-point heat-transfer rates used in the design process of the Aeroassist Flight Experiment (AFE) vehicle over its entire aeropass trajectory. The prediction methods used in this investigation demonstrate the application of computational fluid dynamics (CFD) techniques to a wide range of flight conditions and their usefulness in a design process. The heating rates were computed by a viscous-shock-layer (VSL) code at the lower altitudes and by a Navier-Stokes (N-S) code for the higher altitude cases. For both methods, finite-rate chemically reacting gas was considered, and a temperature-dependent wall-catalysis model was used. The wall temperature for each case was assumed to be radiative equilibrium temperature, based on total heating. The radiative heating was estimated by using a correlation equation. Wall slip was included in the N-S calculation method, and this method implicitly accounts for shock slip. The N-S/VSL combination of projection methods was established by comparison with the published benchmark flow-field code LAURA results at lower altitudes, and the direct simulation Monte Carlo results at higher altitude cases. To obtain the design heating rate over the entire forward face of the vehicle, a boundary-layer method (BLIMP code) that employs reacting chemistry and surface catalysis was used. The ratio of the VSL or N-S method prediction to that obtained from the boundary-layer method code at the stagnation point is used to define an adjustment factor, which accounts for the errors involved in using the boundary-layer method.
Intensification of heat transfer across falling liquid films
NASA Astrophysics Data System (ADS)
Ruyer-Quil, Christian; Cellier, Nicolas; Stutz, Benoit; Caney, Nadia; Bandelier, Philippe; Locie Team; Legi Team
2017-11-01
The wavy motion of a liquid film is well known to intensify heat or mass transfers. Yet, if film thinning and wave merging are generally invoked, the physical mechanisms which enable this intensification are still unclear. We propose a systematic investigation of the impact of wavy motions on the heat transfer across 2D falling films on hot plates as a function of the inlet frequency and flow parameters. Computations over extended domains and for sufficient durations to achieve statistically established flows have been made possible by low-dimensional modeling and the development of a fast temporal solver based on graph optimizations. Heat transfer has been modeled using the weighted residual technique as a set of two evolution equations for the free-surface temperature and the wall heat flux. This new model solves the shortcomings of previous attempts, namely their inability to capture the onset of thermal boundary layers in large-amplitude waves and their limitation to low Prandtl numbers. Our study reveals that heat transfer is enhanced at the crests of the waves and that heat transfer intensification is maximum at the maximum of density of wave crests, which does not correspond to the natural wavy regime (no inlet forcing). Supports from Institut Universitaire de France and Région Auvergne-Rhones-Alpes are warmly acknowledged.
Ariane, Mostapha; Kassinos, Stavros; Velaga, Sitaram; Alexiadis, Alessio
2018-04-01
In this paper, the mass transfer coefficient (permeability) of boundary layers containing motile cilia is investigated by means of discrete multi-physics. The idea is to understand the main mechanisms of mass transport occurring in a ciliated-layer; one specific application being inhaled drugs in the respiratory epithelium. The effect of drug diffusivity, cilia beat frequency and cilia flexibility is studied. Our results show the existence of three mass transfer regimes. A low frequency regime, which we called shielding regime, where the presence of the cilia hinders mass transport; an intermediate frequency regime, which we have called diffusive regime, where diffusion is the controlling mechanism; and a high frequency regime, which we have called convective regime, where the degree of bending of the cilia seems to be the most important factor controlling mass transfer in the ciliated-layer. Since the flexibility of the cilia and the frequency of the beat changes with age and health conditions, the knowledge of these three regimes allows prediction of how mass transfer varies with these factors. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Zhao
Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer is employed. The electrical and structural characterization of hole transfer layers (HTLs) in OSCs reveals MoO3 is the compatible HTL for TAgT anode. In the end, the reactive ink printed Ag film for solar cell contact application is studied by characterizing its electromigration lifetime. A percolative model is proposed and validated for predicting the resistivity and lifetime of printed Ag thin films containing porous structure.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.
Weak incident shock interactions with Mach 8 laminar boundary layers. [of flat plate
NASA Technical Reports Server (NTRS)
Kaufman, L. G., II; Johnson, C. B.
1974-01-01
Weak shock-wave interactions with boundary layers on a flat plate were investigated experimentally in Mach 8 variable-density tunnel for plate-length Reynolds numbers. The undisturbed boundary layers were laminar over the entire plate length. Pressure and heat-transfer distributions were obtained for wedge-generated incident shock waves that resulted in pressure rises ranging from 1.36 to 4.46 (both nonseparated and separated boundary-layer flows). The resulting heat-transfer amplifications ranged from 1.45 to 14. The distributions followed established trends for nonseparated flows, for incipient separation, and for laminar free-interaction pressure rises. The experimental results corroborated established trends for the extent of the pressure rise and for certain peak heat-transfer correlations.
Stagnation-point heat transfer correlation for ionized gases
NASA Technical Reports Server (NTRS)
Bade, W. L.
1975-01-01
Based on previous laminar boundary-layer solutions for argon, xenon, nitrogen, and air, it is shown that the effect of gas ionization on stagnation-point heat transfer can be correlated with the variation of the frozen Prandtl number across the boundary layer. A formula is obtained for stagnation-point heat transfer in a noble gas and is shown to be valid from the low-temperature range to the region of strong ionization. It is concluded that the considered effect can be well correlated by the 0.7 power of the Prandtl-number ratio across the boundary layer.
Thermal Convection in High-Pressure Ice Layers Beneath a Buried Ocean within Titan and Ganymede
NASA Astrophysics Data System (ADS)
Tobie, G.; Choblet, G.; Dumont, M.
2014-12-01
Deep interiors of large icy satellites such as Titan and Ganymede probably harbor a buried ocean sandwiched between low pressure ice and high-pressure ice layers. The nature and location of the lower interface of the ocean involves equilibration of heat and melt transfer in the HP ices and is ultimately controlled by the amount heat transferred through the surface ice Ih layer. Here, we perform 3D simulations of thermal convection, using the OEDIPUS numerical tool (Choblet et al. GJI 2007), to determine the efficiency of heat and mass transfer through these HP ice mantles. In a first series of simulations with no melting, we show that a significant fraction of the HP layer reaches the melting point. Using a simple description of water production and transport, our simulations demonstrate that the melt generation in the outermost part of the HP ice layer and its extraction to the overlying ocean increase the efficiency of heat transfer and reduce strongly the internal temperature. structure and the efficiency of the heat transfer. Scaling relationships are proposed to describe the cooling effect of melt production/extraction and used to investigate the consequences of internal melting on the thermal history of Titan and Ganymede's interior.
Waaijman, Taco; Breetveld, Melanie; Ulrich, Magda; Middelkoop, Esther; Scheper, Rik J; Gibbs, Susan
2010-01-01
This in vitro study describes a novel cell culture, transport, and transfer protocol that may be highly suitable for delivering cultured proliferating keratinocytes and melanocytes to large open skin wounds (e.g., burns). We have taken into account previous limitations identified using other keratinocyte transfer techniques, such as regulatory issues, stability of keratinocytes during transport (single cell suspensions undergo terminal differentiation), ease of handling during application, and the degree of epidermal blistering resulting after transplantation (both related to transplanting keratinocyte sheets). Large numbers of proliferating epidermal cells (EC) (keratinocytes and melanocytes) were generated within 10-14 days and seeded onto a three-dimensional matrix composed of elastin and collagen types I, III, and V (Matriderm®), which enabled easy and stable transport of the EC for up to 24 h under ambient conditions. All culture conditions were in accordance with the regulations set by the Dutch Central Committee on Research Involving Human Subjects (CCMO). As an in vitro model system for clinical in vivo transfer, the EC were then transferred from Matriderm onto human acellular dermis during a period of 3 days. After transfer the EC maintained the ability to regenerate into a fully differentiated epidermis containing melanocytes on the human dermis. Proliferating keratinocytes were located in the basal layer and keratin-10 expression was located in differentiating suprabasal layers similar to that found in human epidermis. No blistering was observed (separation of the epidermis from the basement membrane). Keratin-6 expression was strongly upregulated in the regenerating epidermis similar to normal wound healing. In summary, we show that EC-Matriderm contains viable, metabolically active keratinocytes and melanocytes cultured in a manner that permits easy transportation and contains epidermal cells with the potential to form a pigmented reconstructed epidermis. This in vitro study has produced a robust protocol that is ready for clinical studies in the future.
Kim, D H; MacKinnon, T
2018-05-01
To identify the extent to which transfer learning from deep convolutional neural networks (CNNs), pre-trained on non-medical images, can be used for automated fracture detection on plain radiographs. The top layer of the Inception v3 network was re-trained using lateral wrist radiographs to produce a model for the classification of new studies as either "fracture" or "no fracture". The model was trained on a total of 11,112 images, after an eightfold data augmentation technique, from an initial set of 1,389 radiographs (695 "fracture" and 694 "no fracture"). The training data set was split 80:10:10 into training, validation, and test groups, respectively. An additional 100 wrist radiographs, comprising 50 "fracture" and 50 "no fracture" images, were used for final testing and statistical analysis. The area under the receiver operator characteristic curve (AUC) for this test was 0.954. Setting the diagnostic cut-off at a threshold designed to maximise both sensitivity and specificity resulted in values of 0.9 and 0.88, respectively. The AUC scores for this test were comparable to state-of-the-art providing proof of concept for transfer learning from CNNs in fracture detection on plain radiographs. This was achieved using only a moderate sample size. This technique is largely transferable, and therefore, has many potential applications in medical imaging, which may lead to significant improvements in workflow productivity and in clinical risk reduction. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Inversion of Surface-wave Dispersion Curves due to Low-velocity-layer Models
NASA Astrophysics Data System (ADS)
Shen, C.; Xia, J.; Mi, B.
2016-12-01
A successful inversion relies on exact forward modeling methods. It is a key step to accurately calculate multi-mode dispersion curves of a given model in high-frequency surface-wave (Rayleigh wave and Love wave) methods. For normal models (shear (S)-wave velocity increasing with depth), their theoretical dispersion curves completely match the dispersion spectrum that is generated based on wave equation. For models containing a low-velocity-layer, however, phase velocities calculated by existing forward-modeling algorithms (e.g. Thomson-Haskell algorithm, Knopoff algorithm, fast vector-transfer algorithm and so on) fail to be consistent with the dispersion spectrum at a high frequency range. They will approach a value that close to the surface-wave velocity of the low-velocity-layer under the surface layer, rather than that of the surface layer when their corresponding wavelengths are short enough. This phenomenon conflicts with the characteristics of surface waves, which results in an erroneous inverted model. By comparing the theoretical dispersion curves with simulated dispersion energy, we proposed a direct and essential solution to accurately compute surface-wave phase velocities due to low-velocity-layer models. Based on the proposed forward modeling technique, we can achieve correct inversion for these types of models. Several synthetic data proved the effectiveness of our method.
Detection of defects in multi-layered aramid composites by ultrasonic IR thermography
NASA Astrophysics Data System (ADS)
Pracht, Monika; Swiderski, Waldemar
2017-10-01
In military applications, laminates reinforced with aramid, carbon, and glass fibers are used for the construction of protection products against light ballistics. Material layers can be very different by their physical properties. Therefore, such materials represent a difficult inspection task for many traditional techniques of non-destructive testing (NDT). Defects which can appear in this type of many-layered composite materials usually are inaccuracies in gluing composite layers and stratifications or delaminations occurring under hits of fragments and bullets. IR thermographic NDT is considered as a candidate technique to detect such defects. One of the active IR thermography methods used in nondestructive testing is vibrothermography. The term vibrothermography was created in the 1990s to determine the thermal test procedures designed to assess the hidden heterogeneity of structural materials based on surface temperature fields at cyclical mechanical loads. A similar procedure can be done with sound and ultrasonic stimulation of the material, because the cause of an increase in temperature is internal friction between the wall defect and the stimulation mechanical waves. If the cyclic loading does not exceed the flexibility of the material and the rate of change is not large, the heat loss due to thermal conductivity is small, and the test object returns to its original shape and temperature. The most commonly used method is ultrasonic stimulation, and the testing technique is ultrasonic infrared thermography. Ultrasonic IR thermography is based on two basic phenomena. First, the elastic properties of defects differ from the surroundings, and acoustic damping and heating are always larger in the damaged regions than in the undamaged or homogeneous areas. Second, the heat transfer in the sample is dependent on its thermal properties. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting multi-layered aramide composite materials will be presented.
NASA Astrophysics Data System (ADS)
Ema, K.; Inomata, M.; Kato, Y.; Kunugita, H.; Era, M.
2008-06-01
We report the observation of extremely efficient energy transfer (greater than 99%) in an organic-inorganic hybrid quantum-well structure consisting of perovskite-type lead bromide well layers and naphthalene-linked ammonium barrier layers. Time-resolved photoluminescence measurements confirm that the transfer is triplet-triplet Dexter-type energy transfer from Wannier excitons in the inorganic well to the triplet state of naphthalene molecules in the organic barrier. Using measurements in the 10 300 K temperature range, we also investigated the temperature dependence of the energy transfer.
NASA Astrophysics Data System (ADS)
Wang, Xinwei; Chen, Zhe; Sun, Fangyuan; Zhang, Hang; Jiang, Yuyan; Tang, Dawei
2018-03-01
Heat transfer in nanostructures is of critical importance for a wide range of applications such as functional materials and thermal management of electronics. Time-domain thermoreflectance (TDTR) has been proved to be a reliable measurement technique for the thermal property determinations of nanoscale structures. However, it is difficult to determine more than three thermal properties at the same time. Heat transfer model simplifications can reduce the fitting variables and provide an alternative way for thermal property determination. In this paper, two simplified models are investigated and analyzed by the transform matrix method and simulations. TDTR measurements are performed on Al-SiO2-Si samples with different SiO2 thickness. Both theoretical and experimental results show that the simplified tri-layer model (STM) is reliable and suitable for thin film samples with a wide range of thickness. Furthermore, the STM can also extract the intrinsic thermal conductivity and interfacial thermal resistance from serial samples with different thickness.
Endwall Heat Transfer Measurements in a Transonic Turbine Cascade
NASA Technical Reports Server (NTRS)
Giel, P. W.; Thurman, D. R.; VanFossen, G. J.; Hippensteele, S. A.; Boyle, R. J.
1996-01-01
Turbine blade endwall heat transfer measurements are given for a range of Reynolds and Mach numbers. Data were obtained for Reynolds numbers based on inlet conditions of 0.5 and 1.0 x 106, for isentropic exit Mach numbers of 1.0 and 1.3, and for freestream turbulence intensities of 0.25% and 7.0%. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136' of turning and an axial chord of 12.7 cm. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for computational fluid dynamics (CFD) code and model verification. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet. Endwall heat transfer data were obtained using a steady-state liquid crystal technique.
NASA Astrophysics Data System (ADS)
Young, Andrea; Dean, Cory; Meric, Inanc; Hone, Jim; Shepard, Ken; Kim, Philip
2010-03-01
Using a transfer procedure and single crystal hexagonal Boron Nitride gate dielectric, we are able to fabricate high mobility graphene devices with local top and back gates. The novel geometry of these devices allows us to measure the spatially averaged compressibility of mono- and bilayer graphene using the ``penetration field'' technique [Eisenstein, J.P. et al. Phys. Rev. Lett. 68, 674 (1992)]. In particular, we analyze the the effects of strong transverse electric fields on the compressibility of graphenes, especially as pertains to charged impurity scattering in single layer graphene and the opening of an energy gap in bilayer.
The 1974 NASA-ASEE summer faculty fellowship aeronautics and space research program
NASA Technical Reports Server (NTRS)
Obrien, J. F., Jr.; Jones, C. O.; Barfield, B. F.
1974-01-01
Research activities by participants in the fellowship program are documented, and include such topics as: (1) multispectral imagery for detecting southern pine beetle infestations; (2) trajectory optimization techniques for low thrust vehicles; (3) concentration characteristics of a fresnel solar strip reflection concentrator; (4) calaboration and reduction of video camera data; (5) fracture mechanics of Cer-Vit glass-ceramic; (6) space shuttle external propellant tank prelaunch heat transfer; (7) holographic interferometric fringes; and (8) atmospheric wind and stress profiles in a two-dimensional internal boundary layer.
Aqueous proton transfer across single-layer graphene
Achtyl, Jennifer L.; Unocic, Raymond R.; Xu, Lijun; ...
2015-03-17
Proton transfer across single-layer graphene proceeds with large computed energy barriers and is thought to be unfavourable at room temperature unless nanoscale holes or dopants are introduced, or a potential bias is applied. Here we subject single-layer graphene supported on fused silica to cycles of high and low pH, and show that protons transfer reversibly from the aqueous phase through the graphene to the other side where they undergo acid–base chemistry with the silica hydroxyl groups. After ruling out diffusion through macroscopic pinholes, the protons are found to transfer through rare, naturally occurring atomic defects. Computer simulations reveal low energymore » barriers of 0.61–0.75 eV for aqueous proton transfer across hydroxyl-terminated atomic defects that participate in a Grotthuss-type relay, while pyrylium-like ether terminations shut down proton exchange. In conclusion, unfavourable energy barriers to helium and hydrogen transfer indicate the process is selective for aqueous protons.« less
Bio-inspired direct patterning functional nanothin microlines: controllable liquid transfer.
Wang, Qianbin; Meng, Qingan; Wang, Pengwei; Liu, Huan; Jiang, Lei
2015-04-28
Developing a general and low-cost strategy that enables direct patterning of microlines with nanometer thickness from versatile liquid-phase functional materials and precise positioning of them on various substrates remains a challenge. Herein, with inspiration from the oriental wisdom to control ink transfer by Chinese brushes, we developed a facile and general writing strategy to directly pattern various functional microlines with homogeneous distribution and nanometer-scale thickness. It is demonstrated that the width and thickness of the microlines could be well-controlled by tuning the writing method, providing guidance for the adaptation of this technique to various systems. It is also shown that various functional liquid-phase materials, such as quantum dots, small molecules, polymers, and suspensions of nanoparticles, could directly write on the substrates with intrinsic physicochemical properties well-preserved. Moreover, this technique enabled direct patterning of liquid-phase materials on certain microdomains, even in multiple layered style, thus a microdomain localized chemical reaction and the patterned surface chemical modification were enabled. This bio-inspired direct writing device will shed light on the template-free printing of various functional micropatterns, as well as the integrated functional microdevices.
Customized atomic force microscopy probe by focused-ion-beam-assisted tip transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Andrew; Butte, Manish J., E-mail: manish.butte@stanford.edu
2014-08-04
We present a technique for transferring separately fabricated tips onto tipless atomic force microscopy (AFM) cantilevers, performed using focused ion beam-assisted nanomanipulation. This method addresses the need in scanning probe microscopy for certain tip geometries that cannot be achieved by conventional lithography. For example, in probing complex layered materials or tall biological cells using AFM, a tall tip with a high-aspect-ratio is required to avoid artifacts caused by collisions of the tip's sides with the material being probed. We show experimentally that tall (18 μm) cantilever tips fabricated by this approach reduce squeeze-film damping, which fits predictions from hydrodynamic theory, andmore » results in an increased quality factor (Q) of the fundamental flexural mode. We demonstrate that a customized tip's well-defined geometry, tall tip height, and aspect ratio enable improved measurement of elastic moduli by allowing access to low-laying portions of tall cells (T lymphocytes). This technique can be generally used to attach tips to any micromechanical device when conventional lithography of tips cannot be accomplished.« less
NASA Technical Reports Server (NTRS)
Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.
1980-01-01
Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.
NASA Astrophysics Data System (ADS)
Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi
2018-06-01
Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.
NASA Astrophysics Data System (ADS)
Chen, Shanshan; Yang, Songwang; Sun, Hong; Zhang, Lu; Peng, Jiajun; Liang, Ziqi; Wang, Zhong-Sheng
2017-06-01
To improve the electron transfer at the interface between the perovskite film and the electron-transporting-material (ETM) layer, CoSe doped [6,6]-phenyl C61-butyric acid methyl ester (PCBM) is employed as the ETM layer for the inverted planar perovskite solar cell with NiO as the hole-transporting-material layer. Introduction of CoSe (5.8 wt%) into the PCBM layer improves the conductivity of the ETM layer and decreases the photoluminescence intensity, thus enhancing the interfacial electron extraction and reducing the electron transfer resistance at the perovskite/ETM interface. As a consequence, the power conversion efficiency is enhanced from 11.43% to 14.91% by 30% due to the noted increases in short-circuit current density from 17.95 mA cm-2 to 19.85 mA cm-2 and fill factor from 0.60 to 0.70. This work provides a new strategy to improve the performance of inverted perovskite solar cells.
The Compressible Laminar Boundary Layer with Heat Transfer and Arbitrary Pressure Gradient
NASA Technical Reports Server (NTRS)
Cohen, Clarence B; Reshotko, Eli
1956-01-01
An approximate method for the calculation of the compressible laminar boundary layer with heat transfer and arbitrary pressure gradient, based on Thwaites' correlation concept, is presented. With the definition of dimensionless shear and heat-transfer parameters and an assumed correlation of these parameters in terms of a momentum parameter, a complete system of relations for calculating skin friction and heat transfer results. Knowledge of velocity or temperature profiles is not necessary in using this calculation method. When the method is applied to a convergent-divergent, axially symmetric rocket nozzle, it shows that high rates of heat transfer are obtained at the initial stagnation point and at the throat of the nozzle. Also indicated are negative displacement thicknesses in the convergent portion of the nozzle; these occur because of the high density within the lower portions of the cooled boundary layer. (author)
Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting
2016-01-01
Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes’ placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper. PMID:26828500
Photoinduced doping in heterostructures of graphene and boron nitride.
Ju, L; Velasco, J; Huang, E; Kahn, S; Nosiglia, C; Tsai, Hsin-Zon; Yang, W; Taniguchi, T; Watanabe, K; Zhang, Y; Zhang, G; Crommie, M; Zettl, A; Wang, F
2014-05-01
The design of stacks of layered materials in which adjacent layers interact by van der Waals forces has enabled the combination of various two-dimensional crystals with different electrical, optical and mechanical properties as well as the emergence of novel physical phenomena and device functionality. Here, we report photoinduced doping in van der Waals heterostructures consisting of graphene and boron nitride layers. It enables flexible and repeatable writing and erasing of charge doping in graphene with visible light. We demonstrate that this photoinduced doping maintains the high carrier mobility of the graphene/boron nitride heterostructure, thus resembling the modulation doping technique used in semiconductor heterojunctions, and can be used to generate spatially varying doping profiles such as p-n junctions. We show that this photoinduced doping arises from microscopically coupled optical and electrical responses of graphene/boron nitride heterostructures, including optical excitation of defect transitions in boron nitride, electrical transport in graphene, and charge transfer between boron nitride and graphene.
Effect of initial conditions on constant pressure mixing between two turbulent streams
NASA Astrophysics Data System (ADS)
Kangovi, S.
1983-02-01
It is pointed out that a study of the process of mixing between two dissimilar streams has varied applications in different fields. The applications include the design of an after burner in a high by-pass ratio aircraft engine and the disposal of effluents in a stream. The mixing process determines important quantities related to the energy transfer from main stream to the secondary stream, the temperature and velocity profiles, and the local kinematic and dissipative structure within the mixing region, and the growth of the mixing layer. Hill and Page (1968) have proposed the employment of an 'assumed epsilon' method in which the eddy viscosity model of Goertler (1942) is modified to account for the initial boundary layer. The present investigation is concerned with the application of the assumed epsilon technique to the study of the effect of initial conditions on the development of the turbulent mixing layer between two compressible, nonisoenergetic streams at constant pressure.
Ding, Xu; Shi, Lei; Han, Jianghong; Lu, Jingting
2016-01-28
Wireless sensor networks deployed in coal mines could help companies provide workers working in coal mines with more qualified working conditions. With the underground information collected by sensor nodes at hand, the underground working conditions could be evaluated more precisely. However, sensor nodes may tend to malfunction due to their limited energy supply. In this paper, we study the cross-layer optimization problem for wireless rechargeable sensor networks implemented in coal mines, of which the energy could be replenished through the newly-brewed wireless energy transfer technique. The main results of this article are two-fold: firstly, we obtain the optimal relay nodes' placement according to the minimum overall energy consumption criterion through the Lagrange dual problem and KKT conditions; secondly, the optimal strategies for recharging locomotives and wireless sensor networks are acquired by solving a cross-layer optimization problem. The cyclic nature of these strategies is also manifested through simulations in this paper.
Large-scale protein/antibody patterning with limiting unspecific adsorption
NASA Astrophysics Data System (ADS)
Fedorenko, Viktoriia; Bechelany, Mikhael; Janot, Jean-Marc; Smyntyna, Valentyn; Balme, Sebastien
2017-10-01
A simple synthetic route based on nanosphere lithography has been developed in order to design a large-scale nanoarray for specific control of protein anchoring. This technique based on two-dimensional (2D) colloidal crystals composed of polystyrene spheres allows the easy and inexpensive fabrication of large arrays (up to several centimeters) by reducing the cost. A silicon wafer coated with a thin adhesion layer of chromium (15 nm) and a layer of gold (50 nm) is used as a substrate. PS spheres are deposited on the gold surface using the floating-transferring technique. The PS spheres were then functionalized with PEG-biotin and the defects by self-assembly monolayer (SAM) PEG to prevent unspecific adsorption. Using epifluorescence microscopy, we show that after immersion of sample on target protein (avidin and anti-avidin) solution, the latter are specifically located on polystyrene spheres. Thus, these results are meaningful for exploration of devices based on a large-scale nanoarray of PS spheres and can be used for detection of target proteins or simply to pattern a surface with specific proteins.
Development of a Global Multilayered Cloud Retrieval System
NASA Technical Reports Server (NTRS)
Huang, J.; Minnis, P.; Lin, B.; Yi, Y.; Ayers, J. K.; Khaiyer, M. M.; Arduini, R.; Fan, T.-F
2004-01-01
A more rigorous multilayered cloud retrieval system has been developed to improve the determination of high cloud properties in multilayered clouds. The MCRS attempts a more realistic interpretation of the radiance field than earlier methods because it explicitly resolves the radiative transfer that would produce the observed radiances. A two-layer cloud model was used to simulate multilayered cloud radiative characteristics. Despite the use of a simplified two-layer cloud reflectance parameterization, the MCRS clearly produced a more accurate retrieval of ice water path than simple differencing techniques used in the past. More satellite data and ground observation have to be used to test the MCRS. The MCRS methods are quite appropriate for interpreting the radiances when the high cloud has a relatively large optical depth (tau(sub I) greater than 2). For thinner ice clouds, a more accurate retrieval might be possible using infrared methods. Selection of an ice cloud retrieval and a variety of other issues must be explored before a complete global application of this technique can be implemented. Nevertheless, the initial results look promising.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwak, Jeong Hun; Lee, Sung Su; Lee, Hyeon Jun
2016-03-21
We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries;more » however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.« less
Fungal Laccases and Their Applications in Bioremediation
Viswanath, Buddolla; Rajesh, Bandi; Janardhan, Avilala; Kumar, Arthala Praveen; Narasimha, Golla
2014-01-01
Laccases are blue multicopper oxidases, which catalyze the monoelectronic oxidation of a broad spectrum of substrates, for example, ortho- and para-diphenols, polyphenols, aminophenols, and aromatic or aliphatic amines, coupled with a full, four-electron reduction of O2 to H2O. Hence, they are capable of degrading lignin and are present abundantly in many white-rot fungi. Laccases decolorize and detoxify the industrial effluents and help in wastewater treatment. They act on both phenolic and nonphenolic lignin-related compounds as well as highly recalcitrant environmental pollutants, and they can be effectively used in paper and pulp industries, textile industries, xenobiotic degradation, and bioremediation and act as biosensors. Recently, laccase has been applied to nanobiotechnology, which is an increasing research field, and catalyzes electron transfer reactions without additional cofactors. Several techniques have been developed for the immobilization of biomolecule such as micropatterning, self-assembled monolayer, and layer-by-layer techniques, which immobilize laccase and preserve their enzymatic activity. In this review, we describe the fungal source of laccases and their application in environment protection. PMID:24959348
Giant magneto-spin-Seebeck effect and magnon transfer torques in insulating spin valves
NASA Astrophysics Data System (ADS)
Cheng, Yihong; Chen, Kai; Zhang, Shufeng
2018-01-01
We theoretically study magnon transport in an insulating spin valve (ISV) made of an antiferromagnetic insulator sandwiched between two ferromagnetic insulator (FI) layers. In the conventional metal-based spin valve, the electron spins propagate between two metallic ferromagnetic layers, giving rise to giant magnetoresistance and spin transfer torque. Here, the incoherent magnons in the ISV serve as angular momentum carriers and are responsible for the angular momentum transport between two FI layers across the antiferromagnetic spacer. We predict two transport phenomena in the presence of the temperature gradient: a giant magneto-spin-Seebeck effect in which the output voltage signal is controlled by the relative orientation of the two FI layers and magnon transfer torque that can be used for switching the magnetization of the FI layers with a temperature gradient of the order of 0.1 Kelvin per nanometer.
Flux-transfer losses in helically wound superconducting power cables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clem, John R; Malozemoff, A P
2013-06-25
Minimization of ac losses is essential for economic operation of high-temperature superconductor (HTS) ac power cables. A favorable configuration for the phase conductor of such cables has two counter-wound layers of HTS tape-shaped wires lying next to each other and helically wound around a flexible cylindrical former. However, if magnetic materials such as magnetic substrates of the tapes lie between the two layers, or if the winding pitch angles are not opposite and essentially equal in magnitude to each other, current distributes unequally between the two layers. Then, if at some point in the ac cycle the current of eithermore » of the two layers exceeds its critical current, a large ac loss arises from the transfer of flux between the two layers. A detailed review of the formalism, and its application to the case of paramagnetic substrates including the calculation of this flux-transfer loss, is presented.« less
Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737
NASA Astrophysics Data System (ADS)
Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K.; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan
2014-09-01
In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm2) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications.
Unsteady convection flow and heat transfer over a vertical stretching surface.
Cai, Wenli; Su, Ning; Liu, Xiangdong
2014-01-01
This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.
NASA Astrophysics Data System (ADS)
Lysenko, S. A.
2018-01-01
A method for rapid calculation of a flux of stimulated fluorescence of a multilayer optically dense medium with inhomogeneous distribution of the fluorophore has been developed. The light field in the medium at the excitation wavelength of fluorescence is represented by a superposition of incident collimated, incident diffuse, and reflected diffuse fluxes. A two-stream approximation is used to describe the light field in the medium at the wavelength of emission of the fluorescence. Fluxes in adjacent elementary layers of the medium and on its surface are connected by simple matrix operators that are obtained using a combination of engineering approaches of radiation-transfer theory and single-scattering approximation. The calculations of fluorescence fluxes of a four-layer biotissue that are excited and recorded at 400-800 nm are compared with their Monte Carlo simulation with a discrepancy of 1%. The effect of the propagation medium on the fluorescence spectra of 5-ALA-induced protoporphyrin IX that are recorded from human skin was studied, and a technique for their correction that is based on measurements and quantitative analysis of the diffuse reflectance spectrum of skin was proposed.
Consideration of impedance matching techniques for efficient piezoelectric energy harvesting.
Kim, Hyeoungwoo; Priya, Shashank; Stephanou, Harry; Uchino, Kenji
2007-09-01
This study investigates multiple levels of impedance-matching methods for piezoelectric energy harvesting in order to enhance the conversion of mechanical to electrical energy. First, the transduction rate was improved by using a high piezoelectric voltage constant (g) ceramic material having a magnitude of g33 = 40 x 10(-3) V m/N. Second, a transducer structure, cymbal, was optimized and fabricated to match the mechanical impedance of vibration source to that of the piezoelectric transducer. The cymbal transducer was found to exhibit approximately 40 times higher effective strain coefficient than the piezoelectric ceramics. Third, the electrical impedance matching for the energy harvesting circuit was considered to allow the transfer of generated power to a storage media. It was found that, by using the 10-layer ceramics instead of the single layer, the output current can be increased by 10 times, and the output load can be reduced by 40 times. Furthermore, by using the multilayer ceramics the output power was found to increase by 100%. A direct current (DC)-DC buck converter was fabricated to transfer the accumulated electrical energy in a capacitor to a lower output load. The converter was optimized such that it required less than 5 mW for operation.
NASA Astrophysics Data System (ADS)
Dinca, V.; Mattle, T.; Palla Papavlu, A.; Rusen, L.; Luculescu, C.; Lippert, T.; Dinescu, M.
2013-08-01
The use of LIFT (Laser Induced Forward Transfer) for localized and high spatial resolution printing of many types of functional organic and inorganic, biological or synthetic materials onto substrates is an effective method in various domains (electronics, sensors, and surface biofunctionalization). Although extensive research has been dedicated to the LIFT process in the last years, there is an increasing interest for combining the advantages of this technique with specific materials characteristics for obtaining localized structures or for creating physical guidance structures that could be used as biological scaffolds. Within this context, we aim to study a new aspect related to combining the advantages of Dynamic Release Layer assisted LIFT (DRL-LIFT) with a soft substrate (i.e. Thermanox) for obtaining surface functionalization with micro and nano "porous" polymeric structures. The structures obtained with different topographical properties were evaluated by scanning electron microscopy, atomic force microscopy, optical and fluorescence microscopy. Subsequently, the structures were used as a base for cellular behavior study platforms. Preliminary in vitro tests involving two types of cells, fibroblast and oligodendrocytes, were performed on these LIFT printed platforms.
Modeling of trim panels in the energy finite element analysis
NASA Astrophysics Data System (ADS)
Moravaeji, Seyed-Javid
Modeling a trim panel is divided into finding the power exchange through two different paths: (i) the connection of the outer and inner panels (ii) through the layers directly. The vibrational power exchanged through the mounts is modeled as the connection of two parallel plates connected via a beam. Wave matrices representing plates and beams are derived separately; then a matrix method is proposed to solve for the wave amplitudes and hence the vibrational power exchange between the plates accordingly. A closed form formula for the case of connection of two identical plates is derived. For the power transmission loss directly through the layers, first transfer matrices representing layers made of different materials is considered. New matrices for a porous layer are derived. A method of finding the layered structure transfer matrix is proposed. It is concluded that in general a single isotropic layer cannot replace a structure accurately. Finally, on the basis of an equivalent transfer matrix, an optimization process for is proposed to replace the panel by a suitable set of layers.
SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures.
Sadr, Nasser; Zhu, Mojun; Osaki, Tatsuya; Kakegawa, Takahiro; Yang, Yunzhi; Moretti, Matteo; Fukuda, Junji; Khademhosseini, Ali
2011-10-01
A major challenge in tissue engineering is to reproduce the native 3D microvascular architecture fundamental for in vivo functions. Current approaches still lack a network of perfusable vessels with native 3D structural organization. Here we present a new method combining self-assembled monolayer (SAM)-based cell transfer and gelatin methacrylate hydrogel photopatterning techniques for microengineering vascular structures. Human umbilical vein cell (HUVEC) transfer from oligopeptide SAM-coated surfaces to the hydrogel revealed two SAM desorption mechanisms: photoinduced and electrochemically triggered. The former, occurs concomitantly to hydrogel photocrosslinking, and resulted in efficient (>97%) monolayer transfer. The latter, prompted by additional potential application, preserved cell morphology and maintained high transfer efficiency of VE-cadherin positive monolayers over longer culture periods. This approach was also applied to transfer HUVECs to 3D geometrically defined vascular-like structures in hydrogels, which were then maintained in perfusion culture for 15 days. As a step toward more complex constructs, a cell-laden hydrogel layer was photopatterned around the endothelialized channel to mimic the vascular smooth muscle structure of distal arterioles. This study shows that the coupling of the SAM-based cell transfer and hydrogel photocrosslinking could potentially open up new avenues in engineering more complex, vascularized tissue constructs for regenerative medicine and tissue engineering applications. Copyright © 2011 Elsevier Ltd. All rights reserved.
Charge transfer efficiency improvement of 4T pixel for high speed CMOS image sensor
NASA Astrophysics Data System (ADS)
Jin, Xiangliang; Liu, Weihui; Yang, Hongjiao; Tang, Lizhen; Yang, Jia
2015-03-01
The charge transfer efficiency improvement method is proposed by optimizing the electrical potential distribution along the transfer path from the PPD to the FD. In this work, we present a non-uniform doped transfer transistor channel, with the adjustments to the overlap length between the CPIA layer and the transfer gate, and the overlap length between the SEN layer and transfer gate. Theory analysis and TCAD simulation results show that the density of the residual charge reduces from 1e11 /cm3 to 1e9 /cm3, and the transfer time reduces from 500 ns to 143 ns, and the charge transfer efficiency is about 77 e-/ns. This optimizing design effectively improves the charge transfer efficiency of 4T pixel and the performance of 4T high speed CMOS image sensor.
Tuning Topological Surface States by Charge Transfer
NASA Astrophysics Data System (ADS)
Chen, Zhiyi
Three-dimensional (3D) topological insulators (TIs), Bi2Se 3, Bi2Te3, Sb2Te3, are a class of materials that has non-trivial bulk band structure and metallic surface states. Access to charge transport through Dirac surface states in TIs can be challenging due to their intermixing with bulk states or non-topological two-dimensional electron gas quantum well states caused by bending of electronic bands near the surface. The band bending arises via charge transfer from surface adatoms or interfaces and, therefore, the choice of layers abutting topological surfaces is critical. Surfaces of these 3D TIs have also been proposed to host new quantum phases at the interfaces with other types of materials, provided that the topological properties of interfacial regions remain unperturbed. This thesis presents a systematic experimental study of both bulk conducting and surface charge transfer problems. We started with optimizing growth condition of Bi2Se3 on various substrates, to achieve best quality of Bi2Se3 single layers we can get. We then move on to growth of Bi2Se3/ZnxCd1-xSe bilayers. Here we improved lattice mismatch between Bi2Se 3 and ZnxCd1-xSe layers by tuning lattice parameter of ZnxCd1-xSe. After that, we achieved molecular beam epitaxial growth of Bi2Se3/ZnxCd1-x Se superlattices that hold only one topological surface channel per TI layer. The topological nature of conducting channels is supported by pi-Berry phase evident from observed Shubnikov de Haas quantum oscillations and by the associated two-dimensional weak antilocalization quantum interference correction to magnetoresistance. Both density functional theory calculations and transport measurements suggest that a single topological Dirac cone per TI layer can be realized by asymmetric interfaces: Se-terminated Znx Cd1-xSe interface with the TI remains 'electronically intact', while charge transfer occurs at the Zn-terminated interface. Our findings indicate that topological transport could be controlled by adjusting charge transfer from non-topological spacers in hybrid structures. The first chapter contains a brief introduction to TIs. It describes basic concepts and notations used later in the bulk of the thesis. These include the topological surface states of a TI, crystal structure of 3D TIs, the origin of defects and their effects on transport study. The second chapter presents experimental techniques employed for growth and for structural, and electrical characterization of the 3D TIs thin films and superlattices. First, every component of our custom-designed molecular beam epitaxy system will be described in detail, and then the important in situ surface morphology monitoring tool - RHEED will also be mentioned, as well as high resolution X-ray diffraction (XRD). In the second part, a standard procedure for device fabrication will be presented. The last part will focus on the electron transport measurement setup and various techniques for characterization. In the third chapter we present explorations of different substrates for growth of Bi2Se3 thin films, describe growth of Bi2Se3 thin films on sapphire, GaAs(111), InP(001) and InP(111), then optimize growth conditions accordingly. The quality of films are investigated to study the effects of substrates on quality of the films. The fourth chapter is a growth study of superlattice of a TI with a traditional II-VI semiconductor, Bi2Se3/ZnxCd1-x Se. we explore II-VI semiconductor family and study the optimal material to grow on top of Bi2Se3. Then we focus on the growth of Bi2Se3/ZnxCd1-xSe superlattice and structural study. The fifth chapter studies charge transfer at the interface between Bi 2Se3 layer and ZnxCd1-xSe layer. We start by looking at the result of charge transport study of our superlattice. Then we will present the result of our density functional theory (DFT) calculation, which showed completely different charge transfer between Bi2Se 3 sits on top of ZnxCd1-xSe and ZnxCd 1-xSe on top of Bi2Se3. This will provide a perfect explanation of our experimental results. Then we designed experiment using transport measurement to test and confirm out explanation. The sixth chapter gives a short summary of this thesis work and a proposal for future work.
NASA Astrophysics Data System (ADS)
Afzal, Bushra; Noor Afzal Team; Bushra Afzal Team
2014-11-01
The momentum and thermal turbulent boundary layers over a continuous moving sheet subjected to a free stream have been analyzed in two layers (inner wall and outer wake) theory at large Reynolds number. The present work is based on open Reynolds equations of momentum and heat transfer without any closure model say, like eddy viscosity or mixing length etc. The matching of inner and outer layers has been carried out by Izakson-Millikan-Kolmogorov hypothesis. The matching for velocity and temperature profiles yields the logarithmic laws and power laws in overlap region of inner and outer layers, along with friction factor and heat transfer laws. The uniformly valid solution for velocity, Reynolds shear stress, temperature and thermal Reynolds heat flux have been proposed by introducing the outer wake functions due to momentum and thermal boundary layers. The comparison with experimental data for velocity profile, temperature profile, skin friction and heat transfer are presented. In outer non-linear layers, the lowest order momentum and thermal boundary layer equations have also been analyses by using eddy viscosity closure model, and results are compared with experimental data. Retired Professor, Embassy Hotel, Rasal Ganj, Aligarh 202001 India.
NASA Astrophysics Data System (ADS)
Park, Wug-Dong; Tanioka, Kenkichi
2016-07-01
Amorphous selenium (a-Se) high-gain avalanche rushing amorphous photoconductor (HARP) films have been used for highly sensitive imaging devices. To study a-Se HARP films for a solid-state image sensor, current-voltage, lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films are investigated. Also, to clarify a suitable Te-doped a-Se layer thickness in the a-Se photoconductor, we considered the effects of Te-doped layer thickness on the lag, spectral response, and light-transfer characteristics of 0.4-µm-thick a-Se HARP films. The threshold field, at which avalanche multiplication occurs in the a-Se HARP targets, decreases when the Te-doped layer thickness increases. The lag of 0.4-µm-thick a-Se HARP targets with Te-doped layers is higher than that of the target without Te doping. The lag of the targets with Te-doped layers is caused by the electrons trapped in the Te-doped layers within the 0.4-µm-thick a-Se HARP films. From the results of the spectral response measurement of about 15 min, the 0.4-µm-thick a-Se HARP targets with Te-doped layers of 90 and 120 nm are observed to be unstable owing to the electrons trapped in the Te-doped a-Se layer. From the light-transfer characteristics of 0.4-µm-thick a-Se HARP targets, as the slope at the operating point of signal current-voltage characteristics in the avalanche mode increases, the γ of the a-Se HARP targets decreases. Considering the effects of dark current on the lag and spectral response characteristics, a Te-doped layer of 60 nm is suitable for 0.4-µm-thick a-Se HARP films.
NASA Astrophysics Data System (ADS)
Hilal, Muhammad; Han, Jeong In
2018-06-01
This is the first study that described how the interface interactions of graphene oxide (GO) with poly(3-hexylthiophene): 3'H-cyclopropa [8,25] [5,6] fullerene-C60-D5h(6)-3'-butanoic acid 3'-phenyl methyl ester (PCBM) and with poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) are influencing the stability and performance of poly(3-hexylthiophene): poly(3-hexylthiophene) (P3HT) (P3HT:PCBM)-based organic solar cell. The interface functionalization of these carrier-transporting layers was confirmed by XRD pattern, XPS analysis, and Raman spectroscopy. These interfaces chemical bond formation helped to firmly attach the GO layer with PCBM and PEDOT:PSS layers, forming a strong barrier against water molecule absorption and also provided an easy pathway for fast transfer of free carriers between P3HT:PCBM layer and metal electrodes via the backbone of the conjugated GO sheets. Because of these interface interactions, the device fabricated with PCBM/GO composite as an electron transport layer and GO/PEDOT:PSS composite as hole transport layer demonstrated a remarkable improvement in the value of power conversion efficiency (5.34%) and reproducibility with a high degree of control over the environmental stability (600 h). This study is paving a way for a new technique to further improve the stability and PCE for the commercialization of OSCs.
Approximate Solution Methods for Spectral Radiative Transfer in High Refractive Index Layers
NASA Technical Reports Server (NTRS)
Siegel, R.; Spuckler, C. M.
1994-01-01
Some ceramic materials for high temperature applications are partially transparent for radiative transfer. The refractive indices of these materials can be substantially greater than one which influences internal radiative emission and reflections. Heat transfer behavior of single and laminated layers has been obtained in the literature by numerical solutions of the radiative transfer equations coupled with heat conduction and heating at the boundaries by convection and radiation. Two-flux and diffusion methods are investigated here to obtain approximate solutions using a simpler formulation than required for exact numerical solutions. Isotropic scattering is included. The two-flux method for a single layer yields excellent results for gray and two band spectral calculations. The diffusion method yields a good approximation for spectral behavior in laminated multiple layers if the overall optical thickness is larger than about ten. A hybrid spectral model is developed using the two-flux method in the optically thin bands, and radiative diffusion in bands that are optically thick.
Atwater, Jr., Harry A.; Zahler, James M.
2006-11-28
Ge/Si and other nonsilicon film heterostructures are formed by hydrogen-induced exfoliation of the Ge film which is wafer bonded to a cheaper substrate, such as Si. A thin, single-crystal layer of Ge is transferred to Si substrate. The bond at the interface of the Ge/Si heterostructures is covalent to ensure good thermal contact, mechanical strength, and to enable the formation of an ohmic contact between the Si substrate and Ge layers. To accomplish this type of bond, hydrophobic wafer bonding is used, because as the invention demonstrates the hydrogen-surface-terminating species that facilitate van der Waals bonding evolves at temperatures above 600.degree. C. into covalent bonding in hydrophobically bound Ge/Si layer transferred systems.
Zang, Huidong; Routh, Prahlad K.; Huang, Yuan; ...
2016-03-31
We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zang, Huidong; Routh, Prahlad K.; Huang, Yuan
We study the combination of zero-dimensional (0D) colloidal CdSe/ZnS quantum dots with tin disulfide (SnS 2), a two-dimensional (2D)-layered metal dichalcogenide, results in 0D–2D hybrids with enhanced light absorption properties. These 0D–2D hybrids, when exposed to light, exhibit intrahybrid nonradiative energy transfer from photoexcited CdSe/ZnS quantum dots to SnS 2. Using single nanocrystal spectroscopy, we find that the rate for energy transfer in 0D–2D hybrids increases with added number of SnS 2 layers, a positive manifestation toward the potential functionality of such 2D-based hybrids in applications such as photovoltaics and photon sensing.
Park, Hea Jung; So, Monica C.; Gosztola, David J.
2016-09-28
We demonstrate that thin films of metal organic framework (MOF)-like materials, containing two perylenedlimides (PDICl4, PDIOPh2) and a squaraine dye (S1); can be fabricated by, layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.
NASA Astrophysics Data System (ADS)
Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny
2018-02-01
Deep-learning models are highly parameterized, causing difficulty in inference and transfer learning. We propose a layered pathway evolution method to compress a deep convolutional neural network (DCNN) for classification of masses in DBT while maintaining the classification accuracy. Two-stage transfer learning was used to adapt the ImageNet-trained DCNN to mammography and then to DBT. In the first-stage transfer learning, transfer learning from ImageNet trained DCNN was performed using mammography data. In the second-stage transfer learning, the mammography-trained DCNN was trained on the DBT data using feature extraction from fully connected layer, recursive feature elimination and random forest classification. The layered pathway evolution encapsulates the feature extraction to the classification stages to compress the DCNN. Genetic algorithm was used in an iterative approach with tournament selection driven by count-preserving crossover and mutation to identify the necessary nodes in each convolution layer while eliminating the redundant nodes. The DCNN was reduced by 99% in the number of parameters and 95% in mathematical operations in the convolutional layers. The lesion-based area under the receiver operating characteristic curve on an independent DBT test set from the original and the compressed network resulted in 0.88+/-0.05 and 0.90+/-0.04, respectively. The difference did not reach statistical significance. We demonstrated a DCNN compression approach without additional fine-tuning or loss of performance for classification of masses in DBT. The approach can be extended to other DCNNs and transfer learning tasks. An ensemble of these smaller and focused DCNNs has the potential to be used in multi-target transfer learning.
Deposition of thin silicon layers on transferred large area graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lupina, Grzegorz, E-mail: lupina@ihp-microelectronics.com; Kitzmann, Julia; Lukosius, Mindaugas
2013-12-23
Physical vapor deposition of Si onto transferred graphene is investigated. At elevated temperatures, Si nucleates preferably on wrinkles and multilayer graphene islands. In some cases, however, Si can be quasi-selectively grown only on the monolayer graphene regions while the multilayer islands remain uncovered. Experimental insights and ab initio calculations show that variations in the removal efficiency of carbon residuals after the transfer process can be responsible for this behavior. Low-temperature Si seed layer results in improved wetting and enables homogeneous growth. This is an important step towards realization of electronic devices in which graphene is embedded between two Si layers.
NASA Astrophysics Data System (ADS)
Consales, M.; Crescitelli, A.; Cutolo, A.; Penza, M.; Aversa, P.; Giordano, M.; Cusano, A.
2007-07-01
In this work, the feasibility to exploit optoelectronic chemo-sensors based on cadmium arachidate (CdA)/single-walled carbon nanotubes (SWCNTs) composites for detection of chemical pollutants both in air and water environments has been investigated. The nanocomposite sensing layers have been transferred upon the distal end of standard optical fibers by the Langmuir-Blodgett (LB) technique. Single wavelength reflectance measurements (λ=1310 nm) have been carried out to monitor chemicals concentration through changes in the optical length of the Fabry-Pérot (FP) cavity induced by the interaction of the sensitive layer with the analyte molecules. The preliminary experimental results evidence the good potentiality of these fiber optic nanosensors to detect toluene and xylene at ppm level both in air and water environments at room temperature.
Ahmad Khan, Junaid; Mustafa, M; Hayat, T; Alsaedi, A
2015-01-01
This work deals with the flow and heat transfer in upper-convected Maxwell fluid above an exponentially stretching surface. Cattaneo-Christov heat flux model is employed for the formulation of the energy equation. This model can predict the effects of thermal relaxation time on the boundary layer. Similarity approach is utilized to normalize the governing boundary layer equations. Local similarity solutions are achieved by shooting approach together with fourth-fifth-order Runge-Kutta integration technique and Newton's method. Our computations reveal that fluid temperature has inverse relationship with the thermal relaxation time. Further the fluid velocity is a decreasing function of the fluid relaxation time. A comparison of Fourier's law and the Cattaneo-Christov's law is also presented. Present attempt even in the case of Newtonian fluid is not yet available in the literature.
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
1995-01-01
This report deals with the direct numerical simulation of transitional and turbulent flow at low Mach numbers using high-order-accurate finite-difference techniques. A computation of transition to turbulence of the spatially-evolving boundary layer on a heated flat plate in the presence of relatively high freestream turbulence was performed. The geometry and flow conditions were chosen to match earlier experiments. The development of the momentum and thermal boundary layers was documented. Velocity and temperature profiles, as well as distributions of skin friction, surface heat transfer rate, Reynolds shear stress, and turbulent heat flux, were shown to compare well with experiment. The results indicate that the essential features of the transition process have been captured. The numerical method used here can be applied to complex geometries in a straightforward manner.
Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya; Kaur, Ramneek
2015-05-15
Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows themore » characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials.« less
Organogenesis from transformed tomato explants.
Frary, Anne; Van Eck, Joyce
2005-01-01
Tomato was one of the first crops for which a genetic transformation system was reported involving regeneration by organogenesis from Agrobacterium-transformed explants. Since the initial reports, various factors have been studied that affect the efficiency of tomato transformation and the technique has been useful for the isolation and identification of many genes involved in plant disease resistance, morphology and development. In this method, cotyledon explants from in vitro-grown seedlings are precultured overnight on a tobacco suspension feeder layer. The explants are then inoculated with Agrobacterium and returned to the feeder layer for a 2-d period of cocultivation. After cocultivation, the explants are transferred to an MS-based selective regeneration medium containing zeatin. Regenerated shoots are then rooted on a separate selective medium. This protocol has been used with several tomato cultivars and routinely yields transformation efficiencies of 10-15%.
Theory of Excitation Transfer between Two-Dimensional Semiconductor and Molecular Layers
NASA Astrophysics Data System (ADS)
Specht, Judith F.; Verdenhalven, Eike; Bieniek, Björn; Rinke, Patrick; Knorr, Andreas; Richter, Marten
2018-04-01
The geometry-dependent energy transfer rate from an electrically pumped inorganic semiconductor quantum well into an organic molecular layer is studied theoretically. We focus on Förster-type nonradiative excitation transfer between the organic and inorganic layers and include quasimomentum conservation and intermolecular coupling between the molecules in the organic film. (Transition) partial charges calculated from density-functional theory are used to calculate the coupling elements. The partial charges describe the spatial charge distribution and go beyond the common dipole-dipole interaction. We find that the transfer rates are highly sensitive to variations in the geometry of the hybrid inorganic-organic system. For instance, the transfer efficiency is improved by up to 2 orders of magnitude by tuning the spatial arrangement of the molecules on the surface: Parameters of importance are the molecular packing density along the effective molecular dipole axis and the distance between the molecules and the surface. We also observe that the device performance strongly depends on the orientation of the molecular dipole moments relative to the substrate dipole moments determined by the inorganic crystal structure. Moreover, the operating regime is identified where inscattering dominates over unwanted backscattering from the molecular layer into the substrate.
Plume effects on the flow around a blunted cone at hypersonic speeds
NASA Technical Reports Server (NTRS)
Atcliffe, P.; Kumar, D.; Stollery, J. L.
1992-01-01
Tests at M = 8.2 show that a simulated rocket plume at the base of a blunted cone can cause large areas of separated flow, with dramatic effects on the heat transfer rate distribution. The plume was simulated by solid discs of varying sizes or by an annular jet of gas. Flow over the cone without a plume is fully laminar and attached. Using a large disc, the boundary layer is laminar at separation at the test Reynolds number. Transition occurs along the separated shear layer and the boundary layer quickly becomes turbulent. The reduction in heat transfer associated with a laminar separated region is followed by rising values as transition occurs and the heat transfer rates towards the rear of the cone substantially exceed the values obtained without a plume. With the annular jet or a small disc, separation occurs much further aft, so that heat transfer rates at the front of the cone are comparable with those found without a plume. Downstream of separation the shear layer now remains laminar and the heat transfer rates to the surface are significantly lower than the attached flow values.
Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk
2016-09-07
Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.
An operational open-end file transfer protocol for mobile satellite communications
NASA Technical Reports Server (NTRS)
Wang, Charles; Cheng, Unjeng; Yan, Tsun-Yee
1988-01-01
This paper describes an operational open-end file transfer protocol which includes the connecting procedure, data transfer, and relinquishment procedure for mobile satellite communications. The protocol makes use of the frame level and packet level formats of the X.25 standard for the data link layer and network layer, respectively. The structure of a testbed for experimental simulation of this protocol over a mobile fading channel is also introduced.
Karbalaei Akbari, Mohammad; Hai, Zhenyin; Wei, Zihan; Detavernier, Christophe; Solano, Eduardo; Verpoort, Francis; Zhuiykov, Serge
2018-03-28
Electrically responsive plasmonic devices, which benefit from the privilege of surface plasmon excited hot carries, have supported fascinating applications in the visible-light-assisted technologies. The properties of plasmonic devices can be tuned by controlling charge transfer. It can be attained by intentional architecturing of the metal-semiconductor (MS) interfaces. In this study, the wafer-scaled fabrication of two-dimensional (2D) TiO 2 semiconductors on the granular Au metal substrate is achieved using the atomic layer deposition (ALD) technique. The ALD-developed 2D MS heterojunctions exhibited substantial enhancement of the photoresponsivity and demonstrated the improvement of response time for 2D Au-TiO 2 -based plasmonic devices under visible light illumination. To circumvent the undesired dark current in the plasmonic devices, a 2D WO 3 nanofilm (∼0.7 nm) was employed as the intermediate layer on the MS interface to develop the metal-insulator-semiconductor (MIS) 2D heterostructure. As a result, 13.4% improvement of the external quantum efficiency was obtained for fabricated 2D Au-WO 3 -TiO 2 heterojunctions. The impedancometry measurements confirmed the modulation of charge transfer at the 2D MS interface using MIS architectonics. Broadband photoresponsivity from the UV to the visible light region was observed for Au-TiO 2 and Au-WO 3 -TiO 2 heterostructures, whereas near-infrared responsivity was not observed. Consequently, considering the versatile nature of the ALD technique, this approach can facilitate the architecturing and design of novel 2D MS and MIS heterojunctions for efficient plasmonic devices.
Improving the durability of the optical fiber sensor based on strain transfer analysis
NASA Astrophysics Data System (ADS)
Wang, Huaping; Jiang, Lizhong; Xiang, Ping
2018-05-01
To realize the reliable and long-term strain detection, the durability of optical fiber sensors has attracted more and more attention. The packaging technique has been considered as an effective method, which can enhance the survival ratios of optical fiber sensors to resist the harsh construction and service environment in civil engineering. To monitor the internal strain of structures, the embedded installation is adopted. Due to the different material properties between host material and the protective layer, the monitored structure embedded with sensors can be regarded as a typical model containing inclusions. Interfacial characteristic between the sensor and host material exists obviously, and the contacted interface is prone to debonding failure induced by the large interfacial shear stress. To recognize the local interfacial debonding damage and extend the effective life cycle of the embedded sensor, strain transfer analysis of a general three-layered sensing model is conducted to investigate the failure mechanism. The perturbation of the embedded sensor on the local strain field of host material is discussed. Based on the theoretical analysis, the distribution of the interfacial shear stress along the sensing length is characterized and adopted for the diagnosis of local interfacial debonding, and the sensitive parameters influencing the interfacial shear stress are also investigated. The research in this paper explores the interfacial debonding failure mechanism of embedded sensors based on the strain transfer analysis and provides theoretical basis for enhancing the interfacial bonding properties and improving the durability of embedded optical fiber sensors.
NASA Astrophysics Data System (ADS)
Zhou, Renjie; So, Peter T. C.; Yaqoob, Zahid; Jin, Di; Hosseini, Poorya; Kuang, Cuifang; Singh, Vijay Raj; Kim, Yang-Hyo; Dasari, Ramachandra R.
2017-02-01
Most of the quantitative phase microscopy systems are unable to provide depth-resolved information for measuring complex biological structures. Optical diffraction tomography provides a non-trivial solution to it by 3D reconstructing the object with multiple measurements through different ways of realization. Previously, our lab developed a reflection-mode dynamic speckle-field phase microscopy (DSPM) technique, which can be used to perform depth resolved measurements in a single shot. Thus, this system is suitable for measuring dynamics in a layer of interest in the sample. DSPM can be also used for tomographic imaging, which promises to solve the long-existing "missing cone" problem in 3D imaging. However, the 3D imaging theory for this type of system has not been developed in the literature. Recently, we have developed an inverse scattering model to rigorously describe the imaging physics in DSPM. Our model is based on the diffraction tomography theory and the speckle statistics. Using our model, we first precisely calculated the defocus response and the depth resolution in our system. Then, we further calculated the 3D coherence transfer function to link the 3D object structural information with the axially scanned imaging data. From this transfer function, we found that in the reflection mode excellent sectioning effect exists in the low lateral spatial frequency region, thus allowing us to solve the "missing cone" problem. Currently, we are working on using this coherence transfer function to reconstruct layered structures and complex cells.
Multi-Tasking Non-Destructive Laser Technology in Conservation Diagnostic Procedures
NASA Astrophysics Data System (ADS)
Tornari, V.; Tsiranidou, E.; Orphanos, Y.; Falldorf, C.; Klattenhof, R.; Esposito, E.; Agnani, A.; Dabu, R.; Stratan, A.; Anastassopoulos, A.; Schipper, D.; Hasperhoven, J.; Stefanaggi, M.; Bonnici, H.; Ursu, D.
Laser metrology provides techniques that have been successfully applied in industrial structural diagnostic fields but have not yet been refined and optimised for the special investigative requirements found in cultural heritage applications. A major impediment is the partial applicability of various optical coherent techniques, each one narrowing its use down to a specific application. This characteristic is not well suited for a field that encounters a great variety of diagnostic problems ranging from movable, multiple-composition museum objects, to immovable multi-layered wall paintings, statues and wood carvings, to monumental constructions and outdoor cultural heritage sites. Various diagnostic techniques have been suggested and are uniquely suited for each of the mentioned problems but it is this fragmented suitability that obstructs the technology transfer. Since optical coherent techniques for metrology are based on fundamental principles and take advantage of similar procedures for generation of informative signals for data collection, then the imposed limits elevate our aim to identify complementary capabilities to accomplish the needed functionality.
NASA Astrophysics Data System (ADS)
Park, S. S.; Kim, J.; Lee, H.; Torres, O.; Lee, K.-M.; Lee, S. D.
2015-03-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using simulated radiances by a radiative transfer model, Linearized Discrete Ordinate Radiative Transfer (LIDORT), and Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 SCDs to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4 SCD at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 414 m (16.5%), 564 m (22.4%), and 1343 m (52.5%) for absorbing, dust, and non-absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution type. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). The retrieved aerosol effective heights are lower by approximately 300 m (27 %) compared to those obtained from the ground-based LIDAR measurements.
Measurements of the apparent thermal conductivity of multi-layer insulation between 20 K and 90 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurd, Joseph A.; Van Sciver, Steven W.
NASA has the need to efficiently store cryogenic propellants in space for long periods of time. One method to improve storage efficiency is to use multi-layer insulation (MLI), a technique that minimizes the boiling rate due to radiation heat transfer. Typically, the thermal performance of MLI is determined by measuring the rate of evaporation of liquid nitrogen from a calibrated cryostat. The main limitation with this method is that testing conditions are restricted by the boiling temperature of the LN{sub 2}, which may not match the requirements of the application. The Multi-Layer Insulation Thermal Conductivity Experiment (MIKE) at the Nationalmore » High Magnetic Field Laboratory is capable of measuring the effective thermal conductivity of MLI at variable boundary temperatures. MIKE uses cryo-refrigerators to control boundary temperatures in the calorimeter and a calibrated thermal link to measure the heat load. To make the measurements requested by NASA, MIKE needed to be recalibrated for the 20 K to 90 K range. Also, due to the expectation of a lower heat transfer rate, the heat load support rod material was changed to one with a lower thermal conductivity to ensure the temperature difference seen on the cold rod could be measurable at the estimated heat load. Presented are the alterations to MIKE including calibration data and heat load measurements on new load-bearing MLI supplied by NASA.« less
Emergent magnetism at transition-metal–nanocarbon interfaces
Al Ma’Mari, Fatma; Rogers, Matthew; Alghamdi, Shoug; Moorsom, Timothy; Lee, Stephen; Prokscha, Thomas; Luetkens, Hubertus; Valvidares, Manuel; Flokstra, Machiel; Stewart, Rhea; Ali, Mannan; Burnell, Gavin; Hickey, B. J.
2017-01-01
Charge transfer at metallo–molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc–C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo–carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2−π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz–π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices. PMID:28507160
Simulation and experimental research of heat leakage of cryogenic transfer lines
NASA Astrophysics Data System (ADS)
Deng, B. C.; Xie, X. J.; Pan, W.; Jiang, R. X.; Li, J.; Yang, S. Q.; Li, Q.
2017-12-01
The heat leakage of cryogenic transfer lines directly influences the performance of large-scale helium refrigerator. In this paper, a thermal model of cryogenic transfer line considering numerical simulation of support coupled with MLI was established. To validate the model, test platform of cryogenic transfer lines with the merits of disassembly outer pipe and changeable easily multi-layer insulation has been built. The experimental results of heat leakage through overall length of cryogenic transfer lines, support and multi-layer insulation were obtained. The heat leakages of multi-layer insulation, a support and the overall leakage are 1.02 W/m, 0.44 W and 1.46 W/m from experimental data, respectively. The difference of heat leakage of MLI between experiment and simulation were less than 5%. The temperature distribution of support and MLI obtained in presented model in good agreement with experimental data. It is expected to reduce the overall heat leakage of cryogenic transfer lines further by optimizing structure of support based on the above thermal model and test platform in this paper.
NASA Astrophysics Data System (ADS)
Li, Zhi-Xin; Cao, Jin-Jin; Gou, Xiao-Fan; Wang, Tian-Ge; Xue, Feng
2018-01-01
We report a discovery of the quasi-two-dimensional (quasi-2D) CuO2 plane between the superconductor YBa2Cu3O7 (YBCO) and CeO2 buffer layer (mostly used in the fabrication) of coated conductors through the atomistic computer simulations with the molecular dynamics (MD) and first-principle calculations. For an YBCO coated conductor with multilayer structures, the buffer layers deposited onto a substrate are mainly considered to transfer a strong biaxial texture from the substrate to the YBCO layer. To deeply understand the tuning mechanism of the texture transfer, exploring the complete atomic-level picture of the structure between the YBa2Cu3O7/CeO2 interfaces is firstly required. However, the related observation data have not been available due to some big challenges of experimental techniques. With the MD simulations, having tested the accuracy of the potential functions for the YBa2Cu3O7/CeO2 interface, we constructed a total of 54 possible atom stacking models of the interface and identified its most appropriate and stable structure according to the criterion of the interface adhesion energy and the coherent characterization. To further verify the stability of the identified structure, we performed the first-principle calculations to obtain the adhesion energy and developed the general knowledge of the interface structure. Finally, a coherent interface formed with a new built quasi-2D CuO2 plane that is structurally similar to the CuO2 plane inside bulk YBCO was determined.
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-02-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
NASA Technical Reports Server (NTRS)
Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok
2016-01-01
The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the Differential Optical Absorption Spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(exp 40) sq molecules cm(exp -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80% of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.
Universal Strategy To Reduce Noise Current for Sensitive Organic Photodetectors.
Xiong, Sixing; Li, Lingliang; Qin, Fei; Mao, Lin; Luo, Bangwu; Jiang, Youyu; Li, Zaifang; Huang, Jinsong; Zhou, Yinhua
2017-03-15
Low noise current is critical for achieving high-detectivity organic photodetectors. Inserting charge-blocking layers is an effective approach to suppress the reverse-biased dark current. However, in solution-processed organic photodetectors, the charge-transport material needs to be dissolved in solvents that do not dissolve the underneath light-absorbing layer, which is not always possible for all kinds of light-absorbing materials developed. Here, we introduce a universal strategy of transfer-printing a conjugated polymer, poly(3-hexylthiophene) (P3HT), as the electron-blocking layer to realize highly sensitive photodetectors. The transfer-printed P3HT layers substantially and universally reduced the reverse-biased dark current by about 3 orders of magnitude for various photodetectors with different active layers. These photodetectors can detect the light signal as weak as several picowatts per square centimeter, and the device detectivity is over 10 12 Jones. The results suggest that the strategy of transfer-printing P3HT films as the electron-blocking layer is universal and effective for the fabrication of sensitive organic photodetectors.
NASA Astrophysics Data System (ADS)
Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.
2018-06-01
Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.
Prefabricated microvascular autograft in tracheal reconstruction.
Fayad, J; Kuriloff, D B
1994-10-01
Tracheal reconstruction continues to be a challenge in head and neck surgery. Numerous techniques, including the use of alloplasts, composite grafts, and staged laryngotracheal troughs, have met with limited success because of implant exposure, infection, persistent granulation tissue, and eventual restenosis. With recently introduced techniques for soft-tissue molding, bone induction with bone morphogenetic protein, and microvascular free tissue transfer, a rodent model was developed to create a well-vascularized tracheal autograft. In this model, a rigid tube having the same dimensions and flexibility as the native trachea was created by wrapping a cylindrical silicone tracheal mold with a layer of vascularized adductor thigh muscle pedicled on the femoral vessels in the groin. Tracheal rings were created by filing transverse troughs in the muscle bed with bone morphogenetic protein-primed demineralized bone matrix before wrapping around the silicone mold. Grafts harvested at 2 weeks demonstrated rigid skeletal support provided by heterotopic bone formation in the form of rings and a smooth inner lining produced by fibroplasia. Bone transformation was controlled and restricted to the muscle troughs, allowing intervening regions of soft tissue and thus producing a flexible neotrachia. With this model, a homologous, vascularized tracheal autograft capable of microvascular free tissue transfer was fabricated based on the femoral vessels. Prefabrication of composite grafts, through the use of soft-tissue molding, bone induction, and subsequent free tissue transfer, has an unlimited potential for use in head and neck reconstruction.
Comparison of 193 nm and 308 nm laser liquid printing by shadowgraphy imaging
NASA Astrophysics Data System (ADS)
Palla-Papavlu, A.; Shaw-Stewart, J.; Mattle, T.; Dinca, V.; Lippert, T.; Wokaun, A.; Dinescu, M.
2013-08-01
Over the last years laser-induced forward transfer has emerged as a versatile and powerful tool for engineering surfaces with active compounds. Soft, easily damageable materials can be transferred using a triazene polymer as a sacrificial layer which acts as a pressure generator and at the same time protects the material from direct laser irradiation. To understand and optimize the transfer process of biomolecules in liquid solution by using an intermediate triazene polymer photosensitive layer, shadowgraphy imaging is carried out. Two laser systems i.e. an ArF laser operating at 193 nm and a XeCl laser operating at 308 nm are applied for the transfer. Solutions with 50% v/v glycerol concentration are prepared and the influence of the triazene polymer sacrificial layer thickness (60 nm) on the deposits is studied. The shadowgraphy images reveal a pronounced difference between laser-induced forward transfer using 193 nm or 308 nm, i.e. very different shapes of the ejected liquid.
Hybrid integration of III-V and silicon materials and devices
NASA Astrophysics Data System (ADS)
Luo, Zhongsheng
Laser liftoff (LLO) based hybrid integration techniques including the double-transfer process and the pixel-to-point transfer process have been developed to integrate III-V photonics with silicon materials and circuitry. No degradation in the device performance has been observed using the LLO based transfer techniques. On the contrary, performance improvements in both electrical characteristics and electroluminescence (EL) output have been found for the (In,Ga)N light emitting diodes (LEDs) transferred onto Si substrate. Based on computer simulation, it is found that as much as 70% enhancement in EL output could be expected by optimizing the metal layering on the backside of the transferred LEDs. In order to understand the existing experimental data and improve controllability and damage-free transfer yield of the LLO process, a novel, comprehensive LLO model based on thermal-mechanical analysis has been proposed and developed. The LLO model has been validated in the well-studied GaN/sapphire system. By employing the LLO based transfer technique, two optoelectronic systems have been designed and demonstrated. The first one is an integrated fluorescence microsystem, which involved the integration of Cd(S,Se) bandgap filters, (In,Ga)N LEDs, Poly(dimethylsiloxane) (PDMS) microfluidic channels with a pre-fabricated Si PIN photodiode chip. Prototypes with both one color (blue LED) excitation and two-color (blue and green LED) excitation have consistently demonstrated a detection capability of as low as 1 nM fluosphere beads using Molecular Probes FluoSpheresRTM dye. Furthermore, the feasibility of multi-wavelength design has been verified using the bi-wavelength prototype. To optimize signal-to-noise ratio and detection sensitivity of the microsystem via system design, an in-depth mathematic analysis has also been performed. The second application is a zero-footprint optical metrology wafer, which relies on the reflection at the optical detection window, through which important parameters such as thickness, refractive index and density of the film on top of the detecting window can be probed in a real-time and location-specific manner. A novel methodology has been developed to ensure accurate and precise measurement across the wafer. A prototype wafer with 3x3 metrology cells has been prototyped and calibrated using a SF6 plasma etching process of silicon oxide.
Aerothermodynamic Testing and Boundary Layer Trip Sizing of the HIFiRE Flight 1 Vehicle
NASA Technical Reports Server (NTRS)
Berger, Karen T.; Greene, Frank A.; Kimmel, Roger
2008-01-01
An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Air Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this report is focused on the Flight 1 configuration, the first in a series of flight experiments. This report documents experimental measurements made over a range of Reynolds numbers and angles of attack on several scaled ceramic heat transfer models of the Flight 1 payload. Global heat transfer was measured using phosphor thermography and the resulting images and heat transfer distributions were used to infer the state of the boundary layer on the vehicle windside and leeside surfaces. Boundary layer trips were used to force the boundary layer turbulent, and a brief study was conducted to determine the effectiveness of the trips with various heights. The experimental data highlighted in this test report were used to size and place the boundary layer trip for the flight test vehicle.
Superconducting coil and method of stress management in a superconducting coil
McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.
1999-01-01
A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics.
Analysis and Optimization of Four-Coil Planar Magnetically Coupled Printed Spiral Resonators.
Khan, Sadeque Reza; Choi, GoangSeog
2016-08-03
High-efficiency power transfer at a long distance can be efficiently established using resonance-based wireless techniques. In contrast to the conventional two-coil-based inductive links, this paper presents a magnetically coupled fully planar four-coil printed spiral resonator-based wireless power-transfer system that compensates the adverse effect of low coupling and improves efficiency by using high quality-factor coils. A conformal architecture is adopted to reduce the transmitter and receiver sizes. Both square architecture and circular architectures are analyzed and optimized to provide maximum efficiency at a certain operating distance. Furthermore, their performance is compared on the basis of the power-transfer efficiency and power delivered to the load. Square resonators can produce higher measured power-transfer efficiency (79.8%) than circular resonators (78.43%) when the distance between the transmitter and receiver coils is 10 mm of air medium at a resonant frequency of 13.56 MHz. On the other hand, circular coils can deliver higher power (443.5 mW) to the load than the square coils (396 mW) under the same medium properties. The performance of the proposed structures is investigated by simulation using a three-layer human-tissue medium and by experimentation.
Experimental research of solid waste drying in the process of thermal processing
NASA Astrophysics Data System (ADS)
Bukhmirov, V. V.; Kolibaba, O. B.; Gabitov, R. N.
2015-10-01
The convective drying process of municipal solid waste layer as a polydispersed multicomponent porous structure is studied. On the base of the experimental data criterial equations for calculating heat transfer and mass transfer processes in the layer, depending on the humidity of the material, the speed of the drying agent and the layer height are obtained. These solutions are used in the thermal design of reactors for the thermal processing of multicomponent organic waste.
Heat Transfer in the Turbulent Boundary Layer of a Compressible Gas at High Speeds
NASA Technical Reports Server (NTRS)
Frankl, F.
1942-01-01
The Reynolds law of heat transfer from a wall to a turbulent stream is extended to the case of flow of a compressible gas at high speeds. The analysis is based on the modern theory of the turbulent boundary layer with laminar sublayer. The investigation is carried out for the case of a plate situated in a parallel stream. The results are obtained independently of the velocity distribution in the turbulent boundar layer.
Improvement of resist profile roughness in bilayer resist process
NASA Astrophysics Data System (ADS)
Jeong, Chang-Young; Ryu, Sang-Wook; Park, Ki-Yeop; Lee, Won-Kyu; Lee, Seung-Woog; Lee, Dai-Hoon
2000-06-01
The bi-layer resist (BLR) process, which first accomplish imaging on a thin top layer and transfer it down to a thick organic layer, is one of newly emerging patterning techniques in silicon processing. In this work, we studied the lithographic performance of the BLR process adopting FK- SPTM (Fujifilm Olin Co.) as top layer material and various organic material as bottom layer. Generally, considerable advantages of planarization, reduced substrate reflection, improved process latitude, and of enhanced resolution are achieved. However, the resolution and the process latitude are highly affected by surface interaction between the top resist and the bottom material. Moreover, the BLR process has a sidewall roughness problem related to the material factors of the resist and the degraded aerial image contrast, which can affect the reliability of the device. We found that thermal curing treatment applied after development with the consideration of the glass transition temperature are very effective in reducing the line edge roughness. More smooth and steep patterning is achieved by the thermal treatment. The linewidth controllability is below 10 nm and the k1 value is reduced from 0.5 down to 0.32 in this process. The reactive ion etching adopting O2 gas demonstrated selectivity of the top resist over bottom material more than 15:1, together with residue-free and vertical wall profile.
Towards large size substrates for III-V co-integration made by direct wafer bonding on Si
NASA Astrophysics Data System (ADS)
Daix, N.; Uccelli, E.; Czornomaz, L.; Caimi, D.; Rossel, C.; Sousa, M.; Siegwart, H.; Marchiori, C.; Hartmann, J. M.; Shiu, K.-T.; Cheng, C.-W.; Krishnan, M.; Lofaro, M.; Kobayashi, M.; Sadana, D.; Fompeyrine, J.
2014-08-01
We report the first demonstration of 200 mm InGaAs-on-insulator (InGaAs-o-I) fabricated by the direct wafer bonding technique with a donor wafer made of III-V heteroepitaxial structure grown on 200 mm silicon wafer. The measured threading dislocation density of the In0.53Ga0.47As (InGaAs) active layer is equal to 3.5 × 109 cm-2, and it does not degrade after the bonding and the layer transfer steps. The surface roughness of the InGaAs layer can be improved by chemical-mechanical-polishing step, reaching values as low as 0.4 nm root-mean-square. The electron Hall mobility in 450 nm thick InGaAs-o-I layer reaches values of up to 6000 cm2/Vs, and working pseudo-MOS transistors are demonstrated with an extracted electron mobility in the range of 2000-3000 cm2/Vs. Finally, the fabrication of an InGaAs-o-I substrate with the active layer as thin as 90 nm is achieved with a Buried Oxide of 50 nm. These results open the way to very large scale production of III-V-o-I advanced substrates for future CMOS technology nodes.
NASA Astrophysics Data System (ADS)
Gillham, R. W.; Sudicky, E. A.; Cherry, J. A.; Frind, E. O.
1984-03-01
In layered permeable deposits with flow predominately parallel to the bedding, advection causes rapid solute transport in the more permeable layers. As the solute advances more rapidly in these layers, solute mass is continually transferred to the less permeable layers as a result of molecular diffusion due to the concentration gradient between the layers. The interlayer solute transfer causes the concentration to decline along the permeable layers at the expense of increasing the concentration in the less permeable layers, which produces strongly dispersed concentration profiles in the direction of flow. The key parameters affecting the dispersive capability of the layered system are the diffusion coefficients for the less permeable layers, the thicknesses of the layers, and the hydraulic conductivity contrasts between the layers. Because interlayer solute transfer by transverse molecular diffusion is a time-dependent process, the advection-diffusion concept predicts a rate of longitudinal spreading during the development of the dispersion process that is inconsistent with the classical Fickian dispersion model. A second consequence of the solute-storage effect offered by transverse diffusion into low-permeability layers is a rate of migration of the frontal portion of a contaminant in the permeable layers that is less than the groundwater velocity. Although various lines of evidence are presented in support of the advection-diffusion concept, more work is required to determine the range of geological materials for which it is applicable and to develop mathematical expressions that will make it useful as a predictive tool for application to field cases of contaminant migration.
Sensitivity analysis of bi-layered ceramic dental restorations.
Zhang, Zhongpu; Zhou, Shiwei; Li, Qing; Li, Wei; Swain, Michael V
2012-02-01
The reliability and longevity of ceramic prostheses have become a major concern. The existing studies have focused on some critical issues from clinical perspectives, but more researches are needed to address fundamental sciences and fabrication issues to ensure the longevity and durability of ceramic prostheses. The aim of this paper was to explore how "sensitive" the thermal and mechanical responses, in terms of changes in temperature and thermal residual stress of the bi-layered ceramic systems and crown models will be with respect to the perturbation of the design variables chosen (e.g. layer thickness and heat transfer coefficient) in a quantitative way. In this study, three bi-layered ceramic models with different geometries are considered: (i) a simple bi-layered plate, (ii) a simple bi-layer triangle, and (iii) an axisymmetric bi-layered crown. The layer thickness and convective heat transfer coefficient (or cooling rate) seem to be more sensitive for the porcelain fused on zirconia substrate models. The resultant sensitivities indicate a critical importance of the heat transfer coefficient and thickness ratio of core to veneer on the temperature distributions and residual stresses in each model. The findings provide a quantitative basis for assessing the effects of fabrication uncertainties and optimizing the design of ceramic prostheses. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
Energy transfer dynamics in strongly inhomogeneous hot-dense-matter systems
Stillman, C. R.; Nilson, P. M.; Sefkow, A. B.; ...
2018-06-25
Direct measurements of energy transfer across steep density and temperature gradients in a hot-dense-matter system are presented. Hot dense plasma conditions were generated by high-intensity laser irradiation of a thin-foil target containing a buried metal layer. Energy transfer to the layer was measured using picosecond time-resolved x-ray emission spectroscopy. Here, the data show two x-ray flashes in time. Fully explicit, coupled particle-in-cell and collisional-radiative atomic kinetics model predictions reproduce these observations, connecting the two x-ray flashes with staged radial energy transfer within the target.
NASA Technical Reports Server (NTRS)
Bertin, J. J.; Idar, E. S., III; Galanski, S. R.
1977-01-01
The theoretical heat-transfer distributions are compared with experimental heat-transfer distributions obtained in Tunnel B at AEDC using a 0.0175 scale model of the space shuttle orbiter configuration for which the first 80% of the windward surface was roughened by a simulated tile misalignment. The theoretical solutions indicate that thinning the boundary layer by surface cooling increased the nondimensionalized value of the local heat-transfer coefficient. Tile misalignment did not significantly affect the heat-transfer rate in regions where the boundary layer was either laminar or turbulent.
NASA Technical Reports Server (NTRS)
Tsang, L.; Kubacsi, M. C.; Kong, J. A.
1981-01-01
The radiative transfer theory is applied within the Rayleigh approximation to calculate the backscattering cross section of a layer of randomly positioned and oriented small ellipsoids. The orientation of the ellipsoids is characterized by a probability density function of the Eulerian angles of rotation. The radiative transfer equations are solved by an iterative approach to first order in albedo. In the half space limit the results are identical to those obtained via the approach of Foldy's and distorted Born approximation. Numerical results of the theory are illustrated using parameters encountered in active remote sensing of vegetation layers. A distinctive characteristic is the strong depolarization shown by vertically aligned leaves.
NASA Technical Reports Server (NTRS)
Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)
1988-01-01
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
NASA Astrophysics Data System (ADS)
Elovic, E.; O'Brien, J. E.; Pepper, D. W.
The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.
Characteristics of Boundary Layer Transition in a Multi-Stage Low-Pressure Turbine
NASA Technical Reports Server (NTRS)
Wisler, Dave; Halstead, David E.; Okiishi, Ted
2007-01-01
An experimental investigation of boundary layer transition in a multi-stage turbine has been completed using surface-mounted hot-film sensors. Tests were carried out using the two-stage Low Speed Research Turbine of the Aerodynamics Research Laboratory of GE Aircraft Engines. Blading in this facility models current, state-of-the-art low pressure turbine configurations. The instrumentation technique involved arrays of densely-packed hot-film sensors on the surfaces of second stage rotor and nozzle blades. The arrays were located at mid-span on both the suction and pressure surfaces. Boundary layer measurements were acquired over a complete range of relevant Reynolds numbers. Data acquisition capabilities provided means for detailed data interrogation in both time and frequency domains. Data indicate that significant regions of laminar and transitional boundary layer flow exist on the rotor and nozzle suction surfaces. Evidence of relaminarization both near the leading edge of the suction surface and along much of the pressure surface was observed. Measurements also reveal the nature of the turbulent bursts occuring within and between the wake segments convecting through the blade row. The complex character of boundary layer transition resulting from flow unsteadiness due to nozzle/nozzle, rotor/nozzle, and nozzle/rotor wake interactions are elucidated using these data. These measurements underscore the need to provide turbomachinery designers with models of boundary layer transition to facilitate accurate prediction of aerodynamic loss and heat transfer.
A mass transfer model of ethanol emission from thin layers of corn silage
USDA-ARS?s Scientific Manuscript database
A mass transfer model of ethanol emission from thin layers of corn silage was developed and validated. The model was developed based on data from wind tunnel experiments conducted at different temperatures and air velocities. Multiple regression analysis was used to derive an equation that related t...
Wang, Michael C P; Gates, Byron D
2012-09-04
Selenium nanostructures, which are otherwise susceptible to oxidative damage, were encapsulated with a thin layer of polystyrene. The thin layer of polystyrene was grafted onto the surfaces of selenium by a surface initiated atom transfer radical polymerization reaction. These encapsulated nanostructures demonstrate an enhanced resistance towards corrosion.
Bailey, Tom A.
1983-01-01
The reliability, reproducibility, and usefulness of three screening methods -- the cellophane transfer, the agar plug transfer, and the agar dilution -- to screen aquatic fungicides were evaluated. Achlya flagellata and Saprolegnia hypogyna were exposed to 1, 10, and 100 mg/L of malachite green to test each method. The cellophane transfer and agar plug transfer techniques had similar reliability and reproducibility in rating fungicidal activity, and were both superior to the agar dilution technique. The agar plug transfer and agar dilution techniques adequately projected in vivo activity of malachite green, but the cellophane transfer technique overestimated its activity. Overall, the agar plug transfer technique most accurately rated the activity of malachite green and was the easiest test to perform. It therefore appears to be the method of choice for testing aquatic fungicides.
Sputtering growth of Y3Fe5O12/Pt bilayers and spin transfer at Y3Fe5O12/Pt interfaces
NASA Astrophysics Data System (ADS)
Chang, Houchen; Liu, Tao; Reifsnyder Hickey, Danielle; Janantha, P. A. Praveen; Mkhoyan, K. Andre; Wu, Mingzhong
2017-12-01
For the majority of previous work on Y3Fe5O12 (YIG)/normal metal (NM) bi-layered structures, the YIG layers were grown on Gd3Ga5O12 first and were then capped by an NM layer. This work demonstrates the sputtering growth of a Pt/YIG structure where the Pt layer was grown first and the YIG layer was then deposited on the top. The YIG layer shows well-oriented (111) texture, a surface roughness of 0.15 nm, and an effective Gilbert damping constant less than 4.7 × 10-4, and the YIG/Pt interface allows for efficient spin transfers. This demonstration indicates the feasibility of fabricating high-quality NM/YIG/NM tri-layered structures for new physics studies.
How do laboratory embryo transfer techniques affect IVF outcomes? A review of current literature.
Sigalos, George; Triantafyllidou, Olga; Vlahos, Nikos
2017-04-01
Over the last few years, many studies have focused on embryo selection methods, whereas little attention has been given to the standardization of the procedure of embryo transfer. In this review, several parameters of the embryo transfer procedure are examined, such as the: (i) culture medium volume and loading technique; (ii) syringe and catheters used for embryo transfer; (iii) viscosity and composition of the embryo transfer medium; (iv) environment of embryo culture; (v) timing of embryo transfer; (vi) and standardization of the embryo transfer techniques. The aim of this manuscript is to review these factors and compare the existing embryo transfer techniques and highlight the need for better embryo transfer standardization.
Fast Disinfecting Antimicrobial Surfaces
Madkour, Ahmad E.; Dabkowski, Jeffery M.; Nüsslein, Klaus; Tew, Gregory N.
2013-01-01
Silicon wafers and glass surfaces were functionalized with facially amphiphilic antimicrobial copolymers using the “grafting from” technique. Surface initiated atom transfer radical polymerization (ATRP) was used to grow poly(butylmethacrylate)-co-poly(Boc-aminoethyl methacrylate) from the surfaces. Upon Boc-deprotection, these surfaces became highly antimicrobial and killed S. aureus and E. coli 100% in less than 5 min. The molecular weight and grafting density of the polymer were controlled by varying the polymerization time and initiator surface density. Antimicrobial studies showed that the killing efficiency of these surfaces was independent of polymer layer thickness or grafting density within the range of surfaces studied. PMID:19177651
A scattering model for defoliated vegetation
NASA Technical Reports Server (NTRS)
Karam, M. A.; Fung, A. K.
1986-01-01
A scattering model for defoliated vegetation is conceived as a layer of dielectric, finite-length cylinders with specified size and orientation distributions above an irregular ground surface. The scattering phase matrix of a single cylinder is computed, then the radiative transfer technique is applied to link volume scattering from vegetation to surface scattering from the soil surface. Polarized and depolarized scattering are computed and the effects of the cylinder size and orientation distributions are illustrated. It is found that size and orientation distributions have significant effects on the backscattered signal. The model is compared with scattering from defoliated trees and agricultural crops.
NASA Astrophysics Data System (ADS)
Cao, Shixun; Li, Pinglin; Cao, Guixin; Zhang, Jincang
2003-05-01
The YBa2Cu3-xNixO7-δ with x=0-0.4 have been studied using positron annihilation technique. The changes of positron annihilation parameters with the Ni substitution concentration x are given. From the change of electronic density ne and Tc, it would prove that the localized carriers (electron and hole) in Cu-O chain and CuO2 planes have enormous influence on superconductivity by affecting charge transfer between the reservoir layer and CuO2 planes.
NASA Technical Reports Server (NTRS)
Yelle, Roger V.; Wallace, Lloyd
1989-01-01
A versatile and efficient technique for the solution of the resonance line scattering problem with frequency redistribution in planetary atmospheres is introduced. Similar to the doubling approach commonly used in monochromatic scattering problems, the technique has been extended to include the frequency dependence of the radiation field. Methods for solving problems with external or internal sources and coupled spectral lines are presented, along with comparison of some sample calculations with results from Monte Carlo and Feautrier techniques. The doubling technique has also been applied to the solution of resonance line scattering problems where the R-parallel redistribution function is appropriate, both neglecting and including polarization as developed by Yelle and Wallace (1989). With the constraint that the atmosphere is illuminated from the zenith, the only difficulty of consequence is that of performing precise frequency integrations over the line profiles. With that problem solved, it is no longer necessary to use the Monte Carlo method to solve this class of problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swerts, J., E-mail: Johan.Swerts@imec.be; Mertens, S.; Lin, T.
Perpendicularly magnetized MgO-based tunnel junctions are envisaged for future generation spin-torque transfer magnetoresistive random access memory devices. Achieving a high tunnel magneto resistance and preserving it together with the perpendicular magnetic anisotropy during BEOL CMOS processing are key challenges to overcome. The industry standard technique to deposit the CoFeB/MgO/CoFeB tunnel junctions is physical vapor deposition. In this letter, we report on the use of an ultrathin Mg layer as free layer cap to protect the CoFeB free layer from sputtering induced damage during the Ta electrode deposition. When Ta is deposited directly on CoFeB, a fraction of the surface ofmore » the CoFeB is sputtered even when Ta is deposited with very low deposition rates. When depositing a thin Mg layer prior to Ta deposition, the sputtering of CoFeB is prevented. The ultra-thin Mg layer is sputtered completely after Ta deposition. Therefore, the Mg acts as a sacrificial layer that protects the CoFeB from sputter-induced damage during the Ta deposition. The Ta-capped CoFeB free layer using the sacrificial Mg interlayer has significantly better electrical and magnetic properties than the equivalent stack without protective layer. We demonstrate a tunnel magneto resistance increase up to 30% in bottom pinned magnetic tunnel junctions and tunnel magneto resistance values of 160% at resistance area product of 5 Ω.μm{sup 2}. Moreover, the free layer maintains perpendicular magnetic anisotropy after 400 °C annealing.« less
Transregional Collaborative Research Centre 32: Patterns in Soil-Vegetation-Atmosphere-Systems
NASA Astrophysics Data System (ADS)
Masbou, M.; Simmer, C.; Kollet, S.; Boessenkool, K.; Crewell, S.; Diekkrüger, B.; Huber, K.; Klitzsch, N.; Koyama, C.; Vereecken, H.
2012-04-01
The soil-vegetation-atmosphere system is characterized by non-linear exchanges of mass, momentum and energy with complex patterns, structures and processes that act at different temporal and spatial scales. Under the TR32 framework, the characterisation of these structures and patterns will lead to a deeper qualitative and quantitative understanding of the SVA system, and ultimately to better predictions of the SVA state. Research in TR32 is based on three methodological pillars: Monitoring, Modelling and Data Assimilation. Focusing our research on the Rur Catchment (Germany), patterns are monitored since 2006 continuously using existing and novel geophysical and remote sensing techniques from the local to the catchment scale based on ground penetrating radar methods, induced polarization, radiomagnetotellurics, electrical resistivity tomography, boundary layer scintillometry, lidar techniques, cosmic-ray, microwave radiometry, and precipitation radars with polarization diversity. Modelling approaches involve development of scaled consistent coupled model platform: high resolution numerical weather prediction (NWP; 400m) and hydrological models (few meters). In the second phase (2011-2014), the focus is on the integration of models from the groundwater to the atmosphere for both the m- and km-scale and the extension of the experimental monitoring in respect to vegetation. The coupled modelling platform is based on the atmospheric model COSMO, the land surface model CLM and the hydrological model ParFlow. A scale consistent two-way coupling is performed using the external OASIS coupler. Example work includes the transfer of laboratory methods to the field; the measurements of patterns of soil-carbon, evapotranspiration and respiration measured in the field; catchment-scale modeling of exchange processes and the setup of an atmospheric boundary layer monitoring network. These modern and predominantly non-invasive measurement techniques are exploited in combination with advanced modelling systems by data assimilation to yield improved numerical models for the prediction of water-, energy and CO2-transfer by accounting for the patterns occurring at various scales.
Indirect evaporative coolers with enhanced heat transfer
Kozubal, Eric; Woods, Jason; Judkoff, Ron
2015-09-22
A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.
Engineering the Charge Transfer in all 2D Graphene-Nanoplatelets Heterostructure Photodetectors
Robin, A.; Lhuillier, E.; Xu, X. Z.; Ithurria, S.; Aubin, H.; Ouerghi, A.; Dubertret, B.
2016-01-01
Two dimensional layered (i.e. van der Waals) heterostructures open up great prospects, especially in photodetector applications. In this context, the control of the charge transfer between the constituting layers is of crucial importance. Compared to bulk or 0D system, 2D materials are characterized by a large exciton binding energy (0.1–1 eV) which considerably affects the magnitude of the charge transfer. Here we investigate a model system made from colloidal 2D CdSe nanoplatelets and epitaxial graphene in a phototransistor configuration. We demonstrate that using a heterostructured layered material, we can tune the magnitude and the direction (i.e. electron or hole) of the charge transfer. We further evidence that graphene functionalization by nanocrystals only leads to a limited change in the magnitude of the 1/f noise. These results draw some new directions to design van der Waals heterostructures with enhanced optoelectronic properties. PMID:27143413
Capillary condenser/evaporator
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A. (Inventor)
2010-01-01
A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.
NASA Astrophysics Data System (ADS)
Liu, Joseph T. C.; Barbosa Decastilho, Cintia Juliana; Fuller, Mark E.; Sane, Aakash
2017-11-01
The present work uses a perturbation procedure to deduce the small nanoparticle volume concentration conservation equations for momentum, heat and concentration diffusion. Thermal physical variables are obtained from conventional means (mixture and field theories) for alumina-water and gold-water nanofluids. In the case of gold-water nano fluid molecular dynamics results are used to estimate such properties, including transport coefficients. The very thin diffusion layer at large Schmidt numbers is found to have a great impact on the velocity and temperature profiles owing to their dependency on transport properties. This has a profound effect on the conduction surface heat transfer rate enhancement and skin friction suppression for the case of nano fluid concentration withdrawal at the wall, while the diffusional surface heat transfer rate is negligible due to large Schmidt numbers. Possible experimental directed at this interesting phenomenon is suggested.
Clean Transfer of Wafer-Scale Graphene via Liquid Phase Removal of Polycyclic Aromatic Hydrocarbons.
Kim, Hyun Ho; Kang, Boseok; Suk, Ji Won; Li, Nannan; Kim, Kwang S; Ruoff, Rodney S; Lee, Wi Hyoung; Cho, Kilwon
2015-05-26
Pentacene (C22H14), a polycyclic aromatic hydrocarbon, was used as both supporting and sacrificing layers for the clean and doping-free graphene transfer. After successful transfer of graphene to a target substrate, the pentacene layer was physically removed from the graphene surface by using intercalating organic solvent. This solvent-mediated removal of pentacene from graphene surface was investigated by both theoretical calculation and experimental studies with various solvents. The uses of pentacene and appropriate intercalation solvent enabled graphene transfer without forming a residue from the supporting layer. Such residues tend to cause charged impurity scattering and unintentional graphene doping effects. As a result, this clean graphene exhibited extremely homogeneous surface potential profiles over a large area. A field-effect transistor fabricated using this graphene displayed a high hole (electron) mobility of 8050 cm(2)/V·s (9940 cm(2)/V·s) with a nearly zero Dirac point voltage.
A Fast Infrared Radiative Transfer Model for Overlapping Clouds
NASA Technical Reports Server (NTRS)
Niu, Jianguo; Yang, Ping; Huang, Huang-Lung; Davies, James E.; Li, Jun; Baum, Bryan A.; Hu, Yong X.
2006-01-01
A fast infrared radiative transfer model (FIRTM2) appropriate for application to both single-layered and overlapping cloud situations is developed for simulating the outgoing infrared spectral radiance at the top of the atmosphere (TOA). In FIRTM2 a pre-computed library of cloud reflectance and transmittance values is employed to account for one or two cloud layers, whereas the background atmospheric optical thickness due to gaseous absorption can be computed from a clear-sky radiative transfer model. FIRTM2 is applicable to three atmospheric conditions: 1) clear-sky, 2) single-layered ice or water cloud, and 3) two simultaneous cloud layers in a column (e.g., ice cloud overlying water cloud). Moreover, FIRTM2 outputs the derivatives (i.e., Jacobians) of the TOA brightness temperature with respect to cloud optical thickness and effective particle size. Sensitivity analyses have been carried out to assess the performance of FIRTM2 for two spectral regions, namely the longwave (LW) band (587.3 - 1179.5/cm) and the short-to-medium wave (SMW) band (1180.1 - 2228.9/cm). The assessment is carried out in terms of brightness temperature differences (BTD) between FIRTM2 and the well-known discrete ordinates radiative transfer model (DISORT), henceforth referred to as BTD (F-D). The BTD (F-D) values for single-layered clouds are generally less than 0.8 K. For the case of two cloud layers (specifically ice cloud over water cloud), the BTD(F-D) values are also generally less than 0.8 K except for the SMW band for the case of a very high altitude (>15 km) cloud comprised of small ice particles. Note that for clear-sky atmospheres, FIRTM2 reduces to the clear-sky radiative transfer model that is incorporated into FIRTM2, and the errors in this case are essentially those of the clear-sky radiative transfer model.
Johnsson, A Christina E; Kjellberg, Anders; Lagerström, Monica I
2006-05-01
The aim of this study was to investigate if nursing students improved their work technique when assisting a simulated patient from bed to wheelchair after proficiency training, and to investigate whether there was a correlation between the nursing students' work technique and the simulated patients' perceptions of the transfer. 71 students participated in the study, 35 in the intervention group and 36 in the comparison group. The students assisted a simulated patient to move from a bed to a wheelchair. In the intervention group the students made one transfer before and one after training, and in the comparison group they made two transfers before training. Six variables were evaluated: work technique score; nursing students' ratings of comfort, work technique and exertion, and the simulated patients' perceptions of comfort and safety during the transfer. The result showed that nursing students improved their work technique, and that there was a correlation between the work technique and the simulated patients' subjective ratings of the transfer. In conclusion, nursing students improved their work technique after training in patient transfer methods, and the work technique affected the simulated patients' perceptions of the transfer.
Analysis of the transfer function for layered piezoelectric ultrasonic sensors
NASA Astrophysics Data System (ADS)
Gutiérrrez-Reyes, E.; García-Segundo, C.; García-Valenzuela, A.; Reyes-Ramírez, B.; Gutiérrez-Juárez, G.; Guadarrama-Santana, A.
2017-06-01
We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.
A simple radiative transfer model of the high latitude mesospheric scattering layer
NASA Technical Reports Server (NTRS)
Hummel, J. R.
1974-01-01
A simple radiative transfer model of the particle layer found at 85 km over the summer poles is presented. The effects of the layer on the global radiative temperature, the polar region temperature, and the greenhouse effect are discussed. The estimated magnitude of the global radiative temperature change is 3.5 x .001 K to 2.2 x .01 K, depending on the value of the imaginary part of the particle index of refraction. The layer is shown to have a possible secondary influence on the temperature of the polar region while the contribution which the layer makes to the greenhouse effect is shown to be negligible. The imaginary part of the particle index of refraction is shown to be important in determining the attenuation properties of the layer.
HEAT TRANSFER TO LIQUID METALS FLOWING THROUGH A PIPELINE (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borishanskii, V.M.; Zablotskaya, T.V.; Ivashchenko, N.I.
1963-03-01
A scheme involving the superposition of three layers of heat flow onto the high thermal-conductivity liquid flowing with a Prandtl number Pr << 1 was previously proposed (Atomnaya Energ. 11, 426(1961) No. 5; also Second Conference on Theoretical and Applied Magnetohydrodynamics, Riga, 1962). The analytical determination of these thermal layer boundaries was based on the premise that the dimensionless temperature and velocity fields coincide in the region where the dynamic and thermal cores are turbulent; the boundary of the adherent layer in which molecular transfer takes place was determined by a newly derived formula. Results of the calculations of twomore » variants of the superimposition of thermal and dynamic layers were plotted and compared with each other. For an experimental study, the heat transfer to liquid Na flowing through a 40-mmdiam. vertical Cu pipe was determined. The results agreed well with the values obtained by the three-layer calculations. Determination of the O content of Na showed that the heat transfer is dependent on the average O content and also on the flow rate of the Na stream. As the O content that was encountered exceeded the solubility limit, a portion of the oxides was probably present in the suspended state. (TTT)« less
NASA Astrophysics Data System (ADS)
Yadav, Harekrishna; Agrawal, Amit
2018-03-01
This experimental study pertains to the formation of a secondary peak in heat transfer distribution for an axisymmetric turbulent impinging submerged jet. The analysis of instantaneous fields is undertaken at various Reynolds numbers based upon the bulk velocity and nozzle diameter (Re = 1300-10 000) and surface spacings (L/D = 0.25-6). Our analysis shows that flow separation and reattachment correspond to decrease/increase in local pressure and are caused by primary vortices; these are further linked to the location of maxima in streamwise and cross-stream velocities. It is further observed that the locations of maxima and minima in velocities are linked to fluctuations in rms velocities and thickening/thinning of the boundary layer. The vortices transported along the surface either coalesce among themselves or combine with other eddies to form a primary vortex. The primary vortex while getting convected downstream makes multiple interactions with the inner shear layer and causes waviness in instantaneous flow fields. In their later stage, the primary vortex moves away from the wall and accelerates, while the flow decelerates in the inner shear layer. The accelerated fluid in the outer shear layer pulls the downstream fluid from the inner shear layer and leads to the formation of a secondary vortex. After a certain distance downstream, the secondary vortex rolling between the primary vortex and the wall eventually breaks down, while the flow reattaches to the wall. The behavior of time average and instantaneous velocity fields suggests that unsteadiness in the heat transfer is linked to the location of maximum streamwise velocity, location of flow attachment, location of rms velocity, and thickness of the boundary layer. The instantaneous velocity fields show that for a given surface spacing, the chances for the appearance of the secondary vortex reduce with an increase in Reynolds number because of the reduction in space available for the secondary vortex to develop. It is further deduced that the strength of the secondary vortex is primarily dependent upon the strength of the primary vortex. However, the velocity field estimated using the linear stochastic estimation technique shows a tendency for the formation of the secondary vortex at higher Reynolds number, suggesting that most measurements do not resolve them well. Our analysis explains the reason for the appearance of the secondary peak in heat transfer distribution and helps resolve the contradictions in the literature regarding this phenomenon.
NASA Astrophysics Data System (ADS)
Wakayama, Takayuki; Kobayashi, Toshinari; Iwata, Nobuya; Tanifuji, Nozomi; Matsuda, Yasuaki; Yamada, Syoji
2003-12-01
We present here new cantilevers for scanning probe microscopy (SPM) and sensor applications, which consist of silicon cantilever beam and ceramic pedestal. Silicon is only used to make cantilever beams and tips. Precision-machinery-made ceramics replaces silicon pedestal part. The ceramics was recently developed by Sumikin Ceramics and Quarts Co., Ltd. and can be machined precisely with end mill cutting. Many silicon beams are fabricated at once from a wafer using batch fabrication method. Therefore, SPM probes can be fabricated in high productivity and in low cost. These beams are transferred with transfer technique and are bonded on the ceramic pedestal with epoxy glue. We demonstrate here atomic force microscope (AFM) and gas sensor applications of the hybrid structure. In a gas sensor application, the ends of the cantilever are selectively modified with zeolite crystals as a sensitive layer. The bonding strength is enough for each application.
Orbital Engineering in Symmetry-Breaking Polar Heterostructures
NASA Astrophysics Data System (ADS)
Disa, Ankit S.; Kumah, Divine P.; Malashevich, Andrei; Chen, Hanghui; Arena, Dario A.; Specht, Eliot D.; Ismail-Beigi, Sohrab; Walker, F. J.; Ahn, Charles H.
2015-01-01
We experimentally demonstrate a novel approach to substantially modify orbital occupations and symmetries in electronically correlated oxides. In contrast to methods using strain or confinement, this orbital tuning is achieved by exploiting charge transfer and inversion symmetry breaking using atomically layered heterostructures. We illustrate the technique in the LaTiO3-LaNiO3-LaAlO3 system; a combination of x-ray absorption spectroscopy and ab initio theory reveals electron transfer and concomitant polar fields, resulting in a ˜50 % change in the occupation of Ni d orbitals. This change is sufficiently large to remove the orbital degeneracy of bulk LaNiO3 and creates an electronic configuration approaching a single-band Fermi surface. Furthermore, we theoretically show that such three-component heterostructuring is robust and tunable by choice of insulator in the heterostructure, providing a general method for engineering orbital configurations and designing novel electronic systems.
On Two-Scale Modelling of Heat and Mass Transfer
NASA Astrophysics Data System (ADS)
Vala, J.; Št'astník, S.
2008-09-01
Modelling of macroscopic behaviour of materials, consisting of several layers or components, whose microscopic (at least stochastic) analysis is available, as well as (more general) simulation of non-local phenomena, complicated coupled processes, etc., requires both deeper understanding of physical principles and development of mathematical theories and software algorithms. Starting from the (relatively simple) example of phase transformation in substitutional alloys, this paper sketches the general formulation of a nonlinear system of partial differential equations of evolution for the heat and mass transfer (useful in mechanical and civil engineering, etc.), corresponding to conservation principles of thermodynamics, both at the micro- and at the macroscopic level, and suggests an algorithm for scale-bridging, based on the robust finite element techniques. Some existence and convergence questions, namely those based on the construction of sequences of Rothe and on the mathematical theory of two-scale convergence, are discussed together with references to useful generalizations, required by new technologies.
Emittance and absorptance of NASA ceramic thermal barrier coating system. [for turbine cooling
NASA Technical Reports Server (NTRS)
Liebert, C. H.
1978-01-01
Spectral emittance measurements were made on a two-layer ceramic thermal barrier coating system consisting of a metal substrate, a NiCrAly bond coating and a yttria-stabilized zirconia ceramic coating. Spectral emittance data were obtained for the coating system at temperatures of 300 to 1590 K, ceramic thickness of zero to 0.076 centimeter, and wavelengths of 0.4 to 14.6 micrometers. The data were transformed into total hemispherical emittance values and correlated with respect to ceramic coating thickness and temperature using multiple regression curve fitting techniques. The results show that the ceramic thermal barrier coating system is highly reflective and significantly reduces radiation heat loads on cooled gas turbine engine components. Calculation of the radiant heat transfer within the nonisothermal, translucent ceramic coating material shows that the gas-side ceramic coating surface temperature can be used in heat transfer analysis of radiation heat loads on the coating system.
NASA Astrophysics Data System (ADS)
Hao, Qiang; Xiao, Gang
2015-03-01
We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.
NASA Astrophysics Data System (ADS)
Roenn, John; Karvonen, Lasse; Pyymäki-Perros, Alexander; Peyghambarian, Nasser; Lipsanen, Harri; Säynätjoki, Antti; Sun, Zhipei
2016-05-01
Recently, rare-earth doped waveguide amplifiers (REDWAs) have drawn significant attention as a promising solution to on-chip amplification of light in silicon photonics and integrated optics by virtue of their high excited state lifetime (up to 10 ms) and broad emission spectrum (up to 200 nm) at infrared wavelengths. In the family of rare-earths, at least erbium, holmium, thulium, neodymium and ytterbium have been demonstrated to be good candidates for amplifier operation at moderate concentrations (< 0.1 %). However, efficient amplifier operation in REDWAs is a very challenging task because high concentration of ions (<0.1%) is required in order to produce reasonable amplification over short device length. Inevitably, high concentration of ions leads to energy-transfer between neighboring ions, which results as decreased gain and increased noise in the amplifier system. It has been shown that these energy-transfer mechanisms in highly-doped gain media are inversely proportional to the sixth power of the distance between the ions. Therefore, novel fabrication techniques with the ability to control the distribution of the rare-earth ions within the gain medium are urgently needed in order to fabricate REDWAs with high efficiency and low noise. Here, we show that atomic layer deposition (ALD) is an excellent technique to fabricate highly-doped (<1%) RE:Al2O3 gain materials by using its nanoscale engineering ability to delicately control the incorporation of RE ions during the deposition. In our experiment, we fabricated Er:Al2O3 and Tm:Al2O3 thin films with ALD by varying the concentration of RE ions from 1% to 7%. By measuring the photoluminescence response of the fabricated samples, we demonstrate that it is possible to incorporate up to 5% of either Er- or Tm-ions in Al2O3 host before severe quenching occurs. We believe that this technique can be extended to other RE ions as well. Therefore, our results show the exceptionality of ALD as a deposition technique for REDWA technology.
NASA Astrophysics Data System (ADS)
Nam, N. D.; Bui, Q. V.; Nhan, H. T.; Phuong, D. V.; Bian, M. Z.
2014-09-01
The corrosion resistance of a multilayered (NiP-Pd-Au) coating with various thicknesses of palladium (Pd) interlayer deposited on copper by an electroless method was investigated using electrochemical techniques including potentiodynamic polarization and electrochemical impedance spectroscopy. In addition, the surface finish was examined by x-ray diffraction analysis and scanning electron microscopy, and the contact angle of the liquid-solid interface was recorded. The corrosion resistance of the copper substrate was considerably improved by Pd interlayer addition. Increase of the thickness of the Pd interlayer enhanced the performance of the Cu-NiP-Pd-Au coating due to low porosity, high protective efficiency, high charge-transfer resistance, and contact angle. These are attributed to the diffusion of layers in the Cu-NiP-Pd-Au coating acting as a physical barrier layer, leading to the protection provided by the coating.
NASA Astrophysics Data System (ADS)
Jeong, I. S.; Scott, K.; Donovan, K. J.; Wilson, E. G.
2000-11-01
The tunneling rate of photocreated charge carriers between layers in Langmuir-Blodgett multilayer structures is measured indirectly using the novel technique of bimolecular recombination quenching. The tunneling rate is measured as a function of the applied electrostatic potential difference between the layers as the temperature is varied between 300 and 4 K. This dependence is examined in light of the Marcus theory of charge transfer where the electrostatic potential replaces the chemical potential as the driving potential. The expectations of the Marcus theory are not met and the rate is effectively temperature independent, contrary to expectation. Other mechanisms are explored that may explain the lack of temperature dependence including the role of high frequency vibrations and the role of the zero point energy of those vibrations. The temperature dependence of the exciton dissociation probability is also examined.
SWCNTs-based nanocomposites as sensitive coatings for advanced fiber optic chemical nanosensors
NASA Astrophysics Data System (ADS)
Consales, M.; Crescitelli, A.; Penza, M.; Aversa, P.; Giordano, M.; Cutolo, A.; Cusano, A.
2008-04-01
In this work, the feasibility of exploiting novel Cadmium Arachidate (CdA)/single-walled carbon nanotubes (SWCNTs) based composites as sensitive coatings for the development of robust and high performances optoelectronic chemosensors able to work in liquid environments has been investigated and proved. Here, nano-composite sensing layers have been transferred upon the distal end of standard optical fibers by the Langmuir-Blodgett (LB) technique. Reflectance measurements have been carried out to monitor ppm concentration of chemicals in water through the changes in the optical and geometrical features of the sensing overlay induced by the interaction with the analyte molecules. Preliminary experimental results evidence that such nanoscale coatings integrated with the optical fiber technology offers great potentialities for the room temperature detection of chemical traces in water and lead to significant improvements of the traditional fiber optic sensors based on SWCNTs layers.
NASA Astrophysics Data System (ADS)
Gratier, J. P.; Noiriel, C. N.; Renard, F.
2014-12-01
Natural deformation of rocks is often associated with differentiation processes leading to irreversible transformations of their microstructural thus leading in turn to modifications of their rheological properties. The mechanisms of development of such processes at work during diagenesis, metamorphism or fault differentiation are poorly known as they are not easy to reproduce in the laboratory due to the long duration required for most of chemically controlled differentiation processes. Here we show that experimental compaction with layering development, similar to what happens in natural deformation, can be obtained in the laboratory by indenter techniques. Samples of plaster mixed with clay and samples of diatomite loosely interbedded with clays were loaded during several months at 40°C (plaster) and 150°C (diatomite) in presence of their saturated solutions. High-resolution X-ray tomography and SEM studies show that the layering development is a self-organized process. Stress driven dissolution of the soluble minerals (gypsum in plaster, silica in diatomite) is initiated in the zones initially richer in clays because the kinetics of diffusive mass transfer along the clay/soluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of the clay minerals amplifies the localization of the dissolution along some layers oriented perpendicular to the maximum compressive stress component. Conversely, in the areas with initial low content in clay and clustered soluble minerals, dissolution is more difficult as the grain boundaries of the soluble species are healed together. These areas are less deformed and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. Applications to fault processes are discussed: i) localized pressure solution and sealing processes may lead to fault rheology differentiation with a partition between two end-member behaviors: seismic (in sealed zones) and aseismic (in dissolved zones); ii) tectonic layering may lead to highly anisotropic structures with a drastic decrease of the rock strength parallel to the layering.
Self-aligned quadruple patterning using spacer on spacer integration optimization for N5
NASA Astrophysics Data System (ADS)
Thibaut, Sophie; Raley, Angélique; Mohanty, Nihar; Kal, Subhadeep; Liu, Eric; Ko, Akiteru; O'Meara, David; Tapily, Kandabara; Biolsi, Peter
2017-04-01
To meet scaling requirements, the semiconductor industry has extended 193nm immersion lithography beyond its minimum pitch limitation using multiple patterning schemes such as self-aligned double patterning, self-aligned quadruple patterning and litho-etch / litho etch iterations. Those techniques have been declined in numerous options in the last few years. Spacer on spacer pitch splitting integration has been proven to show multiple advantages compared to conventional pitch splitting approach. Reducing the number of pattern transfer steps associated with sacrificial layers resulted in significant decrease of cost and an overall simplification of the double pitch split technique. While demonstrating attractive aspects, SAQP spacer on spacer flow brings challenges of its own. Namely, material set selections and etch chemistry development for adequate selectivities, mandrel shape and spacer shape engineering to improve edge placement error (EPE). In this paper we follow up and extend upon our previous learning and proceed into more details on the robustness of the integration in regards to final pattern transfer and full wafer critical dimension uniformity. Furthermore, since the number of intermediate steps is reduced, one will expect improved uniformity and pitch walking control. This assertion will be verified through a thorough pitch walking analysis.
Kupryianchyk, D; Noori, A; Rakowska, M I; Grotenhuis, J T C; Koelmans, A A
2013-05-21
Sediment amendment with activated carbon (AC) is a promising technique for in situ sediment remediation. To date it is not clear whether this technique sufficiently reduces sediment-to-water fluxes of sediment-bound hydrophobic organic chemicals (HOCs) in the presence of bioturbators. Here, we report polychlorobiphenyl (PCB) pore water concentrations, fluxes, mass transfer coefficients, and survival data of two benthic species, for four treatments: no AC addition (control), powdered AC addition, granular AC addition and addition and subsequent removal of GAC (sediment stripping). AC addition decreased mass fluxes but increased apparent mass transfer coefficients because of dissolved organic carbon (DOC) facilitated transport across the benthic boundary layer (BBL). In turn, DOC concentrations depended on bioturbator activity which was high for the PAC tolerant species Asellus aquaticus and low for AC sensitive species Lumbriculus variegatus. A dual BBL resistance model combining AC effects on gradients, DOC facilitated transport and biodiffusion was evaluated against the data and showed how the type of resistance differs with treatment and chemical hydrophobicity. Data and simulations illustrate the complex interplay between AC and contaminant toxicity to benthic organisms and how differences in species tolerance affect mass fluxes from sediment to the water column.
Gruis, Darren (Fred); Guo, Hena; Selinger, David; Tian, Qing; Olsen, Odd-Arne
2006-01-01
Maize (Zea mays) endosperm consists of an epidermal-like surface layer of aleurone cells, an underlying body of starchy endosperm cells, and a basal layer of transfer cells. To determine whether surrounding maternal tissues perform a role in specifying endosperm cell fates, a maize endosperm organ culture technique was established whereby the developing endosperm is completely removed from surrounding maternal tissues. Using cell type-specific fluorescence markers, we show that aleurone cell fate specification occurs exclusively in response to surface position and does not require specific, continued maternal signal input. The starchy endosperm and aleurone cell fates are freely interchangeable throughout the lifespan of the endosperm, with internalized aleurone cells converting to starchy endosperm cells and with starchy endosperm cells that become positioned at the surface converting to aleurone cells. In contrast to aleurone and starchy endosperm cells, transfer cells fail to develop in in vitro-grown endosperm, supporting earlier indications that maternal tissue interaction is required to fully differentiate this cell type. Several parameters confirm that the maize endosperm organ cultures described herein retain the main developmental features of in planta endosperm, including fidelity of aleurone mutant phenotypes, temporal and spatial control of cell type-specific fluorescent markers, specificity of cell type transcripts, and control of mitotic cell divisions. PMID:16698897
Magneto-hydrodynamics of coupled fluid-sheet interface with mass suction and blowing
NASA Astrophysics Data System (ADS)
Ahmad, R.
2016-01-01
There are large number of studies which prescribe the kinematics of the sheet and ignore the sheet's mechanics. However, the current boundary layer analysis investigates the mechanics of both the electrically conducting fluid and a permeable sheet, which makes it distinct from the other studies in the literature. One of the objectives of the current study is to (i) examine the behaviour of magnetic field effect for both the surface and the electrically conducting fluid (ii) investigate the heat and mass transfer between a permeable sheet and the surrounding electrically conducting fluid across the hydro, thermal and mass boundary layers. Self-similar solutions are obtained by considering the RK45 technique. Analytical solution is also found for the stretching sheet case. The skin friction dual solutions are presented for various types of sheet. The influence of pertinent parameters on the dimensionless velocity, shear stress, temperature, mass concentration, heat and mass transfer rates on the fluid-sheet interface is presented graphically as well as numerically. The obtained results are of potential benefit for studying the electrically conducting flow over various soft surfaces such as synthetic plastics, soft silicone sheet and soft synthetic rubber sheet. These surfaces are easily deformed by thermal fluctuations or thermal stresses.
The effect of body postures on the distribution of air gap thickness and contact area.
Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M
2017-02-01
The heat and mass transfer in clothing is predominantly dependent on the thickness of air layer and the magnitude of contact area between the body and the garment. The air gap thickness and magnitude of the contact area can be affected by the posture of the human body. Therefore, in this study, the distribution of the air gap and the contact area were investigated for different body postures of a flexible manikin. In addition, the effect of the garment fit (regular and loose) and style (t-shirts, sweatpants, jacket and trousers) were analysed for the interaction between the body postures and the garment properties. A flexible manikin was scanned using a three-dimensional (3D) body scanning technique, and the scans were post-processed in dedicated software. The body posture had a strong effect on the air gap thickness and the contact area for regions where the garment had a certain distance from the body. Furthermore, a mathematical model was proposed to estimate the possible heat transfer coefficient for the observed air layers and their change with posture. The outcome of this study can be used to improve the design of the protective and functional garments and predict their effect on the human body.
CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates
NASA Astrophysics Data System (ADS)
Zheng, Binjie; Wang, Zegao; Qi, Fei; Wang, Xinqiang; Yu, Bo; Zhang, Wanli; Chen, Yuanfu
2018-03-01
Two-dimensional layered transition metal dichalcogenides (TMDs) have attracted burgeoning attention due to their various properties and wide potential applications. As a new TMD, hafnium disulfide (HfS2) is theoretically predicted to have better electrical performance than widely studied MoS2. The experimental researches also confirmed the extraordinary feature in electronics and optoelectronics. However, the maximal device performance may not be achieved due to its own limitation of planar structure and challenge of transfer without contamination. Here, through the chemical vapor deposition (CVD) technique, inch-size HfS2 nanoforest has been directly grown on diverse objective substrates covering insulating, semiconducting and conducting substrates. This direct CVD growth without conventional transfer process avoids contamination and degradation in quality, suggesting its promising and wide applications in high-quality and multifarious devices. It is noted that all the HfS2 nanoforests grown on diverse substrates are constructed with vertically aligned few-layered HfS2 nanosheets with high crystalline quality and edge orientation. Moreover, due to its unique structure, the HfS2 nanoforest owns abundant exposed edge sites and large active surface area, which is essential to apply in high-performance catalyst, sensor, and energy storage or field emitter.
NASA Astrophysics Data System (ADS)
Crosbie, A. L.
Aspects of aerothermodynamics are considered, taking into account aerodynamic heating for gaps in laminar and transitional boundary layers, the correlation of convection heat transfer for open cavities in supersonic flow, the heat transfer and pressure on a flat plate downstream of heated square jet in a Mach 0.4 to 0.8 crossflow, the effect of surface roughness character on turbulent reentry heating, three-dimensional protuberance interference heating in high-speed flow, and hypersonic flow over small span flaps in a thick turbulent boundary layer. Questions of thermal protection are investigated, giving attention to thermochemical ablation of tantalum carbide loaded carbon-carbons, the catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation, particle acceleration using a helium arc heater, a temperature and ablation optical sensor, a wind-tunnel study of ascent heating of multiple reentry vehicle configurations, and reentry vehicle soft-recovery techniques. Subjects examined in connection with a discussion of planetary entry are related to a thermal protection system for the Galileo mission atmospheric entry probe, the viscosity of multicomponent partially ionized gas mixtures associated with Jovian entry, coupled laminar and turbulent flow solutions for Jovian entry, and a preliminary aerothermal analysis for Saturn entry.
Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes
NASA Astrophysics Data System (ADS)
Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas
2018-05-01
An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.
Study of the Charge Transfer Process of LaNi5 Type Electrodes in Ni-MH Batteries
NASA Astrophysics Data System (ADS)
Le, Xuan Que; Nguyen, Phu Thuy
2002-12-01
As a result of the charge process of LaNi5 type electrode, hydrogen is reversibly absorbed on the electrode surface. The process consists two principal steps. During the both processes, the first reaction step occurs in the interface solid/liquid, negatively charged, with high static electric field, where the double layer structure became more compact. The transfer of charge under high electric field depends on many factors, principally on compositions of the electrode materials. Effects on that of Co, Fe, Mn substitutes, with different concentrations, have been comparatively studied using electrochemical technique. The analyse of interface C -.V study results has been realised, respecting Mott-Schottky relation. Optimal contents of some additives have been discussed. Some advantages of the applied electrochemical methods have been confirmed. The mechanism of the charges transfer and of the hydrogen reversible storage in the crystal structure in the batteries has been discussed. With the proposed mechanism, one can more explicitly understand the difference of the magnetic effect of the electrode materials before and after charge-discharge process can be explained.
Condensation Behavior in a Microchannel Heat Exchanger
NASA Astrophysics Data System (ADS)
Kaneko, Akiko; Takeuchi, Genki; Abe, Yutaka; Suzuki, Yutaka
A small and high performance heat exchanger for small size energy equipments such as fuel cells and CO2 heat pumps is required in these days. In author's previous studies, the heat exchanger consisted of microchannels stacked in layers has been developed. It has resistance to pressure of larger than 15 MPa since it is manufactured by diffusion bond technique. Thus this device can be applied for high flow rate and pressure fluctuation conditions as boiling and condensation. The objectives of the present study are to clarify the heat transfer performance of the prototype heat exchanger and to investigate the thermal hydraulic behavior in the microchannel for design optimization of the device. As the results, it is clarified that the present device attained high heat transfer as 7 kW at the steam condensation, despite its weight of only 230 g. Furthermore, steam condensation behavior in a glass capillary tube, as a simulated microchannel, in a cooling water pool was observed with various inlet pressure and temperature of surrounding water. Relation between steam-water two-phase flow structure and the overall heat transfer coefficient is discussed.
Suslov, D; Schulz, A; Wittig, S
2001-05-01
The development of effective cooling methods is of major importance for the design of new gas turbines blades. The conception of optimal cooling schemes requires a detailed knowledge of the heat transfer processes on the blade's surfaces. The thermal load of turbine blades is predominantly determined by convective heat transfer which is described by the local heat transfer coefficient. Heat transfer is closely related to the boundary layer development along the blade surface and hence depends on various flow conditions and geometrical parameters. Particularly Reynolds number, pressures gradient and turbulence level have great impact on the boundary layer development and the according heat transfer. Therefore, in the present study, the influence of Reynolds number, turbulence intensity, and periodic unsteady inflow on the local heat transfer of a typical low pressure turbine airfoil is experimentally examined in a plane cascade.
Exact solution of conductive heat transfer in cylindrical composite laminate
NASA Astrophysics Data System (ADS)
Kayhani, M. H.; Shariati, M.; Nourozi, M.; Karimi Demneh, M.
2009-11-01
This paper presents an exact solution for steady-state conduction heat transfer in cylindrical composite laminates. This laminate is cylindrical shape and in each lamina, fibers have been wound around the cylinder. In this article heat transfer in composite laminates is being investigated, by using separation of variables method and an analytical relation for temperature distribution in these laminates has been obtained under specific boundary conditions. Also Fourier coefficients in each layer obtain by solving set of equations that related to thermal boundary layer conditions at inside and outside of the cylinder also thermal continuity and heat flux continuity between each layer is considered. In this research LU factorization method has been used to solve the set of equations.
Transfer zones and fault reactivation in inverted rift basins: Insights from physical modelling
NASA Astrophysics Data System (ADS)
Konstantinovskaya, Elena A.; Harris, Lyal B.; Poulin, Jimmy; Ivanov, Gennady M.
2007-08-01
Lateral transfer zones of deformation and fault reactivation were investigated in multilayered silicone-sand models during extension and subsequent co-axial shortening. Model materials were selected to meet similarity criteria and to be distinguished on CT scans; this approach permitted non-destructive visualisation of the progressive evolution of structures. Transfer zones were initiated by an orthogonal offset in the geometry of a basal mobile aluminium sheet and/or by variations of layer thickness or material rheology in basal layers. Transfer zones affected rift propagation and fault kinematics in models. Propagation and overlapping rift culminations occurred in transfer zones during extension. During shortening, deviation in the orientation of frontal thrusts and fold axes occurred within transfer zones in brittle and ductile layers, respectively. CT scans showed that steep (58-67°) rift-margin normal faults were reactivated as reverse faults. The reactivated faults rotated to shallower dips (19-38°) with continuing shortening after 100% inversion. Rotation of rift phase faults appears to be due to deep level folding and uplift during the inversion phase. New thrust faults with shallow dips (20-34°) formed outside the inverted graben at late stages of shortening. Frontal ramps propagated laterally past the transfer structure during shortening. During inversion, the layers filling the rift structures underwent lateral compression at the depth, the graben fill was pushed up and outwards creating local extension near the surface. Sand marker layers in inverted graben have showed fold-like structures or rotation and tilting in the rifts and on the rift margins. The results of our experiments conform well to natural examples of inverted graben. Inverted rift basins are structurally complex and often difficult to interpret in seismic data. The models may help to unravel the structure and evolution of these systems, leading to improved hydrocarbon exploration assessments. Model results may also be used to help predict the location of basement discontinuities which may have focused hydrothermal fluids during basin formation and inversion.
NASA Technical Reports Server (NTRS)
Gokoglu, Suleyman A.; Rosner, Daniel E.
1986-01-01
A formulation previously developed to predict and correlate the thermophoretically-augmented submicron particle mass transfer rate to cold surfaces is found to account for the thermophoretically reduced particle mass transfer rate to overheated surfaces such that thermophoresis brings about a 10-decade reduction below the convective mass transfer rate expected by pure Brownian diffusion and convection alone. Thermophoretic blowing is shown to produce effects on particle concentration boundary-layer (BL) structure and wall mass transfer rates similar to those produced by real blowing through a porous wall. The applicability of the correlations to developing BL-situations is demonstrated by a numerical example relevant to wet-steam technology.
NASA Astrophysics Data System (ADS)
Akolkar, A.; Petrasch, J.; Finck, S.; Rahmatian, N.
2018-02-01
An inverse analysis of the phosphor layer of a commercially available, conformally coated, white LED is done based on tomographic and spectrometric measurements. The aim is to determine the radiative transfer coefficients of the phosphor layer from the measurements of the finished device, with minimal assumptions regarding the composition of the phosphor layer. These results can be used for subsequent opto-thermal modelling and optimization of the device. For this purpose, multiple integrating sphere and gonioradiometric measurements are done to obtain statistical bounds on spectral radiometric values and angular color distributions for ten LEDs belonging to the same color bin of the product series. Tomographic measurements of the LED package are used to generate a tetrahedral grid of the 3D LED geometry. A radiative transfer model using Monte Carlo Ray Tracing in the tetrahedral grid is developed. Using a two-wavelength model consisting of a blue emission wavelength and a yellow, Stokes-shifted re-emission wavelength, the angular color distribution of the LED is simulated over wide ranges of the absorption and scattering coefficients of the phosphor layer, for the blue and yellow wavelengths. Using a two-step, iterative space search, combinations of the radiative transfer coefficients are obtained for which the simulations are consistent with the integrating sphere and gonioradiometric measurements. The results show an inverse relationship between the scattering and absorption coefficients of the phosphor layer for blue light. Scattering of yellow light acts as a distribution and loss mechanism for yellow light and affects the shape of the angular color distribution significantly, especially at larger viewing angles. The spread of feasible coefficients indicates that measured optical behavior of the LEDs may be reproduced using a range of combinations of radiative coefficients. Given that coefficients predicted by the Mie theory usually must be corrected in order to reproduce experimental results, these results indicate that a more complete model of radiative transfer in phosphor layers is required.
Thin layer chromatography-ion mobility spectrometry (TLC-IMS).
Ilbeigi, Vahideh; Tabrizchi, Mahmoud
2015-01-06
Ion mobility spectrometry (IMS) is a fast and sensitive analytical method which operates at the atmospheric pressure. To enhance the capability of IMS for the analysis of mixtures, it is often used with preseparation techniques, such as GC or HPLC. Here, we report for the first time the coupling of the thin-layer chromatography and IMS. A variety of coupling schemes were tried that included direct electrospray from the TLC strip tip, indirect electrospray from a needle connected to the TLC strip, introducing the moving solvent into the injection port, and, the simplest way, offline introduction of scratched or cut pieces of strips into the IMS injection port. In this study a special solvent tank was designed and the TLC strip was mounted horizontally where the solvent would flow down. A very small funnel right below the TLC tip collected the solvent and transferred it to a needle via a capillary tubing. Using the TLC-ESI-IMS technique, acceptable separations were achieved for two component mixtures of morphine-papaverine and acridine-papaverine. A special injection port was designed to host the pieces cut off the TLC. The method was successfully used to identify each spot on the TLC by IMS in a few seconds.
Hogaboom, Nathan S; Worobey, Lynn A; Boninger, Michael L
2016-10-01
To evaluate how transfer technique and subject characteristics relate to ultrasound measures of shoulder soft tissue pathology and self-reported shoulder pain during transfers in a sample of wheelchair users with spinal cord injury (SCI). Cross-sectional observational study. Research laboratory, national and local veterans' wheelchair sporting events. A convenience sample of wheelchair users (N=76) with nonprogressive SCI. Participants were aged >18 years, >1 year postinjury, and could complete repeated independent wheelchair transfers without the use of their leg muscles. Not applicable. Transfer pain items from the Wheelchair User's Shoulder Pain Index; transfer technique assessed using the Transfer Assessment Instrument (TAI); and shoulder pathology markers examined using the Ultrasound Shoulder Pathology Rating Scale (USPRS). Better transfer technique (higher TAI) correlated with less injury (lower USPRS) (partial η(2)=.062, P<.05) and less pain during transfers (partial η(2)=.049, P<.10). Greater age was the strongest predictor of greater pathology (USPRS total: partial η(2)=.225, supraspinatus grade: partial η(2)=.174, P<.01). An interaction between technique and weight was found (P<.10): participants with lower body weights showed a decrease in pathology markers with better transfer technique (low weight: R(2)=.422, P<.05; middle weight: R(2)=.200, P<.01), while those with higher weight showed little change with technique (R(2)=.018, P>.05). Participants with better transfer technique exhibited less shoulder pathology and reported less pain during transfers. The relationship between technique and pathology was strongest in lower-weight participants. While causation cannot be proven because of study design, it is possible that using a better transfer technique and optimizing body weight could reduce the incidence of shoulder pathology and pain. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Turbulent heat transfer prediction method for application to scramjet engines
NASA Technical Reports Server (NTRS)
Pinckney, S. Z.
1974-01-01
An integral method for predicting boundary layer development in turbulent flow regions on two-dimensional or axisymmetric bodies was developed. The method has the capability of approximating nonequilibrium velocity profiles as well as the local surface friction in the presence of a pressure gradient. An approach was developed for the problem of predicting the heat transfer in a turbulent boundary layer in the presence of a high pressure gradient. The solution was derived with particular emphasis on its applicability to supersonic combustion; thus, the effects of real gas flows were included. The resulting integrodifferential boundary layer method permits the estimation of cooling reguirements for scramjet engines. Theoretical heat transfer results are compared with experimental combustor and noncombustor heat transfer data. The heat transfer method was used in the development of engine design concepts which will produce an engine with reduced cooling requirements. The Langley scramjet engine module was designed by utilizing these design concepts and this engine design is discussed along with its corresponding cooling requirements. The heat transfer method was also used to develop a combustor cooling correlation for a combustor whose local properties are computed one dimensionally by assuming a linear area variation and a given heat release schedule.
Numerical modelling of transient heat and moisture transport in protective clothing
NASA Astrophysics Data System (ADS)
Łapka, P.; Furmański, P.; Wisniewski, T. S.
2016-01-01
The paper presents a complex model of heat and mass transfer in a multi-layer protective clothing exposed to a flash fire and interacting with the human skin. The clothing was made of porous fabric layers separated by air gaps. The fabrics contained bound water in the fibres and moist air in the pores. The moist air was also present in the gaps between fabric layers or internal fabric layer and the skin. Three skin sublayers were considered. The model accounted for coupled heat transfer by conduction, thermal radiation and associated with diffusion of water vapour in the clothing layers and air gaps. Heat exchange due to phase transition of the bound water were also included in the model. Complex thermal and mass transfer conditions at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were assumed. Special attention was paid to modelling of thermal radiation which was coming from the fire, penetrated through protective clothing and absorbed by the skin. For the first time non-grey properties as well as optical phenomena at internal or external boundaries between fabric layers and air gaps as well as air gap and skin were accounted for. A series of numerical simulations were carried out and the risk of heat injures was estimated.
NASA Technical Reports Server (NTRS)
Cook, W. J.
1973-01-01
A theoretical study of heat transfer for zero pressure gradient hypersonic laminar boundary layers for various gases with particular application to the flows produced in an expansion tube facility was conducted. A correlation based on results obtained from solutions to the governing equations for five gases was formulated. Particular attention was directed toward the laminar boundary layer shock tube splitter plates in carbon dioxide flows generated by high speed shock waves. Computer analysis of the splitter plate boundary layer flow provided information that is useful in interpreting experimental data obtained in shock tube gas radiation studies.
NASA Astrophysics Data System (ADS)
Bergamini, A.; Christen, R.; Motavalli, M.
2007-04-01
The adaptive modification of the mechanical properties of structures has been described as a key to a number of new or enhanced technologies, ranging from prosthetics to aerospace applications. Previous work reported the electrostatic tuning of the bending stiffness of simple sandwich structures by modifying the shear stress transfer parameters at the interface between faces and the compliant core of the sandwich. For this purpose, the choice of a sandwich structure presented considerable experimental advantages, such as the ability to obtain a large increase in stiffness by activating just two interfaces between the faces and the core of the beam. The hypothesis the development of structures with tunable bending stiffness is based on, is that by applying a normal stress at the interface between two layers of a multi-layer structure it is possible to transfer shear stresses from one layer to the other by means of adhesion or friction forces. The normal stresses needed to generate adhesion or friction can be generated by an electrostatic field across a dielectric layer interposed between the layers of a structure. The shear stress in the cross section of the structure (e.g. a beam) subjected to bending forces is transferred in full, if sufficiently large normal stresses and an adequate friction coefficient at the interface are given. Considering beams with a homogeneous cross-section, in which all layers are made of the same material and have the same width, eliminates the need to consider parameters such as the shear modulus of the material and the shear stiffness of the core, thus making the modelling work easier and the results more readily understood. The goal of the present work is to describe a numerical model of a homogeneous multi-layer beam. The model is validated against analytical solutions for the extreme cases of interaction at the interface (no friction and a high level of friction allowing for full shear stress transfer). The obtained model is used to better understand the processes taking place at the interfaces between layers, demonstrate the existence of discrete stiffness states and to find guidance for the selection of suitable dielectric layers for the generation of the electrostatic normal stresses needed for the shear stress transfer at the interface.
CHEMICAL SOLUTION DEPOSITION BASED OXIDE BUFFERS AND YBCO COATED CONDUCTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paranthaman, Mariappan Parans
We have reviewed briefly the growth of buffer and high temperature superconducting oxide thin films using a chemical solution deposition (CSD) method. In the Rolling-Assisted Biaxially Textured Substrates (RABiTS) process, developed at Oak Ridge National Laboratory, utilizes the thermo mechanical processing to obtain the flexible, biaxially oriented copper, nickel or nickel-alloy substrates. Buffers and Rare Earth Barium Copper Oxide (REBCO) superconductors have been deposited epitaxially on the textured nickel alloy substrates. The starting substrate serves as a template for the REBCO layer, which has substantially fewer weak links. Buffer layers play a major role in fabricating the second generation REBCOmore » wire technology. The main purpose of the buffer layers is to provide a smooth, continuous and chemically inert surface for the growth of the REBCO film, while transferring the texture from the substrate to the superconductor layer. To achieve this, the buffer layers need to be epitaxial to the substrate, i.e. they have to nucleate and grow in the same bi-axial texture provided by the textured metal foil. The most commonly used RABiTS multi-layer architectures consist of a starting template of biaxially textured Ni-5 at.% W (Ni-W) substrate with a seed (first) layer of Yttrium Oxide (Y2O3), a barrier (second) layer of Yttria Stabilized Zirconia (YSZ), and a Cerium Oxide (CeO2) cap (third) layer. These three buffer layers are generally deposited using physical vapor deposition (PVD) techniques such as reactive sputtering. On top of the PVD template, REBCO film is then grown by a chemical solution deposition. This article reviews in detail about the list of oxide buffers and superconductor REBCO films grown epitaxially on single crystal and/or biaxially textured Ni-W substrates using a CSD method.« less
Visual air quality simulation techniques
NASA Astrophysics Data System (ADS)
Molenar, John V.; Malm, William C.; Johnson, Christopher E.
Visual air quality is primarily a human perceptual phenomenon beginning with the transfer of image-forming information through an illuminated, scattering and absorbing atmosphere. Visibility, especially the visual appearance of industrial emissions or the degradation of a scenic view, is the principal atmospheric characteristic through which humans perceive air pollution, and is more sensitive to changing pollution levels than any other air pollution effect. Every attempt to quantify economic costs and benefits of air pollution has indicated that good visibility is a highly valued and desired environmental condition. Measurement programs can at best approximate the state of the ambient atmosphere at a few points in a scenic vista viewed by an observer. To fully understand the visual effect of various changes in the concentration and distribution of optically important atmospheric pollutants requires the use of aerosol and radiative transfer models. Communication of the output of these models to scientists, decision makers and the public is best done by applying modern image-processing systems to generate synthetic images representing the modeled air quality conditions. This combination of modeling techniques has been under development for the past 15 yr. Initially, visual air quality simulations were limited by a lack of computational power to simplified models depicting Gaussian plumes or uniform haze conditions. Recent explosive growth in low cost, high powered computer technology has allowed the development of sophisticated aerosol and radiative transfer models that incorporate realistic terrain, multiple scattering, non-uniform illumination, varying spatial distribution, concentration and optical properties of atmospheric constituents, and relative humidity effects on aerosol scattering properties. This paper discusses these improved models and image-processing techniques in detail. Results addressing uniform and non-uniform layered haze conditions in both urban and remote pristine areas will be presented.
NASA Astrophysics Data System (ADS)
Izquierdo, Javier; Bolat, Georgiana; Cimpoesu, Nicanor; Trinca, Lucia Carmen; Mareci, Daniel; Souto, Ricardo Manuel
2016-11-01
A new titanium base Ti-21Nb-15Ta-6Zr alloy covered with hydroxyapatite-zirconia (HA-ZrO2) by pulsed laser deposition (PLD) technique was characterized regarding its corrosion resistance in simulated physiological Ringer's solution at 37 °C. For the sake of comparison, Ti-6Al-4V standard implant alloy, with and without hydroxyapatite-zirconia coating, was also characterized. Multiscale electrochemical analysis using both conventional averaging electrochemical techniques, namely electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization, and spatially-resolved microelectrochemical techniques (scanning electrochemical microscopy, SECM) were used to investigate the electrochemical behaviour of the materials. In addition, scanning electron microscopy evidenced that no relevant surface morphology changes occurred on the materials upon immersion in the simulated physiological solution, despite variations in their electrochemical behaviour. Although uncoated metals appear to show better performances during conventional corrosion tests, the response is still quite similar for the HA-ZrO2 coated materials while providing superior resistance towards electron transfer due to the formation of a more dense film on the surface, thus effectively behaving as a passive material. It is believed corrosion of the HA-ZrO2 coated Ti-21Nb-15Ta-6Zr alloy will have negligible effect upon biochemical and cellular events at the bone-implant interface and could facilitate osseointegration.
Ballistic vs. diffusive heat transfer across nanoscopic films of layered crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Meng; Keblinski, Pawel, E-mail: keblip@rpi.edu
2014-04-14
We use non-equilibrium molecular dynamics to study the heat transfer mechanism across sandwich interfacial structures of Si/n-atomic-layers/Si, with 1 ≤ n ≤ 20 and atomic layers composed of WSe{sub 2} and/or graphene. In the case of WSe{sub 2} sheets, we observe that the thermal resistance of the sandwich structure is increasing almost linearly with the number of WSe{sub 2} sheets, n, indicating a diffusive phonon transport mechanism. By contrast in the case of n graphene layers, the interfacial thermal resistance is more or less independent on the number of layers for 1 ≤ n ≤ 10, and is associated with ballistic phonon transport mechanism. We attribute the diffusivemore » heat transfer mechanism across WSe{sub 2} sheets to abundant low frequency and low group velocity optical modes that carry most of the heat across the interface. By contrast, in graphene, acoustic modes dominate the thermal transport across the interface and render a ballistic heat flow mechanism.« less
Lee, Yoo Seok; An, Junyeong; Kim, Bongkyu; Park, HyunJun; Kim, Jisu; Chang, In Seop
2015-01-01
We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2) than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.
Multilayer solar cell waveguide structures containing metamaterials
NASA Astrophysics Data System (ADS)
Hamouche, Houria.; Shabat, Mohammed. M.; Schaadt, Daniel M.
2017-01-01
Multilayer antireflection coating structures made from silicon and metamaterials are designed and investigated using the Transfer Matrix Method (TMM). The Transfer Matrix Method is a very useful algorithm for the analysis of periodic structures. We investigate in this paper two anti-reflection coating structures for silicon solar cells with a metamaterial film layer. In the first structure, the metamaterial film layer is sandwiched between a semi-infinite glass cover layer and a semi-infinite silicon substrate layer. The second structure consists of a four layers, a pair of metamaterial-dielectric layer with opposite real part of refractive indices, is placed between the two semi-infinite cover and substrate. We have simulated the absorptivity property of the structures for adjustable thicknesses by using MAPLE software. The absorptivity of the structures achieves greater than 80% for incident electromagnetic wave of transverse magnetic (TM) polarization.
Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, W.; Austin, J. M.
2013-10-01
We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.
NASA Astrophysics Data System (ADS)
Shah, Jyoti; Ahmad, Saood; Chaujar, Rishu; Puri, Nitin K.; Negi, P. S.; Kotnala, R. K.
2017-12-01
In our recent studies inverse spin Hall voltage (ISHE) was investigated by ferromagnetic resonance (FMR) using bilayer FeSi3%/Pt thin film prepared by pulsed laser deposition (PLD) technique. In ISHE measurement microwave signal was applied on FeSi3% film along with DC magnetic field. Higher magnetization value along the film-plane was measured by magnetic hysteresis (M-H) loop. Presence of magnetic anisotropy has been obtained by M-H loop which showed easy direction of magnetization when applied magnetic field is parallel to the film plane. The main result of this study is that FMR induced inverse spin Hall voltage 12.6 μV at 1.0 GHz was obtained across Pt layer. Magnetic exchange field at bilayer interface responsible for field torque was measured 6 × 1014 Ω-1 m-2 by spin Hall magnetoresistance. The damping torque and spin Hall angle have been evaluated as 0.084 and 0.071 respectively. Presence of Si atom in FeSi3% inhomogenize the magnetic exchange field among accumulated spins at bilayer interface and feebly influenced by spin torque of FeSi3% layer. Weak field torque suppresses the spin pumping to Pt layer thus low value of inverse spin Hall voltage is obtained. This study provides an excellent opportunity to investigate spin transfer torque effect, thus motivating a more intensive experimental effort for its utilization at maximum potential. The improvement in spin transfer torque may be useful in spin valve, spin battery and spin transistor application.
Thermal transfer recording media
NASA Astrophysics Data System (ADS)
Takei, T.; Taniguchi, M.; Fukushima, H.; Yamaguchi, Y.; Shinozuka, M.; Seikohsha, K. K. Suwa
1988-08-01
The recording media consist of more than or one coloring layer and a layer containing a flame retardant to ensure noncombustibility and good thermal transfer. Thus, a PET film was coated on a side with a compound containing Vylon 290 (polyester resin), AFR-1021 (decabromodiphenyl oxide) 8 and Polysafe 60 (Sb oxide), and coated on the other side with a compound containing carnauba wax, HNP-9 (paraffin wax), EV-410 (ethylene-vinyl acetate copolymer), and Cu phthalocyanine to give a thermal transfer recording medium which showed good noncombustibility and antiblocking properties, and provided high quality images.
Matrix method for two-dimensional waveguide mode solution
NASA Astrophysics Data System (ADS)
Sun, Baoguang; Cai, Congzhong; Venkatesh, Balajee Seshasayee
2018-05-01
In this paper, we show that the transfer matrix theory of multilayer optics can be used to solve the modes of any two-dimensional (2D) waveguide for their effective indices and field distributions. A 2D waveguide, even composed of numerous layers, is essentially a multilayer stack and the transmission through the stack can be analysed using the transfer matrix theory. The result is a transfer matrix with four complex value elements, namely A, B, C and D. The effective index of a guided mode satisfies two conditions: (1) evanescent waves exist simultaneously in the first (cladding) layer and last (substrate) layer, and (2) the complex element D vanishes. For a given mode, the field distribution in the waveguide is the result of a 'folded' plane wave. In each layer, there is only propagation and absorption; at each boundary, only reflection and refraction occur, which can be calculated according to the Fresnel equations. As examples, we show that this method can be used to solve modes supported by the multilayer step-index dielectric waveguide, slot waveguide, gradient-index waveguide and various plasmonic waveguides. The results indicate the transfer matrix method is effective for 2D waveguide mode solution in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Deepak; Theiss Research, Inc., La Jolla, California 92037; Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030
Leveraging nanoscale field-effect transistors (FETs) in integrated circuits depends heavily on its transfer characteristics and low-frequency noise (LFN) properties. Here, we report the transfer characteristics and LFN in FETs fabricated with molybdenum disulfide (MoS{sub 2}) with different layer (L) counts. 4L to 6L devices showed highest I{sub ON}-I{sub OFF} ratio (≈10{sup 8}) whereas LFN was maximum for 1L device with normalized power spectral density (PSD) ≈1.5 × 10{sup −5 }Hz{sup −1}. For devices with L ≈ 6, PSD was minimum (≈2 × 10{sup −8 }Hz{sup −1}). Further, LFN for single and few layer devices satisfied carrier number fluctuation (CNF) model in both weak andmore » strong accumulation regimes while thicker devices followed Hooge's mobility fluctuation model in the weak accumulation regime and CNF model in strong accumulation regime, respectively. Transfer-characteristics and LFN experimental data are explained with the help of model incorporating Thomas-Fermi charge screening and inter-layer resistance coupling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Andrew J.; Temperton, Robert H.; Handrup, Karsten
2014-06-21
The interaction of the dye molecule N3 (cis-bis(isothiocyanato)bis(2,2-bipyridyl-4,4′-dicarbo-xylato) -ruthenium(II)) with the ultra-thin oxide layer on a AlNi(110) substrate, has been studied using synchrotron radiation based photoelectron spectroscopy, resonant photoemission spectroscopy, and near edge X-ray absorption fine structure spectroscopy. Calibrated X-ray absorption and valence band spectra of the monolayer and multilayer coverages reveal that charge transfer is possible from the molecule to the AlNi(110) substrate via tunnelling through the ultra-thin oxide layer and into the conduction band edge of the substrate. This charge transfer mechanism is possible from the LUMO+2 and 3 in the excited state but not from the LUMO,more » therefore enabling core-hole clock analysis, which gives an upper limit of 6.0 ± 2.5 fs for the transfer time. This indicates that ultra-thin oxide layers are a viable material for use in dye-sensitized solar cells, which may lead to reduced recombination effects and improved efficiencies of future devices.« less
Analytical framework for modeling of long-range transport of fungal plant epidemics
NASA Astrophysics Data System (ADS)
Kogan, Oleg; O'Keeffe, Kevin; Schneider, David; Myers, Christopher; Analytical FrameworksInfectious Disease Dynamics Team
2015-03-01
A new framework for the study of long-range transport of fungal plant epidemics is proposed. The null nonlinear model includes advective transport through the free atmosphere, spore production on the ground, and transfer of spores between the ground and the advective atmospheric layer. The competition between the growth wave on the ground and the effect of the wind is most strongly reflected in upwind fronts, which can propagate into the wind for exponential initial conditions. If the rate of spore transfer into the advective layer is below critical, this happens for initital conditions with arbitrary steepness. Upwind fronts from localized initial conditions will propagate in the direction of the wind above this critical parameter, and will not propagate below it. On the other hand, the speed of the downwind front does not have a strong dependence on the rate of spore transfer between the advective layer and the ground. Thus, even vanishingly small, but finite transfer rates result in a substantial epidemic wave in the direction of the wind. We also consider the effect of an additional, random-walk like mechanism of transport through the near-ground atmospheric boundary layer, and attempt to understand which route dominates the transport over long distances.
Biancardi, Alessandro; Caraiani, Claudiu; Chan, Wai-Lun; Caricato, Marco
2017-04-06
Understanding the interfacial electron transfer (IET) between 2D layers is central to technological applications. We present a first-principles study of the IET between a zinc phthalocyanine film and few-layer graphene by using our recent method for the calculation of electronic coupling in periodic systems. The ultimate goal is the development of a predictive in silico approach for designing new 2D materials. We find IET to be critically dependent on the number of layers and their stacking orientation. In agreement with experiment, IET to single-layer graphene is shown to be faster than that to double-layer graphene due to interference effects between layers. We predict that additional graphene layers increase the number of IET pathways, eventually leading to a faster rate. These results shed new light on the subtle interplay between structure and IET, which may lead to more effective "bottom up" design strategies for these materials.
Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating.
Schlicke, Hendrik; Schröder, Jan H; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias
2011-07-29
A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.
Freestanding films of crosslinked gold nanoparticles prepared via layer-by-layer spin-coating
NASA Astrophysics Data System (ADS)
Schlicke, Hendrik; Schröder, Jan H.; Trebbin, Martin; Petrov, Alexey; Ijeh, Michael; Weller, Horst; Vossmeyer, Tobias
2011-07-01
A new, extremely efficient method for the fabrication of films comprised of gold nanoparticles (GNPs) crosslinked by organic dithiols is presented in this paper. The method is based on layer-by-layer spin-coating of both components, GNPs and crosslinker, and enables the deposition of films several tens of nanometers in thickness within a few minutes. X-ray diffraction and conductance measurements reveal the proper adjustment concentration of the crosslinker solution of the critical is in order to prevent the destabilization and coalescence of particles. UV/vis spectroscopy, atomic force microscopy, and conductivity measurements indicate that films prepared via layer-by-layer spin-coating are of comparable quality to coatings prepared via laborious layer-by-layer self-assembly using immersion baths. Because spin-coated films are not bound chemically to the substrate, they can be lifted-off by alkaline underetching and transferred onto 3d-electrodes to produce electrically addressable, freely suspended films. Comparative measurements of the sheet resistances indicate that the transfer process does not compromise the film quality.
Design and performance of the University of Michigan 6.6-inch hypersonic wind tunnel
NASA Technical Reports Server (NTRS)
Amick, J. L.
1975-01-01
The tunnel described has several design features intended to maintain laminar flow in the boundary layer of its nozzle. Measurements show that transition to turbulence in the nozzle wall boundary layer begins at the throat and is sensitive to surface roughness, heat transfer rate, and longitudinal radius of curvature. The observed dependence of transition on heat transfer rate is the reverse of that predicted by stability theory for infinitesimal disturbances. Tests include boundary layer surveys of a contoured nozzle and a conical nozzle with four interchangeable throats.
Liang, D.; Xu, X.; Tsang, L.; Andreadis, K.M.; Josberger, E.G.
2008-01-01
The Dense Media Radiative Transfer theory (DMRT) of Quasicrystalline Approximation of Mie scattering by sticky particles is used to study the multiple scattering effects in layered snow in microwave remote sensing. Results are illustrated for various snow profile characteristics. Polarization differences and frequency dependences of multilayer snow model are significantly different from that of the single-layer snow model. Comparisons are also made with CLPX data using snow parameters as given by the VIC model. ?? 2007 IEEE.
NASA Astrophysics Data System (ADS)
Weiner, Andre; Bothe, Dieter
2017-10-01
This paper presents a novel subgrid scale (SGS) model for simulating convection-dominated species transport at deformable fluid interfaces. One possible application is the Direct Numerical Simulation (DNS) of mass transfer from rising bubbles. The transport of a dissolving gas along the bubble-liquid interface is determined by two transport phenomena: convection in streamwise direction and diffusion in interface normal direction. The convective transport for technical bubble sizes is several orders of magnitude higher, leading to a thin concentration boundary layer around the bubble. A true DNS, fully resolving hydrodynamic and mass transfer length scales results in infeasible computational costs. Our approach is therefore a DNS of the flow field combined with a SGS model to compute the mass transfer between bubble and liquid. An appropriate model-function is used to compute the numerical fluxes on all cell faces of an interface cell. This allows to predict the mass transfer correctly even if the concentration boundary layer is fully contained in a single cell layer around the interface. We show that the SGS-model reduces the resolution requirements at the interface by a factor of ten and more. The integral flux correction is also applicable to other thin boundary layer problems. Two flow regimes are investigated to validate the model. A semi-analytical solution for creeping flow is used to assess local and global mass transfer quantities. For higher Reynolds numbers ranging from Re = 100 to Re = 460 and Péclet numbers between Pe =104 and Pe = 4 ṡ106 we compare the global Sherwood number against correlations from literature. In terms of accuracy, the predicted mass transfer never deviates more than 4% from the reference values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
Nakamura, T. K. M.; Eriksson, S.; Hasegawa, H.; ...
2017-10-23
When the interplanetary magnetic field (IMF) is strongly northward, a boundary layer that contains a considerable amount of plasma of magnetosheath origin is often observed along and earthward of the low-latitude magnetopause. Such a pre-existing boundary layer, with a higher density than observed in the adjacent magnetosphere, reduces the local Alfvén speed and allows the Kelvin-Helmholtz instability (KHI) to grow more strongly. We employ a three-dimensional fully kinetic simulation to model an event observed by the Magnetospheric Multiscale (MMS) mission in which the spacecraft detected substantial KH waves between a pre-existing boundary layer and the magnetosheath during strong northward IMF.more » Initial results of this simulation [Nakamura et al., 2017] have successfully demonstrated ion-scale signatures of magnetic reconnection induced by the non-linearly developed KH vortex, which are quantitatively consistent with MMS observations. Furthermore, we quantify the simulated mass and energy transfer processes driven by this vortex-induced reconnection (VIR) and show that during this particular MMS event (i) mass enters a new mixing layer formed by the VIR more efficiently from the pre-existing boundary layer side than from the magnetosheath side, (ii) mixed plasmas within the new mixing layer convect tailward along the magnetopause at more than half the magnetosheath flow speed, and (iii) energy dissipation in localized VIR dissipation regions results in a strong parallel electron heating within the mixing layer. Finally, the quantitative agreements between the simulation and MMS observations allow new predictions that elucidate how the mass and energy transfer processes occur near the magnetopause during strong northward IMF.« less
Molina, A; Laborda, E; González, J; Compton, R G
2013-05-21
Nuances of the linear diffusion layer approximation are examined for slow charge transfer reactions at (hemi)spherical micro- and nanoelectrodes. This approximation is widely employed in Electrochemistry to evaluate the extent of electrolyte solution perturbed by the electrode process, which is essential to the understanding of the effects arising from thin-layer diffusion, convergent diffusion, convection, coupled chemical reactions and the double layer. The concept was well established for fast charge transfer processes at macroelectrodes, but remains unclear under other conditions such that a thorough assessment of its meaning was necessary. In a previous publication [A. Molina, J. González, E. Laborda and R. G. Compton, Phys. Chem. Chem. Phys., 2013, 15, 2381-2388] we shed some light on the influence of the reversibility degree. In the present work, the meaning of the diffusion layer thickness is investigated when very small electrodes are employed and so the contribution of convergent diffusion to the mass transport is very important. An analytical expression is given to calculate the linear diffusion layer thickness at (hemi)spherical electrodes and its behaviour is studied for a wide range of conditions of reversibility (from reversible to fully-irreversible processes) and electrode size (from macro- to nano-electrodes). Rigorous analytical solutions are deduced for true concentration profiles, surface concentrations, linear diffusion layer thickness and current densities when a potential pulse is applied at (hemi)spherical electrodes. The expressions for the magnitudes mentioned above are valid for electrodes of any size (including (hemi)spherical nanoelectrodes) and for any degree of reversibility, provided that mass transport occurs exclusively via diffusion. The variation of the above with the electrode size, applied potential and charge transfer kinetics is studied.
NASA Astrophysics Data System (ADS)
Jin, Peitong
2000-11-01
Local mass/heat transfer measurements from the turbine blade near-tip and the tip surfaces are performed using the naphthalene sublimation technique. The experiments are conducted in a linear cascade consisting of five high-pressure blades with a central test-blade configuration. The incoming flow conditions are close to those of the gas turbine engine environment (boundary layer displacement thickness is about 0.01 of chord) with an exit Reynolds number of 6.2 x 105. The effects of tip clearance level (0.86%--6.90% of chord), mainstream Reynolds number and turbulence intensity (0.2 and 12.0%) are investigated. Two methods of flow visualization---oil and lampblack, laser light sheet smoke wire---as well as static pressure measurement on the blade surface are used to study the tip leakage flow and vortex in the cascade. In addition, numerical modeling of the flow and heat transfer processes in the linear cascade with different tip clearances is conducted using commercial software incorporating advanced turbulence models. The present study confirms many important results on the tip leakage flow and vortex from the literature, contributes to the current understanding in the effects of tip leakage flow and vortex on local heat transfer from the blade near-tip and the tip surfaces, and provides detailed local and average heat/mass transfer data applicable to turbine blade tip cooling design.
Kumar, Dinesh; Rai, K N
2016-12-01
Hyperthermia is a process that uses heat from the spatial heat source to kill cancerous cells without damaging the surrounding healthy tissues. Efficacy of hyperthermia technique is related to achieve temperature at the infected cells during the treatment process. A mathematical model on heat transfer in multilayer tissues in finite domain is proposed to predict the control temperature profile at hyperthermia position. The treatment technique uses dual-phase-lag model of heat transfer in multilayer tissues with modified Gaussian distribution heat source subjected to the most generalized boundary condition and interface at the adjacent layers. The complete dual-phase-lag model of bioheat transfer is solved using finite element Legendre wavelet Galerkin approach. The present solution has been verified with exact solution in a specific case and provides a good accuracy. The effect of the variability of different parameters such as lagging times, external heat source, metabolic heat source and the most generalized boundary condition on temperature profile in multilayer tissues is analyzed and also discussed the effective approach of hyperthermia treatment. Furthermore, we studied the modified thermal damage model with regeneration of healthy tissues as well. For viewpoint of thermal damage, the least thermal damage has been observed in boundary condition of second kind. The article concludes with a discussion of better opportunities for future clinical application of hyperthermia treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.
Házi, Gábor; Márkus, Attila
2008-02-01
A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.
Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction
NASA Astrophysics Data System (ADS)
Teh, E.-J.; Johansen, C. T.
2016-11-01
Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.
NASA Technical Reports Server (NTRS)
Deissler, R. G.; Loeffler, A. L., Jr.
1959-01-01
A previous analysis of turbulent heat transfer and flow with variable fluid properties in smooth passages is extended to flow over a flat plate at high Mach numbers, and the results are compared with experimental data. Velocity and temperature distributions are calculated for a boundary layer with appreciative effects of frictional heating and external heat transfer. Viscosity and thermal conductivity are assumed to vary as a power or the temperature, while Prandtl number and specific heat are taken as constant. Skin-friction and heat-transfer coefficients are calculated and compared with the incompressible values. The rate of boundary-layer growth is obtained for various Mach numbers.
µ-XRF Studies on the Colour Brilliance in Ancient Wool Carpets
Meyer, Markus; Borca, Camelia N.; Huthwelker, Thomas; Bieber, Manfred; Meßlinger, Karl; Fink, Rainer H.
2017-01-01
Many handmade ancient and recent oriental wool carpets show outstanding brilliance and persistence of colour that is not achieved by common industrial dyeing procedures. Anthropologists have suggested the influence of wool fermentation prior to dyeing as key technique to achieve the high dyeing quality. By means of μ-XRF elemental mapping of mordant metals we corroborate this view and show a deep and homogenous penetration of colourants into fermented wool fibres. Furthermore we are able to apply this technique and prove that the fermentation process for ancient specimens cannot be investigated by standard methods due to the lack of intact cuticle layers. This finding suggests a broad range of further investigations that will contribute to a deeper understanding of the development of traditional dyeing techniques. Spectroscopic studies add information on the oxidation states of the metal ions within the respective mordant-dye-complexes and suggest a partial charge transfer as basis for a significant colour change when Fe mordants are used. PMID:29109824
A non-collinear mixing technique to measure the acoustic nonlinearity parameter of adhesive bond
NASA Astrophysics Data System (ADS)
Ju, Taeho; Achenbach, Jan. D.; Jacobs, Laurence J.; Qu, Jianmin
2018-04-01
In this work, we employed a wave mixing technique with an incident longitudinal wave and a shear wave to measure the Acoustic Nonlinearity Parameter (ANLP) of adhesive bonds. An adhesive transfer tape (F-9473PC) was used as an adhesive material: two aluminum plates are bonded together by the tape. To achieve a high signal to noise ratio, the optimal interaction angle and frequency ratio between the two incident waves were carefully selected so resonance occurs primarily in the adhesive layer, which somewhat suppressed the resonance in the aluminum plates. One of the most significant features of this method is that the measurements need only one-side access to the sample being measured. To demonstrate the effectiveness of the proposed technique, the adhesively bonded aluminum sample was placed in a temperature-controlled chamber for thermal aging. The ANLP of the thermally aged sample was compared with that of a freshly made adhesive sample. The results show that the ANLP increases with aging time and temperature.
The Xpress Transfer Protocol (XTP): A tutorial (expanded version)
NASA Technical Reports Server (NTRS)
Sanders, Robert M.; Weaver, Alfred C.
1990-01-01
The Xpress Transfer Protocol (XTP) is a reliable, real-time, light weight transfer layer protocol. Current transport layer protocols such as DoD's Transmission Control Protocol (TCP) and ISO's Transport Protocol (TP) were not designed for the next generation of high speed, interconnected reliable networks such as fiber distributed data interface (FDDI) and the gigabit/second wide area networks. Unlike all previous transport layer protocols, XTP is being designed to be implemented in hardware as a VLSI chip set. By streamlining the protocol, combining the transport and network layers and utilizing the increased speed and parallelization possible with a VLSI implementation, XTP will be able to provide the end-to-end data transmission rates demanded in high speed networks without compromising reliability and functionality. This paper describes the operation of the XTP protocol and in particular, its error, flow and rate control; inter-networking addressing mechanisms; and multicast support features, as defined in the XTP Protocol Definition Revision 3.4.
NASA Technical Reports Server (NTRS)
Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.
1983-01-01
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.
NASA Astrophysics Data System (ADS)
Hylton, L. D.; Mihelc, M. S.; Turner, E. R.; Nealy, D. A.; York, R. E.
1983-05-01
Three airfoil data sets were selected for use in evaluating currently available analytical models for predicting airfoil surface heat transfer distributions in a 2-D flow field. Two additional airfoils, representative of highly loaded, low solidity airfoils currently being designed, were selected for cascade testing at simulated engine conditions. Some 2-D analytical methods were examined and a version of the STAN5 boundary layer code was chosen for modification. The final form of the method utilized a time dependent, transonic inviscid cascade code coupled to a modified version of the STAN5 boundary layer code featuring zero order turbulence modeling. The boundary layer code is structured to accommodate a full spectrum of empirical correlations addressing the coupled influences of pressure gradient, airfoil curvature, and free-stream turbulence on airfoil surface heat transfer distribution and boundary layer transitional behavior. Comparison of pedictions made with the model to the data base indicates a significant improvement in predictive capability.
Jiang, Shaohui; Liu, Changhong; Fan, Shoushan
2014-03-12
In this work, we report our studies related to the natural-convective heat transfer properties of carbon nanotube (CNT) sheets. We theoretically derived the formulas and experimentally measured the natural-convective heat transfer coefficients (H) via electrical heating method. The H values of the CNT sheets containing different layers (1, 2, 3, and 1000) were measured. We found that the single-layer CNT sheet had a unique ability on heat dissipation because of its great H. The H value of the single-layer CNT sheet was 69 W/(m(2) K) which was about twice of aluminum foil in the same environment. As the layers increased, the H values dropped quickly to the same with that of aluminum foil. We also discussed its roles on thermal dissipation, and the results indicated that the convection was a significant way of dissipation when the CNT sheets were applied on macroscales. These results may give us a new guideline to design devices based on the CNT sheets.
NASA Technical Reports Server (NTRS)
1991-01-01
This recommendation contains the detailed specification of the logic required to carry out the Command Operations Procedures of the Transfer Layer. The Recommendation for Telecommand--Part 2, Data Routing Service contains the standard data structures and data communication procedures used by the intermediate telecommand system layers (the Transfer and Segmentation Layers). In particular, it contains a brief description of the Command Operations Procedures (COP) within the Transfer Layer. This recommendation contains the detailed definition of the COP's in the form of state tables, along with definitions of the terms used. It is assumed that the reader of this document is familiar with the data structures and terminology of part 2. In case of conflict between the description of the COP's in part 2 and in this recommendation, the definition in this recommendation will take precedence. In particular, this document supersedes section 4.3.3.1 through 4.3.3.4 of part 2.
Bibliography on augmentation of convective heat and mass transfer-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.
1983-12-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performancemore » evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.« less
Bibliography on augmentation of convective heat and mass transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergles, A.E.; Webb, R.L.; Junkhan, G.H.
1979-05-01
Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation ofmore » passive techniques. Patents are not included as they will be the subject of a future topical report.« less
NASA Astrophysics Data System (ADS)
Ali, Amir R.; Kamel, Mohamed A.
2017-05-01
This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.
NASA Astrophysics Data System (ADS)
Kumaresan, E.; Vijaya Kumar, A. G.; Rushi Kumar, B.
2017-11-01
This article studies, an exact solution of unsteady MHD free convection boundary-layer flow of a silver nanofluid past an exponentially accelerated moving vertical plate through aporous medium in the presence of thermal radiation, transverse applied amagnetic field, radiation absorption and Heat generation or absorption with chemical reaction are investigated theoretically. We consider nanofluids contain spherical shaped nanoparticle of silverwith a nanoparticle volume concentration range smaller than or equal to 0.04. This phenomenon is modeled in the form of partial differential equations with initial boundary conditions. Some suitable dimensional variables are introduced. The corresponding dimensionless equations with boundary conditions are solved by using Laplace transform technique. The exact solutions for velocity, energy, and species are obtained, also the corresponding numerical values of nanofluid velocity, temperature and concentration profiles are represented graphically. The expressions for skin friction coefficient, the rate of heat transfer and mass transfer are derived. The present study finds applications involving heat transfer, enhancement of thermal conductivity and other applications like transportation, industrial cooling applications, heating buildings and reducing pollution, energy applications and solar absorption. The effect of heat transfer is found to be more pronounced in a silver-water nanofluid than in the other nanofluids.
NASA Astrophysics Data System (ADS)
Hansda, Chaitali; Maiti, Pradip; Singha, Tanmoy; Pal, Manisha; Hussain, Syed Arshad; Paul, Sharmistha; Paul, Pabitra Kumar
2018-10-01
In this study, we investigated the spectroscopic properties of the water-soluble globular protein bovine serum albumin (BSA) while interacting with zinc oxide (ZnO) semiconductor nanoparticles (NPs) in aqueous medium and in a ZnO/BSA layer-by-layer (LbL) self-assembled film fabricated on poly (acrylic acid) (PAA)-coated quartz or a Si substrate via electrostatic interactions. BSA formed a ground state complex due to its interaction with ZnO NPs, which was confirmed by ultraviolet-visible absorption, and steady state and time-resolved fluorescence emission spectroscopic techniques. However, due to its interaction with ZnO, the photophysical properties of BSA depend significantly on the concentration of ZnO NPs in the mixed solution. The quenching of the fluorescence intensity of BSA in the presence of ZnO NPs was due to the interaction between ZnO and BSA, and the formation of their stable ground state complex, as well as energy transfer from the excited BSA to ZnO NPs in the complex nano-bioconjugated species. Multilayer growth of the ZnO/BSA LbL self-assembled film on the quartz substrate was confirmed by monitoring the characteristic absorption band of BSA (280 nm), where the nature of the film growth depends on the number of bilayers deposited on the quartz substrate. BSA formed a well-ordered molecular network-type morphology due to its adsorption onto the surface of the ZnO nanostructure in the backbone of the PAA-coated Si substrate in the LbL film according to atomic force microscopic study. The as-synthesized ZnO NPs were characterized by field emission scanning electron microscopy, X-ray powder diffraction, and dynamic light scattering techniques.
Thermal evolution of the high-pressure ice layers beneath a buried ocean within Titan and Ganymede
NASA Astrophysics Data System (ADS)
Choblet, G.; Tobie, G.
2015-12-01
Deep interiors of massive icy satellites such as Titan and Ganymede probably harbor a buried ocean above high-pressure (HP) ice layers. The nature and location of the lower interface of the ocean is ultimately controlled by the amount of heat transferred through the surface ice Ih layer but it also involves equilibration of heat and melt transfer in the HP ices. While the Rayleigh number associated to such HP ice layers is most probably supercritical, classical subsolidus convection might not be a viable mechanism as the radial temperature gradient in the cold boundary layer is likely to exceed the slope of the melting curve. A significant part of the heat transfer could be achieved via the mass flux of warm liquid through this cold boundary layer up to the global phase boundary, a phenomenon sometimes referred to as heat-pipe mechanism. We present 3D spherical simulations of thermal convection in these HP ice layers that address for the first time this complex interplay. First, scaling relationships are proposed to describe this configuration for a large range of Rayleigh numbers and solidus curves. We then focus on a more realistic set-up where a prescribed basal heat flux is considered in a plausible range for the thermal history of Ganymede or Titan together with the expected viscosity law for HP ices.
Vohra, Varun; Anzai, Takuya; Inaba, Shusei; Porzio, William; Barba, Luisa
2016-01-01
Abstract Polymer solar cells (PSCs) are greatly influenced by both the vertical concentration gradient in the active layer and the quality of the various interfaces. To achieve vertical concentration gradients in inverted PSCs, a sequential deposition approach is necessary. However, a direct approach to sequential deposition by spin-coating results in partial dissolution of the underlying layers which decreases the control over the process and results in not well-defined interfaces. Here, we demonstrate that by using a transfer-printing process based on polydimethylsiloxane (PDMS) stamps we can obtain increased control over the thickness of the various layers while at the same time increasing the quality of the interfaces and the overall concentration gradient within the active layer of PSCs prepared in air. To optimize the process and understand the influence of various interlayers, our approach is based on surface free energy, spreading parameters and work of adhesion calculations. The key parameter presented here is the insertion of high quality hole transporting and electron transporting layers, respectively above and underneath the active layer of the inverted structure PSC which not only facilitates the transfer process but also induces the adequate vertical concentration gradient in the device to facilitate charge extraction. The resulting non-encapsulated devices (active layer prepared in air) demonstrate over 40% increase in power conversion efficiency with respect to the reference spin-coated inverted PSCs. PMID:27877901
A model for allometric scaling of mammalian metabolism with ambient heat loss.
Kwak, Ho Sang; Im, Hong G; Shim, Eun Bo
2016-03-01
Allometric scaling, which represents the dependence of biological traits or processes on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer, which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value < 2/3. The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.
High T c superconductivity in YBa2Cu3O7- x studied by PAC and PAS
NASA Astrophysics Data System (ADS)
Zhu, Shengyun; Li, Anli; Zheng, Shengnan; Huang, Hanchen; Li, Donghong; Din, Honglin; Du, Hongshan; Sun, Hancheng
1993-03-01
High T c superconductivity has been investigated in YBaCuO by both perturbed angular correlation and positron annihilation spectroscopy techniques as a function of temperature from 77 to 300 K. An abrupt change has been observed in the positron lifetime and Doppler broadening and the electric field gradient and its asymmetry parameter across T c, indicating a transition of two- to one-dimensional Cu-O-Cu chain structure and a charge transfer from CuO layers to CuO chains. An anomaly of the normal state has been demonstrated around 125 K, which is attributed to the structural instability.
A polygonal double-layer coil design for high-efficiency wireless power transfer
NASA Astrophysics Data System (ADS)
Mao, Shitong; Wang, Hao; Mao, Zhi-Hong; Sun, Mingui
2018-05-01
In this work, we present a novel coil structure for the design of Wireless Power Transfer (WPT) systems via magnetic resonant coupling. The new coil consists of two layers of flat polygonal windings in square, pentagonal and hexagonal shapes. The double-layer coil can be conveniently fabricated using the print circuit broad (PCB) technology. In our design, we include an angle between the two layers which can be adjusted to change the area of inter-layer overlap. This unique structure is thoroughly investigated with respect to the quality factor Q and the power transfer efficiency (PTE) using the finite element method (FEM). An equivalent circuit is derived and used to explain the properties of the angularly shifted double-layer coil theoretically. Comparative experiments are conducted from which the performance of the new coil is evaluated quantitatively. Our results have shown that an increased shift angle improves the Q-factor, and the optimal PTE is achieved when the angle reaches the maximum. When compared to the pentagonal and hexagonal coils, the square coil achieves the highest PTE due to its lowest parasitic capacitive effects. In summary, our new coil design improves the performance of WPT systems and allows a formal design procedure for optimization in a given application.
NASA Astrophysics Data System (ADS)
Schulze, Martin H.; Heuer, Henning
2012-04-01
Carbon fiber based materials are used in many lightweight applications in aeronautical, automotive, machine and civil engineering application. By the increasing automation in the production process of CFRP laminates a manual optical inspection of each resin transfer molding (RTM) layer is not practicable. Due to the limitation to surface inspection, the quality parameters of multilayer 3 dimensional materials cannot be observed by optical systems. The Imaging Eddy- Current (EC) NDT is the only suitable inspection method for non-resin materials in the textile state that allows an inspection of surface and hidden layers in parallel. The HF-ECI method has the capability to measure layer displacements (misaligned angle orientations) and gap sizes in a multilayer carbon fiber structure. EC technique uses the variation of the electrical conductivity of carbon based materials to obtain material properties. Beside the determination of textural parameters like layer orientation and gap sizes between rovings, the detection of foreign polymer particles, fuzzy balls or visualization of undulations can be done by the method. For all of these typical parameters an imaging classification process chain based on a high resolving directional ECimaging device named EddyCus® MPECS and a 2D-FFT with adapted preprocessing algorithms are developed.
Introduction to multiprotocol over ATM (MPOA)
NASA Astrophysics Data System (ADS)
Fredette, Andre N.
1997-10-01
Multiprotocol over ATM (MPOA) is a new protocol specified by the ATM Forum. MPOA provides a framework for effectively synthesizing bridging and routing with ATM in an environment of diverse protocols and network technologies. The primary goal of MPOA is the efficient transfer of inter-subnet unicast data in a LAN Emulation (LANE) environment. MPOA integrates LANE and the next hop resolution protocol (NHRP) to preserve the benefits of LAN Emulation, while allowing inter-subnet, internetwork layer protocol communication over ATM VCCs without requiring routers in the data path. It reduces latency and the internetwork layer forwarding load on backbone routers by enabling direct connectivity between ATM-attached edge devices (i.e., shortcuts). To establish these shortcuts, MPOA uses both routing and bridging information to locate the edge device closest to the addressed end station. By integrating LANE and NHRP, MPOA allows the physical separation of internetwork layer route calculation and forwarding, a technique known as virtual routing. This separation provides a number of key benefits including enhanced manageability and reduced complexity of internetwork layer capable edge devices. This paper provides an overview of MPOA that summarizes the goals, architecture, and key attributes of the protocol. In presenting this overview, the salient attributes of LANE and NHRP are described as well.
Superelement Analysis of Tile-Reinforced Composite Armor
NASA Technical Reports Server (NTRS)
Davila, Carlos G.
1998-01-01
Super-elements can greatly improve the computational efficiency of analyses of tile-reinforced structures such as the hull of the Composite Armored Vehicle. By taking advantage of the periodicity in this type of construction, super-elements can be used to simplify the task of modeling, to virtually eliminate the time required to assemble the stiffness matrices, and to reduce significantly the analysis solution time. Furthermore, super-elements are fully transferable between analyses and analysts, so that they provide a consistent method to share information and reduce duplication. This paper describes a methodology that was developed to model and analyze large upper hull components of the Composite Armored Vehicle. The analyses are based on two types of superelement models. The first type is based on element-layering, which consists of modeling a laminate by using several layers of shell elements constrained together with compatibility equations. Element layering is used to ensure the proper transverse shear deformation in the laminate rubber layer. The second type of model uses three-dimensional elements. Since no graphical pre-processor currently supports super-elements, a special technique based on master-elements was developed. Master-elements are representations of super-elements that are used in conjunction with a custom translator to write the superelement connectivities as input decks for ABAQUS.
NASA Astrophysics Data System (ADS)
Hussin, N. H.; Azizan, M. M.; Ali, A.; Albreem, M. A. M.
2017-09-01
This paper reviews the techniques used in Wireless power transfer (WPT). WPT is one of the most useful ways to transfer power. Based on power transfer distances, the WPT system can be divided into three categories, namely, near, medium, and far fields. Inductive coupling and capacitive coupling contactless techniques are used in the near-field WPT. Magnetic resonant coupling technique is used in the medium-field WPT. Electromagnetic radiation is used in the far-field WPT. In addition, energy encryption plays a major role in ensuring that power is transferred to the true receiver. Therefore, this paper reviews the energy encryption techniques in WPT system. A comparison between different technique shows that the distance, efficiency, and number of receivers are the main factors in selecting the suitable energy encryption technique.
NASA Astrophysics Data System (ADS)
Papazoglou, Symeon; Chatzipetrou, Marianeza; Massaouti, Maria; Zergioti, Ioanna
2017-02-01
Laser Induced Forward Transfer (LIFT) is a direct write technique, able to create micropatterns of biomaterials on sensing devices. In this conference we will present a new approach using LIFT for the printing and direct immobilization of biomaterials on a great variety of surfaces, for bio-sensor applications. The basic requirement for the fabrication of a biosensor is to stabilize a biomaterial that brings the physicochemical changes in close proximity to a transducer. In this direction, several immobilization methods such as covalent binding and crosslinking have been implemented. The presence of the additional functionalization steps in the biosensors fabrication, is among the main disadvantages of chemical immobilization methods. Our approach employs the LIFT technique for the direct immobilization of biomaterials, either by physical adsorption or by covalent bonding of the biomaterials. The physical adsorption of the biomaterials, occurs on hydrophobic or super-hydrophobic surfaces, due to the transition of the wetting properties of the surfaces upon the impact of the biomaterials with high velocity. The unique characteristic of LIFT technique to create high speed liquid jets, leads to the penetration of the biomaterial in the micro/nano roughness of the surface, resulting in their direct immobilization, without the need of any chemical functionalization layers. Moreover, we will also present the direct immobilization of biomaterials on Screen Printed Electrodes, for enzymatic biosensors, with a limit of detection (LOD) for catechol at 150 nM, and protein biosensors, used for the detection of herbicides, with an LOD of 8-10 nM.
On the meaning of the diffusion layer thickness for slow electrode reactions.
Molina, A; González, J; Laborda, E; Compton, R G
2013-02-21
A key concept underpinning electrochemical science is that of the diffusion layer - the zone of depletion around an electrode accompanying electrolysis. The size of this zone can be found either from the simulated or measured concentration profiles (yielding the 'true' diffusion layer thickness) or, in the case of the Nernst ('linear') diffusion layer by extrapolating the concentration gradient at the electrode surface to the distance at which the concentration takes its bulk value. The latter concept is very well developed in the case of fast (so-called reversible) electrode processes, however the study of the linear diffusion layer has received scant attention in the case of slow charge transfer processes, despite its study being of great interest in the analysis of the influence of different experimental variables which determine the electrochemical response. Analytical explicit solutions for the concentration profiles, surface concentrations and real and linear diffusion layers corresponding to the application of a potential step to a slow charge transfer process are presented. From these expressions the dependence of the diffusion layer thickness on the potential, pulse time, heterogeneous rate constant and ratio of bulk concentrations of electroactive species and of diffusion coefficients is quantified. A profound influence of the reversibility degree of the charge transfer on the diffusion layer thickness is clear, showing that for non-reversible processes the real and linear diffusion layers reveal a minimum thickness which coincides with the equilibrium potential of the redox couple in the former case and with the reversible half-wave potential in the latter one.
Samala, Ravi K; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A; Wei, Jun; Cha, Kenny
2016-12-01
Develop a computer-aided detection (CAD) system for masses in digital breast tomosynthesis (DBT) volume using a deep convolutional neural network (DCNN) with transfer learning from mammograms. A data set containing 2282 digitized film and digital mammograms and 324 DBT volumes were collected with IRB approval. The mass of interest on the images was marked by an experienced breast radiologist as reference standard. The data set was partitioned into a training set (2282 mammograms with 2461 masses and 230 DBT views with 228 masses) and an independent test set (94 DBT views with 89 masses). For DCNN training, the region of interest (ROI) containing the mass (true positive) was extracted from each image. False positive (FP) ROIs were identified at prescreening by their previously developed CAD systems. After data augmentation, a total of 45 072 mammographic ROIs and 37 450 DBT ROIs were obtained. Data normalization and reduction of non-uniformity in the ROIs across heterogeneous data was achieved using a background correction method applied to each ROI. A DCNN with four convolutional layers and three fully connected (FC) layers was first trained on the mammography data. Jittering and dropout techniques were used to reduce overfitting. After training with the mammographic ROIs, all weights in the first three convolutional layers were frozen, and only the last convolution layer and the FC layers were randomly initialized again and trained using the DBT training ROIs. The authors compared the performances of two CAD systems for mass detection in DBT: one used the DCNN-based approach and the other used their previously developed feature-based approach for FP reduction. The prescreening stage was identical in both systems, passing the same set of mass candidates to the FP reduction stage. For the feature-based CAD system, 3D clustering and active contour method was used for segmentation; morphological, gray level, and texture features were extracted and merged with a linear discriminant classifier to score the detected masses. For the DCNN-based CAD system, ROIs from five consecutive slices centered at each candidate were passed through the trained DCNN and a mass likelihood score was generated. The performances of the CAD systems were evaluated using free-response ROC curves and the performance difference was analyzed using a non-parametric method. Before transfer learning, the DCNN trained only on mammograms with an AUC of 0.99 classified DBT masses with an AUC of 0.81 in the DBT training set. After transfer learning with DBT, the AUC improved to 0.90. For breast-based CAD detection in the test set, the sensitivity for the feature-based and the DCNN-based CAD systems was 83% and 91%, respectively, at 1 FP/DBT volume. The difference between the performances for the two systems was statistically significant (p-value < 0.05). The image patterns learned from the mammograms were transferred to the mass detection on DBT slices through the DCNN. This study demonstrated that large data sets collected from mammography are useful for developing new CAD systems for DBT, alleviating the problem and effort of collecting entirely new large data sets for the new modality.
Phospholipid transfer protein is present in human tear fluid.
Jauhiainen, Matti; Setälä, Niko L; Ehnholm, Christian; Metso, Jari; Tervo, Timo M T; Eriksson, Ove; Holopainen, Juha M
2005-06-07
The human tear fluid film consists of a superficial lipid layer, an aqueous middle layer, and a hydrated mucin layer located next to the corneal epithelium. The superficial lipid layer protects the eye from drying and is composed of polar and neutral lipids provided by the meibomian glands. Excess accumulation of lipids in the tear film may lead to drying of the corneal epithelium. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. To gain insight into the formation of tear film, we investigated whether PLTP and CETP are present in human tear fluid. Tear fluid samples were collected with microcapillaries. The presence of PLTP and CETP was studied in tear fluid by Western blotting, and the PLTP concentration was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. Size-exclusion and heparin-affinity chromatography assessed the molecular form of PLTP. PLTP is present in tear fluid, whereas CETP is not. Quantitative assessment of PLTP by ELISA indicated that the PLTP concentration in tear fluid, 10.9 +/- 2.4 microg/mL, is about 2-fold higher than that in human plasma. PLTP-facilitated phospholipid transfer activity in tears, 15.1 +/- 1.8 micromol mL(-)(1) h(-)(1), was also significantly higher than that measured in plasma. Inactivation of PLTP by heat treatment (+58 degrees C, 60 min) or immunoinhibition abolished the phospholipid transfer activity in tear fluid. Size-exclusion chromatography of tear fluid indicated that PLTP eluted in a position corresponding to a size of 160-170 kDa. Tear fluid PLTP was quantitatively bound to Heparin-Sepharose and could be eluted as a single peak by 0.5 M NaCl. These data indicate that human tear fluid contains catalytically active PLTP protein, which resembles the active form of PLTP present in plasma. The results suggest that PLTP may play a role in the formation of the tear film by supporting phospholipid transfer.
NASA Astrophysics Data System (ADS)
Markfort, C. D.
2017-12-01
Aquatic ecosystems are integrators of nutrient and carbon from their watersheds. The effects of climate change in many cases will enhance the rate of these inputs and change the thermodynamics within aquatic environments. It is unclear the extent these changes will have on water quality and carbon assimilation, but the drivers of these processes will be determined by the complex interactions at the land-water and air-water interfaces. For example, flow over and beneath wind-driven surface waves generate turbulence that plays an important role in aquatic ecology and biogeochemistry, exchange of gases such as oxygen and carbon dioxide, and it is important for the transfer of energy and controlling evaporation. Energy transferred from the atmosphere promotes the generation and maintenance of waves. A fraction of the energy is transferred to the surface mixed layer through the generation of turbulence. Energy is also transferred back to the atmosphere by waves. There is a need to quantify the details of the coupled boundary layers of the air-water system to better understand how turbulence plays a role in the interactions. We have developed capabilities to conduct field and laboratory experiments using eddy covariance on tall-towers and rafts, UAS platforms integrated with remote sensing, and detailed wind-wave measurements with time-resolved PIV in a new boundary layer wind-wave tunnel. We will show measurements of the detailed structure of the air and water boundary layers under varying wind and wave conditions in the newly developed IIHR Boundary-Layer Wind-Wave Tunnel. The facility combines a 30-m long recirculating water channel with an open-return boundary layer wind tunnel. A thick turbulent boundary layer is developed in the 1 m high air channel, over the water surface, allowing for the study of boundary layer turbulence interacting with a wind-driven wave field. Results will help interpret remote sensing, energy budget measurements, and turbulence transport models for sheltered lakes influenced by terrain and tall trees.
NASA Astrophysics Data System (ADS)
Sfarra, Stefano; Fernandes, Henrique C.; López, Fernando; Ibarra-Castanedo, Clemente; Zhang, Hai; Maldague, Xavier
2018-01-01
In this work, the potentialities of the infrared vision to explore sub-superficial defects in polychromatic statues were investigated. In particular, it was possible to understand how the reflector effect of the exterior golden layers could be minimized, applying advanced statistical algorithms to thermal images. Since this noble metal is present as external coating in both artworks, an in-depth discussion concerning its physicochemical properties is also added. In this context, the principal component thermography technique and, the more recent, partial least squares thermography technique were used on three different datasets recorded, providing long thermal stimuli. The main images were compared both to phasegrams and to the thermographic signal reconstruction results in order to have a clear outline of the situation to be debated. The effects of view factors on the radiation transfer linked to the specular reflections from the surface did not falsely highlight certain features inadvertently. Indeed, the raw thermograms were analyzed one by one. Reflectograms were used to pinpoint emissivity variations due to, e. g., possible repainting. The paper concludes that, as it is possible to understand from a physical point of view, the near-infrared reflectography technique is able to examine the state of conservation of the upper layers in cultural heritage objects, while the infrared thermography technique explores them more in-depth. The thesis statement is based on the thermal and nonthermal parts of the infrared region, therefore, indicating what can be detected by heating the surface and what can be visualized by illuminating the surface, bearing in mind the nature of the external coating.
An analysis of a charring ablator with thermal nonequilibrium, chemical kinetics, and mass transfer
NASA Technical Reports Server (NTRS)
Clark, R. K.
1973-01-01
The differential equations governing the transient response of a one-dimensional ablative thermal protection system are presented for thermal nonequilibrium between the pyrolysis gases and the char layer and with finite rate chemical reactions occurring. The system consists of three layers (the char layer, the uncharred layer, and an optical insulation layer) with concentrated heat sinks at the back surface and between the second and third layers. The equations are solved numerically by using a modified implicit finite difference scheme to obtain solutions for the thickness of the charred and uncharred layers, surface recession and pyrolysis rates, solid temperatures, porosity profiles, and profiles of pyrolysis-gas temperature, pressure, composition, and flow rate. Good agreement is obtained between numerical results and exact solutions for a number of simplified cases. The complete numerical analysis is used to obtain solutions for an ablative system subjected to a constant heating environment. Effects of thermal, chemical, and mass transfer processes are shown.
Molle, Pascal
2014-01-01
French vertical flow constructed wetlands, treating directly raw wastewater, have become the main systems implemented for communities under 2,000 population equivalent in France. Like in sludge drying reed beds, an organic deposit layer is formed over time at the top surface of the filter. This deposit layer is a key factor in the performance of the system as it impacts hydraulic, gas transfers, filtration efficiency and water retention time. The paper discusses the role of this deposit layer on the hydraulic and biological behaviour of the system. It presents results from different studies to highlight the positive role of the layer but, as well, the difficulties in modelling this organic layer. As hydraulic, oxygen transfers, and biological activity are interlinked and impacted by the deposit layer, it seems essential to focus on its role (and its quantification) to find new developments of vertical flow constructed wetlands fed with raw wastewater.
Effects of local and global mechanical distortions to hypervelocity boundary layers
NASA Astrophysics Data System (ADS)
Flaherty, William P.
The response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature is examined. Surface heat transfer, visual boundary layer thickness, and pressure sensitive paint (PSP) data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. It is demonstrated that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortical structures to an adverse pressure gradient is investigated. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values, though for higher turning angle cases, a relaxation to below undisturbed values is reported at turning angles between 10 and 15 degrees. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures. PSP measurements indicated that natural streaks form over concave models even when imposed vorticity is present. Correlations found between the heat transfer and natural streak formation are discussed and indicate possible vortex interactions.
Effect of metal shielding on a wireless power transfer system
NASA Astrophysics Data System (ADS)
Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng
2017-05-01
In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.
Thermal finite-element analysis of space shuttle main engine turbine blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert
1987-01-01
Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.
Pierucci, Debora; Brumme, Thomas; Girard, Jean-Christophe; Calandra, Matteo; Silly, Mathieu G; Sirotti, Fausto; Barbier, Antoine; Mauri, Francesco; Ouerghi, Abdelkarim
2016-09-15
The transport properties of few-layer graphene are the directly result of a peculiar band structure near the Dirac point. Here, for epitaxial graphene grown on SiC, we determine the effect of charge transfer from the SiC substrate on the local density of states (LDOS) of trilayer graphene using scaning tunneling microscopy/spectroscopy and angle resolved photoemission spectroscopy (ARPES). Different spectra are observed and are attributed to the existence of two stable polytypes of trilayer: Bernal (ABA) and rhomboedreal (ABC) staking. Their electronic properties strongly depend on the charge transfer from the substrate. We show that the LDOS of ABC stacking shows an additional peak located above the Dirac point in comparison with the LDOS of ABA stacking. The observed LDOS features, reflecting the underlying symmetry of the two polytypes, were reproduced by explicit calculations within density functional theory (DFT) including the charge transfer from the substrate. These findings demonstrate the pronounced effect of stacking order and charge transfer on the electronic structure of trilayer or few layer graphene. Our approach represents a significant step toward understand the electronic properties of graphene layer under electrical field.
NASA Astrophysics Data System (ADS)
Alavi Fazel, S. Ali
2017-09-01
A new optimized model which can predict the heat transfer in the nucleate boiling at isolated bubble regime is proposed for pool boiling on a horizontal rod heater. This model is developed based on the results of direct observations of the physical boiling phenomena. Boiling heat flux, wall temperature, bubble departing diameter, bubble generation frequency and bubble nucleation site density have been experimentally measured. Water and ethanol have been used as two different boiling fluids. Heating surface was made by several metals and various degrees of roughness. The mentioned model considers various mechanisms such as latent heat transfer due to micro-layer evaporation, transient conduction due to thermal boundary layer reformation, natural convection, heat transfer due to the sliding bubbles and bubble super-heating. The fractional contributions of individual mentioned heat transfer mechanisms have been calculated by genetic algorithm. The results show that at wall temperature difference more that about 3 K, bubble sliding transient conduction, non-sliding transient conduction, micro-layer evaporation, natural convection, radial forced convection and bubble super-heating have higher to lower fractional contributions respectively. The performance of the new optimized model has been verified by comparison of the existing experimental data.
New approach for producing chemical templates over large area by Molecular Transfer Printing
NASA Astrophysics Data System (ADS)
Inoue, Takejiro; Janes, Dustin; Ren, Jiaxing; Willson, Grant; Ellison, Christopher; Nealey, Paul
2014-03-01
Fabrication of well-defined chemically patterned surfaces is crucially important to the development of next generation microprocessors, hard disk memory devices, photonic/plasmonic devices, separation membranes, and biological microarrays. One promising patterning method in these fields is Molecular Transfer Printing (MTP), which replicates chemical patterns with feature dimensions of the order of 10nm utilizing a master template defined by the microphase separated domains of a block copolymer thin film. The total transfer printing area achievable by MTP has so far been limited by the contact area between two rigid substrates. Therefore, strategies to make conformal contact between substrates could be practically useful because a single lithographically-defined starting pattern could be used to fabricate many replicates by a low-cost process. Here we show a new approach that utilizes a chemically deposited SiN layer and a liquid conformal layer to enable transfer printing of chemical patterns upon thermal annealing over large, continuous areas. We anticipate that our process could be integrated into Step and Flash Imprint Lithography (SFIL) tools to achieve conformal layer thicknesses thin and uniform enough to permit pattern transfer through a dry-etch protocol.
A Technique for Facile and Precise Transfer of Mouse Embryos
Sarvari, Ali; Naderi, Mohammad Mehdi; Sadeghi, Mohammad Reza; Akhondi, Mohammad Mehdi
2013-01-01
Background Successful Embryo Transfer (ET) technique is a fateful step of all efforts to achieve live births from in vitro produced embryos in assisted reproductive techniques or in knockout, transgenic or cloned animal projects. Small reproductive tract of mice and limitation of current techniques may not well satisfy the requirements for mass production of genetically modified mice. Genetic abnormalities of embryos, receptivity and uterine contractions, expulsion of embryos, blood, mucus or bacterial contamination on the transfer pipette tip, technical problems and even animal strain may affect embryo transfer outcome. Methods In this study, two techniques of embryo transfer in mice were compared. In conventional technique the oviduct wall was punctured with a 30-gauge needle and the loaded Pasteur pipette with embryos and medium was inserted into the hole. In new technique, embryos that were loaded in modified micropipette with minimal medium were transferred directly to the oviduct by manual piston micro-pump easily. Embryo viability was evaluated considering the percentage of live healthy newborns. Results Results of the two techniques were compared by t-test within the NPAR1WAY procedure of SAS software (ver. 9.2). The average live birth rates in the novel methods was significantly higher (42.4%) than the conventional method (21.7%, p<0.05). Conclusion In conclusion, using new embryo transfer technique improved birth rate by preventing embryos expulsion from the oviduct, saving time and easy transfer of embryos with minimum volume of medium. PMID:23626878
NASA Astrophysics Data System (ADS)
Boyarshinov, B. F.
2018-01-01
Experimental data on the flow structure and mass transfer near the boundaries of the region existence of the laminar and turbulent boundary layers with combustion are considered. These data include the results of in-vestigation on reacting flow stability at mixed convection, mass transfer during ethanol evaporation "on the floor" and "on the ceiling", when the flame surface curves to form the large-scale cellular structures. It is shown with the help of the PIV equipment that when Rayleigh-Taylor instability manifests, the mushroom-like structures are formed, where the motion from the flame front to the wall and back alternates. The cellular flame exists in a narrow range of velocities from 0.55 to 0.65 m/s, and mass transfer is three times higher than its level in the standard laminar boundary layer.
Ultrashort hybrid metal-insulator plasmonic directional coupler.
Noghani, Mahmoud Talafi; Samiei, Mohammad Hashem Vadjed
2013-11-01
An ultrashort plasmonic directional coupler based on the hybrid metal-insulator slab waveguide is proposed and analyzed at the telecommunication wavelength of 1550 nm. It is first analyzed using the supermode theory based on mode analysis via the transfer matrix method in the interaction region. Then the 2D model of the coupler, including transition arms, is analyzed using a commercial finite-element method simulator. The hybrid slab waveguide is composed of a metallic layer of silver and two dielectric layers of silica (SiO2) and silicon (Si). The coupler is optimized to have a minimum coupling length and to transfer maximum power considering the layer thicknesses as optimization variables. The resulting coupling length in the submicrometer region along with a noticeable power transfer efficiency are advantages of the proposed coupler compared to previously reported plasmonic couplers.
Numerical Simulation of Convective Heat and Mass Transfer in a Two-Layer System
NASA Astrophysics Data System (ADS)
Myznikova, B. I.; Kazaryan, V. A.; Tarunin, E. L.; Wertgeim, I. I.
The results are presented of mathematical and computer modeling of natural convection in the “liquid-gas” two-layer system, filling a vertical cylinder surrounded by solid heat conductive tract. The model describes approximately the conjugate heat and mass transfer in the underground oil product storage, filled partially by a hydrocarbon liquid, with natural gas layer above the liquid surface. The geothermal gradient in a rock mass gives rise to the intensive convection in the liquid-gas system. The consideration is worked out for laminar flows, laminar-turbulent transitional regimes, and developed turbulent flows.
Strain Engineering of Epitaxially Transferred, Ultrathin Layers of III-V Semiconductor on Insulator
2011-01-01
The structure of the source wafer is shown schematically in Fig. 2a, with both InAs and AlGaSb layers coherently strained to the GaSb 001...is due to the surface plasmon-LO phonon FIG. 2. Color online a The structure of GaSb /AlGaSb/InAs source wafer with an assumed strain state for...insulator layers obtained from an epitaxial transfer process is studied. The as-grown InAs epilayer 10–20 nm thick on the GaSb /AlGaSb source wafer has the
ASDA - Advanced Suit Design Analyzer computer program
NASA Technical Reports Server (NTRS)
Bue, Grant C.; Conger, Bruce C.; Iovine, John V.; Chang, Chi-Min
1992-01-01
An ASDA model developed to evaluate the heat and mass transfer characteristics of advanced pressurized suit design concepts for low pressure or vacuum planetary applications is presented. The model is based on a generalized 3-layer suit that uses the Systems Integrated Numerical Differencing Analyzer '85 in conjunction with a 41-node FORTRAN routine. The latter simulates the transient heat transfer and respiratory processes of a human body in a suited environment. The user options for the suit encompass a liquid cooled garment, a removable jacket, a CO2/H2O permeable layer, and a phase change layer.
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.
1986-01-01
A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.
Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel
NASA Astrophysics Data System (ADS)
Swanson, Erick O.
It is desirable for the boundary layer on a re-entry vehicle (RV) to be laminar during as much of its flight as possible, since a turbulent boundary layer causes several problems, such as high heat flux to the vehicle and larger drag forces. Nosetip roughness can cause the boundary layer to transition downstream on the cone. Surface roughness and nosetip bluntness may cause windside-forward transition on maneuvering RVs. The crossflow instability may also influence transition on yawed RVs. The mechanisms through which these phenomena induce transition are poorly understood. Several experiments have been conducted to study these phenomena. The temperature-sensitive-paint (TSP) and oil-flow techniques were used to observe transition and crossflow vortices on cones at angle of attack in the Purdue Boeing/AFOSR Mach-6 Quiet Tunnel. The high-Reynolds number capability of the tunnel was developed to facilitate these experiments. Improvements were made in the use of the temperature-sensitive-paint technique in the Purdue Mach-6 Quiet Tunnel. The measured heat transfer to cones with sharp and spherically-blunt nosetips at 0° angle-of-attack was within 60% of the values from Navier-Stokes computations. Transition was observed on sharp and spherically-blunt cones at 6° angle-of-attack in noisy flow. Crossflow vortices were observed with both TSP and oil flow under noisy conditions in the turbulent boundary layer on a sharp cone. The vortex angles were about 50% of the surface-streamline angles observed using oil dots. TSP was also used to observe crossflow vortices in quiet flow. The vortices were similar to those seen in noisy flow. An array of roughness elements at x = 2 inches (axially) with a spacing of 9° on a yawed sharp cone in noisy flow influenced transition that was apparently induced by the crossflow instability. No influence of the roughness array was observed in quiet flow.