Sample records for layer transition protuberance

  1. Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.

    2008-01-01

    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.

  2. Boundary Layer Transition Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Campbell, Charles H.; Saucedo, Luis A.; Kinder, Gerald R.; Berger, Karen T.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLTFE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flights of STS-119 and STS-128. Additional instrumentation was also installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLTFE Project, including the project history, organizations involved, and motivations for the flight experiment. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. Efforts were also extended to understand the as-fabricated shape of the protuberance and the thermal protection system tile configuration surrounding the protuberance. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that predictions for boundary layer transition onset time closely match the flight data, while predicted temperatures were significantly higher than observed flight temperatures.

  3. Boundary Layer Transition Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flights of STS-119, STS-128 and STS-131. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that predictions for boundary layer transition onset time closely match the flight data, while predicted temperatures were significantly higher than observed flight temperatures.

  4. Effects of Cavities and Protuberances on Transition over Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei; Venkatachari, Balaji

    2011-01-01

    Surface protuberances and cavities on a hypersonic vehicle are known to cause several aerodynamic or aerothermodynamic issues. Most important of all, premature transition due to these surface irregularities can lead to a significant rise in surface heating. To help understand laminar-turbulent transition induced by protuberances or cavities on a Crew Exploration Vehicle (CEV) surface, high-fidelity numerical simulations are carried out for both types of trips on a CEV wind tunnel model. Due to the large bluntness, these surface irregularities reside in an accelerating subsonic boundary layer. For the Mach 6 wind tunnel conditions with a roughness Reynolds number Re(sub kk) of 800, it was found that a protuberance with a height to boundary layer thickness ratio of 0.73 leads to strong wake instability and spontaneous vortex shedding, while a cavity with identical geometry only causes a rather weak flow unsteadiness. The same cavity with a larger Reynolds number also leads to similar spontaneous vortex shedding and wake instability. The wake development and the formation of hairpin vortices for both protuberance and cavity were found to be qualitatively similar to that observed for an isolated hemisphere submerged in a subsonic, low speed flat-plate boundary layer. However, the shed vortices and their accompanying instability waves were found to be slightly stabilized downstream by the accelerating boundary layer along the CEV surface. Despite this stabilizing influence, it was found that the wake instability spreads substantially in both wall-normal and azimuthal directions as the flow is evolving towards a transitional state. Similarities and differences between the wake instability behind a protuberance and a cavity are investigated. Computations for the Mach 6 boundary layer over a slender cylindrical roughness element with a height to the boundary layer thickness of about 1.1 also shows spontaneous vortex shedding and strong wake instability. Comparisons of detailed flow structures associated with protuberances at subsonic and supersonic edge Mach numbers indicate distinctively different instability mechanisms.

  5. Version 2 of the Protuberance Correlations for the Shuttle-Orbiter Boundary Layer Transition Tool

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.

    2009-01-01

    Orbiter-specific transition data, acquired in four ground-based facilities (LaRC 20-Inch Mach 6 Air Tunnel, LaRC 31-Inch Mach 10 Air Tunnel, LaRC 20-Inch Mach 6 CF4 Tunnel, and CUBRC LENS-I Shock Tunnel) with three wind tunnel model scales (0.75, 0.90, and 1.8%) and from Orbiter historical flight data, have been analyzed to improve a pre-existing engineering tool for reentry transition prediction on the windward side of the Orbiter. Boundary layer transition (BLT) engineering correlations for transition induced by isolated protuberances are presented using a laminar Navier-Stokes (N-S) database to provide the relevant boundary-layer properties. It is demonstrated that the earlier version of the BLT correlation that had been developed using parameters derived from an engineering boundary-layer code has improved data collapse when developed with the N-S database. Of the new correlations examined, the proposed correlation 5, based on boundary-layer edge and wall properties, was found to provide the best overall correlation metrics when the entire database is employed. The second independent correlation (proposed correlation 7) selected is based on properties within the boundary layer at the protuberance height. The Aeroheating Panel selected a process to derive the recommended coefficients for Version 2 of the BLT Tool. The assumptions and limitations of the recommended protuberance BLT Tool V.2 are presented.

  6. Shuttle Damage/Repair from the Perspective of Hypersonic Boundary Layer Transition - Experimental Results

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Berry, Scott A.; Merski, N. Ronald; Berger, Karen T.; Buck, Gregory M.; Liechty, Derek S.; Schneider, Steven P.

    2006-01-01

    An overview is provided of the experimental wind tunnel program conducted at the NASA Langley Research Center Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for Return-to-Flight. The effect of an isolated protuberance and an isolated rectangular cavity on hypersonic boundary layer transition onset on the windward surface of the Shuttle Orbiter has been experimentally characterized. These experimental studies were initiated to provide a protuberance and cavity effects database for developing hypersonic transition criteria to support on-orbit disposition of thermal protection system damage or repair. In addition, a synergistic experimental investigation was undertaken to assess the impact of an isolated mass-flow entrainment source (simulating pyrolysis/outgassing from a proposed tile repair material) on boundary layer transition. A brief review of the relevant literature regarding hypersonic boundary layer transition induced from cavities and localized mass addition from ablation is presented. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth and simulated tile damage or repair (protuberances) of varying height. Cavity and mass addition effects were assessed at a fixed location (x/L = 0.3) along the model centerline in a region of near zero pressure gradient. Cavity length-to-depth ratio was systematically varied from 2.5 to 17.7 and length-to-width ratio of 1 to 8.5. Cavity depth-to-local boundary layer thickness ranged from 0.5 to 4.8. Protuberances were located at several sites along the centerline and port/starboard attachment lines along the chine and wing leading edge. Protuberance height-to-boundary layer thickness was varied from approximately 0.2 to 1.1. Global heat transfer images and heating distributions of the Orbiter windward surface using phosphor thermography were used to infer the state of the boundary layer (laminar, transitional, or turbulent). Test parametrics include angles-of-attack of 30 deg and 40 deg, sideslip angle of 0 deg, freestream Reynolds numbers from 0.02x106 to 7.3x106 per foot, edge-to-wall temperature ratio from 0.4 to 0.8, and normal shock density ratios of approximately 5.3, 6.0, and 12 in Mach 6 air, Mach 10 air, and Mach 6 CF4, respectively. Testing to simulate the effects of ablation from a proposed tile repair concept indicated that transition was not a concern. The experimental protuberance and cavity databases highlighted in this report were used to formulate boundary layer transition correlations that were an integral part of an analytical process to disposition observed Orbiter TPS damage during STS- 114.

  7. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Larin, Max E.; Marichalar, Jeremiah J.; Kinder, Gerald R.; Campbell, Charles H.; Riccio, Joseph R.; Nguyen, Tien Q.; Del Papa, Steven V.; Pulsonetti, Maria V.

    2010-01-01

    A series of tests conducted recently at the NASA JSC arc -jet test facility demonstrated that a protruding tile material can survive the exposure to the high enthalpy flows characteristic of the Space Shuttle Orbiter re-entry environments. The tests provided temperature data for the protuberance and the surrounding smooth tile surfaces, as well as the tile bond line. The level of heating needed to slump the protuberance material was achieved. Protuberance failure mode was demonstrated.

  8. Shuttle Return To Flight Experimental Results: Protuberance Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Horvath, Thomas J.

    2006-01-01

    The effect of isolated roughness elements on the windward boundary layer of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamic Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental effort was initiated to provide a roughness effects database for developing transition criteria to support on-orbit decisions to repair damage to the thermal protection system. Boundary layer transition results were obtained using trips of varying heights and locations along the centerline and attachment lines of 0.0075-scale models. Global heat transfer images using phosphor thermography of the Orbiter windward surface and the corresponding heating distributions were used to infer the state of the boundary layer (laminar, transitional, or turbulent). The database contained within this report will be used to formulate protuberance-induced transition correlations using predicted boundary layer edge parameters.

  9. Boundary Layer Protuberance Simulations in Channel Nozzle Arc-Jet

    NASA Technical Reports Server (NTRS)

    Marichalar, J. J.; Larin, M. E.; Campbell, C. H.; Pulsonetti, M. V.

    2010-01-01

    Two protuberance designs were modeled in the channel nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility with the Data-Parallel Line Relaxation computational fluid dynamics code. The heating on the protuberance was compared to nominal baseline heating at a single fixed arc-jet condition in order to obtain heating augmentation factors for flight traceability in the Boundary Layer Transition Flight Experiment on Space Shuttle Orbiter flights STS-119 and STS-128. The arc-jet simulations were performed in conjunction with the actual ground tests performed on the protuberances. The arc-jet simulations included non-uniform inflow conditions based on the current best practices methodology and used variable enthalpy and constant mass flow rate across the throat. Channel walls were modeled as fully catalytic isothermal surfaces, while the test section (consisting of Reaction Cured Glass tiles) was modeled as a partially catalytic radiative equilibrium wall. The results of the protuberance and baseline simulations were compared to the applicable ground test results, and the effects of the protuberance shock on the opposite channel wall were investigated.

  10. Overview of Boundary Layer Transition Research in Support of Orbiter Return To Flight

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Greene, Francis A.; Kinder, Gerald R.; Wang, K. C.

    2006-01-01

    A predictive tool for estimating the onset of boundary layer transition resulting from damage to and/or repair of the thermal protection system was developed in support of Shuttle Return to Flight. The boundary layer transition tool is part of a suite of tools that analyze the aerothermodynamic environment to the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time (and thus Mach number) at transition onset is predicted to help define the aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local thermal protection system and structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against select flight data. Computed local boundary layer edge conditions were used to correlate the results, specifically the momentum thickness Reynolds number over the edge Mach number and the boundary layer thickness. For the initial Return to Flight mission, STS-114, empirical curve coefficients of 27, 100, and 900 were selected to predict transition onset for protuberances based on height, and cavities based on depth and length, respectively.

  11. BLT Flight Experiment Overview and In-Situ Measurements

    NASA Technical Reports Server (NTRS)

    Anderson, Brian P.; Campbell, Charles H.; Saucedo, Luis A.; Kinder, Gerald R.

    2010-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for the flight of STS-119. Additional instrumentation was also installed in order to obtain more spatially resolved measurements. This paper will provide an overview of the BLT FE Project, including the project history, organizations involved, and motivations for the flight experiment. Significant efforts were made to place the protuberance at an appropriate location on the Orbiter and to design the protuberance to withstand the expected environments. Efforts were also extended to understand the as-fabricated shape of the protuberance and the thermal protection system tile configuration surrounding the protuberance. A high level overview of the in-situ flight data will be presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data.

  12. Numerical Simulations of the Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Tang, Chun Y.; Trumble, Kerry A.; Campbell, Charles H.; Lessard, Victor R.; Wood, William A.

    2010-01-01

    Computational Fluid Dynamics (CFD) simulations were used to study the possible effects that the Boundary Layer Transition (BLT) Flight Experiments may have on the heating environment of the Space Shuttle during its entry to Earth. To investigate this issue, hypersonic calculations using the Data-Parallel Line Relaxation (DPLR) and Langley Aerothermodynamic Upwind Relaxation (LAURA) CFD codes were computed for a 0.75 tall protuberance at flight conditions of Mach 15 and 18. These initial results showed high surface heating on the BLT trip and the areas surrounding the protuberance. Since the predicted peak heating rates would exceed the thermal limits of the materials selected to construct the BLT trip, many changes to the geometry were attempted in order to reduce the surface heat flux. The following paper describes the various geometry revisions and the resulting heating environments predicted by the CFD codes.

  13. Boundary Layer Transition Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.

    2011-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.

  14. Space Shuttle Boundary Layer Transition Flight Experiment Ground Testing Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.

    2014-01-01

    In support of the Boundary Layer Transition (BLT) Flight Experiment (FE) Project in which a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS- 128, STS-131 and STS-133 as well as Space Shuttle Orbiter Endeavour for STS-134, a significant ground test campaign was completed. The primary goals of the test campaign were to provide ground test data to support the planning and safety certification efforts required to fly the flight experiment as well as validation for the collected flight data. These test included Arcjet testing of the tile protuberance, aerothermal testing to determine the boundary layer transition behavior and resultant surface heating and planar laser induced fluorescence (PLIF) testing in order to gain a better understanding of the flow field characteristics associated with the flight experiment. This paper provides an overview of the BLT FE Project ground testing. High-level overviews of the facilities, models, test techniques and data are presented, along with a summary of the insights gained from each test.

  15. Roles of Engineering Correlations in Hypersonic Entry Boundary Layer Transition Prediction

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; King, Rudolph A.; Kergerise, Michael A.; Berry, Scott A.; Horvath, Thomas J.

    2010-01-01

    Efforts to design and operate hypersonic entry vehicles are constrained by many considerations that involve all aspects of an entry vehicle system. One of the more significant physical phenomenon that affect entry trajectory and thermal protection system design is the occurrence of boundary layer transition from a laminar to turbulent state. During the Space Shuttle Return To Flight activity following the loss of Columbia and her crew of seven, NASA's entry aerothermodynamics community implemented an engineering correlation based framework for the prediction of boundary layer transition on the Orbiter. The methodology for this implementation relies upon the framework of correlation techniques that have been in use for several decades. What makes the Orbiter boundary layer transition correlation implementation unique is that a statistically significant data set was acquired in multiple ground test facilities, flight data exists to assist in establishing a better correlation and the framework was founded upon state of the art chemical nonequilibrium Navier Stokes flow field simulations. The basic tenets that guided the formulation and implementation of the Orbiter Return To Flight boundary layer transition prediction capability will be reviewed as a recommended format for future empirical correlation efforts. The validity of this approach has since been demonstrated by very favorable comparison of recent entry flight testing performed with the Orbiter Discovery, which will be graphically summarized. These flight data can provide a means to validate discrete protuberance engineering correlation approaches as well as high fidelity prediction methods to higher confidence. The results of these Orbiter engineering and flight test activities only serve to reinforce the essential role that engineering correlations currently exercise in the design and operation of entry vehicles. The framework of information-related to the Orbiter empirical boundary layer transition prediction capability will be utilized to establish a fresh perspective on this role, to illustrate how quantitative statistical evaluations of empirical correlations can and should be used to assess accuracy and to discuss what the authors' perceive as a recent heightened interest in the application of high fidelity numerical modeling of boundary layer transition. Concrete results will also be developed related to empirical boundary layer transition onset correlations. This will include assessment of the discrete protuberance boundary layer transition onset data assembled for the Orbiter configuration during post-Columbia Return To Flight. Assessment of these data will conclude that momentum thickness Reynolds number based correlations have superior coefficients and uncertainty in comparison to roughness height based Reynolds numbers, aka Re(sub k) or Re(sub kk). In addition, linear regression results from roughness height Reynolds number based correlations will be evaluated, leading to a hypothesis that non-continuum effects play a role in the processes associated with incipient boundary layer transition on discrete protuberances.

  16. Experimental investigation of sound generation by a protuberance in a laminar boundary layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, M.; Asai, M.; Inasawa, A.

    2014-08-15

    Sound radiation from a two-dimensional protuberance glued on the wall in a laminar boundary layer was investigated experimentally at low Mach numbers. When the protuberance was as high as the boundary-layer thickness, a feedback-loop mechanism set in between protuberance-generated sound and Tollmien-Schlichting (T-S) waves generated by the leading-edge receptivity to the upstream-propagating sound. Although occurrence of a separation bubble immediately upstream of the protuberance played important roles in the evolution of instability waves into vortices interacting with the protuberance, the frequency of tonal vortex sound was determined by the selective amplification of T-S waves in the linear instability stage upstreammore » of the separation bubble and was not affected by the instability of the separation bubble.« less

  17. Aerothermal Protuberance Heating Design and Test Configurations for Ascent Vehicle Design

    NASA Technical Reports Server (NTRS)

    Martin, Charles E.; Neumann, Richard D.; Freeman, Delma

    2010-01-01

    A series of tests were conducted to evaluate protuberance heating for the purposes of vehicle design and modification. These tests represent a state of the art approach to both testing and instrumentation for defining aerothermal protuberance effects on the protuberance and surrounding areas. The testing was performed with a number of wind tunnel entries beginning with the proof of concept "pathfinder" test in the Test Section 1 (TS1) tunnel in the Langley Unitary Plan Wind Tunnel (UPWT). The TS1 section (see Figures 1a and 1b) is a lower Mach number tunnel and the Test Section 2 (TS2) has overlapping and higher Mach number capability as showin in Figure 1c. The pathfinder concept was proven and testing proceeded for a series of protuberance tests using an existing splitter aluminum protuberance mounting plate, Macor protuberances, thin film gages, total temperature and pressure gages, Kulite pressure transducers, Infra-Red camera imaging, LASER velocimetry evaluations and the UPWT data collection system. A boundary layer rake was used to identify the boundary layer profile at the protuberance locations for testing and helped protuberance design. This paper discusses the techniques and instrumentation used during the protuberance heating tests performed in the UPWT in TS1 and TS2. Runs of the protuberances were made Mach numbers of 1.5, 2.16, 2.65, and 3.51. The data set generated from this testing is for ascent protuberance effects and is termed Protuberance Heating Ascent Data (PHAD) and this testing may be termed PHAD-1 to distinguish it from future testing of this type.

  18. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    DOEpatents

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  19. Review of Orbiter Flight Boundary Layer Transition Data

    NASA Technical Reports Server (NTRS)

    Mcginley, Catherine B.; Berry, Scott A.; Kinder, Gerald R.; Barnell, maria; Wang, Kuo C.; Kirk, Benjamin S.

    2006-01-01

    In support of the Shuttle Return to Flight program, a tool was developed to predict when boundary layer transition would occur on the lower surface of the orbiter during reentry due to the presence of protuberances and cavities in the thermal protection system. This predictive tool was developed based on extensive wind tunnel tests conducted after the loss of the Space Shuttle Columbia. Recognizing that wind tunnels cannot simulate the exact conditions an orbiter encounters as it re-enters the atmosphere, a preliminary attempt was made to use the documented flight related damage and the orbiter transition times, as deduced from flight instrumentation, to calibrate the predictive tool. After flight STS-114, the Boundary Layer Transition Team decided that a more in-depth analysis of the historical flight data was needed to better determine the root causes of the occasional early transition times of some of the past shuttle flights. In this paper we discuss our methodology for the analysis, the various sources of shuttle damage information, the analysis of the flight thermocouple data, and how the results compare to the Boundary Layer Transition prediction tool designed for Return to Flight.

  20. Tile Surface Thermocouple Measurement Challenges from the Orbiter Boundary Layer Transition Flight Experiment

    NASA Technical Reports Server (NTRS)

    Campbell, Charles H.; Berger, Karen; Anderson, Brian

    2012-01-01

    Hypersonic entry flight testing motivated by efforts seeking to characterize boundary layer transition on the Space Shuttle Orbiters have identified challenges in our ability to acquire high quality quantitative surface temperature measurements versus time. Five missions near the end of the Space Shuttle Program implemented a tile surface protuberance as a boundary layer trip together with tile surface thermocouples to capture temperature measurements during entry. Similar engineering implementations of these measurements on Discovery and Endeavor demonstrated unexpected measurement voltage response during the high heating portion of the entry trajectory. An assessment has been performed to characterize possible causes of the issues experienced during STS-119, STS-128, STS-131, STS-133 and STS-134 as well as similar issues encountered during other orbiter entries.

  1. Experimental study of flow separation control on a low- Re airfoil using leading-edge protuberance method

    NASA Astrophysics Data System (ADS)

    Zhang, M. M.; Wang, G. F.; Xu, J. Z.

    2014-04-01

    An experimental study of flow separation control on a low- Re c airfoil was presently investigated using a newly developed leading-edge protuberance method, motivated by the improvement in the hydrodynamics of the giant humpback whale through its pectoral flippers. Deploying this method, the control effectiveness of the airfoil aerodynamics was fully evaluated using a three-component force balance, leading to an effectively impaired stall phenomenon and great improvement in the performances within the wide post-stall angle range (22°-80°). To understand the flow physics behind, the vorticity field, velocity field and boundary layer flow field over the airfoil suction side were examined using a particle image velocimetry and an oil-flow surface visualization system. It was found that the leading-edge protuberance method, more like low-profile vortex generator, effectively modified the flow pattern of the airfoil boundary layer through the chordwise and spanwise evolutions of the interacting streamwise vortices generated by protuberances, where the separation of the turbulent boundary layer dominated within the stall region and the rather strong attachment of the laminar boundary layer still existed within the post-stall region. The characteristics to manipulate the flow separation mode of the original airfoil indicated the possibility to further optimize the control performance by reasonably designing the layout of the protuberances.

  2. Numerical Computations of Hypersonic Boundary-Layer over Surface Irregularities

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.; Li, Fei

    2010-01-01

    Surface irregularities such as protuberances inside a hypersonic boundary layer may lead to premature transition on the vehicle surface. Early transition in turn causes large localized surface heating that could damage the thermal protection system. Experimental measurements as well as numerical computations aimed at building a knowledge base for transition Reynolds numbers with respect to different protuberance sizes and locations have been actively pursued in recent years. This paper computationally investigates the unsteady wake development behind large isolated cylindrical roughness elements and the scaled wind-tunnel model of the trip used in a recent flight measurement during the reentry of space shuttle Discovery. An unstructured mesh, compressible flow solver based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for the flow past a roughness element under several wind-tunnel conditions. For a cylindrical roughness element with a height to the boundary-layer thickness ratio from 0.8 to 2.5, the wake flow is characterized by a mushroom-shaped centerline streak and horse-shoe vortices. While time-accurate solutions converged to a steady-state for a ratio of 0.8, strong flow unsteadiness is present for a ratio of 1.3 and 2.5. Instability waves marked by distinct disturbance frequencies were found in the latter two cases. Both the centerline streak and the horse-shoe vortices become unstable downstream. The oscillatory vortices eventually reach an early breakdown stage for the largest roughness element. Spectral analyses in conjunction with the computed root mean square variations suggest that the source of the unsteadiness and instability waves in the wake region may be traced back to possible absolute instability in the front-side separation region.

  3. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  4. Boundary Layer Transition Results From STS-114

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Cassady, Amy M.; Kirk, Benjamin S.; Wang, K. C.; Hyatt, Andrew J.

    2006-01-01

    The tool for predicting the onset of boundary layer transition from damage to and/or repair of the thermal protection system developed in support of Shuttle Return to Flight is compared to the STS-114 flight results. The Boundary Layer Transition (BLT) Tool is part of a suite of tools that analyze the aerothermodynamic environment of the local thermal protection system to allow informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each damage site or repair, the expected time of transition onset is predicted to help determine the proper aerothermodynamic environment to use in the subsequent thermal and stress analysis of the local structure. The boundary layer transition criteria utilized for the tool was developed from ground-based measurements to account for the effect of both protuberances and cavities and has been calibrated against flight data. Computed local boundary layer edge conditions provided the means to correlate the experimental results and then to extrapolate to flight. During STS-114, the BLT Tool was utilized and was part of the decision making process to perform an extravehicular activity to remove the large gap fillers. The role of the BLT Tool during this mission, along with the supporting information that was acquired for the on-orbit analysis, is reviewed. Once the large gap fillers were removed, all remaining damage sites were cleared for reentry as is. Post-flight analysis of the transition onset time revealed excellent agreement with BLT Tool predictions.

  5. Cutin plays a role in differentiation of endosperm-derived callus of kiwifruit.

    PubMed

    Popielarska-Konieczna, Marzena; Kozieradzka-Kiszkurno, Małgorzata; Bohdanowicz, Jerzy

    2011-11-01

    Cutin fluorescence, after auramine O treatment, was detected on the surface of organogenic areas (protuberances) of endosperm derived callus induced on Murashige and Skoog medium with thidiazuron (0.5 mg l(-1)) in darkness. Electron micrographs of the protuberances revealed cuticle, visible as a dark-staining layer, and amorphous waxes on the cell wall. In some cases the cells of the epidermis-like layer and shoot buds at early stages of development showed thick and characteristically wavy cutin. This waviness corresponds with the wrinkled appearance of the cell wall as observed by scanning electron microscopy. The role of multivesicular bodies in cutin production and transfer to the plasma membrane is discussed.

  6. High-Speed PLIF Imaging of Hypersonic Transition over Discrete Cylindrical Roughness

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; Ivey, C. B.; Inman, J. A.; Bathel, B. F.; Jones, S. B.; McCrea, A. C.; Jiang, N.; Webster, M.; Lempert, W.; Miller, J.; hide

    2010-01-01

    In two separate test entries, advanced laser-based instrumentation has been developed and applied to visualize the hypersonic flow over cylindrical protrusions on a flat plate. Upstream of these trips, trace quantities of nitric oxide (NO) were seeded into the boundary layer. The protuberances were sized to force laminar-to-turbulent boundary layer transition. In the first test, a 10-Hz nitric oxide planar laser-induced fluorescence (NO PLIF) flow visualization system was used to provide wide-field-of-view, high-resolution images of the flowfield. The images had sub-microsecond time resolution. However these images, obtained with a time separation of 0.1 sec, were uncorrelated with each other. Fluorescent oil-flow visualizations were also obtained during this test. In the second experiment, a laser and camera system capable of acquiring NO PLIF measurements at 1 million frames per second (1 MHz) was used. This system had lower spatial resolution, and a smaller field of view, but the images were time correlated so that the development of the flow structures could be observed in time.

  7. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    PubMed

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  8. Aerothermodynamic Testing of Protuberances and Penetrations on the NASA Crew Exploration Vehicle Heat Shield in the NASA Langley 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2008-01-01

    An experimental wind tunnel program is being conducted in support of an Agency wide effort to develop a replacement for the Space Shuttle and to support the NASA s long-term objective of returning to the moon and then on to Mars. This paper documents experimental measurements made on several scaled ceramic heat transfer models of the proposed Crew Exploration Vehicle. Global heat transfer images and heat transfer distributions obtained using phosphor thermography were used to infer interference heating on the Crew Exploration Vehicle Cycle 1 heat shield from local protuberances and penetrations for both laminar and turbulent heating conditions. Test parametrics included free stream Reynolds numbers of 1.0x10(exp 6)/ft to 7.25x10(exp 6)/ft in Mach 6 air at a fixed angle-of-attack. Single arrays of discrete boundary layer trips were used to trip the boundary layer approaching the protuberances/penetrations to a turbulent state. Also, the effects of three compression pad diameters, two radial locations of compression pad/tension tie location, compression pad geometry, and rotational position of compression pad/tension tie were examined. The experimental data highlighted in this paper are to be used to validate CFD tools that will be used to generate the flight aerothermodynamic database. Heat transfer measurements will also assist in the determination of the most appropriate engineering methods that will be used to assess local flight environments associated with protuberances/penetrations of the CEV thermal protection system.

  9. MHz-Rate NO PLIF Imaging in a Mach 10 Hypersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Jiang, N.; Webster, M.; Lempert, Walter R.; Miller, J. D.; Meyer, T. R.; Danehy, Paul M.

    2010-01-01

    NO PLIF imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 inch Mach 10 hypersonic wind tunnel. Approximately two hundred time correlated image sequences, of between ten and twenty individual frames, were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The majority of the image sequences were obtained from the boundary layer of a 20 flat plate model, in which transition was induced using a variety of cylindrical and triangular shaped protuberances. The high speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified. A series of image sequences were also obtained from a 20 compression ramp at a 10 angle of attack in which the temporal dynamics of the characteristic separated flow was captured in a time correlated manner.

  10. Hypersonic Navier-Stokes Comparisons to Orbiter Flight Data

    NASA Technical Reports Server (NTRS)

    Candler, Graham V.; Campbell, Charles H.

    2010-01-01

    During the STS-119 flight of Space Shuttle Discovery, two sets of surface temperature measurements were made. Under the HYTHIRM program3 quantitative thermal images of the windward side of the Orbiter with a were taken. In addition, the Boundary Layer Transition Flight Experiment 4 made thermocouple measurements at discrete locations on the Orbiter wind side. Most of these measurements were made downstream of a surface protuberance designed to trip the boundary layer to turbulent flow. In this paper, we use the US3D computational fluid dynamics code to simulate the Orbiter flow field at conditions corresponding to the STS-119 re-entry. We employ a standard two-temperature, five-species finite-rate model for high-temperature air, and the surface catalysis model of Stewart.1 This work is similar to the analysis of Wood et al . 2 except that we use a different approach for modeling turbulent flow. We use the one-equation Spalart-Allmaras turbulence model8 with compressibility corrections 9 and an approach for tripping the boundary layer at discrete locations. In general, the comparison between the simulations and flight data is remarkably good

  11. Role of animal pole protuberance and microtubules during meiosis in sea cucumber Apostichopus japonicus oocytes

    NASA Astrophysics Data System (ADS)

    Pang, Zhenguo; Chang, Yaqing; Sun, Huiling; Yu, Jiaping

    2010-05-01

    Fully grown oocytes of Apostichopus japonicus have a cytoplasmic protuberance where the oocyte attaches to the follicle. The protuberance and the oolamina located on the opposite side of the oocyte indicate the animal-vegetal axis. Two pre-meiotic centrosomes are anchored to the protuberance by microtubules between centrosomes and protuberance. After meiosis reinitiation induced by DTT solution, the germinal vesicle (GV) migrates towards the protuberance. The GV breaks down after it migrates to the oocyte membrane on the protuberance side. The protuberance then contracts back into the oocyte and the first polar body extrudes from the site of the former protuberance. The second polar body forms beneath the first. Thus the oocyte protuberance indicates the presumptive animal pole well before maturation of the oocyte.

  12. Stereoscopic Imaging in Hypersonics Boundary Layers using Planar Laser-Induced Fluorescence

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Bathel, Brett; Inman, Jennifer A.; Alderfer, David W.; Jones, Stephen B.

    2008-01-01

    Stereoscopic time-resolved visualization of three-dimensional structures in a hypersonic flow has been performed for the first time. Nitric Oxide (NO) was seeded into hypersonic boundary layer flows that were designed to transition from laminar to turbulent. A thick laser sheet illuminated and excited the NO, causing spatially-varying fluorescence. Two cameras in a stereoscopic configuration were used to image the fluorescence. The images were processed in a computer visualization environment to provide stereoscopic image pairs. Two methods were used to display these image pairs: a cross-eyed viewing method which can be viewed by naked eyes, and red/blue anaglyphs, which require viewing through red/blue glasses. The images visualized three-dimensional information that would be lost if conventional planar laser-induced fluorescence imaging had been used. Two model configurations were studied in NASA Langley Research Center's 31-Inch Mach 10 Air Wind tunnel. One model was a 10 degree half-angle wedge containing a small protuberance to force the flow to transition. The other model was a 1/3-scale, truncated Hyper-X forebody model with blowing through a series of holes to force the boundary layer flow to transition to turbulence. In the former case, low flowrates of pure NO seeded and marked the boundary layer fluid. In the latter, a trace concentration of NO was seeded into the injected N2 gas. The three-dimensional visualizations have an effective time resolution of about 500 ns, which is fast enough to freeze this hypersonic flow. The 512x512 resolution of the resulting images is much higher than high-speed laser-sheet scanning systems with similar time response, which typically measure 10-20 planes.

  13. Aero-optics overview. [laser applications

    NASA Technical Reports Server (NTRS)

    Gilbert, K. G.

    1980-01-01

    Various aero-optical phenomena are discussed with reference to their effect on airborne high energy lasers. Major emphasis is placed on: compressibility effects induced in the surrounding flow field; viscous effects which manifests themselves as aircraft boundary layers or shear layers; inviscid flow fields surrounding the aircraft due to airflow around protuberance such as laser turret assemblies; and shocks, established whenever local flow exceeds Mach one. The significant physical parameters affecting the interaction of a laser beam with a turbulent boundary layer are also described.

  14. Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz

    NASA Technical Reports Server (NTRS)

    Medford, Taylor L.; Danehy, Paul M.; Jones, Stephen B.; Jiang, N.; Webster, M.; Lempert, Walter; Miller, J.; Meyer, T.

    2011-01-01

    A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center s 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.

  15. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances

    NASA Astrophysics Data System (ADS)

    Cai, Chang; Zuo, Zhigang; Maeda, Takao; Kamada, Yasunari; Li, Qing'an; Shimamoto, Kensei; Liu, Shuhong

    2017-11-01

    Recently leading-edge protuberances have attracted great attention as a passive method for separation control. In this paper, the effect of multiple leading-edge protuberances on the performance of a two-dimensional airfoil is investigated through experimental measurement of aerodynamic forces, surface tuft visualization, and numerical simulation. In contrast to the sharp stall of the baseline airfoil with large hysteresis effect during AOA (angle of attack) increasing and decreasing, the stall process of the modified airfoil with leading-edge protuberances is gentle and stable. Flow visualization revealed that the flow past each protuberance is periodic and symmetric at small AOAs. Streamwise vortices are generated on the shoulders of the protuberance, leading to a larger separation around the valley sections and a longer attachment along the peak sections. When some critical AOA is exceeded, aperiodic and asymmetric flow patterns occur on the protuberances at different spanwise positions, with leading-edge separation on some of the valley sections and non-stalled condition elsewhere. A combined mechanism, involving both the compartmentalization effect of the slender momentum-enhanced attached flows on the protuberance peaks and the downwash effect of the local stalled region with low circulation, is proposed to explain the generation of the aperiodic flow patterns. The influence of the number of protuberances is also investigated, which shows similar aperiodic flow patterns. The distance between the neighboring local stalled valley sections is found to be in the range of 4-7 times the protuberance wavelength. According to the proposed mechanism, it is speculated that the distance between the neighboring local stalled valley sections is inclined to increase with a smaller protuberance amplitude or at a larger AOA.

  16. Turbulent Heat-Transfer Coefficients in the Vicinity of Surface Protuberances

    NASA Technical Reports Server (NTRS)

    Wisniewski, Richard J.

    1958-01-01

    Local turbulent heating rates were obtained in the vicinity of surface protuberances mounted on the cylinder section of a cone cylinder model at a Mach number of 3.12. Data were obtained at Reynolds number per foot of 4.5 and 6 million for an unswept cylinder, a 45 deg swept cylinder, a 45 deg elbow, and several 90 deg elbows. The unswept cylinder and the 90 deg elbows increased the local turbulent heating rates in the vicinity of the surface protuberances. The data of the 45 deg swept cylinder and the 45 deg elbow resulted in heating rates lower than those observed without surface protuberances. In general, sweeping a surface protuberance resulted in heating rates comparable or lower than those measured without surface protuberances.

  17. Low-damage direct patterning of silicon oxide mask by mechanical processing

    PubMed Central

    2014-01-01

    To realize the nanofabrication of silicon surfaces using atomic force microscopy (AFM), we investigated the etching of mechanically processed oxide masks using potassium hydroxide (KOH) solution. The dependence of the KOH solution etching rate on the load and scanning density of the mechanical pre-processing was evaluated. Particular load ranges were found to increase the etching rate, and the silicon etching rate also increased with removal of the natural oxide layer by diamond tip sliding. In contrast, the local oxide pattern formed (due to mechanochemical reaction of the silicon) by tip sliding at higher load was found to have higher etching resistance than that of unprocessed areas. The profile changes caused by the etching of the mechanically pre-processed areas with the KOH solution were also investigated. First, protuberances were processed by diamond tip sliding at lower and higher stresses than that of the shearing strength. Mechanical processing at low load and scanning density to remove the natural oxide layer was then performed. The KOH solution selectively etched the low load and scanning density processed area first and then etched the unprocessed silicon area. In contrast, the protuberances pre-processed at higher load were hardly etched. The etching resistance of plastic deformed layers was decreased, and their etching rate was increased because of surface damage induced by the pre-processing. These results show that etching depth can be controlled by controlling the etching time through natural oxide layer removal and mechanochemical oxide layer formation. These oxide layer removal and formation processes can be exploited to realize low-damage mask patterns. PMID:24948891

  18. Airfoil section characteristics as affected by protuberances

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1934-01-01

    The drag and interference caused by protuberance from the surface of an airfoil have been determined in the NACA variable-density wind tunnel at a Reynolds number approximately 3,100,000. The effects of variations of the fore-and-aft position, height, and shape of the protuberance were measured by determining how the airfoil section characteristics were affected by the addition of the various protuberances extending along the entire span of the airfoil. The results provide fundamental data on which to base the prediction of the effects of actual short-span protuberances. The data may also be applied to the design of air brakes and spoilers.

  19. Disconnect unit

    NASA Technical Reports Server (NTRS)

    Alexander, P., Jr.; Mcdougal, A. R. (Inventor)

    1973-01-01

    A squib-actuated disconnect is characterized by an expandable collet axially extended from a first tension member for receiving in locking engagement a protuberance axially extended from a second tension member. A gas-driven retainer of an annular configuration is also locked in for supporting the collet in locking engagement with the protuberance. The protuberance is axially displaced in response to a firing of an associated squib for thus accommodating a disengagement of the protuberance and the collet.

  20. Aerodynamic heating to representative SRB and ET protuberances

    NASA Technical Reports Server (NTRS)

    Engel, C. D.; Lapointe, J. K.

    1979-01-01

    Heating data and data scaling methods which can be used on representative solid rocket booster and external tank (ET) protuberances are described. Topics covered include (1) ET geometry and heating points; (2) interference heating test data (51A); (3) heat transfer data from tests FH-15 and FH-16; (4) individual protuberance data; and (5) interference heating of paint data from test IH-42. A set of drawings of the ET moldline and protuberances is included.

  1. Flow Field Characteristics of Finite-span Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration

    2011-11-01

    Past work has shown that humpback whale-like leading edge protuberances can significantly alter the load characteristics of both 2D and finite-span hydrofoils. To understand the mechanisms responsible for observed performance changes, the flow field characteristics of a baseline hydrofoil and models with leading edge protuberances were examined using the Stereo Particle Image Velocimetry (SPIV) technique. The near surface flow field on the hydrofoils was measured along with the tip vortex flow field on finite-span hydrofoils. Angles of attack ranging from 6 to 24 degrees were examined at freestream velocities of 1.8 m/s and 4.5 m/s, corresponding to Reynolds numbers of 180 and 450 thousand, respectively. While Reynolds number does not play a major role in establishing the flow field trends, both the protuberance geometry and spatial proximity to protuberances affect the velocity and vorticity characteristics near the foil surface, and in the wake and tip vortex. Near surface measurements reveal counter-rotating vortices on protuberance shoulders, while tip vortex measurements show that streamwise vorticity can be strongly affected by the presence of protuberances. The observed flow field characteristics will be presented. Sponsored by the ONR-ULI program.

  2. ARES I Aerodynamic Testing at the NASA Langley Unitary Plan Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.; Wilcox, Floyd J.

    2011-01-01

    Small-scale force and moment and pressure models based on the outer mold lines of the Ares I design analysis cycle crew launch vehicle were tested in the NASA Langley Research Center Unitary Plan Wind Tunnel from May 2006 to September 2009. The test objectives were to establish supersonic ascent aerodynamic databases and to obtain force and moment, surface pressure, and longitudinal line-load distributions for comparison to computational predictions. Test data were obtained at low through high supersonic Mach numbers for ranges of the Reynolds number, angle of attack, and roll angle. This paper focuses on (1) the sensitivity of the supersonic aerodynamic characteristics to selected protuberances, outer mold line changes, and wind tunnel boundary layer transition techniques, (2) comparisons of experimental data to computational predictions, and (3) data reproducibility. The experimental data obtained in the Unitary Plan Wind Tunnel captured the effects of evolutionary changes to the Ares I crew launch vehicle, exhibited good agreement with predictions, and displayed satisfactory within-test and tunnel-to-tunnel data reproducibility.

  3. KSC-2009-2351

    NASA Image and Video Library

    2009-03-28

    CAPE CANAVERAL, Fla. – A U.S. Navy NP-3D Orion aircraft takes off from the Skid Strip at Cape Canaveral Air Force Station. The plane will fly below space shuttle Discovery as it approaches Kennedy Space Center for landing following the STS-119 mission. Onboard instruments will check the orbiter’s exterior temperatures and a long-range infrared camera will remotely monitor heating to the shuttle’s lower surface, part of the boundary layer transition flight experiment. For the experiment, a heat shield tile with a “speed bump” on it was installed under Discovery’s left wing to intentionally disturb the airflow in a controlled manner and make the airflow turbulent. The tile, a BRI-18, was originally developed as a potential heat shield upgrade on the orbiters and is being considered for use on the Constellation Program’s Orion crew exploration vehicles. The data will determine if a protuberance on a BRI-18 tile is safe to fly and will be used to verify and improve design efforts for future spacecraft. Photo credit: NASA/Jim Grossmann

  4. KSC-2009-2348

    NASA Image and Video Library

    2009-03-28

    CAPE CANAVERAL, Fla. -- A U.S. Navy NP-3D Orion aircraft prepares for takeoff from the Skid Strip at Cape Canaveral Air Force Station. The plane will fly below space shuttle Discovery as it approaches Kennedy Space Center for landing following the STS-119 mission. Onboard instruments will check the orbiter’s exterior temperatures and a long-range infrared camera will remotely monitor heating to the shuttle’s lower surface, part of the boundary layer transition flight experiment. For the experiment, a heat shield tile with a “speed bump” on it was installed under Discovery’s left wing to intentionally disturb the airflow in a controlled manner and make the airflow turbulent. The tile, a BRI-18, was originally developed as a potential heat shield upgrade on the orbiters and is being considered for use on the Constellation Program’s Orion crew exploration vehicles. The data will determine if a protuberance on a BRI-18 tile is safe to fly and will be used to verify and improve design efforts for future spacecraft. Photo credit: NASA/Jim Grossmann

  5. The Flow Field on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid

    2008-11-01

    The agility of the humpback whale has been attributed to the use of its pectoral flippers, on which protuberances are present along the leading edge. The forces and moments on hydrofoils with leading edge protuberances were measured in a water tunnel and were compared to a baseline NACA 63(4)-021 hydrofoil revealing significant performance differences. Three protuberance amplitudes and two spanwise wavelengths, closely resembling the morphology found in nature, were examined. Qualitative flow visualization techniques were used to examine flow patterns surrounding the hydrofoils, and Particle Image Velocimetry (PIV) was used to quantify these patterns. Flow visualizations have revealed counter-rotating vortices stemming from the shoulders of the protuberances. These streamwise vortices are a result of the spanwise pressure gradient brought about by the varying leading edge curvature. PIV was used to quantify the strength of these vortices as a function of angle of attack and leading edge geometry. At low angles of attack, these vortices are symmetric with respect to the protuberances; however, the symmetry is lost at high angles of attack. The loss of symmetry can be correlated with the separation point location on the hydrofoil.

  6. Cast Glance Near Infrared Imaging Observations of the Space Shuttle During Hypersonic Re-Entry

    NASA Technical Reports Server (NTRS)

    Tack, Steve; Tomek, Deborah M.; Horvath, Thomas J.; Verstynen, Harry A.; Shea, Edward J.

    2010-01-01

    High resolution calibrated infrared imagery of the Space Shuttle was obtained during hypervelocity atmospheric entries of the STS-119, STS-125 and STS128 missions and has provided information on the distribution of surface temperature and the state of the airflow over the windward surface of the Orbiter during descent. This data collect was initiated by NASA s Hypersonic Thermodynamic Infrared Measurements (HYTHIRM) team and incorporated the use of air- and land-based optical assets to image the Shuttle during atmospheric re-entry. The HYTHIRM objective is to develop and implement a set of mission planning tools designed to establish confidence in the ability of an existing optical asset to reliably acquire, track and return global quantitative surface temperatures of the Shuttle during entry. On Space Shuttle Discovery s STS-119 mission, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. On STS-119, the windward airflow on the port wing was deliberately disrupted by a four-inch wide and quarter-inch tall protuberance built into the modified tile. In coordination with this flight experiment, a US Navy NP-3D Orion aircraft was flown 28 nautical miles below Discovery and remotely monitored surface temperature of the Orbiter at Mach 8.4 using a long-range infrared optical package referred to as Cast Glance. Approximately two months later, the same Navy Cast Glance aircraft successfully monitored the surface temperatures of the Orbiter Atlantis traveling at approximately Mach 14.3 during its return from the successful Hubble repair mission. In contrast to Discovery, Atlantis was not part of the Boundary Layer Transition (BLT) flight experiment, thus the vehicle was not configured with a protuberance on the port wing. In September 2009, Cast Glance was again successful in capturing infrared imagery and monitoring the surface temperatures on Discovery s next flight, STS-128. Again, NASA flew a specially modified thermal protection system tile and instrumentation package to monitor heating effects from boundary layer transition during re-entry. During this mission, Cast Glance was able to image laminar and turbulent flow phenomenology optimizing data collection for Mach 14.7. The purpose of this paper is to describe key elements associated with STS-119/125/128 mission planning and execution from the perspective of the Cast Glance flight crew that obtained the imagery. The paper will emphasize a human element of experience, expertise and adaptability seamlessly coupled with Cast Glance system and sensor technology required to manually collect the required imagery. Specific topics will include a near infrared (NIR) camera upgrade that was implemented just prior to the missions, how pre-flight radiance modeling was utilized to optimize the IR sensor configuration, communications, the development of aircraft test support positions based upon Shuttle trajectory information, support to contingencies such as Shuttle one orbit wave-offs/west coast diversions and then the Cast Glance perspective during an actual Shuttle imaging mission.

  7. Aerothermodynamics and planetary entry; Aerospace Sciences Meeting, 18th, Pasadena, CA, January 14-16, 1980 and Thermophysics Conference, 15th, Snowmass, CO, July 14-16, 1980, Technical Papers

    NASA Astrophysics Data System (ADS)

    Crosbie, A. L.

    Aspects of aerothermodynamics are considered, taking into account aerodynamic heating for gaps in laminar and transitional boundary layers, the correlation of convection heat transfer for open cavities in supersonic flow, the heat transfer and pressure on a flat plate downstream of heated square jet in a Mach 0.4 to 0.8 crossflow, the effect of surface roughness character on turbulent reentry heating, three-dimensional protuberance interference heating in high-speed flow, and hypersonic flow over small span flaps in a thick turbulent boundary layer. Questions of thermal protection are investigated, giving attention to thermochemical ablation of tantalum carbide loaded carbon-carbons, the catalytic recombination of nitrogen and oxygen on high-temperature reusable surface insulation, particle acceleration using a helium arc heater, a temperature and ablation optical sensor, a wind-tunnel study of ascent heating of multiple reentry vehicle configurations, and reentry vehicle soft-recovery techniques. Subjects examined in connection with a discussion of planetary entry are related to a thermal protection system for the Galileo mission atmospheric entry probe, the viscosity of multicomponent partially ionized gas mixtures associated with Jovian entry, coupled laminar and turbulent flow solutions for Jovian entry, and a preliminary aerothermal analysis for Saturn entry.

  8. Design and Implementation of the Boundary Layer Transition Flight Experiment on Space Shuttle Discovery

    NASA Technical Reports Server (NTRS)

    Spanos, Theodoros A.; Micklos, Ann

    2010-01-01

    In an effort to better the understanding of high speed aerodynamics, a series of flight experiments were installed on Space Shuttle Discovery during the STS-119 and STS-128 missions. This experiment, known as the Boundary Layer Transition Flight Experiment (BLTFE), provided the technical community with actual entry flight data from a known height protuberance at Mach numbers at and above Mach 15. Any such data above Mach 15 is irreproducible in a laboratory setting. Years of effort have been invested in obtaining this valuable data, and many obstacles had to be overcome in order to ensure the success of implementing an Orbiter modification. Many Space Shuttle systems were involved in the installation of appropriate components that revealed 'concurrent engineering' was a key integration tool. This allowed the coordination of all various parts and pieces which had to be sequenced appropriately and installed at the right time. Several issues encountered include Orbiter configuration and access, design requirements versus current layout, implementing the modification versus typical processing timelines, and optimizing the engineering design cycles and changes. Open lines of communication within the entire modification team were essential to project success as the team was spread out across the United States, from NASA Kennedy Space Center in Florida, to NASA Johnson Space Center in Texas, to Boeing Huntington Beach, California among others. The forum permits the discussion of processing concerns from the design phase to the implementation phase, which eventually saw the successful flights and data acquisition on STS-119 in March 2009 and on STS-128 in September 2009.

  9. Influence of carbon source on cell surface topology of Thermomonospora curvata.

    PubMed Central

    Hostalka, F; Moultrie, A; Stutzenberger, F

    1992-01-01

    The appearance of cell surface protuberances in Thermomonospora curvata correlated with cell-bound exoenzymes which could be removed by brief sonication. Mycelia grown on cellulose or xylan had numerous protuberances and retained 20 to 25% of endoglucanase and endoxylanase at cell surfaces, while those grown on pectin or starch had few protuberances and negligible bound pectinase or amylase. Images PMID:1400256

  10. KSC-2009-2350

    NASA Image and Video Library

    2009-03-28

    CAPE CANAVERAL, Fla. – A U.S. Navy NP-3D Orion aircraft taxies to the runway of the Skid Strip at Cape Canaveral Air Force Station in preparation for takeoff. The plane will fly below space shuttle Discovery as it approaches Kennedy Space Center for landing following the STS-119 mission. Onboard instruments will check the orbiter’s exterior temperatures and a long-range infrared camera will remotely monitor heating to the shuttle’s lower surface, part of the boundary layer transition flight experiment. For the experiment, a heat shield tile with a “speed bump” on it was installed under Discovery’s left wing to intentionally disturb the airflow in a controlled manner and make the airflow turbulent. The tile, a BRI-18, was originally developed as a potential heat shield upgrade on the orbiters and is being considered for use on the Constellation Program’s Orion crew exploration vehicles. The data will determine if a protuberance on a BRI-18 tile is safe to fly and will be used to verify and improve design efforts for future spacecraft. Photo credit: NASA/Jim Grossmann

  11. KSC-2009-2349

    NASA Image and Video Library

    2009-03-28

    CAPE CANAVERAL, Fla. – The engines of U.S. Navy NP-3D Orion aircraft are started in preparation for takeoff from the Skid Strip at Cape Canaveral Air Force Station. The plane will fly below space shuttle Discovery as it approaches Kennedy Space Center for landing following the STS-119 mission. Onboard instruments will check the orbiter’s exterior temperatures and a long-range infrared camera will remotely monitor heating to the shuttle’s lower surface, part of the boundary layer transition flight experiment. For the experiment, a heat shield tile with a “speed bump” on it was installed under Discovery’s left wing to intentionally disturb the airflow in a controlled manner and make the airflow turbulent. The tile, a BRI-18, was originally developed as a potential heat shield upgrade on the orbiters and is being considered for use on the Constellation Program’s Orion crew exploration vehicles. The data will determine if a protuberance on a BRI-18 tile is safe to fly and will be used to verify and improve design efforts for future spacecraft. Photo credit: NASA/Jim Grossmann

  12. Vortex Shedding from Finned Circular Cylinders

    DTIC Science & Technology

    1980-11-01

    FINNED CIRCULAR CYLINDERSo ,rm"" 1..UTNOI .)R*., r. *.040, 111SPOR- / T NuMBII f.John G. elute asOHans J.’/, ugt -. . . , ,<-. -. ,:. =., .. Siil P3RPIO...fins and other sharp protuberances. These purely two-dimensional flows then may be used in a strip theory to include at least some aspects of three...boundary- layer theory . Such a prediction method, together with a technique to provide for a vortex sheet at the separation point, will be included in

  13. Estimation of the Unsteady Aerodynamic Load on Space Shuttle External Tank Protuberances from a Component Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.

    2008-01-01

    At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.

  14. Plastic deformation at surface during unlubricated sliding

    NASA Technical Reports Server (NTRS)

    Yamamoto, T.; Buckley, D. H.

    1982-01-01

    The plastic deformation and wear of 304 stainless-steel surface slid against an aluminum oxide rider were observed by using a scanning electron microscope and an optical microscope. Experiments were conducted in a vacuum of 0.000001 Pa and in an environment of 0.0005 Pa chlorine gas at 25 C. The load was 500 grams and the sliding velocity was 0.5 centimeter per second. The deformed surface layer which accumulates and develops successively is left behind the rider, and step-shaped protuberances are developed even after single pass sliding under both environmental conditions. A fully developed surface layer is gradually torn off leaving a characteristic pattern. These observations result from both adhesion and an adhesive wear mechanism.

  15. Nectary structure and nectar secretion in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge (Orchidaceae).

    PubMed

    Stpiczynska, M; Davies, K L; Gregg, A

    2004-01-01

    It had previously been assumed that Maxillaria spp. produce no nectar. However, nectar has recently been observed in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge amongst other species. Furthermore, it is speculated that M. coccinea may be pollinated by hummingbirds. The aim of this paper is to investigate these claims further. Light microscopy, histochemistry, scanning and transmission electron microscopy. This is the first detailed account of nectar secretion in Maxillaria Ruiz & Pav. A 'faucet and sink' arrangement occurs in M. coccinea. Here, the nectary is represented by a small protuberance upon the ventral surface of the column and nectar collects in a semi-saccate reservoir formed by the fusion of the labellum and the base of the column-foot. The nectary comprises a single-layered epidermis and three or four layers of small subepidermal cells. Beneath these occur several layers of larger parenchyma cells. Epidermal cells lack ectodesmata and have a thin, permeable, reticulate cuticle with associated swellings that coincide with the middle lamella between adjoining epidermal cells. Nectar is thought to pass both along the apoplast and symplast and eventually through the stretched and distended cuticle. The secretory cells are collenchymatous, nucleated and have numerous pits with plasmodesmata, mitochondria, rough ER and plastids with many plastoglobuli but few lamellae. Subsecretory cells have fewer plastids than secretory cells. Nectary cells also contain large intravacuolar protein bodies. The floral morphology of M. coccinea is considered in relation to ornithophily and its nectary compared with a similar protuberance found in the entomophilous species M. parviflora (Poepp. & Endl.) Garay. Flowers of M. coccinea produce copious amounts of nectar and, despite the absence of field data, their morphology and the exact configuration of their parts argue strongly in favour of ornithophily.

  16. The Flow Field on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid

    2009-11-01

    The exceptional mobility of the humpback whale has been linked to the use of its unique pectoral flippers. Biologists speculate that the flippers leading edge protuberances are a form of passive flow control. Force measurements on 2D hydrofoils with spanwise uniform leading edge protuberances, resembling those seen on the humpback whale flipper, were taken in a water tunnel and have revealed performance modifications when compared to a baseline NACA 63(4)-021 hydrofoil model. Qualitative flow visualization techniques and Particle Image Velocimetry (PIV) flow field measurements on the modified hydrofoils have shown that streamwise vortices originating from the shoulders of the protuberances are the likely cause of performance changes. Varying levels of interaction among adjacent streamwise vortices have been observed as a function of angle of attack and chord location. The circulation of these vortices as a function of angle of attack and spatial location was measured and an analysis of the vortex interactions will be presented.

  17. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  18. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    NASA Technical Reports Server (NTRS)

    Goekcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Each panel test article included a metallic separation bolt imbedded in Orion compression-pad and heatshield materials, resulting in a circular protuberance over a flat plate. The protuberances produce complex model flowfields, containing shock-shock and shock-boundary layer interactions, and multiple augmented heating regions on the test plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles, and comparisons with the measured calibration data.

  19. Co-op Student Work Report

    NASA Technical Reports Server (NTRS)

    Powell, Jessica M.

    2012-01-01

    Projects: (1) Boeing Launch Abort Analysis My first project for the summer was analyzing the Boeing CCDev Vehicle's abort aerodynamics using an inviscid solver (CART3D). The goal of the project was to develop the grid and CFD inputs necessary to use CART3D as a quick tool for investigating loading trends at various points along abort trajectories. As a supplementary task, I analyzed a few cases and compared them to the aerodatabase from the last generation geometry. (2) My second project for the summer dealt with investigating how heating changes as the height of a protuberance on top of a flat plate changes. The goal of this investigation is to better understand how to properly model heating on and around a protuberance. This is one of the biggest challenges when designing a re ]entry vehicle because very small changes in the shape and conditions leading up to a protuberance, not to mention the protuberance geometry, will greatly impact the local heating.

  20. Heating Augmentation for Short Hypersonic Protuberances

    NASA Technical Reports Server (NTRS)

    Mazaheri, Alireza R.; Wood, William A.

    2008-01-01

    Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9:5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hyper- sonic protuberances (k/delta < 0.33) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation.

  1. Heating Augmentation for Short Hypersonic Protuberances

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.; Wood, William A.

    2008-01-01

    Computational aeroheating analyses of the Space Shuttle Orbiter plug repair models are validated against data collected in the Calspan University of Buffalo Research Center (CUBRC) 48 inch shock tunnel. The comparison shows that the average difference between computed heat transfer results and the data is about 9.5%. Using CFD and Wind Tunnel (WT) data, an empirical correlation for estimating heating augmentation on short hypersonic protuberances (k/delta less than 0.3) is proposed. This proposed correlation is compared with several computed flight simulation cases and good agreement is achieved. Accordingly, this correlation is proposed for further investigation on other short hypersonic protuberances for estimating heating augmentation.

  2. Thermal Stress and Heat Transfer Coefficient for Ceramics Stalk Having Protuberance Dipping into Molten Metal

    NASA Astrophysics Data System (ADS)

    Noda, Nao-Aki; Hendra; Li, Wenbin; Takase, Yasushi; Ogura, Hiroki; Higashi, Yusuke

    Low pressure die casting is defined as a net shape casting technology in which the molten metal is injected at high speeds and pressure into a metallic die. The low pressure die casting process plays an increasingly important role in the foundry industry as a low-cost and high-efficiency precision forming technique. In the low pressure die casting process is that the permanent die and filling systems are placed over the furnace containing the molten alloy. The filling of the cavity is obtained by forcing the molten metal, by means of a pressurized gas, to rise into a ceramic tube having protuberance, which connects the die to the furnace. The ceramics tube, called stalk, has high temperature resistance and high corrosion resistance. However, attention should be paid to the thermal stress when the stalk having protuberance is dipped into the molten aluminum. It is important to reduce the risk of fracture that may happen due to the thermal stresses. In this paper, thermo-fluid analysis is performed to calculate surface heat transfer coefficient. The finite element method is applied to calculate the thermal stresses when the stalk having protuberance is dipped into the crucible with varying dipping speeds. It is found that the stalk with or without protuberance should be dipped into the crucible slowly to reduce the thermal stress.

  3. Surface morphology of vacuum-evaporated pentacene film on Si substrate studied by in situ grazing-incidence small-angle X-ray scattering: I. The initial stage of formation of pentacene film

    NASA Astrophysics Data System (ADS)

    Hirosawa, Ichiro; Watanabe, Takeshi; Koganezawa, Tomoyuki; Kikuchi, Mamoru; Yoshimoto, Noriyuki

    2018-03-01

    The progress of the surface morphology of a growing sub-monolayered pentacene film on a Si substrate was studied by in situ grazing-incidence small angle X-ray scattering (GISAXS). The observed GISAXS profiles did not show sizes of pentacene islands but mainly protuberances on the boundaries around pentacene film. Scattering of X-ray by residual pits in the pentacene film was also detected in the GISAXS profiles of an almost fully covered film. The average radius of pentacene protuberances increased from 13 to 24 nm as the coverage increased to 0.83 monolayer, and the most frequent radius was almost constant at approximately 9 nm. This result suggests that the population of larger protuberances increase with increasing lengths of boundaries of the pentacene film. It can also be considered that the detected protuberances were crystallites of pentacene, since the average size of protuberances was nearly equal to crystallite sizes of pentacene films. The almost constant characteristic distance of 610 nm and amplitudes of pair correlation functions at low coverages suggest that the growth of pentacene films obeyed the diffusion-limited aggregation (DLA) model, as previously reported. It is also considered that the sites of islands show a triangular distribution for small variations of estimated correlation distances.

  4. Oxidative C-H activation of amines using protuberant lychee-like goethite

    EPA Science Inventory

    Goethite with protuberant lychee morphology has been synthesized that accomplishes C-H activation of N-methylanilines to generate α-aminonitriles; the catalyst takes oxygen from air and uses it as a cooxidant in the process. Inspired by nature, we aspired to design a protocol for...

  5. Experimental Space Shuttle Orbiter Studies to Acquire Data for Code and Flight Heating Model Validation

    NASA Technical Reports Server (NTRS)

    Wadhams, T. P.; Holden, M. S.; MacLean, M. G.; Campbell, Charles

    2010-01-01

    In an experimental study to obtain detailed heating data over the Space Shuttle Orbiter, CUBRC has completed an extensive matrix of experiments using three distinct models and two unique hypervelocity wind tunnel facilities. This detailed data will be employed to assess heating augmentation due to boundary layer transition on the Orbiter wing leading edge and wind side acreage with comparisons to computational methods and flight data obtained during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM during STS-119 reentry. These comparisons will facilitate critical updates to be made to the engineering tools employed to make assessments about natural and tripped boundary layer transition during Orbiter reentry. To achieve the goals of this study data was obtained over a range of Mach numbers from 10 to 18, with flight scaled Reynolds numbers and model attitudes representing key points on the Orbiter reentry trajectory. The first of these studies were performed as an integral part of Return to Flight activities following the accident that occurred during the reentry of the Space Shuttle Columbia (STS-107) in February of 2003. This accident was caused by debris, which originated from the foam covering the external tank bipod fitting ramps, striking and damaging critical wing leading edge heating tiles that reside in the Orbiter bow shock/wing interaction region. During investigation of the accident aeroheating team members discovered that only a limited amount of experimental wing leading edge data existed in this critical peak heating area and a need arose to acquire a detailed dataset of heating in this region. This new dataset was acquired in three phases consisting of a risk mitigation phase employing a 1.8% scale Orbiter model with special temperature sensitive paint covering the wing leading edge, a 0.9% scale Orbiter model with high resolution thin-film instrumentation in the span direction, and the primary 1.8% scale Orbiter model with detailed thin-film resolution in both the span and chord direction in the area of peak heating. Additional objectives of this first study included: obtaining natural or tripped turbulent wing leading edge heating levels, assessing the effectiveness of protuberances and cavities placed at specified locations on the orbiter over a range of Mach numbers and Reynolds numbers to evaluate and compare to existing engineering and computational tools, obtaining cavity floor heating to aid in the verification of cavity heating correlations, acquiring control surface deflection heating data on both the main body flap and elevons, and obtain high speed schlieren videos of the interaction of the orbiter nose bow shock with the wing leading edge. To support these objectives, the stainless steel 1.8% scale orbiter model in addition to the sensors on the wing leading edge was instrumented down the windward centerline, over the wing acreage on the port side, and painted with temperature sensitive paint on the starboard side wing acreage. In all, the stainless steel 1.8% scale Orbiter model was instrumented with over three-hundred highly sensitive thin-film heating sensors, two-hundred of which were located in the wing leading edge shock interaction region. Further experimental studies will also be performed following the successful acquisition of flight data during the Orbiter Entry Boundary Layer Flight Experiment and HYTHIRM on STS-119 at specific data points simulating flight conditions and geometries. Additional instrumentation and a protuberance matching the layout present during the STS-119 boundary layer transition flight experiment were added with testing performed at Mach number and Reynolds number conditions simulating conditions experienced in flight. In addition to the experimental studies, CUBRC also performed a large amount of CFD analysis to confirm and validate not only the tunnel freestream conditions, but also 3D flows over the orbiter acreage, wing leading edge, and controlurfaces to assess data quality, shock interaction locations, and control surface separation regions. This analysis is a standard part of any experimental program at CUBRC, and this information was of key importance for post-test data quality analysis and understanding particular phenomena seen in the data. All work during this effort was sponsored and paid for by the NASA Space Shuttle Program Office at the Johnson Space Center in Houston, Texas.

  6. Nectary Structure and Nectar Secretion in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge (Orchidaceae)

    PubMed Central

    STPICZYŃSKA, M.; DAVIES, K. L.; GREGG, A.

    2004-01-01

    • Background and Aims It had previously been assumed that Maxillaria spp. produce no nectar. However, nectar has recently been observed in Maxillaria coccinea (Jacq.) L.O. Williams ex Hodge amongst other species. Furthermore, it is speculated that M. coccinea may be pollinated by hummingbirds. The aim of this paper is to investigate these claims further. • Methods Light microscopy, histochemistry, scanning and transmission electron microscopy. • Key Results This is the first detailed account of nectar secretion in Maxillaria Ruiz & Pav. A ‘faucet and sink’ arrangement occurs in M. coccinea. Here, the nectary is represented by a small protuberance upon the ventral surface of the column and nectar collects in a semi‐saccate reservoir formed by the fusion of the labellum and the base of the column‐foot. The nectary comprises a single‐layered epidermis and three or four layers of small subepidermal cells. Beneath these occur several layers of larger parenchyma cells. Epidermal cells lack ectodesmata and have a thin, permeable, reticulate cuticle with associated swellings that coincide with the middle lamella between adjoining epidermal cells. Nectar is thought to pass both along the apoplast and symplast and eventually through the stretched and distended cuticle. The secretory cells are collenchymatous, nucleated and have numerous pits with plasmodesmata, mitochondria, rough ER and plastids with many plastoglobuli but few lamellae. Subsecretory cells have fewer plastids than secretory cells. Nectary cells also contain large intravacuolar protein bodies. The floral morphology of M. coccinea is considered in relation to ornithophily and its nectary compared with a similar protuberance found in the entomophilous species M. parviflora (Poepp. & Endl.) Garay. • Conclusions Flowers of M. coccinea produce copious amounts of nectar and, despite the absence of field data, their morphology and the exact configuration of their parts argue strongly in favour of ornithophily. PMID:14630692

  7. MULTIPLE SPARK GAP SWITCH

    DOEpatents

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  8. Boundary Layer Transition Protuberance Tests at NASA JSC Arc-Jet Facility

    NASA Technical Reports Server (NTRS)

    Larin, M. E.; Marichalar, J. J.; Kinder, G. R.; Campbell, C. H.; Riccio, J. R.; Nquyen, T. Q.; DelPapa, S. V.; Pulsonetti, M. V.

    2009-01-01

    A series of arc-jet tests in support of the Shuttle Orbiter Boundary Layer Transition flight experiment was conducted in the Channel Nozzle of the NASA Johnson Space Center Atmospheric Reentry Materials and Structures Facility. The boundary layer trip was a protrusion of a certain height and geometry fabricated as part of a 6"x6" tile insert, a special test article made of the Boeing Rigid Insulation tile material and coated with the Reaction Cured Glass used for the bottom fuselage tiles of the Space Shuttle Orbiter. A total of five such tile inserts were manufactured: four with the 0.25-in. trip height, and one with the 0.35-in. trip height. The tile inserts were interchangeably installed in the center of the 24"x24" variable configuration tile array mounted in the 24"x24" test section of the channel nozzle. The objectives of the test series were to demonstrate that the boundary layer trip can safely withstand the Space Shuttle Orbiter flight-like re-entry environments and provide temperature data on the protrusion surface, surfaces of the nearby tiles upstream and downstream of the trip, as well as the bond line between the tiles and the structure. The targeted test environments were defined for the tip of the protrusion, away from the nominal surface of the tile array. The arc jet test conditions were approximated in order to produce the levels of the free stream total enthalpy at the protrusion height similar to those expected in flight. The test articles were instrumented with surface, sidewall and bond line thermocouples. Additionally, Tempilaq temperature-indicating paint was applied to the nominal tiles of the tile array in locations not interfering with the protrusion trip. Five different grades of paint were used that disintegrate at different temperatures between 1500 and 2000 deg F. The intent of using the paint was to gauge the RCG-coated tile surface temperature, as well as determine its usefulness for a flight experiment. This paper provides an overview of the channel nozzle arc jet, test articles and test conditions, as well as the results of the arc-jet tests including the measured temperature response of the test articles, their pre- and post-test surface scans, condition of the thermal paint, and continents on the protrusion tip heating achieved in tests compared to the computational fluid dynamics predictions.

  9. Performance of hydrofoils with humpback whale-like leading edge protuberances.

    NASA Astrophysics Data System (ADS)

    Levshin, Alexandra; Henoch, Charles; Johari, Hamid

    2005-11-01

    The humpback whale (Megaptera novaeangliae) is extremely maneuverable, compared to other whale species, despite its large size and rigid body. Turning maneuvers are especially evident during pursuit of prey. The agility of humpback whale has been attributed to their use of pectoral flippers. The thick flippers have large aspect ratios, and large scale protuberances are present on the leading edge. The flippers do not flap during turning maneuvers. The cross-section of the flipper has a profile similar to a NACA 634-021 airfoil. The amplitude of leading edge protuberances ranges from 2.5 to 12% of the chord, with a spanwise extent of 10 to 50% the chord depending on the location along the span. It has been hypothesized that the `bumpy' leading edge is used for flow control. To examine the effects of protuberances on the leading edge of hydrofoils, a series of rectangular foils with bumpy leading edges were manufactured. The leading edge is sinusoidal in the spanwise direction with amplitudes and wavelengths comparable to that of humpback whale's flippers. The forces and moments on these bumpy foils were measured in a water tunnel and compared with a smooth leading edge foil.

  10. Unveiling the morphology of the acetabulum in octopus suckers and its role in attachment

    PubMed Central

    Tramacere, Francesca; Pugno, Nicola M.; Kuba, Michael J.; Mazzolai, Barbara

    2015-01-01

    In recent years, the attachment mechanism of the octopus sucker has attracted the interest of scientists from different research areas, including biology, engineering, medicine and robotics. From a technological perspective, the main goal is to identify the underlying mechanisms involved in sucker attachment for use in the development of new generations of artificial devices and materials. Recently, the understanding of the morphology of the sucker has been significantly improved; however, the mechanisms that allow attachment remain largely unknown. In this work, we present new anatomical findings: specifically, a protuberance in the acetabular roof in five different octopus species; previously, this protuberance was identified by the authors in Octopus vulgaris. Moreover, we discuss the role of the protuberance and other anatomical structures in attachment with minimal energy consumption. PMID:25657834

  11. Water-tunnel experiments on an oscillating airfoil at RE equals 21,000

    NASA Technical Reports Server (NTRS)

    Mcalister, K. W.; Carr, L. W.

    1978-01-01

    Flow visualization experiments were performed in a water tunnel on a modified NACA 0012 airfoil undergoing large amplitude harmonic oscillations in pitch. Hydrogen bubbles were used to: (1) create a conveniently striated and well preserved set of inviscid flow markers; and (2) to expose the succession of events occurring within the viscous domain during the onset of dynamic stall. Unsteady effects were shown to have an important influence on the progression of flow reversal along the airfoil surface prior to stall. A region of reversed flow underlying a free shear layer was found to momentarily exist over the entire upper surface without any appreciable disturbance of the viscous-inviscid boundary. A flow protuberance was observed to develop near the leading edge, while minor vortices evolve from an expanding instability of the free shear layer over the rear portion of the airfoil. The complete breakdown of this shear layer culminates in the successive formation of two dominant vortices.

  12. P-chlorophenoxyisobutyric acid impairs auxin response for gravity-regulated peg formation in cucumber (Cucumis sativus) seedlings.

    PubMed

    Shimizu, Minobu; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2008-01-01

    Cucumber (Cucumis sativus L.) seedlings form a specialized protuberance, the peg, on the transition zone between the hypocotyl and the root. When cucumber seeds germinate in a horizontal position, the seedlings develop a peg on the lower side of the transition zone. To verify the role of auxin action in peg formation, we examined the effect of the anti-auxin, p-chlorophenoxyisobutyric acid (PCIB), on peg formation and mRNA accumulation of auxin-regulated genes. Application of PCIB to cucumber seedlings inhibited peg formation. The application of indole-3-acetic acid (IAA) competed with PCIB and induced peg formation. Furthermore, application of PCIB decreased auxin-inducible CsIAA1 mRNA and increased auxin-repressible CsGRP1 mRNA in the lower side of the transition zone. The differential accumulation of CsIAA1 and CsGRP1 mRNAs in the transition zone of cucumber seedlings grown in a horizontal position was smaller in the PCIB-treated seedlings. These results demonstrate that endogenous auxin redistributes and induces the differential expression of auxin-regulated genes, and ultimately results in the suppression or induction of peg formation in the gravistimulated transition zone of cucumber seedlings.

  13. Cavitation on Hydrofoils with Leading Edge Protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid; Office of Naval Research Collaboration

    2012-11-01

    The effects of spanwise-uniform sinusoidal leading edge protuberances on the flow characteristics and forces of finite-span hydrofoils under vaporous cavitation conditions were examined experimentally over angles of attack ranging from -9° α <= 27°. Two planforms were studied, rectangular and swept, at a Reynolds number of ~ 720,000. Two protuberance wavelengths, λ = 0.25 c and 0.50 c, and three amplitudes, A = 0.025 c, 0.05 c, and 0.12 c, were examined as they resemble the humpback whale flipper morphology. All hydrofoils retain a mean NACA 634-021 profile. The forces and moments were measured at a freestream velocity of 7.2 m/s, and high-speed digital photography was used to capture flow field images at several angles of attack. The cavitation number corresponding to incipient leading edge cavitation was also calculated. As far as forces and cavitation number are concerned, results show that the baseline hydrofoil tends to have nearly equal or improved performance over the modified hydrofoils at most angles of attack tested. Flow images reveal that it is possible that the extent of sheet and tip vortex cavitation can be reduced with the introduction of leading edge protuberances. The forces and cavitation characteristics will be presented. Sponsored by the ONR-ULI program.

  14. A new genus of Braconinae (Hymenoptera: Braconidae) from India with remarkable head ornamentation.

    PubMed

    Ranjith, A P; Nasser, M; Rajmohana, K; Quicke, D L J

    2016-01-05

    A new braconine genus, Stephanobracon Ranjith & Quicke (type-species: Stephanobracon narendrani Ranjith & Quicke sp. nov.) from south India is described and illustrated. It belongs to the tribe Braconini and it displays autapomorphic characters of having two pairs of sharp protuberances near to the antennal sockets and corrugated protuberances on the lateral part of the frons. Its possible relationship to other braconine genera, notably Dolabraulax Quicke, Simra Quicke and Syntomernus Enderlein, is discussed.

  15. Drag Reduction in a Natural High-Frequency Swinging Micro-Articulation: Mouthparts of the Honey Bee

    PubMed Central

    Shi, Guanya; Wu, Jianing

    2017-01-01

    Worker-bee mouthparts consist of the glossa, the galeae and the vestigial labial palp, and it is these structures that enable bees to feed themselves. The articulation joints, 60∼70 µm in diameter, are present on the tip of the labial palp and are covered with olfactory sensilla, allowing movements between the segments. Using a specially designed high-speed camera system, we discovered that the articulation joint could swing in the nectar at a frequency of ∼50 Hz, considerably higher than the usual motion frequency of mammalian joints. To understand the potential drag reduction in this tiny organ, we examined its microstructure and also its surface wettability. We found that chitinous semispherical protuberances (4∼6 µm in diameter) are uniformly scattered on the surface of the joint and, moreover, that the surface is hydrophobic. We proposed a hydrodynamic model and revealed that the specialized surface can effectively reduce the mean equivalent friction (Ff) by ∼10%, through the use of protuberances immersed in the liquid feed. Theoretical results indicated that the dimensions of such protuberances are the predominant factor in minimizing Ff, and that the natural dimensions of the protuberances are close to the theoretical optimum at which friction is at a minimum. These discoveries may inspire the design of high-frequency micro-joints for engineering applications, such as in micro-stirrers. PMID:28355472

  16. Overview of SLS Aeroacoustic Environment Development

    NASA Technical Reports Server (NTRS)

    Steva, Thomas; Herron, Andrew

    2017-01-01

    The Space Launch System (SLS) ascent aeroacoustic environments provide the externally driven noise levels predicted for vehicle ascent during transonic and supersonic flight, and serve as an important input for component and secondary structure vibroacoustic design criteria. This aerodynamically induced noise is predominantly generated by unsteady flow within the local boundary layer due to free stream interaction with the outer mold line (OML). Additional sources are shear flow interactions, shocks, protuberance flows, and wake flows. This presentation provides an overview of the aeroacoustics discipline along with the SLS environment development process, including wind tunnel testing and general data reduction methods. The state of the discipline is also presented with a summary of aeroacoustic measurement and computational techniques currently on the horizon.

  17. Creation of Woven Structures Impacting Self-cleaning Superoleophobicity

    NASA Astrophysics Data System (ADS)

    Lim, Jihye

    For protection of human life from harmful or toxic liquids in working areas, solid surface resistance to liquid with low surface tension (e.g. oil) should be achieved in the outermost layer of protective clothing. Based on the literature review, multiscale structures were emphasized because they can increase roughness on a solid surface and create more void spaces of different sizes. The roughness and void spaces contribute to creating a liquid-vapor interface and reducing the liquid contact area to the solid surface. Woven fabric inherently consists of multiscale structures by its construction: microscale in a yarn structure and macroscale in a fabric structure. When the solid surface tension is low relative to oil, creating an appropriate structural geometry will become a critical way to obtain a superoleophobic surface for oil-resistance. Theoretical modeling and experiments with actual fabric samples were utilized to predict and prove the highest performing structural geometry in woven fabric, respectively. The theoretical geometric modeling accounted for the different weave structures, the yarn compression by the yarn flattening factor, e, and the void space by the void space ratio to the fiber or yarn diameter, T, impacting the liquid apparent contact angle on a fabric surface. The Cassie-Baxter equations were developed using Young's contact angle, thetae, thetae and e, or thetae, e, and T, to predict the liquid apparent contact angle for different geometries. In addition, to prevent a liquid's penetration into a solid structure, the ranges of the protuberance height (>> h2) and distance (< 4ℓ 2 cap) were predicted by the definition of the Laplace pressure, the capillary pressure, and the sagging phenomenon. Those predictions were in strong agreement with the results from the empirical experiment using the actual woven fabric samples. This study identified the impact of the geometries in yarn and woven fabric structures on the fabric resistance against oil through theoretical modeling and experiments. The results suggest particular weave structures, the range of the void space (or the protuberance distance) and the protuberance height in the yarn and fabric structures for the highest performing self-cleaning superoleophobic woven fabric surface.

  18. Vibration Response Predictions for Heavy Panel Mounted Components from Panel Acreage Environment Specifications

    NASA Technical Reports Server (NTRS)

    Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce

    2010-01-01

    The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:

  19. Aircraft drag prediction and reduction. Addendum 1: Computational drag analyses and minimization; mission impossible?

    NASA Technical Reports Server (NTRS)

    Slooff, J. W.

    1986-01-01

    The Special Course on Aircraft Drag Prediction was sponsored by the AGARD Fluid Dynamics Panel and the von Karman Institute and presented at the von Karman Institute, Rhode-Saint-Genese, Belgium, on 20 to 23 May 1985 and at the NASA Langley Research Center, Hampton, Virginia, USA, 5 to 6 August 1985. The course began with a general review of drag reduction technology. Then the possibility of reduction of skin friction through control of laminar flow and through modification of the structure of the turbulence in the boundary layer were discussed. Methods for predicting and reducing the drag of external stores, of nacelles, of fuselage protuberances, and of fuselage afterbodies were then presented followed by discussion of transonic drag rise. The prediction of viscous and wave drag by a method matching inviscid flow calculations and boundary layer integral calculations, and the reduction of transonic drag through boundary layer control are also discussed. This volume comprises Paper No. 9 Computational Drag Analyses and Minimization: Mission Impossible, which was not included in AGARD Report 723 (main volume).

  20. Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    NASA Astrophysics Data System (ADS)

    Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.

    2014-08-01

    An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  1. Effects of landing gear, speed brake and protuberances on the longitudinal aerodynamic characteristics of an NASA supercritical-wing research airplane model

    NASA Technical Reports Server (NTRS)

    Bartlett, D. W.; Sangiorgio, G.

    1975-01-01

    An investigation was conducted in the Langley Research Center 8-foot transonic pressure tunnel to determine the effects of the landing gear, speed brake and the major airplane protuberances on the longitudinal aerodynamic characteristics of an 0.087-scale model of the TF-8A supercritical-wing research airplane. For the effects of the landing gear and speed brake, tests were conducted at Mach numbers of 0.25 and 0.35 with a flap deflection of 20 degrees and a horizontal-tail angle of -10 degrees. These conditions simulated those required for take-off and landing. The effects of the protuberances were determined with the model configured for cruise (i.e., horizontal-tail angle of -2.5 degrees and no other control deflection), and these tests were conducted at Mach numbers from 0.50 to 1.00. The angle-of-attack range for all tests varied from about -5 degrees to 12 degrees.

  2. Spontaneous emergence of overgrown molar teeth in a colony of Prairie voles (Microtus ochrogaster)

    PubMed Central

    Jheon, Andrew H; Prochazkova, Michaela; Sherman, Michael; Manoli, Devanand S; Shah, Nirao M; Carbone, Lawrence; Klein, Ophir

    2015-01-01

    Continuously growing incisors are common to all rodents, which include the Microtus genus of voles. However, unlike many rodents, voles also possess continuously growing molars. Here, we report spontaneous molar defects in a population of Prairie voles (Microtus ochrogaster). We identified bilateral protuberances on the ventral surface of the mandible in several voles in our colony. In some cases, the protuberances broke through the cortical bone. The mandibular molars became exposed and infected, and the maxillary molars entered the cranial vault. Visualisation upon soft tissue removal and microcomputed tomography (microCT) analyses confirmed that the protuberances were caused by the overgrowth of the apical ends of the molar teeth. We speculate that the unrestricted growth of the molars was due to the misregulation of the molar dental stem cell niche. Further study of this molar phenotype may yield additional insight into stem cell regulation and the evolution and development of continuously growing teeth. PMID:25634121

  3. Formation of membrane-bound inclusions and their associations with cytoplasmic channels in early prophase male meiocytes of Althaea rosea (L.) Cavan.

    PubMed

    Luo, Xin Juan; Liu, Xu Hao; Wang, Chong Ying; Wang, Xin Yu

    2008-04-01

    To characterize the cytoplasmic structure reorganization during plant meiosis, the male meiocytes of Althaea rosea (L.) Cavan were examined under the combination of light and electron microscopy. Light microscopic observation of the toluidine blue-stained thick resin sections of young anthers revealed that the meiocytes of sporogenous cell stage were extremely voluminous and variable in shape and division plane. The cell walls (CWs) between some meiocytes were discontinuous at one or several site(s). These discontinuous portions varied between 0.2 and 3.0 microm in length. In addition, it was found that some meiocytes were able to produce protuberances that extended into another meiocyte. When transversally sectioned, the protuberance extending to another cell looked like a small cell lying in another cell. Transmission electron microscopy (TEM) showed that there were many long flat ER cisternae that were actively wrapping around a portion of cytoplasm in the male meiocytes at the sporogenous cell stage. During pre-meiosis interphase and early prophase I, a number of huge (0.5-1.0 microm diameter) spherical membrane-bound inclusions (MBIs) lined by single or double layer(s) of membrane were formed, each membrane actually representing one tightly appressed endoplasmic reticulum (ER) cisterna. The MBIs contained many granular, lamellar and fibrillar structures, and even small MBIs. Moreover, it was found that the MBIs could associate with the cytoplasmic channels (CCs) on CWs to release their contents into the cytoplasm of the opposite cell or directly extend from one cell to another through the CC. Taking all the data together, it is suggested that association of the MBIs and other organelles with CCs possibly functions in eliminating the non-identity of cytoplasm of the male meiocytes caused probably by the random asymmetric division observed at sporogenous cell phase, so as to ensure production of a large number of identical functional male gametes required for successful fertilization.

  4. Morphology and molecular phylogeny of Paragorgia rubra sp. nov. (Cnidaria: Octocorallia), a new bubblegum coral species from a seamount in the tropical Western Pacific

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhan, Zifeng; Xu, Kuidong

    2017-07-01

    A new species of bubblegum coral, Paragorgia rubra sp. nov., discovered from a seamount at a water depth of 373 m near the Yap Trench is studied using morphological and molecular approaches. Paragorgia rubra sp. nov. is the fourth species of the genus found in the tropical Western Pacific. The new gorgonian is red-colored, uniplanar, and measures approximately 530 mm high and 440 mm wide, with autozooids distributed only on one side of the colony. Paragorgia rubra sp. nov. is most similar to P. kaupeka Sánchez, 2005, but differs distinctly in the polyp ovals with large and compound protuberances (vs. small and simple conical protuberances) and the medullar spindles possessing simple conical protuberances (vs. compound protuberances). Moreover, P. rubra sp. nov. differs from P. kaupeka in the smaller length/width ratio of surface radiates (1.53 vs. 1.75). The genetic distance of the mtMutS gene between P. rubra sp. nov. and P. kaupeka is 0.66%, while the intraspecific distances within Paragorgia Milne-Edwards & Haime, 1857 except the species P. regalis complex are no more than 0.5%, further supporting the establishment of the new species. Furthermore, the ITS2 secondary structure of P. rubra sp. nov. is also different from those of congeners. Phylogenetic analyses indicate Paragorgia rubra sp. nov. and P. kaupeka form a clade, which branched early within Paragorgia and diversified approximately 15 Mya.

  5. Metallic fragments on the surface of miniplates and screws before insertion.

    PubMed

    Ray, M S; Matthew, I R; Frame, J W

    1999-02-01

    Particulate metal fragments have been identified histologically within the tissues adjacent to miniplates and screws after they have been removed. These were thought to have been caused by corrosion and degradation of the metal. However, the particles may have originated from rough edges or from protuberances left on the metal surface after cutting and machining during manufacture, and subsequently become detached. This study was undertaken to analyse the incidence and distribution of metal fragments on the surface of miniplates and screws before use. Fifteen miniplates and 60 screws were examined by stereomicroscopy and scanning electron microscopy. Rough metal edges or protuberances were identified on over half the samples, mostly in the countersink area of screw holes on the mini-plates. Fragments were detected within some of the cruciform screw heads and on some screw threads. We conclude that metal protuberances are present on the surface of mini-plate components when they are received from the manufacturer. There is a risk that the fragments might be detached and deposited into the tissues during insertion.

  6. Identification of greater occipital nerve landmarks for the treatment of occipital neuralgia.

    PubMed

    Loukas, M; El-Sedfy, A; Tubbs, R S; Louis, R G; Wartmann, C H T; Curry, B; Jordan, R

    2006-11-01

    Important structures involved in the pathogenesis of occipital headache include the aponeurotic attachments of the trapezius and semispinalis capitis muscles to the occipital bone. The greater occipital nerve (GON) can become entrapped as it passes through these aponeuroses, causing symptoms of occipital neuralgia. The aim of this study was to identify topographic landmarks for accurate identification of GON, which might facilitate its anaesthetic blockade. The course and distribution of GON and its relation to the aponeuroses of the trapezius and semispinalis capitis were examined in 100 formalin-fixed adult cadavers. In addition, the relative position of the nerve on a horizontal line between the external occipital protuberance and the mastoid process, as well as between the mastoid processes was measured. The greater occipital nerve was found bilaterally in all specimens. It was located at a mean distance of 3.8 cm (range 1.5-7.5 cm) lateral to a vertical line through the external occipital protuberance and the spinous processes of the cervical vertebrae 2-7. It was also located approximately 41% of the distance along the intermastoid line (medial to a mastoid process) and 22% of the distance between the external occipital protuberance and the mastoid process. The location of GON for anaesthesia or any other neurosurgical procedure has been established as one thumb's breadth lateral to the external occipital protuberance (2 cm laterally) and approximately at the base of the thumb nail (2 cm inferior). This is the first study proposing the use of landmarks in relation to anthropometric measurements. On the basis of these observations we propose a target zone for local anaesthetic injection that is based on easily identifiable landmarks and suggest that injection at this target point could be of benefit in the relief of occipital neuralgia.

  7. Aerodynamic Loading Characteristics at Mach Numbers from 0.80 to 1.20 of a 1/10-Scale Three-Stage Scout Model

    NASA Technical Reports Server (NTRS)

    Kelly, Thomas C.

    1961-01-01

    Aerodynamic loads results have been obtained in the Langley 8-foot transonic pressure tunnel at Mach numbers from 0.80 to 1.20 for a 1/10-scale model of the upper three stages of the Scout vehicle. Tests were conducted through an angle-of-attack range from -8 deg to 8 deg at an average test Reynolds number per foot of about 4.0 x 10(exp 6). Results indicated that the peak negative pressures associated with expansion corners at the nose and transition flare exhibit sizeable variations which occur over a relatively small Mach number range. The magnitude of the variations may cause the critical local loading condition for the full-scale vehicle to occur at a Mach number considerably lower than that at which the maximum dynamic pressure occurs in flight. The addition of protuberances simulating antennas and wiring conduits had slight, localized effects. The lift carryover from the nose and transition flare on the cylindrical portions of the model generally increased with an increase in Mach number.

  8. A Study of Knee Joint Kinematics and Mechanics using a Human FE Model.

    PubMed

    Kitagawa, Yuichi; Hasegawa, Junji; Yasuki, Tsuyoshi; Iwamoto, Masami; Miki, Kazuo

    2005-11-01

    Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices. The purposes of this study are first to understand the kinematics of the knee joint during flexion, and second to characterize the mechanics of the knee joint under anterior-posterior loading. A finite element model of the knee joint, extracted from the Total Human Model for Safety (THUMS), was used to analyze the mechanism. The model was validated against kinematics and mechanical responses of the human knee joint. By tracking the relative positions and angles between the patella and the tibia in a knee flexing simulation, the magnitude of the tibial anterior protuberance was described as a function of the knee joint angle. The model revealed that the mechanics of the knee joint was characterized as a combination of stiffness of the patella-femur structure and the PCL It was also found that the magnitude of the tibial anterior protuberance determined the amount of initial stretch of the PCL in anterior-posterior loading. Based on the knee joint kinematics and mechanics, an interference boundary was proposed for different knee flexion angles, so as not to directly load the anterior protuberance of the tibial plateau in restraining of the knee. A frontal crash simulation was performed using a partial vehicle model with the THUMS seated. The performance and effects of the knee airbag, as one of the candidates for knee restraint devices, were evaluated through the simulation.

  9. Titanium nitride formation by a dual-stage femtosecond laser process

    NASA Astrophysics Data System (ADS)

    Hammouti, S.; Holybee, B.; Zhu, W.; Allain, J. P.; Jurczyk, B.; Ruzic, D. N.

    2018-06-01

    Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti2O3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm-2 under argon and 5 W/1.6 J cm-2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.

  10. Span efficiency of wings with leading edge protuberances

    NASA Astrophysics Data System (ADS)

    Custodio, Derrick; Henoch, Charles; Johari, Hamid

    2013-11-01

    Past work has shown that sinusoidal leading edge protuberances resembling those found on humpback whale flippers alter the lift and drag coefficients of full- and finite-span foils and wings depending on the angle of attack and leading edge geometry. Although the load characteristics of protuberance modified finite-span wings have been reported for flipper-like geometries at higher Reynolds numbers and for rectangular planforms at lower Reynolds numbers, the effects of leading edge geometry on the span efficiency, which is indicative of the deviation of the spanwise lift distribution from elliptical and the viscous effects, for a range of planforms and Reynolds numbers have not been addressed. The lift and drag coefficients of 7 rectangular, 2 swept, and 2 flipper-like planform models with aspect ratios of 4.3, 4.0, and 8.86, respectively, were used to compute the span efficiency at Reynolds numbers ranging from 0.9 to 4.5 × 105. The span efficiency, based on the data at lower angles of attack, of modified wings was compared with the unmodified models. For the cases considered, the span efficiencies of the leading edge modified models were less than those of the equivalent unmodified models. The dependence of span efficiency on the leading edge geometry, planform, and Reynolds number will be presented. Supported by the ONR-ULI program.

  11. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi

    NASA Astrophysics Data System (ADS)

    Baik, Sangyul; Kim, Da Wan; Park, Youngjin; Lee, Tae-Jin; Ho Bhang, Suk; Pang, Changhyun

    2017-06-01

    Adhesion strategies that rely on mechanical interlocking or molecular attractions between surfaces can suffer when coming into contact with liquids. Thus far, artificial wet and dry adhesives have included hierarchical mushroom-shaped or porous structures that allow suction or capillarity, supramolecular structures comprising nanoparticles, and chemistry-based attractants that use various protein polyelectrolytes. However, it is challenging to develop adhesives that are simple to make and also perform well—and repeatedly—under both wet and dry conditions, while avoiding non-chemical contamination on the adhered surfaces. Here we present an artificial, biologically inspired, reversible wet/dry adhesion system that is based on the dome-like protuberances found in the suction cups of octopi. To mimic the architecture of these protuberances, we use a simple, solution-based, air-trap technique that involves fabricating a patterned structure as a polymeric master, and using it to produce a reversed architecture, without any sophisticated chemical syntheses or surface modifications. The micrometre-scale domes in our artificial adhesive enhance the suction stress. This octopus-inspired system exhibits strong, reversible, highly repeatable adhesion to silicon wafers, glass, and rough skin surfaces under various conditions (dry, moist, under water and under oil). To demonstrate a potential application, we also used our adhesive to transport a large silicon wafer in air and under water without any resulting surface contamination.

  12. Cathodes for lithium-air battery cells with acid electrolytes

    DOEpatents

    Xing, Yangchuan; Huang, Kan; Li, Yunfeng

    2016-07-19

    In various embodiments, the present disclosure provides a layered metal-air cathode for a metal-air battery. Generally, the layered metal-air cathode comprises an active catalyst layer, a transition layer bonded to the active catalyst layer, and a backing layer bonded to the transition layer such that the transition layer is disposed between the active catalyst layer and the backing layer.

  13. Full-Scale Wind-Tunnel Tests of a PCA-2 Autogiro Rotor

    NASA Technical Reports Server (NTRS)

    Wheatley, John B; Hood, Manley J

    1935-01-01

    This report presents the results of force tests on and air-flow surveys near PCA-2 autogiro rotor in the NACA full-scale wind tunnel. The force tests were made at three pitch settings and several rotor speeds; the effect of fairing protuberances on the rotor blade was determined. Induced downwash and yaw angles were determined at low tip-speed ratios in a plane 1 1/2 feet above the path of the blade tips. The results show that the maximum l/d of the rotor cannot be appreciably increased by increasing the blade pitch angle above about 4.5 degrees at the blade tip; that the protuberances on the blades cause more than 5 percent of the total rotor drag; and that the rotor center-of-pressure travel is very small.

  14. Rotor and stator assembly configured as an aspirating face seal

    NASA Technical Reports Server (NTRS)

    Turnquist, Norman Arnold (Inventor); Bagepalli, Bharat Sampathkumaran (Inventor); Reluzco, George (Inventor); Tseng, Wu-Yang (Inventor)

    1999-01-01

    A rotor and stator assembly having a rotor and a stator with opposing surfaces defining an air bearing and an air dam of an aspirating face seal. In a first embodiment, the air bearing and the air dam are axially offset. In a second embodiment, the rotor has an axially extending protuberance located radially between the air bearing and the air dam. The axial offset and the protuberance each act to divert the air flow (e.g., compressed gas or combustion gases in a gas turbine or steam in a steam turbine) in a direction transverse to the air flow direction through the air bearing and the air dam, thus isolating the air flows from the air bearing and the air dam which improves seal performance.

  15. Isolation of cucumber CsARF cDNAs and expression of the corresponding mRNAs during gravity-regulated morphogenesis of cucumber seedlings

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Yamasaki, S.; Fujii, N.; Hagen, G.; Guilfoyle, T.; Takahashi, H.

    Cucumber seedlings grown in a horizontal position develop a protuberance called peg on the lower side of the transition zone between the hypocotyl and the root. We have suggested that peg formation on the upper side of the gravistimulated transition zone is suppressed because cucumber seedlings grown in a vertical position or microgravity symmetrically develop two pegs on the transition zone. Plant hormone, auxin, is considered to play a crucial role in the gravity-regulated formation of peg. We have shown that the mRNAs of auxin-inducible genes (CsIAAs) isolated from cucumber accumulate more abundantly in the lower side of the transition zone than in the upper side when peg formation initiates. To reveal the mechanism of transcriptional regulation by auxin for peg formation, we isolated five cDNAs of Auxin Response Factors (ARFs) from cucumber and compared their mRNA accumulation with those of CsIAA1 and CsIAA2. The tissue specificity of mRNA accumulation of CsARF2 was similar to those of CsIAA1 and CsIAA2. The structural character of CsARF2 predicts it is transcriptional activator. These results suggest that CsARF2 may be involved in activation of the transcription of auxin-inducible genes including CsIAA1 for peg formation. Because mRNA accumulation of five CsARFs, including CsARF2, were affected by neither gravity nor auxin, transcriptional activity of CsARF2 may be regulated at post-transcriptional level to induce asymmetric mRNA accumulation of auxin-inducible genes in the transition zone.

  16. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  17. Measurements in a Transitional Boundary Layer Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Simon, Terrence W.; Qiu, Songgang; Yuan, Kebiao; Ashpis, David (Technical Monitor); Simon, Fred (Technical Monitor)

    2000-01-01

    This report presents the results of an experimental study of transition from laminar to turbulent flow in boundary layers or in shear layers over separation zones on a convex-curved surface which simulates the suction surface of a low-pressure turbine airfoil. Flows with various free-stream turbulence intensity (FSTI) values (0.5%, 2.5% and 10%), and various Reynolds numbers (50,000, 100,000 200,000 and 300,000) are investigated. Reynold numbers in the present study are based on suction surface length and passage exit mean velocity. Flow separation followed by transition within the separated flow region is observed for the lower-Re cases at each of the FSTI levels. At the highest Reynolds numbers and at elevated FSn, transition of the attached boundary layer begins before separation, and the separation zone is small. Transition proceeds in the shear layer over the separation bubble. For both the transitional boundary layer and the transitional shear layer, mean velocity, turbulence intensity and intermittency (the fraction of the time the flow is turbulent) distributions are presented. The present data are compared to published distribution models for bypass transition, intermittency distribution through transition, transition start position, and transition length. A model developed for transition of separated flows is shown to adequately predict the location of the beginning of transition, for these cases, and a model developed for transitional boundary layer flows seems to adequately predict the path of intermittency through transition when the transition start and end are known. These results are useful for the design of low-pressure turbine stages which are known to operate under conditions replicated by these tests.

  18. Near-inertial kinetic energy budget of the mixed layer and shear evolution in the transition layer in the Arabian Sea during the monsoons

    NASA Astrophysics Data System (ADS)

    Majumder, Sudip; Tandon, Amit; Rudnick, Daniel L.; Thomas Farrar, J.

    2015-09-01

    We present the horizontal kinetic energy (KE) balance of near-inertial currents in the mixed layer and explain shear evolution in the transition layer using observations from a mooring at 15.26° N in the Arabian Sea during the southwest monsoon. The highly sheared and stratified transition layer at the mixed-layer base varies between 5 m and 35 m and correlates negatively with the wind stress. Results from the mixed layer near-inertial KE (NIKE) balance suggest that wind energy at times can energize the transition layer and at other times is fully utilized within the mixed layer. A simple two layer model is utilized to study the shear evolution in the transition layer and shown to match well with observations. The shear production in this model arises from alignment of wind stress and shear. Although the winds are unidirectional during the monsoon, the shear in the transition layer is predominantly near-inertial. The near-inertial shear bursts in the observations show the same phasing and magnitude at near-inertial frequencies as the wind-shear alignment term.

  19. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  20. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Testing of the subsonic and transonic mach number for clean and full protuberances in support of the Ares/CLV Integrated Vehicle at the Boeing facility in Missouri. This image is extracted from a high definition video file and is the highest resolution available.

  1. Aerodynamic characteristics of a Sparrow 3 missile model in the flow field of a generalized parent body at Mach 2.86

    NASA Technical Reports Server (NTRS)

    Stallings, R. L., Jr.

    1984-01-01

    Longitudinal aerodynamic characteristics of a Sparrow 3 wing control missile model were measured through a range of separation distances relative to a flat plate surface that represented the parent-body configuration. Measurements were obtained with and without two dimensional circular arc protuberances attached to the flat plate surface. The tests were conducted at a Mach number of 2.86 and a Reynolds number per meter of 6.56 million. The behavior of these longitudinal characteristics with varying separation distance in the flow field created by the flat plate and protuberance was generally as would be expected on the basis of flow field boundaries determined from the second order approximation of Friedrich. In general, varying roll angle from 0 deg to 45 deg caused no significant effect on the store separation characteristics.

  2. The effects of wedge roughness on Mach formation

    NASA Astrophysics Data System (ADS)

    Needham, C. E.; Happ, H. J.; Dawson, D. F.

    A modified HULL hydrodynamic model was used to simulate shock reflection on wedges fitted with bumps representing varying degrees of roughness. The protuberances ranged from 0.02-0.2 cm in size. The study was directed at the feasibility of and techniques for defining parametric fits for surface roughness in the HULL code. Of interest was the self-similarity of the flows, so increasingly larger protuberances would simply enhance the resolution of the calculations. The code was designed for compressible, inviscid, nonconducting fluid flows. An equation of state provides closure and a finite difference algorithm is applied to solve governing equations for conservation of mass, momentum and energy. Self-similarity failed as the surface bumps grew larger and protruded further into the flowfield. It is noted that bumps spaced further apart produced greater interference for the passage of the Mach stem than did bumps placed closer together.

  3. Cutaneous haemangiosarcoma of the lower eyelid in an elderly white cat.

    PubMed

    Hartley, Claudia; Ladlow, Jane; Smith, Ken C

    2007-02-01

    A case of cutaneous haemangiosarcoma of the left lower eyelid in a 15-year-old white domestic shorthair cat is reported. A protuberant red mass occupying one-third of the lower eyelid margin length was present. Intermittent haemorrhage occurred from the mass surface. Surgical biopsy had revealed a locally invasive tumour composed of numerous irregular blood-filled spaces lined by a single layer of plump endothelial cells and separated by thin fibrous septa. Mitotic activity was rare and the appearance was consistent with a low-grade haemangiosarcoma. The mass continued to enlarge and referral was sought. Due to financial constraints and the owner's wish for a single procedure, enucleation with an axial pattern flap based on the superficial temporal artery was undertaken. Histopathology of the excised tissue confirmed the presence of a well-differentiated haemangiosarcoma. Tumour-free excisional margins were confirmed, the surgical area healed uneventfully, and there has been no recurrence during the subsequent 16 months.

  4. Mitigation in Multiple Effects of Graphene Oxide Toxicity in Zebrafish Embryogenesis Driven by Humic Acid.

    PubMed

    Chen, Yuming; Ren, Chaoxiu; Ouyang, Shaohu; Hu, Xiangang; Zhou, Qixing

    2015-08-18

    Graphene oxide (GO) is a widely used carbonaceous nanomaterial. To date, the influence of natural organic matter (NOM) on GO toxicity in aquatic vertebrates has not been reported. During zebrafish embryogenesis, GO induced a significant hatching delay and cardiac edema. The intensive interactions of GO with the chorion induces damage to chorion protuberances, excessive generation of (•)OH, and changes in protein secondary structure. In contrast, humic acid (HA), a ubiquitous form of NOM, significantly relieved the above adverse effects. HA reduced the interactions between GO and the chorion and mitigated chorion damage by regulating the morphology, structures, and surface negative charges of GO. HA also altered the uptake and deposition of GO and decreased the aggregation of GO in embryonic yolk cells and deep layer cells. Furthermore, HA mitigated the mitochondrial damage and oxidative stress induced by GO. This work reveals a feasible antidotal mechanism for GO in the presence of NOM and avoids overestimating the risks of GO in the natural environment.

  5. Biofilm architecture in a novel pressurized biofilm reactor.

    PubMed

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  6. Accurate identification of layer number for few-layer WS2 and WSe2 via spectroscopic study.

    PubMed

    Li, Yuanzheng; Li, Xinshu; Yu, Tong; Yang, Guochun; Chen, Heyu; Zhang, Cen; Feng, Qiushi; Ma, Jiangang; Liu, Weizhen; Xu, Haiyang; Liu, Yichun; Liu, Xinfeng

    2018-03-23

    Transition metal dichalcogenides (TMDs) with a typical layered structure are highly sensitive to their layer number in optical and electronic properties. Seeking a simple and effective method for layer number identification is very important to low-dimensional TMD samples. Herein, a rapid and accurate layer number identification of few-layer WS 2 and WSe 2 is proposed via locking their photoluminescence (PL) peak-positions. As the layer number of WS 2 /WSe 2 increases, it is found that indirect transition emission is more thickness-sensitive than direct transition emission, and the PL peak-position differences between the indirect and direct transitions can be regarded as fingerprints to identify their layer number. Theoretical calculation confirms that the notable thickness-sensitivity of indirect transition derives from the variations of electron density of states of W atom d-orbitals and chalcogen atom p-orbitals. Besides, the PL peak-position differences between the indirect and direct transitions are almost independent of different insulating substrates. This work not only proposes a new method for layer number identification via PL studies, but also provides a valuable insight into the thickness-dependent optical and electronic properties of W-based TMDs.

  7. Tunable phase transition in single-layer TiSe2 via electric field

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhuang, Houlong L.

    2018-06-01

    Phase transition represents an intriguing physical phenomenon that exists in a number of single-layer transition-metal dichalcogenides. This phenomenon often occurs below a critical temperature and breaks the long-range crystalline order leading to a reconstructed superstructure called the charge-density wave (CDW) structure, which can therefore be recovered by external stimuli such as temperature. Alternatively, we show here that another external stimulation, electric field can also result in the phase transition between the regular and CDW structures of a single-layer transition-metal dichalcogenide. We used single-layer TiSe2 as an example to elucidate the mechanism of the CDW followed by calculations of the electronic structure using a hybrid density functional. We found that applying electric field can tune the phase transition between the 1T and CDW phases of single-layer TiSe2. Our work opens up a route of tuning the phase transition of single-layer materials via electric field.

  8. A numerical method for the prediction of high-speed boundary-layer transition using linear theory

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1975-01-01

    A method is described of estimating the location of transition in an arbitrary laminar boundary layer on the basis of linear stability theory. After an examination of experimental evidence for the relation between linear stability theory and transition, a discussion is given of the three essential elements of a transition calculation: (1) the interaction of the external disturbances with the boundary layer; (2) the growth of the disturbances in the boundary layer; and (3) a transition criterion. The computer program which carried out these three calculations is described. The program is first tested by calculating the effect of free-stream turbulence on the transition of the Blasius boundary layer, and is then applied to the problem of transition in a supersonic wind tunnel. The effects of unit Reynolds number and Mach number on the transition of an insulated flat-plate boundary layer are calculated on the basis of experimental data on the intensity and spectrum of free-stream disturbances. Reasonable agreement with experiment is obtained in the Mach number range from 2 to 4.5.

  9. Modeling of the heat transfer in bypass transitional boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Simon, Frederick F.; Stephens, Craig A.

    1991-01-01

    A low Reynolds number k-epsilon turbulence model and conditioned momentum, energy and turbulence equations were used to predict bypass transition heat transfer on a flat plate in a high-disturbance environment with zero pressure gradient. The use of conditioned equations was demonstrated to be an improvement over the use of the global-time-averaged equations for the calculation of velocity profiles and turbulence intensity profiles in the transition region of a boundary layer. The approach of conditioned equations is extended to include heat transfer and a modeling of transition events is used to predict transition onset and the extent of transition on a flat plate. The events, which describe the boundary layer at the leading edge, result in boundary-layer regions consisting of: (1) the laminar, (2) pseudolaminar, (3) transitional, and (4) turbulent boundary layers. The modeled transition events were incorporated into the TEXSTAN 2-D boundary-layer code which is used to numerically predict the heat transfer. The numerical predictions in general compared well with the experimental data and revealed areas where additional experimental information is needed.

  10. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  11. Lidar observation of transition of cirrus clouds over a tropical station Gadanki (13.45° N, 79.18° E): case studies

    NASA Astrophysics Data System (ADS)

    Srinivasan, M. A.; Rao, C. Dhananjaya; Krishnaiah, M.

    2016-05-01

    The present study describes Mie lidar observations of the cirrus cloud passage showing transition between double thin layers into single thick and single thick layer into double thin layers of cirrus over Gadanki region. During Case1: 17 January 2007, Case4: 12 June 2007, Case5: 14 July 2007 and Case6: 24 July 2007 the transition is found to from two thin cirrus layers into single geometrically thick layer. Case2: 14 May 2007 and Case3: 15 May 2007, the transition is found to from single geometrically thick layer into two thin cirrus layers. Linear Depolarization Ratio (LDR) and Back Scatter Ration (BSR) are found to show similar variation with strong peaks during transition; both LDR and Cloud Optical Depth (COD) is found to show similar variation except during transition with strong peaks in COD which is not clearly found from LDR for the all cases. There is a significant weakening of zonal and meridional winds during Case1 which might be due to the transition from multiple to single thick cirrus indicating potential capability of thick cirrus in modulating the wind fields. There exists strong upward wind dominance contributed to significant ascent in cloud-base altitude thereby causing transition of multiple thin layers into single thick cirrus.

  12. Effects of different binders on microstructure and phase composition of hydroxyapatite Nd-YAG laser clad coatings

    NASA Astrophysics Data System (ADS)

    Chien, C. S.; Hong, T. F.; Han, T. J.; Kuo, T. Y.; Liao, T. Y.

    2011-01-01

    The laser clad coating technique can help to produce metallurgical bonding with high bonding strength between the coating layer and the substrate, which has been gradually applied for hydroxyapatite (HA) coating on metallic substrates. In this study, HA powder is mixed with two different binders, namely water glass (WG) and polyvinyl alcohol (PVA), respectively, and is then clad on Ti-6Al-4V substrates using an Nd:YAG laser system under various processing conditions. The microstructure, chemical composition and hardness of the coating layer and transition layer of the various samples are then systematically explored. The experimental results show that the coating layers of the various samples all contain both cellular dendrites and rod-like piled structures, while the transition layers contain only cellular dendrites. For all samples, the coating layer consists mostly of CaTiO 3, Ca 2P 2O 7, CaO and HA phases, whereas the transition layer contains primarily CaTiO 3, Ca 2P 2O 7, Ti 3P, Ti and HA phases. In addition, the transition layer of the WG samples also contains SiO 2 and Si 2Ti phases. In all of the specimens, the transition layer has a higher average hardness than the substrate or coating layer. Moreover, the transition layer in the WG sample is harder than that in the PVA sample.

  13. Bypass transition in boundary layers including curvature and favorable pressure gradient effects

    NASA Technical Reports Server (NTRS)

    Volino, R. J.; Simon, T. W.

    1991-01-01

    Recent studies of 2-D boundary layers undergoing bypass transition were reviewed. Bypass transition is characterized by the sudden appearance of turbulent spots in boundary layer without first the regular, observable growth of disturbances predicted by linear stability theory. There are no standard criteria or parameters for defining bypass transition, but it is known to be the mode of transition when the flow is disturbed by perturbations of sufficient amplitude.

  14. A new termite (Isoptera, Termitidae, Syntermitinae, Macuxitermes) from Colombia

    PubMed Central

    Postle, Anthony C.; Scheffrahn, Rudolf H.

    2016-01-01

    Abstract A new species of termite, Macuxitermes colombicus Postle & Scheffrahn is described from soldiers and workers collected from Departamento Magdalena, Colombia. The soldier of Macuxitermes colombicus differs from its lone congener in having no protuberances on the head capsule. PMID:27408525

  15. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  16. Experiments on Hypersonic Roughness Induced Transition by Means of Infrared Thermography

    NASA Astrophysics Data System (ADS)

    Schrijer, F. F. J.; Scarano, F.; van Oudheusden, B. W.; Bannink, W. J.

    2005-02-01

    Roughness induced boundary layer transition is experimentally investigated in the hypersonic flow regime at M = 9. The primary interest is the possible effect of stepwise geometry imperfections (2D isolated roughness) on (boundary layer) transition which may be caused on the EXPERT vehicle by the difference in thermal expansion due to the different materials used in the vehicle-nose construction. Also 3D isolated and 3D distributed roughness configurations were studied. Quantitative Infra-Red Thermography (QIRT) is used as primary diagnostic technique to measure the surface convective heat transfer and to detect boundary layer laminar-to-turbulent transition. The investigation shows that for a given height of the roughness element, the boundary layer is least sensitive to a step-like disturbance, whereas distributed 3D roughness was found to be effective in triggering transition. The experimental results have been compared to existing hypersonic transition correlations (PANT and Shuttle). Finally a transition criterion is evaluated which is based on the critical roughness height Reynolds number. Usage of this criterion enables a straightforward extrapolation to flight. Key words: hypersonic flow, boundary layer transition.

  17. Verrucostoma, a new genus in the Bionectriaceae from the Bonin Islands, Japan

    USDA-ARS?s Scientific Manuscript database

    Verrucostoma freycinetiae gen. et sp. nov. collected on dead leaves of Freycinetia boninensis (Pandanaceae) in Hahajima, Bonin (Ogasawara) Islands, Tokyo, Japan, is described and illustrated. The new genus is characterized by having pale orange perithecia with protuberances around the perithecial ap...

  18. Verrucostoma, a new genus in the bionectriaceae from the Bonin Islands, Japan.

    PubMed

    Hirooka, Yuuri; Kobayashi, Takao; Ono, Tsuyoshi; Rossman, Amy Y; Chaverri, Priscila

    2010-01-01

    Verrucostoma freycinetiae gen. et sp. nov. is described and illustrated from specimens on dead leaves of Freycinetia boninensis (Pandanaceae) collected in Hahajima, Bonin (Ogasawara) Islands, Japan. The genus is characterized by pale orange perithecia with protuberances around the perithecial apex, no color change in 3% potassium hydroxide and lactic acid, unitunicate asci, spinulose ascospores and an Acremonium-like anamorph. Morphological characters were compared with other genera in the Bionectriaceae and Nectriaceae (Hypocreales). Verrucostoma is morphologically similar to Bionectria (Bionectriaceae) from which it differs in the formation of conspicuous protuberances around the perithecial apex and the Acremonium-like anamorph. Moreover molecular analyses of Verrucostoma and other members of the Bionectriaceae and Nectriaceae based on alpha-actin, large subunit nuclear ribosomal DNA and RNA polymerase II subunit 1 sequences support the conclusions based on morphological data. Our results confirm that V. freycinetiae is distinct from other genera among the Nectria-like fungi and represents a new genus belonging to the Bionectriaceae.

  19. Globular and fibrous structure in barley chromosomes revealed by high-resolution scanning electron microscopy.

    PubMed

    Iwano, M; Fukui, K; Takaichi, S; Isogai, A

    1997-08-01

    Barley chromosomes were prepared for high-resolution scanning electron microscopy using a combination of enzyme maceration, treatment in acetic acid and osmium impregnation using thiocarbohydrazide. Using this technique, the three-dimensional ultrastructure of interphase nuclei and mitotic chromosomes was examined. In Interphase, different levels of chromatin condensation were observed, consisting of fibrils 10 nm in diameter, 20- to 40-nm fibres and a higher order complex. In prophase, globular and strand-like structures composed of 20- to 40-nm fibres were dominant. As the cells progressed through the cell cycle and the chromatin condensed, globular and strand-like structures (chromomeres) were coiled and packed to form chromosomes. Chromomeres were observed as globular protuberances on the surface of metaphase chromosomes. These findings indicate that the chromomere is a fundamental substructure of the higher order architecture of the chromosome. In the centromeric region, there were no globular protuberances, but 20- to 40-nm fibres were folded compactly to form a higher level organization surrounding the chromosomal axia.

  20. Comparison of Theoretical and Experimental Heat-Transfer Characteristics of Bodies of Revolution at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Scherrer, Richard

    1951-01-01

    An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.

  1. [Hodge and his planes].

    PubMed

    van Gijn, Jan; Gijselhart, Joost P

    2010-01-01

    Hugh Lenox Hodge (1796-1873) was professor of obstetrics at the University of Pennsylvania for more than 25 years. He divided the birth canal into four virtual and parallel planes through pelvic protuberances, a method still widely used. He also developed a pessary that is now mainly used in stress incontinence.

  2. Observations of Kelvin-Helmholtz instability at a cloud base with the middle and upper atmosphere (MU) and weather radars

    NASA Astrophysics Data System (ADS)

    Luce, Hubert; Mega, Tomoaki; Yamamoto, Masayuki K.; Yamamoto, Mamoru; Hashiguchi, Hiroyuki; Fukao, Shoichiro; Nishi, Noriyuki; Tajiri, Takuya; Nakazato, Masahisa

    2010-10-01

    Using the very high frequency (46.5 MHz) middle and upper atmosphere radar (MUR), Ka band (35 GHz) and X band (9.8 GHz) weather radars, a Kelvin-Helmholtz (KH) instability occurring at a cloud base and its impact on modulating cloud bottom altitudes are described by a case study on 8 October 2008 at the Shigaraki MU Observatory, Japan (34.85°N, 136.10°E). KH braids were monitored by the MUR along the slope of a cloud base gradually rising with time around an altitude of ˜5.0 km. The KH braids had a horizontal wavelength of about 3.6 km and maximum crest-to-trough amplitude of about 1.6 km. Nearly monochromatic and out of phase vertical air motion oscillations exceeding ±3 m s-1 with a period of ˜3 min 20 s were measured by the MUR above and below the cloud base. The axes of the billows were at right angles of the wind and wind shear both oriented east-north-east at their altitude. The isotropy of the radar echoes and the large variance of Doppler velocity in the KH billows (including the braids) indicate the presence of strong turbulence at the Bragg (˜3.2 m) scale. After the passage of the cloud system, the KH waves rapidly damped and the vertical scale of the KH braids progressively decreased down to about 100 m before their disappearance. The radar observations suggest that the interface between clear air and cloud was conducive to the presence of the dynamical shear instability by reducing static stability (and then the Richardson number) near the cloud base. Downward cloudy protuberances detected by the Ka band radar had vertical and horizontal scales of about 0.6-1.1 and 3.2 km, respectively, and were clearly associated with the downward air motions. Observed oscillations of the reflectivity-weighted Doppler velocity measured by the X band radar indicate that falling ice particles underwent the vertical wind motions generated by the KH instability to form the protuberances. The protuberances at the cloud base might be either KH billow clouds or perhaps some sort of mamma. Reflectivity-weighted particle fall velocity computed from Doppler velocities measured by the X band radar and the MUR showed an average value of 1.3 ms-1 within the cloud and in the protuberance environment.

  3. Self-sustained Flow-acoustic Interactions in Airfoil Transitional Boundary Layers

    DTIC Science & Technology

    2015-07-09

    AFRL-AFOSR-VA-TR-2015-0235 Self-sustained flow-acoustic interactions in airfoil transitional boundary layers Vladimir Golubev EMBRY-RIDDLE...From - To)      01-04-2012 to 31-03-2015 4.  TITLE AND SUBTITLE Self-sustained flow-acoustic interactions in airfoil transitional boundary layers 5a...complementary experimental and numerical studies of flow-acoustic resonant interactions in transitional airfoils and their impact on airfoil surface

  4. Determination of Boundary-Layer Transition on Three Symmetrical Airfoils in the NACA Full-Scale Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Silverstein, Abe; Becker, John V

    1938-01-01

    For the purpose of studying the transition from laminar to turbulent flow, boundary-layer measurements were made in the NACA full-scale wind tunnel on three symmetrical airfoils of NACA 0009, 0012, and 0018 sections. The effects of variations in lift coefficient, Reynolds number, and airfoil thickness on transition were investigated. Air speed in the boundary layer was measured by total-head tubes and by hot wires; a comparison of transition as indicated by the two techniques was obtained. The results indicate no unique value of Reynolds number for the transition, whether the Reynolds number is based upon the distance along the chord or upon the thickness of the boundary layer at the transition point. In general, the transition is not abrupt and occurs in a region that varies in length as a function of the test conditions.

  5. Tunable Bragg filters with a phase transition material defect layer

    DOE PAGES

    Wang, Xi; Gong, Zilun; Dong, Kaichen; ...

    2016-01-01

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  6. Tunable Bragg filters with a phase transition material defect layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xi; Gong, Zilun; Dong, Kaichen

    We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

  7. An experimental investigation of wall boundary layer transition Reynolds numbers in an expansion tube

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.

    1974-01-01

    Experimental measurements of boundary-layer transition in an expansion-tube test-gas flow are presented along with radial distributions of pitot pressure. An integral method for calculating constant Reynolds number lines for an expansion-tube flow is introduced. Comparison of experimental data and constant Reynolds number calculations has shown that for given conditions, wall boundary-layer transition occurs at a constant Reynolds number in an expansion-tube flow. Operating conditions in the expansion tube were chosen so that the effects of test-gas nonequilibrium on boundary-layer transition could be studied.

  8. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  9. Competitions between Rayleigh-Taylor instability and Kelvin-Helmholtz instability with continuous density and velocity profiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, W. H.; He, X. T.; CAPT, Peking University, Beijing 100871

    2011-02-15

    In this research, competitions between Rayleigh-Taylor instability (RTI) and Kelvin-Helmholtz instability (KHI) in two-dimensional incompressible fluids within a linear growth regime are investigated analytically. Normalized linear growth rate formulas for both the RTI, suitable for arbitrary density ratio with continuous density profile, and the KHI, suitable for arbitrary density ratio with continuous density and velocity profiles, are obtained. The linear growth rates of pure RTI ({gamma}{sub RT}), pure KHI ({gamma}{sub KH}), and combined RTI and KHI ({gamma}{sub total}) are investigated, respectively. In the pure RTI, it is found that the effect of the finite thickness of the density transition layermore » (L{sub {rho}}) reduces the linear growth of the RTI (stabilizes the RTI). In the pure KHI, it is found that conversely, the effect of the finite thickness of the density transition layer increases the linear growth of the KHI (destabilizes the KHI). It is found that the effect of the finite thickness of the density transition layer decreases the ''effective'' or ''local'' Atwood number (A) for both the RTI and the KHI. However, based on the properties of {gamma}{sub RT}{proportional_to}{radical}(A) and {gamma}{sub KH}{proportional_to}{radical}(1-A{sup 2}), the effect of the finite thickness of the density transition layer therefore has a completely opposite role on the RTI and the KHI noted above. In addition, it is found that the effect of the finite thickness of the velocity shear layer (L{sub u}) stabilizes the KHI, and for the most cases, the combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Regarding the combined RTI and KHI, it is found that there is a competition between the RTI and the KHI because of the completely opposite effect of the finite thickness of the density transition layer on these two kinds of instability. It is found that the competitions between the RTI and the KHI depend, respectively, on the Froude number, the density ratio of the light fluid to the heavy one, and the finite thicknesses of the density transition layer and the velocity shear layer. Furthermore, for the fixed Froude number, the linear growth rate ratio of the RTI to the KHI decreases with both the density ratio and the finite thickness of the density transition layer, but increases with the finite thickness of the velocity shear layer and the combined finite thicknesses of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}). In summary, our analytical results show that the effect of the finite thickness of the density transition layer stabilizes the RTI and the overall combined effects of the finite thickness of the density transition layer and the velocity shear layer (L{sub {rho}=}L{sub u}) also stabilize the KHI. Thus, it should be included in applications where the transition layer effect plays an important role, such as the formation of large-scale structures (jets) in high energy density physics and astrophysics and turbulent mixing.« less

  10. Tuning SPT-3G Transition-Edge-Sensor Electrical Properties with a Four-Layer Ti-Au-Ti-Au Thin-Film Stack

    NASA Astrophysics Data System (ADS)

    Carter, F. W.; Ade, P. A. R.; Ahmed, Z.; Anderson, A. J.; Austermann, J. E.; Avva, J. S.; Thakur, R. Basu; Bender, A. N.; Benson, B. A.; Carlstrom, J. E.; Cecil, T.; Chang, C. L.; Cliche, J. F.; Cukierman, A.; Denison, E. V.; de Haan, T.; Ding, J.; Divan, R.; Dobbs, M. A.; Dutcher, D.; Everett, W.; Foster, A.; Gannon, R. N.; Gilbert, A.; Groh, J. C.; Halverson, N. W.; Harke-Hosemann, A. H.; Harrington, N. L.; Henning, J. W.; Hilton, G. C.; Holzapfel, W. L.; Huang, N.; Irwin, K. D.; Jeong, O. B.; Jonas, M.; Khaire, T.; Kofman, A. M.; Korman, M.; Kubik, D.; Kuhlmann, S.; Kuo, C. L.; Kutepova, V.; Lee, A. T.; Lowitz, A. E.; Meyer, S. S.; Michalik, D.; Miller, C. S.; Montgomery, J.; Nadolski, A.; Natoli, T.; Nguyen, H.; Noble, G. I.; Novosad, V.; Padin, S.; Pan, Z.; Pearson, J.; Posada, C. M.; Rahlin, A.; Ruhl, J. E.; Saunders, L. J.; Sayre, J. T.; Shirley, I.; Shirokoff, E.; Smecher, G.; Sobrin, J. A.; Stan, L.; Stark, A. A.; Story, K. T.; Suzuki, A.; Tang, Q. Y.; Thompson, K. L.; Tucker, C.; Vale, L. R.; Vanderlinde, K.; Vieira, J. D.; Wang, G.; Whitehorn, N.; Yefremenko, V.; Yoon, K. W.; Young, M. R.

    2018-04-01

    We have developed superconducting Ti transition-edge sensors with Au protection layers on the top and bottom for the South Pole Telescope's third-generation receiver (a cosmic microwave background polarimeter, due to be upgraded this austral summer of 2017/2018). The base Au layer (deposited on a thin Ti glue layer) isolates the Ti from any substrate effects; the top Au layer protects the Ti from oxidation during processing and subsequent use of the sensors. We control the transition temperature and normal resistance of the sensors by varying the sensor width and the relative thicknesses of the Ti and Au layers. The transition temperature is roughly six times more sensitive to the thickness of the base Au layer than to that of the top Au layer. The normal resistance is inversely proportional to sensor width for any given film configuration. For widths greater than five micrometers, the critical temperature is independent of width.

  11. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  12. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  13. Boundary-layer transition on a plate subjected to simultaneous spanwise and chordwise pressure gradients

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1974-01-01

    The boundary-layer transition on a short plate was studied by means of the china-clay visual technique. The plate model was mounted in a wind tunnel so that it was subjected to small simultaneous spanwise and chordwise pressure gradients. Results of the experimental study, which was performed at three subsonic velocities, indicated that the transition pattern was appreciably curved in the spanwise direction but quite smooth and well behaved. Reasonable comparisons between predictions of transition and experiment were obtained from two finite-difference two-dimensional boundary-layer calculation methods which incorporated transition models based on the concept of a transition intermittency factor.

  14. Shuttle Return To Flight Experimental Results: Cavity Effects on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Horvath, Thomas J.; Berry, Scott A.

    2006-01-01

    The effect of an isolated rectangular cavity on hypersonic boundary layer transition of the windward surface of the Shuttle Orbiter has been experimentally examined in the Langley Aerothermodynamics Laboratory in support of an agency-wide effort to prepare the Shuttle Orbiter for return to flight. This experimental study was initiated to provide a cavity effects database for developing hypersonic transition criteria to support on-orbit decisions to repair a damaged thermal protection system. Boundary layer transition results were obtained using 0.0075-scale Orbiter models with simulated tile damage (rectangular cavities) of varying length, width, and depth. The database contained within this report will be used to formulate cavity-induced transition correlations using predicted boundary layer edge parameters.

  15. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  16. A preliminary investigation of boundary-layer transition along a flat plate with adverse pressure gradient

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E

    1938-01-01

    Boundary-layer surveys were made throughout the transition region along a smooth flat plate placed in an airstream of practically zero turbulence and with an adverse pressure gradient. The boundary-layer Reynolds number at the laminar separation point was varied from 1,800 to 2,600. The test data, when considered in the light of certain theoretical deductions, indicated that transition probably began with separation of the laminar boundary layer. The extent of the transition region, defined as the distance from a calculated laminar separation point to the position of the first fully developed turbulent boundary-layer profile, could be expressed as a constant Reynolds number run of approximately 70,000. Some speculations are presented concerning the application of the foregoing concepts, after certain assumptions have been made, to the problem of the connection between transition on the upper surface of an airfoil at high angles of attack and the maximum lift.

  17. Longli is not a hybrid of longan and lychee as revealed by genome size analysis and trichome morphology

    USDA-ARS?s Scientific Manuscript database

    Lychee, longan, longli, and rambutan are closely related, commercially important fruit trees in the Sapindaceae family. Longli fruits are morphologically similar to both lychee and longan, displaying a yellow-brown pericarp like longan, and small, sharp protuberances like lychee. These similarities ...

  18. Three-dimensional mechanisms of macro-to-micro-scale transport and absorption enhancement by gut villi motions

    NASA Astrophysics Data System (ADS)

    Wang, Yanxing; Brasseur, James G.

    2017-06-01

    We evaluate the potential for physiological control of intestinal absorption by the generation of "micromixing layers" (MMLs) induced by coordinated motions of mucosal villi coupled with lumen-scale "macro" eddying motions generated by gut motility. To this end, we apply a three-dimensional (3D) multigrid lattice-Boltzmann model of a lid-driven macroscale cavity flow with microscale fingerlike protuberances at the lower surface. Integrated with a previous 2D study of leaflike villi, we generalize to 3D the 2D mechanisms found there to enhance nutrient absorption by controlled villi motility. In three dimensions, increased lateral spacing within villi within groups that move axially with the macroeddy reduces MML strength and absorptive enhancement relative to two dimensions. However, lateral villi motions create helical 3D particle trajectories that enhance absorption rate to the level of axially moving 2D leaflike villi. The 3D enhancements are associated with interesting fundamental adjustments to 2D micro-macro-motility coordination mechanisms and imply a refined potential for physiological or pharmaceutical control of intestinal absorption.

  19. Symptomatology and morphology of Claviceps cyperi on yellow nut sedge in South Africa.

    PubMed

    van der Linde, Elna J; Wehner, F C

    2007-01-01

    Symptoms of ergot on yellow nut sedge, germination of sclerotia of the causal organism, Claviceps cyperi, and morphology of fresh specimens of the pathogen are described for the first time. The initial symptom of infection was a black sooty layer on inflorescences of infected plants due to colonization of the ergot honeydew by Cladosporium cladosporioides. Sclerotia of C. cyperi started to develop in March and April and could be discerned as small protuberances on inflorescences in the place of seed. Mature sclerotia were purplish-black. They generally remained viable for less than a year and germinated without prior cold treatment, although exposure for 21 d to 5 C before incubation significantly increased the germination rate. Under moist conditions at 24 C in the laboratory, germination commenced within 4-8 wk. Stromata took about 12 d to mature. Mature capitula were distinctly lobulate with a perithecium embedded in each lobe and a collar-like appendage around the base. Although dimensions of sclerotia, stipes, capitula, asci and ascospores were larger than in the original description, the general morphology supports treatment of C. cyperi as a distinct species.

  20. DNSs of Multicomponent Gaseous and Drop-Laden Mixing Layers Achieving Transition to Turbulence

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Selle, Laurent

    2007-01-01

    A paper describes direct numerical simulations (DNSs) of three-dimensional mixing-layer flows undergoing transition to turbulence; the mixing layers may or may not be laden with evaporating liquid drops.

  1. Dynamical Generation of the Transition Zone in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Hansen, U.; Stemmer, K.

    2005-12-01

    The internal structure of the Earth is made up by a series of layers, though it is unclear how many layers exist and if there are layers invisible to remote sensing techniques. The transition zone is likely to be a boundary layer separating the convective systems in the lower and upper mantle. It seems likely that currently there is some mass exchange across this boundary, rather than the two systems beeing strictly separated.a Double-diffusive convection(d.d.c) is a vital mechanism which can generate layered structure and may thus be an important mmical machinery behind the formation of the transition zone. Double-diffusive convection determines the dynamics of systems whose density is influenced by at least two components with different molecular diffusivities.In the mantle, composition and temperature play the role of those two components. By means of numerical experiments we demonstrate that under mantle relevant conditions d.d.c typically leads to the formation of a transition zone. The calculations encompass two- and three dimensional Cartesian geometries as well as fully 3D spherical domains. We have further included strongly temperature dependent viscosity and find that this leads to even more pronounced layering. In most cases a layered flow pattern emerges, where two layers with a transition zone in between resembles a quasistationary state. Thus, the transition zone can be the result of a self organization process of the convective flow in the mantle. The presence of a phase transition further helps to stabilize the boundary against overturning, even on a time scale on the order of the age of the Earth.

  2. A brief review of some mechanisms causing boundary layer transition at high speeds

    NASA Technical Reports Server (NTRS)

    Tauber, M. E.

    1990-01-01

    In high speed flight, the state of the boundary layer can strongly influence the design of vehicles through its effect on skin friction drag and aerodynamic heating. The major mechanisms causing boundary layer transition on high speed vehicles are briefly reviewed and some empirical relations from the unclassified literature are given for the transition Reynolds numbers.

  3. Effect of Surface Waviness on Transition in Three-Dimensional Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Masad, Jamal A.

    1996-01-01

    The effect of a surface wave on transition in three-dimensional boundary-layer flow over an infinite swept wing was studied. The mean flow computed using interacting boundary-layer theory, and transition was predicted using linear stability theory coupled with the empirical eN method. It was found that decreasing the wave height, sweep angle, or freestream unit Reynolds number, and increasing the freestream Mach number or suction level all stabilized the flow and moved transition onset to downstream locations.

  4. Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, D.C.

    1979-11-01

    Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-fron contours. Measurements of surface roughness, surface temperature, average transition-calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies.

  5. Flight Experiment Verification of Shuttle Boundary Layer Transition Prediction Tool

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Berger, Karen T.; Horvath, Thomas J.; Wood, William A.

    2016-01-01

    Boundary layer transition at hypersonic conditions is critical to the design of future high-speed aircraft and spacecraft. Accurate methods to predict transition would directly impact the aerothermodynamic environments used to size a hypersonic vehicle's thermal protection system. A transition prediction tool, based on wind tunnel derived discrete roughness correlations, was developed and implemented for the Space Shuttle return-to-flight program. This tool was also used to design a boundary layer transition flight experiment in order to assess correlation uncertainties, particularly with regard to high Mach-number transition and tunnel-to-flight scaling. A review is provided of the results obtained from the flight experiment in order to evaluate the transition prediction tool implemented for the Shuttle program.

  6. Flight-measured laminar boundary-layer transition phenomena including stability theory analysis

    NASA Technical Reports Server (NTRS)

    Obara, C. J.; Holmes, B. J.

    1985-01-01

    Flight experiments were conducted on a single-engine turboprop aircraft fitted with a 92-in-chord, 3-ft-span natural laminar flow glove at glove section lift coefficients from 0.15 to 1.10. The boundary-layer transition measurement methods used included sublimating chemicals and surface hot-film sensors. Transition occurred downstream of the minimum pressure point. Hot-film sensors provided a well-defined indication of laminar, laminar-separation, transitional, and turbulent boundary layers. Theoretical calculations of the boundary-layer parameters provided close agreement between the predicted laminar-separation point and the measured transition location. Tollmien-Schlichting (T-S) wave growth n-factors between 15 and 17 were calculated at the predicted point of laminar separation. These results suggest that for many practical airplane cruise conditions, laminar separation (as opposed to T-S instability) is the major cause of transition in predominantly two-dimensional flows.

  7. Atomically thin transition metal layers: Atomic layer stabilization and metal-semiconductor transition

    NASA Astrophysics Data System (ADS)

    Hwang, Jeongwoon; Oh, Young Jun; Kim, Jiyoung; Sung, Myung Mo; Cho, Kyeongjae

    2018-04-01

    We have performed first-principle calculations to explore the possibility of synthesizing atomically thin transition metal (TM) layers. Buckled structures as well as planar structures of elemental 2D TM layers result in significantly higher formation energies compared with sp-bonded elemental 2D materials with similar structures, such as silicene and phosphorene. It is shown that the TM layers can be stabilized by surface passivation with HS, C6H5S2, or O, and O passivation is most effective. The surface oxygen passivation can improve stability leading to thermodynamically stable TM monolayers except Au, which is the most non-reactive metal element. Such stabilized TM monolayers also show an electronic structure transition from metallic state of free-standing TM layer to semiconducting O-passivated Mo and W monolayers with band gaps of 0.20-1.38 eV.

  8. Shuttle orbiter boundary layer transition at flight and wind tunnel conditions

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Derry, S. M.; Bertin, J. J.

    1983-01-01

    Hypersonic boundary layer transition data obtained on the windward centerline of the Shuttle orbiter during entry for the first five flights are presented and analyzed. Because the orbiter surface is composed of a large number of thermal protection tiles, the transition data include the effects of distributed roughness arising from tile misalignment and gaps. These data are used as a benchmark for assessing and improving the accuracy of boundary layer transition predictions based on correlations of wind tunnel data taken on both aerodynamically rough and smooth orbiter surfaces. By comparing these two data bases, the relative importance of tunnel free stream noise and surface roughness on orbiter boundary layer transition correlation parameters can be assessed. This assessment indicates that accurate predications of transition times can be made for the orbiter at hypersonic flight conditions by using roughness dominated wind tunnel data. Specifically, times of transition onset and completion is accurately predicted using a correlation based on critical and effective values of a roughness Reynolds number previously derived from wind tunnel data.

  9. Heat transfer and fluid mechanics measurements in transitional boundary layer flows

    NASA Technical Reports Server (NTRS)

    Wang, T.; Simon, T. W.; Buddhavarapu, J.

    1985-01-01

    Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients and profiles of velocity, temperature and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68% and 2.0% free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.

  10. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  11. Numerical investigation of hypersonic flat-plate boundary layer transition mechanism induced by different roughness shapes

    NASA Astrophysics Data System (ADS)

    Zhou, Yunlong; Zhao, Yunfei; Xu, Dan; Chai, Zhenxia; Liu, Wei

    2016-10-01

    The roughness-induced laminar-turbulent boundary layer transition is significant for high-speed aerospace applications. The transition mechanism is closely related to the roughness shape. In this paper, high-order numerical method is used to investigate the effect of roughness shape on the flat-plate laminar-to-turbulent boundary layer transition. Computations are performed in both the supersonic and hypersonic regimes (free-stream Mach number from 3.37 up to 6.63) for the square, cylinder, diamond and hemisphere roughness elements. It is observed that the square and diamond roughness elements are more effective in inducing transition compared with the cylinder and hemisphere ones. The square roughness element has the longest separated region in which strong unsteadiness exists and the absolute instability is formed, thus resulting in the earliest transition. The diamond roughness element has a maximum width of the separated region leading to the widest turbulent wake region far downstream. Furthermore, transition location moves backward as the Mach number increases, which indicates that the compressibility significantly suppresses the roughness-induced boundary layer transition.

  12. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  13. Direct simulation of flat-plate boundary layer with mild free-stream turbulence

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2014-11-01

    Spatially evolving direct numerical simulation of the flat-plate boundary layer has been performed. The momentum thickness Reynolds number develops from 80 to 3000 with a free-stream turbulence intensity decaying from 3 percent to 0.8 percent. Predicted skin-friction is in agreement with the Blasius solution prior to breakdown, follows the well-known T3A bypass transition data during transition, and agrees with the Erm and Joubert Melbourne wind-tunnel data after the completion of transition. We introduce the concept of bypass transition in the narrow sense. Streaks, although present, do not appear to be dynamically important during the present bypass transition as they occur downstream of infant turbulent spots. For the turbulent boundary layer, viscous scaling collapses the rate of dissipation profiles in the logarithmic region at different Reynolds numbers. The ratio of Taylor microscale and the Kolmogorov length scale is nearly constant over a large portion of the outer layer. The ratio of large-eddy characteristic length and the boundary layer thickness scales very well with Reynolds number. The turbulent boundary layer is also statistically analyzed using frequency spectra, conditional-sampling, and two-point correlations. Near momentum thickness Reynolds number of 2900, three layers of coherent vortices are observed: the upper and lower layers are distinct hairpin forests of large and small sizes respectively; the middle layer consists of mostly fragmented hairpin elements.

  14. Ab Initio Study of Interfacial Structure Transformation of Amorphous Carbon Catalyzed by Ti, Cr, and W Transition Layers.

    PubMed

    Li, Xiaowei; Li, Lei; Zhang, Dong; Wang, Aiying

    2017-11-29

    Amorphous carbon (a-C) films composited with transition layers exhibit the desirable improvement of adhesion strength between films and substrate, but the further understanding on the interfacial structure transformation of a-C structure induced by transition layers is still lacked. In this paper, using ab initio calculations, we comparatively studied the interfacial structure between Ti, Cr, or W transition layers and a-C film from the atomic scale, and demonstrated that the addition of Ti, Cr, or W catalyzed the graphitic transformation of a-C structure at different levels, which provided the theoretical guidance for designing a multilayer nanocomposite film for renewed application.

  15. 25 CFR 547.7 - What are the minimum technical hardware standards applicable to Class II gaming systems?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... or integrity of the game, and are specially manufactured or proprietary and not off-the-shelf, must... the potential to affect the outcome or integrity of any game, progressive award, financial instrument... of a robust construction designed to resist determined illegal entry. All protuberances and...

  16. 25 CFR 547.7 - What are the minimum technical hardware standards applicable to Class II gaming systems?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... or integrity of the game, and are specially manufactured or proprietary and not off-the-shelf, must... the potential to affect the outcome or integrity of any game, progressive award, financial instrument... of a robust construction designed to resist determined illegal entry. All protuberances and...

  17. Numerical evaluations of the effect of leading-edge protuberances on the static and dynamic stall characteristics of an airfoil

    NASA Astrophysics Data System (ADS)

    Cai, C.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Wang, F. B.

    2013-12-01

    Wavy leading edge modifications of airfoils through imitating humpback whale flippers has been considered as a viable passive way to control flow separation. In this paper, flows around a baseline 634-021 airfoil and one with leading-edge sinusoidal protuberances were simulated using S-A turbulence model. When studying the static stall characteristics, it is found that the modified airfoil does not stall in the traditional manner, with increasing poststall lift coefficients. At high angles of attack, the flows past the wavy leading edge stayed attached for a distance, while the baseline foil is in a totally separated flow condition. On this basis, the simulations of pitch characteristic were carried out for both foils. At high angles of attack mild variations in lift and drag coefficients of the modified foil can be found, leading to a smaller area of hysteresis loop. The special structure of wavy leading edge can help maintain high consistency of the flow field in dynamic pitching station within a particular range of angles of attack.

  18. A new genus and species of mandibulate nasute termite (Isoptera, Termitidae, Syntermitinae) from Brazil

    PubMed Central

    Rocha, Mauricio M.; Cancello, Eliana M.; Cuezzo, Carolina

    2011-01-01

    Abstract Acangaobitermes krishnai gen. et sp. n., is described here, based on soldiers and workers collected in Brazil. Some characteristics suggest a close kinship with Noirotitermes Cancello & Myles, and both genera share the following traits absent in all other Syntermitinae: the microsculpturing on the soldier head capsule surface with internal granulations; the piercing mandibles with a single very reduced marginal tooth and the worker very similar in both genera. The most conspicuous differences between Acangaobitermes and Noirotitermes are the shape of the soldier head, the frontal tube and pronotum. The shape of the soldier head in Noirotitermes is unusual, with a very broad and short frontal tube, four conspicuous protuberances like sharp corners at the rear, while in the new genus the posterior contour of the head is devoid of these protuberances. The frontal tube of Acangaobitermes is elongate and conical, while in Noirotitermes it is short and very broad. The pronotum of Acangaobitermes is saddle-shaped as is usual in other Syntermitinae, while it is aberrant in Noirotitermes. PMID:22287893

  19. CFD Analysis of Tile-Repair Augers for the Shuttle Orbiter Re-Entry Aeroheating

    NASA Technical Reports Server (NTRS)

    Mazaheri, Ali R.

    2007-01-01

    A three-dimensional aerothermodynamic model of the shuttle orbiter's tile overlay repair (TOR) sub-assembly is presented. This sub-assembly, which is an overlay that covers the damaged tiles, is modeled as a protuberance with a constant thickness. The washers and augers that serve as the overlay fasteners are modeled as cylindrical protuberances with constant thicknesses. Entry aerothermodynamic cases are studied to provide necessary inputs for future thermal analyses and to support the space-shuttle return-to-flight effort. The NASA Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) is used to calculate heat transfer rate on the surfaces of the tile overlay repair and augers. Gas flow is modeled as non-equilibrium, five species air in thermal equilibrium. Heat transfer rate and surface temperatures are analyzed and studied for a shuttle orbiter trajectory point at Mach 17.85. Computational results show that the average heat transfer rate normalized with respect to its value at body point 1800 is about BF=1.9 for the auger head. It is also shown that the average BF for the auger and washer heads is about BF=2.0.

  20. A stable lithium-rich surface structure for lithium-rich layered cathode materials

    PubMed Central

    Kim, Sangryun; Cho, Woosuk; Zhang, Xiaobin; Oshima, Yoshifumi; Choi, Jang Wook

    2016-01-01

    Lithium ion batteries are encountering ever-growing demand for further increases in energy density. Li-rich layered oxides are considered a feasible solution to meet this demand because their specific capacities often surpass 200 mAh g−1 due to the additional lithium occupation in the transition metal layers. However, this lithium arrangement, in turn, triggers cation mixing with the transition metals, causing phase transitions during cycling and loss of reversible capacity. Here we report a Li-rich layered surface bearing a consistent framework with the host, in which nickel is regularly arranged between the transition metal layers. This surface structure mitigates unwanted phase transitions, improving the cycling stability. This surface modification enables a reversible capacity of 218.3 mAh g−1 at 1C (250 mA g−1) with improved cycle retention (94.1% after 100 cycles). The present surface design can be applied to various battery electrodes that suffer from structural degradations propagating from the surface. PMID:27886178

  1. Superconductive coupling in tailored [(SnSe)1+δ ] m (NbSe2)1 multilayers

    NASA Astrophysics Data System (ADS)

    Trahms, Martina; Grosse, Corinna; Alemayehu, Matti B.; Hite, Omar K.; Chiatti, Olivio; Mogilatenko, Anna; Johnson, David C.; Fischer, Saskia F.

    2018-06-01

    Ferecrystals are a new artificially layered material system, in which the individual layers are stacked with monolayer precision and are turbostratically disordered. Here, the superconducting coupling of the NbSe2 layers in [(SnSe)1+δ ] m [NbSe2]1 ferecrystals with m between 1 and 6 are investigated. The variation of m effectively increases the distance between the superconducting NbSe2 monolayers. We find a systematic decrease of the transition temperature with an increasing number of SnSe layers per repeat unit. For m = 9 a superconducting transition can no longer be observed at temperatures above 250 mK. In order to investigate the superconducting coupling between individual NbSe2 layers, the cross-plane Ginzburg–Landau coherence lengths were determined. Electric transport measurements of the superconducting transition were performed in the presence of a magnetic field, oriented parallel and perpendicular to the layers, at temperatures closely below the transition temperature. A decoupling with increasing distance of the NbSe2 layers is observed. However, ferecrystals with NbSe2 layers separated by up to six layers of SnSe are still considered as three-dimensional superconductors.

  2. Stripline/Microstrip Transition in Multilayer Circuit Board

    NASA Technical Reports Server (NTRS)

    Epp, Larry; Khan, Abdur

    2005-01-01

    A stripline-to-microstrip transition has been incorporated into a multilayer circuit board that supports a distributed solid-state microwave power amplifier, for the purpose of coupling the microwave signal from a buried-layer stripline to a top-layer microstrip. The design of the transition could be adapted to multilayer circuit boards in such products as cellular telephones (for connecting between circuit-board signal lines and antennas), transmitters for Earth/satellite communication systems, and computer mother boards (if processor speeds increase into the range of tens of gigahertz). The transition is designed to satisfy the following requirements in addition to the basic coupling requirement described above: (1) The transition must traverse multiple layers, including intermediate layers that contain DC circuitry. (2) The transition must work at a frequency of 32 GHz with low loss and low reflection. (3) The power delivered by the transition to top-layer microstrip must be split equally in opposite directions along the microstrip. Referring to the figure, this amounts to a requirement that when power is supplied to input port 1, equal amounts of power flow through output ports 2 and 3. (4) The signal-line via that is necessarily a part of such a transition must not be what is known in the art as a blind via; that is, it must span the entire thickness of the circuit board.

  3. Competition of simple and complex adoption on interdependent networks

    NASA Astrophysics Data System (ADS)

    Czaplicka, Agnieszka; Toral, Raul; San Miguel, Maxi

    2016-12-01

    We consider the competition of two mechanisms for adoption processes: a so-called complex threshold dynamics and a simple susceptible-infected-susceptible (SIS) model. Separately, these mechanisms lead, respectively, to first-order and continuous transitions between nonadoption and adoption phases. We consider two interconnected layers. While all nodes on the first layer follow the complex adoption process, all nodes on the second layer follow the simple adoption process. Coupling between the two adoption processes occurs as a result of the inclusion of some additional interconnections between layers. We find that the transition points and also the nature of the transitions are modified in the coupled dynamics. In the complex adoption layer, the critical threshold required for extension of adoption increases with interlayer connectivity whereas in the case of an isolated single network it would decrease with average connectivity. In addition, the transition can become continuous depending on the detailed interlayer and intralayer connectivities. In the SIS layer, any interlayer connectivity leads to the extension of the adopter phase. Besides, a new transition appears as a sudden drop of the fraction of adopters in the SIS layer. The main numerical findings are described by a mean-field type analytical approach appropriately developed for the threshold-SIS coupled system.

  4. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    NASA Astrophysics Data System (ADS)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02678h

  5. Boundary-layer development and transition due to free-stream exothermic reactions in shock-induced flows

    NASA Technical Reports Server (NTRS)

    Hall, J. L.

    1974-01-01

    A study of the effect of free-stream thermal-energy release from shock-induced exothermic reactions on boundary-layer development and transition is presented. The flow model is that of a boundary layer developing behind a moving shock wave in two-dimensional unsteady flow over a shock-tube wall. Matched sets of combustible hydrogen-oxygen-nitrogen mixtures and inert hydrogen-nitrogen mixtures were used to obtain transition data over a range of transition Reynolds numbers from 1,100,000 to 21,300,000. The heat-energy is shown to significantly stabilize the boundary layer without changing its development character. A method for application of this data to flat-plate steady flows is included.

  6. Rough-to-smooth transition of an equilibrium neutral constant stress layer. [atmospheric flow over rough terrain

    NASA Technical Reports Server (NTRS)

    Logan, E., Jr.; Fichtl, G. H.

    1975-01-01

    A model is proposed for low-level atmospheric flows over terrains of changing roughness length, such as those found at the windward end of landing strips adjoining rough terrain. The proposed model is used to develop a prediction technique for calculating transition wind and shear-stress profiles in the region following surface roughness discontinuity. The model for the transition region comprises two layers: a logarithmic layer and a buffer layer. The flow is assumed to be steady, two-dimensional, and incompressible, with neutral hydrostatic stability. A diagram is presented for a typical wind profile in the transition region, obtained from the logarithmic and velocity defect profiles using shear stress calculated by relevant equations.

  7. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  8. Study of the Effect of Free-Stream Turbulence upon Disturbances in the Pre-Transitional Laminar Boundary Layer. Part I. Laminar Boundary Layer Distortion by Surface Roughness; Effect upon Stability. Part II.

    DTIC Science & Technology

    1982-04-01

    Boundary Layer Near a Plate." NACA Rept. 562, 1936. 5) A. A. Hall and G. S. Hislop , "Experiments on the Transition of the Laminar Boundary Layer on a...Cylinder." Proc. 5th Inter. Congr. Appl. Math, 1938. 7) G. S. Hislop , "The Transition of a Laminar Boundary Layer in a Wind Tunnel." Ph.D. Thesis...Small Vertical Cylinder Attached to a Flat Plate", h Fa- Elul"s, Vol. 23, Part 1, pp. 221-223, Jan. 1980 . 9. A. Von Doenhoff and E. A. Horton, "A Low

  9. Simulation of dispersion in layered coastal aquifer systems

    USGS Publications Warehouse

    Reilly, T.E.

    1990-01-01

    A density-dependent solute-transport formulation is used to examine ground-water flow in layered coastal aquifers. The numerical experiments indicate that although the transition zone may be thought of as an impermeable 'sharp' interface with freshwater flow parallel to the transition zone in homogeneous aquifers, this is not the case for layered systems. Freshwater can discharge through the transition zone in the confining units. Further, for the best simulation of layered coastal aquifer systems, either a flow-direction-dependent dispersion formulation is required, or the dispersivities must change spatially to reflect the tight thin confining unit. ?? 1990.

  10. Forward-facing steps induced transition in a subsonic boundary layer

    NASA Astrophysics Data System (ADS)

    Zh, Hui; Fu, Song

    2017-10-01

    A forward-facing step (FFS) immersed in a subsonic boundary layer is studied through a high-order flux reconstruction (FR) method to highlight the flow transition induced by the step. The step height is a third of the local boundary-layer thickness. The Reynolds number based on the step height is 720. Inlet disturbances are introduced giving rise to streamwise vortices upstream of the step. It is observed that these small-scale streamwise structures interact with the step and hairpin vortices are quickly developed after the step leading to flow transition in the boundary layer.

  11. Correlations for Boundary-Layer Transition on Mars Science Laboratory Entry Vehicle Due to Heat-Shield Cavities

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Liechty, Derek S.

    2008-01-01

    The influence of cavities (for attachment bolts) on the heat-shield of the proposed Mars Science Laboratory entry vehicle has been investigated experimentally and computationally in order to develop a criterion for assessing whether the boundary layer becomes turbulent downstream of the cavity. Wind tunnel tests were conducted on the 70-deg sphere-cone vehicle geometry with various cavity sizes and locations in order to assess their influence on convective heating and boundary layer transition. Heat-transfer coefficients and boundary-layer states (laminar, transitional, or turbulent) were determined using global phosphor thermography.

  12. Control of shock-wave boundary layer interaction using steady micro-jets

    NASA Astrophysics Data System (ADS)

    Verma, S. B.; Manisankar, C.; Akshara, P.

    2015-09-01

    An experimental investigation was conducted to control the amplitude of shock unsteadiness associated with the interaction induced by a cylindrical protuberance on a flat plate in a Mach 2.18 flow. The control was applied in the form of an array of steady micro air-jets of different configurations with variation in pitch and skew angle of the jets. The effect of air-jet supply pressure on control was also studied. Each of the micro-jet configurations was placed 20 boundary layer thicknesses upstream of the leading edge of the cylinder. The overall interaction is seen to get modified for all control configurations and shows a reduction in both separation- and bow-shock strengths and in triple-point height. A significant reduction in the peak rms value is also observed in the intermittent region of separation for each case. For pitched jets placed in a zig-zag configuration, good control effectiveness is achieved at control pressures similar to the stagnation pressure of the freestream. At higher control pressures, however, their obstruction component increases and if these jets are not spaced sufficiently far apart, the effectiveness of their control begins to drop due to the beginning of spanwise jet-to-jet interaction. On the other hand, pitching or skewing the jets to reduces the obstruction component considerably which at lower control pressures shows lower effectiveness. But at higher control pressure, the effectiveness of these configurations continues to increase unlike the pitched jets.

  13. Boundary Layer Transition During the Orion Exploration Flight Test 1 (EFT-1)

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.

    2016-01-01

    Boundary layer transition was observed in the thermocouple data on the windside backshell of the Orion reentry capsule. Sensors along the windside centerline, as well as off-centerline, indicated transition late in the flight at approximately Mach 4 conditions. Transition progressed as expected, beginning at the sensors closest to the forward bay cover (FBC) and moving towards the heatshield. Sensors placed in off-centerline locations did not follow streamlines, so the progression of transition observed in these sensors is less intuitive. Future analysis will include comparisons to pre-flight predictions and expected transitional behavior will be investigated. Sensors located within the centerline and off-centerline launch abort system (LAS) attach well cavities on the FBC also showed indications of boundary layer transition. The transition within the centerline cavity was observed in the temperature traces prior to transition onset on the sensors upstream of the cavity. Transition behavior within the off centerline LAS attach well cavity will also be investigated. Heatshield thermocouples were placed within Avcoat plugs to attempt to capture transitional behavior as well as better understand the aerothermal environments. Thermocouples were placed in stacks of two or five vertically within the plugs, but the temperature data obtained at the sensors closest to the surface did not immediately indicate transitional behavior. Efforts to use the in depth thermocouple temperatures to reconstruct the surface heat flux are ongoing and any results showing the onset of boundary layer transition obtained from those reconstructions will also be included in this paper. Transition on additional features of interest, including compression pad ramps, will be included if it becomes available.

  14. Structural and electronic properties of the transition layer at the SiO{sub 2}/4H-SiC interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wenbo; Wang, Dejun, E-mail: dwang121@dlut.edu.cn; Zhao, Jijun

    Using first-principles methods, we generate an amorphous SiO{sub 2}/4H-SiC interface with a transition layer. Based this interface model, we investigate the structural and electronic properties of the interfacial transition layer. The calculated Si 2p core-level shifts for this interface are comparable to the experimental data, indicating that various SiC{sub x}O{sub y} species should be present in this interface transition layer. The analysis of the electronic structures reveals that the tetrahedral SiC{sub x}O{sub y} structures cannot introduce any of the defect states at the interface. Interestingly, our transition layer also includes a C-C=C trimer and SiO{sub 5} configurations, which lead tomore » the generation of interface states. The accurate positions of Kohn-Sham energy levels associated with these defects are further calculated within the hybrid functional scheme. The Kohn-Sham energy levels of the carbon trimer and SiO{sub 5} configurations are located near the conduction and valence band of bulk 4H-SiC, respectively. The result indicates that the carbon trimer occurred in the transition layer may be a possible origin of near interface traps. These findings provide novel insight into the structural and electronic properties of the realistic SiO{sub 2}/SiC interface.« less

  15. 14 CFR 25.785 - Seats, berths, safety belts, and harnesses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...

  16. 14 CFR 25.785 - Seats, berths, safety belts, and harnesses.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...

  17. 14 CFR 25.785 - Seats, berths, safety belts, and harnesses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...

  18. 14 CFR 25.785 - Seats, berths, safety belts, and harnesses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...

  19. 14 CFR 25.785 - Seats, berths, safety belts, and harnesses.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must be protected from head injury by a safety belt and an energy absorbing rest that will support the... energy absorbing rest that will support the arms, shoulders, head, and spine. (e) Each berth must be... § 25.561. Berths must be free from corners and protuberances likely to cause injury to a person...

  20. A Girl with Pervasive Developmental Disorder and Complex Chromosome Rearrangement Involving 8p and 10p

    ERIC Educational Resources Information Center

    Zwaigenbaum, L; Sonnenberg, L. K.; Heshka, T.; Eastwood, S.; Xu, J.

    2005-01-01

    We report a 4-year-old girl with a "de novo", apparently balanced complex chromosome rearrangement. She initially presented for assessment of velopharyngeal insufficiency due to hypernasal speech. She has distinctive facial features (long face, broad nasal bridge, and protuberant ears with simplified helices), bifid uvula, strabismus,…

  1. Gage for evaluating rheumatoid hands

    NASA Technical Reports Server (NTRS)

    Houge, J. C.; Plautz, K. A.

    1981-01-01

    Two-axis goniometer accurately measures movements of fingers about knuckle joints, diagnosing hands structurally changed by rheumatoid arthritis. Instrument measures lateral movement which is small in normal knuckles but increased in diseased joints. Goniometer is two connected protractors that simultaneously measure angles in perpindicular planes. Dials are offset to clear bony protuberances; extension and offset adjustments span any hand size.

  2. Applications of Hydrofoils with Leading Edge Protuberances

    DTIC Science & Technology

    2012-03-30

    of angles of attack. Table 20 presents important hydrodynamic characteristics of the finite-span rectangular hydrofoils with cavitation . 107...Table 20. Hydrodynamic characteristics of finite-span rectangular planform hydrofoils with cavitation . Rec = 7.2 × 105 [deg−1] CLmax α...characteristics of the swept planform hydrofoils under cavitation conditions. Table 21. Hydrodynamic characteristics of swept planform hydrofoils under cavitation

  3. A review and analysis of boundary layer transition data for turbine application

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1985-01-01

    A number of data sets from the open literature that include heat transfer data in apparently transitional boundary layers, with particular application to the turbine environment, were reviewed and analyzed to extract transition information. The data were analyzed by using a version of the STAN5 two-dimensional boundary layer code. The transition starting and ending points were determined by adjusting parameters in STAN5 until the calculations matched the data. The results are presented as a table of the deduced transition location and length as functions of the test parameters. The data sets reviewed cover a wide range of flow conditions, from low-speed, flat-plate tests to full-scale turbine airfoils operating at simulated turbine engine conditions. The results indicate that free-stream turbulence and pressure gradient have strong, and opposite, effects on the location of the start of transition and on the length of the transition zone.

  4. Transition in Turbines

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The concept of a large disturbance bypass mechanism for the initiation of transition is reviewed and studied. This mechanism, or some manifestation thereof, is suspected to be at work in the boundary layers present in a turbine flow passage. Discussion is presented on four relevant subtopics: (1) the effect of upstream disturbances and wakes on transition; (2) transition prediction models, code development, and verification; (3) transition and turbulence measurement techniques; and (4) the hydrodynamic condition of low Reynolds number boundary layers.

  5. Minnowbrook I: 1993 Workshop on End-Stage Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    LaGraff, John E. (Editor)

    2007-01-01

    This volume contains materials presented at the Minnowbrook I-1993 Workshop on End-Stage Boundary Layer Transition, held at the Syracuse University Minnowbrook Conference Center, New York, from August 15 to 18, 1993. This volume was previously published as a Syracuse University report edited by John E. LaGraff. The workshop organizers were John E. LaGraff (Syracuse University), Terry V. Jones (Oxford University), and J. Paul Gostelow (University of Technology, Sydney). The workshop focused on physical understanding of the late stages of transition from laminar to turbulent flows, with the specific goal of contributing to improving engineering design of turbomachinery and wing airfoils. The workshop participants included academic researchers from the United States and abroad, and representatives from the gas-turbine industry and U.S. government laboratories. To improve interaction and discussions among the participants, no formal papers were required. The physical mechanisms discussed were related to natural and bypass transition, wake-induced transition, effects of freestream turbulence, turbulent spots, hairpin vortices, nonlinear instabilities and breakdown, instability wave interactions, intermittency, turbulence, numerical simulation and modeling of transition, heat transfer in boundary-layer transition, transition in separated flows, laminarization, transition in turbomachinery compressors and turbines, hypersonic boundary-layer transition, and other related topics. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The workshop summary and the plenary discussion transcript clearly outline future research needs.

  6. Bypass transition and spot nucleation in boundary layers

    NASA Astrophysics Data System (ADS)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  7. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  8. Magnetic and electrical control of engineered materials

    DOEpatents

    Schuller, Ivan K.; de La Venta Granda, Jose; Wang, Siming; Ramirez, Gabriel; Erekhinskiy, Mikhail; Sharoni, Amos

    2016-08-16

    Methods, systems, and devices are disclosed for controlling the magnetic and electrical properties of materials. In one aspect, a multi-layer structure includes a first layer comprising a ferromagnetic or ferrimagnetic material, and a second layer positioned within the multi-layer structure such that a first surface of the first layer is in direct physical contact with a second surface of the second layer. The second layer includes a material that undergoes structural phase transitions and metal-insulator transitions upon experiencing a change in temperature. One or both of the first and second layers are structured to allow a structural phase change associated with the second layer cause a change magnetic properties of the first layer.

  9. Statistical crossover characterization of the heterotic localized-extended transition.

    PubMed

    Ugajin, Ryuichi

    2003-07-01

    We investigated the spectral statistics of a quantum particle in a superlattice consisting of a disordered layer and a clean layer, possibly accompanied by random magnetic fields. Because a disordered layer has localized states and a clean layer has extended states, our quantum system shows a heterotic phase of an Anderson insulator and a normal metal. As the ratio of the volume of these two layers changes, the spectral statistics change from Poissonian to one of the Gaussian ensembles which characterize quantum chaos. A crossover distribution specified by two parameters is introduced to distinguish the transition from an integrable system to a quantum chaotic system during the heterotic phase from an Anderson transition in which the degree of random potentials is homogenous.

  10. Minnowbrook II 1997 Workshop on Boundary Layer Transition in Turbomachines

    NASA Technical Reports Server (NTRS)

    LaGraff John E. (Editor); Ashpis, David E. (Editor)

    1998-01-01

    The volume contains materials presented at the Minnowbrook II - 1997 Workshop on Boundary Layer Transition in Turbomachines, held at Syracuse University Minnowbrook Conference Center, New York, on September 7-10, 1997. The workshop followed the informal format at the 1993 Minnowbrook I workshop, focusing on improving the understanding of late stage (final breakdown) boundary layer transition, with the engineering application of improving design codes for turbomachinery in mind. Among the physical mechanisms discussed were hydrodynamic instabilities, laminar to turbulent transition, bypass transition, turbulent spots, wake interaction with boundary layers, calmed regions, and separation, all in the context of flow in turbomachinery, particularly in compressors and high and low pressure turbines. Results from experiments, DNS, computation, modeling and theoretical analysis were presented. Abstracts and copies of viewgraphs, a specifically commissioned summation paper prepared after the workshop, and a transcript of the extensive working group reports and discussions are included in this volume. They provide recommendations for future research and clearly highlight the need for continued vigorous research in the technologically important area of transition in turbomachines.

  11. Boundary Layer Transition in the Leading Edge Region of a Swept Cylinder in High Speed Flow

    NASA Technical Reports Server (NTRS)

    Coleman, Colin P.

    1998-01-01

    Experiments were conducted on a 76 degree swept cylinder to establish the behavior of the attachment line transition process in a low-disturbance level, Mach number 1.6 flow. For a near adiabatic wall condition, the attachment-line boundary layer remained laminar up to the highest attainable Reynolds number. The attachment-line boundary layer transition under the influence of trip wires depended on wind tunnel disturbance level, and a transition onset condition for this flow is established. Internal heating raised the surface temperature of the attachment line to induce boundary layer instabilities. This was demonstrated experimentally for the first time and the frequencies of the most amplified disturbances were determined over a range of temperature settings. Results were in excellent agreement to those predicted by a linear stability code, and provide the first experimental verification of theory. Transition onset along the heated attachment line at an R-bar of 800 under quiet tunnel conditions was found to correlate with an N factor of 13.2. Increased tunnel disturbance levels caused the transition onset to occur at lower cylinder surface temperatures and was found to correlate with an approximate N factor of 1 1.9, so demonstrating that the attachment-line boundary layer is receptive to increases in the tunnel disturbance level.

  12. Simulations of laminar boundary-layer flow encountering large-scale surface indentions

    NASA Astrophysics Data System (ADS)

    Beratlis, N.; Balaras, E.; Squires, K.; Vizard, A.

    2016-03-01

    The transition from laminar to turbulent flow over dimples and grooves has been investigated through a series of direct numerical simulations. Emphasis has been given to the mechanism of transition and the momentum transport in the post-dimple boundary layer. It has been found that the dimple geometry plays an important role in the evolution of the turbulent boundary layer downstream. The mechanism of transition in all cases is that of the reorientation of the spanwise vorticity into streamwise oriented structures resembling hairpin vortices commonly encountered in wall bounded turbulent flows. Although qualitatively the transition mechanism amongst the three different cases is similar, important quantitative differences exist. It was shown that two-dimensional geometries like a groove are more stable than three-dimensional geometries like a dimple. In addition, it was found that the cavity geometry controls the initial thickness of the boundary layer and practically results in a shift of the virtual origin of the turbulent boundary layer. Important differences in the momentum transport downstream of the dimples exist but in all cases the boundary layer grows in a self-similar manner.

  13. Erythropsidinium (Gymnodiniales, Dinophyceae) in the Pacific Ocean, a unique dinoflagellate with an ocelloid and a piston.

    PubMed

    Gómez, Fernando

    2008-11-01

    The distribution and morphology of the dinoflagellate Erythropsidinium (=Erythropsis) was studied in the vicinity of the Kuroshio and Oyashio Currents, the Philippine, Celebes, Sulu and South China Seas, western and central equatorial and southeast Pacific Ocean. Ninety-four specimens were observed, most of them collected from depths of less than 90m. The highest abundance (15cellsL(-1)) was recorded in the north Philippine Sea in May (32 degrees N, 138 degrees E, 30-m depth). Twenty-four specimens were found in a station in the offshore Perú-Chile Current (31 degrees 52'S, 91 degrees 24'W). The transition regions between open warm waters and productive currents or upwellings seem to favour the abundance of Erythropsidinium. Specimens with duplicate pistons, with two protuberant ocelloids, and specimens with a piston that attains up to 20 times the body length are illustrated for the first time. All the specimens have been ascribed to the type species, Erythropsidinium agile, until stable taxonomical criteria are established for the species diagnosis. Despite the complexity of its organelles, the ocelloid and piston, the competitiveness of Erythropsidinium in the pelagic ecosystem seems to be low.

  14. Northwest Africa 10758: A New CV3 Chondrite Bearing a Giant CAI with Hibonite-Rich Wark-Lovering Rim

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Zolensky, M.

    2017-01-01

    Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx.20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.

  15. NWA10758: A New CV3 Chondrite Bearing a Giant CAI with Hibonite-Rich Wark-Lovering Rim

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Simon, J. I.; Zolensky, M.

    2017-01-01

    Northwest Africa (NWA) 10758 is a newly identified carbonaceous chondrite that is a Bali-like oxidized CV3. The large Ca-Al rich inclusion (CAI) in this sample is approx. 2.4 x 1.4 cm. The CAI is transitional in composition between type A and type B, with interior mineralogy dominated by melilite, plus less abundant spinel and Al-Ti rich diopside, and only very minor anorthite (Fig. 1A). This CAI is largely free of secondary alteration in the exposed section we examined, with almost no nepheline, sodalite or Ca-Fe silicates. The Wark-Lovering (WL) rim on this CAI is dominated by hibonite, with lower abundances of spinel and perovskite, and with hibonite locally overlain by melilite plus perovskite (as in Fig. 1B). Note that the example shown in 1B is exceptional. Around most of the CAI, hibonite + spinel + perovskite form the WL rim, without overlying melilite. The WL rim can be unusually thick, ranging from approx. 20 microns up to approx. 150 microns. A well-developed, stratified accretionary rim infills embayments of the CAI, and thins over protuberances in the convoluted CAI surface.

  16. Calibration of a γ- Re θ transition model and its application in low-speed flows

    NASA Astrophysics Data System (ADS)

    Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song

    2014-12-01

    The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.

  17. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGES

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; ...

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M 3C 2 and M 4C 3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX] nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M' 2M"C 2 and M' 2M" 2C 3 – where M' and M" are two different earlymore » transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo 2TiC 2 and Mo 2Ti 2C 3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC] nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti 3C 2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo 2TiC 2T x exhibits semiconductor-like transport behavior, while Ti 3C 2T x is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  18. USArray Receiver Function Imaging of Multiple-Layer Crustal Structure of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Ma, X.; Lowry, A. R.; Ravat, D.

    2014-12-01

    Thickness andseismic velocity of crustal layers are useful for understanding the history and evolution of continental lithosphere. Lowry and Pérez-Gussinyé (2011) observed that low bulk crustal seismic velocity ratio, Vp/Vs, strongly correlates with high geothermal gradient and active deformation, indicating quartz (to which Vp/Vs is most sensitive) plays a role in these processes. The lower crust (where ductile flow occurs which might explain the relationship) is commonly thought to be quartz-poor. However, layering of the crust may represent changes in either lithology or the phase of quartz. Laboratory strain-stress experiments on quartz indicate that near the a- to b-quartz phase transition, both Vp and Vp/Vs initially drop dramatically but then increase relative to the a-quartz regime because Young's modulus initially decreases by 30% before increasing by a net ~20%. Shear modulus varies only ~3% across the transition. Crustal structure is commonly represented by an upper, mid- and lower layer (e.g., Crust1.0) and conceptualized as primarily reflecting a change to more mafic lithology at greater depth, but estimates of Moho temperature indicate a quartz phase transition should be present in much of the western and central U.S. We have imaged multiple layering of the contiguous U.S. by applying a new cross-correlation and stacking method to USArray receiver functions. Synthetic models of a multiple layer crust indicate 'splitting' of converted-phase arrivals would be expected if a quartz phase transition were responsible. Preliminary imaging using cross-correlation of observed receiver functions with multiple layer synthetics demonstrates a marked improvement in correlation coefficients relative to a single-layer crust. In this presentation we will examine observational evidence for possible a- to b- phase transition layering (indicating quartz at depth) and compare with depths predicted for the quartz phase transition based on Pn-derived Moho temperatures and estimates of magnetic Curie depths.

  19. Crystal structure and magnetism of layered perovskites compound EuBaCuFeO5

    NASA Astrophysics Data System (ADS)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-04-01

    Layered perovskite compounds have interesting multiferroic properties.YBaCuFeO5 is one of the layered perovskite compounds which have magnetic and dielectric transition above 200 K. The multiferroic properties can be tuned with the replacement of Y with some other rare earth ions. In this manuscript, structural and magnetic properties of layered perovskite compound EuBaCuFeO5 have been investigated. This compound crystallizes in the tetragonal structure with P4mm space group and is iso-structural with YBaCuFeO5. The magnetic transition has been found to shift to 120 K as compared to YBaCuFeO5 which has the transition at 200 K. This shift in the magnetic transition has been ascribed to the decrease in the chemical pressure that relaxes the magnetic moments.

  20. Ferroelectric control of metal-insulator transition

    NASA Astrophysics Data System (ADS)

    He, Xu; Jin, Kui-juan; Ge, Chen; Ma, Zhong-shui; Yang, Guo-zhen

    2016-03-01

    We propose a method of controlling the metal-insulator transition of one perovskite material at its interface with another ferroelectric material based on first principle calculations. The operating principle is that the rotation of oxygen octahedra tuned by the ferroelectric polarization can modulate the superexchange interaction in this perovskite. We designed a tri-color superlattice of (BiFeO3)N/LaNiO3/LaTiO3, in which the BiFeO3 layers are ferroelectric, the LaNiO3 layer is the layer of which the electronic structure is to be tuned, and LaTiO3 layer is inserted to enhance the inversion asymmetry. By reversing the ferroelectric polarization in this structure, there is a metal-insulator transition of the LaNiO3 layer because of the changes of crystal field splitting of the Ni eg orbitals and the bandwidth of the Ni in-plane eg orbital. It is highly expected that a metal-transition can be realized by designing the structures at the interfaces for more materials.

  1. Measurements in Transitional Boundary Layers Under High Free-Stream Turbulence and Strong Acceleration Conditions

    NASA Technical Reports Server (NTRS)

    Volino, Ralph J.; Simon, Terrence W.

    1995-01-01

    Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong streamwise acceleration. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean flow characteristics as well as turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Spectral analysis was applied to describe the effects of turbulence scales of different sizes during transition. To the authors'knowledge, this is the first detailed documentation of boundary layer transition under such high free-stream turbulence conditions.

  2. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  3. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  4. On the Effects of Surface Roughness on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  5. Correlation-based Transition Modeling for External Aerodynamic Flows

    NASA Astrophysics Data System (ADS)

    Medida, Shivaji

    Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion. In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that is not captured with conventional turbulence models. The validated transition model is successfully applied to rotating blade configurations in axial flow conditions to study the effects of transitional boundary layers on rotor thrust and torque. In helicopter rotors, inclusion of transition effects increased thrust prediction by 2% and decreased torque by as much as 8% at lower collective angles, due to reduced airfoil profile drag. In wind turbine rotors, transition model predicted a 7%--70% increase in generated shaft torque at lower wind speeds, due to lower viscous drag. This has important implications for CFD analysis of small wind turbines operating at low values of rated power. Transition onset locations along upper and lower surfaces of rotor blades are analyzed in detail. A new crossflow transition onset criterion is developed to account for crossflow instability effects in three-dimensional boundary layers. Preliminary results for swept wing and rotating blade flows demonstrate the need to account for crossflow transition in three-dimensional simulations of wings, rotating blades, and airframes. Inclusion of crossflow effects resulted in accelerated transition in the presence of favorable pressure gradients and yawed flow. Finally, a new correction to the wall damping function in the Spalart-Allmaras turbulence model is proposed to improve sensitivity of the model to strong adverse pressure gradients (APG). The correction reduces turbulence production in the boundary layer when the ratio of magnitudes of local turbulent stress to the wall shear stress exceeds a threshold value, therefore enabling earlier separation of boundary layer. Improved prediction of static and dynamic stall on two-dimensional airfoils is demonstrated with the APG correction.

  6. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  7. RCC Plug Repair Thermal Tools for Shuttle Mission Support

    NASA Technical Reports Server (NTRS)

    Rodriguez, Alvaro C.; Anderson, Brian P.

    2010-01-01

    A thermal math model for the Space Shuttle Reinforced Carbon-Carbon (RCC) Plug Repair was developed to increase the confidence in the repair entry performance and provide a real-time mission support tool. The thermal response of the plug cover plate, local RCC, and metallic attach hardware can be assessed with this model for any location on the wing leading edge. The geometry and spatial location of the thermal mesh also matches the structural mesh which allows for the direct mapping of temperature loads and computation of the thermoelastic stresses. The thermal model was correlated to a full scale plug repair radiant test. To utilize the thermal model for flight analyses, accurate predictions of protuberance heating were required. Wind tunnel testing was performed at CUBRC to characterize the heat flux in both the radial and angular directions. Due to the complexity of the implementation of the protuberance heating, an intermediate program was developed to output the heating per nodal location for all OML surfaces in SINDA format. Three Design Reference Cases (DRC) were evaluated with the correlated plug thermal math model to bound the environments which the plug repair would potentially be used.

  8. A bifractal nature of reticular patterns induced by oxygen plasma on polymer films

    NASA Astrophysics Data System (ADS)

    Bae, Junwan; Lee, I. J.

    2015-05-01

    Plasma etching was demonstrated to be a promising tool for generating self-organized nano-patterns on various commercial films. Unfortunately, dynamic scaling approach toward fundamental understanding of the formation and growth of the plasma-induced nano-structure has not always been straightforward. The temporal evolution of self-aligned nano-patterns may often evolve with an additional scale-invariance, which leads to breakdown of the well-established dynamic scaling law. The concept of a bifractal interface is successfully applied to reticular patterns induced by oxygen plasma on the surface of polymer films. The reticular pattern, composed of nano-size self-aligned protuberances and underlying structure, develops two types of anomalous dynamic scaling characterized by super-roughening and intrinsic anomalous scaling, respectively. The diffusion and aggregation of short-cleaved chains under the plasma environment are responsible for the regular distribution of the nano-size protuberances. Remarkably, it is uncovered that the dynamic roughening of the underlying structure is governed by a relaxation mechanism described by the Edwards-Wilkinson universality class with a conservative noise. The evidence for the basic phase, characterized by the negative roughness and growth exponents, has been elusive since its first theoretical consideration more than two decades ago.

  9. Modeling of near wall turbulence and modeling of bypass transition

    NASA Technical Reports Server (NTRS)

    Yang, Z.

    1992-01-01

    The objectives for this project are as follows: (1) Modeling of the near wall turbulence: We aim to develop a second order closure for the near wall turbulence. As a first step of this project, we try to develop a kappa-epsilon model for near wall turbulence. We require the resulting model to be able to handle both near wall turbulence and turbulent flows away from the wall, computationally robust, and applicable for complex flow situations, flow with separation, for example, and (2) Modeling of the bypass transition: We aim to develop a bypass transition model which contains the effect of intermittency. Thus, the model can be used for both the transitional boundary layers and the turbulent boundary layers. We require the resulting model to give a good prediction of momentum and heat transfer within the transitional boundary and a good prediction of the effect of freestream turbulence on transitional boundary layers.

  10. Transitional-turbulent spots and turbulent-turbulent spots in boundary layers

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Wallace, James M.; Skarda, Jinhie; Lozano-Durán, Adrián; Hickey, Jean-Pierre

    2017-07-01

    Two observations drawn from a thoroughly validated direct numerical simulation of the canonical spatially developing, zero-pressure gradient, smooth, flat-plate boundary layer are presented here. The first is that, for bypass transition in the narrow sense defined herein, we found that the transitional-turbulent spot inception mechanism is analogous to the secondary instability of boundary-layer natural transition, namely a spanwise vortex filament becomes a ΛΛ vortex and then, a hairpin packet. Long streak meandering does occur but usually when a streak is infected by a nearby existing transitional-turbulent spot. Streak waviness and breakdown are, therefore, not the mechanisms for the inception of transitional-turbulent spots found here. Rather, they only facilitate the growth and spreading of existing transitional-turbulent spots. The second observation is the discovery, in the inner layer of the developed turbulent boundary layer, of what we call turbulent-turbulent spots. These turbulent-turbulent spots are dense concentrations of small-scale vortices with high swirling strength originating from hairpin packets. Although structurally quite similar to the transitional-turbulent spots, these turbulent-turbulent spots are generated locally in the fully turbulent environment, and they are persistent with a systematic variation of detection threshold level. They exert indentation, segmentation, and termination on the viscous sublayer streaks, and they coincide with local concentrations of high levels of Reynolds shear stress, enstrophy, and temperature fluctuations. The sublayer streaks seem to be passive and are often simply the rims of the indentation pockets arising from the turbulent-turbulent spots.

  11. Mars Science Laboratory Heatshield Aerothermodynamics: Design and Reconstruction

    NASA Technical Reports Server (NTRS)

    Edquist, Karl T.; Hollis, Brian R.; Johnston, Christopher O.; Bose, Deepak; White, Todd R.; Mahzari, Milad

    2013-01-01

    The Mars Science Laboratory heatshield was designed to withstand a fully turbulent heat pulse based on test results and computational analysis on a pre-flight design trajectory. Instrumentation on the flight heatshield measured in-depth temperatures in the thermal protection system. The data indicate that boundary layer transition occurred at 5 of 7 thermocouple locations prior to peak heating. Data oscillations at 3 pressure measurement locations may also indicate transition. This paper presents the heatshield temperature and pressure data, possible explanations for the timing of boundary layer transition, and a qualitative comparison of reconstructed and computational heating on the as-flown trajectory. Boundary layer Reynolds numbers that are typically used to predict transition are compared to observed transition at various heatshield locations. A uniform smooth-wall transition Reynolds number does not explain the timing of boundary layer transition observed during flight. A roughness-based Reynolds number supports the possibility of transition due to discrete or distributed roughness elements on the heatshield. However, the distributed roughness height would have needed to be larger than the pre-flight assumption. The instrumentation confirmed the predicted location of maximum turbulent heat flux near the leeside shoulder. The reconstructed heat flux at that location is bounded by smooth-wall turbulent calculations on the reconstructed trajectory, indicating that augmentation due to surface roughness probably did not occur. Turbulent heating on the downstream side of the heatshield nose exceeded smooth-wall computations, indicating that roughness may have augmented heating. The stagnation region also experienced heating that exceeded computational levels, but shock layer radiation does not fully explain the differences.

  12. Fabric transition with dislocation creep of a carbonate fault zone in the brittle regime

    NASA Astrophysics Data System (ADS)

    Kim, Sungshil; Ree, Jin-Han; Han, Raehee; Kim, Nahyeon; Jung, Haemyeong

    2018-01-01

    Fabric transition by a switch in the dominant slip system of minerals in the plastic regime can be induced by changes in temperature, strain rate, or water content. We propose here this fabric transition by frictional heating in seismogenic fault zones in the brittle regime. The Garam Thrust in the Taebaeksan Basin of South Korea has a hanging wall of Cambrian dolostone juxtaposed against a footwall of Ordovician limestone and records a minimum displacement of 120 m. In a 10 cm thick plastically deformed layer adjacent to the principal slip layer of the fault zone, the lattice preferred orientation of calcite grains suggests that the dominant slip system changes, approaching the principal slip layer, from r 〈02-21〉 and e-twinning, through r 〈02-21〉 and basal 〈a〉, to basal 〈a〉. This fabric transition requires a high temperature-gradient of 40 °C/cm, which we infer to result from frictional heating of the seismic fault zone. We suggest that fabric transition within a thin plastically deformed layer adjacent to the principal slip layer of a fault zone indicates an unusually steep temperature gradient and provides strong evidence of seismic slip.

  13. High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaolin

    1998-08-01

    Direct numerical simulation (DNS) has become a powerful tool in studying fundamental phenomena of laminar-turbulent transition of high-speed boundary layers. Previous DNS studies of supersonic and hypersonic boundary layer transition have been limited to perfect-gas flow over flat-plate boundary layers without shock waves. For hypersonic boundary layers over realistic blunt bodies, DNS studies of transition need to consider the effects of bow shocks, entropy layers, surface curvature, and finite-rate chemistry. It is necessary that numerical methods for such studies are robust and high-order accurate both in resolving wide ranges of flow time and length scales and in resolving the interaction between the bow shocks and flow disturbance waves. This paper presents a new high-order shock-fitting finite-difference method for the DNS of the stability and transition of hypersonic boundary layers over blunt bodies with strong bow shocks and with (or without) thermo-chemical nonequilibrium. The proposed method includes a set of new upwind high-order finite-difference schemes which are stable and are less dissipative than a straightforward upwind scheme using an upwind-bias grid stencil, a high-order shock-fitting formulation, and third-order semi-implicit Runge-Kutta schemes for temporal discretization of stiff reacting flow equations. The accuracy and stability of the new schemes are validated by numerical experiments of the linear wave equation and nonlinear Navier-Stokes equations. The algorithm is then applied to the DNS of the receptivity of hypersonic boundary layers over a parabolic leading edge to freestream acoustic disturbances.

  14. Control of valence and conduction band energies in layered transition metal phosphates via surface functionalization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, Levi C.; Kolb, Brian; Kolpak, Alexie M.

    Layered transition metal phosphates and phosphites (TMPs) are a class of 2D materials bound togetherviavan der Waals interactions. Through simple functionalization, band energies can be systematically controlled.

  15. Linear stability theory and three-dimensional boundary layer transition

    NASA Technical Reports Server (NTRS)

    Spall, Robert E.; Malik, Mujeeb R.

    1992-01-01

    The viewgraphs and discussion of linear stability theory and three dimensional boundary layer transition are provided. The ability to predict, using analytical tools, the location of boundary layer transition over aircraft-type configurations is of great importance to designers interested in laminar flow control (LFC). The e(sup N) method has proven to be fairly effective in predicting, in a consistent manner, the location of the onset of transition for simple geometries in low disturbance environments. This method provides a correlation between the most amplified single normal mode and the experimental location of the onset of transition. Studies indicate that values of N between 8 and 10 correlate well with the onset of transition. For most previous calculations, the mean flows were restricted to two-dimensional or axisymmetric cases, or have employed simple three-dimensional mean flows (e.g., rotating disk, infinite swept wing, or tapered swept wing with straight isobars). Unfortunately, for flows over general wing configurations, and for nearly all flows over fuselage-type bodies at incidence, the analysis of fully three-dimensional flow fields is required. Results obtained for the linear stability of fully three-dimensional boundary layers formed over both wing and fuselage-type geometries, and for both high and low speed flows are discussed. When possible, transition estimates form the e(sup N) method are compared to experimentally determined locations. The stability calculations are made using a modified version of the linear stability code COSAL. Mean flows were computed using both Navier Stokes and boundary-layer codes.

  16. Instability waves and transition in adverse-pressure-gradient boundary layers

    NASA Astrophysics Data System (ADS)

    Bose, Rikhi; Zaki, Tamer A.; Durbin, Paul A.

    2018-05-01

    Transition to turbulence in incompressible adverse-pressure-gradient (APG) boundary layers is investigated by direct numerical simulations. Purely two-dimensional instability waves develop on the inflectional base velocity profile. When the boundary layer is perturbed by isotropic turbulence from the free stream, streamwise elongated streaks form and may interact with the instability waves. Subsequent mechanisms that trigger transition depend on the intensity of the free-stream disturbances. All evidence from the present simulations suggest that the growth rate of instability waves is sufficiently high to couple with the streaks. Under very low levels of free-stream turbulence (˜0.1 % ), transition onset is highly sensitive to the inlet disturbance spectrum and is accelerated if the spectrum contains frequency-wave-number combinations that are commensurate with the instability waves. Transition onset and completion in this regime is characterized by formation and breakdown of Λ vortices, but they are more sporadic than in natural transition. Beneath free-stream turbulence with higher intensity (1-2 % ), bypass transition mechanisms are dominant, but instability waves are still the most dominant disturbances in wall-normal and spanwise perturbation spectra. Most of the breakdowns were by disturbances with critical layers close to the wall, corresponding to inner modes. On the other hand, the propensity of an outer mode to occur increases with the free-stream turbulence level. Higher intensity free-stream disturbances induce strong streaks that favorably distort the boundary layer and suppress the growth of instability waves. But the upward displacement of high amplitude streaks brings them to the outer edge of the boundary layer and exposes them to ambient turbulence. Consequently, high-amplitude streaks exhibit an outer-mode secondary instability.

  17. Modelling the transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Narasimha, R.

    1990-01-01

    Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.

  18. Experimental Investigation of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Volino, Ralph J.

    2002-01-01

    Modern low-pressure turbine airfoils are subject to increasingly stronger pressure gradients as designers impose higher loading in an effort to improve efficiency and to reduce part count. The adverse pressure gradients on the suction side of these airfoils can lead to boundary-layer separation, particularly under cruise conditions. Separation bubbles, notably those which fail to reattach, can result in a significant degradation of engine efficiency. Accurate prediction of separation and reattachment is hence crucial to improved turbine design. This requires an improved understanding of the transition flow physics. Transition may begin before or after separation, depending on the Reynolds number and other flow conditions, has a strong influence on subsequent reattachment, and may even eliminate separation. Further complicating the problem are the high free-stream turbulence levels in a real engine environment, the strong pressure gradients along the airfoils, the curvature of the airfoils, and the unsteadiness associated with wake passing from upstream stages. Because of the complicated flow situation, transition in these devices can take many paths that can coexist, vary in importance, and possibly also interact, at different locations and instances in time. The present work was carried out in an attempt to systematically sort out some of these issues. Detailed velocity measurements were made along a flat plate subject to the same nominal dimensionless pressure gradient as the suction side of a modern low-pressure turbine airfoil ('Pak-B'). The Reynolds number based on wetted plate length and nominal exit velocity, Re, was varied from 50;000 to 300; 000, covering cruise to takeoff conditions. Low, 0.2%, and high, 7%, inlet free-stream turbulence intensities were set using passive grids. These turbulence levels correspond to about 0.2% and 2.5% turbulence intensity in the test section when normalized with the exit velocity. The Reynolds number and free-stream turbulence level do not have a significant effect on the location of boundary-layer separation unless they are high enough to induce transition upstream of separation. The location and extent of the transition zone, in contrast, depend strongly on Re and TI. The beginning of reattachment closely follows the onset of transition. Under low free-stream turbulence conditions the boundary layer is laminar at separation and then begins to exhibit fluctuations in a finite frequency band in the shear layer over the separation bubble. These fluctuations are due to instability waves. The fluctuations grow in magnitude, higher harmonics are generated, and finally lead to a breakdown to turbulence. Transition begins in the shear layer, but quickly spreads to the near wall region and causes the boundary layer to reattach. The transition is rapid and the resulting turbulence contains a full range of high and low frequencies. Under high free-stream turbulence conditions, slowly growing low-frequency fluctuations are induced in the pretransitional boundary layer by the free-stream. The separation bubbles are considerably thinner than in the low TI cases, resulting in thinner boundary layers at the end of the test wall. At Re=50,000 and 100,000, the pre-transitional boundary layer separates at about the same location as in the low TI cases. Transition occurs through a bypass mode, begins upstream of the corresponding low-TI location, and proceeds in a manner similar to that of an attached boundary layer. Under high TI at Re=200,000 and 300,000, transition begins before separation. The boundary layer may separate, but if it does the separation bubble is very short and does not significantly affect the downstream development of the boundary layer. A comparison is made to previous work in a simulated cascade.

  19. Fluid transition layer between rigid solute and liquid solvent: is there depletion or enrichment?

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2016-03-21

    The fluid layer between solute and liquid solvent is studied by combining the density functional theory with the probabilistic hydrogen bond model. This combination allows one to obtain the equilibrium distribution of fluid molecules, taking into account the hydrogen bond contribution to the external potential whereto they are subjected near the solute. One can find the effective width of the fluid solvent-solute transition layer and fluid average density in that layer, and determine their dependence on temperature, solvent-solute affinity, vicinal hydrogen bond (hb) energy alteration ratio, and solute radius. Numerical calculations are performed for the solvation of a plate and spherical solutes of four different radii in two model solvents (associated liquid and non-associated one) in the temperature range from 293 K to 333 K for various solvent-solute affinities and hydrogen bond energy alteration ratios. The predictions of our model for the effective width and average density of the transition layer are consistent with experiments and simulations. The small-to-large crossover lengthscale for hydrophobic hydration is expected to be about 3-5 nm. Remarkably, characterizing the transition layer with the average density, one can observe that for small hydrophobes, the transition layer becomes enriched with rather than depleted of fluid when the solvent-solute affinity and hb-energy alteration ratio become large enough. The boundary values of solvent-solute affinity and hb-energy alteration ratio, needed for the "depletion-to-enrichment" crossover (in the smoothed density sense), are predicted to decrease with increasing temperature.

  20. Early Warning Signals for Regime Transition in the Stable Boundary Layer: A Model Study

    NASA Astrophysics Data System (ADS)

    van Hooijdonk, I. G. S.; Moene, A. F.; Scheffer, M.; Clercx, H. J. H.; van de Wiel, B. J. H.

    2017-02-01

    The evening transition is investigated in an idealized model for the nocturnal boundary layer. From earlier studies it is known that the nocturnal boundary layer may manifest itself in two distinct regimes, depending on the ambient synoptic conditions: strong-wind or overcast conditions typically lead to weakly stable, turbulent nights; clear-sky and weak-wind conditions, on the other hand, lead to very stable, weakly turbulent conditions. Previously, the dynamical behaviour near the transition between these regimes was investigated in an idealized setting, relying on Monin-Obukhov (MO) similarity to describe turbulent transport. Here, we investigate a similar set-up, using direct numerical simulation; in contrast to MO-based models, this type of simulation does not need to rely on turbulence closure assumptions. We show that previous predictions are verified, but now independent of turbulence parametrizations. Also, it appears that a regime shift to the very stable state is signaled in advance by specific changes in the dynamics of the turbulent boundary layer. Here, we show how these changes may be used to infer a quantitative estimate of the transition point from the weakly stable boundary layer to the very stable boundary layer. In addition, it is shown that the idealized, nocturnal boundary-layer system shares important similarities with generic non-linear dynamical systems that exhibit critical transitions. Therefore, the presence of other, generic early warning signals is tested as well. Indeed, indications are found that such signals are present in stably stratified turbulent flows.

  1. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, U.; Dusek, J.T.; Kleefisch, M.S.; Kobylinski, T.P.

    1996-11-12

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials. 7 figs.

  2. Functionally gradient material for membrane reactors to convert methane gas into value-added products

    DOEpatents

    Balachandran, Uthamalingam; Dusek, Joseph T.; Kleefisch, Mark S.; Kobylinski, Thadeus P.

    1996-01-01

    A functionally gradient material for a membrane reactor for converting methane gas into value-added-products includes an outer tube of perovskite, which contacts air; an inner tube which contacts methane gas, of zirconium oxide, and a bonding layer between the perovskite and zirconium oxide layers. The bonding layer has one or more layers of a mixture of perovskite and zirconium oxide, with the layers transitioning from an excess of perovskite to an excess of zirconium oxide. The transition layers match thermal expansion coefficients and other physical properties between the two different materials.

  3. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  4. Coherently coupled ZnO and VO2 interface studied by photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Herng, T. S.; Saha, Surajit; Nina, Bao; Annadi, A.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Ariando; Ding, J.; Venkatesan, T.

    2012-06-01

    We have investigated the photoluminescence and electrical properties of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire across the phase transition of VO2. The band edge and defect luminescence of the ZnO overlayer exhibit hysteresis in opposite directions induced by the phase transition of VO2. Concomitantly the phase transition of VO2 was seen to induce defects in the ZnO layer. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces in situ and also for novel device application.

  5. Bio-inspired, subwavelength surface structures to control reflectivity, transmission, and scattering in the infrared

    NASA Astrophysics Data System (ADS)

    Lora Gonzalez, Federico

    Controlling the reflection of visible and infrared (IR) light at interfaces is extremely important to increase the power efficiency and performance of optics, electro-optical and (thermo)photovoltaic systems. The eye of the moth has evolved subwavelength protuberances that increase light transmission into the eye tissue and prevent reflection. The subwavelength protuberances effectively grade the refractive index from that of air (n=1) to that of the tissue (n=1.4), making the interface gradual, suppressing reflection. In theory, the moth-eye (ME) structures can be implemented with any material platform to achieve an antireflectance effect by scaling the pitch and size of protuberances for the wavelength range of interest. In this work, a bio-inspired, scalable and substrate-independent surface modification protocol was developed to realize broadband antireflective structures based on the moth-eye principle. Quasi-ordered ME arrays were fabricated in IR relevant materials using a colloidal lithography method to achieve highly efficient, omni-directional transmission of mid and far infrared (IR) radiation. The effect of structure height and aspect ratio on transmittance and scattering is explored, with discussion on experimental techniques and effective medium theory (EMT). The highest aspect ratio structures (AR = 9.4) achieved peak single-side transmittance of 98%, with >85% transmission for lambda = 7--30 microns. A detailed photon balance constructed by transmission, forward scattering, specular reflection and diffuse reflection measurements to quantify optical losses due to near-field effects will be discussed. In addition, angle-dependent transmission measurements showed that moth-eye structures provide superior antireflective properties compared to unstructured interfaces over a wide angular range (0--60° incidence). Finally, subwavelength ME structures are incorporated on a Si substrate to enhance the absorption of near infrared (NIR) light in PtSi films to increase Schottky-barrier detector efficiency. Absorbance enhancement of 70--200% in the lambda =1--2.5 micron range is demonstrated in crystalline PtSi films grown via electron beam evaporation of Pt and subsequent vacuum annealing. Low total reflectance (<10%) was measured in ME films, demonstrating the efficacy of the moth eye effect. Effective medium theory and transfer matrix calculations show that the large absorption enhancement at short wavelengths is partly due to light trapping, which increases the effective optical path length in PtSi. The demonstrated structures are promising candidates for efficient PtSi/p-Si Schottky barrier diode detectors in the NIR. Results further suggest a general method for relatively low-cost absorption enhancement of backside-illuminated detectors based on a wide variety of infrared absorptive materials. The methods presented here to fabricate quasi-ordered ME structures provide a general platform for creating antireflective structures in many different materials, devices, and bandwidths. Furthermore, understanding the relationship between protuberance shape, height, aspect ratio, etc. and performance (antireflection, scattering loss, etc.) can guide the design of antireflective surfaces for different applications (for example, in certain applications, large amounts of forward scattering is desired, e.g. photovoltaics).

  6. Characteristics of Boundary Layer Transition in a Multi-Stage Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Wisler, Dave; Halstead, David E.; Okiishi, Ted

    2007-01-01

    An experimental investigation of boundary layer transition in a multi-stage turbine has been completed using surface-mounted hot-film sensors. Tests were carried out using the two-stage Low Speed Research Turbine of the Aerodynamics Research Laboratory of GE Aircraft Engines. Blading in this facility models current, state-of-the-art low pressure turbine configurations. The instrumentation technique involved arrays of densely-packed hot-film sensors on the surfaces of second stage rotor and nozzle blades. The arrays were located at mid-span on both the suction and pressure surfaces. Boundary layer measurements were acquired over a complete range of relevant Reynolds numbers. Data acquisition capabilities provided means for detailed data interrogation in both time and frequency domains. Data indicate that significant regions of laminar and transitional boundary layer flow exist on the rotor and nozzle suction surfaces. Evidence of relaminarization both near the leading edge of the suction surface and along much of the pressure surface was observed. Measurements also reveal the nature of the turbulent bursts occuring within and between the wake segments convecting through the blade row. The complex character of boundary layer transition resulting from flow unsteadiness due to nozzle/nozzle, rotor/nozzle, and nozzle/rotor wake interactions are elucidated using these data. These measurements underscore the need to provide turbomachinery designers with models of boundary layer transition to facilitate accurate prediction of aerodynamic loss and heat transfer.

  7. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  8. Results of correlations for transition location on a clean-up glove installed on an F-14 aircraft and design studies for a laminar glove for the X-29 aircraft accounting for spanwise pressure gradient

    NASA Technical Reports Server (NTRS)

    Goradia, S. H.; Bobbitt, P. J.; Morgan, H. L.; Ferris, J. C.; Harvey, William D.

    1989-01-01

    Results of correlative and design studies for transition location, laminar and turbulent boundary-layer parameters, and wake drag for forward swept and aft swept wings are presented. These studies were performed with the use of an improved integral-type boundary-layer and transition-prediction methods. Theoretical predictions were compared with flight measurements at subsonic and transonic flow conditions for the variable aft swept wing F-14 aircraft for which experimental pressure distributions, transition locations, and turbulent boundary-layer velocity profiles were measured. Flight data were available at three spanwise stations for several values of sweep, freestream unit Reynolds number, Mach numbers, and lift coefficients. Theory/experiment correlations indicate excellent agreement for both transition location and turbulent boundary-layer parameters. The results of parametric studies performed during the design of a laminar glove for the forward swept wing X-29 aircraft are also presented. These studies include the effects of a spanwise pressure gradient on transition location and wake drag for several values of freestream Reynolds numbers at a freestream Mach number of 0.9.

  9. Boundary layer turbulence in transitional and developed states

    NASA Astrophysics Data System (ADS)

    Park, George Ilhwan; Wallace, James M.; Wu, Xiaohua; Moin, Parviz

    2012-03-01

    Using the recent direct numerical simulations by Wu and Moin ["Transitional and turbulent boundary layer with heat transfer," Phys. Fluids 22, 85 (2010)] of a flat-plate boundary layer with a passively heated wall, statistical properties of the turbulence in transition at Reθ ≈ 300, from individual turbulent spots, and at Reθ ≈ 500, where the spots merge (distributions of the mean velocity, Reynolds stresses, kinetic energy production, and dissipation rates, enstrophy and its components) have been compared to these statistical properties for the developed boundary layer turbulence at Reθ = 1840. When the distributions in the transitional regions are conditionally averaged so as to exclude locations and times when the flow is not turbulent, they closely resemble the distributions in the developed turbulent state at the higher Reynolds number, especially in the buffer layer. Skin friction coefficients, determined in this conditional manner at the two Reynolds numbers in the transitional flow are, of course, much larger than when their values are obtained by including both turbulent and non-turbulent information there, and the conditional averaged values are consistent with the 1/7th power law approximation. An octant analysis based on the combinations of signs of the velocity and temperature fluctuations, u, v, and θ shows that the momentum and heat fluxes are predominantly of the mean gradient type in both the transitional and developed regions. The fluxes appear to be closely associated with vortices that transport momentum and heat toward and away from the wall in both regions of the flow. The results suggest that there may be little fundamental difference between the nonlinear processes involved in the formation of turbulent spots that appear in transition and those that sustain the turbulence when it is developed. They also support the view that the transport processes and the vortical structures that drive them in developed and transitional boundary layer turbulence are, in many dynamically important respects, similar.

  10. Correlation of nosetip boundary-layer transition data measured in ballistics-range experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, D.C.

    1980-01-01

    Preablated nosetips of various carbonaceous materials were tested in a ballistics range. Surface-temperature contours, measured with image-converter cameras, were used to define boundary-layer transition-front contours. Measurements of surface roughness, surface temperature, average transition-front location, and freestream environment were combined with calculations of nosetip flowfields, and with calculations of laminar boundary-layer development in these flowfields, to transform all data into various dimensionless parameters. These parameters were defined by previous attempts to correlate existing wind-tunnel data for transition on rough/blunt bodies. Of the available correlating techniques, only one, based on the concept of a constant (critical) roughness Reynolds number for transition, wasmore » found to successfully describe both the wind-tunnel and ballistics-range data, thereby validating the extrapolation of this concept to actual reentry-vehicle materials and environments.« less

  11. Boundary-Layer Edge Conditions and Transition Reynolds Number Data for a Flight Test at Mach 20 (Reentry F)

    NASA Technical Reports Server (NTRS)

    Johnson, Charles B.; Stainback, P. Calvin; Wicker, Kathleen C.; Boney, Lillian R.

    1972-01-01

    A flight experiment, designated Reentry F, was conducted to measure heat-transfer rates for laminar, transitional, and turbulent boundary layers on a 5 deg half-angle cone 3.962 m (13 ft) long with a preflight nose radius of 2.54 mm (0.10 in.). Data were obtained over an altitude range from 36.58 to 18.29 km (120 000 to 60 000 ft) at a flight velocity of about 6.096 km/sec (20 000 ft/sec). The nominal values of the free-stream total enthalpy, sharp-cone Mach number, and the wall-to-total enthalpy ratio were 18 MJ/kg (8000 Btu/lb), 15, and 0.03, respectively. Calculated boundary-layer edge conditions that account for effects of the entropy layer and corresponding local transition Reynolds numbers are reported in the present paper. Fully developed turbulent flow occurred with essentially constant boundary-layer edge conditions near the sharp-cone values. Transition data were obtained with local edge Mach numbers ranging from about 5.55 to 15. Transition Reynolds numbers, based on local condition, were as high as 6.6 x 10(exp 7) with an edge Mach number of about 14.4 at an altitude of 24.38 km (80 000 ft). The transition could be correlated with previous flight data taken over a Mach number range from 3 to 12 in terms of parameters including the effects of local unit Reynolds number, boundary-layer wall-to-edge enthalpy ratio, and local Mach number.

  12. Mg concentration profile and its control in the low temperature grown Mg-doped GaN epilayer

    NASA Astrophysics Data System (ADS)

    Liu, S. T.; Yang, J.; Zhao, D. G.; Jiang, D. S.; Liang, F.; Chen, P.; Zhu, J. J.; Liu, Z. S.; Liu, W.; Xing, Y.; Zhang, L. Q.; Wang, W. J.; Li, M.; Zhang, Y. T.; Du, G. T.

    2018-01-01

    In this work, the Cp2Mg flux and growth pressure influence to Mg doping concentration and depth profiles is studied. From the SIMS measurement we found that a transition layer exists at the bottom region of the layer in which the Mg doping concentration changes gradually. The thickness of transition layer decreases with the increases of Mg doping concentration. Through analysis, we found that this is caused by Ga memory effect which the Ga atoms stay residual in MOCVD system will react with Mg source, leading a transition layer formation and improve the growth rate. And the Ga memory effect can be well suppressed by increasing Mg doping concentration and growth pressure and thus get a steep Mg doping at the bottom region of p type layer.

  13. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  14. Hypersonic Boundary-Layer Transition for X-33 Phase 2 Vehicle

    NASA Technical Reports Server (NTRS)

    Thompson, Richard A.; Hamilton, Harris H., II; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.

    1998-01-01

    A status review of the experimental and computational work performed to support the X-33 program in the area of hypersonic boundary-layer transition is presented. Global transition fronts are visualized using thermographic phosphor measurements. Results are used to derive transition correlations for "smooth body" and discrete roughness data and a computational tool is developed to predict transition onset for X-33 using these results. The X-33 thermal protection system appears to be conservatively designed for transition effects based on these studies. Additional study is needed to address concerns related to surface waviness. A discussion of future test plans is included.

  15. Techniques used in the F-14 variable-sweep transition flight experiment

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.; Chiles, Harry R.

    1988-01-01

    This paper discusses and evaluates the test measurement techniques used to determine the laminar-to-turbulent boundary layer transition location in the F-14 variable-sweep transition flight experiment (VSTFE). The main objective of the VSTFE was to determine the effects of wing sweep on the laminar-to-turbulent transition location at conditions representative of transport aircraft. Four methods were used to determine the transition location: (1) a hot-film anemometer system; (2) two boundary-layer rakes; (3) surface pitot tubes; and (4) liquid crystals for flow visualization. Of the four methods, the hot-film anemometer system was the most reliable indicator of transition.

  16. The effect of bioadhesive on the interfacial compatibility and pervaporation performance of composite membranes by MD and GCMC simulation.

    PubMed

    Wang, Baohe; Nie, Yan; Ma, Jing

    2018-03-01

    Combing molecular dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulation, the effect of bioadhesive transition layer on the interfacial compatibility of the pervaporation composite membranes, and the pervaporation performance toward penetrant molecules were investigated. In our previous experimental study, the structural stability and permeability selectivity of the composite membranes were considerably enhanced by the introduction of bioadhesive carbopol (CP). In the present study, the interfacial compatibility and the interfacial energies between the chitosan (CS) separation layer, CP transition layer and the support layer were investigated, respectively. The mobility of polymer chains, free volume in bulk and interface regions were evaluated by the mean-square displacement (MSD) and free volume voids (FFV) analysis. The diffusion and sorption behavior of water/ethanol molecules in bulk and interface regions were characterized. The simulation results of membrane structure have good consistency, indicating that the introduction of CP transition layer improved the interfacial compatibility and interaction between the separation layer and the support layer. Comparing the bulk region of the separation layer, the mobility and free volume of the polymer chain in the interface region decreased and thus reduced the swelling of CS active layer, revealing the increased diffusion selectivity toward the permeated water and ethanol molecules. The strong hydrogen bonds interaction between the COOH of the CP transition layer and water molecules increased the adsorption of water molecules in the interface region. The simulation results were quite consistent with the experimental results. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This layer was overlain by either a muddy sand mixture or a sand and silt planar lamination. Flow type CTPF was not observed during the experiments. Furthermore, it was observed that flows which are in transition from a TTC to a TTPF result in a thin bottom clean sand layer covered by a banded transitional interval. This was overlain by a muddy sand layer and a very thin clean sand layer, resulting from traction by dilute turbulent wake. In all cases a mud cap was emplaced on top of the deposit after the runs were terminated.

  18. PREVENTION OF FACIAL TRAUMA IN AUTOMOBILE ACCIDENTS

    PubMed Central

    Nahum, Alan

    1963-01-01

    Automobiles do not protect passengers from the forces generated in traffic accidents. Although some compensatory protection can be provided by restraining devices, seat belts are not enough and must be supplemented by upper torso restraints. Cars should be designed with a view to better protection of passengers against injury from striking against hard surfaces or protuberances. ImagesFigure 1.Figure 1.Figure 1. PMID:14084686

  19. High-Speed Boundary-Layer Transition Induced by an Isolated Roughness Element

    NASA Technical Reports Server (NTRS)

    Kegerise, Michael A.; Owens, Lewis R.; King, Rudolph A.

    2010-01-01

    Progress on an experimental effort to quantify the instability mechanisms associated with roughness-induced transition in a high-speed boundary layer is reported in this paper. To simulate the low-disturbance environment encountered during high-altitude flight, the experimental study was performed in the NASA-Langley Mach 3.5 Supersonic Low-Disturbance Tunnel. A flat plate trip sizing study was performed first to identify the roughness height required to force transition. That study, which included transition onset measurements under both quiet and noisy freestream conditions, confirmed the sensitivity of roughness-induced transition to freestream disturbance levels. Surveys of the laminar boundary layer on a 7deg half-angle sharp-tipped cone were performed via hot-wire anemometry and pitot-pressure measurements. The measured mean mass-flux and Mach-number profiles agreed very well with computed mean-flow profiles. Finally, surveys of the boundary layer developing downstream of an isolated roughness element on the cone were performed. The measurements revealed an instability in the far wake of the roughness element that grows exponentially and has peak frequencies in the 150 to 250 kHz range.

  20. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  1. Bimetallic strip for low temperature use. [4-300/sup 0/K

    DOEpatents

    Bussiee, J.F.; Welch, D.O.; Suenaga, M.

    A class of mechanically pre-stressed structures is provided suitably bi-layer strips, consisting of a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of transition metals with certain group 3A, 4A or 5A metals or metalloids such as Ga, In, Si, Ge, Sn, As or Sb. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, or in direct dial reading instruments. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers are heated, cooled the copper alloys and is removed. Removing one of the two formed interlayer alloys between the transition metal and the metal previously alloyed with copper remain.

  2. Bimetallic strip for low temperature use

    DOEpatents

    Bussiere, Jean F.; Welch, David O.; Suenaga, Masaki

    1981-01-01

    There is provided a class of mechanically pre-stressed structures, suitably bi-layer strips comprising a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of said transition metals with certain group 3A, 4A or 5A metals or metalloids suitably gallium, indium, silicon, germanium, tin, arsenic or antimony. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of but somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, in direct dial reading instruments, or the like. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers of the sandwich in intimate contact heating the same, cooling the same and removing the copper alloy and then removing one of the two thus formed interlayer alloys between said transition metal and the metal previously alloyed with copper.

  3. On the Unsteadiness of a Transitional Shock Wave-Boundary Layer Interaction Using Fast-Response Pressure-Sensitive Paint

    NASA Astrophysics Data System (ADS)

    Lash, E. Lara; Schmisseur, John

    2017-11-01

    Pressure-sensitive paint has been used to evaluate the unsteady dynamics of transitional and turbulent shock wave-boundary layer interactions generated by a vertical cylinder on a flat plate in a Mach 2 freestream. The resulting shock structure consists of an inviscid bow shock that bifurcates into a separation shock and trailing shock. The primary features of interest are the separation shock and an upstream influence shock that is intermittently present in transitional boundary layer interactions, but not observed in turbulent interactions. The power spectral densities, frequency peaks, and normalized wall pressures are analyzed as the incoming boundary layer state changes from transitional to fully turbulent, comparing both centerline and outboard regions of the interaction. The present study compares the scales and frequencies of the dynamics of the separation shock structure in different boundary layer regimes. Synchronized high-speed Schlieren imaging provides quantitative statistical analyses as well as qualitative comparisons to the fast-response pressure sensitive paint measurements. Materials based on research supported by the U.S. Office of Naval Research under Award Number N00014-15-1-2269.

  4. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography

    PubMed Central

    Merkle, Conrad W.; Srinivasan, Vivek J.

    2015-01-01

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. PMID:26477654

  5. Laminar microvascular transit time distribution in the mouse somatosensory cortex revealed by Dynamic Contrast Optical Coherence Tomography.

    PubMed

    Merkle, Conrad W; Srinivasan, Vivek J

    2016-01-15

    The transit time distribution of blood through the cerebral microvasculature both constrains oxygen delivery and governs the kinetics of neuroimaging signals such as blood-oxygen-level-dependent functional Magnetic Resonance Imaging (BOLD fMRI). However, in spite of its importance, capillary transit time distribution has been challenging to quantify comprehensively and efficiently at the microscopic level. Here, we introduce a method, called Dynamic Contrast Optical Coherence Tomography (DyC-OCT), based on dynamic cross-sectional OCT imaging of an intravascular tracer as it passes through the field-of-view. Quantitative transit time metrics are derived from temporal analysis of the dynamic scattering signal, closely related to tracer concentration. Since DyC-OCT does not require calibration of the optical focus, quantitative accuracy is achieved even deep in highly scattering brain tissue where the focal spot degrades. After direct validation of DyC-OCT against dilution curves measured using a fluorescent plasma label in surface pial vessels, we used DyC-OCT to investigate the transit time distribution in microvasculature across the entire depth of the mouse somatosensory cortex. Laminar trends were identified, with earlier transit times and less heterogeneity in the middle cortical layers. The early transit times in the middle cortical layers may explain, at least in part, the early BOLD fMRI onset times observed in these layers. The layer-dependencies in heterogeneity may help explain how a single vascular supply manages to deliver oxygen to individual cortical layers with diverse metabolic needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Effect of ZnO buffer layer on phase transition properties of vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Huiqun; Li, Lekang; Li, Chunbo

    2016-03-01

    VO2 thin films were prepared on ZnO buffer layers by DC magnetron sputtering at room temperature using vanadium target and post annealing at 400 °C. The ZnO buffer layers with different thickness deposited on glass substrates by magnetron sputtering have a high visible and near infrared optical transmittance. The electrical resistivity and the phase transition properties of the VO2/ZnO composite thin films in terms of temperature were investigated. The results showed that the resistivity variation of VO2 thin film with ZnO buffer layer deposited for 35 min was 16 KΩ-cm. The VO2/ZnO composite thin films exhibit a reversible semiconductor-metal phase transition at 48 °C.

  7. Natural laminar flow and airplane stability and control

    NASA Technical Reports Server (NTRS)

    Vandam, Cornelis P.

    1986-01-01

    Location and mode of transition from laminar to turbulent boundary layer flow have a dominant effect on the aerodynamic characteristics of an airfoil section. The influences of these parameters on the sectional lift and drag characteristics of three airfoils are examined. Both analytical and experimental results demonstrate that when the boundary layer transitions near the leading edge as a result of surface roughness, extensive trailing-edge separation of the turbulent boundary layer may occur. If the airfoil has a relatively sharp leading-edge, leading-edge stall due to laminar separation can occur after the leading-edge suction peak is formed. These two-dimensional results are used to examine the effects of boundary layer transition behavior on airplane longitudinal and lateral-directional stability and control.

  8. Delay of Transition Using Forced Damping

    NASA Technical Reports Server (NTRS)

    Exton, Reginald J.

    2014-01-01

    Several experiments which have reported a delay of transition are analyzed in terms of the frequencies of the induced disturbances generated by different flow control elements. Two of the experiments employed passive stabilizers in the boundary layer, one leading-edge bluntness, and one employed an active spark discharge in the boundary layer. It is found that the frequencies generated by the various elements lie in the damping region of the associated stability curve. It is concluded that the creation of strong disturbances in the damping region stabilizes the boundary-layer and delays the transition from laminar to turbulent flow.

  9. Comparison of turbulence in a transitional boundary layer to turbulence in a developed boundary layer*

    NASA Astrophysics Data System (ADS)

    Park, G. I.; Wallace, J.; Wu, X.; Moin, P.

    2010-11-01

    Using a recent DNS of a flat-plate boundary layer, statistics of turbulence in transition at Reθ= 500 where spots merge (distributions of the mean velocity, rms velocity and vorticity fluctuations, Reynolds shear stress, kinetic energy production and dissipation rates and enstrophy) have been compared to these statistics for the developed boundary layer turbulence at Reθ= 1850. When the distributions in the transitional region, determined in narrow planes 0.03 Reθ wide, exclude regions and times when the flow is not turbulent, they closely resemble those in the developed turbulent state at the higher Reynolds number, especially in the buffer and sublayers. The skin friction coefficient, determined in this conditional manner in the transitional flow is, of course, much larger than that obtained by including both turbulent and non-turbulent information there, and is consistent with a value obtained by extrapolating from the developed turbulent region. We are attempting to perform this data analysis even further upstream in the transitioning flow at Reθ= 300 where the turbulent spots are individuated. These results add further evidence to support the view that the structure of a developed turbulent boundary layer is little different from its structure in its embryonic form in turbulent spots. *CTR 2010 Summer Program research.

  10. In-Flight Boundary-Layer Transition of a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, D. W.; Frederick, M. A.; Tracy, R. R.; Matisheck, J. R.; Vanecek, N. D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local-flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.00. The tests used a NASA testbed aircraft with a bottom centerline mounted test fixture. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating. Boundary-layer transition was captured in both analog and digital formats using an onboard infrared imaging system. Surface pressures were measured on the surface of the flat plate. Flow field measurements near the leading edge of the test fixture revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration.

  11. Ultrasonic guided wave propagation across waveguide transitions: energy transfer and mode conversion.

    PubMed

    Puthillath, Padmakumar; Galan, Jose M; Ren, Baiyang; Lissenden, Cliff J; Rose, Joseph L

    2013-05-01

    Ultrasonic guided wave inspection of structures containing adhesively bonded joints requires an understanding of the interaction of guided waves with geometric and material discontinuities or transitions in the waveguide. Such interactions result in mode conversion with energy being partitioned among the reflected and transmitted modes. The step transition between an aluminum layer and an aluminum-adhesive-aluminum multi-layer waveguide is analyzed as a model structure. Dispersion analysis enables assessment of (i) synchronism through dispersion curve overlap and (ii) wavestructure correlation. Mode-pairs in the multi-layer waveguide are defined relative to a prescribed mode in a single layer as being synchronized and having nearly perfect wavestructure matching. Only a limited number of mode-pairs exist, and each has a unique frequency range. A hybrid model based on semi-analytical finite elements and the normal mode expansion is implemented to assess mode conversion at a step transition in a waveguide. The model results indicate that synchronism and wavestructure matching is associated with energy transfer through the step transition, and that the energy of an incident wave mode in a single layer is transmitted almost entirely to the associated mode-pair, where one exists. This analysis guides the selection of incident modes that convert into transmitted modes and improve adhesive joint inspection with ultrasonic guided waves.

  12. Simulating boundary layer transition with low-Reynolds-number k-epsilon turbulence models. I - An evaluation of prediction characteristics. II - An approach to improving the predictions

    NASA Technical Reports Server (NTRS)

    Schmidt, R. C.; Patankar, S. V.

    1991-01-01

    The capability of two k-epsilon low-Reynolds number (LRN) turbulence models, those of Jones and Launder (1972) and Lam and Bremhorst (1981), to predict transition in external boundary-layer flows subject to free-stream turbulence is analyzed. Both models correctly predict the basic qualitative aspects of boundary-layer transition with free stream turbulence, but for calculations started at low values of certain defined Reynolds numbers, the transition is generally predicted at unrealistically early locations. Also, the methods predict transition lengths significantly shorter than those found experimentally. An approach to overcoming these deficiencies without abandoning the basic LRN k-epsilon framework is developed. This approach limits the production term in the turbulent kinetic energy equation and is based on a simple stability criterion. It is correlated to the free-stream turbulence value. The modification is shown to improve the qualitative and quantitative characteristics of the transition predictions.

  13. Coherent structures in bypass transition induced by a cylinder wake

    NASA Astrophysics Data System (ADS)

    Pan, Chong; Wang, Jin Jun; Zhang, Pan Feng; Feng, Li Hao

    Flat-plate boundary layer transition induced by the wake vortex of a two-dimensional circular cylinder is experimentally investigated. Combined visualization and velocity measurements show a different transition route from the Klebanoff mode in free-stream turbulence-induced transition. This transition scenario is mainly characterized as: (i) generation of secondary transverse vortical structures near the flat plate surface in response to the von Kn vortex street of the cylinder; (ii) formation of hairpin vortices due to the secondary instability of secondary vortical structures; (iii) growth of hairpins which is accelerated by wake-vortex induction; (iv) formation of hairpin packets and the associated streaky structures. Detailed investigation shows that during transition the evolution dynamics and self-sustaining mechanisms of hairpins, hairpin packets and streaks are consistent with those in a turbulent boundary layer. The wake vortex mainly plays the role of generating and destabilizing secondary transverse vortices. After that, the internal mechanisms become dominant and lead to the setting up of a self-sustained turbulent boundary layer.

  14. Numerical simulation of transitional flow on a wind turbine airfoil with RANS-based transition model

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Sun, Zhengzhong; van Zuijlen, Alexander; van Bussel, Gerard

    2017-09-01

    This paper presents a numerical investigation of transitional flow on the wind turbine airfoil DU91-W2-250 with chord-based Reynolds number Rec = 1.0 × 106. The Reynolds-averaged Navier-Stokes based transition model using laminar kinetic energy concept, namely the k - kL - ω model, is employed to resolve the boundary layer transition. Some ambiguities for this model are discussed and it is further implemented into OpenFOAM-2.1.1. The k - kL - ω model is first validated through the chosen wind turbine airfoil at the angle of attack (AoA) of 6.24° against wind tunnel measurement, where lift and drag coefficients, surface pressure distribution and transition location are compared. In order to reveal the transitional flow on the airfoil, the mean boundary layer profiles in three zones, namely the laminar, transitional and fully turbulent regimes, are investigated. Observation of flow at the transition location identifies the laminar separation bubble. The AoA effect on boundary layer transition over wind turbine airfoil is also studied. Increasing the AoA from -3° to 10°, the laminar separation bubble moves upstream and reduces in size, which is in close agreement with wind tunnel measurement.

  15. Boundary layer transition detection on the X-15 vertical fin using surface-pressure-fluctuation measurements

    NASA Technical Reports Server (NTRS)

    Lewis, T. L.; Banner, R. D.

    1971-01-01

    A flush-mounted microphone on the vertical fin of an X-15 airplane was used to investigate boundary layer transition phenomenon during flights to peak altitudes of approximately 70,000 meters. The flight results were compared with those from wind tunnel studies, skin temperature measurements, and empirical prediction data. The Reynolds numbers determined for the end of transition were consistent with those obtained from wind tunnel studies. Maximum surface-pressure-fluctuation coefficients in the transition region were about an order of magnitude greater than those for fully developed turbulent flow. This was also consistent with wind tunnel data. It was also noted that the power-spectral-density estimates of the surface-pressure fluctuations were characterized by a shift in power from high frequencies to low frequencies as the boundary layer changed from turbulent to laminar flow. Large changes in power at the lowest frequencies appeared to mark the beginning of transition.

  16. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide

    NASA Astrophysics Data System (ADS)

    Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay

    2015-11-01

    Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm-2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ~10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach.

  17. In-flight transition measurement on a 10 deg cone at Mach numbers from 0.5 to 2.0

    NASA Technical Reports Server (NTRS)

    Fisher, D. F.; Dougherty, N. S., Jr.

    1982-01-01

    Boundary layer transition measurements were made in flight on a 10 deg transition cone tested previously in 23 wind tunnels. The cone was mounted on the nose of an F-15 aircraft and flown at Mach numbers room 0.5 to 2.0 and altitudes from 1500 meters (5000 feet) to 15,000 meters (50,000 feet), overlapping the Mach number/Reynolds number envelope of the wind tunnel tests. Transition was detected using a traversing pitot probe in contact with the surface. Data were obtained near zero cone incidence and adiabatic wall temperature. Transition Reynolds number was found to be a function of Mach number and of the ratio of wall temperature to adiabatic all temperature. Microphones mounted flush with the cone surface measured free-stream disturbances imposed on the laminar boundary layer and identified Tollmien-Schlichting waves as the probable cause of transition. Transition Reynolds number also correlated with the disturbance levels as measured by the cone surface microphones under a laminar boundary layer as well as the free-stream impact.

  18. Boundary-Layer Transition on a Slender Cone in Hypervelocity Flow with Real Gas Effects

    NASA Astrophysics Data System (ADS)

    Jewell, Joseph Stephen

    The laminar to turbulent transition process in boundary layer flows in thermochemical nonequilibrium at high enthalpy is measured and characterized. Experiments are performed in the T5 Hypervelocity Reflected Shock Tunnel at Caltech, using a 1 m length 5-degree half angle axisymmetric cone instrumented with 80 fast-response annular thermocouples, complemented by boundary layer stability computations using the STABL software suite. A new mixing tank is added to the shock tube fill apparatus for premixed freestream gas experiments, and a new cleaning procedure results in more consistent transition measurements. Transition location is nondimensionalized using a scaling with the boundary layer thickness, which is correlated with the acoustic properties of the boundary layer, and compared with parabolized stability equation (PSE) analysis. In these nondimensionalized terms, transition delay with increasing CO2 concentration is observed: tests in 100% and 50% CO2, by mass, transition up to 25% and 15% later, respectively, than air experiments. These results are consistent with previous work indicating that CO2 molecules at elevated temperatures absorb acoustic instabilities in the MHz range, which is the expected frequency of the Mack second-mode instability at these conditions, and also consistent with predictions from PSE analysis. A strong unit Reynolds number effect is observed, which is believed to arise from tunnel noise. NTr for air from 5.4 to 13.2 is computed, substantially higher than previously reported for noisy facilities. Time- and spatially-resolved heat transfer traces are used to track the propagation of turbulent spots, and convection rates at 90%, 76%, and 63% of the boundary layer edge velocity, respectively, are observed for the leading edge, centroid, and trailing edge of the spots. A model constructed with these spot propagation parameters is used to infer spot generation rates from measured transition onset to completion distance. Finally, a novel method to control transition location with boundary layer gas injection is investigated. An appropriate porous-metal injector section for the cone is designed and fabricated, and the efficacy of injected CO2 for delaying transition is gauged at various mass flow rates, and compared with both no injection and chemically inert argon injection cases. While CO2 injection seems to delay transition, and argon injection seems to promote it, the experimental results are inconclusive and matching computations do not predict a reduction in N factor from any CO2 injection condition computed.

  19. Atmospheric boundary layer evening transitions over West Texas

    USDA-ARS?s Scientific Manuscript database

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  20. Evidence for a π-junction in Nb/F/Nb' trilayers from superfluid density measurements

    NASA Astrophysics Data System (ADS)

    Lemberger, Thomas; Hinton, Michael; Steers, Stanley; Peters, Bryan; Yang, Fengyuan

    Two-coil measurements of the sheet superfluid density of Nb/NiV/Nb' trilayers reveal the transition temperatures and volume superfluid densities of both Nb layers, as functions of the thickness, dF, of the intervening ferromagnetic (F) Ni0.96V0.04 layer. The upper transition occurs when the thicker Nb layer goes superconducting and superfluid first appears. Fitting the high-temperature superfluid density to an appropriate functional form reveals the presence of a lower ``transition'' where additional superfluid appears. This event is really a crossover, but the difference is irrelevant here. There is a surprising minimum in superfluid densities of both Nb layers at dF ~ 30 Å, followed by a slow rise. This behavior suggests that a π phase difference between the Nb layers develops at dF ~ 30 Å and continues to larger F thickness. Supported in part by NSF Grant DMR-0805227.

  1. Boundary Layer Transition on X-43A

    NASA Technical Reports Server (NTRS)

    Berry, Scott; Daryabeigi, Kamran; Wurster, Kathryn; Bittner, Robert

    2008-01-01

    The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis.

  2. Experimental Aerothermodynamics In Support Of The Columbia Accident Investigation

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.

    2004-01-01

    The technical foundation for the most probable damage scenario reported in the Columbia Accident Investigation Board's final report was largely derived from synergistic aerodynamic/aerothermodynamic wind tunnel measurements and inviscid predictions made at NASA Langley Research Center and later corroborated with engineering analysis, high fidelity numerical viscous simulations, and foam impact testing near the close of the investigation. This report provides an overview of the hypersonic aerothermodynamic wind tunnel program conducted at NASA Langley and illustrates how the ground-based heating measurements provided early insight that guided the direction and utilization of agency resources in support of the investigation. Global surface heat transfer mappings, surface streamline patterns, and shock shapes were measured on 0.0075 scale models of the Orbiter configuration with and without postulated damage to the thermal protection system. Test parametrics include angle of attack from 38 to 42 degs, sideslip angles of 38 to 42 degs, sideslip angles of plus or minus 1 deg, Reynolds numbers based upon model length from 0.05 x 10(exp 6) to 6.5 x 10(exp 6), and normal shock density ratios of 5 (Mach 6 Air) and 12 (Mach 6 CF4). The primary objective of the testing was to provide surface heating characteristics on scaled Orbiter models with outer mold line perturbations to simulate various forms of localized surface damage to the thermal protection system. Initial experimental testing conducted within two weeks of the accident simulated a broad spectrum of thermal protection system damage to the Orbiter windward surface and was used to refute several hypothesized forms of thermal protection system damage, which included gouges in the windward thermal protection system tiles, breaches through the wing new the main landing gear door, and protuberances along the wing leading edge that produced asymmetric boundary layer transition. As the forensic phase of the investigation developed and the condition of recovered debris was examined, increasing emphasis was placed on identifying wing leading edge damage (partially and fully missing reinforced carbon-carbon panels, and eventually holes in the wing leading edge with venting to the wing upper surface) that produced off-nominal heating trends consistent with extracted Orbiter flight recorder temperature data.

  3. Effect of strain on electronic and thermoelectric properties of few layers to bulk MoS₂.

    PubMed

    Bhattacharyya, Swastibrata; Pandey, Tribhuwan; Singh, Abhishek K

    2014-11-21

    The sensitive dependence of the electronic and thermoelectric properties of MoS₂ on applied strain opens up a variety of applications in the emerging area of straintronics. Using first-principles-based density functional theory calculations, we show that the band gap of a few layers of MoS₂ can be tuned by applying normal compressive (NC) strain, biaxial compressive (BC) strain, and biaxial tensile (BT) strain. A reversible semiconductor-to-metal transition (S-M transition) is observed under all three types of strain. In the case of NC strain, the threshold strain at which the S-M transition occurs increases when the number of layers increase and becomes maximum for the bulk. On the other hand, the threshold strain for the S-M transition in both BC and BT strains decreases when the number of layers increase. The difference in the mechanisms for the S-M transition is explained for different types of applied strain. Furthermore, the effect of both strain type and the number of layers on the transport properties are also studied using Botzmann transport theory. We optimize the transport properties as a function of the number of layers and the applied strain. 3L- and 2L-MoS₂ emerge as the most efficient thermoelectric materials under NC and BT strain, respectively. The calculated thermopower is large and comparable to some of the best thermoelectric materials. A comparison among the feasibility of these three types of strain is also discussed.

  4. High-resolution depth profile of the InGaP-on-GaAs heterointerface by FE-AES and its relationship to device properties

    NASA Astrophysics Data System (ADS)

    Ichikawa, O.; Fukuhara, N.; Hata, M.; Nakano, T.; Sugiyama, M.; Shimogaki, Y.; Nakano, Y.

    2007-01-01

    At InGaP-on-GaAs heterointerface, transition layer is formed during metalorganic vapor phase epitaxy (MOVPE) growth that can affect device properties. Many studies of this transition layer have been done but the characterization methods used are not direct measures of the atomic structure at the heterointerface. In this study, we investigated the abruptness and thickness of the InGaP-on-GaAs transition layers by field-emission Auger electron spectroscopy, by which a depth profile with a resolution of abruptness of 30 Å or below can be obtained. The group V switching position relative to that of In goes deeper into the GaAs with increasing PH 3 supply, suggesting an initial, quick replacement of As atoms with P atoms followed by a slow P diffusion into the bulk GaAs. Changes of abruptness of the As or P profiles at the heterointerface with varying PH 3 supply on the GaAs surface are not observed. Furthermore, we evaluated the effect of the GaAsP-like transition layers on the turn-on voltage of an InGaP emitter HBT. A linear relationship is shown between the shift of the group V switching position and the HBT turn-on voltage, which is consistent with the assumption that current flow decreases at the transition layer. Calculated difference of conduction band energy between InGaP and the transition layer is 0.15 eV for the sample with ordered InGaP and 0.04 eV for disordered InGaP, is consistent with the difference of the band gap energies between ordered and disordered InGaP. Calculated P compositions are 0.52 and 0.35, respectively.

  5. In-Flight Boundary-Layer Transition on a Large Flat Plate at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fredericks, Michael Alan; Tracy, Richard R.; Matisheck, Jason R.; Vanecek, Neal D.

    2012-01-01

    A flight experiment was conducted to investigate the pressure distribution, local flow conditions, and boundary-layer transition characteristics on a large flat plate in flight at supersonic speeds up to Mach 2.0. The primary objective of the test was to characterize the local flow field in preparation for future tests of a high Reynolds number natural laminar flow test article. The tests used a F-15B testbed aircraft with a bottom centerline mounted test fixture. A second objective was to determine the boundary-layer transition characteristics on the flat plate and the effectiveness of using a simplified surface coating for future laminar flow flight tests employing infrared thermography. Boundary-layer transition was captured using an onboard infrared imaging system. The infrared imagery was captured in both analog and digital formats. Surface pressures were measured with electronically scanned pressure modules connected to 60 surface-mounted pressure orifices. The local flow field was measured with five 5-hole conical probes mounted near the leading edge of the test fixture. Flow field measurements revealed the local flow characteristics including downwash, sidewash, and local Mach number. Results also indicated that the simplified surface coating did not provide sufficient insulation from the metallic structure, which likely had a substantial effect on boundary-layer transition compared with that of an adiabatic surface. Cold wall conditions were predominant during the acceleration to maximum Mach number, and warm wall conditions were evident during the subsequent deceleration. The infrared imaging system was able to capture shock wave impingement on the surface of the flat plate in addition to indicating laminar-to-turbulent boundary-layer transition.

  6. Measured Boundary Layer Transition and Rotor Hover Performance at Model Scale

    NASA Technical Reports Server (NTRS)

    Overmeyer, Austin D.; Martin, Preston B.

    2017-01-01

    An experiment involving a Mach-scaled, 11:08 f t: diameter rotor was performed in hover during the summer of 2016 at NASA Langley Research Center. The experiment investigated the hover performance as a function of the laminar to turbulent transition state of the boundary layer, including both natural and fixed transition cases. The boundary layer transition locations were measured on both the upper and lower aerodynamic surfaces simultaneously. The measurements were enabled by recent advances in infrared sensor sensitivity and stability. The infrared thermography measurement technique was enhanced by a paintable blade surface heater, as well as a new high-sensitivity long wave infrared camera. The measured transition locations showed extensive amounts, x=c>0:90, of laminar flow on the lower surface at moderate to high thrust (CT=s > 0:068) for the full blade radius. The upper surface showed large amounts, x=c > 0:50, of laminar flow at the blade tip for low thrust (CT=s < 0:045). The objective of this paper is to provide an experimental data set for comparisons to newly developed and implemented rotor boundary layer transition models in CFD and rotor design tools. The data is expected to be used as part of the AIAA Rotorcraft SimulationWorking Group

  7. Diffractive Hyperbola of a Skin Layer

    NASA Astrophysics Data System (ADS)

    Yakubov, V. P.; Vaiman, E. V.; Shipilov, S. È.; Prasath, A. K.

    2018-03-01

    Based on an analysis of physics of the phase transition from the quasistatic state field to the running wave field of elementary electric and magnetic dipoles located in absorbing media, it is concluded that the skin layer is formed at the boundary of this phase transition. The possibility is considered of obtaining the diffractive hyperbola of the skin layer and its subsequent application for sensing of objects in strongly absorbing media.

  8. The influence of flow parameters on the transition to turbulence in supersonic boundary layer on swept wing

    NASA Astrophysics Data System (ADS)

    Semionov, N. V.; Yermolaev, Yu. G.; Kosinov, A. D.; Dryasov, A. D.; Semenov, A. N.; Yatskikh, A. A.

    2016-10-01

    The paper is devoted to an experimental study of laminar-turbulent transition in a three-dimensional supersonic boundary layer. The experiments were conducted at the low nose supersonic wind tunnel T-325 of ITAM at Mach numbers M=2 - 4. Model is a symmetrical wing with a 45° sweep angle, a 3 percent-thick circular-arc airfoil. The influence of flow parameters, such as the Mach number, unit Reynolds number, angle of attack, level of perturbations on the transitions to turbulence are on the consideration. Transition Reynolds numbers are obtained. Analysis of all obtained data allow to determine reliable value of Retr of swept wing supersonic boundary layer, that especially important at consideration of experiments fulfilled at different flow conditions in different wind tunnels.

  9. Entropically Driven Layering Near a Substrate: A Fluids DFT Study

    NASA Astrophysics Data System (ADS)

    McGarrity, Erin; Frischknecht, Amalie; Mackay, Michael

    2008-03-01

    We employ a fluids density functional theory to study the phase behavior of athermal polymer/nanoparticle blends near a hard substrate. These blends exhibit two types of first order, entropically driven layering transitions. In the first type of transition, the nanoparticles order to form a layer which is a fixed distance from the surface. The structure and location of this layer depends on nanoparticle radius. In the second type of transition, which occurs at melt-like densities, the nanoparticles and polymers form laminar structures which resemble colloidal crystals. We examine the effects of packing density, chain length and nanoparticle radius on the system and show that the transitions are first order. In addition we show that the crystalline phase is nucleated by the presence of the surface. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  10. Experimental investigations on characteristics of boundary layer and control of transition on an airfoil by AC-DBD

    NASA Astrophysics Data System (ADS)

    Geng, Xi; Shi, Zhiwei; Cheng, Keming; Dong, Hao; Zhao, Qun; Chen, Sinuo

    2018-03-01

    Plasma-based flow control is one of the most promising techniques for aerodynamic problems, such as delaying the boundary layer transition. The boundary layer’s characteristics induced by AC-DBD plasma actuators and applied by the actuators to delay the boundary layer transition on airfoil at Ma = 0.3 were experimentally investigated. The PIV measurement was used to study the boundary layer’s characteristics induced by the plasma actuators. The measurement plane, which was parallel to the surface of the actuators and 1 mm above the surface, was involved in the test, including the perpendicular plane. The instantaneous results showed that the induced flow field consisted of many small size unsteady vortices which were eliminated by the time average. The subsequent oil-film interferometry skin friction measurement was conducted on a NASA SC(2)-0712 airfoil at Ma = 0.3. The coefficient of skin friction demonstrates that the plasma actuators successfully delay the boundary layer transition and the efficiency is better at higher driven voltage.

  11. Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Liechty, Derek S.

    2002-01-01

    Laminar and turbulent perfect-gas air, Navier-Stokes computations have been performed for a proposed Mars Smart Lander entry vehicle at Mach 6 over a free stream Reynolds number range of 6.9 x 10(exp 6)/m to 2.4 x 10(exp 7)/m (2.1 x 10(exp 6)/ft to 7.3 x 10(exp 6)/ft) for angles-of-attack of 0-deg, 11-deg, 16-deg, and 20-deg, and comparisons were made to wind tunnel heating data obtained a t the same conditions. Boundary layer edge properties were extracted from the solutions and used to correlate experimental data on the effects of heat-shield penetrations (bolt-holes where the entry vehicle would be attached to the propulsion module during transit to Mars) on boundary-layer transition. A non-equilibrium Martian-atmosphere computation was performed for the peak heating point on the entry trajectory in order to determine if the penetrations would produce boundary-layer transition by using this correlation.

  12. Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Liechty, Derek S.

    2002-01-01

    Laminar and turbulent perfect-gas air, Navier-Stokes computations have been performed for a proposed Mars Smart Lander entry vehicle at Mach 6 over a free stream Reynolds number range of 6.9 x 10(exp 6/m to 2.4 x 10(exp 7)m(2.1 x 10(exp 6)/ft to 7.3 x 10(exp 6)ft) for angles-of-attack of 0-deg, 11-deg, 16-deg, and 20-deg, and comparisons were made to wind tunnel heating data obtained at the same conditions. Boundary layer edge properties were extracted from the solutions and used to correlate experimental data on the effects of heat-shield penetrations (bolt-holes where the entry vehicle would be attached to the propulsion module during transit to Mars) on boundary-layer transition. A non-equilibrium Martian-atmosphere computation was performed for the peak heating point on the entry trajectory in order to determine if the penetrations would produce boundary-layer transition by using this correlation.

  13. An Experimental Investigation of Wall-Cooling Effects on Hypersonic Boundary-Layer Stability in a Quiet Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blanchard, Alan E.; Selby, Gregory V.

    1996-01-01

    One of the primary reasons for developing quiet tunnels is for the investigation of high-speed boundary-layer stability and transition phenomena without the transition-promoting effects of acoustic radiation from tunnel walls. In this experiment, a flared-cone model under adiabatic- and cooled-wall conditions was placed in a calibrated, 'quiet' Mach 6 flow and the stability of the boundary layer was investigated using a prototype constant-voltage anemometer. The results were compared with linear-stability theory predictions and good agreement was found in the prediction of second-mode frequencies and growth. In addition, the same 'N=10' criterion used to predict boundary-layer transition in subsonic, transonic, and supersonic flows was found to be applicable for the hypersonic flow regime as well. Under cooled-wall conditions, a unique set of continuous spectra data was acquired that documents the linear, nonlinear, and breakdown regions associated with the transition of hypersonic flow under low-noise conditions.

  14. Assessing Uncertainties in Boundary Layer Transition Predictions for HIFiRE-1 at Non-zero Angles of Attack

    NASA Technical Reports Server (NTRS)

    Marek, Lindsay C.

    2011-01-01

    Boundary layer stability was analyzed for the HIFiRE-1 flight vehicle geometry for ground tests conducted at the CUBRC LENS I hypersonic shock test facility and the Langley Research Center (LaRC) 20- inch Mach 6 Tunnel. Boundary layer stability results were compared to transition onset location obtained from discrete heat transfer measurements from thin film gauges during the CUBRC test and spatially continuous heat transfer measurements from thermal phosphor paint data during the LaRC test. The focus of this analysis was on conditions at non-zero angles of attack as stability analysis has already been performed at zero degrees angle of attack. Also, the transition onset data obtained during flight testing was at nonzero angles of attack, so this analysis could be expanded in the future to include the results of the flight test data. Stability analysis was performed using the 2D parabolized stability software suite STABL (Stability and Transition Analysis for Hypersonic Boundary Layers) developed at the University of Minnesota and the mean flow solutions were computed using the DPLR finite volume Navier-Stokes computational fluid dynamics (CFD) solver. A center line slice of the 3D mean flow solution was used for the stability analysis to incorporate the angle of attack effects while still taking advantage of the 2D STABL software suite. The N-factors at transition onset and the value of Re(sub theta)/M(sub e), commonly used to predict boundary layer transition onset, were compared for all conditions analyzed. Ground test data was analyzed at Mach 7.2 and Mach 6.0 and angles of attack of 1deg, 3deg and 5deg. At these conditions, the flow was found to be second mode dominant for the HIFiRE-1 slender cone geometry. On the leeward side of the vehicle, a strong trend of transition onset location with angle of attack was observed as the boundary layer on the leeward side of the vehicle developed inflection points at streamwise positions on the vehicle that correlated to angle of attack. Inflection points are a strong instability mechanism that lead to rapid breakdown and transition to turbulence. The transition onset location on the windward side of the vehicle displayed no trend with angle of attack or freestream Reynolds number and transition was observed farther down the vehicle than observed on the leeward side of the vehicle. In analysis of both windward and leeward sides of the vehicle, use of the N factor methodology to develop trends to predict boundary layer transition onset showed improvements over the Re(sub theta)/M(sub e) empirical correlation methodology. Stronger correlations and less scatter in the data were observed when using the N factor method for these cases.

  15. Layered transition metal carboxylates: efficient reusable heterogeneous catalyst for epoxidation of olefins.

    PubMed

    Sen, Rupam; Bhunia, Susmita; Mal, Dasarath; Koner, Subratanath; Miyashita, Yoshitaro; Okamoto, Ken-Ichi

    2009-12-01

    Layered metal carboxylates [M(malonato)(H(2)O)(2)](n) (M = Ni(II) and Mn(II)) that have a claylike structure have been synthesized hydrothermally and characterized. The interlayer separation in these layered carboxylates is comparable to that of the intercalation distance of the naturally occurring clay materials or layered double hydroxides (LDHs). In this study, we have demonstrated that, instead of intercalating the metal complex into layers of the clay or LDH, layered transition metal carboxylates, [M(malonato)(H(2)O)(2)](n), as such can be used as a recyclable heterogeneous catalyst in olefin epoxidation reaction. Metal carboxylates [M(malonato)(H(2)O)(2)](n) exhibit excellent catalytic performance in olefin epoxidation reaction.

  16. Experimental study of 2-layer regenerators using Mn-Fe-Si-P materials

    NASA Astrophysics Data System (ADS)

    Christiaanse, T. V.; Trevizoli, P. V.; Misra, Sumohan; Carroll, Colman; van Asten, David; Zhang, Lian; Teyber, R.; Govindappa, P.; Niknia, I.; Rowe, A.

    2018-03-01

    This work describes an experimental study of a two layer active magnetic regenerator with varying transition temperature spacing. The transition temperature of the materials is based on the specific heat peak of the materials. A transition temperature based on the average of the heating and cooling curves at zero Tesla field value is used to refer to the materials throughout this paper. This study uses five Mn-Fe-Si-P materials with transition temperatures of 294.6 K, 292.3 K, 290.7 K, 282.5 K and 281.4 K. Six different regenerators are tested. A reference configuration is tested using the 294.6 K material a hot side layer and with a second passive layer of lead spheres as cold side layer. Followed by four configurations that use the same 294.6 K material as hot side layer, but where each configuration uses a different cold side material. For the second active layer the materials are used in sequence; 292.3 K, 290.7 K, 282.5 K and 281.4K. Lastly, a sixth configuration uses the 292.3 K and 282.5 K materials. For each configuration, the temperature span is measured for rejection temperatures from 40 °C to 9 °C and at 0 W and 2 W applied load. Experimental results for temperature span and exergetic cooling power are compared based on the differences from the reference configuration. Materials are analysed based on material performance metrics such as peak adiabatic temperature change, peak entropy change and RCP(s) values. For the cases considered, a closer transition temperature spacing generally gives a greater temperature span and exergetic cooling power than further spaced materials, even when the combined materials have comparatively lower performance metrics. When two materials with higher RCP(s) values with large transition temperature spacing are compared to materials with lower RCP(s) values but, closer transition temperature spacing a higher exergetic cooling power and temperature span is found for the latter.

  17. Bypass transition in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Vandervegt, J. J.

    1992-01-01

    Transition to turbulence in aerospace applications usually occurs in a strongly disturbed environment. For instance, the effects of free-stream turbulence, roughness and obstacles in the boundary layer strongly influence transition. Proper understanding of the mechanisms leading to transition is crucial in the design of aircraft wings and gas turbine blades, because lift, drag and heat transfer strongly depend on the state of the boundary layer, laminar or turbulent. Unfortunately, most of the transition research, both theoretical and experimental, has focused on natural transition. Many practical flows, however, defy any theoretical analysis and are extremely difficult to measure. Morkovin introduced in his review paper the concept of bypass transition as those forms of transition which bypass the known mechanisms of linear and non-linear transition theories and are currently not understood by experiments. In an effort to better understand the mechanisms leading to transition in a disturbed environment, experiments are conducted studying simpler cases, viz. the effects of free stream turbulence on transition on a flat plate. It turns out that these experiments are very difficult to conduct, because generation of free stream turbulence with sufficiently high fluctuation levels and reasonable homogeneity is non trivial. For a discussion see Morkovin. Serious problems also appear due to the fact that at high Reynolds numbers the boundary layers are very thin, especially in the nose region of the plate where the transition occurs, which makes the use of very small probes necessary. The effects of free-stream turbulence on transition are the subject of this research and are especially important in a gas turbine environment, where turbulence intensities are measured between 5 and 20 percent, Wang et al. Due to the fact that the Reynolds number for turbine blades is considerably lower than for aircraft wings, generally a larger portion of the blade will be in a laminar transitional state. The effects of large free stream turbulence in compressible boundary layers at Mach numbers are examined both in the subsonic and transonic regime using direct numerical simulations. The flow is computed over a flat plate and curved surface. while many applications operate in the transonic regime. Due the nature of their numerical scheme, a non-conservation formulation of the Navier-Stokes equations, it is a non-trivial extension to compute flow fields in the transonic regime. This project aims at better understanding the effects of large free-stream turbulence in compressible boundary layers at mach number both in the subsonic and transonic regime using direct numerical simulations. The present project aims at computing the flow over a flat plate and curved surface. This research will provide data which can be used to clarify mechanisms leading to transition in an environment with high free stream turbulence. This information is useful for the development of turbulence models, which are of great importance for CFD applications, and are currently unreliable for more complex flows, such as transitional flows.

  18. Fluid Mechanics and Heat Transfer in Transitional Boundary Layers

    NASA Technical Reports Server (NTRS)

    Wang, Ting

    2007-01-01

    Experiments have been performed to investigate the effects of elevated free-stream turbulence and streamwise acceleration on flow and thermal structures in transitional boundary layers. The free-stream turbulence ranges from 0.5 to 6.4% and the streamwise acceleration ranges from K = 0 to 0.8 x 10(exp -6). The onset of transition, transition length and the turbulent spot formation rate are determined. The statistical results and conditionally sampled results of th streamwise and cross-stream velocity fluctuations, temperature fluctuations, Reynolds stress and Reynolds heat fluxes are presented.

  19. Electrochromic device containing metal oxide nanoparticles and ultraviolet blocking material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Guillermo; Koo, Bonil; Gregoratto, Ivano

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant. The electrochromic device also includes nanoparticles containing one or more transparent conducting oxide (TCO), a solid state electrolyte, a counter electrode, and at least one protective layer to prevent degradation of the one or more nanostructured transition metal oxide bronze. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) and visible radiation as a function of an applied voltage to the device.

  20. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-06-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers. 13 references.

  1. Influence of a heated leading edge on boundary layer growth, stability, and transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landrum, D.B.; Macha, J.M.

    1987-01-01

    This paper presents the results of a combined theoretical and experimental study of the influence of a heated leading edge on the growth, stability, and transition of a two-dimensional boundary layer. The findings are directly applicable to aircraft wings and nacelles that use surface heating for anti-icing protection. The potential effects of the non-adiabatic condition are particularly important for laminar-flow sections where even small perturbations can result in significantly degraded aerodynamic performance. The results of the study give new insight to the fundamental coupling between streamwise pressure gradient and surface heat flux in laminar and transitional boundary layers.

  2. Magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure: Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Ziti, S.; Aouini, S.; Labrim, H.; Bahmad, L.

    2017-02-01

    We study the magnetic layering transitions in a polyamidoamine (PAMAM) dendrimer nano-structure, under the effect of an external magnetic field. We examine the magnetic properties, of this model of the spin S=1 Ising ferromagnetic in real nanostructure used in several scientific domains. For T=0, we give and discuss the ground state phase diagrams. At non null temperatures, we applied the Monte Carlo simulations giving important results summarized in the form of the phase diagrams. We also analyzed the effect of varying the external magnetic field, and found the layering transitions in the polyamidoamine (PAMAM) dendrimer nano-structure.

  3. Aerodynamic flight evaluation analysis and data base update

    NASA Technical Reports Server (NTRS)

    Boyle, W. W.; Miller, M. S.; Wilder, G. O.; Reheuser, R. D.; Sharp, R. S.; Bridges, G. I.

    1989-01-01

    Research was conducted to determine the feasibility of replacing the Solid Rocket Boosters on the existing Space Shuttle Launch Vehicle (SSLV) with Liquid Rocket Boosters (LRB). As a part of the LRB selection process, a series of wind tunnel tests were conducted along with aero studies to determine the effects of different LRB configurations on the SSLV. Final results were tabulated into increments and added to the existing SSLV data base. The research conducted in this study was taken from a series of wind tunnel tests conducted at Marshall's 14-inch Trisonic Wind Tunnel. The effects on the axial force (CAF), normal force (CNF), pitching moment (CMF), side force (CY), wing shear force (CSR), wing torque moment (CTR), and wing bending moment (CBR) coefficients were investigated for a number of candidate LRB configurations. The aero effects due to LRB protuberances, ET/LRB separation distance, and aft skirts were also gathered from the tests. Analysis was also conducted to investigate the base pressure and plume effects due to the new booster geometries. The test results found in Phases 1 and 2 of wind tunnel testing are discussed and compared. Preliminary LRB lateral/directional data results and trends are given. The protuberance and gap/skirt effects are discussed. The base pressure/plume effects study is discussed and results are given.

  4. Observations of the Morning Development of the Urban Boundary Layer Over London, UK, Taken During the ACTUAL Project

    NASA Astrophysics Data System (ADS)

    Halios, Christos H.; Barlow, Janet F.

    2018-03-01

    The study of the boundary layer can be most difficult when it is in transition and forced by a complex surface, such as an urban area. Here, a novel combination of ground-based remote sensing and in situ instrumentation in central London, UK, is deployed, aiming to capture the full evolution of the urban boundary layer (UBL) from night-time until the fully-developed convective phase. In contrast with the night-time stable boundary layer observed over rural areas, the night-time UBL is weakly convective. Therefore, a new approach for the detection of the morning-transition and rapid-growth phases is introduced, based on the sharp, quasi-linear increase of the mixing height. The urban morning-transition phase varied in duration between 0.5 and 4 h and the growth rate of the mixing layer during the rapid-growth phase had a strong positive relationship with the convective velocity scale, and a weaker, negative relationship with wind speed. Wind shear was found to be higher during the night-time and morning-transition phases than the rapid-growth phase and the shear production of turbulent kinetic energy near the mixing-layer top was around six times larger than surface shear production in summer, and around 1.5 times larger in winter. In summer under low winds, low-level jets dominated the UBL, and shear production was greater than buoyant production during the night-time and the morning-transition phase near the mixing-layer top. Within the rapid-growth phase, buoyant production dominated at the surface, but shear production dominated in the upper half of the UBL. These results imply that regional flows such as low-level jets play an important role alongside surface forcing in determining UBL structure and growth.

  5. Coherently Coupled ZnO and VO2 Interface studied by Photoluminescence and electrical transport across a phase transition

    NASA Astrophysics Data System (ADS)

    Srivastava, Amar; Saha, S.; Annadi, A.; Zhao, Y. L.; Gopinadhan, K.; Wang, X.; Naomi, N.; Liu, Z. Q.; Dhar, S.; Herng, T. S.; Nina, Bao; Ariando, -; Ding, Jun; Venkatesan, T.

    2012-02-01

    In this work we report a study of a coherently coupled interface consisting of a ZnO layer grown on top of an oriented VO2 layer on sapphire by photoluminescence and electrical transport measurements across the VO2 metal insulator phase transition (MIT). The photoluminescence of the ZnO layer showed a broad hysteresis induced by the phase transition of VO2 while the width of the electrical hysteresis was narrow and unaffected by the over layer. The enhanced width of the PL hysteresis was due to the formation of defects during the MIT as evidenced by a broad hysteresis in the opposite direction to that of the band edge PL in the defect luminescense. Unlike VO2 the defects in ZnO did not fully recover across the phase transition. From the defect luminescence data, oxygen interstitials were found to be the predominant defects in ZnO mediated by the strain from the VO2 phase transition. Such coherently coupled interfaces could be of use in characterizing the stability of a variety of interfaces and also for novel device application.

  6. On the Relationship between Transitional and Fully Turbulent Shear Flow.

    DTIC Science & Technology

    1982-05-01

    the spot a single large coherent eddy on which mall scale turbulence is superimposed or is it an assembly of eddies, both large and mall ...laminar boundary layer. These finds provided the first link between stability theory and the actual spreading of turbu- lence. We expected the...findings of the transitional spot and its re- lation to the transition process in boundary layers flow were drawn togeth- er into an organized theory

  7. Initial Conceptualization and Application of the Alaska Thermokarst Model

    NASA Astrophysics Data System (ADS)

    Bolton, W. R.; Lara, M. J.; Genet, H.; Romanovsky, V. E.; McGuire, A. D.

    2015-12-01

    Thermokarst topography forms whenever ice-rich permafrost thaws and the ground subsides due to the volume loss when ground ice transitions to water. The Alaska Thermokarst Model (ATM) is a large-scale, state-and-transition model designed to simulate transitions between landscape units affected by thermokarst disturbance. The ATM uses a frame-based methodology to track transitions and proportion of cohorts within a 1-km2 grid cell. In the arctic tundra environment, the ATM tracks thermokarst-related transitions among wetland tundra, graminoid tundra, shrub tundra, and thermokarst lakes. In the boreal forest environment, the ATM tracks transitions among forested permafrost plateau, thermokarst lakes, collapse scar fens and bogs. The transition from one cohort to another due to thermokarst processes can take place if thaw reaches ice-rich ground layers either due to pulse disturbance (i.e. large precipitation event or fires), or due to gradual active layer deepening that eventually results in penetration of the protective layer. The protective layer buffers the ice-rich soils from the land surface and is critical to determine how susceptible an area is to thermokarst degradation. The rate of terrain transition in our model is determined by a set of rules that are based upon the ice-content of the soil, the drainage efficiency (or the ability of the landscape to store or transport water), the cumulative probability of thermokarst initiation, distance from rivers, lake dynamics (increasing, decreasing, or stable), and other factors. Tundra types are allowed to transition from one type to another (for example, wetland tundra to graminoid tundra) under favorable climatic conditions. In this study, we present our conceptualization and initial simulation results from in the arctic (the Barrow Peninsula) and boreal (the Tanana Flats) regions of Alaska.

  8. Reflective article having a sacrificial cathodic layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabagambe, Benjamin; Buchanan, Michael J.; Scott, Matthew S.

    The present invention relates to reflective articles, such as solar mirrors, that include a sacrificial cathodic layer. The reflective article, more particularly includes a substrate, such as glass, having a multi-layered coating thereon that includes a lead-free sacrificial cathodic layer. The sacrificial cathodic layer includes at least one transition metal, such as a particulate transition metal, which can be in the form of flakes (e.g., zinc flakes). The sacrificial cathodic layer can include an inorganic matrix formed from one or more organo-titanates. Alternatively, the sacrificial cathodic layer can include an organic polymer matrix (e.g., a crosslinked organic polymer matrix formedmore » from an organic polymer and an aminoplast crosslinking agent). The reflective article also includes an outer organic polymer coating, that can be electrodeposited over the sacrificial cathodic layer.« less

  9. Highly improved passivation of c-Si surfaces using a gradient i a-Si:H layer

    NASA Astrophysics Data System (ADS)

    Lee, Soonil; Ahn, Jaehyun; Mathew, Leo; Rao, Rajesh; Zhang, Zhongjian; Kim, Jae Hyun; Banerjee, Sanjay K.; Yu, Edward T.

    2018-04-01

    Surface passivation using intrinsic a-Si:H (i a-Si:H) films plays a key role in high efficiency c-Si heterojunction solar cells. In this study, we demonstrate improved passivation quality using i a-Si:H films with a gradient-layered structure consisting of interfacial, transition, and capping layers deposited on c-Si surfaces. The H2 dilution ratio (R) during deposition was optimized individually for the interfacial and capping layers, which were separated by a transition layer for which R changed gradually between its values for the interfacial and capping layers. This approach yielded a significant reduction in surface carrier recombination, resulting in improvement of the minority carrier lifetime from 1480 μs for mono-layered i a-Si:H passivation to 2550 μs for the gradient-layered passivation approach.

  10. Detection of boundary-layer transitions in wind tunnels

    NASA Technical Reports Server (NTRS)

    Wood, W. R.; Somers, D. M.

    1978-01-01

    Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.

  11. Boundary-layer transition on cones at angle of attack in a Mach-6 Quiet Tunnel

    NASA Astrophysics Data System (ADS)

    Swanson, Erick O.

    It is desirable for the boundary layer on a re-entry vehicle (RV) to be laminar during as much of its flight as possible, since a turbulent boundary layer causes several problems, such as high heat flux to the vehicle and larger drag forces. Nosetip roughness can cause the boundary layer to transition downstream on the cone. Surface roughness and nosetip bluntness may cause windside-forward transition on maneuvering RVs. The crossflow instability may also influence transition on yawed RVs. The mechanisms through which these phenomena induce transition are poorly understood. Several experiments have been conducted to study these phenomena. The temperature-sensitive-paint (TSP) and oil-flow techniques were used to observe transition and crossflow vortices on cones at angle of attack in the Purdue Boeing/AFOSR Mach-6 Quiet Tunnel. The high-Reynolds number capability of the tunnel was developed to facilitate these experiments. Improvements were made in the use of the temperature-sensitive-paint technique in the Purdue Mach-6 Quiet Tunnel. The measured heat transfer to cones with sharp and spherically-blunt nosetips at 0° angle-of-attack was within 60% of the values from Navier-Stokes computations. Transition was observed on sharp and spherically-blunt cones at 6° angle-of-attack in noisy flow. Crossflow vortices were observed with both TSP and oil flow under noisy conditions in the turbulent boundary layer on a sharp cone. The vortex angles were about 50% of the surface-streamline angles observed using oil dots. TSP was also used to observe crossflow vortices in quiet flow. The vortices were similar to those seen in noisy flow. An array of roughness elements at x = 2 inches (axially) with a spacing of 9° on a yawed sharp cone in noisy flow influenced transition that was apparently induced by the crossflow instability. No influence of the roughness array was observed in quiet flow.

  12. Design optimization of natural laminar flow bodies in compressible flow

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1992-01-01

    An optimization method has been developed to design axisymmetric body shapes such as fuselages, nacelles, and external fuel tanks with increased transition Reynolds numbers in subsonic compressible flow. The new design method involves a constraint minimization procedure coupled with analysis of the inviscid and viscous flow regions and linear stability analysis of the compressible boundary-layer. In order to reduce the computer time, Granville's transition criterion is used to predict boundary-layer transition and to calculate the gradients of the objective function, and linear stability theory coupled with the e(exp n)-method is used to calculate the objective function at the end of each design iteration. Use of a method to design an axisymmetric body with extensive natural laminar flow is illustrated through the design of a tiptank of a business jet. For the original tiptank, boundary layer transition is predicted to occur at a transition Reynolds number of 6.04 x 10(exp 6). For the designed body shape, a transition Reynolds number of 7.22 x 10(exp 6) is predicted using compressible linear stability theory coupled with the e(exp n)-method.

  13. Characterization of structural response to hypersonic boundary-layer transition

    DOE PAGES

    Riley, Zachary B.; Deshmukh, Rohit; Miller, Brent A.; ...

    2016-05-24

    The inherent relationship between boundary-layer stability, aerodynamic heating, and surface conditions makes the potential for interaction between the structural response and boundary-layer transition an important and challenging area of study in high-speed flows. This paper phenomenologically explores this interaction using a fundamental two-dimensional aerothermoelastic model under the assumption of an aluminum panel with simple supports. Specifically, an existing model is extended to examine the impact of transition onset location, transition length, and transitional overshoot in heat flux and fluctuating pressure on the structural response of surface panels. Transitional flow conditions are found to yield significantly increased thermal gradients, and theymore » can result in higher maximum panel temperatures compared to turbulent flow. Results indicate that overshoot in heat flux and fluctuating pressure reduces the flutter onset time and increases the strain energy accumulated in the panel. Furthermore, overshoot occurring near the midchord can yield average temperatures and peak displacements exceeding those experienced by the panel subject to turbulent flow. Lastly, these results suggest that fully turbulent flow does not always conservatively predict the thermo-structural response of surface panels.« less

  14. Thermally induced gelling of oil-in-water emulsions comprising partially crystallized droplets: the impact of interfacial crystals.

    PubMed

    Thivilliers, Florence; Laurichesse, Eric; Saadaoui, Hassan; Leal-Calderon, Fernando; Schmitt, Véronique

    2008-12-02

    We produced triglyceride-in-water emulsions comprising partially crystallized droplets, stabilized by a mixture of protein and low molecular weight surfactant. The emulsions were emulsified in the melted state of the oil phase and stored at low temperature (4 degrees C) right after fabrication to induce oil crystallization. The systems were then warmed to room temperature for a short period of time and cooled again to 4 degrees C. Owing to this treatment referred to as temperature cycling or "tempering", the initially fluid emulsions turned into hard gels. We followed the bulk rheological properties of the materials during and after tempering. The storage modulus, G', exhibited a dramatic increase when tempering was applied. We showed that the systems evolved following two distinct regimes that depend on the average droplet size and on the surfactant-to-protein molar ratio. Gelling may involve partial coalescence of the droplets, i.e., film rupturing with no further shape relaxation because of the solid nature of the droplets. Alternatively, gelling may occur without film rupturing, and is reminiscent of a jamming transition induced by surface roughness. We discussed the origin of these two mechanisms in terms of the properties (size and protuberance) of the interfacial oil crystals.

  15. Butt Welding of 2205/X65 Bimetallic Sheet and Study on the Inhomogeneity of the Properties of the Welded Joint

    NASA Astrophysics Data System (ADS)

    Gou, Ning-Nian; Zhang, Jian-Xun; Wang, Jian-Long; Bi, Zong-Yue

    2017-04-01

    The explosively welded 2205 duplex stainless steel/X65 pipe steel bimetallic sheets were butt jointed by multilayer and multi-pass welding (gas tungsten arc welding for the flyer and gas metal arc welding for the transition and parent layers of the bimetallic sheets). The microstructure and mechanical properties of the welded joint were investigated. The results showed that in the thickness direction, microstructure and mechanical properties of the welded joint exhibited obvious inhomogeneity. The microstructures of parent filler layers consisted of acicular ferrite, widmanstatten ferrite, and a small amount of blocky ferrite. The microstructure of the transition layer and flyer layer consisted of both austenite and ferrite structures; however, the transition layer of weld had a higher volume fraction of austenite. The results of the microhardness test showed that in both weld metal (WM) and heat-affected zone (HAZ) of the parent filler layers, the average hardness decreased with the increasing (from parent filler layer 1 to parent filler layer 3) welding heat input. The results of hardness test also indicated that the hardness of the WM and the HAZ for the flyer and transition layers was equivalent. The tensile test combined with Digital Specklegram Processing Technology demonstrated that the fracturing of the welded joint started at the HAZ of the flyer, and then the fracture grew toward the base metal of the parent flyer near the parent HAZ. The stratified impact test at -5 °C showed that the WM and HAZ of the flyer exhibited lower impact toughness, and the fracture mode was ductile and brittle mixed fracture.

  16. Bulk Kosterlitz-Thouless Type Molecular Superconductor β″-(BEDT-TTF)2[(H2O)(NH4)2Cr(C2O4)3]·18-crown-6.

    PubMed

    Martin, Lee; Lopez, Jordan R; Akutsu, Hiroki; Nakazawa, Yasuhiro; Imajo, Shusaku

    2017-11-20

    A new molecular superconductor, β″-(BEDT-TTF) 2 [(H 2 O)(NH 4 ) 2 Cr(C 2 O 4 ) 3 ]·18-crown-6, has been synthesized from the organic donor molecule BEDT-TTF with the anion Cr(C 2 O 4 ) 3 3- . The crystal structure consists of conducting organic layers of BEDT-TTF molecules which adopt the β″ packing motif (layer A), layers of NH 4 + and Λ-Cr(C 2 O 4 ) 3 3- (layer B), layers of (H 2 O)(NH 4 )18-crown-6 (layer C), and layers of NH 4 + and Δ-Cr(C 2 O 4 ) 3 3- (layer D) which produce a superstructure with a repeating pattern of ABCDABCDA. As a result of this packing arrangement, this is the 2D superconductor with the widest gap between conducting layers where only a single donor packing motif is present (β″). Superconducting critical temperatures at ambient pressure observed by electrical transport and magnetic measurements are 4.0-4.9 and 2.5 K, respectively. The strong 2D nature of this system, the broad transition to T zero at 1.8K, and the transition of α of V ∝ I α from 1 to 3 on I-V curves strongly suggest that the superconducting transition is very close to a Kosterlitz-Thouless transition. The magnetic field dependence of the superconducting critical temperature parallel to the conducting plane gives an upper critical field μ 0 H c2∥ > 8 T, which is over the calculated Pauli-Clogston limit for this material.

  17. Gas diffusion in and out of super-hydrophobic surface in transitional and turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Ling, Hangjian; Fu, Matthew; Hultmark, Marcus; Katz, Joseph

    2017-11-01

    The rate of gas diffusion in and out of a super-hydrophobic surface (SHS) located in boundary layers is investigated at varying Reynolds numbers and ambient pressures. The hierarchical SHS consists of nano-textured, 100 μm wide spanwise grooves. The boundary layers over the SHS under the Cassie-Baxter and Wenzel states as well as a smooth wall at same conditions are characterized by particle image velocimetry. The Reynolds number based on momentum thickness of the smooth wall, ReΘ0, ranges from 518 to 2088, covering transitional and turbulent boundary layer regimes. The mass diffusion rate is estimated by using microscopy to measure the time-evolution of plastron shape and volume. The data is used for calculating the Sherwood number based on smooth wall momentum thickness, ShΘ0. As expected, the diffusion rate increases linearly with the under- or super-saturation level, i.e., ShΘ0 is independent of ambient pressure. For the turbulent boundary layers, the data collapses onto ShΘ0 = 0.47ReΘ00.77 . For the transitional boundary layer, ShΘ0 is lower than the turbulent power law. When ShΘ0 is plotted against the friction Reynolds number (Reτ0) , both the transitional and turbulent boundary layer data collapse onto a single power law, ShΘ0 = 0.34Reτ00.913 . Results scaled based on Wenzel state momentum thickness show very similar trends. Sponsored by ONR.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M 3C 2 and M 4C 3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX] nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M' 2M"C 2 and M' 2M" 2C 3 – where M' and M" are two different earlymore » transition metals, such as Mo, Cr, Ta, Nb, V, and Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo 2TiC 2 and Mo 2Ti 2C 3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC] nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti 3C 2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo 2TiC 2T x exhibits semiconductor-like transport behavior, while Ti 3C 2T x is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  19. Observations of the Early Evening Boundary-Layer Transition Using a Small Unmanned Aerial System

    NASA Astrophysics Data System (ADS)

    Bonin, Timothy; Chilson, Phillip; Zielke, Brett; Fedorovich, Evgeni

    2013-01-01

    The evolution of the lower portion of the planetary boundary layer is investigated using the Small Multifunction Research and Teaching Sonde (SMARTSonde), an unmanned aerial vehicle developed at the University of Oklahoma. The study focuses on the lowest 200 m of the atmosphere, where the most noticeable thermodynamic changes occur during the day. Between October 2010 and February 2011, a series of flights was conducted during the evening hours on several days to examine the vertical structure of the lower boundary layer. Data from a nearby Oklahoma Mesonet tower was used to supplement the vertical profiles of temperature, humidity, and pressure, which were collected approximately every 30 min, starting 2 h before sunset and continuing until dusk. From the profiles, sensible and latent heat fluxes were estimated. These fluxes were used to diagnose the portion of the boundary layer that was most affected by the early evening transition. During the transition period, a shallow cool and moist layer near the ground was formed, and as the evening progressed the cooling affected an increasingly shallower layer just above the surface.

  20. Hypersonic Boundary Layer Stability over a Flared Cone in a Quiet Tunnel

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona; Wilkinson, Stephen P.

    1996-01-01

    Hypersonic boundary layer measurements were conducted over a flared cone in a quiet wind tunnel. The flared cone was tested at a freestream unit Reynolds number of 2.82x106/ft in a Mach 6 flow. This Reynolds number provided laminar-to-transitional flow over the model in a low-disturbance environment. Point measurements with a single hot wire using a novel constant voltage anemometry system were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the laminar-to-transitional state of the boundary layer and to identify instability modes. Results suggest that the second mode disturbances were the most unstable and scaled with the boundary layer thickness. The integrated growth rates of the second mode compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode sub-harmonic. The sub-harmonic wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that non-linear disturbances are not associated with high free stream disturbance levels.

  1. Performance limits of tunnel transistors based on mono-layer transition-metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiang-Wei, E-mail: xwjiang@semi.ac.cn; Li, Shu-Shen; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-12

    Performance limits of tunnel field-effect transistors based on mono-layer transition metal dichalcogenides are investigated through numerical quantum mechanical simulations. The atomic mono-layer nature of the devices results in a much smaller natural length λ, leading to much larger electric field inside the tunneling diodes. As a result, the inter-band tunneling currents are found to be very high as long as ultra-thin high-k gate dielectric is possible. The highest on-state driving current is found to be close to 600 μA/μm at V{sub g} = V{sub d} = 0.5 V when 2 nm thin HfO{sub 2} layer is used for gate dielectric, outperforming most of the conventional semiconductor tunnelmore » transistors. In the five simulated transition-metal dichalcogenides, mono-layer WSe{sub 2} based tunnel field-effect transistor shows the best potential. Deep analysis reveals that there is plenty room to further enhance the device performance by either geometry, alloy, or strain engineering on these mono-layer materials.« less

  2. New-class of Semiconducting 2D materials: Tin Dichalcogenides (SnX2)

    NASA Astrophysics Data System (ADS)

    Ataca, Can; Wu, Kedi; Saritas, Kayahan; Tongay, Sefaattin; Grossman, Jeffrey C.

    2015-03-01

    Recent studies have focused on a new generation of atomically thin films of semiconducting materials. A broad family of two-dimensional (2D) semiconducting transition metal dichalcogenides (MX2) have been fabricated and investigated in monolayer, bilayer and few layer form. In this work, we investigated the electronic, optical and elastic properties of single and few layer and bulk SnX2 (X = S, Se) both theoretically and experimentally. Using density functional theory (DFT) we carried out stability analysis through phonon and electronic, optical and elastic structure calculations. Single-few layer SnX2s are mechanically exfoliated and Raman and photoluminescence (PL) measurements are taken. UV-Vis absorption spectrum together with PL measurements and DFT calculations yield an indirect gap of ~ 2.5 eV for SnS2 structures (bulk). Tunability of the energy band gap and indirect-direct gap transitions are investigated by controlling the number of layers and applied stress. Lowering the number of layers decreases the indirect gap (0.1-0.3 eV), but indirect-direct gap transition occurs when layer-layer distance is reduced. Due to flexibility in engineering the electronic and optical properties, SnX2 compounds are promising materials for future optoelectronic nanoscale applications.

  3. Transition Delay in Hypersonic Boundary Layers via Optimal Perturbations

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    The effect of nonlinear optimal streaks on disturbance growth in a Mach 6 axisymmetric flow over a 7deg half-angle cone is investigated in an e ort to expand the range of available techniques for transition control. Plane-marching parabolized stability equations are used to characterize the boundary layer instability in the presence of azimuthally periodic streaks. The streaks are observed to stabilize nominally planar Mack mode instabilities, although oblique Mack mode disturbances are destabilized. Experimentally measured transition onset in the absence of any streaks correlates with an amplification factor of N = 6 for the planar Mack modes. For high enough streak amplitudes, the transition threshold of N = 6 is not reached by the Mack mode instabilities within the length of the cone, but subharmonic first mode instabilities, which are destabilized by the presence of the streaks, reach N = 6 near the end of the cone. These results suggest a passive flow control strategy of using micro vortex generators to induce streaks that would delay transition in hypersonic boundary layers.

  4. Onset of two-dimensional superconductivity in space charge doped few-layer molybdenum disulfide

    PubMed Central

    Biscaras, Johan; Chen, Zhesheng; Paradisi, Andrea; Shukla, Abhay

    2015-01-01

    Atomically thin films of layered materials such as molybdenum disulfide (MoS2) are of growing interest for the study of phase transitions in two-dimensions through electrostatic doping. Electrostatic doping techniques giving access to high carrier densities are needed to achieve such phase transitions. Here we develop a method of electrostatic doping which allows us to reach a maximum n-doping density of 4 × 1014 cm−2 in few-layer MoS2 on glass substrates. With increasing carrier density we first induce an insulator to metal transition and subsequently an incomplete metal to superconductor transition in MoS2 with critical temperature ≈10 K. Contrary to earlier reports, after the onset of superconductivity, the superconducting transition temperature does not depend on the carrier density. Our doping method and the results we obtain in MoS2 for samples as thin as bilayers indicates the potential of this approach. PMID:26525386

  5. Application of renormalization group theory to the large-eddy simulation of transitional boundary layers

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Zang, Thomas A.; Speziale, Charles G.; Lund, Thomas S.

    1990-01-01

    An eddy viscosity model based on the renormalization group theory of Yakhot and Orszag (1986) is applied to the large-eddy simulation of transition in a flat-plate boundary layer. The simulation predicts with satisfactory accuracy the mean velocity and Reynolds stress profiles, as well as the development of the important scales of motion. The evolution of the structures characteristic of the nonlinear stages of transition is also predicted reasonably well.

  6. Boundary layer transition: A review of theory, experiment and related phenomena

    NASA Technical Reports Server (NTRS)

    Kistler, E. L.

    1971-01-01

    The overall problem of boundary layer flow transition is reviewed. Evidence indicates a need for new, basic physical hypotheses in classical fluid mechanics math models based on the Navier-Stokes equations. The Navier-Stokes equations are challenged as inadequate for the investigation of fluid transition, since they are based on several assumptions which should be expected to alter significantly the stability characteristics of the resulting math model. Strong prima facie evidence is presented to this effect.

  7. Mechanical heating in the transition region

    NASA Technical Reports Server (NTRS)

    Withbroe, G.

    1981-01-01

    Attention is focused on the energy balance in the transition region and the role that mechanical heating plays in determining the temperature density structure of this region in a stellar atmosphere. Because of its role as the interface layer through which mass and energy flow between the chromospheres and corona, direct deposition of mechanical energy is a relatively unimportant factor in the overall energy balance in the transition region, except in the uppermost layers where the temperature approaches coronal values.

  8. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, Jr., George E.; Holcombe, Jr., Cressie E.

    1988-01-01

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  9. Multilayered thermal insulation formed of zirconia bonded layers of zirconia fibers and metal oxide fibers and method for making same

    DOEpatents

    Wrenn, G.E. Jr.; Holcombe, C.E. Jr.

    1988-09-13

    A multilayered thermal insulating composite is formed of a first layer of zirconia-bonded zirconia fibers for utilization near the hot phase or surface of a furnace or the like. A second layer of zirconia-bonded metal oxide fibers is attached to the zirconia fiber layer by a transition layer formed of intermingled zirconia fibers and metal oxide fibers. The thermal insulation is fabricated by vacuum molding with the layers being sequentially applied from aqueous solutions containing the fibers to a configured mandrel. A portion of the solution containing the fibers forming the first layer is intermixed with the solution containing the fibers of the second layer for forming the layer of mixed fibers. The two layers of fibers joined together by the transition layer are saturated with a solution of zirconium oxynitrate which provides a zirconia matrix for the composite when the fibers are sintered together at their nexi.

  10. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    NASA Astrophysics Data System (ADS)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  11. Statistical mechanics study on wetting behaviors of Ne on Mg surface

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Zhang, M.

    2017-04-01

    Wetting behavior of Ne adsorbed on a Mg surface, first investigated by means of a grand canonical Monte Carlo method in a previous publication (M. J. Bojan, G. Stan, S. Curtarolo, W. A. Steele, and M. W. Cole, Phys. Rev. E, 1999, 59, 864), is again studied by means of classical density functional theory. The Ne-Ne interaction is taken to be of the Lennard-Jones form, while the Ne-surface interaction is derived from an electronic density functional theory. The wetting phase diagram is calculated, and the isotherm shapes, energy and structural properties of the adsorbed films are examined. The present calculations indicate that the system exhibits first-order pre-wetting transition at temperatures above a wetting temperature of Tw≈24 K, and below a critical pre-wetting temperature of Tpwc≈25.09 K. The present findings include (i) in the pre-wetting temperature region, the pre-wetting transition is mixed with many layering transitions; after pre-wetting, the film thickness discontinuously increases (due to frequent occurrences of the layering transitions) and eventually diverges as the chemical potential approaches and eventually equals the saturation value. (ii) Occurrence of the layering transition remains above Tpwc, and the increase of the film thickness with the chemical potential is discontinuous. (iii) Below the wetting temperature, the layering transitions frequently occur and tend to gather together more closely as the saturation is approached.

  12. Minnowbrook III: 2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    LaGraff, John E. (Editor); Ashpis, David E. (Editor)

    2002-01-01

    This volume and its accompanying CD-ROM contain materials presented at the Minnowbrook III-2000 Workshop on Boundary Layer Transition and Unsteady Aspects of Turbomachinery Flows held at the Syracuse University Minnowbrook Conference Center, Blue Mountain Lake, New York, August 20-23, 2000. Workshop organizers were John E. LaGraff (Syracuse University), Terry V Jones (Oxford University), and J. Paul Gostelow (University of Leicester). The workshop followed the theme, venue, and informal format of two earlier workshops: Minnowbrook I (1993) and Minnowbrook II (1997). The workshop was focused on physical understanding the late stage (final breakdown) boundary layer transition, separation, and effects of unsteady wakes with the specific goal of contributing to engineering application of improving design codes for turbomachinery. The workshop participants included academic researchers from the USA and abroad, and representatives from the gas-turbine industry and government laboratories. The physical mechanisms discussed included turbulence disturbance environment in turbomachinery, flow instabilities, bypass and natural transition, turbulent spots and calmed regions, wake interactions with attached and separated boundary layers, turbulence and transition modeling and CFD, and DNS. This volume contains abstracts and copies of the viewgraphs presented, organized according to the workshop sessions. The viewgraphs are included on the CD-ROM only. The workshop summary and the plenary-discussion transcripts clearly highlight the need for continued vigorous research in the technologically important area of transition, separated and unsteady flows in turbomachines.

  13. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  14. Two dimensional disorder in black phosphorus and layered monochalcogenides

    NASA Astrophysics Data System (ADS)

    Barraza-Lopez, Salvador; Mehboudi, Mehrshad; Kumar, Pradeep; Harriss, Edmund O.; Churchill, Hugh O. H.; Dorio, Alex M.; Zhu, Wenjuan; van der Zande, Arend; Pacheco Sanjuan, Alejandro A.

    The degeneracies of the structural ground state of materials with a layered orthorhombic structure such as black phosphorus and layered monochalcogenides GeS, GeSe, SnS, and SnSe, lead to an order/disorder transition in two dimensions at finite temperature. This transition has consequences on applications based on these materials requiring a crystalline two-dimensional structure. Details including a Potts model that explains the two-dimensional transition, among other results, will be given in this talk. References: M. Mehboudi, A.M. Dorio, W. Zhu, A. van der Zande, H.O.H. Churchill, A.A. Pacheco Sanjuan, E.O.H. Harris, P. Kumar, and S. Barraza-Lopez. arXiv:1510.09153.

  15. Role of interfacial transition layers in VO2/Al2O3 heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Honghui; Chisholm, Matthew F; Yang, Tsung-Han

    2011-01-01

    Epitaxial VO2 films grown by pulsed laser deposition (PLD) on c-cut sapphire substrates ((0001) Al2O3) were studied by aberration-corrected scanning transmission electron microscopy (STEM). A number of film/substrate orientation relationships were found and are discussed in the context of the semiconductor-metal transition (SMT) characteristics. A structurally and electronically modified buffer layer was revealed on the interface and was attributed to the interface free-energy minimization process of accommodating the symmetry mismatch between the substrate and the film. This interfacial transition layer is expected to affect the SMT behavior when the interfacial region is a significant fraction of the VO2 film thickness.

  16. Characteristics of Mach 10 transitional and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Watson, R. D.

    1978-01-01

    Measurements of the mean flow properties of transitional and turbulent boundary layers in helium on 4 deg and 5 deg wedges were made for flows with edge Mach numbers from 9.5 to 11.3, ratios of wall temperature to total temperature of 0.4 to 0.95, and maximum length Reynolds numbers of one hundred million. The data include pitot and total temperature surveys and measurements of heat transfer and surface shear. In addition, with the assumption of local similarity, turbulence quantities such as the mixing length were derived from the mean flow profiles. Low Reynolds number and precursor transition effects were significant factors at these test conditions and were included in finite difference boundary layer predictions.

  17. A review and analysis of boundary layer transition data for turbine application

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1984-01-01

    A symposium on transition in turbines was held at the NASA Lewis Research Center. One recommendation of the working groups was the collection of existing transition data to provide standard cases against which models could be tested. A number of data sets from the open literature that include heat transfer data in apparently transitional boundary layers, with particular application to the turbine environment, were reviewed and analyzed to extract transition information from the heat transfer data. The data sets reviewed cover a wide range of flow conditions, from low speed, flat plate tests to full scale turbine airfoils operating at simulated turbine engine conditions. The results indicate that free stream turbulence and pressure gradient have strong, and opposite, effects on the location of the start of transition and on the length of the transition zone.

  18. A review and analysis of boundary layer transition data for turbine application

    NASA Technical Reports Server (NTRS)

    Gaugler, R. E.

    1985-01-01

    A symposium on transition in turbines was held at the NASA Lewis Research Center. One recommendation of the working groups was the collection of existing transition data to provide standard cases against which models could be tested. A number of data sets from the open literature that include heat transfer data in apparently transitional boundary layers, with particular application to the turbine environment, were reviewed and analyzed to extract transition information from the heat transfer data. The data sets reviewed cover a wide range of flow conditions, from low speed, flat plate tests to full scale turbine airfoils operating at simulated turbine engine conditions. The results indicate that free stream turbulence and pressure gradient have strong, and opposite, effects on the location of the start of transition and on the length of the transition zone.

  19. Experimental studies on the stability and transition of 3-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Nitschke-Kowsky, P.

    1987-01-01

    Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.

  20. Electrodeposition of biaxially textured layers on a substrate

    DOEpatents

    Bhattacharya, Raghu N; Phok, Sovannary; Spagnol, Priscila; Chaudhuri, Tapas

    2013-11-19

    Methods of producing one or more biaxially textured layer on a substrate, and articles produced by the methods, are disclosed. An exemplary method may comprise electrodepositing on the substrate a precursor material selected from the group consisting of rare earths, transition metals, actinide, lanthanides, and oxides thereof. An exemplary article (150) may comprise a biaxially textured base material (130), and at least one biaxially textured layer (110) selected from the group consisting of rare earths, transition metals, actinides, lanthanides, and oxides thereof. The at least one biaxially textured layer (110) is formed by electrodeposition on the biaxially textured base material (130).

  1. Biomineralized 3-D Nanoparticle Assemblies with Micro-to-Nanoscale Features and Tailored Chemistries

    DTIC Science & Technology

    2008-01-07

    protuberances on the pollen surface were well preserved after conversion. This hybrid approach may be applied to a variety of bio-organic templates, which are...replicas were found to be rapid, low voltage, minimally-invasive sensors of NO(g) and to exhibit photoluminescence . The kinetics of magnesiothermic...silica- organic hybrid structures via biomimetic silicification has been demonstrated. The effects of two key parameters, the polyamine content and

  2. Vortex propagation around a wall-mounted obstacle in pulsatile flow

    NASA Astrophysics Data System (ADS)

    Carr, Ian A.; Plesniak, Michael W.

    2015-11-01

    Wall-mounted obstacles are prevalent in nature and engineering applications. Physiological flows observed in human vocal fold pathologies, such as polyps, can be modeled by flow over a wall-mounted protuberance. Despite their prevalence, studies of wall-mounted obstacles have been restricted to steady (constant velocity) freestream flow. In biological and geophysical applications, pulsatile flow is much more common, yet effects of pulsatility on the wake of a wall-mounted obstacle remain to be extensively studied. This study aims to characterize the complex physics produced in this unsteady, separated flow. Experiments were performed in a low-speed wind tunnel with a set of rotating vanes, which produce the pulsatile inflow waveform. Instantaneous and phase-averaged particle image velocimetry (PIV) results acquired around a hemispherical obstacle are presented and compared. A mechanism based on self-induced vortex propagation, analogous to that in vortex rings, is proposed to explain the observed dynamics of coherent structures. Predictions of the propagation velocity based on analytical expressions for vortex rings in a viscous fluid are compared to the experimentally measured propagation velocity. Effects of the unsteady boundary layer on the observed physics are explored. This material is based in part upon work supported by the National Science Foundation under Grant Number CBET-1236351, and GW Center for Biomimetics and Bioinspired Engineering (COBRE).

  3. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  4. Layer Anti-Ferromagnetism on Bilayer Honeycomb Lattice

    PubMed Central

    Tao, Hong-Shuai; Chen, Yao-Hua; Lin, Heng-Fu; Liu, Hai-Di; Liu, Wu-Ming

    2014-01-01

    Bilayer honeycomb lattice, with inter-layer tunneling energy, has a parabolic dispersion relation, and the inter-layer hopping can cause the charge imbalance between two sublattices. Here, we investigate the metal-insulator and magnetic phase transitions on the strongly correlated bilayer honeycomb lattice by cellular dynamical mean-field theory combined with continuous time quantum Monte Carlo method. The procedures of magnetic spontaneous symmetry breaking on dimer and non-dimer sites are different, causing a novel phase transition between normal anti-ferromagnet and layer anti-ferromagnet. The whole phase diagrams about the magnetism, temperature, interaction and inter-layer hopping are obtained. Finally, we propose an experimental protocol to observe these phenomena in future optical lattice experiments. PMID:24947369

  5. Surface roughening transition and critical layer thickness in strained-layer heteroepitaxy of EuTe on PbTe (111)

    NASA Astrophysics Data System (ADS)

    Springholz, G.; Frank, N.; Bauer, G.

    1994-05-01

    Heteroepitaxial growth of 2% lattice-mismatched EuTe on PbTe (111) by molecular beam epitaxy is investigated in the two-dimensional layer-by-layer growth regime combining in situ reflection high-energy electron diffraction and scanning tunneling microscopy (STM). At the critical layer thickness a distinct surface roughening is observed. The quantitative analysis of STM images yields an increase of the root mean square roughness by a factor of 4 at this roughening transition. Strong evidence is presented that for the used growth conditions this roughening is not caused by strain induced coherent islanding but by misfit dislocations at the onset of strain relaxation.

  6. Research in Natural Laminar Flow and Laminar-Flow Control, part 2

    NASA Technical Reports Server (NTRS)

    Hefner, Jerry N. (Compiler); Sabo, Frances E. (Compiler)

    1987-01-01

    Part 2 of the Symposium proceedings includes papers addressing various topics in basic wind tunnel research/techniques and computational transitional research. Specific topics include: advanced measurement techniques; laminar flow control; Tollmien-Schlichting wave characteristics; boundary layer transition; flow visualization; wind tunnel tests; flight tests; boundary layer equations; swept wings; and skin friction.

  7. Tuning transitions in rotating Rayleigh-Bénard convection

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav; Kunnen, Rudie; Clercx, Herman

    2015-11-01

    Turbulent rotating Rayleigh-Bénard convection, depending on the system parameters, exhibits multiple flow states and transitions between them. The present experimental study aims to control the transitions between the flow regimes, and hence the system heat transfer characteristics, by introducing particles in the flow. We inject near-neutrally buoyant silver coated hollow ceramic spheres (~100 micron diameter) and measure the system response, i.e. the Nusselt number, at different particle concentrations and rotation rates. Both for rotating and non-rotating cases, most of the particles settle on the top and bottom plates in a few hours following injection. This rapid settling may be a result of ``trapping'' of particles in the laminar boundary layers at the horizontal walls. These particle layers on the heat-transfer surfaces reduce their effective conductivity, and consequently, lower the heat transfer rate. We calculate the effective system parameters by estimating, and accounting for, the temperature drop across the particle layers. Preliminary analysis suggests that the thermal resistance of the particle layers may affect the flow structure and delay the transition to the ``geostrophic'' regime. Financial support from Foundation for Fundamental Research on Matter.

  8. A Low-Speed Experimental Investigation of the Effect of a Sandpaper Type of Roughness on Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Von Doenhoff, Albert E; Horton, Elmer A

    1958-01-01

    An investigation was made in the Langley low-turbulence pressure tunnel to determine the effect of size and location of a sandpaper type of roughness on the Reynolds number for transition. Transition was observed by means of a hot-wire anemometer located at various chordwise stations for each position of the roughness. These observations indicated that when the roughness is sufficiently submerged in the boundary layer to provide a substantially linear variation of boundary-layer velocity with distance from the surface up to the top of the roughness, turbulent "spots" begin to appear immediately behind the roughness when the Reynolds number based on the velocity at the top of the roughness height exceeds a value of approximately 600. At Reynolds numbers even slightly below the critical value (value for transition), the sandpaper type of roughness introduced no measurable disturbances into the laminar layer downstream of the roughness. The extent of the roughness area does not appear to have an important effect on the critical value of the roughness Reynolds number.

  9. Even–odd layer-dependent magnetotransport of high-mobility Q-valley electrons in transition metal disulfides

    PubMed Central

    Wu, Zefei; Xu, Shuigang; Lu, Huanhuan; Khamoshi, Armin; Liu, Gui-Bin; Han, Tianyi; Wu, Yingying; Lin, Jiangxiazi; Long, Gen; He, Yuheng; Cai, Yuan; Yao, Yugui; Zhang, Fan; Wang, Ning

    2016-01-01

    In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs. PMID:27651106

  10. Transition Induced by Fence Geometrics on Shuttle Orbiter at Mach 10

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    2010-01-01

    Fence-induced transition data simulating a raised gap filler have been acquired on the wing lower surface of a Shuttle Orbiter model in the Langley 31-Inch Mach 10 Tunnel to compare with the Shuttle Boundary Layer Transition Flight and HYTHIRM Experiments, and to provide additional correlation data for the Boundary Layer Transition Tool. In a qualitative assessment, the data exhibit the expected response to all parameter variations; however, it is unclear whether fully effective tripping at the fence was ever realized at any test condition with the present model hardware. A preliminary, qualitative comparison of the ground-based transition measurements with those obtained from the STS-128 HYTHIRM imagery at Mach 15 reveal similar transition-wake response characteristics in terms of the spreading and the path along the vehicle surface.

  11. Transition within a Hypervelocity Boundary Layer on a 5-degree Half-Angle Cone in Freestream Air/CO2 Mixtures

    DTIC Science & Technology

    2013-01-01

    Pasadena, CA, 91125 Nomenclature A = amplitude of oscillation f = frequency hres = reservoir enthalpy Me = boundary layer edge Mach number Pres...showed an increase in the reference Reynolds number Re* at the point of transition as reservoir enthalpy hres increased. Germain and Adam also observed...that flows of CO2 transitioned at higher values of Re* than flows of air for the same hres and Pres. Johnson et al. (1998) studied this effect with a

  12. Detection and Characterization of Boundary-Layer Transition in Flight at Supersonic Conditions Using Infrared Thermography

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.

    2008-01-01

    Infrared thermography is a powerful tool for investigating fluid mechanics on flight vehicles. (Can be used to visualize and characterize transition, shock impingement, separation etc.). Updated onboard F-15 based system was used to visualize supersonic boundary layer transition test article. (Tollmien-Schlichting and cross-flow dominant flow fields). Digital Recording improves image quality and analysis capability. (Allows accurate quantitative (temperature) measurements, Greater enhancement through image processing allows analysis of smaller scale phenomena).

  13. Ground state transitions in vertically coupled N-layer single electron quantum dots

    NASA Astrophysics Data System (ADS)

    Xie, Wenfang; Wang, Anmei

    2003-12-01

    A method is proposed to exactly diagonalize the Hamiltonian of a N-layer quantum dot containing a single electron in each dot in arbitrary magnetic fields. For N=4, the energy spectra of the dot are calculated as a function of the applied magnetic field. We find discontinuous ground-state energy transitions induced by an external magnetic field in the case of strong coupling. However, in the case of weak coupling, such a transition does not occur and the angular momentum remains zero.

  14. Sound radiation due to boundary layer transition

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1993-01-01

    This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.

  15. Casimir energy for two and three superconducting coupled cavities: Numerical calculations

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Avino, S.; Calloni, E.; Caprara, S.; De Laurentis, M.; De Rosa, R.; Esposito, Giampiero; Grilli, M.; Majorana, E.; Pepe, G. P.; Petrarca, S.; Puppo, P.; Rapagnani, P.; Ricci, F.; Rovelli, C.; Ruggi, P.; Saini, N. L.; Stornaiolo, C.; Tafuri, F.

    2017-11-01

    In this paper we study the behavior of the Casimir energy of a "multi-cavity" across the transition from the metallic to the superconducting phase of the constituting plates. Our analysis is carried out in the framework of the ARCHIMEDES experiment, aiming at measuring the interaction of the electromagnetic vacuum energy with a gravitational field. For this purpose it is foreseen to modulate the Casimir energy of a layered structure composing a multy-cavity coupled system by inducing a transition from the metallic to the superconducting phase. This implies a thorough study of the behavior of the cavity, in which normal metallic layers are alternated with superconducting layers, across the transition. Our study finds that, because of the coupling between the cavities, mainly mediated by the transverse magnetic modes of the radiation field, the variation of energy across the transition can be very large.

  16. Experimental study of boundary layer transition with elevated freestream turbulence on a heated flat plate

    NASA Technical Reports Server (NTRS)

    Sohn, Ki-Hyeon; Reshotko, Eli

    1991-01-01

    A detailed investigation to document momentum and thermal development of boundary layers undergoing natural transition on a heated flat plate was performed. Experimental results of both overall and conditionally sampled characteristics of laminar, transitional, and low Reynolds number turbulent boundary layers are presented. Measurements were acquired in a low-speed, closed-loop wind tunnel with a freestream velocity of 100 ft/s and zero pressure gradient over a range of freestream turbulence intensities (TI) from 0.4 to 6 percent. The distributions of skin friction, heat transfer rate and Reynolds shear stress were all consistent with previously published data. Reynolds analogy factors for R(sub theta) is less than 2300 were found to be well predicted by laminar and turbulent correlations which accounted for an unheated starting length. The measured laminar value of Reynolds analogy factor was as much as 53 percent higher than the Pr(sup -2/3). A small dependence of turbulent results on TI was observed. Conditional sampling performed in the transitional boundary layer indicated the existence of a near-wall drop in intermittency, pronounced at certain low intermittencies, which is consistent with the cross-sectional shape of turbulent spots observed by others. Non-turbulent intervals were observed to possess large magnitudes of near-wall unsteadiness and turbulent intervals had peak values as much as 50 percent higher than were measured at fully turbulent stations. Non-turbulent and turbulent profiles in transitional boundary layers cannot be simply treated as Blasius and fully turbulent profiles, respectively. The boundary layer spectra indicate predicted selective amplification of T-S waves for TI is approximately 0.4 percent. However, for TI is approximately 0.8 and 1.1 percent, T-S waves are localized very near the wall and do not play a dominant role in transition process.

  17. Countering the Segregation of Transition-Metal Ions in LiMn1/3 Co1/3 Ni1/3 O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries.

    PubMed

    Luo, Dong; Fang, Shaohua; Tamiya, Yu; Yang, Li; Hirano, Shin-Ichi

    2016-08-01

    High-voltage layered lithium transition-metal oxides are very promising cathodes for high-energy Li-ion batteries. However, these materials often suffer from a fast degradation of cycling stability due to structural evolutions. It seriously impedes the large-scale application of layered lithium transition-metal oxides. In this work, an ultralong life LiMn1/3 Co1/3 Ni1/3 O2 microspherical cathode is prepared by constructing an Mn-rich surface. Its capacity retention ratio at 700 mA g(-1) is as large as 92.9% after 600 cycles. The energy dispersive X-ray maps of electrodes after numerous cycles demonstrate that the ultralong life of the as-prepared cathode is attributed to the mitigation of TM-ions segregation. Additionally, it is discovered that layered lithium transition-metal oxide cathodes with an Mn-rich surface can mitigate the segregation of TM ions and the corrosion of active materials. This study provides a new strategy to counter the segregation of TM ions in layered lithium transition-metal oxides and will help to the design and development of high-energy cathodes with ultralong life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yugang; Han, Duanfeng, E-mail: handuanfeng@gmail.com; Xu, Xiangfang

    2014-07-01

    The phase constitution in the interfacial region of laser penetration brazed magnesium–steel joints was investigated using electron microscopy. From the distribution of elements, the transition zone was mainly composed of elements Mg and Fe along with some Al and O. Furthermore, the transition layer consisted mainly of intermetallic compounds and metal oxides. The compounds were identified as Al-rich phases, such as Mg{sub 17}Al{sub 12}, Mg{sub 2}Al{sub 3}, FeAl and Fe{sub 4}Al{sub 13}. More noteworthy was that the thickness of the transition layer was determined by Fe–Al compounds. The presence of FeAl and Fe{sub 4}Al{sub 13} was a result of themore » complex processes that were associated with the interfacial reaction of solid steel and liquid Mg–Al alloy. - Highlights: • A technology of laser penetration brazed Mg alloy and steel has been developed. • The interface of Mg/Fe dissimilar joints was investigated using electron microscopy. • The transition layer consisted of intermetallic compounds and metal oxides. • Moreover, the thickness of transition layer was determined by Fe/Al compounds. • The presence of FeAl and Fe{sub 4}Al{sub 13} was associated with the interfacial reaction.« less

  19. Discrete Roughness Effects on Shuttle Orbiter at Mach 6

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Hamilton, H. Harris, II

    2002-01-01

    Discrete roughness boundary layer transition results on a Shuttle Orbiter model in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed with new boundary layer calculations to provide consistency for comparison to other published results. The experimental results were previously obtained utilizing the phosphor thermography system to monitor the status of the boundary layer via global heat transfer images of the Orbiter windward surface. The size and location of discrete roughness elements were systematically varied along the centerline of the 0.0075-scale model at an angle of attack of 40 deg and the boundary layer response recorded. Various correlative approaches were attempted, with the roughness transition correlations based on edge properties providing the most reliable results. When a consistent computational method is used to compute edge conditions, transition datasets for different configurations at several angles of attack have been shown to collapse to a well-behaved correlation.

  20. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  1. Shock wave boundary layer interaction on suction side of compressor profile in single passage test section

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Kaczynski, Piotr; Piotrowicz, Michal

    2015-11-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). In order to investigate the flow structure on the suction side of a profile, a design of a generic test section in linear transonic wind tunnel was proposed. The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. Near the sidewalls the suction slots are applied for the corner flow structure control. It allows to control the Axial Velocity Density Ratio (AVDR), important parameter for compressor cascade investigations. Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with oil flow visualization, schlieren and Pressure Sensitive Paint. Boundary layer transition location is detected by Temperature Sensitive Paint.

  2. Recent insights into instability and transition to turbulence in open-flow systems

    NASA Technical Reports Server (NTRS)

    Morkovin, Mark V.

    1988-01-01

    Roads to turbulence in open-flow shear layers are interpreted as sequences of often competing instabilities. These correspond to primary and higher order restructurings of vorticity distributions which culminate in convected spatial disorder (with some spatial coherence on the scale of the shear layer) traditionally called turbulence. Attempts are made to interpret these phenomena in terms of concepts of convective and global instabilities on one hand, and of chaos and strange attractors on the other. The first is fruitful, and together with a review of mechanisms of receptivity provides a unifying approach to understanding and estimating transition to turbulence. In contrast, current evidence indicates that concepts of chaos are unlikely to help in predicting transition in open-flow systems. Furthermore, a distinction should apparently be made between temporal chaos and the convected spatial disorder of turbulence past Reynolds numbers where boundary layers and separated shear layers are formed.

  3. Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Hunter, William W., Jr.; Covell, Peter F.; Nichols, Cecil E., Jr.

    1990-01-01

    A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented.

  4. Transitional boundary layer in low-Prandtl-number convection at high Rayleigh number

    NASA Astrophysics Data System (ADS)

    Schumacher, Joerg; Bandaru, Vinodh; Pandey, Ambrish; Scheel, Janet

    2016-11-01

    The boundary layer structure of the velocity and temperature fields in turbulent Rayleigh-Bénard flows in closed cylindrical cells of unit aspect ratio is revisited from a transitional and turbulent viscous boundary layer perspective. When the Rayleigh number is large enough the boundary layer dynamics at the bottom and top plates can be separated into an impact region of downwelling plumes, an ejection region of upwelling plumes and an interior region (away from side walls) that is dominated by a shear flow of varying orientation. This interior plate region is compared here to classical wall-bounded shear flows. The working fluid is liquid mercury or liquid gallium at a Prandtl number of Pr = 0 . 021 for a range of Rayleigh numbers of 3 ×105 <= Ra <= 4 ×108 . The momentum transfer response to these system parameters generates a fluid flow in the closed cell with a macroscopic flow Reynolds number that takes values in the range of 1 . 8 ×103 <= Re <= 4 . 6 ×104 . It is shown that particularly the viscous boundary layers for the largest Ra are highly transitional and obey some properties that are directly comparable to transitional channel flows at friction Reynolds numbers below 100. This work is supported by the Deutsche Forschungsgemeinschaft.

  5. Characterization of the Embryogenic Tissue of the Norway Spruce Including a Transition Layer between the Tissue and the Culture Medium by Magnetic Resonance Imaging

    NASA Astrophysics Data System (ADS)

    Kořínek, R.; Mikulka, J.; Hřib, J.; Hudec, J.; Havel, L.; Bartušek, K.

    2017-02-01

    The paper describes the visualization of the cells (ESEs) and mucilage (ECMSN) in an embryogenic tissue via magnetic resonance imaging (MRI) relaxometry measurement combined with the subsequent multi-parametric segmentation. The computed relaxometry maps T1 and T2 show a thin layer (transition layer) between the culture medium and the embryogenic tissue. The ESEs, mucilage, and transition layer differ in their relaxation times T1 and T2; thus, these times can be used to characterize the individual parts within the embryogenic tissue. The observed mean values of the relaxation times T1 and T2 of the ESEs, mucilage, and transition layer are as follows: 1469 ± 324 and 53 ± 10 ms, 1784 ± 124 and 74 ± 8 ms, 929 ± 164 and 32 ± 4.7 ms, respectively. The multi-parametric segmentation exploiting the T1 and T2 relaxation times as a classifier shows the distribution of the ESEs and mucilage within the embryogenic tissue. The discussed T1 and T2 indicators can be utilized to characterize both the growth-related changes in an embryogenic tissue and the effect of biotic/abiotic stresses, thus potentially becoming a distinctive indicator of the state of any examined embryogenic tissue.

  6. Response of the solar atmosphere to a simple flare burst: UV emission from the flare transition layer.

    NASA Astrophysics Data System (ADS)

    Shmeleva, O. P.

    The flare transition layer exists as a relatively steady formation even during impulsive heating. It is maintained by a heat flow from the high-temperature plasma, where the major part of the electron beam energy is absorbed. The lifetime of this plasma is much greater than the impulsive heating time. Intensities of resonance UV lines are calculated using both the model of impulsive nonthermal heating by energetic electrons and the model of continuous thermal heating. The calculated line intensity is almost constant during a long time. The line Doppler shifts predicted by the former model match observations. This suggests that the model represents sufficiently well the actual dynamics of the flare plasma. The flare transition layer is a thin formation, its thickness being Δξ = 1021m-2. It is therefore described adequately within the p = const approximation though the picture of hydrodynamic response of the solar atmosphere to the impulsive heating by energy flows is rather complicated and nonsteady, of course. The intensities of the C IV λλ154.8, 155.1 nm and O VI λλ103.2, 103.8 nm lines are calculated within the scope of the model of continuous thermal heating, in which the conductive heating of the flare transition layer is balanced by radiative cooling. The line intensities are proportional to the pressure in the layer, which permits the pressure to be found from the observed line intensities. The analysis reveals that both heating models adequately represent the actual structure and dynamics of plasma in a flare. In the flare transition layer, the classical heat conduction always does work.

  7. Insights into the crustal structure of the transition between Nares Strait and Baffin Bay

    NASA Astrophysics Data System (ADS)

    Altenbernd, Tabea; Jokat, Wilfried; Heyde, Ingo; Damm, Volkmar

    2016-11-01

    The crustal structure and continental margin between southern Nares Strait and northern Baffin Bay were studied based on seismic refraction and gravity data acquired in 2010. We present the resulting P wave velocity, density and geological models of the crustal structure of a profile, which extends from the Greenlandic margin of the Nares Strait into the deep basin of central northern Baffin Bay. For the first time, the crustal structure of the continent-ocean transition of the very northern part of Baffin Bay could be imaged. We divide the profile into three parts: continental, thin oceanic, and transitional crust. On top of the three-layered continental crust, a low-velocity zone characterizes the lowermost layer of the three-layered Thule Supergroup underneath Steensby Basin. The 4.3-6.3 km thick oceanic crust in the southern part of the profile can be divided into a northern and southern section, more or less separated by a fracture zone. The oceanic crust adjacent to the continent-ocean transition is composed of 3 layers and characterized by oceanic layer 3 velocities of 6.7-7.3 km/s. Toward the south only two oceanic crustal layers are necessary to model the travel time curves. Here, the lower oceanic crust has lower seismic velocities (6.4-6.8 km/s) than in the north. Rather low velocities of 7.7 km/s characterize the upper mantle underneath the oceanic crust, which we interpret as an indication for the presence of upper mantle serpentinization. In the continent-ocean transition zone, the velocities are lower than in the adjacent continental and oceanic crustal units. There are no signs for massive magmatism or the existence of a transform margin in our study area.

  8. Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction

    DOE PAGES

    Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.

    2014-10-29

    Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less

  9. Layered transition metal dichalcogenide electrochemistry: journey across the periodic table.

    PubMed

    Chia, Xinyi; Pumera, Martin

    2018-06-08

    Studies on layered transition metal dichalcogenides (TMDs), in particular for Group VIB TMDs like MoS2 and WS2, have long reached a crescendo in the realms of electrochemical applications initiated by their remarkable catalytic and electronic properties. One area that garnered considerable attention is the fervent pursuit of layered TMDs as electrocatalysts for hydrogen evolution reaction (HER), driven by global efforts towards reducing carbon footprint and attaining hydrogen economy. This Tutorial Review captures the essence of electrochemistry of different classes of layered TMDs and metal chalcogenides across the period table and showcases their tuneable electrochemical and HER catalytic attributes that are governed by the elemental composition, structure and anisotropy. Of interest to the assiduously studied Group VIB TMDs, we describe the role of elemental constituents and material purity in aspects of surface composition and structure, on their electrochemistry. Across families of layered TMDs in the periodic table, we highlight the apparent trends in their electrochemical and electrocatalytic properties through diligent comparison. Inevitably, these trends vary according to the type of chalcogen or transition metal that constitutes the eventual TMD. Beyond layered TMDs, we discuss the electrochemistry and recent progress in HER electrocatalysis of other layered metal chalcogenides that are overshadowed by the success of Group VIB TMDs. At the pinnacle of the emergent applications of layered TMDs, it is prudent to demystify the intrinsic electrochemical behaviour that originates from the participation of the elemental constitution of transition metal or chalcogen. Moreover, knowledge of the catalytic and electronic properties of the various TMD families and emerging trends across the period or down the group is of paramount importance when introducing or refining their prospective uses. The annotations in this Tutorial Review are envisioned to promote discourse into the catalytic and electrochemical trends of TMDs that is currently absent.

  10. Phase transitions in orthopyroxene (En 90) to 49GPa from single-crystal X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finkelstein, Gregory J.; Dera, Przemyslaw K.; Duffy, Thomas S.

    Synchrotron-based high-pressure single-crystal X-ray diffraction experiments were conducted on ~Mg 0.9Fe 0.1SiO 3 (En 90) orthopyroxene crystals at room temperature to a maximum pressure of 48.5 GPa. The sample was compressed in a diamond anvil cell with a neon pressure medium and a gold pressure calibrant. In addition to the previously described orthopyroxene to β-opx transition (designated HPCEN2 in previous studies), we observe two further phase transitions at 29.9 GPa and 40.3 GPa. However, we do not observe the γ-opx phase recently described in an Fe-rich orthopyroxene composition. The structures of both of the new phases were solved in spacemore » group Pca21. While their Mg-O layers remain pyroxene-like, their Si-O layers transform in a stepwise fashion to akimotoite-like sheets, with sites in 4-, 5-, or 6-fold coordination, depending on the specific structure and layer. Due to the increased Si-O coordination number, we designate the new structures α- and β-post-orthopyroxene (α-popx and β-popx). α-popx has one Si-O layer that is entirely tetrahedral, and one layer that contains both tetrahedra and 5-coordinated Si in distorted square pyramids. β-popx retains the mixed 4- and 5-coordinated Si layer found in α-popx, while the other Si layer adopts fully octahedral coordination. The α- and β-popx structures show a progressive transformation towards the arrangement of Si layers found in akimotoite, a potentially important phase in the earth’s transition zone. Metastable transformations in pyroxenes are of interest for understanding possible metastability in geological environments such as subducting slabs and meteorite impacts« less

  11. Photovoltaic cell

    DOEpatents

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  12. Tradeoffs in Chemical and Thermal Variations in the Post-perovskite Phase Transition: Mixed Phase Regions in the Deep Lower Mantle?

    NASA Astrophysics Data System (ADS)

    Giles, G. F.; Spera, F. J.; Yuen, D. A.

    2005-12-01

    The recent discovery of a phase-transition in Mg-rich perovskite (Pv) to a post-perovskite (pPv) phase at lower mantle depths and its relationship to D", lower mantle heterogeneity and iron content prompted an investigation of the relative importance of lower mantle (LM) compositional and temperature fluctuations in creating topographic undulations on mixed phase regions. Above the transition, Mg-rich Pv makes up ~70 percent by mass of the LM. Using results from experimental phase equilibria, first-principles computations and thermodynamic relations for Fe2+-Mg mixing in silicates, a preliminary thermodynamic model for the perovskite to post-perovskite phase transition in the divariant system MgSiO3-FeSiO3 is developed. Complexities associated with components Fe2O3 and Al2O3 and other phases (Ca-Pv, magnesiowustite) are neglected. The model predicts phase transition pressures are sensitive to the FeSiO3 content of perovskite (~-1.5 GPa per one mole percent FeSiO3). This leads to considerable topography along the top boundary of the mixed phase region. The Clapeyron slope for the Pv to pPv transition at XFeSiO3=0.1 is +11 MPa/K about 20% higher than for pure Mg-Pv. Increasing bulk concentration of iron elevates the mixed (two-phase) layer above the core-mantle boundary (CMB); increasing temperature acts to push the mixed layer deeper into the LM into the D" thermal boundary layer resting upon the (CMB). For various LM geotherms and CMB temperatures, a single mixed layer of thickness ~300 km lies within the bottom 40% of the lower mantle. For low iron contents (XFeSiO3 ~5 mole percent or less), two perched layers are found. This is the divariant analog to the univariant double-crosser. The hotter the mantle, the deeper the mixed phase layer; the more iron-rich the LM, the higher the mixed phase layer. In a hotter Hadean Earth with interior temperatures everywhere 200-500 K warmer pPv is not stable unless the LM bulk composition is Fe-enriched compared to the present upper mantle.

  13. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    1998-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000 and 250,000 with four levels of freestream turbulence ranging from 1% to 4%. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000 and 100,000. Spectral data show no evidence of Kelvin-Helmholtz or Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transitional flows over the separation bubble for certain conditions. Transition onset and end locations and length determined from intermittency profiles decrease as Reynolds number and freestream turbulence levels increase.

  14. Experimental Study of Transitional Flow Behavior in a Simulated Low Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Sohn, Ki Hyeon; DeWitt, Kenneth J.

    2007-01-01

    A detailed investigation of the flow physics occurring on the suction side of a simulated Low Pressure Turbine (LPT) blade was performed. A contoured upper wall was designed to simulate the pressure distribution of an actual LPT airfoil onto a flat lower plate. The experiments were carried out for the Reynolds numbers of 35,000, 70,000, 100,000, and 250,000 with four levels of freestream turbulence ranging from 1 to 4 percent. For the three lower Reynolds numbers, the boundary layer on the flat plate was separated and formed a bubble. The size of laminar separation bubble was measured to be inversely proportional to the freestream turbulence levels and Reynolds numbers. However, no separation was observed for the Re = 250,000 case. The transition on a separated flow was found to proceed through the formation of turbulent spots in the free shear layer as evidenced in the intermittency profiles for Re = 35,000, 70,000, and 100,000. Spectral data show no evidence of Kelvin-Helmholtz of Tollmien-Schlichting instability waves in the free shear layer over a separation bubble (bypass transition). However, the flow visualization revealed the large vortex structures just outside of the bubble and their development to turbulent flow for Re = 50,000, which is similar to that in the free shear layer (separated-flow transition). Therefore, it is fair to say that the bypass and separated-flow transition modes coexist in the transition flows over the separation bubble of certain conditions. Transition onset and end locations and length determined from intermittency profiles decreased as Reynolds number and freestream turbulence levels increase.

  15. Stereotactic topography of the greater and third occipital nerves and its clinical implication.

    PubMed

    Kim, Hong-San; Shin, Kang-Jae; O, Jehoon; Kwon, Hyun-Jin; Lee, Minho; Yang, Hun-Mu

    2018-01-17

    This study aimed to provide topographic information of the greater occipital (GON) and third occipital (3ON) nerves, with the three-dimensional locations of their emerging points on the back muscles (60 sides, 30 cadavers) and their spatial relationship with muscle layers, using a 3D digitizer (Microscribe G2X, Immersion Corp, San Jose CA, USA). With reference to the external occipital protuberance (EOP), GON pierced the trapezius at a point 22.6 ± 7.4 mm lateral and 16.3 ± 5.9 mm inferior and the semispinalis capitis (SSC) at a point 13.1 ± 6.0 mm lateral and 27.7 ± 9.9 mm inferior. With the same reference, 3ON pierced, the trapezius at a point 12.9 ± 9.3 mm lateral and 44.2 ± 21.4 mm inferior, the splenius capitis at a point 10.0 ± 5.3 mm lateral and 59.2 ± 19.8 mm inferior, and SSC at a point 11.5 ± 9.9 mm lateral and 61.4 ± 15.3 mm inferior. Additionally, GON arose, winding up the obliquus capitis inferior, with the winding point located 52.3 ± 11.7 mm inferior to EOP and 30.2 ± 8.9 mm lateral to the midsagittal line. Knowing the course of GON and 3ON, from their emergence between vertebrae to the subcutaneous layer, is necessary for reliable nerve detection and precise analgesic injections. Moreover, stereotactic measurement using the 3D digitizer seems useful and accurate for neurovascular structure study.

  16. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations.

    PubMed

    Alexandrov, Dmitri V; Bashkirtseva, Irina A; Ryashko, Lev B

    2018-02-28

    The time-dependent process of directional crystallization in the presence of a mushy layer is considered with allowance for arbitrary fluctuations in the atmospheric temperature and friction velocity. A nonlinear set of mushy layer equations and boundary conditions is solved analytically when the heat and mass fluxes at the boundary between the mushy layer and liquid phase are induced by turbulent motion in the liquid and, as a result, have the corresponding convective form. Namely, the 'solid phase-mushy layer' and 'mushy layer-liquid phase' phase transition boundaries as well as the solid fraction, temperature and concentration (salinity) distributions are found. If the atmospheric temperature and friction velocity are constant, the analytical solution takes a parametric form. In the more common case when they represent arbitrary functions of time, the analytical solution is given by means of the standard Cauchy problem. The deterministic and stochastic behaviour of the phase transition process is analysed on the basis of the obtained analytical solutions. In the case of stochastic fluctuations in the atmospheric temperature and friction velocity, the phase transition interfaces (mushy layer boundaries) move faster than in the deterministic case. A cumulative effect of these noise contributions is revealed as well. In other words, when the atmospheric temperature and friction velocity fluctuate simultaneously due to the influence of different external processes and phenomena, the phase transition boundaries move even faster. This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'. © 2018 The Author(s).

  17. Study of boundary-layer transition using transonic cone Preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Abu-Mostafa, A.

    1982-01-01

    Laminar layer Preston tube data on a sharp nose, ten degree cone obtained in the Ames 11 ft TWT and in flight tests are analyzed. During analyses of the laminar-boundary layer data, errors were discovered in both the wind tunnel and the flight data. A correction procedure for errors in the flight data is recommended which forces the flight data to exhibit some of the orderly characteristics of the wind tunnel data. From corrected wind tunnel data, a correlation is developed between Preston tube pressures and the corresponding values of theoretical laminar skin friction. Because of the uncertainty in correcting the flight data, a correlation for the unmodified data is developed, and, in addition, three other correlations are developed based on different correction procedures. Each of these correlations are used in conjunction with the wind tunnel correlation to define effective freestream unit Reynolds numbers for the 11 ft TWT over a Mach number range of 0.30 to 0.95. The maximum effective Reynolds numbers are approximately 6.5% higher than the normal values. These maximum values occur between freestream Mach numbers of 0.60 and 0.80. Smaller values are found outside this Mach number range. These results indicate wind tunnel noise affects the average laminar skin friction much less than it affects boundary layer transition. Data on the onset, extent, and end of boundary layer transition are summarized. Application of a procedure for studying the relative effects of varying nose radius on a ten degree cone at supercritical speeds indicates that increasing nose radius promotes boundary layer transition and separation of laminar boundary layers.

  18. Stability theory applications to laminar-flow control

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.

    1987-01-01

    In order to design Laminar Flow Control (LFC) configurations, reliable methods are needed for boundary-layer transition predictions. Among the available methods, there are correlations based upon R sub e, shape factors, Goertler number and crossflow Reynolds number. The most advanced transition prediction method is based upon linear stability theory in the form of the e sup N method which has proven to be successful in predicting transition in two- and three-dimensional boundary layers. When transition occurs in a low disturbance environment, the e sup N method provides a viable design tool for transition prediction and LFC in both 2-D and 3-D subsonic/supersonic flows. This is true for transition dominated by either TS, crossflow, or Goertler instability. If Goertler/TS or crossflow/TS interaction is present, the e sup N will fail to predict transition. However, there is no evidence of such interaction at low amplitudes of Goertler and crossflow vortices.

  19. Analysis of flight test transition and turbulent heating data. Part 1: Boundary layer transition results

    NASA Technical Reports Server (NTRS)

    Martellucci, A.; Maguire, B. L.; Neff, R. S.

    1972-01-01

    The objective of the study was to provide a detailed post flight evaluation of ballistic vehicle flight test boundary layer transition data. A total of fifty-five vehicles were selected for analysis. These vehicles were chosen from a data sampling of roughly two hundred flights and the criteria for vehicle selection is delineated herein. The results of the analysis indicate that frustum transition of re-entry vehicles appears to be nose tip dominated. Frustum related parameters and materials apparently have a second order effect on transition. This implies that local viscous parameters on the frustum should not correlate flight test transition data, and in fact they do not. Specific parameters relative to the nose tip have been identified as the apparent dominant factors that characterize the transition phenomena and a correlation of flight test data is presented.

  20. Particle signatures of magnetic topology at the magnetopause: AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Anderson, B. J.; Onsager, T. G.

    1995-01-01

    Electron distributions at energies above 50 eV have been found to be a sensitive indicator of magnetic topology for magnetopause crossings of the AMPTE/CCE spacecraft. Progressing from the magnetosheath to the magnetosphere two abrupt transitions occur. First, the magnetosheath electron population directed either parallel or antiparallel to the magnetic field is replaced by a streaming, heated magnetosheath electron population. The other half of the distribution is unchanged. The region with unidirectional, heated magnetosheath electrons is identified as the magnetosheath boundary layer (MSBL). Second, the unheated magnetosheath electron population is replaced by a heated population nearly identical to the population encountered in the MSBL, resulting in a symmetric counterstreaming distribution. The region populated by the bidirectional heated magnetosheath electrons is identified as the low-latitude boundary layer (LLBL). The MSBL and LLBL identified by the electron transitions are the same as the regions identified using ion composition measurements. The magnetosheath-MSBL transition reflects a change in magnetic topology from a solar wind field line to one that threads the magnetopause, and the existence of a magnetosheath-MSBL transition implies that the magnetopause is open. When the current layer is easily identified, the MSBL-LLBL transition coincides with the magnetopause current layer, indicating that the magnetosheath electrons are heated in the current layer. Both magnetosheath-MSBL and MSBL-LLBL transitions are observed for low as well as high magnetic shears. Moreover, the transitions are particularly clear for low shear implying that magnetic topology boundaries are sharp even when abrupt changes in the field and other plasma parameters are absent. Furthermore, for low magnetic shear, solar wind ions with low parallel drift speeds make up the majority of the LLBL population indicating that the magnetosheath plasma has convected directly across the magnetosheath plasma has converted directly across the magnetopause. These observations are consistent with quasi-steady, high-latitude reconnection and indicate that the signatures of this reconnection geometry are commonly present in the subpolar region.

  1. Superconducting Metallic Glass Transition-Edge-Sensors

    NASA Technical Reports Server (NTRS)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  2. Predicting Boundary-Layer Transition on Space-Shuttle Re-Entry

    NASA Technical Reports Server (NTRS)

    Berry, Scott; Horvath, Tom; Merski, Ron; Liechty, Derek; Greene, Frank; Bibb, Karen; Buck, Greg; Hamilton, Harris; Weilmuenster, Jim; Campbell, Chuck; hide

    2008-01-01

    The BLT Prediction Tool ("BLT" signifies "Boundary Layer Transition") is provided as part of the Damage Assessment Team analysis package, which is utilized for analyzing local aerothermodynamics environments of damaged or repaired space-shuttle thermal protection tiles. Such analyses are helpful in deciding whether to repair launch-induced damage before re-entering the terrestrial atmosphere.

  3. Direct Numerical Simulation of a Plane Transitional Wall Jet

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Varghese, Joel

    2017-11-01

    A transitional plane wall jet is studied using direct numerical simulation. The presence of an inflectional point leads to the outer layer rolling up into vortices that interacts with the inner region resulting in a double array of counter rotating vortices before breakdown into turbulence. Past studies have focused on forced wall jet which results in shorter transition region and prominent vortical structures. In the present work, natural transition will be discussed by analysing the coherent structures and scaled frequency spectra. Clear hairpin like structures leaning downstream in the inner region(as in a boundary layer) and leaning upstream in the outerstream (as in a jet) are evident.

  4. Boundary-layer transition on a flared cone in a Mach 6 quiet wind tunnel

    NASA Astrophysics Data System (ADS)

    Hofferth, Jerrod; Saric, William

    2010-11-01

    The Mach 6 Quiet Tunnel at Texas A&M is a low-disturbance blowdown facility suitable for boundary-layer stability and transition research. Following its reactivation in 2009, initial testing confirmed the presence of low-disturbance (< 0.1% Pt^'/Pt) freestream flow at select locations on the centerline of the nozzle for settling chamber pressures up to 10 atm, and a fully-traversed freestream flow-quality assessment is currently underway. As a third performance benchmark to complement these direct measurements, the present work measures the transition location on the NASA Langley 93-10 flared-cone model. This model has a 0.5m length, beginning as a 5^o half-angle circular cone. At the X=254mm station, a flare of surface radius 2.35m begins which is intended to induce transition within the quiet test core. Boundary-layer transition is detected on the thin-walled model by an observed surface temperature rise using an array of 51 embedded thermocouples. Transition data are presented for a sharp (2.5 μm) nose-tip radius case for comparison with the Lachowicz & Chokani (1996 data). Data for larger-radius nose-tips are also presented.

  5. Resolution requirements for numerical simulations of transition

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Krist, Steven E.; Hussaini, M. Yousuff

    1989-01-01

    The resolution requirements for direct numerical simulations of transition to turbulence are investigated. A reliable resolution criterion is determined from the results of several detailed simulations of channel and boundary-layer transition.

  6. Natural laminar flow flight experiments on a swept wing business jet-boundary layer stability analyses

    NASA Technical Reports Server (NTRS)

    Rozendaal, R. A.

    1986-01-01

    The linear boundary layer stability analyses and their correlation with data of 18 cases from a natural laminar flow (NLF) flight test program using a Cessna Citation 3 business jet are described. The transition point varied from 5% to 35% chord for these conditions, and both upper and lower wing surfaces were included. Altitude varied from 10,000 to 43,000 ft and Mach number from 0.3 to 0.8. Four cases were at nonzero sideslip. Although there was much scatter in the results, the analyses of boundary layer stability at the 18 conditions led to the conclusion that crossflow instability was the primary cause of transition. However, the sideslip cases did show some interaction of crossflow and Tollmien-Schlichting disturbances. The lower surface showed much lower Tollmien-Schlichting amplification at transition than the upper surface, but similar crossflow amplifications. No relationship between Mach number and disturbance amplification at transition could be found. The quality of these results is open to question from questionable wing surface quality, inadequate density of transition sensors on the wing upper surface, and an unresolved pressure shift in the wing pressure data. The results of this study show the need for careful preparation for transition experiments. Preparation should include flow analyses of the test surface, boundary layer disturbance amplification analyses, and assurance of adequate surface quality in the test area. The placement of necessary instruments and usefulness of the resulting data could largely be determined during the pretest phase.

  7. Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of a Curved Plate. Part 3

    NASA Technical Reports Server (NTRS)

    Schobeiri, M. T.; Radke, R. E.

    1996-01-01

    Boundary layer transition and development on a turbomachinery blade is subjected to highly periodic unsteady turbulent flow, pressure gradient in longitudinal as well as lateral direction, and surface curvature. To study the effects of periodic unsteady wakes on the concave surface of a turbine blade, a curved plate was utilized. On the concave surface of this plate, detailed experimental investigations were carried out under zero and negative pressure gradient. The measurements were performed in an unsteady flow research facility using a rotating cascade of rods positioned upstream of the curved plate. Boundary layer measurements using a hot-wire probe were analyzed by the ensemble-averaging technique. The results presented in the temporal-spatial domain display the transition and further development of the boundary layer, specifically the ensemble-averaged velocity and turbulence intensity. As the results show, the turbulent patches generated by the wakes have different leading and trailing edge velocities and merge with the boundary layer resulting in a strong deformation and generation of a high turbulence intensity core. After the turbulent patch has totally penetrated into the boundary layer, pronounced becalmed regions were formed behind the turbulent patch and were extended far beyond the point they would occur in the corresponding undisturbed steady boundary layer.

  8. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  9. Summary of past experience in natural laminar flow and experimental program for resilient leading edge

    NASA Technical Reports Server (NTRS)

    Carmichael, B. H.

    1979-01-01

    The potential of natural laminar flow for significant drag reduction and improved efficiency for aircraft is assessed. Past experience with natural laminar flow as reported in published and unpublished data and personal observations of various researchers is summarized. Aspects discussed include surface contour, waviness, and smoothness requirements; noise and vibration effects on boundary layer transition, boundary layer stability criteria; flight experience with natural laminar flow and suction stabilized boundary layers; and propeller slipstream, rain, frost, ice and insect contamination effects on boundary layer transition. The resilient leading edge appears to be a very promising method to prevent leading edge insect contamination.

  10. Viscous drag reduction in boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)

    1990-01-01

    The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

  11. Tomographic PIV investigation of roughness-induced transition in a hypersonic boundary layer

    NASA Astrophysics Data System (ADS)

    Avallone, F.; Ye, Q.; Schrijer, F. F. J.; Scarano, F.; Cardone, G.

    2014-11-01

    The disturbance generated by roughness elements in a hypersonic laminar boundary layer is investigated, with attention to its three-dimensional properties. The transition of the boundary layer is inspected with tomographic particle image velocimetry that is applied for the first time at Mach 7.5 inside a short duration hypersonic wind tunnel. A low aspect ratio cylindrical roughness element is installed on a flat plate, and experiments are conducted downstream of the element describing the mean velocity field and the turbulent fluctuations. Details of the experimental procedure needed to realize these measurements are discussed, along with the fluid dynamic behaviour of the perturbed hypersonic boundary layer.

  12. Hypersonic Boundary Layer Stability Experiments in a Quiet Wind Tunnel with Bluntness Effects

    NASA Technical Reports Server (NTRS)

    Lachowicz, Jason T.; Chokani, Ndaona

    1996-01-01

    Hypersonic boundary layer measurements over a flared cone were conducted in a Mach 6 quiet wind tunnel at a freestream unit Reynolds number of 2.82 million/ft. This Reynolds number provided laminar-to-transitional flow over the cone model in a low-disturbance environment. Four interchangeable nose-tips, including a sharp-tip, were tested. Point measurements with a single hot-wire using a novel constant voltage anemometer were used to measure the boundary layer disturbances. Surface temperature and schlieren measurements were also conducted to characterize the transitional state of the boundary layer and to identify instability modes. Results suggest that second mode disturbances were the most unstable and scaled with the boundary layer thickness. The second mode integrated growth rates compared well with linear stability theory in the linear stability regime. The second mode is responsible for transition onset despite the existence of a second mode subharmonic. The subharmonic disturbance wavelength also scales with the boundary layer thickness. Furthermore, the existence of higher harmonics of the fundamental suggests that nonlinear disturbances are not associated with 'high' free stream disturbance levels. Nose-tip radii greater than 2.7% of the base radius completely stabilized the second mode.

  13. Numerical modeling of the transitional boundary layer over a flat plate

    NASA Astrophysics Data System (ADS)

    Ivanov, Dimitry; Chorny, Andrei

    2015-11-01

    Our example is connected with fundamental research on understanding how an initially laminar boundary layer becomes turbulent. We have chosen the flow over a flat plate as a prototype for boundary-layer flows around bodies. Special attention was paid to the near-wall region in order to capture all levels of the boundary layer. In this study, the numerical software package OpenFOAM has been used in order to solve the flow field. The results were used in a comparative study with data obtained from Large Eddy Simulation (LES). The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. Presently this model is extended to the LES of the zero-pressure gradient, flat-plate turbulent boundary layer. In current study the time discretization is based on a second order Crank-Nicolson/Adams-Bashforth method. LES solver using Smagorinsky and the one-equation LES turbulence models. The transition models significantly improve the prediction of the onset location compared to the fully turbulent models.LES methods appear to be the most promising new tool for the design and analysis of flow devices including transition regions of the turbulent flow.

  14. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  15. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  16. Use of the Abdominal Aortic Tourniquet for Hemorrhage Control

    DTIC Science & Technology

    2013-10-01

    simulate an epidural hematoma) using a bone drill to access the epidural space via a craniotomy and then use a small bladder and fill with fluid. We would...external pressure transducer and CSF drainage system. The catheter will be sutured in place and a nonocclusive dressing applied. The catheter will...diameter in relation to ICP. Craniotomy . A midline incision from the level of lateral canthi to 4-7cm past the external occipital protuberance will be

  17. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, Lannie; Kalsi, Manmohan Singh

    1999-01-01

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which and cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland.

  18. Mechanosensitivity below Ground: Touch-Sensitive Smell-Producing Roots in the Shy Plant Mimosa pudica1[OPEN

    PubMed Central

    Musah, Rabi A.; Lesiak, Ashton D.; Maron, Max J.; Edwards, David; Fowble, Kristen L.; Long, Michael C.

    2016-01-01

    The roots of the shy plant Mimosa pudica emit a cocktail of small organic and inorganic sulfur compounds and reactive intermediates into the environment, including SO2, methanesulfinic acid, pyruvic acid, lactic acid, ethanesulfinic acid, propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, phenothiazine, and thioformaldehyde, an elusive and highly unstable compound that, to our knowledge, has never before been reported to be emitted by a plant. When soil around the roots is dislodged or when seedling roots are touched, an odor is detected. The perceived odor corresponds to the emission of higher amounts of propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, and phenothiazine. The mechanosensitivity response is selective. Whereas touching the roots with soil or human skin resulted in odor detection, agitating the roots with other materials such as glass did not induce a similar response. Light and electron microscopy studies of the roots revealed the presence of microscopic sac-like root protuberances. Elemental analysis of these projections by energy-dispersive x-ray spectroscopy revealed them to contain higher levels of K+ and Cl− compared with the surrounding tissue. Exposing the protuberances to stimuli that caused odor emission resulted in reductions in the levels of K+ and Cl− in the touched area. The mechanistic implications of the variety of sulfur compounds observed vis-à-vis the pathways for their formation are discussed. PMID:26661932

  19. Analysis of interlocking performances on non-oriented electrical steels

    NASA Astrophysics Data System (ADS)

    Liu, Li-Hsiang; Liu, Lee-Cheng

    2018-05-01

    In order to reduce energy loss in motor, applications of high-efficiency non-oriented electrical steel sheets and optimal laminating process are both important elements. The motor core loss deterioration is influenced by a number of factors, such as flux distribution, stress and strain, space harmonics, temperature, and short circuits between lamination. In conventional clamping method, steel sheets are laminated via interlocking or welding in general manner. The measured energy loss by welding was much larger than that by interlocking. Therefore, interlocking is well known and usually employed with benefit of easy conducting. The protuberance shapes affected the fastening strength. Generally, the intensity of rectangular type is stronger than the circular counterparts. However, the circular interlocking has better magnetic characteristics. To clarify the method effectiveness, interlocking performances regarding fastened strength and magnetic deterioration by lamination were investigated. The key parameters of protuberance shape and forming depth were designed. Precisely manufacturing operation was applied to avoid interlocking failure. Magnetic properties largely influenced by clamping method are crucial to minimizing the magnetic deterioration during laminating procedure. Several experiments for various processing conditions were undertaken, and the quantification results showed the rectangular interlocking had better fastened strength but worsened iron loss comparing with the circular arrangement. To acquire the comprehensive mechanical and electrical identities for electrical steel lamination, deliberate producing conditions regarding minimizing the magnetic deterioration should be adopted prudently.

  20. Spanwise visualization of the flow around a three-dimensional foil with leading edge protuberances

    NASA Astrophysics Data System (ADS)

    Stanway, M. J.; Techet, A. H.

    2006-11-01

    Studies of model humpback whale fins have shown that leading edge protuberances, or tubercles, can lead to delayed stall and increased lift at higher angles of attack, compared to foils with geometrically smooth leading edges. Such enhanced performance characteristics could prove highly useful in underwater vehicles such as gliders or long range AUVs (autonomous underwater vehicles). In this work, Particle Imaging Velocimetry (PIV) is performed on two static wings in a water tunnel over a range of angles of attack. These three- dimensional, finite-aspect ratio wings are modeled after a humpback whale flipper and are identical in shape, tapered from root to tip, except for the leading edge. In one of the foils the leading edge is smooth, whereas in the other, regularly spaced leading edge bumps are machined to simulate the whale’s fin tubercles. Results from these PIV tests reveal distinct cells where coherent flow structures are destroyed as a result of the leading edge perturbations. Tests are performed at Reynolds numbers Re ˜ O(10^5), based on chordlength, in a recirculating water tunnel. An inline six-axis load cell is mounted to measure the forces on the foil over a range of static pitch angles. It is hypothesized that this spanwise breakup of coherent vortical structures is responsible for the delayed angle of stall. These quantitative experiments complement exiting qualitative studies with two dimensional foils.

  1. New species of aquatic insects from Europe (Insecta: Trichoptera): Alps and Pyrenees as harbours of unknown biodiversity

    PubMed Central

    GRAF, WOLFRAM; VITECEK, SIMON; PREVIŠIĆ, ANA; MALICKY, HANS

    2016-01-01

    New species are described from the following genera: Consorophylax and Anisogamus, (Trichoptera, Limnephilidae). Additionally the larvae of the genus Anisogamus, and the larval stages of Anisogamus waringeri nov. sp. and A. difformis (McLachlan 1867) are described. The new species Consorophylax vinconi sp. nov. is a microendemic from the Southern Alps and differs distinctly from its congeners in the shape of the parameres, which are distinctly straitened in the distal quarter in the new species. The new species Anisogamus waringeri sp. nov. represents the second species in the hitherto monospecific genus Anisogamus. Compared to Anisogamus difformis, A. waringeri sp. nov. develops more slender superior appendages; a more rounded basal plate of the intermediate appendages, lacking pointed protuberances; and parameres shorter than the aedaegus, proximally with one dorsal and several ventral tines. Further, the two species are disjunctly distributed in the European mountain ranges (A. difformis: Alps, A. waringeri sp. nov.: Pyrenees). Larvae of the genus Anisogamus are characterized by the lack of a dorsal protuberance on the 1st abdominal segment, a unique feature among Limnephilidae. Anisogamus difformis and A. waringeri sp. nov. larvae differ in pronotum shape. The recovery of two new species demonstrates the significance of taxonomic studies in Europe, and the importance of adequate training for young scientists in order to assess a biodiversity under threat of extinction that has yet to be fully described. PMID:25661619

  2. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. Bora; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2001-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, mu(sub t), with the intermittency factor, gamma. Turbulent quantities are predicted by using Menter's two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  3. Predictions of Separated and Transitional Boundary Layers Under Low-Pressure Turbine Airfoil Conditions Using an Intermittency Transport Equation

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    A new transport equation for the intermittency factor was proposed to predict separated and transitional boundary layers under low-pressure turbine airfoil conditions. The intermittent behavior of the transitional flows is taken into account and incorporated into computations by modifying the eddy viscosity, t , with the intermittency factor, y. Turbulent quantities are predicted by using Menter s two-equation turbulence model (SST). The intermittency factor is obtained from a transport equation model, which not only can reproduce the experimentally observed streamwise variation of the intermittency in the transition zone, but also can provide a realistic cross-stream variation of the intermittency profile. In this paper, the intermittency model is used to predict a recent separated and transitional boundary layer experiment under low pressure turbine airfoil conditions. The experiment provides detailed measurements of velocity, turbulent kinetic energy and intermittency profiles for a number of Reynolds numbers and freestream turbulent intensity conditions and is suitable for validation purposes. Detailed comparisons of computational results with experimental data are presented and good agreements between the experiments and predictions are obtained.

  4. High-Speed Boundary-Layer Transition: Study of Stationary Crossflow Using Spectral Analysis

    NASA Astrophysics Data System (ADS)

    McGuire, Patrick Joseph

    Crossflow instability is primary cause of boundary-layer transition on swept wings used in high-speed applications. Delaying the downstream location of transition would drastically reduce the viscous drag over the wing surface, and subsequently improves the overall aircraft efficiency. By studying the development of instability growth rates and how they interact with the surroundings, researchers can control the crossflow transition location. Experiments on the 35° swept-wing model were performed in the NASA Langley 20-Inch Supersonic Wind Tunnel with Mach 2.0 flow conditions and 20 μm tall discrete roughness elements (DRE) with varying spacing placed along the leading edge. Fluorene was used as the sublimating chemical in the surface flow visualization technique to observe the transition front and stationary crossflow vortex patterns in the laminar flow region. Spatial spectral decomposition was completed on high-resolution images of sublimating chemical runs using a newly developed image processing technique. Streamwise evolution of the vortex track wavelengths within the laminar boundary-layer region was observed. The spectral information was averaged to produce dominant modes present throughout the laminar region.

  5. Boundary-layer instability & transition on a flared cone in a Mach 6 quiet wind tunnel

    NASA Astrophysics Data System (ADS)

    Hofferth, Jerrod; Saric, William

    2011-11-01

    Measurements of boundary-layer transition location and instability growth on a sharp-tipped 5°-half-angle flared cone were conducted in a low-disturbance Mach 6 wind tunnel at a freestream unit Reynolds number of 10 × 106/m. Under quiet flow at these conditions, the boundary layer becomes transitional near the base of the cone, where significant second-mode instability growth is evident. Transition location is determined using an array of embedded thermocouples, and instability development is observed in mean and fluctuating mass flux data using hotwire anemometry. The present work seeks to reproduce and build upon previous experiments which used the same test article and similar diagnostics in the facility's former installation at NASA Langley. Together with comprehensive measurements of the freestream disturbance environment, these baseline cone data characterize the facility's performance relative to that in its previous installation. In addition, the current campaign establishes experimental readiness for future research, which will study the effects of periodic surface roughness and controlled-input disturbances. AFOSR/NASA National Center for Hypersonic Research in Laminar-Turbulent Transition; Grant FA9550-09-1-0341.

  6. Analysis of Crossflow Transition Flight Experiment aboard the Pegasus Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Malik, Mujeeb R.; Li, Fei; Choudhan, Meelan

    2007-01-01

    The Pegasus wing-glove flight experiment was designed to provide crossflow transition data at high Mach numbers, specifically to help validate stability based predictions for transition onset in a flight environment. This paper provides an analysis of the flight experiment, with emphasis on computational results for crossflow disturbances and the correlation of disturbance growth factors with in-flight transition locations via the e(sup N) method. Implications of the flight data for attachment line stability are also examined. Analysis of the thermocouple data reveals that transition (from turbulent to laminar flow) was first detected during the ascending flight of the rocket when the free stream Mach number exceeded about 4. Therefore, computations have been performed for flight Mach numbers of 4.13, 4.35, 4.56 and 4.99. Due to continually decreasing unit Reynolds number at higher altitudes, the entire wing-glove boundary layer became laminar at the highest flight Mach number computed above. In contrast, the boundary layer flow over the inboard tile region remained transitional up to and somewhat beyond the time of laminarization over the instrumented glove region. Linear stability predictions confirmed that the tile boundary layer is indeed more unstable to crossflow disturbances than the much colder stainless steel glove boundary layer. The transition locations based on thermocouple data from both the glove and the tile regions are found to correlate with stationary-crossflow N-factors within the range of 7 to 12.4 and with traveling mode N-factors between 7.6 and 14.1. Data from the thermocouples and hot film sensors indicates that transition from turbulent to laminar flow (i.e., laminarization) at a fixed point over the glove is generally completed within a flight time interval of 3 seconds. However, the times at which transition begins and ends as inferred from the hot film sensors are found to differ by about 2 seconds from the corresponding estimates based on the thermocouple data.

  7. Thermal phase transition behavior of lipid layers on a single human corneocyte cell.

    PubMed

    Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru

    2013-09-01

    We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    NASA Astrophysics Data System (ADS)

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  9. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions

    NASA Astrophysics Data System (ADS)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.; Bazile, E.; Beau, I.; Blossey, P. N.; Boutle, I. A.; de Bruijn, C.; Cheng, A.; van der Dussen, J.; Fletcher, J.; Dal Gesso, S.; Jam, A.; Kawai, H.; Cheedela, S. K.; Larson, V. E.; Lefebvre, M.-P.; Lock, A. P.; Meyer, N. R.; de Roode, S. R.; de Rooy, W.; Sandu, I.; Xiao, H.; Xu, K.-M.

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model intercomparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate models for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pacific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple metrics to establish the model performance. Using this method, some longstanding problems in low-level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure, and the associated impact on radiative transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median exhibits the well-known "too few too bright" problem. The boundary-layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular, the vertical structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid parameterization.

  10. Hairpin vortices in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Eitel-Amor, G.; Örlü, R.; Schlatter, P.; Flores, O.

    2015-02-01

    The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Reτ ≲ 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of νt) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Reθ > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical simulation studies is reminiscent of the transitional boundary layer and may not be connected to some aspects of the dynamics of the fully developed wall-bounded turbulence.

  11. Results of thermal modeling of Smart Energy Coating with phase-transition material for independent electricity generation

    NASA Astrophysics Data System (ADS)

    Pospelova, I. Y.; Pospelova, M. Y.; Bondarenko, A. S.; Kornilov, D. A.

    2018-05-01

    The modeling for Smart Energy Coating is presented. The coating is able to produce electricity on the surface of pipelines and structural elements. Along with electric output, Smart Energy Coating ensures the stable temperature conditions of work for structures, pipelines and regulating elements. The energy production scheme is based on the Peltier principle and the insulating layer with a phase transition. Thermally conductive inclusions of the inside layer with a phase transition material ensure the stable operation of the Peltier element.

  12. High Infrared Blocking Cellulose Film Based on Amorphous to Anatase Transition of TiO2 via Atomic Layer Deposition.

    PubMed

    Li, Wenbin; Li, Linfeng; Wu, Xi; Li, Junyu; Jiang, Lang; Yang, Hongjun; Ke, Guizhen; Cao, Genyang; Deng, Bo; Xu, Weilin

    2018-06-27

    A high IR-blocking cellulose film was designed based on an amorphous to anatase transition of TiO 2 using atomic layer deposition (ALD). This transition was realized at 250 °C, at which the cellulose is thermal stable. Optimized ALD condition of 250 °C and 1200 cycles give us an excellent heat insulator, which could significantly reduce the enclosed space temperature from 59.2 to 51.9 °C after exposure to IR lamp for 5 min.

  13. Analysis of Windward Side Hypersonic Boundary Layer Transition on Blunted Cones at Angle of Attack

    DTIC Science & Technology

    2017-01-09

    AIAA-95-2294 , 1995. 6Wadhams, T. P., MacLean, M. G., Holden, M. S., and Mundy, E., “ Pre -Flight Ground Testing of the Full-Scale FRESH FX-1 at...correlated with PSE/LST N-Factors. 15. SUBJECT TERMS boundary layer transition, hypersonic, ground test 16. SECURITY CLASSIFICATION OF: 17. LIMITATION...movement of the windward transition front on a sharp and 6% blunt cones, but upstream movement for a 21% blunt cone at M = 11 and 13. Tests of the HIFiRE

  14. Effect of stress nonhomogeneity on the shear melting of a thin boundary lubrication layer.

    PubMed

    Lyashenko, Iakov A; Filippov, Alexander E; Popov, Mikhail; Popov, Valentin L

    2016-11-01

    We consider the dynamical properties of boundary lubrication in contact between two atomically smooth solid surfaces separated by an ultrathin layer of lubricant. In contrast to previous works on this topic, we explicitly consider the heterogeneity of tangential stresses, which arises in a contact of elastic bodies that are moved tangentially relative to each other. To describe phase transitions between structural states of the lubricant we use an approach based on the field theory of phase transitions. It is assumed that the lubricant layer, when stressed, can undergo a shear-melting transition of first or second order. While solutions for the homogeneous system can be easily obtained analytically, the kinetics of the phase transitions in the spatially heterogeneous system can only be studied numerically. In our numerical experiments melting of the lubricant layer starts from the outer boundary of contact and propagates to its center. The melting wave is followed by a wave of solidification. This process repeats itself periodically, following the stick-slip pattern that is characteristic of such systems. Depending on the thermodynamic and kinetic parameters of the model, different modes of sliding with almost complete or only partial intermediate solidification are possible.

  15. Electronic transitions and band offsets in C60:SubPc and C60:MgPc on MoO3 studied by modulated surface photovoltage spectroscopy

    NASA Astrophysics Data System (ADS)

    Fengler, S.; Dittrich, Th.; Rusu, M.

    2015-07-01

    Electronic transitions at interfaces between MoO3 layers and organic layers of C60, SubPc, MgPc, and nano-composite layers of SubPc:C60 and MgPc:C60 have been studied by modulated surface photovoltage (SPV) spectroscopy. For all systems, time dependent and modulated SPV signals pointed to dissociation of excitons at the MoO3/organic layer interfaces with a separation of holes towards MoO3. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps (EHL) of C60, SubPc, and MgPc and the effective EHL of SubPc:C60 and MgPc:C60 were measured. The offsets between the LUMO (ΔEL) or HOMO (ΔEH) bands were obtained with high precision and amounted to 0.33 or 0.73 eV for SubPc:C60, respectively, and to -0.33 or 0.67 eV for MgPc:C60, respectively. Exponential tails below EHL and most pronounced sub-bandgap transitions were characterized and ascribed to disorder and transitions from HOMO bands to unoccupied defect states.

  16. Experimental Investigation of Transition to Turbulence as Affected By Passing Wakes

    NASA Technical Reports Server (NTRS)

    Kaszeta, Richard W.; Ashpis, David E.; Simon, Terrence W.

    2001-01-01

    This paper presents experimental results from a study of the effects of periodically passing wakes upon laminar-to-turbulent transition and separation in a low-pressure turbine passage. The test section geometry is designed to simulate unsteady wakes in turbine engines for studying their effects on boundary layers and separated flow regions over the suction surface by using a single suction surface and a single pressure surface to simulate a single turbine blade passage. Single-wire, thermal anemometry techniques are used to measure time-resolved and phase averaged, wall-normal profiles of velocity, turbulence intensity and intermittency at multiple streamwise locations over the turbine airfoil suction surface. These data are compared to steady-state wake-free data collected in the same geometry to identify the effects of wakes upon laminar-to-turbulent transition. Results are presented for flows with a Reynolds number based on suction surface length and stage exit velocity of 50,000 and an approach flow turbulence intensity of 2.5%. While both existing design and experimental data are primarily concerned with higher Reynolds number flows (Re greater than 100,000), recent advances in gas turbine engines, and the accompanying increase in laminar and transitional flow effects, have made low-Re research increasingly important. From the presented data, the effects of passing wakes on transition and separation in the boundary layer, due to both increased turbulence levels and varying streamwise pressure gradients are presented. The results show how the wakes affect transition. The wakes affect the flow by virtue of their difference in turbulence levels and scales from those of the free-stream and by virtue of their ensemble- averaged velocity deficits, relative to the free-stream velocity, and the concomitant changes in angle of attack and temporal pressure gradients. The relationships between the velocity oscillations in the freestream and the unsteady velocity profile shapes in the near-wall flow are described. In this discussion is support for the theory that bypass transition is a response of the near-wall viscous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.cous layer to pressure fluctuations imposed upon it from the free-stream flow. Recent transition models are based on that premise. The data also show a significant lag between when the wake is present over the surface and when transition begins.

  17. The LENS Facilities and Experimental Studies to Evaluate the Modeling of Boundary Layer Transition, Shock/Boundary Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes

    DTIC Science & Technology

    2010-04-01

    Layer Interaction, Real Gas, Radiation and Plasma Phenomena in Contemporary CFD Codes Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee Street Buffalo...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING...HyFly Navy EMRG Reentry-F Slide 2 X-43 HIFiRE-2 Figure 17: Transition in Hypervelocity Flows: CUBRC Focus – Fully Duplicated Ground Test

  18. Design and performance of the University of Michigan 6.6-inch hypersonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Amick, J. L.

    1975-01-01

    The tunnel described has several design features intended to maintain laminar flow in the boundary layer of its nozzle. Measurements show that transition to turbulence in the nozzle wall boundary layer begins at the throat and is sensitive to surface roughness, heat transfer rate, and longitudinal radius of curvature. The observed dependence of transition on heat transfer rate is the reverse of that predicted by stability theory for infinitesimal disturbances. Tests include boundary layer surveys of a contoured nozzle and a conical nozzle with four interchangeable throats.

  19. Numerical simulation of the control of the three-dimensional transition process in boundary layers

    NASA Technical Reports Server (NTRS)

    Kral, L. D.; Fasel, H. F.

    1990-01-01

    Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.

  20. Determination of Optimal Heat-Storage Thickness of Layer for “Smart Wall” by Methods of Nonlinear Heat Conduction Equations for Phase-transition Materials

    NASA Astrophysics Data System (ADS)

    Pospelova, I.

    2017-11-01

    The article suggests an original way of keeping heat load and its compensation for a microclimate system by proposing the “Smart Wall”. The construction consists of specially combined composite materials including phase-transition materials. The method for determination of the layer thickness is proposed for a certain accumulation time. Varying the thickness and composition of the layer it is possible to achieve a low amount of the thermal conductivity coefficient and to obtain various functional characteristics of fences.

  1. Photoreflectance study of the near-band-edge transitions of chemical vapor deposition-grown mono- and few-layer MoS{sub 2} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Kuang-I, E-mail: kilin@mail.ncku.edu.tw; Chen, Yen-Jen; Wang, Bo-Yan

    2016-03-21

    Room-temperature photoreflectance (PR) and reflectance (R) spectroscopy are utilized to investigate the near-band-edge transitions of molybdenum disulfide (MoS{sub 2}) thin films grown on sapphire substrates by a hot-wall chemical vapor deposition system. The layer thickness and optical properties of the MoS{sub 2} thin films are confirmed by Raman spectroscopy, atomic force microscope, and photoluminescence (PL) analysis. The B exciton shows relatively weak PL intensity in comparing with the A exciton even for monolayer MoS{sub 2} films. In the R spectrum of few‐layer MoS{sub 2}, it is not possible to clearly observe exciton related features. The PR spectra have two sharp,more » derivative-like features on a featureless background. Throughout the PR lineshape fitting, the transition energies are designated as the A and B excitons at the K-point of the Brillouin zone, but at room temperature there seems to be no distinguishable feature corresponding to an H‐point transition for the mono- and few-layer MoS{sub 2} films unlike in bulk. These transition energies are slightly larger than those obtained by PL, which is attributed to the Stokes shifts related to doping level. The obtained values of valence-band spin-orbit splitting are in good agreement with those from other experimental methods. By comparing the PR lineshapes, the dominant modulation mechanism is attributed to variations of the exciton transition energies due to change in the built-in electric field. On the strength of this study, PR spectroscopy is demonstrated as a powerful technique for characterizing the near-band-edge transitions of MoS{sub 2} from monolayer to bulk.« less

  2. Tuning interfacial exchange interactions via electronic reconstruction in transition-metal oxide heterostructures

    DOE PAGES

    Li, Binzhi; Chopdekar, Rajesh V.; N'Diaye, Alpha T.; ...

    2016-10-10

    The impact of interfacial electronic reconstruction on the magnetic characteristics of La0.7Sr0.3CoO3 (LSCO)/La0.7Sr0.3MnO3 (LSMO) superlattices was investigated as a function of layer thickness using a combination of soft x-ray magnetic spectroscopy and bulk magnetometry. We found that the magnetic properties of the LSCO layers are impacted by two competing electronic interactions occurring at the LSCO/substrate and LSMO/LSCO interfaces. For thin LSCO layers (< 5 nm), the heterostructures exist in a highly coupled state where the chemically distinct layers behave as a single magnetic compound with magnetically active Co2+ ions. As the LSCO thickness increases, a high coercivity LSCO layer developsmore » which biases a low coercivity layer, which is composed not only of the LSMO layer, but also an interfacial LSCO layer. These results suggest a new route to tune the magnetic properties of transition metal oxide heterostructures through careful control of the interface structure.« less

  3. Observations of the Early Morning Boundary-Layer Transition with Small Remotely-Piloted Aircraft

    NASA Astrophysics Data System (ADS)

    Wildmann, Norman; Rau, Gerrit Anke; Bange, Jens

    2015-12-01

    A remotely-piloted aircraft (RPA), equipped with a high resolution thermodynamic sensor package, was used to investigate physical processes during the morning transition of the atmospheric boundary layer over land. Experiments were conducted at a test site in heterogeneous terrain in south-west Germany on 5 days from June to September 2013 in an evolving shallow convective boundary layer, which then developed into a well-mixed layer later in the day. A combination of vertical profiling and constant-altitude profiling (CAP) at 100 m height above ground level was chosen as the measuring strategy throughout the experiment. The combination of flight strategies allows the application of mixed-layer scaling using the boundary-layer height z_i, convective velocity scale w_* and convective temperature scale θ _*. The hypothesis that mixed-layer theory is valid during the whole transition was not confirmed for all parameters. A good agreement is found for temperature variances, especially in the upper half of the boundary layer, and the normalized heat-flux profile. The results were compared to a previous study with the helicopter-borne turbulence probe Helipod, and it was found that similar data quality can be achieved with the RPA. On all days, the CAP flight level was within the entrainment zone for a short time, and the horizontal variability of temperature and water vapour along the flight path is presented as an example of the inhomogeneity of layer interfaces in the boundary layer. The study serves as a case study of the possibilities and limitations with state-of-the-art RPA technology in micrometeorology.

  4. Different phases of a system of hard rods on three dimensional cubic lattice

    NASA Astrophysics Data System (ADS)

    Vigneshwar, N.; Dhar, Deepak; Rajesh, R.

    2017-11-01

    We study the different phases of a system of monodispersed hard rods of length k on a cubic lattice, using an efficient cluster algorithm able to simulate densities close to the fully-packed limit. For k≤slant 4 , the system is disordered at all densities. For k=5, 6 , we find a single density-driven transition, from a disordered phase to high density layered-disordered phase, in which the density of rods of one orientation is strongly suppressed, breaking the system into weakly coupled layers. Within a layer, the system is disordered. For k ≥slant 7 , three density-driven transitions are observed numerically: isotropic to nematic to layered-nematic to layered-disordered. In the layered-nematic phase, the system breaks up into layers, with nematic order in each layer, but very weak correlation between the ordering directions of different layers. We argue that the layered-nematic phase is a finite-size effect, and in the thermodynamic limit, the nematic phase will have higher entropy per site. We expect the systems of rods in four and higher dimensions will have a qualitatively similar phase diagram.

  5. Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring

    NASA Technical Reports Server (NTRS)

    Glover, David M.; Wroblewski, J. S.; Mcclain, Charles R.

    1994-01-01

    A transition zone in phytoplankton concentration running across the North Pacific basin at 30 deg to 40 deg north latitude corresponds to a basin-wide front in surface chlorophyll observed in a composite of coastal zone color scanner (CZCS) images for May, June, and July 1979-1986. This transition zone with low chlorophyll to the south and higher chlorophyll to the north can be simulated by a simple model of the concentration of phytoplankton, zooplankton, and dissolved nutrient (nitrate) in the surface mixed layer of the ocean applied to the North Pacific basin for the climatological conditions during oceanographic springtime (May, June, and July). The model is initialized with a 1 deg x 1 deg gridded estimate of wintertime (February, March, and April) mixed layer nitrate concentrations calculated from an extensive nutrient database and a similarly gridded mixed layer depth data set. Comparison of model predictions with CZCS data provides a means of evaluating the dynamics of the transition zone. We conclude that in the North Pacific, away from major boundary currents and coastal upwelling zones, wintertime vertical mixing determines the total nutrient available to the plankton ecosystem in the spring. The transition zone seen in basin-scale CZCS images is a reflection of the geographic variation in the wintertime mixed layer depth and the nitracline, leading to a latitudinal gradient in phytoplankton chlorophyll.

  6. A robust H∞ control-based hierarchical mode transition control system for plug-in hybrid electric vehicle

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Jiao, Xiaohong; Li, Liang; Zhang, Yuanbo; Chen, Zheng

    2018-01-01

    To realize a fast and smooth operating mode transition process from electric driving mode to engine-on driving mode, this paper presents a novel robust hierarchical mode transition control method for a plug-in hybrid electric bus (PHEB) with pre-transmission parallel hybrid powertrain. Firstly, the mode transition process is divided into five stages to clearly describe the powertrain dynamics. Based on the dynamics models of powertrain and clutch actuating mechanism, a hierarchical control structure including two robust H∞ controllers in both upper layer and lower layer is proposed. In upper layer, the demand clutch torque can be calculated by a robust H∞controller considering the clutch engaging time and the vehicle jerk. While in lower layer a robust tracking controller with L2-gain is designed to perform the accurate position tracking control, especially when the parameters uncertainties and external disturbance occur in the clutch actuating mechanism. Simulation and hardware-in-the-loop (HIL) test are carried out in a traditional driving condition of PHEB. Results show that the proposed hierarchical control approach can obtain the good control performance: mode transition time is greatly reduced with the acceptable jerk. Meanwhile, the designed control system shows the obvious robustness with the uncertain parameters and disturbance. Therefore, the proposed approach may offer a theoretical reference for the actual vehicle controller.

  7. Critical Transitions in Thin Layer Turbulence

    NASA Astrophysics Data System (ADS)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  8. Impact of rheological layering on rift asymmetry

    NASA Astrophysics Data System (ADS)

    Jaquet, Yoann; Schmalholz, Stefan M.; Duretz, Thibault

    2015-04-01

    Although numerous models of rift formation have been proposed, what triggers asymmetry of rifted margins remains unclear. Parametrized material softening is often employed to induce asymmetric fault patterns in numerical models. Here, we use thermo-mechanical finite element models that allow softening via thermal weakening. We investigate the importance of lithosphere rheology and mechanical layering on rift morphology. The numerical code is based on the MILAMIN solver and uses the Triangle mesh generator. Our model configuration consists of a visco-elasto-platic layered lithosphere comprising either (1) only one brittle-ductile transition (in the mantle) or (2) three brittle-ductile transitions (one in the upper crust, one in the lower crust and one in the mantle). We perform then two sets of simulations characterized by low and high extensional strain rates (5*10-15 s-1, 2*10-14 s-1). The results show that the extension of a lithosphere comprising only one brittle-ductile transition produces a symmetric 'neck' type rift. The upper and lower crusts are thinned until the lithospheric mantle is exhumed to the seafloor. A lithosphere containing three brittle-ductile transitions favors strain localization. Shear zones at different horizontal locations and generated in the brittle levels of the lithosphere get connected by the weak ductile layers. The results suggest that rheological layering of the lithosphere can be a reason for the generation of asymmetric rifting and subsequent rift morphology.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bühler, Stefan; Obrist, Dominik; Kleiser, Leonhard

    We investigate numerically the effects of nozzle-exit flow conditions on the jet-flow development and the near-field sound at a diameter-based Reynolds number of Re{sub D} = 18 100 and Mach number Ma = 0.9. Our computational setup features the inclusion of a cylindrical nozzle which allows to establish a physical nozzle-exit flow and therefore well-defined initial jet-flow conditions. Within the nozzle, the flow is modeled by a potential flow core and a laminar, transitional, or developing turbulent boundary layer. The goal is to document and to compare the effects of the different jet inflows on the jet flow development and themore » sound radiation. For laminar and transitional boundary layers, transition to turbulence in the jet shear layer is governed by the development of Kelvin-Helmholtz instabilities. With the turbulent nozzle boundary layer, the jet flow development is characterized by a rapid changeover to a turbulent free shear layer within about one nozzle diameter. Sound pressure levels are strongly enhanced for laminar and transitional exit conditions compared to the turbulent case. However, a frequency and frequency-wavenumber analysis of the near-field pressure indicates that the dominant sound radiation characteristics remain largely unaffected. By applying a recently developed scaling procedure, we obtain a close match of the scaled near-field sound spectra for all nozzle-exit turbulence levels and also a reasonable agreement with experimental far-field data.« less

  10. Optimal resource diffusion for suppressing disease spreading in multiplex networks

    NASA Astrophysics Data System (ADS)

    Chen, Xiaolong; Wang, Wei; Cai, Shimin; Stanley, H. Eugene; Braunstein, Lidia A.

    2018-05-01

    Resource diffusion is a ubiquitous phenomenon, but how it impacts epidemic spreading has received little study. We propose a model that couples epidemic spreading and resource diffusion in multiplex networks. The spread of disease in a physical contact layer and the recovery of the infected nodes are both strongly dependent upon resources supplied by their counterparts in the social layer. The generation and diffusion of resources in the social layer are in turn strongly dependent upon the state of the nodes in the physical contact layer. Resources diffuse preferentially or randomly in this model. To quantify the degree of preferential diffusion, a bias parameter that controls the resource diffusion is proposed. We conduct extensive simulations and find that the preferential resource diffusion can change phase transition type of the fraction of infected nodes. When the degree of interlayer correlation is below a critical value, increasing the bias parameter changes the phase transition from double continuous to single continuous. When the degree of interlayer correlation is above a critical value, the phase transition changes from multiple continuous to first discontinuous and then to hybrid. We find hysteresis loops in the phase transition. We also find that there is an optimal resource strategy at each fixed degree of interlayer correlation under which the threshold reaches a maximum and the disease can be maximally suppressed. In addition, the optimal controlling parameter increases as the degree of inter-layer correlation increases.

  11. An infrared spectroscopic study of the structural phase transition in the perovskite-type layer compound [ n-C 16H 33NH 3] 2CoCl 4

    NASA Astrophysics Data System (ADS)

    Ning, Guo; Guangfu, Zeng; Shiquan, Xi

    1992-12-01

    The solid-solid phase transitions in the perovskite-type layer compound [ n-C 16H 33NH 3] 2CoCl 4 have been studied by infrared spectroscopy. A new phase transition at 340 K was found by comparison with differential scanning calorimetry results. A temperature dependence study of the infrared spectra provides evidence of the occurrence of structural phase transitions related to the dynamics of the alkylammonium ions and hydrogen bonds. The main transition at 374 K corresponds to the conformational order-disorder change in the chain, which probably couples with reorientational motions of the NH 3 polar heads. GTG or GTG' defects appear in the high temperature disordered phase.

  12. Discrete Roughness Transition for Hypersonic Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.

    2007-01-01

    The importance of discrete roughness and the correlations developed to predict the onset of boundary layer transition on hypersonic flight vehicles are discussed. The paper is organized by hypersonic vehicle applications characterized in a general sense by the boundary layer: slender with hypersonic conditions at the edge of the boundary layer, moderately blunt with supersonic, and blunt with subsonic. This paper is intended to be a review of recent discrete roughness transition work completed at NASA Langley Research Center in support of agency flight test programs. First, a review is provided of discrete roughness wind tunnel data and the resulting correlations that were developed. Then, results obtained from flight vehicles, in particular the recently flown Hyper-X and Shuttle missions, are discussed and compared to the ground-based correlations.

  13. Superconductivity in REO0.5F0.5BiS2 with high-entropy-alloy-type blocking layers

    NASA Astrophysics Data System (ADS)

    Sogabe, Ryota; Goto, Yosuke; Mizuguchi, Yoshikazu

    2018-05-01

    We synthesized new REO0.5F0.5BiS2 (RE: rare earth) superconductors with high-entropy-alloy-type (HEA-type) REO blocking layers. The lattice constant a systematically changed in the HEA-type samples with the RE concentration and the RE ionic radius. A sharp superconducting transition was observed in the resistivity measurements for all the HEA-type samples, and the transition temperature of the HEA-type samples was higher than that of typical REO0.5F0.5BiS2. The sharp superconducting transition and the enhanced superconducting properties of the HEA-type samples may indicate the effectiveness of the HEA states of the REO blocking layers in the REO0.5F0.5BiS2 system.

  14. Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sengupta, Parijat; Bellotti, Enrico

    2016-05-23

    We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less

  15. Variable Sweep Transition Flight Experiment (VSTFE): Unified Stability System (USS). Description and Users' Manual

    NASA Technical Reports Server (NTRS)

    Rozendaal, Rodger A.; Behbehani, Roxanna

    1990-01-01

    NASA initiated the Variable Sweep Transition Flight Experiment (VSTFE) to establish a boundary layer transition database for laminar flow wing design. For this experiment, full-span upper surface gloves were fitted to a variable sweep F-14 aircraft. The development of an improved laminar boundary layer stability analysis system called the Unified Stability System (USS) is documented and results of its use on the VSTFE flight data are shown. The USS consists of eight computer codes. The theoretical background of the system is described, as is the input, output, and usage hints. The USS is capable of analyzing boundary layer stability over a wide range of disturbance frequencies and orientations, making it possible to use different philosophies in calculating the growth of disturbances on sweptwings.

  16. Energy efficient engine, low-pressure turbine boundary layer program

    NASA Technical Reports Server (NTRS)

    Gardner, W. B.

    1981-01-01

    A study was conducted to investigate development of boundary layers under the influence of velocity distributions simulating the suction side of two state-of-the-art turbine airfoils: a forward loaded airfoil (squared-off design) and an aft loaded airfoil (aft-loaded design). These velocity distributions were simulated in a boundary layer wind tunnel. Detailed measurements of boundary layer mean velocity and turbulence intensity profiles were obtained for an inlet turbulence level of 2.4 percent and an exit Reynolds number of 800,000. Flush-mounted hot film probes identified the boundary layer transition regimes in the adverse pressure gradient regions for both velocity distributions. Wall intermittency data showed good agreement with the correlations of Dhawan and Narasimha for the intermittency factor distribution in transitional flow regimes.

  17. Direct visualization of a two-dimensional topological insulator in the single-layer 1 T'-WT e2

    NASA Astrophysics Data System (ADS)

    Jia, Zhen-Yu; Song, Ye-Heng; Li, Xiang-Bing; Ran, Kejing; Lu, Pengchao; Zheng, Hui-Jun; Zhu, Xin-Yang; Shi, Zhi-Qiang; Sun, Jian; Wen, Jinsheng; Xing, Dingyu; Li, Shao-Chun

    2017-07-01

    We have grown nearly freestanding single-layer 1 T'-WT e2 on graphitized 6 H -SiC(0001) by using molecular beam epitaxy (MBE), and characterized its electronic structure with scanning tunneling microscopy/spectroscopy (STM/STS). The existence of topological edge states at the periphery of single-layer WT e2 islands was confirmed. Surprisingly, a bulk band gap at the Fermi level and insulating behaviors were also found in single-layer WT e2 at low temperature, which are likely associated with an incommensurate charge order transition. The realization of two-dimensional topological insulators (2D TIs) in single-layer transition-metal dichalcogenide provides a promising platform for further exploration of the 2D TIs' physics and related applications.

  18. Computational Investigation of Supersonic Boundary Layer Transition Over Canonical Fuselage Nose Configurations

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Tokugawa, Naoko; Li, Fei; Chang, Chau-Lyan; White, Jeffery A.; Ishikawa, Hiroaki; Ueda, Yoshine; Atobe, Takashi; Fujii, Keisuke

    2012-01-01

    Boundary layer transition over axisymmetric bodies at non-zero angle of attack in supersonic flow is numerically investigated as part of joint research between the National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA). Transition over four axisymmetric bodies (namely, Sears-Haack body, semi-Sears-Haack body, 5-degree straight cone and flared cone) with different axial pressure gradients has been studied at Mach 2 in order to understand the effect of axial pressure gradient on instability amplification along the leeward symmetry plane and in the region of nonzero crossflow away from it. Comparisons are made with measured transition data in Mach 2 facilities as well as with predicted and measured transition characteristics for a 5-degree straight cone in a Mach 3.5 low disturbance tunnel. Limitations of using linear stability correlations for predicting transition over axisymmetric bodies at angle of attack are pointed out.

  19. Numerical simulation of strong wake/boundary layer interaction

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Victor; Piomelli, Ugo; Choudhari, Meelan M.

    2003-11-01

    DNS and LES of the strong interaction between an unsteady cylinder wake and a flat-plate boundary layer are carried out. Of the two Reynolds numbers examined, in the lower Reynolds number case (Re=385 based on cylinder diameter) the boundary layer is buffeted by the vortices shed off the cylinder, but the Reynolds number is too low to trigger transition to turbulence. In contrast, in the higher Reyolds number case (Re=1155) we observe the inception of a self-sustained turbulence-generation mechanism triggered by the Karman vortex street behind the cylinder. In previously performed simulations the computational box was not long enough to extend into the turbulent region; therefore, we have lengthened the streamwise domain using a second computational box in order to capture the transition point. In addition to examining turbulence statistics, we look at the Reynolds stress budgets up to and through the transitional regime to obtain further insights into the physics of bypass transition via wake contamination.

  20. Control of 3-D Modes in a Boundary Layer Undergoing Subharmonic Transition.

    NASA Astrophysics Data System (ADS)

    Corke, T. C.; Peto, J.; Speer, A.; Paroozan, P.; Sciammarella, C.

    1997-11-01

    The effect of alternating standing patterns of wall displacements in the transition region of a Falkner-Skan boundary layer with an adverse pressure gradient is investigated. Transition is controlled by introducing disturbances to excite a pair of oblique modes along with a plane TS mode. The oblique modes are at the TS subharmonic frequency in order to promote subharmonic resonance. Measurements consist of a spanwise rake of hot-wire sensors placed near the wall below the critical layer, and a 2-D (15 x 15) array of optical pressure sensors. The space-time data series are processed using 2-D Fourier analysis to determine the spanwise wave number content of the flow. Of particular interest is the streamwise vortex mode which results from a difference interaction of the subharmonic oblique modes. We examine the effect of different patterns and amplitudes of upstream wall displacements on the development of the travelling and stationary modes in this case leading to transition. Supported by ARO Grant No. DAAH04-93-G-0212

  1. Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto

    2017-10-01

    Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.

  2. Anisotropic dielectric phase transition triggered by pendulum-like motion coupled with proton transfer in a layered hybrid crystalline material (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Zhu, Chun-li; Qin, Liu-lei; Zheng, Xiao-yuan; Liu, Zun-qi

    2018-07-01

    The organic-inorganic hybrid phase-transition material, (4-nitroanilinium+) (18-crown-6) (H2PO4-) (H3PO4)2 (1), was successfully synthesized. The organic (4-nitroanilinium) (18-crown-6)+ supramolecular cation layer and inorganic phosphate anion layer were arranged alternately. Differential scanning calorimetry (DSC), temperature-dependent dielectric measurements, and variable-temperature single-crystal X-ray diffraction analysis confirmed the reversible isostructural phase transition of 1 with the same space group Pbca at 225 K, wherein the synergistic effect between the pendulum-like motion of organic cations and the proton transfer in the Osbnd H⋯O hydrogen bonding of inorganic anions was mainly responsible for the phase-transition behavior of 1. The most striking dielectric property was the remarkable anisotropy along various crystallographic axes. A potential-energy calculation further supported the possibility of dynamic motion of cations in the crystal.

  3. Chloride ions induce order-disorder transition at water-oxide interfaces

    NASA Astrophysics Data System (ADS)

    Deshmukh, Sanket; Kamath, Ganesh; Ramanathan, Shriram; Sankaranarayanan, Subramanian K. R. S.

    2013-12-01

    Water can form quasi-two-dimensional ordered layers near a solid interface. The solvation dynamics and ionic transport phenomena through this ordered water structure is of direct relevance to a variety of problems in interface science. Molecular dynamics simulations are used to study the impact of local fluctuation of the chloride ion density in the vicinity of an oxide surface on the structure and dynamics of water layers. We demonstrate that local increase in chloride ions beyond a threshold concentration near the water-MgO (100) interface introduces an order-disorder transition of this two-dimensional layered network into bulklike water, leading to increased diffusional characteristics and reduced hydrogen bonding lifetimes. We find that the extent of this order-disorder transition can be tuned by modifying the defect chemistry and nature of the underlying substrate. The kinetic fluidity resulting from order-disorder transition at high chloride ion concentration has significance for a broad range of phenomena, ranging from freezing point depression of brine to onset of aqueous corrosion.

  4. Two-photon absorption in layered transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Dong, Ningning; Zhang, Saifeng; Li, Yuanxin; Wang, Jun

    2018-02-01

    Two-dimensional (2D) layered transition metal dichalcogenides (TMDCs) exhibit unique nonlinear optical (NLO) features and have becoming intriguing and promising candidate materials for photonic and optoelectronic devices with high performance and unique functions. Owing to layered geometry and the thickness-dependent bandgap, we studied the ultrafast NLO properties of a range of TMDCs. TMDCs with high-quality layered nanosheets were prepared through chemical vapor deposition (CVD) technique and vapor-phase growth method. Saturable absorption, two photon absorption (TPA) and two photon pumped frequency up-converted luminescence were observed from these 2D nanostructures. The exciting results open up the door to 2D photonic devices, such as passive mode-lockers, Q-switchers, optical limiters, light emitters, etc.

  5. Gortler vortices and transition in wall boundary layers of two Mach 5 nozzles

    NASA Technical Reports Server (NTRS)

    Beckwith, I. E.; Holley, B. B.

    1981-01-01

    The onset of transition in the wall boundary layers of two axisymmetric Mach 5 wind-tunnel nozzles has been measured under conditions of extremely low incident disturbance levels. The range of test unit Reynolds numbers, based on conditions at the nozzle exit, was from 6 x 10 to the 6th power m to 2.5 x 10 to the 7th power m. When the nozzle walls were maintained in a polished and clean condition, transition moved gradually upstream as the test Reynolds number was increased. When transition occurred in the supersonic concave wall region, the values of the local Gortler parameter at transition varied from about 5 to 6, whereas the momentum thickness Reynolds number varied from about 750 to 1050. Oil flow patterns obtained near the exit of the nozzles indicated that Gortler vortices were always present when the wall boundary layers were laminar. Calculations for the growth of Gortler vortices based on new results from linear theory for supersonic flat-plate profiles gave amplification ratios to transition from e to the 4th power to e to the 15th power. Possible reasons for this wide range in amplification ratios are discussed, but no definite conclusions are yet possible regarding the values of n in a simple e to the nth power type theory for the assumed linear amplification of Gortler vortices to transition in supersonic nozzles.

  6. X-ray radiation generated by a beam of relativistic electrons in composite structure

    NASA Astrophysics Data System (ADS)

    Blazhevich, S. V.; Noskov, A. V.

    2018-04-01

    The dynamic theory of coherent X-ray radiation generated by a beam of relativistic electrons in the three-layer structure consisting of an amorphous layer, a vacuum (air) layer and a single crystal has been developed. The phenomenon description is based on two main radiation mechanisms, namely, parametric X-ray radiation (PXR) and diffracted transition radiation (DTR). The possibility to increase the spectral-angular density of DTR under the condition of constructive interference of the transition radiation waves from different boundaries of such a structure has been demonstrated. It is shown that little changes in the layers thicknesses should not cause a considerable change in the interference picture, for example, the transition of constructive interference into destructive one. It means that in the considered process the conditions of constructive interference are enough stable to use them for increasing the intensity of X-ray source that can be created based on the interaction of relativistic electrons with such a structure.

  7. Transition from Selective Withdrawal to Light Layer Entrainment in an Oil-Water System

    NASA Astrophysics Data System (ADS)

    Hartenberger, Joel; O'Hern, Timothy; Webb, Stephen; James, Darryl

    2010-11-01

    Selective withdrawal refers to the selective removal of fluid of one density without entraining an adjacent fluid layer of a different density. Most prior literature has examined removal of the lower density fluid and the transition to entraining the higher density fluid. In the present experiments, a higher density liquid is removed through a tube that extends just below its interface with a lower density fluid. The critical depth for a given flow rate at which the liquid-liquid interface transitions to entrain the lighter fluid was measured. Experiments were performed for a range of different light layer silicone oils and heavy layer water or brine, covering a range of density and viscosity ratios. Applications include density-stratified reservoirs and brine removal from oil storage caverns. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Multi-layer Lanczos iteration approach to calculations of vibrational energies and dipole transition intensities for polyatomic molecules

    DOE PAGES

    Yu, Hua-Gen

    2015-01-28

    We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less

  9. Optical and Excitonic Properties of Atomically Thin Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Berkelbach, Timothy C.; Reichman, David R.

    2018-03-01

    Starting with the isolation of a single sheet of graphene, the study of layered materials has been one of the most active areas of condensed matter physics, chemistry, and materials science. Single-layer transition-metal dichalcogenides are direct-gap semiconducting analogs of graphene that exhibit novel electronic and optical properties. These features provide exciting opportunities for the discovery of both new fundamental physical phenomena as well as innovative device platforms. Here, we review the progress associated with the creation and use of a simple microscopic framework for describing the optical and excitonic behavior of few-layer transition-metal dichalcogenides, which is based on symmetry, band structure, and the effective interactions between charge carriers in these materials. This approach provides an often quantitative account of experiments that probe the physics associated with strong electron–hole interactions in these quasi two-dimensional systems and has been successfully employed by many groups to both describe and predict emergent excitonic behavior in these layered semiconducting systems.

  10. Infrared Imaging of Boundary Layer Transition Flight Experiments

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J., Jr.; Schwartz, Richard; Ross, Martin; Anderson, Brian; Campbell, Charles H.

    2008-01-01

    The Hypersonic Thermodynamic Infrared Measurement (HYTHIRM) project is presently focused on near term support to the Shuttle program through the development of an infrared imaging capability of sufficient spatial and temporal resolution to augment existing on-board Orbiter instrumentation. Significant progress has been made with the identification and inventory of relevant existing optical imaging assets and the development, maturation, and validation of simulation and modeling tools for assessment and mission planning purposes, which were intended to lead to the best strategies and assets for successful acquisition of quantitative global surface temperature data on the Shuttle during entry. However, there are longer-term goals of providing global infrared imaging support to other flight projects as well. A status of HYTHIRM from the perspective of how two NASA-sponsored boundary layer transition flight experiments could benefit by infrared measurements is provided. Those two flight projects are the Hypersonic Boundary layer Transition (HyBoLT) flight experiment and the Shuttle Boundary Layer Transition Flight Experiment (BLT FE), which are both intended for reducing uncertainties associated with the extrapolation of wind tunnel derived transition correlations for flight application. Thus, the criticality of obtaining high quality flight data along with the impact it would provide to the Shuttle program damage assessment process are discussed. Two recent wind tunnel efforts that were intended as risk mitigation in terms of quantifying the transition process and resulting turbulent wedge locations are briefly reviewed. Progress is being made towards finalizing an imaging strategy in support of the Shuttle BLT FE, however there are no plans currently to image HyBoLT.

  11. Organization of the Tropical Convective Cloud Population by Humidity and the Critical Transition to Heavy Precipitation

    NASA Astrophysics Data System (ADS)

    Igel, M.

    2015-12-01

    The tropical atmosphere exhibits an abrupt statistical switch between non-raining and heavily raining states as column moisture increases across a wide range of length scales. Deep convection occurs at values of column humidity above the transition point and induces drying of moist columns. With a 1km resolution, large domain cloud resolving model run in RCE, what will be made clear here for the first time is how the entire tropical convective cloud population is affected by and feeds back to the pickup in heavy precipitation. Shallow convection can act to dry the low levels through weak precipitation or vertical redistribution of moisture, or to moisten toward a transition to deep convection. It is shown that not only can deep convection dehydrate the entire column, it can also dry just the lower layer through intense rain. In the latter case, deep stratiform cloud then forms to dry the upper layer through rain with anomalously high rates for its value of column humidity until both the total column moisture falls below the critical transition point and the upper levels are cloud free. Thus, all major tropical cloud types are shown to respond strongly to the same critical phase-transition point. This mutual response represents a potentially strong organizational mechanism for convection, and the frequency of and logical rules determining physical evolutions between these convective regimes will be discussed. The precise value of the point in total column moisture at which the transition to heavy precipitation occurs is shown to result from two independent thresholds in lower-layer and upper-layer integrated humidity.

  12. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor.

    PubMed

    Gaboriau, Dorian; Boniface, Maxime; Valero, Anthony; Aldakov, Dmitry; Brousse, Thierry; Gentile, Pascal; Sadki, Said

    2017-04-19

    Silicon nanowires were coated by a 1-5 nm thin alumina layer by atomic layer deposition (ALD) in order to replace poorly reproducible and unstable native silicon oxide by a highly conformal passivating alumina layer. The surface coating enabled probing the behavior of symmetric devices using such electrodes in the EMI-TFSI electrolyte, allowing us to attain a large cell voltage up to 6 V in ionic liquid, together with very high cyclability with less than 4% capacitance fade after 10 6 charge/discharge cycles. These results yielded fruitful insights into the transition between an electrochemical double-layer capacitor behavior and an electrolytic capacitor behavior. Ultimately, thin ALD dielectric coatings can be used to obtain hybrid devices exhibiting large cell voltage and excellent cycle life of dielectric capacitors, while retaining energy and power densities close to the ones displayed by supercapacitors.

  13. Infrared fingerprints of few-layer black phosphorus.

    PubMed

    Zhang, Guowei; Huang, Shenyang; Chaves, Andrey; Song, Chaoyu; Özçelik, V Ongun; Low, Tony; Yan, Hugen

    2017-01-06

    Black phosphorus is an infrared layered material. Its bandgap complements other widely studied two-dimensional materials: zero-gap graphene and visible/near-infrared gap transition metal dichalcogenides. Although highly desirable, a comprehensive infrared characterization is still lacking. Here we report a systematic infrared study of mechanically exfoliated few-layer black phosphorus, with thickness ranging from 2 to 15 layers and photon energy spanning from 0.25 to 1.36 eV. Each few-layer black phosphorus exhibits a thickness-dependent unique infrared spectrum with a series of absorption resonances, which reveals the underlying electronic structure evolution and serves as its infrared fingerprints. Surprisingly, unexpected absorption features, which are associated with the forbidden optical transitions, have been observed. Furthermore, we unambiguously demonstrate that controllable uniaxial strain can be used as a convenient and effective approach to tune the electronic structure of few-layer black phosphorus. Our study paves the way for black phosphorus applications in infrared photonics and optoelectronics.

  14. Spin polarized and density modulated phases in symmetric electron-electron and electron-hole bilayers.

    PubMed

    Kumar, Krishan; Moudgil, R K

    2012-10-17

    We have studied symmetric electron-electron and electron-hole bilayers to explore the stable homogeneous spin phase and the feasibility of inhomogeneous charge-/spin-density ground states. The former is resolved by comparing the ground-state energies in states of different spin polarizations, while the latter is resolved by searching for a divergence in the wavevector-dependent static charge/spin susceptibility. For this endeavour, we have used the dielectric approach within the self-consistent mean-field theory of Singwi et al. We find that the inter-layer interactions tend to change an abrupt spin-polarization transition of an isolated layer into a nearly gradual one, even though the partially spin-polarized phases are not clearly stable within the accuracy of our calculation. The transition density is seen to decrease with a reduction in layer spacing, implying a suppression of spin polarization by inter-layer interactions. Indeed, the suppression shows up distinctly in the spin susceptibility computed from the spin-polarization dependence of the ground-state energy. However, below a critical layer spacing, the unpolarized liquid becomes unstable against a charge-density-wave (CDW) ground state at a density preceding full spin polarization, with the transition density for the CDW state increasing on further reduction in the layer spacing. Due to attractive e-h correlations, the CDW state is found to be more pronounced in the e-h bilayer. On the other hand, the static spin susceptibility diverges only in the long-wavelength limit, which simply represents a transition to the homogeneous spin-polarized phase.

  15. H I-to-H2 Transition Layers in the Star-forming Region W43

    NASA Astrophysics Data System (ADS)

    Bialy, Shmuel; Bihr, Simon; Beuther, Henrik; Henning, Thomas; Sternberg, Amiel

    2017-02-01

    The process of atomic-to-molecular (H I-to-H2) gas conversion is fundamental for molecular-cloud formation and star formation. 21 cm observations of the star-forming region W43 revealed extremely high H I column densities, of 120-180 {M}⊙ {{pc}}-2, a factor of 10-20 larger than predicted by H I-to-H2 transition theories. We analyze the observed H I with a theoretical model of the H I-to-H2 transition, and show that the discrepancy between theory and observation cannot be explained by the intense radiation in W43, nor be explained by variations of the assumed volume density or H2 formation rate coefficient. We show that the large observed H I columns are naturally explained by several (9-22) H I-to-H2 transition layers, superimposed along the sightlines of W43. We discuss other possible interpretations such as a non-steady-state scenario and inefficient dust absorption. The case of W43 suggests that H I thresholds reported in extragalactic observations are probably not associated with a single H I-to-H2 transition, but are rather a result of several transition layers (clouds) along the sightlines, beam-diluted with diffuse intercloud gas.

  16. Geometric confinement effects on the metal-insulator transition temperature and stress relaxation in VO2 thin films grown on silicon

    NASA Astrophysics Data System (ADS)

    Viswanath, Changhyun Ko, B.; Yang, Zheng; Ramanathan, Shriram

    2011-03-01

    VO2 undergoes a sharp metal-insulator transition at ˜67 °C with several orders of change in conductivity and optical transmittance. Understanding and control of the properties of vanadium oxide layers grown on technologically relevant substrates such as Si (100) single crystals is therefore of great interest. In this work, we show tunability of metal-insulator transition temperature as well as recoverable stress in VO2 thin films grown on Si substrate by introducing nanoscale atomic layer deposited HfO2 interfacial layers with no degradation in the resistance ratio. For a confined VO2 film, the metal-insulator transition temperature is suppressed by ˜16 °C and the recoverable stress is 150 MPa, compared to 400 MPa for a bare film. These observations are further correlated with in situ variable temperature measurement of stress changes occurring during the phase transition. Structural and microstructural studies on the various samples have been carried out by x ray diffraction and cross-sectional transmission electron microscopy. The strategy of tuning the metal-insulator transition characteristics by nanoscale interfacial dielectrics is of broader relevance in design of programmable materials and integration into solid state devices for electronics.

  17. Skew and twist resistant hydrodynamic rotary shaft seal

    DOEpatents

    Dietle, L.; Kalsi, M.S.

    1999-02-23

    A hydrodynamically lubricated squeeze packing type rotary shaft seal suitable for lubricant retention and environmental exclusion which incorporates one or more resilient protuberances which cooperate with the gland walls to hold the seal straight in its installation groove in unpressurized and low pressure lubricant retention applications thereby preventing skew-induced wear caused by impingement of abrasive contaminants present in the environment, and which also serve as radial bearings to prevent tipping of the seal within its installation gland. 14 figs.

  18. Endomyces tetrasperma, sp. n

    PubMed Central

    Macy, J. M.; Miller, M. W.

    1971-01-01

    A new fungal species has been described and placed in the genus Endomyces. Endomyces tetrasperma forms a true septate, multinucleate mycelium which breaks up into arthrospores. Ascus formation occurs after isogamous copulation between sexual protuberances which develop at the ends of arthrospores or between two cells, adjacent mycelial cells, or arthrospores. The asci which dehisce at maturity release two to four smooth, ovoid, thick-walled spores, each containing two oil droplets. The proposed life cycle is based on morphological and cytological observations. Images PMID:5541538

  19. Boundary-Layer Transition on the N.A.C.A. 0012 and 23012 Airfoils in the 8-Foot High-Speed Wind Tunnel, Special Report

    NASA Technical Reports Server (NTRS)

    Becker, John V.

    1940-01-01

    Determinations of boundary-layer transition on the NACA 0012 and 2301 airfoils were made in the 8-foot high-speed wind tunnel over a range of Reynolds Numbers from 1,600,000 to 16,800,000. The results are of particular significance as compared with flight tests and tests in wind tunnels of appreciable turbulence because of the extremely low turbulence in the high-speed tunnel. A comparison of the results obtained on NACA 0012 airfoils of 2-foot and 5-foot chord at the same Reynolds Number permitted an evaluation of the effect of compressibility on transition. The local skin friction along the surface of the NACA 0012 airfoil was measured at a Reynolds Number of 10,000,000. For all the lift coefficient at which tests were made, transition occurred in the region of estimated laminar separation at the low Reynolds Numbers and approach the point of minimum static pressure as a forward limit at the high Reynolds Numbers. The effect of compressibility on transition was slight. None of the usual parameters describing the local conditions in the boundary layer near the transition point served as an index for locating the transition point. As a consequence of the lower turbulence in the 8-foot high-speed tunnel, the transition points occurred consistently farther back along the chord than those measured in the NACA full-scale tunnel. An empirical relation for estimating the location of the transition point for conventional airfoils on the basis of static-pressure distribution and Reynolds Number is presented.

  20. Highly siderophile elements and Os isotope signatures in the K-Pg transition of the Chicxulub peak-ring rocks

    NASA Astrophysics Data System (ADS)

    Sato, H.; Ishikawa, A.; Ferrière, L.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact structure, located in the northern Yucatan Peninsula, Mexico, formed 66 My ago, was drilled by IODP-ICDP 364 expedition in April-May, 2016. A continuous core was successfully recovered from the peak ring from depth between 505.7 and 1334.7 mbsf. In order to determine the distribution and abundance of the projectile component in the Chicxulub peak-ring rocks, we determined highly siderophile elements (HSE: Os, Ir, Ru, Pt, Pd, and Re) concentrations and Os isotope ratio (187Os/188Os) in five samples of Unit 1G from a 75 cm-thick transitional layer between the impactites and early Paleogene rocks (616.59-617.34 mbsf interval). HSE concentrations and 187Os/188Os ratios show systematic variations across the transitional layer. The upper part (616.59-616.63 mbsf) is characterized by about one order of magnitude higher Os, Ir, and Ru contents compared to the average continental crust abundances, but much lower than for the typical Ir-enriched Cretaceous-Paleogene boundary sites (e.g., Gubbio and Caravaca). Relatively flat CI chondrite-normalized HSE patterns are observed in the upper part of the layer. Meanwhile, the HSE concentrations in the lower part of the transitional layer (617.315-617.34 mbsf) are almost equivalent to those of upper continental crust showing pronounced step CI chondrite-normalized HSE patterns (low Ir, and high Pt and Pd). 187Os/188Os and Re/Os ratios in the transitional layer gradually decrease from 0.33 to 0.25 and 35.45 to 1.14, respectively, from bottom to top. These results suggest that the projectile component, with chondritic composition, is enriched in the uppermost part of the transitional layer just below carbonate rocks that are early Paleogene in age, but could be distributed over a thicker interval than for the typical Ir-enriched sites. Further detailed studies of HSE and Os isotope compositions through the stratigraphic sequence will reveal the distribution and dilution effect of the projectile component.

  1. What Is Happening at Spectral Type F5 in Hyades F Stars?

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika; Robinson, Richard; Carpenter, Kenneth; Mena-Werth, Jose

    2002-01-01

    Aiming at a better understanding of the mechanisms heating the chromospheres, transition regions, and coronae of cool stars, we study ultraviolet, low-resolution Hubble Space Telescope/Space Telescope Imaging Spectrograph spectra of Hyades main-sequence F stars. We study the B-V dependence(s) of the chromospheric and transition layer emission line fluxes and their dependences on rotational velocities. We find that the transition layer emission line fluxes and also those of strong chromospheric lines decrease steeply between B-V = 0.42 and 0.45, i.e., at spectral type F5, for which the rotational velocities also decrease steeply. The magnitude of the line-flux decrease increases for lines of ions with increasing degree of ionization. This shows that the line-flux decrease is not due to a change in the surface filling factor but rather due to a change of the relative importance of different heating mechanisms. For early F stars with B-V < 0.42 we find for the transition layer emission lines increasing fluxes for increasing v sin i, indicating magnetohydrodynamic heating. The v sin i dependence is strongest for the high-ionization lines. On the other hand, the low chromospheric lines show no dependence on v sin i, indicating acoustic shock heating for these layers. This also contributes to the heating of the transition layers. The Mg II and Ca II lines show decreasing fluxes for increasing v sin i, as long as v sin i is less than approx. 40 km/s. The coronal X-ray emission also decreases for increasing v sin i, except for v sin i larger than approx. 100 km/s. We have at present no explanation for this behavior. For late F stars the chromospheric lines show v sin i dependences similar to those observed for early F stars, again indicating acoustic heating for these layers. We were unable to determine the v sin i dependence of the transition layer lines because of too few single star targets. The decrease of emission line fluxes at the spectral type F5, with steeply decreasing v sin i, indicates, however, a decreasing contribution of magnetohydrodynamic heating for the late F stars. The X-ray emission for the late F stars increases for increasing v sin i, indicating magnetohydrodynamic heating for the coronae of the late F stars, different from the early F stars.

  2. Atomic-layer soft plasma etching of MoS2

    PubMed Central

    Xiao, Shaoqing; Xiao, Peng; Zhang, Xuecheng; Yan, Dawei; Gu, Xiaofeng; Qin, Fang; Ni, Zhenhua; Han, Zhao Jun; Ostrikov, Kostya (Ken)

    2016-01-01

    Transition from multi-layer to monolayer and sub-monolayer thickness leads to the many exotic properties and distinctive applications of two-dimensional (2D) MoS2. This transition requires atomic-layer-precision thinning of bulk MoS2 without damaging the remaining layers, which presently remains elusive. Here we report a soft, selective and high-throughput atomic-layer-precision etching of MoS2 in SF6 + N2 plasmas with low-energy (<0.4 eV) electrons and minimized ion-bombardment-related damage. Equal numbers of MoS2 layers are removed uniformly across domains with vastly different initial thickness, without affecting the underlying SiO2 substrate and the remaining MoS2 layers. The etching rates can be tuned to achieve complete MoS2 removal and any desired number of MoS2 layers including monolayer. Layer-dependent vibrational and photoluminescence spectra of the etched MoS2 are also demonstrated. This soft plasma etching technique is versatile, scalable, compatible with the semiconductor manufacturing processes, and may be applicable for a broader range of 2D materials and intended device applications. PMID:26813335

  3. Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations collected at the ARM Southern Great Plains site

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Klein, S. A.

    2009-12-01

    11 years of summertime observations at the Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site are used to investigate mechanisms controlling the transition from shallow to deep convection over land. A more humid environment above the boundary layer favors the occurrence of late-afternoon heavy precipitation events. The higher moisture content is brought by wind from south. Greater boundary layer inhomogeneity in moist static energy (MSE) is correlated to larger rain rates at the initial stage of precipitation. MSE inhomogeneity is attributed to both moisture and temperature fields, and is correlated with westerly winds. In an examination of afternoon rain statistics, higher relative humidity above the boundary layer is correlated to an earlier onset and longer duration of precipitation, while greater boundary layer inhomogeneity and atmospheric instability are positively correlated to the total rain amount and the maximum rain rate. On balance, these observations favor theories for the transition that involve a moist free troposphere and boundary layer heterogeneity in preference to those that involve convective available potential energy or convective inhibition. Thus the evidence presented here supports the current emphasis in the modeling community on the entraining nature of convection and the role of boundary layer cold pools in triggering new convection.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Kok Wee; Koshelev, Alexei E.

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. In addition, we found that themore » interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. Lastly, the intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe 2As 2-xP x .« less

  5. Surface nematic order in iron pnictides

    NASA Astrophysics Data System (ADS)

    Song, Kok Wee; Koshelev, Alexei E.

    2016-09-01

    Electronic nematicity plays an important role in iron-based superconductors. These materials have a layered structure and the theoretical description of their magnetic and nematic transitions has been well established in the two-dimensional approximation, i.e., when the layers can be treated independently. However, the interaction between iron layers mediated by electron tunneling may cause nontrivial three-dimensional behavior. Starting from the simplest model for orbital nematic in a single layer, we investigate the influence of interlayer tunneling on the bulk nematic order and a possible preemptive state where this order is only formed near the surface. We found that the interlayer tunneling suppresses the bulk nematicity, which makes favorable the formation of a surface nematic order above the bulk transition temperature. The purely electronic tunneling Hamiltonian, however, favors a nematic order parameter that alternates from layer to layer. The uniform bulk state typically observed experimentally may be stabilized by the coupling with the elastic lattice deformation. Depending on the strength of this coupling, we found three regimes: (i) surface nematic and alternating bulk order, (ii) surface nematic and uniform bulk order, and (iii) uniform bulk order without the intermediate surface phase. The intermediate surface-nematic state may resolve the current controversy about the existence of a weak nematic transition in the compound BaFe2As2 -xPx .

  6. Disruption of the air-sea interface and formation of two-phase transitional layer in hurricane conditions

    NASA Astrophysics Data System (ADS)

    Soloviev, A.; Matt, S.; Fujimura, A.

    2012-04-01

    The change of the air-sea interaction regime in hurricane conditions is linked to the mechanism of direct disruption of the air-sea interface by pressure fluctuations working against surface tension forces (Soloviev and Lukas, 2010). The direct disruption of the air-sea interface due to the Kelvin-Helmholtz (KH) instability and formation of a two-phase transitional layer have been simulated with a computational fluid dynamics model. The volume of fluid multiphase model included surface tension at the water-air interface. The model was initialized with either a flat interface or short wavelets. Wind stress was applied at the upper boundary of the air layer, ranging from zero stress to hurricane force stress in different experiments. Under hurricane force wind, the numerical model demonstrated disruption of the air-water interface and the formation of spume and the two-phase transition layer. In the presence of a transition layer, the air-water interface is no longer explicitly identifiable. As a consequence, the analysis of dimensions suggests a linear dependence for velocity and logarithm of density on depth (which is consistent with the regime of marginal stability in the transition layer). The numerical simulations confirmed the presence of linear segments in the corresponding profiles within the transition layer. This permitted a parameterization of the equivalent drag coefficient due to the presence of the two-phase transition layer at the air-sea interface. This two-phase layer parameterization represented the lower limit imposed on the drag coefficient under hurricane conditions. The numerical simulations helped to reduce the uncertainty in the critical Richardson number applicable to the air-sea interface and in the values of two dimensionless constants; this reduced the uncertainty in the parameterization of the lower limit on the drag coefficient. The available laboratory data (Donelan et al., 2004) are bounded by the two-phase layer parameterization from below and the wave resistance parameterization from above. The available field data (Powell et al., 2003; Black et al., 2007) fall between these two parameterizations, for wind speeds of up to 50 m/s. A few points from the dropsonde data from Powell et al. (2003), obtained at very high wind speeds, are below the theoretical lower limit on the drag coefficient. We also conducted a numerical experiment with imposed short wavelets. Streamwise coherent structures were observed on the water surface, which were especially prominent on the top of wave crests. These intermittent streamwise structures on the top of wavelets, with periodicity in the transverse direction, presumably were a result of the Tollmien-Schlichting (TS) instability. Similar processes take place at the atomization of liquid fuels in cryogenic and diesel engines (Yecko et al., 2002). According to McNaughton and Brunet (2002), the nonlinear stage of the TS instability results in streamwise streaks followed by fluid ejections. This mechanism can contribute to the generation of spume in the form of streaks. Foam streaks are an observable feature on photographic images of the ocean surface under hurricane conditions. The mechanism of the TS instability can also contribute to dispersion of oil spills and other pollutants in hurricane conditions.

  7. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neggers, R. A. J.; Ackerman, A. S.; Angevine, W. M.

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transitionmore » process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.« less

  8. Layer-Dependent Ultrafast Carrier and Coherent Phonon Dynamics in Black Phosphorus.

    PubMed

    Miao, Xianchong; Zhang, Guowei; Wang, Fanjie; Yan, Hugen; Ji, Minbiao

    2018-05-09

    Black phosphorus is a layered semiconducting material, demonstrating strong layer-dependent optical and electronic properties. Probing the photophysical properties on ultrafast time scales is of central importance in understanding many-body interactions and nonequilibrium quasiparticle dynamics. Here, we applied temporally, spectrally, and spatially resolved pump-probe microscopy to study the transient optical responses of mechanically exfoliated few-layer black phosphorus, with layer numbers ranging from 2 to 9. We have observed layer-dependent resonant transient absorption spectra with both photobleaching and red-shifted photoinduced absorption features, which could be attributed to band gap renormalization of higher subband transitions. Surprisingly, coherent phonon oscillations with unprecedented intensities were observed when the probe photons were in resonance with the optical transitions, which correspond to the low-frequency layer-breathing mode. Our results reveal strong Coulomb interactions and electron-phonon couplings in photoexcited black phosphorus, providing important insights into the ultrafast optical, nanomechanical, and optoelectronic properties of this novel two-dimensional material.

  9. First-principles simulations of Graphene/Transition-metal-Dichalcogenides/Graphene Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Li, Xiangguo; Wang, Yun-Peng; Zhang, X.-G.; Cheng, Hai-Ping

    A prototype field-effect transistor (FET) with fascinating properties can be made by assembling graphene and two-dimensional insulating crystals into three-dimensional stacks with atomic layer precision. Transition metal dichalcogenides (TMDCs) such as WS2, MoS2 are good candidates for the atomically thin barrier between two layers of graphene in the vertical FET due to their sizable bandgaps. We investigate the electronic properties of the Graphene/TMDCs/Graphene sandwich structure using first-principles method. We find that the effective tunnel barrier height of the TMDC layers in contact with the graphene electrodes has a layer dependence and can be modulated by a gate voltage. Consequently a very high ON/OFF ratio can be achieved with appropriate number of TMDC layers and a suitable range of the gate voltage. The spin-orbit coupling in TMDC layers is also layer dependent but unaffected by the gate voltage. These properties can be important in future nanoelectronic device designs. DOE/BES-DE-FG02-02ER45995; NERSC.

  10. Blunt body near wake flow field at Mach 6

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; McGinley, Catherine B.; Hannemann, Klaus

    1996-01-01

    Tests were conducted in a Mach 6 flow to examine the reattachment process of an axisymmetric free shear layer associated with the near wake of a 70 deg. half angle, spherically blunted cone with a cylindrical after body. Model angle of incidence was fixed at 0 deg. and free-stream Reynolds numbers based on body diameter ranged from 0.5 x 10(exp 6) to 4 x 10(exp 6). The sensitivity of wake shear layer transition on reattachment heating was investigated. The present perfect gas study was designed to compliment results obtained previously in facilities capable of producing real gas effects. The instrumented blunted cone model was designed primarily for testing in high enthalpy hypervelocity shock tunnels in both this country and abroad but was amenable for testing in conventional hypersonic blowdown wind tunnels as well. Surface heating rates were inferred from temperature - time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. General flow feature (bow shock, wake shear layer, and recompression shock) locations were visually identified by schlieren photography. Mean shear layer position and growth were determined from intrusive pitot pressure surveys. In addition, wake surveys with a constant temperature hot-wire anemometer were utilized to qualitatively characterize the state of the shear layer prior to reattachment. Experimental results were compared to laminar perfect gas predictions provided by a 3-D Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 21 to 29 percent of the forebody stagnation point heating. Peak heating resulting from the reattaching shear layer was found to be a factor of 2 higher than laminar predictions, which suggested a transitional shear layer. Schlieren flow visualization and fluctuating voltage time histories and spectra from the hot wire surveys across the shear layer substantiate this observation. The sensitivity of surface heating to forebody roughness was characterized for a reattaching shear layer. For example, at R(sub infinity), d = 4 x 10(exp 6), when the shear layer was transitional, the magnitude of peak heating from shear layer impingement was reduced by approximately 24 percent when transition grit was applied to the forebody. The spatial location of the local peak, however, remained unchanged.

  11. A discussion of cone and flat-plate Reynolds numbers for equal ratios of the laminar shear to the shear caused by small velocity fluctuations in a laminar boundary layer

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal

    1957-01-01

    By use of the linear theory of boundary-layer stability and Schlichting's formula for the maximum amplification of a disturbance, an approximate relation is derived between the Reynolds number on a cone and the Reynolds number on a flat plate for equal closeness to transition. The indication is that the ratio of the cone Reynolds number for transition, based on the distance to the cone apex, to the plate Reynolds number for transition, based on the distance to the leading edge, is not in general equal to 3, as has been suggested by other investigators, but varies from 3 when transition occurs at the minimum critical Reynolds number to unity when transition occurs at a large multiple of the critical Reynolds number.

  12. Pattern transition from nanohoneycomb to nanograss on germanium by gallium ion bombardment

    NASA Astrophysics Data System (ADS)

    Zheng Xiao-Hu郑, 晓虎; Zhang Miao张, 苗; Huang An-Ping黄, 安平; Xiao Zhi-Song肖, 志松; Paul, K. Chu朱 剑 豪; Wang Xi王, 曦; Di Zeng-Feng狄, 增峰

    2015-05-01

    During the irradiation of Ge surface with Ga+ ions up to 1017 ions·cm-2, various patterns from ordered honeycomb to nanograss structure appear to be decided by the ion beam energy. The resulting surface morphologies have been studied by scanning electron microscopy and atomic force microscopy. For high energy Ga+ irradiation (16-30 keV), by controlling the ion fluence, we have captured that the equilibrium nanograss morphology also originates from the ordered honeycomb structure. When honeycomb holes are formed by ion erosion, heterogeneous distribution of the deposited energy along the holes leads to viscous flow from the bottom to the plateau. Redistribution of target atoms results in the growth of protuberances on the plateau, and finally the pattern evolution from honeycomb to nanograss with an equilibrium condition. Project supported by the National Natural Science Funds for Excellent Young Scholar, China (Grant No. 51222211), the National Natural Science Foundation of China (Grant Nos. 61176001 and 61006088), the National Basic Research Program of China (Grant No. 2010CB832906), the Pujiang Talent Project of Shanghai, China (Grant No. 11PJ1411700), the Hong Kong Research Grants Council (RGC) General Research Funds (GRF), China (Grant No. 112212), the City University of Hong Kong of Hong Kong Applied Research Grant (ARG), China (Grant No. 9667066), and the International Collaboration and Innovation Program on High Mobility Materials Engineering of Chinese Academy of Sciences.

  13. Superconductivity in two-dimensional NbSe2 field effect transistors

    NASA Astrophysics Data System (ADS)

    El-Bana, Mohammed S.; Wolverson, Daniel; Russo, Saverio; Balakrishnan, Geetha; Mck Paul, Don; Bending, Simon J.

    2013-12-01

    We describe investigations of superconductivity in few molecular layer NbSe2 field effect transistors. While devices fabricated from NbSe2 flakes less than eight molecular layers thick did not conduct, thicker flakes were superconducting with an onset Tc that was only slightly depressed from the bulk value for 2H-NbSe2 (7.2 K). The resistance typically showed a small, sharp high temperature transition followed by one or more broader transitions which usually ended in a wide tail to zero resistance at low temperatures. We speculate that these multiple resistive transitions are related to disorder in the layer stacking. The behavior of several flakes has been characterized as a function of temperature, applied field and back-gate voltage. We find that the conductance in the normal state and transition temperature depend weakly on the gate voltage, with both conductivity and Tc decreasing as the electron concentration is increased. The application of a perpendicular magnetic field allows the evolution of different resistive transitions to be tracked and values of the zero temperature upper critical field, Hc2(0), and coherence length, ξ(0), to be independently estimated. Our results are analyzed in terms of available theories for these phenomena.

  14. Phase Transition of Single-Layer Molybdenum Disulfide Nanosheets under Mechanical Loading Based on Molecular Dynamics Simulations.

    PubMed

    Pang, Haosheng; Li, Minglin; Gao, Chenghui; Huang, Haili; Zhuo, Weirong; Hu, Jianyue; Wan, Yaling; Luo, Jing; Wang, Weidong

    2018-03-27

    The single-layer molybdenum disulfide (SLMoS2) nanosheets have been experimentally discovered to exist in two different polymorphs, which exhibit different electrical properties, metallic or semiconducting. Herein, molecular dynamics (MD) simulations of nanoindentation and uniaxial compression were conducted to investigate the phase transition of SLMoS2 nanosheets. Typical load-deflection curves, stress-strain curves, and local atomic structures were obtained. The loading force decreases sharply and then increases again at a critical deflection under the nanoindentation, which is inferred to the phase transition. In addition to the layer thickness, some related bond lengths and bond angles were also found to suddenly change as the phase transition occurs. A bell-like hollow, so-called residual deformation, was found to form, mainly due to the lattice distortion around the waist of the bell. The effect of indenter size on the residual hollow was also analyzed. Under the uniaxial compression along the armchair direction, a different phase transition, a uniformly quadrilateral structure, was observed when the strain is greater than 27.7%. The quadrilateral structure was found to be stable and exhibit metallic conductivity in view of the first-principle calculation.

  15. Network traffic behaviour near phase transition point

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  16. COSAL: A black-box compressible stability analysis code for transition prediction in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Malik, M. R.

    1982-01-01

    A fast computer code COSAL for transition prediction in three dimensional boundary layers using compressible stability analysis is described. The compressible stability eigenvalue problem is solved using a finite difference method, and the code is a black box in the sense that no guess of the eigenvalue is required from the user. Several optimization procedures were incorporated into COSAL to calculate integrated growth rates (N factor) for transition correlation for swept and tapered laminar flow control wings using the well known e to the Nth power method. A user's guide to the program is provided.

  17. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    NASA Astrophysics Data System (ADS)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  18. Carrier lifetime in exfoliated few-layer graphene determined from intersubband optical transitions.

    PubMed

    Limmer, Thomas; Feldmann, Jochen; Da Como, Enrico

    2013-05-24

    We report a femtosecond transient spectroscopy study in the near to middle infrared range, 0.8-0.35 eV photon energy, on graphene and few layer graphene single flakes. The spectra show an evolving structure of photoinduced absorption bands superimposed on the bleaching caused by Pauli blocking of the interband optically coupled states. Supported by tight-binding model calculations, we assign the photoinduced absorption features to intersubband transitions as the number of layers is increased. Interestingly, the intersubband photoinduced resonances show a longer dynamics than the interband bleaching, because of their independence from the absolute energy of the carriers with respect to the Dirac point. The dynamic of these intersubband transitions reflects the lifetime of the hot carriers and provides an elegant method to access it in this important class of semimetals.

  19. Carrier Lifetime in Exfoliated Few-Layer Graphene Determined from Intersubband Optical Transitions

    NASA Astrophysics Data System (ADS)

    Limmer, Thomas; Feldmann, Jochen; Da Como, Enrico

    2013-05-01

    We report a femtosecond transient spectroscopy study in the near to middle infrared range, 0.8-0.35 eV photon energy, on graphene and few layer graphene single flakes. The spectra show an evolving structure of photoinduced absorption bands superimposed on the bleaching caused by Pauli blocking of the interband optically coupled states. Supported by tight-binding model calculations, we assign the photoinduced absorption features to intersubband transitions as the number of layers is increased. Interestingly, the intersubband photoinduced resonances show a longer dynamics than the interband bleaching, because of their independence from the absolute energy of the carriers with respect to the Dirac point. The dynamic of these intersubband transitions reflects the lifetime of the hot carriers and provides an elegant method to access it in this important class of semimetals.

  20. Low temperature detection of phase transitions and relaxation processes in strontium titanate by means of cathodoluminescence

    NASA Astrophysics Data System (ADS)

    Yang, B.; Townsend, P. D.; Fromknecht, R.

    2004-11-01

    Cathodoluminescence is an effective tool for investigating phase changes and relaxation processes in insulators and data are presented for strontium titanate. The results demonstrate considerable sensitivity to the origin of the samples as the detailed spectra and intensity changes with temperature are strongly dependent on the growth conditions, trace impurities and radiation induced defects. It is of particular note that in the defective surface layer the normal second-order phase transition cited near 105 K transforms into a sharply defined first-order transition because of the relaxation of the near surface layer in doped crystals. Detection of the other main relaxation stages is also straightforward via intensity and spectral changes. Secondary effects of phase changes incorporated within the surface layers are clearly evident, particularly for the 197 K sublimation of CO2 nanoparticle inclusions.

  1. Combustion theory for liquids with a free surface. 3: Special problems

    NASA Technical Reports Server (NTRS)

    Milkov, S. N.; Sukhov, G. S.; Yarin, L. P.

    1986-01-01

    Two special problems concerning the combustion of liquids with a free surface, i.e., flame quenching during the mixing of a burning liquid inside a container and liquid burnout from a porous layer, are analyzed using a quasi-one-dimensional model. The critical parameters corresponding to the quenching of a burning fluid with a free surface are determined. Determinations are also made of the limiting pressure gradients corresponding to the transition from the combustion mode where the liquid evaporates from the surface of a porous layer to the mode where the phase transition surface lies inside the porous layer.

  2. Studying the Afternoon Transition of the Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lothon, Marie; Lenschow, Donald H.

    2010-07-01

    The planetary boundary layer is the part of the atmosphere that interacts directly with the Earth's surface on a time scale of a few hours or less. In daytime, solar heating of the surface can generate buoyant turbulent eddies that efficiently mix the air through a depth of more than a kilometer. This convective boundary layer (CBL) is a conduit for trace gases such as water vapor and carbon dioxide that are emitted or absorbed by the surface (and surface vegetation) to be transported into or out of the layer nearest the surface. The CBL has been extensively observed and relatively successfully modeled. But the early morning transition—when the CBL emerges from the nocturnal boundary layer—and the late afternoon transition—when the CBL decays to an intermittently turbulent “residual layer” overlying a shallower, stably stratified boundary layer—are difficult to observe and model due to turbulence intermittency and anisotropy, horizontal heterogeneity, and rapid time changes. Even the definition of the boundary layer during these transitional periods is fuzzy; there is no consensus on what criteria to use and no simple scaling laws, as there are for the CBL, that apply during these transitions.

  3. Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores.

    PubMed

    Aliabadi, Roohollah; Gurin, Péter; Velasco, Enrique; Varga, Szabolcs

    2018-01-01

    The effect of strong confinement on the positional and orientational ordering is examined in a system of hard rectangular rods with length L and diameter D (L>D) using the Parsons-Lee modification of the second virial density-functional theory. The rods are nonmesogenic (L/D<3) and confined between two parallel hard walls, where the width of the pore (H) is chosen in such a way that both planar (particle's long axis parallel to the walls) and homeotropic (particle's long axis perpendicular to the walls) orderings are possible and a maximum of two layers is allowed to form in the pore. In the extreme confinement limit of H≤2D, where only one-layer structures appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which becomes sharper as L→H. In wider pores (2D

  4. Transitional and turbulent flat-plate boundary layers with heat transfer

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz

    2010-11-01

    We report on our direct numerical simulation of two incompressible, nominally zero-pressure-gradient flat-plate boundary layers from momentum thickness Reynolds number 80 to 1950. Heat transfer between the constant-temperature solid surface and the free-stream is also simulated with molecular Prandtl number=1. Throughout the entire flat-plate, the ratio of Stanton number and skin-friction St/Cfdeviates from the exact Reynolds analogy value of 0.5 by less than 1.5%. Turbulent Prandtl number t peaks at the wall. Preponderance of hairpin vortices is observed in both the transitional and turbulent regions of the boundary layers. In particular, the internal structure of merged turbulent spots is hairpin forest; the internal structure of infant turbulent spots is hairpin packet. Numerous hairpin vortices are readily detected in both the near-wall and outer regions of the boundary layers up to momentum thickness Reynolds number 1950. This suggests that the hairpin vortices in the turbulent region are not simply the aged hairpin forests convected from the upstream transitional region. Temperature iso-surfaces in the companion thermal boundary layers are found to be a useful tracer in identifying hairpin vortex structures.

  5. The stability boundary of group-III transition metal diboride ScB 2 (0 0 0 1) surfaces

    NASA Astrophysics Data System (ADS)

    Zhao, Hui; Qin, Na

    2012-01-01

    Experimental observations and theoretical investigations exhibit that a group-IV(V) transition metal diboride (0 0 0 1) surface is terminated with a 1 × 1 TM(B) layer. As to a group-III transition metal diboride, we have investigated the stability boundary of ScB2 (0 0 0 1) surfaces using first principles total energy plane-wave pseudopotential method based on density functional theory. The Mulliken charge population analysis shows that Sc atoms in the second layer cannot provide B atoms in the first layer with sufficient electrons to form a complete graphene-like boron layer. We also found that the charge transfer between the first and the second layer for the B-terminated surface is more than that for Sc-terminated surface. It elucidates the reason that the outermost interlayer spacing contract more strongly in the B-terminated surface than in the Sc-terminated surface. The surface energies of both terminated ScB2 (0 0 0 1) surfaces as a function of the chemical potential of B are also calculated to check the relative stability of the two surface structures.

  6. Enthalpy effects on hypervelocity boundary layers

    NASA Astrophysics Data System (ADS)

    Adam, Philippe H.

    Shots with air and carbon dioxide were carried out in the T5 shock tunnel at GALCIT to study enthalpy effects on hypervelocity boundary layers. The model tested was a 1-meter long, 5-deg half-angle cone. It was instrumented with 51 chromel-constantan coaxial thermocouples and the surface heat transfer rate was computed to deduce the state of the boundary layer. Transitional boundary layers obtained confirm the stabilizing effect of enthalpy. As the reservoir enthalpy is increased, the transition Reynolds number evaluated at the reference conditions increases. This stabilizing effect is more rapid in gases with lower dissociation energy and it seems to level off when no further dissociation can be achieved. Normalizing the reservoir enthalpy with the edge enthalpy appears to collapse the data for all gases onto a single curve. A similar collapse is obtained when normalizing both the transition location and the reservoir enthalpy with the maximum temperature conditions obtained with BLIMPK, a nonequilibrium boundary layer code. The observation that reference conditions are more appropriate to normalize high enthalpy transition data was taken a step further by comparing the tunnel data with results from a reentry experiment. When the edge conditions are used, the tunnel and flight data are around an order of magnitude apart. This is commonly attributed to high disturbance levels in tunnels that cause the boundary layer to transition early. However, when the reference conditions are used instead, the tunnel and flight data come within striking distance of one another although the trends with enthalpy are reversed. This difference could be due to the cone bending and nose blunting. Experimental laminar heat transfer levels were compared to numerical results obtained with BLIMPK. Results for air indicate that the reactions are probably in nonequilibrium and that the wall is catalytic. The catalycity is seen to yield higher surface heat transfer rates than the noncatalytic and frozen chemistry models. The results for carbon dioxide, however, are inconclusive. This is, perhaps, because of inadequate modeling of the reactions. Experimentally, an anomalous yet repeatable, rise in the laminar heat transfer level can be seen at medium enthalpies in carbon dioxide boundary layers.

  7. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides.

    PubMed

    Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras; Coleman, Jonathan N; Strano, Michael S

    2012-11-01

    The remarkable properties of graphene have renewed interest in inorganic, two-dimensional materials with unique electronic and optical attributes. Transition metal dichalcogenides (TMDCs) are layered materials with strong in-plane bonding and weak out-of-plane interactions enabling exfoliation into two-dimensional layers of single unit cell thickness. Although TMDCs have been studied for decades, recent advances in nanoscale materials characterization and device fabrication have opened up new opportunities for two-dimensional layers of thin TMDCs in nanoelectronics and optoelectronics. TMDCs such as MoS(2), MoSe(2), WS(2) and WSe(2) have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as transistors, photodetectors and electroluminescent devices. We review the historical development of TMDCs, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.

  8. Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides.

    PubMed

    Jana, Manoj K; Rao, C N R

    2016-09-13

    The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS2 In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  9. Two-dimensional inorganic analogues of graphene: transition metal dichalcogenides

    PubMed Central

    Jana, Manoj K.; Rao, C. N. R.

    2016-01-01

    The discovery of graphene marks a major event in the physics and chemistry of materials. The amazing properties of this two-dimensional (2D) material have prompted research on other 2D layered materials, of which layered transition metal dichalcogenides (TMDCs) are important members. Single-layer and few-layer TMDCs have been synthesized and characterized. They possess a wide range of properties many of which have not been known hitherto. A typical example of such materials is MoS2. In this article, we briefly present various aspects of layered analogues of graphene as exemplified by TMDCs. The discussion includes not only synthesis and characterization, but also various properties and phenomena exhibited by the TMDCs. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501969

  10. Laminar-Boundary-Layer Oscillations and Transition on a Flat Plate

    NASA Technical Reports Server (NTRS)

    Schubauer, G B; Skramstad, H K

    1948-01-01

    This is an account of an investigation in which oscillations were discovered in the laminar boundary layer along a flat plate. These oscillations were found during the course of an experiment in which transition from laminar to turbulent flow was being studied on the plate as the turbulence in the wind stream was being reduced to unusually low values by means of damping screens. The first part of the paper deals with experimental methods and apparatus, measurements of turbulence and sound, and studies of transition. A description is then given of the manner in which oscillations were discovered and how they were found to be related to transition, and then how controlled oscillations were produced and studied in detail.

  11. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  12. Calculation of the absolute free energy of a smectic-A phase

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004), 10.1063/1.1810472] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.

  13. Molecular Characterization of Squamous Cell Carcinomas From Recessive Dystrophic Epidermolysis Bullosa

    DTIC Science & Technology

    2006-09-01

    junctions found primarily in epithelial tissues but also in certain non-epithelial tissues including the meninges, dendritic reticular cells of lymph node...epidermal thickening, a phenotype becoming more prominent in adult animals. To further examine the transition between the stratum granulosum and stratum...granular cell layers of wild-type and transgenic skin. In control epidermis, an abrupt transition was observed from the granular layer to the stratum

  14. Numerical Simulation of Hypersonic Boundary Layer Receptivity, Transient Growth and Transition With Surface Roughness

    DTIC Science & Technology

    2009-12-31

    of receptivity of the Mach 5.92 flow over a flat plate to two- dimensional wall perturbations with surface roughness: 1) amplitude...contain a significantly large intervalθ compared with the normal grid spacing h∆ , which may lead to a deterioration of accuracy of the method... of hypersonic boundary layer receptivity, transient growth and transition with surface roughness. The main approach is to use

  15. Transition Helmholtz free energy, entropy, and heat capacity of free-standing smectic films in water: A mean-field treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śliwa, Izabela, E-mail: izasliwa@ifmpan.poznan.pl; Zakharov, A. V., E-mail: alexandre.zakharov@yahoo.ca

    Using the extended McMillan's mean field approach with anisotropic forces a study of both the structural and thermodynamic properties of free-standing smectic film (FSSF) in water on heating to the isotropic temperature is carried out numerically. By solving the self-consistent nonlinear equations for the order parameters, we obtained that the smectic-A-isotropic (AI) transition occurs through the series of layer-thinning transitions causing the films to thin in the stepwise manner as the temperature is increased above the bulk smectic-A-isotropic temperature T{sub AI}(bulk). With enhanced pair interactions in the bounding layers, the smectic-isotropic transition corresponds to smectic melting of the central layers.more » The effects of surface “enhanced” pair interactions in the bounding layers and of film thickness on the orientational and translational order parameters, the Helmholtz free energy and entropy, as well as the temperature dependence of the heat capacity of FSSFs, have also been investigated. Reasonable agreement between the theoretically predicted and the experimentally obtained – by means of optical microscopy and ellipsometry techniques – data of the temperature when the thin decylcyanobiphenyl smectic film immersing in water ruptures has been obtained.« less

  16. Ultrathin and Atomically Flat Transition-Metal Oxide: Promising Building Blocks for Metal-Insulator Electronics.

    PubMed

    Cui, Qingsong; Sakhdari, Maryam; Chamlagain, Bhim; Chuang, Hsun-Jen; Liu, Yi; Cheng, Mark Ming-Cheng; Zhou, Zhixian; Chen, Pai-Yen

    2016-12-21

    We present a new and viable template-assisted thermal synthesis method for preparing amorphous ultrathin transition-metal oxides (TMOs) such as TiO 2 and Ta 2 O 5 , which are converted from crystalline two-dimensional (2D) transition-metal dichalcogenides (TMDs) down to a few atomic layers. X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning transmission electron microscopy (STEM) were used to characterize the chemical composition and bonding, surface morphology, and atomic structure of these ultrathin amorphous materials to validate the effectiveness of our synthesis approach. Furthermore, we have fabricated metal-insulator-metal (MIM) diodes using the TiO 2 and Ta 2 O 5 as ultrathin insulating layers with low potential barrier heights. Our MIM diodes show a clear transition from direct tunneling to Fowler-Nordheim tunneling, which was not observed in previously reported MIM diodes with TiO 2 or Ta 2 O 5 as the insulating layer. We attribute the improved performance of our MIM diodes to the excellent flatness and low pinhole/defect densities in our TMO insulting layers converted from 2D TMDs, which enable the low-threshold and controllable electron tunneling transport. We envision that it is possible to use the ultrathin TMOs converted from 2D TMDs as the insulating layer of a wide variety of metal-insulator and field-effect electronic devices for various applications ranging from microwave mixing, parametric conversion, infrared photodetection, emissive energy harvesting, to ultrafast electronic switching.

  17. Nonuniform concentration - A mechanism for drag reduction.

    NASA Technical Reports Server (NTRS)

    Rivard, W. C.; Kulinski, E. S.

    1972-01-01

    A large reduction in drag coefficient has been observed in certain external flows of aqueous solutions with high molecular weight polymer additives. A change in the near wake configuration is phenomenologically responsible for the drag reduction, but the underlying mechanism is presently unknown. An analogy to known phenomena in particulate suspensions is drawn which suggests nonuniform concentration of the polymer additive as an explanation. An analysis of the boundary layer on a sphere with varying viscosity was made to investigate the effect. The results indicate early transition to turbulence for concentration variations whose length scale is small compared with the momentum boundary layer thickness. Stabilization and delayed transition are indicated for thicker concentration layers. Observations are suggested for the thin concentration layers.

  18. Charge-density study on layered oxyarsenides (LaO)MAs (M = Mn, Fe, Ni, Zn)

    NASA Astrophysics Data System (ADS)

    Takase, Kouichi; Hiramoto, Shozo; Fukushima, Tetsuya; Sato, Kazunori; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2017-12-01

    Using synchrotron X-ray powder diffraction, we investigate the charge-density distributions of the layered oxypnictides (LaO)MnAs, (LaO)FeAs, (LaO)NiAs, and (LaO)ZnAs, which are an antiferromagnetic semiconductor, a parent material of an iron-based superconductor, a low-temperature superconductor, and a non-magnetic semiconductor, respectively. For the metallic samples, clear charge densities are observed in both the transition-metal pnictide layers and the rare-earth-oxide layers. However, in the semiconducting samples, there is no finite charge density between the transition-metal element and As. These differences in charge density reflect differences in physical properties. First-principles calculations using density functional theory reproduce the experimental results reasonably well.

  19. Hypersonic Boundary Layer Instability Over a Corner

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Zhao, Hong-Wu; McClinton, Charles (Technical Monitor)

    2001-01-01

    A boundary-layer transition study over a compression corner was conducted under a hypersonic flow condition. Due to the discontinuities in boundary layer flow, the full Navier-Stokes equations were solved to simulate the development of disturbance in the boundary layer. A linear stability analysis and PSE method were used to get the initial disturbance for parallel and non-parallel flow respectively. A 2-D code was developed to solve the full Navier-stokes by using WENO(weighted essentially non-oscillating) scheme. The given numerical results show the evolution of the linear disturbance for the most amplified disturbance in supersonic and hypersonic flow over a compression ramp. The nonlinear computations also determined the minimal amplitudes necessary to cause transition at a designed location.

  20. Electrophoretic formation of semiconductor layers with adjustable band gap

    NASA Astrophysics Data System (ADS)

    Shindrov, Alexander; Yuvchenko, Sergey; Vikulova, Maria; Tretyachenko, Elena; Zimnyakov, Dmitry; Gorokhovsky, Alexander

    2017-11-01

    The ceramic layers of the potassium polytitanates modified by transition metal salts were electrophoretically deposited onto the surface of glassy substrate coated with indium-tin oxide. The deposition allows obtaining a dense ceramic layer formed by composite agglomerates consisting of nanoscale particles with average size of 130-190 nm. The optical absorption spectra of the coatings modified in the mixtures of aqueous solutions of different transition metal salts were investigated. It was recognized that a bandgap value of these composites can be adjusted in a range from 1.4 to 2.3 eV depending the chemical composition of layered double hydroxide obtained during modification. This might be very promising for optoelectronic applications of such coatings due to an explicit control of optical properties.

  1. Measure Guideline: Transitioning from Three-Coat Stucco to One-Coat Stucco with EPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brozyna, K.; Davis, G.; Rapport, A.

    2012-04-01

    This Measure Guideline has been developed to help builders transition from using a traditional three-coat stucco wall-cladding system to a one-coat stucco wall-cladding system with expanded polystyrene (EPS) insulated sheathing. The three-coat system uses a base layer, a fill layer, and a finish layer. The one-coat system maintains the look of a traditional stucco system but uses only a base layer and a finish coat over EPS insulation that achieves higher levels of energy efficiency. Potential risks associated with the installation of a one-coat stucco system are addressed in terms of design, installation, and warranty concerns such as cracking andmore » delamination, along with mitigation strategies to reduce these risks.« less

  2. X-ray Study of the Electric Double Layer at the n-Hexane/Nanocolloidal Silica Interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tikhonov,A.

    The spatial structure of the transition region between an insulator and an electrolyte solution was studied with x-ray scattering. The electron-density profile across the n-hexane/silica sol interface (solutions with 5, 7, and 12 nm colloidal particles) agrees with the theory of the electrical double layer and shows separation of positive and negative charges. The interface consists of three layers, i.e., a compact layer of Na{sup +}, a loose monolayer of nanocolloidal particles as part of a thick diffuse layer, and a low-density layer sandwiched between them. Its structure is described by a model in which the potential gradient at themore » interface reflects the difference in the potentials of 'image forces' between the cationic Na{sup +} and anionic nanoparticles and the specific adsorption of surface charge. The density of water in the large electric field ({approx}10{sup 9}-10{sup 10} V/m) of the transition region and the layering of silica in the diffuse layer is discussed.« less

  3. Diagenesis, weathering and paleoenvironmental conditions from postglacial diamictite/cap carbonate transition layers of the Otavi Group (NW-Namibia)

    NASA Astrophysics Data System (ADS)

    Gyollai, I.; Popp, F.; Mader, D.; Koeberl, Ch.

    2012-04-01

    Introduction The so-called "Snowball Earth hypothesis" states that the "Sturtian" (710 Ma) and "Marinoan" glaciations (635 Ma) were of global extent and may have lasted for several million years. Our samples were collected from conspicuous transition layers on top of the glaciogenic Chuos (Sturtian) (10 samples) and Ghaub (Marinoan) formations (63 samples) of the Neoproterozoic Otavi Group in NW-Namibia. The goal of this study is to obtain information concerning the provenance and geochemical composition of postglacial diamictite/cap carbonate transition layers and to estimate the paleoenvironmental conditions with respect to glacio-marine sea water composition and attendant sediment accumulation in mineralogical-geochemical aspects. Methods The mineralogical composition of our samples was studied using the petrographic microscope, X-ray powder diffraction, cathodoluminescence microscopy, and micro-Raman spectrometry. Instrumental neutron activation and X-ray fluorescence analyses, as well as analytical electron microscopy, were used for the geochemical study. Results Detrital components derived from crystalline and/or dolomite platform source areas are enclosed within a diagenetically recrystallized matrix of carbonate and quartz minerals. Clay samples from both, Marinoan and some Sturtian postglacial layers are characterized by high Ni/Co, Cr/V, and low Th/Sc, La/Sc, V/Ni and Cr/Ni ratios compared to PAAS (Postarchean Australian shale, [1]), which could indicate mafic-ultramafic source material[1]. According to SEM-EDX measurements, only hematite, quartz, and feldspar make up the detrital composition, thus the Cr-Ni enrichment does not seem to be associated with any specific mineral phases. Specific results for the Sturtian postglacial transition layers: An U/Th ratio >0.75, and Mo-enrichment in the topmost iron-rich Sturtian diamictites (Chuos Fm.) and their superposed postglacial boundary layers (Rasthof Fm) indicates reducing conditions in the sea water [2,3 ]. The detritus of the basal cap carbonates is rich in kaolinite and montmorillonite and has low K/Cs values, indicating a high weathering rate. Specific results for the Marinoan postglacial transition layers: The Marinoan diamictites (Ghaub Fm.) and their superposed postglacial transition layers (basal Maieberg Fm) are characterized in a few cases by very high Th/Co, Th/Sc and LREE/HREE ratios, which indicate some influence of a felsic source area. The detrital/recrystallized components of these iron-poor diamictites are rich in pyrite and quartz and display a REE enrichment compared to PAAS, which indicates a hydrothermal component during their accumulation [3]. Conlusions 1) Sturtian layers: possibly different source areas supplied the sedimentary basins 2) Marinoan layers : sediments were influenced by hydrothermal fluids and diagenetic alteration 3) Reducing conditions existed in the marine environment during both of the "Snowball Earth" glaciation periods each followed by oxidative conditions reflected in the geochemical composition of related postglacial cap carbonates. Acknowledgement Our work is funded by the Austrian Academy of Sciences (IGCP 512) (to CK).

  4. Design And Ground Testing For The Expert PL4/PL5 'Natural And Roughness Induced Transition'

    NASA Astrophysics Data System (ADS)

    Masutti, Davie; Chazot, Olivier; Donelli, Raffaele; de Rosa, Donato

    2011-05-01

    Unpredicted boundary layer transition can impact dramatically the stability of the vehicle, its aerodynamic coefficients and reduce the efficiency of the thermal protection system. In this frame, ESA started the EXPERT (European eXPErimental Reentry Testbed) program to pro- vide and perform in-flight experiments in order to obtain aerothermodynamic data for the validation of numerical models and of ground-to-flight extrapolation methodologies. Considering the boundary layer transition investigation, the EXPERT vehicle is equipped with two specific payloads, PL4 and PL5, concerning respectively the study of the natural and roughness induced transition. The paper is a survey on the design process of these two in-flight experiments and it covers the major analyses and findings encountered during the development of the payloads. A large amount of transition criteria have been investigated and used to estimate either the dangerousness of the height of the distributed roughness, arising due to nose erosion, or the effectiveness of height of the isolated roughness element forcing the boundary layer transition. Supporting the PL4 design, linear stability computations and CFD analyses have been performed by CIRA on the EXPERT flight vehicle to determine the amplification factor of the boundary layer instabilities at different point of the re-entry trajectory. Ground test experiments regarding the PL5 are carried on in the Mach 6 VKI H3 Hypersonic Wind Tunnel with a Reynolds numbers ranging from 18E6/m to 26E6/m. Infrared measurements (Stanton number) and flow visualization are used on a 1/16 scaled model of the EXPERT vehicle and a flat plate to validate the Potter and Whitfield criterion as a suitable methodology for ground-to-flight extrapolation and the payload design.

  5. Infrared Images of Boundary Layer Transition on the D8 Transport Configuration in the LaRC 14- by 22-Foot Subsonic Tunnel

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Gatlin, Gregory M.

    2015-01-01

    Grit, trip tape, or trip dots are routinely applied on the leading-edge regions of the fuselage, wings, tails or nacelles of wind tunnel models to trip the flow from laminar to turbulent. The thickness of the model's boundary layer is calculated for nominal conditions in the wind tunnel test to determine the effective size of the trip dots, but the flow over the model may not transition as intended for runs with different flow conditions. Temperature gradients measured with an infrared camera can be used to detect laminar to turbulent boundary layer transition on a wind tunnel model. This non-intrusive technique was used in the NASA Langley 14- by 22-Foot Subsonic Tunnel to visualize the behavior of the flow over a D8 transport configuration model. As the flow through the wind tunnel either increased to or decreased from the run conditions, a sufficient temperature difference existed between the air and the model to visualize the transition location (due to different heat transfer rates through the laminar and the turbulent boundary layers) for several runs in this test. Transition phenomena were visible without active temperature control in the atmospheric wind tunnel, whether the air was cooler than the model or vice-versa. However, when the temperature of the model relative to the air was purposely changed, the ability to detect transition in the infrared images was enhanced. Flow characteristics such as a wing root horseshoe vortex or the presence of fore-body vortical flows also were observed in the infrared images. The images of flow features obtained for this study demonstrate the usefulness of current infrared technology in subsonic wind tunnel tests.

  6. Direct Numerical Simulation of Transition in a Swept-Wing Boundary Layer

    NASA Technical Reports Server (NTRS)

    Duan, Lian; Choudhari, Meelan M.; Li, Fei

    2013-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing derived from a two-dimensional, partial-differential-equation based eigenvalue computation; and the mode selected for forcing corresponds to the most amplified secondary instability mode which, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. Both the growth of the secondary instability wave and the resulting onset of laminar-turbulent transition are captured within the DNS computations. The growth of the secondary instability wave in the DNS solution compares well with linear secondary instability theory when the amplitude is small; the linear growth is followed by a region of reduced growth resulting from nonlinear effects before an explosive onset of laminar breakdown to turbulence. The peak fluctuations are concentrated near the boundary layer edge during the initial stage of transition, but rapidly propagates towards the surface during the process of laminar breakdown. Both time-averaged statistics and flow visualization based on the DNS reveal a sawtooth transition pattern that is analogous to previously documented surface flow visualizations of transition due to stationary crossflow instability. The memory of the stationary crossflow vortex is found to persist through the transition zone and well beyond the location of the maximum skin friction.

  7. Mechanosensitivity below Ground: Touch-Sensitive Smell-Producing Roots in the Shy Plant Mimosa pudica.

    PubMed

    Musah, Rabi A; Lesiak, Ashton D; Maron, Max J; Cody, Robert B; Edwards, David; Fowble, Kristen L; Dane, A John; Long, Michael C

    2016-02-01

    The roots of the shy plant Mimosa pudica emit a cocktail of small organic and inorganic sulfur compounds and reactive intermediates into the environment, including SO2, methanesulfinic acid, pyruvic acid, lactic acid, ethanesulfinic acid, propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, phenothiazine, and thioformaldehyde, an elusive and highly unstable compound that, to our knowledge, has never before been reported to be emitted by a plant. When soil around the roots is dislodged or when seedling roots are touched, an odor is detected. The perceived odor corresponds to the emission of higher amounts of propanesulfenic acid, 2-aminothiophenol, S-propyl propane 1-thiosulfinate, and phenothiazine. The mechanosensitivity response is selective. Whereas touching the roots with soil or human skin resulted in odor detection, agitating the roots with other materials such as glass did not induce a similar response. Light and electron microscopy studies of the roots revealed the presence of microscopic sac-like root protuberances. Elemental analysis of these projections by energy-dispersive x-ray spectroscopy revealed them to contain higher levels of K(+) and Cl(-) compared with the surrounding tissue. Exposing the protuberances to stimuli that caused odor emission resulted in reductions in the levels of K(+) and Cl(-) in the touched area. The mechanistic implications of the variety of sulfur compounds observed vis-à-vis the pathways for their formation are discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Capitate glandular trichomes of Helianthus annuus (Asteraceae): ultrastructure and cytological development.

    PubMed

    Amrehn, Evelyn; Heller, Annerose; Spring, Otmar

    2014-01-01

    Previous studies have shown that capitate glandular trichomes (CGT) of the common sunflower, Helianthus annuus, produce sesquiterpene lactones (STL) and flavonoids, which are sequestered and accumulated between the apical cuticle and the wall of the tip cells. To explore the cellular structures required and putatively involved in the STL biosynthesis and secretion, the present study was focused on the development of CGT and the comparison of the ultrastructure of its different cell types. Gradual maturation of flowers in the capitulum of the sunflower provided the possibility to study the simultaneous differentiation from the primordial to the secretory stage of CGT located by light microscopy (bright field, differential interference contrast and fluorescence) as well as transmission electron microscopy. It was shown that the CGT of sunflower anthers had a biseriate structure with up to 14 cell pairs. In mature trichomes, the apical cells called secretory cells were covered entirely by a large cuticle globe, which enclosed the resinous terpenoids and was specialised in thickness and structure. The secretory cells lacked chloroplasts and contained mainly smooth endoplasmic reticulum (sER). Conspicuous cell wall protuberances and an accumulation of mitochondria nearby occurred in the horizontally oriented cell walls. The cytological differences between stalk cells and secretory cells indicate a different function. The dominance of sER suggests its involvement in STL biosynthesis and cell wall protuberances enlarge the surface of the plasmamembrane of secretory cells and may be involved in the secretion processes of STL into the subcuticular space.

  9. [Identification characters of leaf morphological and venation pattern of Houttuynia cordata with its confused herb Gymnotheca chinensis].

    PubMed

    Lu, Hai-Lin; Guo, Min; Liao, Yue-Kui; Huang, Ding-Ying; Huang, Chun-Ni; Wu, Xiao-Chen; He, Bao-Zuo

    2012-11-01

    To study the identification characters of Houttuynia cordata and its confused herb Gymnotheca chinensis and establish an identification method. LMVP (leaf morphological-venation pattern for identification Chinese herbs), and QAERM (quantitatively analyze and evaluate reliability for the method of identification Chinese herbs) were applied for the study. Both venations were brochidodromous-acrodromous and arising from the mid-petiole or the upper section of petiole. The main characteristic of the leaf of Houttuynia cordata: surface with small gray-white stoma protuberances; Ligulate process of stipule-petiole sheath were clear; Primary veins 7 or 5; The innermost pair of primary vein closed up the top of the sinus at blade base or above sinus, and the section of closed vein was straight; Emitted a smell of fish when fresh leaf was kneaded into pieces. The main feature of the leaf of Gymnotheca chinensis: no small gray-white stoma protuberances; Ligulate process of stipule-petiole sheath were not clear; Primary veins 5; The innermost pair of primary vein closed into the sinus at blade base, and the section of closed vein was slightly curve; No smell of fish. With the mentioned key differences, the both plants could be successfully identified from each other. The accuracy of identification results (AC) was 100%, the repeatability of identification results: agreement rate for observation (ARO) was 100% and Kappa value was 1.00. The established method is simple, rapid, economic and reliable.

  10. Anatomical and Scanning Electron Microscopic Study of the Tongue in the Meerkat (Suricata suricatta, Schreber, 1776).

    PubMed

    Erdoğan, S; Lima, M; Pérez, W

    2016-02-01

    This research presents the first anatomical description of the tongue and lingual papillae of the meerkat and compares the different information on the morphology of the other carnivore species. For this purpose, three tongues were used as material. The tongue was elongated with an oval or rounded apex. On the dorsal and ventrolateral surfaces of the tongue, filiform papillae had extent variations in morphology. Papillary body of each filiform papilla on the ventrolateral surface of the lingual body was ramified into 2-5 glovelike projections, and all pointed tips of these projections were directed caudally. On the dorsal lingual surface, each filiform papilla leaned on another without any space and both lateral borders of each filiform papilla included 4-6 small secondary projections or spines. A few rounded fungiform papillae were randomly distributed and embedded among the filiform papillae. On the caudal one-third of the body, there were two elongated circumvallate papillae. Some superficial fissures and taste pores were detected on the flat surfaces of each circumvallate papilla which was surrounded by a prominent and continuous gustatory groove. On the radix of the tongue, numerous dome-shaped protuberances of lingual salivary glands beneath the epithelium and one centrally located orificium was very invincible on the convex surface of each protuberance. Anatomical distribution of lingual papillae differed from those of other carnivores and represented morphological adaptation to the food type and feeding habits. © 2015 Blackwell Verlag GmbH.

  11. Multi-layer planting as a strategy of greening the transitional space in high-rise buildings: A review

    NASA Astrophysics Data System (ADS)

    Prihatmanti, Rani; Taib, Nooriati

    2018-03-01

    The issues regarding the rapid development in the urban have resulted in the increasing number of infrastructure built, including the high-rise buildings to accommodate the urban dwellers. Lack of greeneries due to the land limitation in the urban area has increased the surface radiation as well as the air temperature that leads to the Urban Heat Island (UHI) phenomena. Where urban land is limited, growing plants vertically could be a solution. Plants, which are widely known as one of the sustainability elements in the built environment could be integrated in building as a part of urban faming by growing edible plant species. This is also to address the food security issue in the urban as well as high-density cities. Since space is limited, the function of transitional space could be optimized for the green space. This paper explores the strategy of greening transitional space in the high-rise setting. To give a maximum impact in a limited space, multi-layer planting concept could be introduced. This concept is believed that multiple layers of plants could modify the microclimate, as well as the radiation to the building, compare to single layer plant. In addition to that, the method selected also determines the efficacy of the vertical greeneries. However, there are many other limitations related to the multi-layer planting method if installed in a transitional space that needs to be further studied. Despite its limitations, the application of vertical greeneries with multi-layer planting concept could be a promising solution for greening the limited space as well as improving the thermal comfort in the high-rise building.

  12. Immunocytochemical and autoradiographic studies on the process of keratinization in avian epidermis suggests absence of keratohyalin.

    PubMed

    Alibardi, Lorenzo

    2004-02-01

    The process of keratinization in apteric avian epidermis and in scutate scales of some avian species has been studied by autoradiography for histidine and immunohistochemistry for keratins and other epidermal proteins. Acidic or basic alpha-keratins are present in basal, spinosus, and transitional layers, but are not seen in the corneous layer. Keratinization-specific alpha-keratins (AE2-positive) are observed in the corneous layer of apteric epidermis but not in that of scutate scales, which contain mainly beta-keratin. Alpha-keratin bundles accumulate along the plasma membrane of transitional cells of apteric epidermis. In contrast to the situation in scutate scales, in the transitional layer and in the lowermost part of the corneous layer of apteric epidermis, filaggrin-like, loricrin-like, and transglutaminase immunoreactivities are present. The lack of isopeptide bond immunoreactivity suggests that undetectable isopeptide bonds are present in avian keratinocytes. Using immunogold ultrastructural immunocytochemistry a low but localized loricrin-like and, less, filaggrin-like labeling is seen over round-oval granules or vesicles among keratin bundles of upper spinosus and transitional keratinocytes of apteric epidermis. Filaggrin-and loricrin-labeling are absent in alpha-keratin bundles localized along the plasma membrane and in the corneous layer, formerly considered keratohyalin. Using ultrastructural autoradiography for tritiated histidine, occasional trace grains are seen among these alpha-keratin bundles. A different mechanism of redistribution of matrix and corneous cell envelope proteins probably operates in avian keratinocytes as compared to that of mammals. Keratin bundles are compacted around the lipid-core of apteric epidermis keratinocytes, which do not form complex chemico/mechanical-resistant corneous cell envelopes as in mammalian keratinocytes. These observations suggest that low amounts of matrix proteins are present among keratin bundles of avian keratinocytes and that keratohyalin granules are absent. Copyright 2003 Wiley-Liss, Inc.

  13. Epithelial-mesenchymal transition in colonies of rhesus monkey embryonic stem cells: a model for processes involved in gastrulation.

    PubMed

    Behr, Rüdiger; Heneweer, Carola; Viebahn, Christoph; Denker, Hans-Werner; Thie, Michael

    2005-01-01

    Rhesus monkey embryonic stem (rhES) cells were grown on mouse embryonic fibroblast (MEF) feeder layers for up to 10 days to form multilayered colonies. Within this period, stem cell colonies differentiated transiently into complex structures with a disc-like morphology. These complex colonies were characterized by morphology, immunohistochemistry, and marker mRNA expression to identify processes of epithelialization as well as epithelial-mesenchymal transition (EMT) and pattern formation. Typically, differentiated colonies were comprised of an upper and a lower ES cell layer, the former growing on top of the layer of MEF cells whereas the lower ES cell layer spread out underneath the MEF cells. Interestingly, in the central part of the colonies, a roundish pit developed. Here the feeder layer disappeared, and upper layer cells seemed to ingress and migrate through the pit downward to form the lower layer while undergoing a transition from the epithelial to the mesenchymal phenotype, which was indicated by the loss of the marker proteins E-cadherin and ZO-1 in the lower layer. In support of this, we found a concomitant 10-fold upregulation of the gene Snail2, which is a key regulator of the EMT process. Conversion of epiblast to mesoderm was also indicated by the regulated expression of the mesoderm marker Brachyury. An EMT is a characteristic process of vertebrate gastrulation. Thus, these rhES cell colonies may be an interesting model for studies on some basic processes involved in early primate embryogenesis and may open new ways to study the regulation of EMT in vitro.

  14. Tephrostratigraphy of Grotta del Cavallo, Southern Italy: Insights on the chronology of Middle to Upper Palaeolithic transition in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Zanchetta, Giovanni; Giaccio, Biagio; Bini, Monica; Sarti, Lucia

    2018-02-01

    The Grotta del Cavallo contains one of the most important stratification of Mousterian, Uluzzian and Final Epigravettian tecnocomplexes; its chronology is of paramount importance for understanding the timing of the transition between Middle and Upper Palaeolithic in the Mediterranean region as well as the demise of the Neanderthal and the dispersal of the first anatomically modern humans through Europe. Within the stratigraphy of the cave three different volcanic ash layers occur (layer G, Fa and C-II). They are located in the middle section of the Mousterian (layer G), in between the Mousterian and Uluzzian layers (layer Fa) and on top of the Uluzzian horizons (layer C-II). The three tephra layers were chemically fingerprinted and correlated to well-known and precisely dated widespread Late Pleistocene tephra markers. Specifically, layer G, Fa and C-II were correlated to the X-6 (108.7 ± 0.9 ka), Y-6 (45.5 ± 1.0 ka) and Campanian Ignimbrite (39.85 ± 0.14 ka), respectively. These findings provide robust chronological points allowing to conclude that: (i) the Mousterian occupation of the cave took place after the fall of the sea level following the MIS 5e high-stand; (ii) the Mousterian-Uluzzian boundary can be dated to 45.5 ± 1.0 ka and climatostratigraphically firmly placed at the transition between the Greenland Interstadial 12 (GI12)-Greenland Stadial 12 (GS12); (iii) the Uluzzian lasted for at least five millennial spanning the GS12-GI9 period and ended at beginning of the Heinrich Event 4.

  15. Phase transitions and kinetic properties of gold nanoparticles confined between two-layer graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Wu, Nanhua; Chen, Jionghua; Wang, Jinjian; Shao, Jingling; Zhu, Xiaolei; Lu, Xiaohua; Guo, Lucun

    2016-11-01

    The thermodynamic and kinetic behaviors of gold nanoparticles confined between two-layer graphene nanosheets (two-layer-GNSs) are examined and investigated during heating and cooling processes via molecular dynamics (MD) simulation technique. An EAM potential is applied to represent the gold-gold interactions while a Lennard-Jones (L-J) potential is used to describe the gold-GNS interactions. The MD melting temperature of 1345 K for bulk gold is close to the experimental value (1337 K), confirming that the EAM potential used to describe gold-gold interactions is reliable. On the other hand, the melting temperatures of gold clusters supported on graphite bilayer are corrected to the corresponding experimental values by adjusting the εAu-C value. Therefore, the subsequent results from current work are reliable. The gold nanoparticles confined within two-layer GNSs exhibit face center cubic structures, which is similar to those of free gold clusters and bulk gold. The melting points, heats of fusion, and heat capacities of the confined gold nanoparticles are predicted based on the plots of total energies against temperature. The density distribution perpendicular to GNS suggests that the freezing of confined gold nanoparticles starts from outermost layers. The confined gold clusters exhibit layering phenomenon even in liquid state. The transition of order-disorder in each layer is an essential characteristic in structure for the freezing phase transition of the confined gold clusters. Additionally, some vital kinetic data are obtained in terms of classical nucleation theory.

  16. Transition Prediction in Hypersonic Boundary Layers Using Receptivity and Freestream Spectra

    NASA Technical Reports Server (NTRS)

    Balakumar, P.; Chou, Amanda

    2016-01-01

    Boundary-layer transition in hypersonic flows over a straight cone can be predicted using measured freestream spectra, receptivity, and threshold values for the wall pressure fluctuations at the transition onset points. Simulations are performed for hypersonic boundary-layer flows over a 7-degree half-angle straight cone with varying bluntness at a freestream Mach number of 10. The steady and the unsteady flow fields are obtained by solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 5th-order accurate weighted essentially non-oscillatory (WENO) scheme for space discretization and using a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The calculated N-factors at the transition onset location increase gradually with increasing unit Reynolds numbers for flow over a sharp cone and remain almost the same for flow over a blunt cone. The receptivity coefficient increases slightly with increasing unit Reynolds numbers. They are on the order of 4 for a sharp cone and are on the order of 1 for a blunt cone. The location of transition onset predicted from the simulation including the freestream spectrum, receptivity, and the linear and the weakly nonlinear evolutions yields a solution close to the measured onset location for the sharp cone. The simulations over-predict transition onset by about twenty percent for the blunt cone.

  17. Effects of Wing Sweep on Boundary-layer Transition for a Smooth F-14A Wing at Mach Numbers from 0.700 to 0.825

    NASA Technical Reports Server (NTRS)

    Anderson, Bianca Trujillo; Meyer, Robert R., Jr.

    1990-01-01

    The results are discussed of the variable sweep transition flight experiment (VSTFE). The VSTFE was a natural laminar flow experiment flown on the swing wing F-14A aircraft. The main objective of the VSTFE was to determine the effects of wing sweep on boundary layer transition at conditions representative of transport aircraft. The experiment included the flight testing of two laminar flow wing gloves. Glove 1 was a cleanup of the existing F-14A wing. Glove 2, not discussed herein, was designed to provide favorable pressure distributions for natural laminar flow at Mach number (M) 0.700. The transition locations presented for glove 1 were determined primarily by using hot film sensors. Boundary layer rake data was provided as a supplement. Transition data were obtained for leading edge wing sweeps of 15, 20, 25, 30, and 35 degs, with Mach numbers ranging from 0.700 to 0.825, and altitudes ranging from 10,000 to 35,000 ft. Results show that a substantial amount of laminar flow was maintained at all the wing sweeps evaluated. The maximum transition Reynolds number of 13.7 x 10(exp 6) was obtained for the condition of 15 deg of sweep, M = 0.800, and an altitude of 20,000 ft.

  18. Relaxation dynamics of magnetization transitions in synthetic antiferromagnet with perpendicular anisotropy

    NASA Astrophysics Data System (ADS)

    Talantsev, A.; Lu, Y.; Fache, T.; Lavanant, M.; Hamadeh, A.; Aristov, A.; Koplak, O.; Morgunov, R.; Mangin, S.

    2018-04-01

    Two synthetic antiferromagnet bilayer systems with strong perpendicular anisotropy CoFeB/Ta/CoFeB and Pt/Co/Ir/Co/Pt have been grown using sputtering techniques. For both systems two types of magnetization transitions have been studied. The first one concerns transitions from a state where magnetizations of the two magnetic layers are parallel (P state) to a state where magnetizations of the two layers are aligned antiparallel (AP state). The second one concerns transitions between the two possible antiparallel alignments (AP+  to AP-). For both systems and both transitions after-effect measurements can be understood in the frame of nucleation—propagation model. Time derivative analysis of magnetic relaxation curves and mapping of the first order reversal curves at different temperature allowed us to demonstrate the presence of different pinning centers, which number can be controlled by magnetic field and temperature.

  19. Prediction and Analysis of the Nonsteady Transition and Separation Processes on an Oscillating Wind Turbine Airfoil using the \\gamma-Re_\\theta Transition Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Taraj; Brasseur, James; Vijayakumar, Ganesh

    2016-01-04

    This study is aimed at gaining insight into the nonsteady transitional boundary layer dynamics of wind turbine blades and the predictive capabilities of URANS based transition and turbulence models for similar physics through the analysis of a controlled flow with similar nonsteady parameters.

  20. Near-optimal energy transitions for energy-state trajectories of hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.; Bowles, J. V.; Terjesen, E. J.; Whittaker, T.

    1992-01-01

    A problem of the instantaneous energy transition that occurs in energy-state approximation is considered. The transitions are modeled as a sequence of two load-factor bounded paths (either climb-dive or dive-climb). The boundary-layer equations associated with the energy-state dynamic model are analyzed to determine the precise location of the transition.

Top