Sample records for layers infiltration levels

  1. Characteristics of water infiltration in layered water repellent soils

    USDA-ARS?s Scientific Manuscript database

    Hydrophobic soil can influence soil water infiltration, but information regarding the impacts of different levels of hydrophobicity within a layered soil profile is limited. An infiltration study was conducted to determine the effects of different levels of hydrophobicity and the position of the hyd...

  2. Efficient infiltration of water in the subsurface by using point-wells: A field study

    NASA Astrophysics Data System (ADS)

    Lopik, J. V.; Schotting, R.; Raoof, A.

    2017-12-01

    The ability to infiltrate large volumes of water in the subsurface would have great value for battling flooding in urban regions. Moreover, efficient water infiltration is key to optimize underground aquifer storage and recovery (ASR), aquifer thermal energy storage (ATES), as well as construction dewatering systems. Usually, variable infiltration rates of large water quantities could have a huge hydrogeological impact in the upper part of (phreatic) aquifer systems. In urban regions, minimizing excessive groundwater table fluctuations are necessary. A newly developed method, Fast, High Volume Infiltration (FHVI), by Dutch dewatering companies can be used to enable fast injection into the shallow subsurface. Conventional infiltration methods are using injection wells that screen large parts of the aquifer depth, whereas FHVI uses a specific infiltration point (1-m well screen) in the aquifer. These infiltration points are generally thin, high permeable layers in the aquifer of approximately 0.5-2 meter thick, and are embedded by less permeable layers. Currently, much higher infiltration pressures in shallow aquifers can be achieved with FHVI (up to 1 bar) compared to conventional infiltration methods ( 0.2 bar). Despite the high infiltration pressures and high discharge rate near the FHVI-filter, the stresses on shallow groundwater levels are significantly reduced with FHVI. In order to investigate the mechanisms that enable FHVI, a field experiment is conducted in a sandy aquifer to obtain insight in the 3-D hydraulic pressure distribution and flow patterns around a FHVI-filter during infiltration. A detailed characterization of the soil profile is obtained by using soil samples and cone pressure tests with a specific hydraulic profiling tool to track the vertical variation in aquifer permeability. A tracer test with bromide and heat is conducted to investigate preferential flow paths. The experimental data show that tracking small heterogeneities in aquifers and analysing the permeability difference ratio between the aimed infiltration layer and the surrounding layers in the aquifer are key to optimize the configuration of the FHVI-well. The results show that the use of point wells in thin, high permeable layers could drastically improve the efficiency of the infiltration system.

  3. Artificial recharge of groundwater through sprinkling infiltration: impacts on forest soil and the nutrient status and growth of Scots pine.

    PubMed

    Nöjd, Pekka; Lindroos, Antti-Jussi; Smolander, Aino; Derome, John; Lumme, Ilari; Helmisaari, Heljä-Sisko

    2009-05-01

    We studied the chemical changes in forest soil and the effects on Scots pine trees caused by continuous sprinkling infiltration over a period of two years, followed by a recovery period of two years. Infiltration increased the water input onto the forest soil by a factor of approximately 1000. After one year of infiltration, the pH of the organic layer had risen from about 4.0 to 6.7. The NH(4)-N concentration in the organic layer increased, most probably due to the NH(4) ions in the infiltration water, as the net N mineralization rate did not increase. Sprinkling infiltration initiated nitrification in the mineral soil. Macronutrient concentrations generally increased in the organic layer and mineral soil. An exception, however, was the concentration of extractable phosphorus, which decreased strongly during the infiltration period and did not show a recovery within two years. The NO(3)-N and K concentrations had reverted back to their initial level during the two-year recovery period, while the concentrations of Ca, Mg and NH(4)-N were still elevated. Nutrient concentrations in the pine needles increased on the infiltrated plots. However, the needle P concentration increased, despite the decrease in plant-available P in the soil. Despite the increase in the nutrient status, there were some visible signs of chlorosis in the current-year needles after two years of infiltration. The radial growth of the pines more than doubled on the infiltrated plots, which suggests that the very large increase in the water input onto the forest floor had no adverse effect on the functioning of the trees. However, a monitoring period of four years is not sufficient for detecting potential long term detrimental effects on forest trees.

  4. Analysis of Factors that Influence Infiltration Rates using the HELP Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J.; Shipmon, J.

    The Hydrologic Evaluation of Landfill Performance (HELP) model is used by Savannah River National Laboratory (SRNL) in conjunction with PORFLOW groundwater flow simulation software to make longterm predictions of the fate and transport of radionuclides in the environment at radiological waste sites. The work summarized in this report supports preparation of the planned 2018 Performance Assessment for the E-Area Low-Level Waste Facility (LLWF) at the Savannah River Site (SRS). More specifically, this project focused on conducting a sensitivity analysis of infiltration (i.e., the rate at which water travels vertically in soil) through the proposed E-Area LLWF closure cap. A sensitivitymore » analysis was completed using HELP v3.95D to identify the cap design and material property parameters that most impact infiltration rates through the proposed closure cap for a 10,000-year simulation period. The results of the sensitivity analysis indicate that saturated hydraulic conductivity (Ksat) for select cap layers, precipitation rate, surface vegetation type, and geomembrane layer defect density are dominant factors limiting infiltration rate. Interestingly, calculated infiltration rates were substantially influenced by changes in the saturated hydraulic conductivity of the Upper Foundation and Lateral Drainage layers. For example, an order-of-magnitude decrease in Ksat for the Upper Foundation layer lowered the maximum infiltration rate from a base-case 11 inches per year to only two inches per year. Conversely, an order-of-magnitude increase in Ksat led to an increase in infiltration rate from 11 to 15 inches per year. This work and its results provide a framework for quantifying uncertainty in the radionuclide transport and dose models for the planned 2018 E-Area Performance Assessment. Future work will focus on the development of a nonlinear regression model for infiltration rate using Minitab 17® to facilitate execution of probabilistic simulations in the GoldSim® overall system model for the E-Area LLWF.« less

  5. 75 FR 50930 - Final Determination To Approve Alternative Final Cover Request for the Lake County, Montana Landfill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-18

    ... infiltration and erosion. The regulation requires final cover systems to be designed and constructed to: (1... infiltration through the closed MSWLF by the use of an infiltration layer that contains a minimum of 18 inches... that includes: (1) An infiltration layer that achieves an equivalent reduction in infiltration as the...

  6. Soil hydraulic properties estimate based on numerical analysis of disc infiltrometer three-dimensional infiltration curve

    NASA Astrophysics Data System (ADS)

    Latorre, Borja; Peña-Sancho, Carolina; Angulo-Jaramillo, Rafaël; Moret-Fernández, David

    2015-04-01

    Measurement of soil hydraulic properties is of paramount importance in fields such as agronomy, hydrology or soil science. Fundamented on the analysis of the Haverkamp et al. (1994) model, the aim of this paper is to explain a technique to estimate the soil hydraulic properties (sorptivity, S, and hydraulic conductivity, K) from the full-time cumulative infiltration curves. The method (NSH) was validated by means of 12 synthetic infiltration curves generated with HYDRUS-3D from known soil hydraulic properties. The K values used to simulate the synthetic curves were compared to those estimated with the proposed method. A procedure to identify and remove the effect of the contact sand layer on the cumulative infiltration curve was also developed. A sensitivity analysis was performed using the water level measurement as uncertainty source. Finally, the procedure was evaluated using different infiltration times and data noise. Since a good correlation between the K used in HYDRUS-3D to model the infiltration curves and those estimated by the NSH method was obtained, (R2 =0.98), it can be concluded that this technique is robust enough to estimate the soil hydraulic conductivity from complete infiltration curves. The numerical procedure to detect and remove the influence of the contact sand layer on the K and S estimates seemed to be robust and efficient. An effect of the curve infiltration noise on the K estimate was observed, which uncertainty increased with increasing noise. Finally, the results showed that infiltration time was an important factor to estimate K. Lower values of K or smaller uncertainty needed longer infiltration times.

  7. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  8. Prediction of unsaturated flow and water backfill during infiltration in layered soils

    NASA Astrophysics Data System (ADS)

    Cui, Guotao; Zhu, Jianting

    2018-02-01

    We develop a new analytical infiltration model to determine water flow dynamics around layer interfaces during infiltration process in layered soils. The model mainly involves the analytical solutions to quadratic equations to determine the flux rates around the interfaces. Active water content profile behind the wetting front is developed based on the solution of steady state flow to dynamically update active parameters in sharp wetting front infiltration equations and to predict unsaturated flow in coarse layers before the front reaches an impeding fine layer. The effect of water backfill to saturate the coarse layers after the wetting front encounters the impeding fine layer is analytically expressed based on the active water content profiles. Comparison to the numerical solutions of the Richards equation shows that the new model can well capture water dynamics in relation to the arrangement of soil layers. The steady state active water content profile can be used to predict the saturation state of all layers when the wetting front first passes through these layers during the unsteady infiltration process. Water backfill effect may occur when the unsaturated wetting front encounters a fine layer underlying a coarse layer. Sensitivity analysis shows that saturated hydraulic conductivity is the parameter dictating the occurrence of unsaturated flow and water backfill and can be used to represent the coarseness of soil layers. Water backfill effect occurs in coarse layers between upper and lower fine layers when the lower layer is not significantly coarser than the upper layer.

  9. Layered Manufacturing: Challenges and Opportunities

    DTIC Science & Technology

    2003-04-01

    quality of the surface finish, eliminating residual stress , controlling local composition and microstructure, achieving fine feature size and...applications. Some methods have achieved commercial status, having graduated from the university level, others are in various stages of research. However...Road * Sintering * Co-firing * Shrinkage * Gas dimensions + Powder or + Resin * Residual stress precursors * Layer wire feeding infiltration * Distortion

  10. A study on a instability slope in Taiwan subjected to rainfalls

    NASA Astrophysics Data System (ADS)

    Hsiao, D. H.; Hsieh, C. S.; Yeh, L. C.; Lin, D. Y.; T-A Phan, V.

    2018-04-01

    After the long-term monitoring on the Chaishan area in Taiwan from 2005 to 2012 by Kaohsiung City Government, the obtained results showed that annual lateral displacements in the region are about 7-8cm to the Taiwan Strait. The geological surface profiles of Chaishan area are in sequence weathered limestone, clay layer, limestone and mudstone layer, respectively. Thus the frictional resistance between weathered soils and rock layer could decrease after infiltration of rainwater due to impervious to water of the lowest mudstone layer. Typhoon invades often Taiwan each year, resulting in rainfall infiltration and rising groundwater level, as well as increased pore water pressure within the soil mass, causing the earth movements in some parts of Chaishan, especially in the Temple A (Shan Hai Temple) accompanied with cracking phenomenon. In this paper, limit equilibrium (LE) and finite element method (FEM) are used for slope analysis, in which the slope is considered as unsaturated soil. Results showed groundwater amounts are easy to accumulate and increasing pore water pressure give resulting in decreased safety factor. Both of groundwater level and rain durations were also considered in this study.

  11. Stormwater infiltration and surface runoff pollution reduction performance of permeable pavement layers.

    PubMed

    Niu, Zhi-Guang; Lv, Zhi-Wei; Zhang, Ying; Cui, Zhen-Zhen

    2016-02-01

    In this paper, the laboratory-scale permeable pavement layers, including a surface permeable brick layer, coarse sand bedding layers (thicknesses = 2, 3.5, and 5 cm), and single-graded gravel sub-base layers (thicknesses = 15, 20, 25, and 30 cm), were built to evaluate stormwater infiltration and surface runoff pollution reduction performance. And, the infiltration rate (I) and concentrations of suspended solids (SS), total phosphorus (TP), chemical oxygen demand (COD), ammonia nitrogen, and total nitrogen (TN) were measured under the simulated rainfall intensity of 72.4 mm/h over duration of 60 min. The results indicate that the thickness factor primarily influences the infiltration rate and pollutant removal rate. The highest steady infiltration rate was for surface brick layer 51.0 mm/h, for 5-cm sand bedding layer 32.3 mm/h, and for 30-cm gravel sub-base layer 42.3 mm/h, respectively. The SS average removal rate was relative higher (79.8 ∼ 98.6 %) for all layers due to the interception and filtration. The average removal rates of TP and COD were for surface layer 71.2 and 24.1 %, for 5-cm bedding layer 54.8 and 9.0 %, and for 20-cm sub-base layer 72.2 and 26.1 %. Ammonia nitrogen and TN cannot steadily be removed by layers according to the experiment results. The optimal thickness of bedding sands was 5 cm, and that of sub-base gravels was 20 ∼ 30 cm.

  12. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE PAGES

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.; ...

    2017-07-31

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  13. Formation of a Crack-Free, Hybrid Skin Layer with Tunable Surface Topography and Improved Gas Permeation Selectivity on Elastomers Using Gel–Liquid Infiltration Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Mengyuan; Gorham, Justin M.; Killgore, Jason P.

    Surface modifications of elastomers and gels are crucial for emerging applications such as soft robotics and flexible electronics, in large part because they provide a platform to control wettability, adhesion, and permeability. Current surface modification methods via ultraviolet-ozone (UVO) and/or O2 plasma, atomic layer deposition (ALD), plasmas deposition, and chemical treatment impart a dense polymer or inorganic layer on the surface that is brittle and easy to fracture at low strain levels. This paper presents a new method, based on gel–liquid infiltration polymerization, to form hybrid skin layers atop elastomers. The method is unique in that it allows for controlmore » of the skin layer topography, with tunable feature sizes and aspect ratios as high as 1.8 without fracture. Unlike previous techniques, the skin layer formed here dramatically improves the barrier properties of the elastomer, while preserving skin layer flexibility. Furthermore, the method is versatile and likely applicable to most interfacial polymerization systems and network polymers on flat and patterned surfaces.« less

  14. Evaluation of the potential for artificial ground-water recharge in eastern San Joaquin County, California; Phase 3

    USGS Publications Warehouse

    Hamlin, S.N.

    1987-01-01

    Infiltration tests were used to evaluate the potential of basin spreading surface water as a means of artificially recharging the aquifer system in eastern San Joaquin County, California. Two infiltration sites near Lockeford and Linden were selected on the basis of information collected during the first two phases of the study. Data from the infiltration tests indicate that the two sites are acceptable for recharge by the basin-spreading method. Infiltration rates ranged between 6.7 and 10.5 ft/day near Lockeford and between 2.6 and 11.2 ft/day near Linden. Interpretation of these data is limited by lack of information on the response of the saturated zone during testing and by the inherent difficulty in extrapolating the results of small-scale tests to larger long-term operations. Lithology is a major factor that controls infiltration rates at the test sites. The unsaturated zone is characterized by heterogeneous layers of coarse- and fine- grained materials. Clay layers of low hydraulic conductivity commonly form discontinuous lenses that may cause a transient perched water table to develop during recharge. Water level measurements from wells screened in the unsaturated zone indicate that the perched water table could reach the land surface after 2 and 5 months of recharge near Lockeford and Linden, respectively. These figures probably represent the minimum time necessary for saturation of the land. Another major factor that affects infiltration rates is the quality of the recharge water, particularly the suspended sediment content. The clogging action of suspended sediment may be minimized by: (1) pretreatment of recharge water in a settling pond, (2) adherence to a routine program of monitoring and maintenance, and (3) proper design of the recharge facility. Other factors that affect infiltration rates include basin excavation technique, basin shape, and maintenance procedures. Efficient operation of the recharge facility requires careful attention to the relation between subsurface water levels and infiltration rates. (Author 's abstract)

  15. Effects of sodium polyacrylate on water retention and infiltration capacity of a sandy soil.

    PubMed

    Zhuang, Wenhua; Li, Longguo; Liu, Chao

    2013-01-01

    Based on the laboratory study, the effects of sodium polyacrylate (SP) was investigated at 5 rates of 0, 0.08, 0.2, 0.5, and 1%, on water retention, saturated hydraulic conductivity(Ks), infiltration characteristic and water distribution profiles of a sandy soil. The results showed that water retention and available water capacity effectively increased with increasing SP rate. The Ks and the rate of wetting front advance and infiltration under certain pond infiltration was significantly reduced by increasing SP rate, which effectively reduced water in a sandy soil leaking to a deeper layer under the plough layer. The effect of SP on water distribution was obviously to the up layer and very little to the following deeper layers. Considering both the effects on water retention and infiltration capacity, it is suggested that SP be used to the sandy soil at concentrations ranging from 0.2 to 0.5%.

  16. Biochar impact on water infiltration and water quality through a compacted subsoil layer

    EPA Science Inventory

    Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic...

  17. Applying 2-D resistivity imaging and ground penetrating radar (GPR) methods to identify infiltration of water in the ground surface

    NASA Astrophysics Data System (ADS)

    Yusof, Azim Hilmy Mohamad; Azman, Muhamad Iqbal Mubarak Faharul; Ismail, Nur Azwin; Ismail, Noer El Hidayah

    2017-07-01

    Infiltration of water into the soil mostly happens in area near to the ocean or area where rain occurred frequently. This paper explains about the water infiltration process that occurred vertically and horizontally at the subsurface layer. Infiltration act as an indicator of the soil's ability to allow water movement into and through the soil profile. This research takes place at Teluk Kumbar, Pulau Pinang, area that located near to the sea. Thus, infiltration process occurs actively. The study area consists of unconsolidated marine clay, sand and gravel deposits. Furthermore, the methods used for this research is 2-D Resistivity Imaging by using Wenner-Schlumberger array with 2.5 m minimum electrode spacing, and the second method is Ground Penetrating Radar (GPR) with antenna frequency of 250MHz. 2-D Resistivity Imaging is used to investigate the subsurface layer of the soil. Other than that, this method can also be used to investigate the water infiltration that happens horizontally. GPR is used to investigate shallow subsurface layer and to investigate the water infiltration from above. The results of inversion model of 2-D Resistivity Imaging shows that the subsurface layer at distance of 0 m to 20 m are suspected to be salt water intrusion zone due to the resistivity value of 0 Ω.m to 1 Ω.m. As for the radargram results from the GPR, the anomaly seems to be blurry and unclear, and EM waves signal can only penetrate up to 1.5 m depth. This feature shows that the subsurface layer is saturated with salt water. Applying 2-D resistivity imaging and GPR method were implemented to each other in identifying infiltration of water in the ground surface.

  18. Removal of nitrogen by a layered soil infiltration system during intermittent storm events.

    PubMed

    Cho, Kang Woo; Song, Kyung Guen; Cho, Jin Woo; Kim, Tae Gyun; Ahn, Kyu Hong

    2009-07-01

    The fates of various nitrogen species were investigated in a layered biological infiltration system under an intermittently wetting regime. The layered system consisted of a mulch layer, coarse soil layer (CSL), and fine soil layer (FSL). The effects of soil texture were assessed focusing on the infiltration rate and the removal of inorganic nitrogen species. The infiltration rate drastically decreased when the uniformity coefficient was larger than four. The ammonium in the synthetic runoff was shown to be removed via adsorption during the stormwater dosing and nitrification during subsequent dry days. Stable ammonium adsorption was observed when the silt and clay content of CSL was greater than 3%. This study revealed that the nitrate leaching was caused by nitrification during dry days. Various patterns of nitrate flushing were observed depending on the soil configuration. The washout of nitrate was more severe as the silt/clay content of the CSL was greater. However, proper layering of soil proved to enhance the nitrate removal. Consequently, a strictly sandy CSL over FSL with a silt and clay content of 10% was the best configuration for the removal of ammonium and nitrate.

  19. Experimental study of water fluxes in a residential area: 2. Road infiltration, runoff and evaporation

    NASA Astrophysics Data System (ADS)

    Ragab, R.; Rosier, P.; Dixon, A.; Bromley, J.; Cooper, J. D.

    2003-08-01

    Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water-table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October-March) and summer (April-September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21-24% of annual rainfall, with more evaporation taking place during summer than winter.

  20. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  1. Three-dimensional steady-state simulation of flow in the sand-and-gravel aquifer, southern Escambia County, Florida

    USGS Publications Warehouse

    Trapp, Henry; Geiger, L.H.

    1986-01-01

    The sand-and-gravel aquifer is the only freshwater aquifer in southern Escambia County, Florida and is the source of public water supply for the area, including the City of Pensacola. The aquifer was simulated by a two-layer, digital model to provide hydrologic information for water resource planning. The lower layer represents the main-producing zone; the upper layer represents all of the aquifer above the main-producing zone including an unconfined zone and discontinuous perched, confined , and confining zones. The model was designed for steady-state simulation and predicts the response of the aquifer (changes in water levels) to groundwater pumping where steady-state conditions have been reached. Input to the model includes matrices representing constant-head nodes, starting head, transmissivity of layer 1, leakance between layers 1 and 2, lateral hydraulic conductivity of layer 2, and altitude of the base layer 2. The sources of water to the model are from recharge by infiltrated precipitation (estimated from base runoff), inflow across boundaries, and induced recharge from river leakance in periods of prolonged groundwater pumping. Model output includes final head and drawdown for each layer and total values for discharge and recharge in the model area. The model was calibrated for 1972 pumping and tested by simulating pumpages during 1939-40, 1958, and 1977. Sensitivity analyses showed water levels in both layers were most sensitive to changes in the recharge matrix and least sensitive to river leakage. Suggestions for further development of the model include subdivision and expansion of the grid, assignment of storage coefficients for transient simulations, more intensive study of the stream-aquifer relations, and consideration of the effects of infiltration basins on recharge. (Author 's abstract)

  2. Final closure of a low level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potier, J.M.

    1995-12-31

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less

  3. Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.

    PubMed

    He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan

    2017-01-01

    One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Monitoring and modeling infiltration-recharge dynamics of managed aquifer recharge with desalinated seawater

    NASA Astrophysics Data System (ADS)

    Ganot, Yonatan; Holtzman, Ran; Weisbrod, Noam; Nitzan, Ido; Katz, Yoram; Kurtzman, Daniel

    2017-09-01

    We study the relation between surface infiltration and groundwater recharge during managed aquifer recharge (MAR) with desalinated seawater in an infiltration pond, at the Menashe site that overlies the northern part of the Israeli Coastal Aquifer. We monitor infiltration dynamics at multiple scales (up to the scale of the entire pond) by measuring the ponding depth, sediment water content and groundwater levels, using pressure sensors, single-ring infiltrometers, soil sensors, and observation wells. During a month (January 2015) of continuous intensive MAR (2.45 × 106 m3 discharged to a 10.7 ha area), groundwater level has risen by 17 m attaining full connection with the pond, while average infiltration rates declined by almost 2 orders of magnitude (from ˜ 11 to ˜ 0.4 m d-1). This reduction can be explained solely by the lithology of the unsaturated zone that includes relatively low-permeability sediments. Clogging processes at the pond-surface - abundant in many MAR operations - are negated by the high-quality desalinated seawater (turbidity ˜ 0.2 NTU, total dissolved solids ˜ 120 mg L-1) or negligible compared to the low-permeability layers. Recharge during infiltration was estimated reasonably well by simple analytical models, whereas a numerical model was used for estimating groundwater recharge after the end of infiltration. It was found that a calibrated numerical model with a one-dimensional representative sediment profile is able to capture MAR dynamics, including temporal reduction of infiltration rates, drainage and groundwater recharge. Measured infiltration rates of an independent MAR event (January 2016) fitted well to those calculated by the calibrated numerical model, showing the model validity. The successful quantification methodologies of the temporal groundwater recharge are useful for MAR practitioners and can serve as an input for groundwater flow models.

  5. Superhydrophobic, carbon-infiltrated carbon nanotubes on Si and 316L stainless steel with tunable geometry

    NASA Astrophysics Data System (ADS)

    Stevens, Kimberly A.; Esplin, Christian D.; Davis, Taylor M.; Butterfield, D. Jacob; Ng, Philip S.; Bowden, Anton E.; Jensen, Brian D.; Iverson, Brian D.

    2018-05-01

    The use of carbon nanotubes to create superhydrophobic coatings has been considered due to their ability to offer a relatively uniform nanostructure. However, carbon nanotubes (CNTs) may be considered delicate with a typical diameter of tens of nanometers for a multi-walled CNT; as-grown carbon nanotubes often require the addition of a thin-film hydrophobic coating to render them superhydrophobic. Furthermore, fine control over the diameter of the as-grown CNTs or the overall nanostructure is difficult. This work demonstrates the utility of using carbon infiltration to layer amorphous carbon on multi-walled nanotubes to improve structural integrity and achieve superhydrophobic behavior with tunable geometry. These carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit an increased number of contact points between neighboring tubes, resulting in a composite structure with improved mechanical stability. Additionally, the native surface can be rendered superhydrophobic with a vacuum pyrolysis treatment, with contact angles as high as 160° and contact angle hysteresis on the order of 1°. The CICNT diameter, static contact angle, sliding angle, and contact angle hysteresis were examined for varying levels of carbon-infiltration to determine the effect of infiltration on superhydrophobicity. The same superhydrophobic behavior and tunable geometry were also observed with CICNTs grown directly on stainless steel without an additional catalyst layer. The ability to tune the geometry while maintaining superhydrophobic behavior offers significant potential in condensation heat transfer, anti-icing, microfluidics, anti-microbial surfaces, and other bio-applications where control over the nanostructure is beneficial.

  6. Using fuzzy logic analysis for siting decisions of infiltration trenches for highway runoff control.

    PubMed

    Ki, Seo Jin; Ray, Chittaranjan

    2014-09-15

    Determining optimal locations for best management practices (BMPs), including their field considerations and limitations, plays an important role for effective stormwater management. However, these issues have been often overlooked in modeling studies that focused on downstream water quality benefits. This study illustrates the methodology of locating infiltration trenches at suitable locations from spatial overlay analyses which combine multiple layers that address different aspects of field application into a composite map. Using seven thematic layers for each analysis, fuzzy logic was employed to develop a site suitability map for infiltration trenches, whereas the DRASTIC method was used to produce a groundwater vulnerability map on the island of Oahu, Hawaii, USA. In addition, the analytic hierarchy process (AHP), one of the most popular overlay analyses, was used for comparison to fuzzy logic. The results showed that the AHP and fuzzy logic methods developed significantly different index maps in terms of best locations and suitability scores. Specifically, the AHP method provided a maximum level of site suitability due to its inherent aggregation approach of all input layers in a linear equation. The most eligible areas in locating infiltration trenches were determined from the superposition of the site suitability and groundwater vulnerability maps using the fuzzy AND operator. The resulting map successfully balanced qualification criteria for a low risk of groundwater contamination and the best BMP site selection. The results of the sensitivity analysis showed that the suitability scores were strongly affected by the algorithms embedded in fuzzy logic; therefore, caution is recommended with their use in overlay analysis. Accordingly, this study demonstrates that the fuzzy logic analysis can not only be used to improve spatial decision quality along with other overlay approaches, but also is combined with general water quality models for initial and refined searches for the best locations of BMPs at the sub-basin level. Copyright © 2014. Published by Elsevier B.V.

  7. Assessing the Penetrating Abilities of Experimental Preparation with Dental Infiltrant Features Using Optical Microscope: Preliminary Study.

    PubMed

    Skucha-Nowak, Małgorzata; Machorowska-Pieniążek, Agnieszka; Tanasiewicz, Marta

    2016-01-01

    The aim of the infiltration technique is to penetrate demineralized enamel with a low viscosity resin. Icon® (DMG) is the first ever and so far the only dental infiltrant. Bacteriostaticity is one of the properties that should be inherent in dental infiltrants, but Icon lacks this feature. The aim of the preliminary study was to properly choose a dye which would allow us to assess the penetrating abilities of our own, experimental preparation with features of a dental infiltrant with bacteriostatic properties and to compare using an optical microscope the depth of infiltration of the designed experimental preparation with the infiltrant available on the market. The preparation is supposed to infiltrate decalcified human enamel and be assessed with an optical microscope. Eosin, neutral fuchsine and methylene blue were added to experimental preparation with dental infiltrant features and to Icon® (DMG) in order to assess the depth of penetration of the experimental solution into the decalcified layers of enamel. The experimental solution mixes well with eosin, neutral fuchsine, and methylene blue. During the preliminary study, the authors concluded that the experimental solution mixes well with methylene blue, neutral fuchsine, and eosin. An addition of eosin to a preparation which infiltrates inner, demineralized enamel layers, facilitates the assessment of such a preparation with an optical microscope. A designed experimental solution with the main ingredients, i.e., 2-hydroxyethyl methacrylate (HEMA) and tetraethylene glycol dimethacrylate (TEGDMA) with a ratio of 75% to 25% penetrates the demineralized (decalcified) inner parts of the enamel and polymerizes when exposed to light. In order to assess the infiltration of the experimental solution into the demineralized enamel layers, it is required to improve the measurement techniques that utilize optical microscopy.

  8. [Characteristics of soil moisture in artificial impermeable layers].

    PubMed

    Suo, Gai-Di; Xie, Yong-Sheng; Tian, Fei; Chuai, Jun-Feng; Jing, Min-Xiao

    2014-09-01

    For the problem of low water and fertilizer use efficiency caused by nitrate nitrogen lea- ching into deep soil layer and soil desiccation in dryland apple orchard, characteristics of soil moisture were investigated by means of hand tamping in order to find a new approach in improving the water and fertilizer use efficiency in the apple orchard. Two artificial impermeable layers of red clay and dark loessial soil were built in soil, with a thickness of 3 or 5 cm. Results showed that artificial impermeable layers with the two different thicknesses were effective in reducing or blocking water infiltration into soil and had higher seepage controlling efficiency. Seepage controlling efficiency for the red clay impermeable layer was better than that for the dark loessial soil impermeable layer. Among all the treatments, the red clay impermeable layer of 5 cm thickness had the highest bulk density, the lowest initial infiltration rate (0.033 mm · min(-1)) and stable infiltration rate (0.018 mm · min(-1)) among all treatments. After dry-wet alternation in summer and freezing-thawing cycle in winter, its physiochemical properties changed little. Increase in years did not affect stable infiltration rate of soil water. The red clay impermeable layer of 5 cm thickness could effectively increase soil moisture content in upper soil layer which was conducive to raise the water and nutrient use efficiency. The approach could be applied to the apple production of dryland orchard.

  9. Modelling of percolation rate of stormwater from underground infiltration systems.

    PubMed

    Burszta-Adamiak, Ewa; Lomotowski, Janusz

    2013-01-01

    Underground or surface stormwater storage tank systems that enable the infiltration of water into the ground are basic elements used in Sustainable Urban Drainage Systems (SUDS). So far, the design methods for such facilities have not taken into account the phenomenon of ground clogging during stormwater infiltration. Top layer sealing of the filter bed influences the infiltration rate of water into the ground. This study presents an original mathematical model describing changes in the infiltration rate variability in the phases of filling and emptying the storage and infiltration tank systems, which enables the determination of the degree of top ground layer clogging. The input data for modelling were obtained from studies conducted on experimental sites on objects constructed on a semi-technological scale. The experiment conducted has proven that the application of the model developed for the phase of water infiltration enables us to estimate the degree of module clogging. However, this method is more suitable for reservoirs embedded in more permeable soils than for those located in cohesive soils.

  10. Comparison of precursor infiltration into polymer thin films via atomic layer deposition and sequential vapor infiltration using in-situ quartz crystal microgravimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Padbury, Richard P.; Jur, Jesse S., E-mail: jsjur@ncsu.edu

    Previous research exploring inorganic materials nucleation behavior on polymers via atomic layer deposition indicates the formation of hybrid organic–inorganic materials that form within the subsurface of the polymer. This has inspired adaptations to the process, such as sequential vapor infiltration, which enhances the diffusion of organometallic precursors into the subsurface of the polymer to promote the formation of a hybrid organic–inorganic coating. This work highlights the fundamental difference in mass uptake behavior between atomic layer deposition and sequential vapor infiltration using in-situ methods. In particular, in-situ quartz crystal microgravimetry is used to compare the mass uptake behavior of trimethyl aluminummore » in poly(butylene terephthalate) and polyamide-6 polymer thin films. The importance of trimethyl aluminum diffusion into the polymer subsurface and the subsequent chemical reactions with polymer functional groups are discussed.« less

  11. Manufacturing of three-dimensionally microstructured nanocomposites through microfluidic infiltration.

    PubMed

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-03-12

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors.

  12. Manufacturing of Three-dimensionally Microstructured Nanocomposites through Microfluidic Infiltration

    PubMed Central

    Dermanaki-Farahani, Rouhollah; Lebel, Louis Laberge; Therriault, Daniel

    2014-01-01

    Microstructured composite beams reinforced with complex three-dimensionally (3D) patterned nanocomposite microfilaments are fabricated via nanocomposite infiltration of 3D interconnected microfluidic networks. The manufacturing of the reinforced beams begins with the fabrication of microfluidic networks, which involves layer-by-layer deposition of fugitive ink filaments using a dispensing robot, filling the empty space between filaments using a low viscosity resin, curing the resin and finally removing the ink. Self-supported 3D structures with other geometries and many layers (e.g. a few hundreds layers) could be built using this method. The resulting tubular microfluidic networks are then infiltrated with thermosetting nanocomposite suspensions containing nanofillers (e.g. single-walled carbon nanotubes), and subsequently cured. The infiltration is done by applying a pressure gradient between two ends of the empty network (either by applying a vacuum or vacuum-assisted microinjection). Prior to the infiltration, the nanocomposite suspensions are prepared by dispersing nanofillers into polymer matrices using ultrasonication and three-roll mixing methods. The nanocomposites (i.e. materials infiltrated) are then solidified under UV exposure/heat cure, resulting in a 3D-reinforced composite structure. The technique presented here enables the design of functional nanocomposite macroscopic products for microengineering applications such as actuators and sensors. PMID:24686754

  13. Migration and transformation of different phosphorus forms in rainfall runoff in bioretention system.

    PubMed

    Song, Yujia; Song, Shoufa

    2018-06-04

    Artificial bioretention system consisting of Ophiopogon japonicus infiltration medium was used to simulate an infiltration experiment of rainfall runoff. Continuous extraction method was used to detect contents of inorganic phosphorus (P) under exchangeable state (Ex-P) and aluminium phosphate (Al-P) and iron phosphate (Fe-P) at different depths (0, 5, 15 and 35 cm) of soil infiltration medium in bioretention system. Effluent total P (TP) concentration of the system was also monitored. Results indicated that the adsorption of inorganic P, Al-P and Fe-P by soil infiltration medium was implemented layer by layer from top to bottom and gradually weakened. Moreover, Ex-P was gradually transformed into Al-P and Fe-P, whereas Al-P was gradually transformed into Fe-P; thus, Ex-P content reduced layer by layer, whereas Al-P and Fe-P gradually accumulated. The TP removal rate in runoff rainwater by the system was more than 90%, where the TP that was not used by plants was under dynamic equilibrium in water-soil-root system/biological system.

  14. Effects of thinning intensities on soil infiltration and water storage capacity in a Chinese pine-oak mixed forest.

    PubMed

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity.

  15. Removal of organic micropollutants in an artificial recharge system

    NASA Astrophysics Data System (ADS)

    Valhondo, C.; Nödler, K.; Köck-Schulmeyer, M.; Hernandez, M.; Licha, T.; Ayora, C.; Carrera, J.

    2012-04-01

    Emerging contaminants including pharmaceutically active compounds (PhACs), personal care products (PCPs) and pesticides are increasingly being identified in the environment. Emerging pollutants and their transformation products show low concentration in the environment (ng/L), but the effects of the mixtures and lifelong exposure to humans are currently unknown. Many of these contaminants are removed under aerobic conditions in water treatment plants. However, several pharmaceuticals and metabolites present in wastewater are not eliminated by conventional treatment processes. Several lab studies, however, show that the behaviour of many of these micropollutants is affected by the dominant redox conditions. However, data from field experiments are limited and sometimes contradictory. Artificial recharge is a widespread technology to increase the groundwater resources. In this study we propose a design to enhance the natural remediation potential of the aquifer with the installation of a reactive layer at the bottom of the infiltration pond. This layer is a mixture of compost, aquifer material, clay and iron oxide. This layer is intended to provide an extra amount of DOC to the recharge water and to promote biodegradation by means of the development of different redox zones along the travel path through the unsaturated zone and within the aquifer. Moreover, compost, clay and iron oxide of the layer are assumed to increase sorption surfaces for neutral, cationic and anionic compounds, respectively. The infiltration system is sited in Sant Vicenç dels Horts (Barcelona, Spain). It consists of a decantation pond, receiving raw water from the Llobregat River (highly affected from treatment plant effluents), and an infiltration pond (5600 m2). The infiltration rate is around 1 m3/m2/day. The system is equipped with a network of piezometers, suction cups and tensiometers. Infiltration periods have been performed before and after the installation of the reactive layer. Water from the Infiltration pond, the unsaturated zone and groundwater have been sampled and analyzed in order to elucidate the effect of the reactive layer. First results of micropollutants under natural conditions show significant removal rates of atenolol and Ibuprofen as well as the recalcitrant behaviour of carbamazepine. Once the layer was installed, carbamazepine concentration in groundwater samples was lower than the concentration in the infiltration water. These preliminary results are promising but, however, they need to be confirmed by further analysis, which will be conducted during the next weeks.

  16. Climate variability and vadose zone controls on damping of transient recharge

    USGS Publications Warehouse

    Corona, Claudia R.; Gurdak, Jason J.; Dickinson, Jesse; Ferré, T.P.A.; Maurer, Edwin P.

    2018-01-01

    Increasing demand on groundwater resources motivates understanding of the controls on recharge dynamics so model predictions under current and future climate may improve. Here we address questions about the nonlinear behavior of flux variability in the vadose zone that may explain previously reported teleconnections between global-scale climate variability and fluctuations in groundwater levels. We use hundreds of HYDRUS-1D simulations in a sensitivity analysis approach to evaluate the damping depth of transient recharge over a range of periodic boundary conditions and vadose zone geometries and hydraulic parameters that are representative of aquifer systems of the conterminous United States (U.S). Although the models were parameterized based on U.S. aquifers, findings from this study are applicable elsewhere that have mean recharge rates between 3.65 and 730 mm yr–1. We find that mean infiltration flux, period of time varying infiltration, and hydraulic conductivity are statistically significant predictors of damping depth. The resulting framework explains why some periodic infiltration fluxes associated with climate variability dampen with depth in the vadose zone, resulting in steady-state recharge, while other periodic surface fluxes do not dampen with depth, resulting in transient recharge. We find that transient recharge in response to the climate variability patterns could be detected at the depths of water levels in most U.S. aquifers. Our findings indicate that the damping behavior of transient infiltration fluxes is linear across soil layers for a range of texture combinations. The implications are that relatively simple, homogeneous models of the vadose zone may provide reasonable estimates of the damping depth of climate-varying transient recharge in some complex, layered vadose zone profiles.

  17. Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes

    DOE PAGES

    Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan; ...

    2017-10-28

    Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less

  18. Synchrotron X-ray studies of model SOFC cathodes, part II: Porous powder cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Kee-Chul; Ingram, Brian; Ilavsky, Jan

    Infiltrated La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) sintered porous powder cathodes for solid oxide fuel cells have been investigated by synchrotron ultra-small angle x-ray scattering (USAXS). Here, we demonstrated that atomic layer deposition (ALD) is the method for a uniform coating and liquid-phase infiltration for growing nanoscale particles on the porous LSCF surfaces. The MnO infiltrate, grown by ALD, forms a conformal layer with a uniform thickness throughout the pores evidenced by USAXS thickness fringes. The La 0.6Sr 0.4CoO 3 (LSC) and La 2Zr 2O 7 (LZO) infiltrates, grown by liquid-phase infiltration, were found to form nanoscale particles onmore » the surfaces of LSCF particles resulting in increased surface areas. In conclusion, impedance measurements suggest that the catalytic property of LSC infiltrate, not the increased surface area of LZO, is important for increasing oxygen reduction activities.« less

  19. Effects of Thinning Intensities on Soil Infiltration and Water Storage Capacity in a Chinese Pine-Oak Mixed Forest

    PubMed Central

    Chen, Lili; Yuan, Zhiyou; Shao, Hongbo; Wang, Dexiang; Mu, Xingmin

    2014-01-01

    Thinning is a crucial practice in the forest ecosystem management. The soil infiltration rate and water storage capacity of pine-oak mixed forest under three different thinning intensity treatments (15%, 30%, and 60%) were studied in Qinling Mountains of China. The thinning operations had a significant influence on soil infiltration rate and water storage capacity. The soil infiltration rate and water storage capacity in different thinning treatments followed the order of control (nonthinning): <60%, <15%, and <30%. It demonstrated that thinning operation with 30% intensity can substantially improve soil infiltration rate and water storage capacity of pine-oak mixed forest in Qinling Mountains. The soil initial infiltration rate, stable infiltration rate, and average infiltration rate in thinning 30% treatment were significantly increased by 21.1%, 104.6%, and 60.9%, compared with the control. The soil maximal water storage capacity and noncapillary water storage capacity in thinning 30% treatment were significantly improved by 20.1% and 34.3% in contrast to the control. The soil infiltration rate and water storage capacity were significantly higher in the surface layer (0~20 cm) than in the deep layers (20~40 cm and 40~60 cm). We found that the soil property was closely related to soil infiltration rate and water storage capacity. PMID:24883372

  20. Kinetic analysis of MgB2 layer formation in advanced internal magnesium infiltration (AIMI) processed MgB2 wires

    PubMed Central

    Li, G. Z.; Sumption, M. D.; Collings, E. W.

    2015-01-01

    Significantly enhanced critical current density (Jc) for MgB2 superconducting wires can be obtained following the advanced internal Mg infiltration (AIMI) route. But unless suitable precautions are taken, the AIMI-processed MgB2 wires will exhibit incomplete MgB2 layer formation, i.e. reduced superconductor core size and hence suppressed current-carrying capability. Microstructural characterization of AIMI MgB2 wires before and after the heat treatment reveals that the reaction mechanism changes from a “Mg infiltration-reaction” at the beginning of the heat treatment to a “Mg diffusion-reaction” once a dense MgB2 layer is formed. A drastic drop in the Mg transport rate from infiltration to diffusion causes the termination of the MgB2 core growth. To quantify this process, a two-stage kinetic model is built to describe the MgB2 layer formation and growth. The derived kinetic model and the associated experimental observations indicate that fully reacted AIMI-processed MgB2 wires can be achieved following the optimization of B particle size, B powder packing density, MgB2 reaction activation energy and its response to the additions of dopants. PMID:26973431

  1. Method of forming catalyst layer by single step infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, Kirk; Lee, Shiwoo; Dowd, Regis

    Provided herein is a method for electrocatalyst infiltration of a porous substrate, of particular use for preparation of a cathode for a solid oxide fuel cell. The method generally comprises preparing an electrocatalyst infiltrate solution comprising an electrocatalyst, surfactant, chelating agent, and a solvent; pretreating a porous mixed ionic-electric conductive substrate; and applying the electrocatalyst infiltration solution to the porous mixed ionic-electric conductive substrate.

  2. An Experimental Study of the Effects of Litter and Duff Consumption and Ash Formation on Post-Fire Runoff.

    NASA Astrophysics Data System (ADS)

    Woods, S. W.; Balfour, V.

    2007-12-01

    Consumption of the litter and duff layers in forest wildfires can lead to substantial increases in the frequency and magnitude of overland flow. These increases result from the loss of storage in the organic surface layer, reduced surface roughness, and from sealing of the exposed mineral soil surface. The presence of an ash layer may accentuate surface sealing by providing an additional source of fine material, or it may reduce runoff by storing rainfall and by protecting the soil surface from raindrop impacts. We used simulated rainfall experiments to assess the effects of litter and duff consumption and the presence of ash layers of varying thickness on post fire runoff at two forested sites in western Montana, one with sandy loam soils formed out of granodiorite and the other with gravelly silt loam soils formed out of argillite. At each site we measured the runoff from simulated rainfall in replicated 0.5 m2 plots before and after application of the following treatments: 1) burning with a fuel load of 90 Mg ha-1, 2) manual removal of the litter and duff layers, 3) addition of 0.5, 2.5 and 5 cm of ash to plots from which the litter and duff had previously been removed, and 4) addition of the same depths of ash to burned plots at the sandy loam site. In the burned plots the surface litter and duff layers were completely consumed and a <1cm layer of black and gray ash and char was formed, indicating a moderate severity burn. The mean soil temperature in the upper 1 cm of the mineral soil was 70° C, and there was no detectable increase in water repellency. The mean final infiltration capacity of the burned sandy loam plots was 35 mm hr-1 compared to a pre-fire mean of 87 mm hr-1, while in the gravelly silt loam plots the pre- and post burn infiltration capacities (27 and 31 mm hr- 1) were not significantly different. Manual removal of the litter and duff layers reduced the mean final infiltration capacity in the sandy loam plots from 64 mm hr-1 to 40 mm hr-1 and in the gravelly silt loam plots from 23 mm hr-1 to 16 mm hr-1. We attribute decreases in infiltration due to the burning and duff removal treatments primarily to surface sealing. In the sandy loam plots, burning may have had a greater effect on infiltration than duff removal because the thin ash layer in the burned plots provided an additional source of fine material. In the gravelly silt loam plots, macropores located around rock fragments helped to minimize sealing effects. The addition of 0.5 cm of ash to the burned granitic plots resulted in a 20 mm hr-1 decrease in the final infiltration rate, and this was also probably due to surface sealing. However, the overall effect of ash addition was to increase the cumulative infiltration in proportion to the ash thickness and to maintain a higher average infiltration rate, indicating that while thin (<1 cm) ash layers may promote sealing, thicker ash layers help to reduce the runoff rate by providing additional storage for rainfall and by protecting the soil surface from raindrop impacts.

  3. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    PubMed Central

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-01-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1–5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10–50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (∼1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields. PMID:28000743

  4. Multi-Scale-Porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics

    NASA Astrophysics Data System (ADS)

    Sanzaro, Salvatore; Smecca, Emanuele; Mannino, Giovanni; Bongiorno, Corrado; Pellegrino, Giovanna; Neri, Fortunato; Malandrino, Graziella; Catalano, Maria Rita; Condorelli, Guglielmo Guido; Iacobellis, Rosabianca; De Marco, Luisa; Spinella, Corrado; La Magna, Antonino; Alberti, Alessandra

    2016-12-01

    We propose an up-scalable, reliable, contamination-free, rod-like TiO2 material grown by a new method based on sputtering deposition concepts which offers a multi-scale porosity, namely: an intra-rods nano-porosity (1-5 nm) arising from the Thornton’s conditions and an extra-rods meso-porosity (10-50 nm) originating from the spatial separation of the Titanium and Oxygen sources combined with a grazing Ti flux. The procedure is simple, since it does not require any template layer to trigger the nano-structuring, and versatile, since porosity and layer thickness can be easily tuned; it is empowered by the lack of contaminations/solvents and by the structural stability of the material (at least) up to 500 °C. Our material gains porosity, stability and infiltration capability superior if compared to conventionally sputtered TiO2 layers. Its competition level with chemically synthesized reference counterparts is doubly demonstrated: in Dye Sensitized Solar Cells, by the infiltration and chemisorption of N-719 dye (˜1 × 1020 molecules/cm3); and in Perovskite Solar Cells, by the capillary infiltration of solution processed CH3NH3PbI3 which allowed reaching efficiency of 11.7%. Based on the demonstrated attitude of the material to be functionalized, its surface activity could be differently tailored on other molecules or gas species or liquids to enlarge the range of application in different fields.

  5. Soil sealing and vesicular layer formation as initial structure development and its effect on infiltration

    NASA Astrophysics Data System (ADS)

    Badorreck, A.; Gerke, H. H.; Weller, U.; Vontobel, P.

    2009-04-01

    In the Lusatia mining district (NE-Germany) an artificial catchment was constructed to study initial ecosystem development and runoff generation. As a key process in this early stage, we investigate the surface structure dynamics as it strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. The presented work focuses on observations of soil pore structure formation at the surface at five sites in the catchment and in an adjacent "younger" area composed of comparable sediments. Moreover we've conducted infiltration experiments in the lab and field to relate the soil pore structure to the hydraulic properties. The surface soil was sampled in cylindrical rings (10 cm³) down to 2 cm depth from which bulk density profiles were obtained using X-ray computed tomography (CT) (at UFZ- Halle, Germany) with a resolution of 0.084 mm. The influence of structure on infiltration was investigated using neutron radiography (at the NEUTRA facility of the Paul-Scherrer-Institut, Villigen, Switzerland) to visualise two-dimensional (2D) infiltration patterns. The slab-type samples were equilibrated to different initial water contents and then exposed to drip irrigation (to simulate rainfall) while a series of neutron radiographs were taken. In addition, field measurements with a miniature tension infiltrometer were conduced. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The infiltration rates were severely affected by the surface crusts; however, the rates were independent of the vesicular pore layer.

  6. The expression of podoplanin protein is a diagnostic marker to distinguish the early infiltration of esophageal squamous cell carcinoma.

    PubMed

    Chen, Guangyong; Xu, Rui; Yue, Bing; Mei, Xue; Li, Peng; Zhou, Xiaoge; Huang, Shoufang; Gong, Liping; Zhang, Shutian

    2017-03-21

    The esophageal squamous cell carcinoma (ESCC) is usually develped from low-grade intraepithelial neoplasia (LGIEN) and high-grade intraepithelial neoplasia (HGIEN) to infiltrative squamous cell carcinoma. Till now, it remains hard to screen for infiltration at earlier stages, especially the differentiation between HGEIN and early infiltrative carcinoma. The purpose of this study is to determine a role of podoplanin in differentiating between HGEIN and early infiltrative squamous cell carcinoma. Totally 133 patients pathologically diagnosed with early ESCC and/or precancerous lesions were enrolled.The EnVision two-step IHC staining technique was applied using the monoclonal mouse anti-human Podoplanin antibody (clone number: D2-40). The expressions of PDPN protein on the basal layer of squamous epithelium lesions could be divided into three different patterns: complete type, incomplete (non-continuous) type, or missing type. A diagnosis of HGEIN can be made if the basal layer showed non-continuous or complete expression of PDPN and a diagnosis of early infiltration can be made if the expression of PDPN is completely missing. Our study confirmed that PDPN was a potential biomarker to identify the presence of early infiltrative squamous cell carcinoma.

  7. The expression of podoplanin protein is a diagnostic marker to distinguish the early infiltration of esophageal squamous cell carcinoma

    PubMed Central

    Chen, Guangyong; Xu, Rui; Yue, Bing; Mei, Xue; Li, Peng; Zhou, Xiaoge; Huang, Shoufang; Gong, Liping; Zhang, Shutian

    2017-01-01

    The esophageal squamous cell carcinoma (ESCC) is usually develped from low-grade intraepithelial neoplasia (LGIEN) and high-grade intraepithelial neoplasia (HGIEN) to infiltrative squamous cell carcinoma. Till now, it remains hard to screen for infiltration at earlier stages, especially the differentiation between HGEIN and early infiltrative carcinoma. The purpose of this study is to determine a role of podoplanin in differentiating between HGEIN and early infiltrative squamous cell carcinoma. Totally 133 patients pathologically diagnosed with early ESCC and/or precancerous lesions were enrolled.The EnVision two-step IHC staining technique was applied using the monoclonal mouse anti-human Podoplanin antibody (clone number: D2-40). The expressions of PDPN protein on the basal layer of squamous epithelium lesions could be divided into three different patterns: complete type, incomplete (non-continuous) type, or missing type. A diagnosis of HGEIN can be made if the basal layer showed non-continuous or complete expression of PDPN and a diagnosis of early infiltration can be made if the expression of PDPN is completely missing. Our study confirmed that PDPN was a potential biomarker to identify the presence of early infiltrative squamous cell carcinoma. PMID:28086225

  8. 40 CFR 258.60 - Closure criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operators of all MSWLF units must install a final cover system that is designed to minimize infiltration and... greater than 1×10−5 cm/sec, whichever is less, and (2) Minimize infiltration through the closed MSWLF by the use of an infiltration layer that contains a minimum 18-inches of earthen material, and (3...

  9. 40 CFR 258.60 - Closure criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operators of all MSWLF units must install a final cover system that is designed to minimize infiltration and... greater than 1×10−5 cm/sec, whichever is less, and (2) Minimize infiltration through the closed MSWLF by the use of an infiltration layer that contains a minimum 18-inches of earthen material, and (3...

  10. 40 CFR 258.60 - Closure criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operators of all MSWLF units must install a final cover system that is designed to minimize infiltration and... greater than 1×10−5 cm/sec, whichever is less, and (2) Minimize infiltration through the closed MSWLF by the use of an infiltration layer that contains a minimum 18-inches of earthen material, and (3...

  11. 40 CFR 258.60 - Closure criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of all MSWLF units must install a final cover system that is designed to minimize infiltration and... greater than 1×10−5 cm/sec, whichever is less, and (2) Minimize infiltration through the closed MSWLF by the use of an infiltration layer that contains a minimum 18-inches of earthen material, and (3...

  12. 40 CFR 258.60 - Closure criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operators of all MSWLF units must install a final cover system that is designed to minimize infiltration and... greater than 1×10−5 cm/sec, whichever is less, and (2) Minimize infiltration through the closed MSWLF by the use of an infiltration layer that contains a minimum 18-inches of earthen material, and (3...

  13. Infiltrating a thin or single-layer opal with an atomic vapour: Sub-Doppler signals and crystal optics

    NASA Astrophysics Data System (ADS)

    Moufarej, Elias; Maurin, Isabelle; Zabkov, Ilya; Laliotis, Athanasios; Ballin, Philippe; Klimov, Vasily; Bloch, Daniel

    2014-10-01

    Artificial thin glass opals can be infiltrated with a resonant alkali-metal vapour, providing novel types of hybrid systems. The reflection at the interface between the substrate and the opal yields a resonant signal, which exhibits sub-Doppler structures in linear spectroscopy for a range of oblique incidences. This result is suspected to originate in an effect of the three-dimensional confinement of the vapour in the opal interstices. It is here extended to a situation where the opal is limited to a few- or even a single-layer opal film, which is a kind of bidimensional grating. We have developed a flexible one-dimensional layered optical model, well suited for a Langmuir-Blodgett opal. Once extended to the case of a resonant infiltration, the model reproduces quick variations of the lineshape with incidence angle or polarization. Alternately, for an opal limited to a single layer of identical spheres, a three-dimensional numerical calculation was developed. It predicts crystalline anisotropy, which is demonstrated through diffraction on an empty opal made of a single layer of polystyrene spheres.

  14. Infiltration characteristics and influencing factors of retroperitoneal liposarcoma: Novel evidence for extended surgery and a tumor grading system.

    PubMed

    Wang, Zhen; Wu, Jianhui; Lv, Ang; Li, Chengpeng; Li, Zhongwu; Zhao, Min; Hao, Chunyi

    2018-05-13

    This study sought to evaluate the infiltration tendency of retroperitoneal liposarcoma (RPLS) from a new pathological angle by exploring the infiltration characteristics, which could provide helpful information to facilitate surgical decision-making and prognosis prediction. Concurrently, we aim to identify significant indicators of infiltration. A total of 61 consecutive patients with RPLS at our institution were retrospectively analyzed. All patients received extended surgery. The tumor infiltration characteristics and influencing factors were studied based on the pathological diagnosis. Univariate and multivariate analyses of organ infiltration (OI) and surrounding fat infiltration (SFI) were performed. OI was found in 95 (28.5%) resected organs from 39 (60.7%) patients, and SFI was found in 119 (35.7%) resected organs from 47 (77%) patients. The tumor infiltrated the serosal layer of 13 organs (13/37, 35.1%), the muscularis layer of 18 organs (18/37, 48.6%) and the submucosa of 6 organs (6/37, 16.2%). The percentage of lipoblasts and the rates of necrosis and mitosis were all significantly higher in high-grade tumors (dedifferentiated, round cell, and pleomorphic). A high lipoblast percentage (≥ 20%) was the only independent risk factor for OI. A recurrent tumor and a high-grade tumor were independent risk factors for SFI. In conclusion, RPLS has a high infiltration tendency, such that it frequently infiltrates organs and surrounding fat tissue. Therefore, extended resection of the tumor and the adjacent organs is recommended. The percentage of lipoblasts was associated with the tumor grade and infiltration characteristics; thus, lipoblast percentage may become a new grading factor for RPLS.

  15. Atrazine distribution measured in soil and leachate following infiltration conditions.

    PubMed

    Neurath, Susan K; Sadeghi, Ali M; Shirmohammadi, Adel; Isensee, Allan R; Torrents, Alba

    2004-01-01

    Atrazine transport through packed 10 cm soil columns representative of the 0-10 cm soil horizon was observed by measuring the atrazine recovery in the total leachate volume, and upper and lower soil layers following infiltration of 7.5 cm water using a mechanical vacuum extractor (MVE). Measured recoveries were analyzed to understand the influence of infiltration rate and delay time on atrazine transport and distribution in the column. Four time periods (0.28, 0.8, 1.8, and 5.5 h) representing very high to moderate infiltration rates (26.8, 9.4, 4.2, and 1.4 cm/h) were used. Replicate soil columns were tested immediately and following a 2-d delay after atrazine application. Results indicate atrazine recovery in leachate was independent of infiltration rate, but significantly lower for infiltration following a 2-d delay. Atrazine distribution in the 0-1 and 9-10 cm soil layers was affected by both infiltration rate and delay. These results are in contrast with previous field and laboratory studies that suggest that atrazine recovery in the leachate increases with increasing infiltration rate. It appears that the difference in atrazine recovery measured using the MVE and other leaching experiments using intact soil cores from this field site and the rain simulation equipment probably illustrates the effect of infiltrating water interacting with the atrazine present on the soil surface. This work suggests that atrazine mobilization from the soil surface is also dependent on interactions of the infiltrating water with the soil surface, in addition to the rate of infiltration through the surface soil.

  16. Two layer structure for reinforcing pothole repair

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Yuan, Kuo-Yao; Zou, Linhua; Yang, Jenn-Ming; Ju, Jiann-Wen; Kao, Wei; Carlson, Larry

    2013-04-01

    We have applied dicyclopentadiene (DCPD) resin for reinforcing pothole patch materials due to its unique properties - low cost, low viscosity at beginning and ultra-toughness after curing, chemical compatibility with tar, tunable curing profile through catalyst design. In this paper, we have designed a two layer structure - well compacted base layer and DCPD reinforced 1-1.5" top layer - for pothole repair. By choosing two graded asphalt mixes, a porous top layer and fully compacted base layer was prepared after compaction and ready for DCPD resin infiltration. The DCPD curing and infiltration profile within this porous top layer was measured with thermocouples. The rutting resistance was tested with home-made wheel rutter. The cage effect due to the p-DCPD wrapping was characterized with wheel penetration test. The results showed that this two layer structure pothole repair has greatly improved properties and can be used for pothole repair to increase the service life.

  17. Ground-water flow and numerical simulation of recharge from streamflow infiltration near Pine Nut Creek, Douglas County, Nevada

    USGS Publications Warehouse

    Maurer, Douglas K.

    2002-01-01

    Ground-water flow and recharge from infiltration near Pine Nut Creek, east of Gardnerville, Nevada, were simulated using a single-layer numerical finite-difference model as part of a study made by the U.S. Geological Survey in cooperation with the Carson Water Subconservancy District. The model was calibrated to 190 water-level measurements made in 27 wells in December 2000, and in 9 wells from August 1999 through April 2001. The purpose of this study was to estimate reasonable limits for the approximate volume of water that may be stored by recharge through infiltration basins, and the rate at which recharged water would dissipate or move towards the valley floor. Measured water levels in the study area show that infiltration from the Allerman Canal and reservoir has created a water-table mound beneath them that decreases the hydraulic gradient east of the canal and increases the gradient west of the canal. North of Pine Nut Creek, the mound causes ground water to flow toward the northern end of the reservoir. South of Pine Nut Creek, relatively high water levels probably are maintained by the mound beneath the Allerman Canal and possibly by greater rates of recharge from the southeast. Water-level declines near Pine Nut Creek from August 1999 through April 2001 probably are caused by dissipation of recharge from infiltration of Pine Nut Creek streamflow in the springs of 1998 and 1999. Using the calibrated model, a simulation of recharge through a hypothetical infiltration basin covering 12.4 acres near Pine Nut Creek applied 700 acre-feet per year of recharge over a six-month period, for a total of 3,500 acre-feet after 5 consecutive years. This recharge requires a diversion rate of about 2 cubic feet per second and an infiltration rate of 0.3 foot per day. The simulations showed that recharge of 3,500 acre-feet caused water levels near the basin to rise over 70 feet, approaching land surface, indicating 3,500 acre-feet is the maximum that may be stored in a 5-year period, given the basin location and surface area used in the simulations. Greater amounts probably could be stored if separate infiltration basins were installed at different locations along the Pine Nut Creek alluvial fan, applying the recharge over a larger area. The water-table mound resulting from recharge extended 7,000 feet north, west, and south of the infiltration basin. After recharge ceased, water levels near the center of the mound declined rapidly to within 20 feet of initial levels after 2 years, and within 10 feet of initial levels after 7 years. The recharge mound dissipates laterally across the modeled area at decreasing rates over time. A water-level rise of 1 foot moved westward towards the valley floor 660 feet from peak conditions after 1 year, and averaged 550 feet, 440 feet, and 330 feet per year for the periods 1-4, 4-7, and 7-10 years, respectively, after recharge ceased. Simulations of subsequent pumping from hypothetical wells near the infiltration basin were made by applying pumping near the basin beginning 1 year after recharge of 3,500 acre-feet ceased. Pumping was applied over a 6-month period for 4 years from one well at 400 acre-feet per year, withdrawing 1,600 acre-feet or 45 percent of that recharged, and from two wells totaling 800 acre-feet per year, withdrawing 3,200 acre-feet or 90 percent of that recharged. Pumping of 1,600 acre-feet caused water-levels near the infiltration basin to decline only slightly below initial levels. Pumping of 3,200 acre-feet caused water-levels near the infiltration basin to decline a maximum of 30 feet below initial levels, with smaller declines extending laterally in all directions for 4,000 feet from the pumping wells. Water-level declines are a result of pumping at a rate sufficient to withdraw the majority of the water recharged through the infiltration basin. Although the declines may affect water levels in nearby domestic wells, the simulations show that water levels recover quickly after

  18. [Effects of mulching management of Phyllostachys heterocycla forests on the characteristics of soil infiltration and biometrics in southwest Zhejiang Province, China].

    PubMed

    Wang, Yi Kun; Jin, Ai Wu; Fang, Sheng Zuo

    2017-05-18

    Soil infiltration, soil physical and chemical properties, root length density and soil fauna diversity were studied in Phyllostachys heterocycla forests with different mulching times in southwest Zhejiang Province, China. Significant differences of soil infiltration capability were found among the forests with different mulching times and among soil layers. Soil infiltration capability generally declined in the deeper soil layers. With mulching management, soil infiltration capability increased under the first mulching, and then declined with the increase of mulching times. The Kostiakov model was suitable for simulating soil infiltration process. With the extending of mulching times (4 to 6 years), soil pH and total/non-capillary porosity decreased, while soil bulk density, soil orga-nic matter and total nitrogen contents increased significantly. Soil initial, steady, and average infiltration rates as well as the cumulative infiltration amount correlated closely with the length density of roots with diameter from 0.5 mm to 5.0 mm, showing a decreasing tendency with the decrease in root length density. Soil fauna density was highest in the forest under the first mulching, and was lowest after third mulching. The decreased numbers of large and meso-arthropods, including Symphyla, Chilopoda, Diplopoda, Hymenoptera and pseudoscorpions, and the micro-arthropods, including Oribatida, Mesostigmata, Onychiuridae, Neanuridae, Cyphoderidae, and Entomobryidae, showed negative effects on soil infiltration. In conclusion, long-term mulching changed soil physical and chemical properties, decreased soil infiltration capability, and suppressed the development of soil fauna, which might cause the decline ofP. heterocycla forests.

  19. p53 and PCNA Expression in Keratocystic Odontogenic Tumors Compared with Selected Odontogenic Cysts

    PubMed Central

    Seyedmajidi, Maryam; Nafarzadeh, Shima; Siadati, Sepideh; Shafaee, Shahryar; Bijani, Ali; Keshmiri, Nazanin

    2013-01-01

    p53 and PCNA expression in keratocystic odontogenic tumors compared with selected odontogenic cysts Summary: The aim of this study was to evaluate p53 and PCNA expression in different odontogenic lesions regarding their different clinical behaviors. Slices prepared from 94 paraffin-embedded tissue blocks (25 radicular cysts (RC), 23 dentigerous cysts (DC), 23 keratocystic odontogenic tumors (KCOT) and 23 calcifying cystic odontogenic tumors (CCOT)) were stained with p53 and PCNA antibodies using immunohistochemistry procedure. The highest level of p53 expression was in the basal layer of RC, and the highest level of PCNA expression was in the suprabasal layer of KCOT. The differences of p53 expression in basal and suprabasal layers as well as PCNA expression in the suprabasal layer were significant but there was no significant difference in PCNA expression in the basal layer of these lesions. The expression of p53 in the basal layer of RC was higher than in other cysts. This may be due to intensive inflammatory infiltration. Also, the high level of PCNA expression in the suprabasal layer of KCOT may justify its neoplastic nature and tendency to recurrence. KCOT and calcifying cystic odontogenic tumors did not show similar expression of studied biomarkers. PMID:24551811

  20. GPR monitoring for non-uniform infiltration through a high permeable gravel layer in the test sand box

    NASA Astrophysics Data System (ADS)

    Kuroda, Seiichiro; Ishii, Nobuyuki; Morii, Toshihiro

    2017-04-01

    Recently capillary barriers have been known as a method to protect subsurface regions against infiltration from soil surface. It has essentially non-uniform structure of permeability or soil physical property. To identify the function of the capillary barrier, the site-characterization technique for non-uniform soil moisture distribution and infiltration process is needed. We built a sand box in which a thin high-permeable gravel layer was embedded and conducted a infiltration test, including non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed soundings with multi-frequency antenna and transmission measurements like one using cross-borehole radar. Finally we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. This work has partially supported by JSPS Grant-in-aid Scientific Research program, No.16H02580.

  1. Biochars impact on water infiltration and water quality through a compacted subsoil layer.

    PubMed

    Novak, Jeff; Sigua, Gilbert; Watts, Don; Cantrell, Keri; Shumaker, Paul; Szogi, Ariel; Johnson, Mark G; Spokas, Kurt

    2016-01-01

    Soils in the SE USA Coastal Plain region frequently have a compacted subsoil layer (E horizon), which is a barrier for water infiltration. Four different biochars were evaluated to increase water infiltration through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Kandiudult). In addition, we also evaluated biochars effect on water quality. Biochars were produced by pyrolysis at 500 °C from pine chips (Pinus taeda), poultry litter (Gallus domesticus) feedstocks, and as blends (50:50 and 80:20) of pine chip:poultry litter. Prior to pyrolysis, the feedstocks were pelletized and sieved to >2-mm pellets. Each biochar was mixed with the subsoil at 20 g/kg (w/w) and the mixture was placed in columns. The columns were leached four times with Milli-Q water over 128 d of incubation. Except for the biochar produced from poultry litter, all other applied biochars resulted in significant water infiltration increases (0.157-0.219 mL min(-1); p<0.05) compared to the control (0.095 mL min(-1)). However, water infiltration in each treatment were influenced by additional water leaching. Leachates were enriched in PO4, SO4, Cl, Na, and K after addition of poultry litter biochar, however, their concentrations declined in pine chip blended biochar treatments and after multiple leaching. Adding biochars (except 100% poultry litter biochar) to a compacted subsoil layer can initially improve water infiltration, but, additional leaching revealed that the effect remained only for the 50:50 pine chip:poultry litter blended biochar while it declined in other biochar treatments. Published by Elsevier Ltd.

  2. Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream

    USGS Publications Warehouse

    Dudek Ronan, Anne; Prudic, David E.; Thodal, Carl E.; Constantz, Jim

    1998-01-01

    Two experiments were performed to investigate flow beneath an ephemeral stream and to estimate streambed infiltration rates. Discharge and stream-area measurements were used to determine infiltration rates. Stream and subsurface temperatures were used to interpret subsurface flow through variably saturated sediments beneath the stream. Spatial variations in subsurface temperatures suggest that flow beneath the streambed is dependent on the orientation of the stream in the canyon and the layering of the sediments. Streamflow and infiltration rates vary diurnally: Streamflow is lowest in late afternoon when stream temperature is greatest and highest in early morning when stream temperature is least. The lower afternoon Streamflow is attributed to increased infiltration rates; evapotranspiration is insufficient to account for the decreased Streamflow. The increased infiltration rates are attributed to viscosity effects on hydraulic conductivity from increased stream temperatures. The first set of field data was used to calibrate a two-dimensional variably saturated flow model that includes heat transport. The model was calibrated to (1) temperature fluctuations in the subsurface and (2) infiltration rates determined from measured Streamflow losses. The second set of field data was to evaluate the ability to predict infiltration rates on the basis of temperature measurements alone. Results indicate that the variably saturated subsurface flow depends on downcanyon layering of the sediments. They also support the field observations in indicating that diurnal changes in infiltration can be explained by temperature dependence of hydraulic conductivity. Over the range of temperatures and flows monitored, diurnal stream temperature changes can be used to estimate streambed infiltration rates. It is often impractical to maintain equipment for determining infiltration rates by traditional means; however, once a model is calibrated using both infiltration and temperature data, only relatively inexpensive temperature monitoring can later yield infiltration rates that are within the correct order of magnitude.

  3. Smoothed Particle Hydrodynamics Modeling of Gravity Currents on a Dry Porous Medium

    NASA Astrophysics Data System (ADS)

    Daly, E.; Grimaldi, S.; Bui, H.

    2014-12-01

    Gravity currents flowing over porous media occur in many environmental processes and industrial applications, such as irrigation, benthic boundary layers, and oil spills. The coupling of the flow over the porous surface and the infiltration of the fluid in the porous media is complex and difficult to model. Of particular interest is the prediction of the position of the runoff front and the depth of the infiltration front. We present here a model for the flow of a finite volume of a highly viscous Newtonian fluid over a dry, homogenous porous medium. The Navier-Stokes equations describing the runoff flow are coupled to the Volume Averaged Navier-Stokes equations for the infiltration flow. The numerical solution of these equations is challenging because of the presence of two free surfaces (runoff and infiltration waves), the lack of fixed boundary conditions at the runoff front, and the difficulties in defining appropriate conditions at the surface of the porous medium. The first two challenges were addressed by using Smoothed Particle Hydrodynamics, which is a Lagrangian, mesh-free particle method particularly suitable for modelling free surface flows. Two different approaches were used to model the flow conditions at the surface of the porous medium. The Two Domain Approach (TDA) assumes that runoff and infiltration flows occur in two separate homogenous domains; here, we assume the continuity of velocity and stresses at the interface of the two domains. The One Domain Approach (ODA) models runoff and infiltration flows as occurring through a medium whose hydraulic properties vary continuously in space. The transition from the hydraulic properties of the atmosphere and the porous medium occur in a layer near the surface of the porous medium. Expressions listed in literature were used to compute the thickness of this transition layer and the spatial variation of porosity and permeability within it. Our results showed that ODA led to slower velocities of the runoff front and enhanced infiltration when compared to the implemented formulation of TDA. In the ODA, depending on the description of the transition layer, the maximum distances travelled by the runoff front and the maximum depth of infiltration varied over a range of ±15% and ±50% when compared to their respective averaged values.

  4. System dynamics modeling of nitrogen removal in a stormwater infiltration basin with biosorption-activated media.

    PubMed

    Xuan, Zhemin; Chang, Ni-Bin; Wanielista, Martin P; Williams, Evan Shane

    2013-07-01

    Stormwater infiltration basins, one of the typical stormwater best management practices, are commonly constructed for surface water pollution control, flood mitigation, and groundwater restoration in rural or residential areas. These basins have soils with better infiltration capacity than the native soil; however, the ever-increasing contribution of nutrients to groundwater from stormwater due to urban expansion makes existing infiltration basins unable to meet groundwater quality criteria related to environmental sustainability and public health. This issue requires retrofitting current infiltration basins for flood control as well as nutrient control before the stormwater enters the groundwater. An existing stormwater infiltration basin in north-central Florida was selected, retrofitted, and monitored to identify subsurface physiochemical and biological processes during 2007-2010 to investigate nutrient control processes. This implementation in the nexus of contaminant hydrology and ecological engineering adopted amended soil layers packed with biosorption activated media (BAM; tire crumb, silt, clay, and sand) to perform nutrient removal in a partitioned forebay using a berm. This study presents an infiltration basin-nitrogen removal (IBNR) model, a system dynamics model that simulates nitrogen cycling in this BAM-based stormwater infiltration basin with respect to changing hydrologic conditions and varying dissolved nitrogen concentrations. Modeling outputs of IBNR indicate that denitrification is the biogeochemical indicator in the BAM layer that accounted for a loss of about one third of the total dissolved nitrogen mass input. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  5. Use of a three-dimensional model for the analysis of the ground-water flow system in Parker Valley, Arizona and California

    USGS Publications Warehouse

    Tucci, Patrick

    1982-01-01

    A three-dimensional, finite-difference model was used to simulate ground-water flow conditions in Parker Valley. The study evaluated present knowledge and concepts of the ground-water system and the ability of the model to represent the system. Modeling assumptions and generalized physical parameters that were used may have transfer value in the construction and calibration of models of other basins along the lower Colorado River. The aquifer was simulated in two layers to represent the three-dimensional system. Ground-water conditions were simulated for 1940-41, the mid-1960's, and 1980. Overall model results generally compared favorably with available field information. The model results showed that for 1940-41 the Colorado River was a losing stream through out Parker Valley. Infiltration of surface water from the river was the major source of recharge. The dominant mechanism of discharge was evapotranspiration by phreatophytes. Agricultural development between 1941 and the mid-1960 's resulted in significant changes to the ground-water system. Model results for conditions in the mid-1960 's showed that the Colorado River had become a gaining stream in the northern part of the valley as a result of higher water levels. The rise in water levels was caused by infiltration of applied irrigation water. Diminished water-level gradients from the river in the rest of the valley reduced the amount of infiltration of surface water from the river. Models results for conditions in 1980 showed that ground-water level rises of several feet caused further reduction in the amount of surface-water infiltration from the river. (USGS)

  6. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis

    PubMed Central

    Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Koppán, Miklós

    2017-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis (n = 15), uterine fibroid-induced moderate dysmenorrhoea (n = 7) and tubal infertility with no pain (n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease. PMID:28478727

  7. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis.

    PubMed

    Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Helyes, Zsuzsanna; Koppán, Miklós

    2017-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis ( n = 15), uterine fibroid-induced moderate dysmenorrhoea ( n = 7) and tubal infertility with no pain ( n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first evidence for the presence of non-neuronal TRPA1 receptor in the healthy human endometrium and confirm the expression of TRPV1 channels. Their upregulations in rectosigmoid deep infiltrating endometriosis lesions and correlations with pain intensity suggest potential roles in pathophysiological mechanisms of the disease.

  8. Quantifying Water Infiltration through the Preferential Passages in the Forest Soil

    NASA Astrophysics Data System (ADS)

    Qu, Liqin; Chen, Ping; Gan, Ping; Lei, Tingwu

    2017-04-01

    Infiltration of water into soil commonly involves infiltration through the matrix body and preferential passages. Quantifying the contribution of preferential flow is important to evaluate the effects of land use and land cover changes on hillslope hydrology and watershed sedimentation. A new procedure was applied in this study to estimate the water infiltration into the soil through the soil body and macrospores. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station, Gansu Province, China. The experiment implements a double-ring infiltrometer and involves two measuring phases. Firstly, a thin layer sieved soil collected on site was sprinkled on the nylon cloth to shelter the macrospores and to ensure that water infiltrates the soil through the matrix only. The infiltration process was measured, computed, and recorded. Secondly, immediately after the first phase, the nylon cloth and layered soil above the soil surface was removed from the double ring infiltrometer carefully, and the infiltration process was measured for 30 mins in which water infiltration through both soil body impacted by the preferential passages in the soil body. There were three treatments according to the measured infiltration periods in the first phase of 30, 60, 90 mins, respectively, and two replicates for each treatment were conducted. The measured soil infiltration curves in the first phase explained the transient process of soil matrix infiltration well. The measured date were fitted by Kostiako models fitted measured data well with all coefficients of determination greater than 0.9. The constant infiltration rates from the second phase were at least 2 times larger than the estimates from the first phase. In other words, the results indicated that more than 60% of water infiltration was through the preferential passages in the forest soil. The result also shows that durations in the first phase affect the trends of the infiltration curve in the second phase. The result from this study is helpful to understand the mechanism of hydrological response to different land covers.

  9. Numerical analysis of groundwater recharge through stony soils using limited data

    NASA Astrophysics Data System (ADS)

    Hendrickx, J. M. H.; Khan, A. S.; Bannink, M. H.; Birch, D.; Kidd, C.

    1991-10-01

    This study evaluates groundwater recharge on an alluvial fan in Quetta Valley (Baluchistan, Pakistan), through deep stony soils with limited data of soil texture, soil profile descriptions, water-table depths and meteorological variables. From the soil profile descriptions, a representative profile was constructed with typical soil layers. Next, the texture of each layer was compared with textures of soils with known soil physical characteristics; it is assumed that soils from the same textural class have similar water retention and hydraulic conductivity curves. Finally, the water retention and hydraulic conductivity curves were transformed to account for the volume of stones in each layer; this varied between 0 and 60 vol. %. These data were used in a transient finite difference model and in a steady-state analytical solution to evaluate the travel time of the recharge water and the maximum annual recharge volume. Travel times proved to be less sensitive to differences in soil physical characteristics than to differences in annual infiltration rates. Therefore, estimation of soil physical characteristics from soil texture data alone appears justified for this study. Estimated travel times on the alluvial fan in the Quetta Valley vary between 1.6 years, through a soil profile of 25 m with an infiltration rate of 120 cm year -1, to 18.3 years through a soil profile of 100 m with an infiltration rate of 40 cm year -1. When the infiltration rate of the soil exceeds 40 cm day -1, the infiltration process proceeds so fast that evaporation losses are small. If the depth of ponding at the start of infiltration is more than 1 m, at least 90% of the applied recharge water will reach the water table, providing that the ponding area is bare of vegetation.

  10. Simulation of an urban ground-water-flow system in the Menomonee Valley, Milwaukee, Wisconsin using analytic element modeling

    USGS Publications Warehouse

    Dunning, C.P.; Feinstein, D.T.

    2004-01-01

    A single-layer, steady-state analytic element model was constructed to simulate shallow ground-water flow in the Menomonee Valley, an old industrial center southwest of downtown Milwaukee, Wisconsin. Project objectives were to develop an understanding of the shallow ground-water flow system and identify primary receptors of recharge to the valley. The analytic element model simulates flow in a 18.3 m (60 ft) thick layer of estuarine and alluvial sediments and man-made fill that comprises the shallow aquifer across the valley. The thin, laterally extensive nature of the shallow aquifer suggests horizontal-flow predominates, thus the system can appropriately be modeled with the Dupuit-Forchheimer approximation in an analytic element model. The model was calibrated to the measured baseflow increase between two USGS gages on the Menomonee River, 90 head measurements taken in and around the valley during December 1999, and vertical gradients measured at five locations under the river and estuary in the valley. Recent construction of the Milwaukee Metropolitan Sewer District Inline Storage System (ISS) in the Silurian dolomite under the Menomonee Valley has locally lowered heads in the dolomite appreciably, below levels caused by historic pumping. The ISS is a regional hydraulic sink which removes water from the bedrock even during dry weather. The potential effect on flow directions in the shallow aquifer of dry-weather infiltration to the ISS was evaluated by adjusting the resistance of the line-sink strings representing the ISS in the model to allow infiltration from 0 to 100% of the reported 9,500 m3/d. The best fit to calibration targets was found between 60% (5,700 m3/d) and 80% (7,600 m3/d) of the reported dry-weather infiltration. At 60% infiltration, 65% of the recharge falling on the valley terminates at the ISS and 35% at the Menomonee River and estuary. At 80% infiltration, 73% of the recharge terminates at the ISS, and 27% at the river and estuary. Model simulations suggest that the ISS has an greater influence on the shallow ground-water flow in the eastern half of valley as compared to the western half. Preliminary three-dimensional simulations using the numerical MODFLOW code show good agreement with the single-layer simulation and supports its use in evaluating the shallow system. Copyright ASCE 2004.

  11. On the role of infiltration and exfiltration in swash zone boundary layer dynamics

    NASA Astrophysics Data System (ADS)

    Pintado-Patiño, José Carlos; Torres-Freyermuth, Alec; Puleo, Jack A.; Pokrajac, Dubravka

    2015-09-01

    Boundary layer dynamics are investigated using a 2-D numerical model that solves the Volume-Averaged Reynolds-Averaged Navier-Stokes equations, with a VOF-tracking scheme and a k - ɛ turbulence closure. The model is validated with highly resolved data of dam break driven swash flows over gravel impermeable and permeable beds. The spatial gradients of the velocity, bed shear stress, and turbulence intensity terms are investigated with reference to bottom boundary layer (BL) dynamics. Numerical results show that the mean vorticity responds to flow divergence/convergence at the surface that result from accelerating/decelerating portions of the flow, bed shear stress, and sinking/injection of turbulence due to infiltration/exfiltration. Hence, the zero up-crossing of the vorticity is employed as a proxy of the BL thickness inside the shallow swash zone flows. During the uprush phase, the BL develops almost instantaneously with bore arrival and fluctuates below the surface due to flow instabilities and related horizontal straining. In contrast, during the backwash phase, the BL grows quasi-linearly with less influence of surface-induced forces. However, the infiltration produces a reduction of the maximum excursion and duration of the swash event. These effects have important implications for the BL development. The numerical results suggest that the BL growth rate deviates rapidly from a quasi-linear trend if the infiltration is dominant during the initial backwash phase and the flat plate boundary layer theory may no longer be applicable under these conditions.

  12. Issues in the inverse modeling of a soil infiltration process

    NASA Astrophysics Data System (ADS)

    Kuraz, Michal; Jacka, Lukas; Leps, Matej

    2017-04-01

    This contribution addresses issues in evaluation of the soil hydraulic parameters (SHP) from the Richards equation based inverse model. The inverse model was representing single ring infiltration experiment on mountainous podzolic soil profile, and was searching for the SHP parameters of the top soil layer. Since the thickness of the top soil layer is often much lower than the depth required to embed the single ring or Guelph permeameter device, the SHPs for the top soil layer are very difficult to measure directly. The SHPs for the top soil layer were therefore identified here by inverse modeling of the single ring infiltration process, where, especially, the initial unsteady part of the experiment is expected to provide very useful data for evaluating the retention curve parameters (excluding the residual water content) and the saturated hydraulic conductivity. The main issue, which is addressed in this contribution, is the uniqueness of the Richards equation inverse model. We tried to answer the question whether is it possible to characterize the unsteady infiltration experiment with a unique set of SHPs values, and whether are all SHP parameters vulnerable with the non-uniqueness. Which is an important issue, since we could further conclude whether the popular gradient methods are appropriate here. Further the issues in assigning the initial and boundary condition setup, the influence of spatial and temporal discretization on the values of the identified SHPs, and the convergence issues with the Richards equation nonlinear operator during automatic calibration procedure are also covered here.

  13. Evaluation of Surface and Subsurface Processes in Permeable Pavement Infiltration Trenches

    EPA Science Inventory

    The hydrologic performance of permeable pavement systems can be affected by clogging of the pavement surface and/or clogging at the interface where the subsurface storage layer meets the underlying soil. As infiltration and exfiltration are the primary functional mechanisms for ...

  14. Contact lens-induced peripheral ulcers with extended wear of disposable hydrogel lenses: histopathologic observations on the nature and type of corneal infiltrate.

    PubMed

    Holden, B A; Reddy, M K; Sankaridurg, P R; Buddi, R; Sharma, S; Willcox, M D; Sweeney, D F; Rao, G N

    1999-09-01

    Contact lens-induced peripheral ulcer (CLPU), a sudden-onset adverse event observed with extended wear of hydrogel lenses, is characterized by a single, small, circular, focal anterior stromal infiltrate in the corneal periphery or midperiphery. The condition is always associated with a significant overlying epithelial loss and resolves in a scar. The aim was to determine, by using histopathologic techniques, the nature and type of the corneal infiltrate of these events. Three CLPUs observed in three patients using disposable hydrogel lenses on an extended-wear schedule were examined. The eye was topically anesthetized, and a corneal section including all of the infiltrate was taken. A small triangular piece of conjunctiva immediately adjacent to the infiltrate was sectioned. The tissue was immediately fixed, processed, stained using hematoxylin and eosin and periodic acid-Schiff stains, and examined by using light microscopy. The diameter of these three corneal infiltrates varied from 0.3 to 0.6 mm. Histopathology of the corneal sections revealed a focal epithelial loss corresponding to the infiltrated stroma in all three patients. The adjacent epithelium was thinned. Bowman's layer was intact in two patients and had a localized area of loss in the remaining patient. The anterior stroma was densely infiltrated with polymorphonuclear leukocytes and had focal areas of necrosis. The infiltration was most dense in the region immediately underlying Bowman's layer. No other infiltrative cell type was seen in any of the sections. Histopathology of the conjunctiva revealed features consistent with normal conjunctival tissue. On histopathology of CLPU, distinctive features (i.e., focal corneal epithelial loss, an intact Bowman's membrane, and a localized infiltration of the anterior stroma with polymorphonuclear leukocytes) were seen. These features suggest that the event is an acute inflammatory process and probably noninfective in nature.

  15. Modeling of chemical vapor infiltration for ceramic composites reinforced with layered, woven fabrics

    NASA Technical Reports Server (NTRS)

    Chung, Gui-Yung; Mccoy, Benjamin J.

    1991-01-01

    A homogeneous model is developed for the chemical vapor infiltration by one-dimensional diffusion into a system of layered plies consisting of woven tows containing bundles of filaments. The model predictions of the amount of deposition and the porosity of the sample as a function of time are compared with the predictions of a recent nonhomogeneous model with aligned holes formed by the weave. The nonhomogeneous model allows for diffusion through the aligned holes, into the spaces between plies, and into the gaps around filaments; i.e., three diffusion equations apply. Relative to the nonhomogeneous results, the homogeneous model underestimates the amount of deposition, since the absence of holes and spaces allows earlier occlusion of gaps around filaments and restricts the vapor infiltration.

  16. Fatigue Behavior of a SiC/SiC Composite at 1000 deg C in Air and in Steam

    DTIC Science & Technology

    2010-12-01

    SiC dual-layer interphase. The composite was manufactured by a Polymer Infiltration and Pyrolysis (PIP... Polymer Infiltration and Pyrolysis (PIP) process. A seal coat of SiC and elemental boron was applied to the test specimens after machining. The tensile...manufactured by a Polymer Infiltration and Pyrolysis (PIP) process. A seal coat of SiC and elemental boron was applied to the test specimens

  17. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils

    USDA-ARS?s Scientific Manuscript database

    Infiltration into frozen and unfrozen soils is critical in hydrology, controlling active layer soil water dynamics and influencing runoff. Few Land Surface Models (LSMs) and Hydrological Models (HMs) have been developed, adapted or tested for frozen conditions and permafrost soils. Considering the v...

  18. Reinke's edema: investigations on the role of MIB-1 and hepatocyte growth factor.

    PubMed

    Artico, M; Bronzetti, E; Ionta, B; Bruno, M; Greco, A; Ruoppolo, G; De Virgilio, A; Longo, L; De Vincentiis, M

    2010-07-08

    Reinke's edema is a benign disease of the human vocal fold, which mainly affects the sub-epithelial layer of the vocal fold. Microscopic observations show a strongly oedematous epithelium with loosened intercellular junctions, a disruption of the extracellular connections between mucosal epithelium and connective tissue, closely adherent to the thyroarytenoid muscle. Thickening of the basal layer of epithelium, known as Reinke's space, high deposition of fibronectin and chronic inflammatory infiltration it is also visible. We analyzed, together with the hepatocyte growth factor (HGF), the expression level of MIB-1 in samples harvested from patients affected by Reinke's edema, in order to define its biological role and consider it as a possible prognostic factor in the follow-up after surgical treatment. We observed a moderate expression of HGF in the lamina propria of the human vocal fold and in the basal membrane of the mucosal epithelium. Our finding suggests that this growth factor acts as an antifibrotic agent in Reinke's space and affects the fibronectin deposition in the lamina propria. MIB-1, on the contrary, showed a weak expression in the basement membrane of the mucosal epithelium and a total absence in the lamina propria deep layer, thus suggesting that only the superficial layer is actively involved in the reparatory process with a high regenerative capacity, together with a high deposition of fibronectin. The latter is necessary for the cellular connections reconstruction, after the inflammatory infiltration.

  19. Reinke's Edema: investigations on the role of MIB-1 and hepatocyte growth factor

    PubMed Central

    Artico, M.; Bronzetti, E.; Ionta, B.; Bruno, M.; Greco, A.; Ruoppolo, G.; De Virgilio, A.; Longo, L.; De Vincentiis, M.

    2010-01-01

    Reinke's edema is a benign disease of the human vocal fold, which mainly affects the sub-epithelial layer of the vocal fold. Microscopic observations show a strongly oedematous epithelium with loosened intercellular junctions, a disruption of the extracellular connections between mucosal epithelium and connective tissue, closely adherent to the thyroarytenoid muscle. Thickening of the basal layer of epithelium, known as Reinke's space, high deposition of fibronectin and chronic inflammatory infiltration it is also visible. We analyzed, together with the hepatocyte growth factor (HGF), the expression level of MIB-1 in samples harvested from patients affected by Reinke's edema, in order to define its biological role and consider it as a possible prognostic factor in the follow-up after surgical treatment. We observed a moderate expression of HGF in the lamina propria of the human vocal fold and in the basal membrane of the mucosal epithelium. Our finding suggests that this growth factor acts as an anti - fibrotic agent in Reinke's space and affects the fibronectin deposition in the lamina propria. MIB-1, on the contrary, showed a weak expression in the basement membrane of the mucosal epithelium and a total absence in the lamina propria deep layer, thus suggesting that only the superficial layer is actively involved in the reparatory process with a high regenerative capacity, together with a high deposition of fibronectin. The latter is necessary for the cellular connections reconstruction, after the inflammatory infiltration. PMID:20819770

  20. Resonant infiltration of an opal: Reflection line shape and contribution from in-depth regions.

    PubMed

    Maurin, Isabelle; Bloch, Daniel

    2015-06-21

    We analyze the resonant variation of the optical reflection on an infiltrated artificial opal made of transparent nanospheres. The resonant infiltration is considered as a perturbation in the frame of a previously described one-dimensional model based upon a stratified effective index. We show that for a thin slice of resonant medium, the resonant response oscillates with the position of this slice. We derive that for adequate conditions of incidence angle, this spatially oscillating behavior matches the geometrical periodicity of the opal and hence the related density of resonant infiltration. Close to these matching conditions, the resonant response of the global infiltration varies sharply in amplitude and shape with the incidence angle and polarization. The corresponding resonant reflection originates from a rather deep infiltration, up to several wavelengths or layers of spheres. Finally, we discuss the relationship between the present predictions and our previous observations on an opal infiltrated with a resonant vapor.

  1. Physical and mathematical modeling of transient infiltration through shallow layered pyroclastic deposits

    NASA Astrophysics Data System (ADS)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2017-04-01

    Layered pyroclastic deposits covering steep slopes, characteristic of large mountainous areas of Campania (southern Italy), are often affected by shallow landslides triggered by heavy rainfall events. In fact, the equilibrium of such deposits is usually guaranteed by the contribution to soil shear strength offered by soil suction, which decreases during wetting. As the return period of the triggering events has been in many cases not extreme, other factors concur to establish triggering conditions. In this respect, heterogeneities, strongly affecting transient infiltration, may in some cases play a crucial role. In this study, the effect of the presence of soil layers, characterized by markedly different hydraulic properties, on the rainwater infiltration process is investigated. In fact, the pyroclastic covers of Campania, being the result of the deposition of materials originated by several eruptions of the nearby volcanic complexes, usually consist of alternating layers of ashes (silty sands) and pumices (gravel with sand). The presence of coarse-textured pumices between finer ashes strongly affects the infiltration process. In fact, the pumices, which are characterized by saturated hydraulic conductivity larger than ashes, are capable of retaining less water than ashes in unsaturated conditions, so that their unsaturated hydraulic conductivity is usually very small. Hence, depending on the water potential distribution throughout the cover at the onset of rainfall, pumices may act as a barrier to the propagation of the wet front (the so-called capillary barrier effect), or, approaching saturation, let the water pass through them very quickly. Such a complex behavior has been studied by means of a series of infiltration experiments carried out in an instrumented flume in the Geotechnical Laboratory of the University of Campania (http://www.dicdea.unina2.it/it/dipartimento/laboratori/laboratorio-di-geotecnica). Starting from different initial moisture conditions, small scale physical models of layered slopes, with various geometry and inclination, have been subjected to rainfalls of various intensities. During the infiltration processes and the following water redistribution phases, soil moisture and matric potential have been measured at various locations by means of TDR probes and tensiometers, respectively. The interpretation of the experimental results has been aided by a 2D mathematical model based on the integration of Richards' equation with the finite differences method. The obtained results indicate that a layer of dry pumices may induce lateral redistribution of water through the overlying ashes. In steep sloping deposits, this may favor the establishment of downslope directed subsurface runoff, which drains part of the infiltrating water towards the toe of the slope. In real slopes, depending on local morphology, such a downslope flow may have a beneficial effect on slope stability, as some water is drained out of the slope, or may even contribute to the establishment of triggering conditions, as it can result in flow concentration leading to local failure.

  2. Edaravone, an ROS Scavenger, Ameliorates Photoreceptor Cell Death after Experimental Retinal Detachment

    PubMed Central

    Roh, Mi In; Murakami, Yusuke; Thanos, Aristomenis; Miller, Joan W.

    2011-01-01

    Purpose. To investigate whether edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one), a free radical scavenger, would be neuroprotective against photoreceptor cell death in a rat model of retinal detachment (RD). Methods. RD was induced in adult Brown Norway rats by subretinal injection of sodium hyaluronate. Edaravone (3, 5, or 10 mg/kg) or physiologic saline was administered intraperitoneally once a day until death on day 3 or 5. Oxidative stress in the retina was assessed by 4-hydroxynonenal staining or ELISA for protein carbonyl content. Photoreceptor death was assessed by TUNEL and measurement of the outer nuclear layer thickness. Western blot analysis and caspase activity assays were performed. Inflammatory cytokine secretion and inflammatory cell infiltration were evaluated by ELISA and immunostaining, respectively. Results. RD resulted in increased generation of ROS. Treatment with 5 mg/kg edaravone significantly reduced the ROS level, along with a decrease in TUNEL-positive cells in the photoreceptor layer. A caspase assay also confirmed decreased activation of caspase-3, -8, and -9 in RD treated with edaravone. The level of the antiapoptotic Bcl-2 was increased in detached retinas after edaravone treatment, whereas the levels of the stress-activated p-ERK1/2 were decreased. In addition, edaravone treatment resulted in a significant decrease in the levels of TNF-α, MCP-1, and macrophage infiltration. Conclusions. Oxidative stress plays an important role in photoreceptor cell death after RD. Edaravone treatment may aid in preventing photoreceptor cell death after RD by suppressing ROS-induced photoreceptor damage. PMID:21310909

  3. Dynamic Water Storage during Flash Flood Events in the Mountainous Area of Rio de Janeiro/Brazil - Case study: Piabanha River Basin

    NASA Astrophysics Data System (ADS)

    Araujo, L.; Silva, F. P. D.; Moreira, D. M.; Vásquez P, I. L.; Justi da Silva, M. G. A.; Fernandes, N.; Rotunno Filho, O. C.

    2017-12-01

    Flash floods are characterized by a rapid rise in water levels, high flow rates and large amounts of debris. Several factors have relevance to the occurrence of these phenomena, including high precipitation rates, terrain slope, soil saturation degree, vegetation cover, soil type, among others. In general, the greater the precipitation intensity, the more likely is the occurrence of a significant increase in flow rate. Particularly on steep and rocky plains or heavily urbanized areas, relatively small rain rates can trigger a flash flood event. In addition, high rain rates in short time intervals can temporarily saturate the surface soil layer acting as waterproofing and favoring the occurrence of greater runoff rates due to non-infiltration of rainwater into the soil. Thus, although precipitation is considered the most important factor for flooding, the interaction between rainfall and the soil can sometimes be of greater importance. In this context, this work investigates the dynamic storage of water associated with flash flood events for Quitandinha river watershed, a tributary of Piabanha river, occurred between 2013 and 2014, by means of water balance analyses applied to three watersheds of varying magnitudes (9.25 km², 260 km² and 429 km²) along the rainy season under different time steps (hourly and daily) using remotely sensed and observational precipitation data. The research work is driven by the hypothesis of a hydrologically active bedrock layer, as the watershed is located in a humid region, having intemperate (fractured) rock layer, just below a shallow soil layer, in the higher part of the basin where steep slopes prevail. The results showed a delay of the variation of the dynamic storage in relation to rainfall peaks and water levels. Such behavior indicates that the surface soil layer, which is not very thick in the region, becomes rapidly saturated along rainfall events. Subsequently, the water infiltrates into the rocky layer and the water storage in the fractured bedrock assumes significant role due to its corresponding release to streams as storm flows.

  4. Overview of chemical vapor infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  5. Induced Infiltration of Hole-Transporting Polymer into Photocatalyst for Staunch Polymer-Metal Oxide Hybrid Solar Cells.

    PubMed

    Park, Jong Hwan; Jung, Youngsuk; Yang, Yooseong; Shin, Hyun Suk; Kwon, Soonchul

    2016-10-05

    For efficient solar cells based on organic semiconductors, a good mixture of photoactive materials in the bulk heterojunction on the length scale of several tens of nanometers is an important requirement to prevent exciton recombination. Herein, we demonstrate that nanoporous titanium dioxide inverse opal structures fabricated using a self-assembled monolayer method and with enhanced infiltration of electron-donating polymers is an efficient electron-extracting layer, which enhances the photovoltaic performance. A calcination process generates an inverse opal structure of titanium dioxide (<70 nm of pore diameters) providing three-dimensional (3D) electron transport pathways. Hole-transporting polymers was successfully infiltrated into the pores of the surface-modified titanium dioxide under vacuum conditions at 200 °C. The resulting geometry expands the interfacial area between hole- and electron-transport materials, increasing the thickness of the active layer. The controlled polymer-coating process over titanium dioxide materials enhanced photocurrent of the solar cell device. Density functional theory calculations show improved interfacial adhesion between the self-assembled monolayer-modified surface and polymer molecules, supporting the experimental result of enhanced polymer infiltration into the voids. These results suggest that the 3D inverse opal structure of the surface-modified titanium dioxide can serve as a favorable electron-extracting layer in further enhancing optoelectronic performance based on organic or organic-inorganic hybrid solar cell.

  6. Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy.

    PubMed

    Kiel-Jamrozik, Marta; Szewczenko, Janusz; Basiaga, Marcin; Nowińska, Katarzyna

    2015-01-01

    The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Electric parameters deter- mined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.

  7. Biomaterials Transforming growth factor-beta 1 delivery from microporous scaffolds decreases inflammation post-implant and enhances function of transplanted islets

    PubMed Central

    Liu, JMH; Zhang, J; Zhang, X; Hlavaty, KA; Ricci, CF; Leonard, JN; Shea, LD; Gower, RM

    2015-01-01

    Biomaterial scaffolds are central to many regenerative strategies as they create a space for infiltration of host tissue and provide a platform to deliver growth factors and progenitor cells. However, biomaterial implantation results in an unavoidable inflammatory response, which can impair tissue regeneration and promote loss or dysfunction of transplanted cells. We investigated localized TGF-β1 delivery to modulate this immunological environment around scaffolds and transplanted cells. TGF-β1 was delivered from layered scaffolds, with protein entrapped within an inner layer and outer layers designed for cell seeding and host tissue integration. Scaffolds were implanted into the epididymal fat pad, a site frequently used for cell transplantation. Expression of cytokines TNF-a, IL-12, and MCP-1 were decreased by at least 40% for scaffolds releasing TGF-β1 relative to control scaffolds. This decrease in inflammatory cytokine production corresponded to a 60% decrease in leukocyte infiltration. Transplantation of islets into diabetic mice on TGF-β1 scaffolds significantly improved the ability of syngeneic islets to control blood glucose levels within the first week of transplant and delayed rejection of allogeneic islets. Together, these studies emphasize the ability of localized TGF-β1 delivery to modulate the immune response to biomaterial implants and enhance cell function in cell-based therapies. PMID:26701143

  8. Relaxation of water infiltration pulses observed with GPR

    NASA Astrophysics Data System (ADS)

    Hantschel, Lisa; Hemmer, Benedikt; Roth, Kurt

    2017-04-01

    We observe the relaxation of infiltration pulses in sandy soil with ground-penetrating radar (GPR). The spatial distribution of water in the infiltration area and its temporal evolution is represented by ordinary reflections at layer boundaries as well as multiple reflections at the wetting front and the pulse boundaries. The structure of these highly resolved signals are reproduced by numerical simulations of electromagnetic wave propagation. The temporally highly resolved electrical fields reveal the origin also of complex reflection signals. The usage of these more complex signals might allow a more detailed representation of the infiltration process by direct analysis as well as in combination with inversion techniques.

  9. Water filtration rate and infiltration/accumulation of low density lipoproteins in 3 different modes of endothelial/smooth muscle cell co-cultures.

    PubMed

    Ding, ZuFeng; Fan, YuBo; Deng, XiaoYan

    2009-11-01

    Using different endothelial/smooth muscle cell co-culture modes to simulate the intimal structure of blood vessels, the water filtration rate and the infiltration/accumulation of LDL of the cultured cell layers were studied. The three cell culture modes of the study were: (i) The endothelial cell monolayer (EC/Phi); (ii) endothelial cells directly co-cultured on the smooth muscle cell monolayer (EC-SMC); (iii) endothelial cells and smooth muscle cells cultured on different sides of a Millicell-CM membrane (EC/SMC). It was found that under the same condition, the water filtration rate was the lowest for the EC/SMC mode and the highest for the EC/Phi mode, while the infiltration/accumulation of DiI-LDLs was the lowest in the EC/Phi mode and the highest in the EC-SMC mode. It was also found that DiI-LDL infiltration/accumulation in the cultured cell layers increased with the increasing water filtration rate. The results from the in vitro model study therefore suggest that the infiltration/accumulation of the lipids within the arterial wall is positively correlated with concentration polarization of atherogenic lipids, and the integrity of the endothelium plays an important role in the penetration and accumulation of atherogenic lipids in blood vessel walls.

  10. Two-Layer Variable Infiltration Capacity Land Surface Representation for General Circulation Models

    NASA Technical Reports Server (NTRS)

    Xu, L.

    1994-01-01

    A simple two-layer variable infiltration capacity (VIC-2L) land surface model suitable for incorporation in general circulation models (GCMs) is described. The model consists of a two-layer characterization of the soil within a GCM grid cell, and uses an aerodynamic representation of latent and sensible heat fluxes at the land surface. The effects of GCM spatial subgrid variability of soil moisture and a hydrologically realistic runoff mechanism are represented in the soil layers. The model was tested using long-term hydrologic and climatalogical data for Kings Creek, Kansas to estimate and validate the hydrological parameters. Surface flux data from three First International Satellite Land Surface Climatology Project Field Experiments (FIFE) intensive field compaigns in the summer and fall of 1987 in central Kansas, and from the Anglo-Brazilian Amazonian Climate Observation Study (ABRACOS) in Brazil were used to validate the mode-simulated surface energy fluxes and surface temperature.

  11. Forward modeling to investigate inversion artifacts resulting from time-lapse electrical resistivity tomography during rainfall simulations

    NASA Astrophysics Data System (ADS)

    Carey, Austin M.; Paige, Ginger B.; Carr, Bradley J.; Dogan, Mine

    2017-10-01

    Time-lapse electrical resistivity tomography (ERT) is commonly used as a minimally invasive tool to study infiltration processes. In 2014, we conducted field studies coupling variable intensity rainfall simulation with high-resolution ERT to study the real-time partitioning of rainfall into surface and subsurface response. The significant contrast in resistivity in the subsurface from large changes in subsurface moisture resulted in artifacts during the inversion process of the time-lapse ERT data collected using a dipole-dipole electrode array. These artifacts, which are not representative of real subsurface moisture dynamics, have been shown to arise during time-lapse inversion of ERT data and may be subject to misinterpretation. Forward modeling of the infiltration process post field experiments using a two-layer system (saprolite overlain by a soil layer) was used to generate synthetic datasets. The synthetic data were used to investigate the influence of both changes in volumetric moisture content and electrode configuration on the development of the artifacts identified in the field datasets. For the dipole-dipole array, we found that a decrease in the resistivity of the bottom layer by 67% resulted in a 50% reduction in artifact development. Artifacts for the seven additional array configurations tested, ranged from a 19% increase in artifact development (using an extended dipole-dipole array) to as much as a 96% decrease in artifact development (using a wenner-alpha array), compared to that of the dipole-dipole array. Moreover, these arrays varied in their ability to accurately delineate the infiltration front. Model results showed that the modified pole-dipole array was able to accurately image the infiltration zone and presented fewer artifacts for our experiments. In this study, we identify an optimal array type for imaging rainfall-infiltration dynamics that reduces artifacts. The influence of moisture contrast between the infiltrating water and the bulk subsurface material was characterized and shown to be a major factor in contributing to artifact development. Through forward modeling, this study highlights the importance of considering array type and subsurface moisture conditions when using time-lapse resistivity to obtain reliable estimates of vadose zone flow processes during rainfall-infiltration events.

  12. Characterization for capillary barriers effects in a sand box test using time-lapsed GPR measurements

    NASA Astrophysics Data System (ADS)

    Kuroda, S.; Ishii, N.; Morii, T.

    2017-12-01

    Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.

  13. Ecological engineering to control bioclogging: an original field study coupling infiltration and biological measurements

    NASA Astrophysics Data System (ADS)

    Gette-bouvarot, Morgane; Mermillod-Blondin, Florian; Lassabatere, Laurent; Lemoine, Damien; Delolme, Cécile; Volatier, Laurence

    2014-05-01

    Infiltration systems are increasingly used in urban areas for several purposes such as flood prevention and groundwater recharge. However, their functioning is often impacted by clogging that leads to decreases in hydraulic and water treatment performances. These systems are commonly built with sand as infiltration medium, a media subject to rapid clogging by the combined and overlapping processes of pore occlusion by fine particles and biofilm development. In a previous study, we pointed out that the phototrophic component of biofilms developed at the surface layer of infiltration systems (algae, cyanobacteria) could reduce by up to 60-fold the saturated hydraulic conductivity. Consequently, it appears crucial to control biofilm growth to maintain porous infiltration media performances. The present study aimed to test the influence of biotic (addition of animals or macrophytes) and abiotic (light reduction) treatments on biofilm development and associated hydraulic properties in an infiltration device dedicated to aquifer recharge with river water in Lyon Area (France). Twenty-five benthic enclosures were used to test 5 "treatments" on non-manipulated surface layer under field conditions. Three biotic treatments consisted in the introduction of: (i) an invertebrate acting as algae grazer (Viviparus viviparus), (ii) an invertebrate that digs galleries in sediments (Tubifex tubifex), and (iii) a macrophyte that could inhibit benthic biofilm by allelopathic activity (Vallisneria spiralis L). The fourth treatment was designed to simulate shading. The last "treatment" was a control which monitored the evolution of the system during the experiment without manipulation (addition of macro-organisms or shading). Each treatment was replicated five times. The experiment was conducted for 6 weeks, and sampling of the surface layer (0-1 cm) was carried out in each enclosure at the beginning (t0) and the end (tf). We coupled biological characterizations (organic matter, algal biomass, bacterial abundances, microbial enzymatic activities, EPS composition, and photosynthetic efficiency) with in situ hydraulic conductivity measurements (falling head method, five measures per enclosure at t0 and tf). Our results showed that some treatments could regulate benthic biofilm growth and improve infiltration rate. For instance, V. viviparus treatment resulted in a decrease in chlorophyll-a, EPS sugar and protein contents and an associated increase of infiltration rate, while it decreased in the control treatment. These results are very promising for the future development of ecological engineering solutions to prevent biological clogging in systems dedicated to infiltration. To our knowledge, this study is the first to highlight such potential role of macro-organisms under field conditions.

  14. Development and Properties of Advanced Internal Magnesium Infiltration (AIMI) Processed MgB2 Wires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collings, Prof Edward William; Sumption, Prof Michael D; Li, Guangze

    The development, processing, properties, and formation mechanisms of Advanced Internal Magnesium Infiltration (AIMI) MgB2 wires are discussed against a background of the related and original processes, Internal-Magnesium-Diffusion (IMD) and Magnesium-Reactive-Liquid-Infiltration (Mg-RLI). First reviewed are the formation, properties and applications of Mg-RLI bulks as basis for discussions of Mg-RLI-processed and IMD-processed wires. The transition from Mg-RLI- and IMD- to AIMI wires is explained, and the relative performances of powder-in-tube (PIT), IMD and AIMI wires are summarized in the form of an iso-Je diagram of Jc,nb versus Anb/ATOT in which ATOT, Anb, Jc,nb, and Je are, respectively, the wire s cross-sectional area,more » the area inside the chemical barrier, the critical current (Ic) normalized to Anb, and Ic normalized to ATOT. After the details of AIMI wire fabrication selection of starting powders, dopants, and reaction heat treatments are introduced the report goes on to describe in detail the development of high performance AIMI wires: layer Jcs, fill factors, Jes, and the effects of wire size, multifilamentarization, doping with C, and co-doping with C and Dy2O3. The two-stage mechanism of layer formation in AIMI wires is discussed: first the reactive infiltration of liquid Mg into a porous B pack, a process that terminates with the formation of a dense MgB2 layer; second the slow diffusion of Mg into any remaining B through that MgB2 layer. The report concludes with a brief general discussion of anisotropy, current percolation, and the Jc field dependence of MgB2 wires.« less

  15. 40 CFR 258.62 - Approval of site-specific flexibility requests in Indian country.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Closure and Post-Closure Care § 258.62... waste landfill owned and operated by Lake County on the Confederated Salish and Kootenai Tribes... equivalent reduction in infiltration as the infiltration layer specified in § 258.60(a)(1) and (a)(2), and...

  16. The impact of sewage-contaminated river water on groundwater ammonium and arsenic concentrations at a riverbank filtration site in central Delhi, India

    NASA Astrophysics Data System (ADS)

    Groeschke, Maike; Frommen, Theresa; Taute, Thomas; Schneider, Michael

    2017-11-01

    The groundwater abstracted at a well field near the Yamuna River in Central Delhi, India, has elevated ammonium (NH4 +) concentrations up to 35 mg/L and arsenic (As) concentrations up to 0.146 mg/L, constituting a problem with the provision of safe drinking and irrigation water. Infiltrating sewage-contaminated river water is the primary source of the NH4 + contamination in the aquifer, leading to reducing conditions which probably trigger the release of geogenic As. These conclusions are based on the evaluation of six 8-27-m deep drillings, and 13 surface-water and 69 groundwater samples collected during seven field campaigns (2012-2013). Results indicate that losing stream conditions prevail and the river water infiltrates into the shallow floodplain aquifer (up to 16 m thickness), which consists of a 1-2-m thick layer of calcareous nodules (locally known as kankar) overlain by medium sand. Because of its higher hydraulic conductivity (3.7 × 10-3 m/s, as opposed to 3.5 × 10-4 m/s in the sand), the kankar layer serves as the main pathway for the infiltrating water. However, the NH4 + plume front advances more rapidly in the sand layer because of its significantly lower cation exchange capacity. Elevated As concentrations were only observed within the NH4 + plume indicating a causal connection with the infiltrating reducing river water.

  17. Organic contaminant removal efficiency of sodium bentonite/clay (BC) mixtures in high permeability regions utilizing reclaimed wastewater: A meso-scale study

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Li, Yunkai; Ning, Zigong; Li, Pengxiang; Yang, Peiling; Liu, Chengcheng; Liu, Zhongwei; Xu, Feipeng; Hynds, Paul Dylan

    2018-03-01

    Wastewater reclamation now represents an effective measure for sustainable water resource management in arid regions, however wastewater components (organic micropollutants) may potentially impact local ecological and/or human health. Previous studies have shown that sodium bentonite/natural clay (BC) mixes may be used to effectively reduce riverbed infiltration in regions characterized by excessively high hydraulic conductivity. Accordingly, the current study sought to investigate the contaminant removal efficiency (Re) of several BC mass ratios in simulated dry riverbeds. Results indicate that the measured Re of NH4+-N, CODcr and BOD5 increased in concurrence with an increasing sodium bentonite ratio, up to a maximum Re of 97.4% (NH4+-N), 55.2% (CODcr), and 51.5% (BOD5). The primary contaminant removal site was shown to be the infiltration-reducing (BC) layer, accounting for approximately 40%, 60%, and 70% of NH4+-N, CODcr and BOD5 removal, respectively. Conversely, the removal efficiency of NO3-N was found to be low (<15%), while total phosphorous (TP) was found to actively leach from the infiltration-reduction layer, resulting in measured TP discharges 2.4-4.8 times those of initial infiltration values. The current study provides a technical baseline for the efficacy of sodium bentonite as an effective bi-functional material in areas utilizing reclaimed water i.e. concurrent reduction of infiltration rates (Function 1) and decontamination of reclaimed wastewater infiltration/recharge (Function 2). Findings indicate that sodium bentonite-clay mixes may represent a feasible alternative for managing recharge of non-potable aquifers with reclaimed wastewater.

  18. Longitudinal Intravital Imaging of the Retina Reveals Long-term Dynamics of Immune Infiltration and Its Effects on the Glial Network in Experimental Autoimmune Uveoretinitis, without Evident Signs of Neuronal Dysfunction in the Ganglion Cell Layer

    PubMed Central

    Bremer, Daniel; Pache, Florence; Günther, Robert; Hornow, Jürgen; Andresen, Volker; Leben, Ruth; Mothes, Ronja; Zimmermann, Hanna; Brandt, Alexander U.; Paul, Friedemann; Hauser, Anja E.; Radbruch, Helena; Niesner, Raluca

    2016-01-01

    A hallmark of autoimmune retinal inflammation is the infiltration of the retina with cells of the innate and adaptive immune system, leading to detachment of the retinal layers and even to complete loss of the retinal photoreceptor layer. As the only optical system in the organism, the eye enables non-invasive longitudinal imaging studies of these local autoimmune processes and of their effects on the target tissue. Moreover, as a window to the central nervous system (CNS), the eye also reflects general neuroinflammatory processes taking place at various sites within the CNS. Histological studies in murine neuroinflammatory models, such as experimental autoimmune uveoretinitis (EAU) and experimental autoimmune encephalomyelitis, indicate that immune infiltration is initialized by effector CD4+ T cells, with the innate compartment (neutrophils, macrophages, and monocytes) contributing crucially to tissue degeneration that occurs at later phases of the disease. However, how the immune attack is orchestrated by various immune cell subsets in the retina and how the latter interact with the target tissue under in vivo conditions is still poorly understood. Our study addresses this gap with a novel approach for intravital two-photon microscopy, which enabled us to repeatedly track CD4+ T cells and LysM phagocytes during the entire course of EAU and to identify a specific radial infiltration pattern of these cells within the inflamed retina, starting from the optic nerve head. In contrast, highly motile CX3CR1+ cells display an opposite radial motility pattern, toward the optic nerve head. These inflammatory processes induce modifications of the microglial network toward an activated morphology, especially around the optic nerve head and main retinal blood vessels, but do not affect the neurons within the ganglion cell layer. Thanks to the new technology, non-invasive correlation of clinical scores of CNS-related pathologies with immune infiltrate behavior and subsequent tissue dysfunction is now possible. Hence, the new approach paves the way for deeper insights into the pathology of neuroinflammatory processes on a cellular basis, over the entire disease course. PMID:28066446

  19. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    USGS Publications Warehouse

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions, pressure head is significantly reduced near the drain; however, for transient, vertical infiltration in a partially saturated soil, conditions consistent with those observed during monitoring at the Edmonds site, the drain decreases the thickness of a perched water table by a small amount.

  20. Hydrologic conditions controlling runoff generation immediately after wildfire

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.; Martin, Deborah A.

    2012-01-01

    We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no water infiltrated below the ash layer into the near-surface soil in the burned site at the storm time scale (i.e., minutes to hours). Runoff generation processes were controlled by and highly sensitive to ash thickness and ash hydraulic properties. The ash layer stored from 97% to 99% of rainfall, which was critical for reducing runoff amounts. The hydrologic response to two rain storms with different rainfall amounts, rainfall intensity, and durations, only ten days apart, indicated that runoff generation was predominantly by the saturation-excess mechanism perched at the ash-soil interface during the first storm and predominantly by the infiltration-excess mechanism at the ash surface during the second storm. Contributing area was not static for the two storms and was 4% (saturation excess) to 68% (infiltration excess) of the catchment area. Our results showed the importance of including hydrologic conditions and hydraulic properties of the ash layer in postwildfire runoff generation models.

  1. The sow endometrium at different stages of the oestrous cycle: studies on morphological changes and infiltration by cells of the immune system.

    PubMed

    Kaeoket, K; Persson, E; Dalin, A M

    2001-01-31

    The aim of this study was to investigate the distribution of leukocytes and the morphological changes of the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4 +/- 0.7 (mean +/- S.D.) were used. Blood samples were collected from the jugular vein 1h before slaughter for analyses of oestradiol-17beta and progesterone levels. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus, prooestrus, oestrus, early dioestrus and dioestrus, were fixed, embedded in plastic resin and stained with toluidine blue. The surface and glandular epithelium as well as subepithelial and glandular connective tissue layers were examined by light microscopy. The significantly highest surface and the glandular epithelium were observed at oestrus and dioestrus, respectively. The largest number of capillaries (underneath the surface epithelium) was found at oestrus. In the surface epithelium, the largest number of intraepithelial lymphocytes (IELs, round nucleus) was found at early dioestrus. The largest number of lymphocytes and macrophages within the glandular epithelium were found at early dioestrus and oestrus, respectively. In the subepithelial connective tissue layer, the most common type of leukocytes during all stages was the lymphocyte. The largest numbers of lymphocytes and neutrophils were found at oestrus while the largest number of eosinophils was found at dioestrus. The dominating cells of the immune system in the connective tissue of the glandular layer were lymphocytes and macrophages. The significantly largest numbers of lymphocytes and plasma cells were found at early dioestrus and dioestrus, respectively. The number of lymphocytes in the connective tissue of the glandular layer and the number of plasma cells in the subepithelial layer were positively correlated with the plasma level of progesterone (P < or = 0.05). The numbers of capillaries and neutrophils in the subepithelial layer underneath the surface epithelium as well as the number of macrophages in both surface and glandular epithelium were positively correlated with the plasma level of oestradiol-17beta (P < or = 0.05). In conclusion, the present study showed a variation in the infiltration and distribution of lymphocytes, neutrophils, eosinophils, macrophages, mast cells and plasma cells in the sow endometrium during different stages of the oestrous cycle. Also morphological parameters (e.g. height of surface and glandular epithelium, capillaries density and degree of oedema) varied throughout the oestrous cycle.

  2. Corrigendum to "The sow endometrium at different stages of the oestrus cycle: studies on morphological changes and infiltration by cells of the immune system." [Anim. Reprod. Sci. 65 (2001) 95-114].

    PubMed

    Kaeoket, K; Persson, E; Dalin, A-M

    2002-09-16

    The aim of this study was to investigate the distribution of leukocytes and the morphological changes of the sow endometrium throughout the oestrous cycle. Fifteen crossbred multiparous sows (Swedish Landrace x Swedish Yorkshire), with an average parity number of 3.4+/-0.7 (mean+/-S.D.) were used. Blood samples were collected from the jugular vein 1 h before slaughter for analyses of oestradiol-17beta and progesterone levels. Uterine samples from the mesometrial side of both horns, taken immediately after slaughter at late dioestrus, prooestrus, oestrus, early dioestrus and dioestrus, were fixed, embedded in plastic resin and stained with toluidine blue. The surface and glandular epithelium as well as subepithelial and glandular connective tissue layers were examined by light microscopy (LM). The significantly highest surface and the glandular epithelium were observed at oestrus and dioestrus, respectively. The largest number of capillaries (underneath the surface epithelium) was found at oestrus. In the surface epithelium, the largest number of intraepithelial lymphocytes (IELs, round nucleus) was found at early dioestrus. The largest number of lymphocytes and macrophages within the glandular epithelium were found at early dioestrus and oestrus, respectively. In the subepithelial connective tissue layer, the most common type of leukocytes during all stages was the lymphocyte. The largest numbers of lymphocytes and neutrophils were found at oestrus while the largest number of eosinophils was found at dioestrus. The dominating cells of the immune system in the connective tissue of the glandular layer were lymphocytes and macrophages. The significantly largest numbers of lymphocytes and plasma cells were found at early dioestrus and dioestrus, respectively. The number of lymphocytes in the connective tissue of the glandular layer and the number of plasma cells in the subepithelial layer were positively correlated with the plasma level of progesterone (P < or = 0.05). The numbers of capillaries and neutrophils in the subepithelial layer underneath the surface epithelium as well as the number of macrophages in both surface and glandular epithelium were positively correlated with the plasma level of oestradiol-17beta (P < or = 0.05). In conclusion, the present study showed a variation om the infiltration and distrobution of lymphocytes, neutrophils, eosinophils, macrophages, mast cells, and plasma cells in the sow endometrium during different stages of the oestrous cycle. Also morphological parameters (e.g. height of surface and glandular epithelium, capillaries density and degree of oedema) varied throughout the oestrous cycle. Copyright 2002 Elsevier Science B.V.

  3. Enhancing the platinum atomic layer deposition infiltration depth inside anodic alumina nanoporous membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaish, Amit, E-mail: anv@udel.edu; Krueger, Susan; Dimitriou, Michael

    Nanoporous platinum membranes can be straightforwardly fabricated by forming a Pt coating inside the nanopores of anodic alumina membranes (AAO) using atomic layer deposition (ALD). However, the high-aspect-ratio of AAO makes Pt ALD very challenging. By tuning the process deposition temperature and precursor exposure time, enhanced infiltration depth along with conformal coating was achieved for Pt ALD inside the AAO templates. Cross-sectional scanning electron microscopy/energy dispersive x-ray spectroscopy and small angle neutron scattering were employed to analyze the Pt coverage and thickness inside the AAO nanopores. Additionally, one application of platinum-coated membrane was demonstrated by creating a high-density protein-functionalized interface.

  4. Tunable bi-functional photonic device based on one-dimensional photonic crystal infiltrated with a bistable liquid-crystal layer.

    PubMed

    Wu, Chong-Yin; Zou, Yi-Hong; Timofeev, Ivan; Lin, Yu-Ting; Zyryanov, Victor Ya; Hsu, Jy-Shan; Lee, Wei

    2011-04-11

    We investigated the optical properties of a one-dimensional photonic crystal infiltrated with a bistable chiral tilted homeotropic nematic liquid crystal as the central defect layer. By modulating the nematic director orientation with applied voltage, the electrical tunability of the defect modes was observed in the transmission spectrum. The composite not only is a general tunable device but also involves the green concept in that it can operate in two stable states at 0 V. Under the parallel-polarizer scheme, the spectral characteristics suggest a potential application for this device as an energy-efficient multichannel optical switch. © 2011 Optical Society of America

  5. The effect of thalidomide on vascular endothelial growth factor and tumor necrosis factor-alpha levels in retinal ischemia/reperfusion injury.

    PubMed

    Aydoğan, Semih; Celiker, Ulkü; Türkçüoğlu, Peykan; Ilhan, Nevin; Akpolat, Nusret

    2008-03-01

    To evaluate the effects of thalidomide treatment on the temporal course of TNF-alpha, VEGF production and the histopathological changes in ischemia/reperfusion (I/R) injured guinea pigs retina. Control, ischemia, and thalidomide/ischemia groups including seven animals each were formed. Retinal ischemia was induced in male guinea pigs by cannulating anterior chambers and lifting the bottle to a height of 205 cm for 90 min in the ischemia and thalidomide/ischemia groups. The thalidomide/ischemia group received thalidomide (300 mg/kg/day) via nasogastric tube 24 h before ischemia and during 7 days of reperfusion. Guinea pigs were sacrificed for histopathological examination to evaluate the mean thickness of the inner plexiform layer (IPL), polymorphonuclear leukocyte (PMNL) infiltration, and biochemical analysis of retinal VEGF and TNF-alpha levels by ELISA. The mean retinal VEGF and TNF-alpha levels of the control, ischemia, and thalidomide/ischemia groups were 10.22 +/- 2.58 and 270.41 +/- 69.77 pg/ml; 35.80 +/- 5.97 and 629.93 +/- 146.41 pg/ml; 19.01 +/- 3.01 and 340.93 +/- 158.26 pg/ml, respectively. The retinal VEGF levels were significantly higher in I/R injured groups. The thalidomide/ischemia group retinal VEGF level was significantly lower versus the ischemia group. The retinal TNF-alpha levels were significantly elevated in the ischemia group, but no difference was observed between the thalidomide/ischemia and control groups. Also, the retinal TNF-alpha level was significantly lower in the thalidomide/ischemia group versus the ischemia group. The mean thickness of IPL and PMNL infiltration showed no difference between the control and thalidomide/ischemia groups. However, there was a significant difference between the control and ischemia groups. Thalidomide treatment decreases PMNL infiltration, retinal edema, VEGF, and TNF-alpha synthesis following I/R injury to the guinea pig retina.

  6. Tumor formation initiated by nondividing epidermal cells via an inflammatory infiltrate.

    PubMed

    Arwert, Esther N; Lal, Rohit; Quist, Sven; Rosewell, Ian; van Rooijen, Nico; Watt, Fiona M

    2010-11-16

    In mammalian epidermis, integrin expression is normally confined to the basal proliferative layer that contains stem cells. However, in epidermal hyperproliferative disorders and tumors, integrins are also expressed by suprabasal cells, with concomitant up-regulation of Erk mitogen-activated protein kinase (MAPK) signaling. In transgenic mice, expression of activated MAPK kinase 1 (MEK1) in the suprabasal, nondividing, differentiated cell layers (InvEE transgenics) results in epidermal hyperproliferation and skin inflammation. We now demonstrate that wounding induces benign tumors (papillomas and keratoacanthomas) in InvEE mice. By generating chimeras between InvEE mice and mice that lack the MEK1 transgene, we demonstrate that differentiating, nondividing cells that express MEK1 stimulate adjacent transgene-negative cells to divide and become incorporated into the tumor mass. Dexamethasone treatment inhibits tumor formation, suggesting that inflammation is involved. InvEE skin and tumors express high levels of IL1α; treatment with an IL1 receptor antagonist delays tumor onset and reduces incidence. Depletion of γδ T cells and macrophages also reduces tumor incidence. Because a hallmark of cancer is uncontrolled proliferation, it is widely assumed that tumors arise only from dividing cells. In contrast, our studies show that differentiated epidermal cells can initiate tumor formation without reacquiring the ability to divide and that they do so by triggering an inflammatory infiltrate.

  7. Design of barrier coatings on kink-resistant peripheral nerve conduits

    PubMed Central

    Clements, Basak Acan; Bushman, Jared; Murthy, N Sanjeeva; Ezra, Mindy; Pastore, Christopher M; Kohn, Joachim

    2016-01-01

    Here, we report on the design of braided peripheral nerve conduits with barrier coatings. Braiding of extruded polymer fibers generates nerve conduits with excellent mechanical properties, high flexibility, and significant kink-resistance. However, braiding also results in variable levels of porosity in the conduit wall, which can lead to the infiltration of fibrous tissue into the interior of the conduit. This problem can be controlled by the application of secondary barrier coatings. Using a critical size defect in a rat sciatic nerve model, the importance of controlling the porosity of the nerve conduit walls was explored. Braided conduits without barrier coatings allowed cellular infiltration that limited nerve recovery. Several types of secondary barrier coatings were tested in animal studies, including (1) electrospinning a layer of polymer fibers onto the surface of the conduit and (2) coating the conduit with a cross-linked hyaluronic acid-based hydrogel. Sixteen weeks after implantation, hyaluronic acid-coated conduits had higher axonal density, displayed higher muscle weight, and better electrophysiological signal recovery than uncoated conduits or conduits having an electrospun layer of polymer fibers. This study indicates that braiding is a promising method of fabrication to improve the mechanical properties of peripheral nerve conduits and demonstrates the need to control the porosity of the conduit wall to optimize functional nerve recovery. PMID:26977288

  8. Characterization by electrical and electromagnetic geophysical methods of the shallow hydrogeological system at Hebron (West Bank, Palestine) in a semi-arid zone

    NASA Astrophysics Data System (ADS)

    Sirhan, Asal; Hamidi, Mohammad O.

    2012-09-01

    Multi-electrode geo-electrical and transient electromagnetic surveys were carried out to characterize the nature of the subsurface infiltration zones (5 to 20 m) related to a series of groundwater outlets, and to reveal the geometry of the different aquifers at Bani-Naim, in the south-eastern foothills of the Hebron area, West Bank, Palestine. The purpose of the surveys was to understand the link between water storage/transfer and the characteristics of the geological formations. The strata in this semi-arid region are composed of alternate layers of chalky limestone, hard limestone, marl and chalk. A total of 30 ERT and 15 TDEM were conducted at Bani Naim-Jahir and Bani Naim-Birein. A correlation between the results indicates various infiltration pathways: fractures, feature heterogeneities, and porous chalk. The local heterogeneity on the eastern side were the major pathways for the water infiltration, whereas the thick marl layer underneath acts as a natural impermeable barrier preventing water from infiltrating deeper. A combination of the different geophysical results identified conductive features that correspond to the infiltration zones supplying the dug wells with water. Furthermore, it was established that the fractured chalk and porous chalky limestone act as an aquifer. A three-dimensional visualization of the resistivity allowed a useful reconstruction of the shallow hydrogeological system. Consequently, these studies contribute to regional sustainable development projects in this semi-arid region.

  9. CO(2) partial pressure and calcite saturation in springs - useful data for identifying infiltration areas in mountainous environments.

    PubMed

    Hilberg, Sylke; Brandstätter, Jennifer; Glück, Daniel

    2013-04-01

    Mountainous regions such as the Central European Alps host considerable karstified or fractured groundwater bodies, which meet many of the demands concerning drinking water supply, hydropower or agriculture. Alpine hydrogeologists are required to describe the dynamics in fractured aquifers in order to assess potential impacts of human activities on water budget and quality. Delineation of catchment areas by means of stable isotopes and hydrochemical data is a well established method in alpine hydrogeology. To achieve reliable results, time series of (at least) one year and spatial and temporal close-meshed data are necessary. In reality, test sites in mountainous regions are often inaccessible due to the danger of avalanches in winter. The aim of our work was to assess a method based on the processes within the carbonic acid system to delineate infiltration areas by means of single datasets consisting of the main hydrochemical parameters of each spring. In three geologically different mountainous environments we managed to classify the investigated springs into four groups. (1) High PCO2 combined with slight super-saturation in calcite, indicating relatively low infiltration areas. (2) Low PCO2 near atmospheric conditions in combination with calcite saturation, which is indicative of relatively high infiltration areas and a fractured aquifer which is not covered by topsoil layers. (3) High PCO2 in combination with sub-saturation in calcite, representing a shallow aquifer with a significant influence of the topsoil layer. (4) The fourth group of waters is characterized by low PCO2 and sub-saturation in calcite, which is interpreted as evidence for a shallow aquifer without significant influence of any hard rock aquifer or topsoil layer. This study shows that CO2-partial pressure can be an ideal natural tracer to estimate the elevation of infiltration areas, especially in non-karstified fractured groundwater bodies.

  10. Infiltration in unsaturated layered fluvial deposits at Rio Bravo : photo essay and data summary.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brainard, James Robert; Glass, Robert John, Jr.

    2007-08-01

    An infiltration and dye transport experiment was conducted to visualize flow and transport processes in a heterogeneous, layered, sandy-gravelly fluvial deposit adjacent to Rio Bravo Boulevard in Albuquerque, NM. Water containing red dye followed by blue-green dye was ponded in a small horizontal zone ({approx}0.5 m x 0.5 m) above a vertical outcrop ({approx}4 m x 2.5 m). The red dye lagged behind the wetting front due to slight adsorption thus allowing both the wetting front and dye fronts to be observed in time at the outcrop face. After infiltration, vertical slices were excavated to the midpoint of the infiltrometermore » exposing the wetting front and dye distribution in a quasi three-dimensional manner. At small-scale, wetting front advancement was influenced by the multitude of local capillary barriers within the deposit. However at the scale of the experiment, the wetting front appeared smooth with significant lateral spreading {approx} twice that in the vertical, indicating a strong anisotropy due to the pronounced horizontal layering. The dye fronts exhibited appreciably more irregularity than the wetting front, as well as the influence of preferential flow features (a fracture) that moved the dye directly to the front, bypassing the fresh water between.« less

  11. Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide.

    PubMed

    Kubrin, Roman; Pasquarelli, Robert M; Waleczek, Martin; Lee, Hooi Sing; Zierold, Robert; do Rosário, Jefferson J; Dyachenko, Pavel N; Montero Moreno, Josep M; Petrov, Alexander Yu; Janssen, Rolf; Eich, Manfred; Nielsch, Kornelius; Schneider, Gerold A

    2016-04-27

    A strategy for stacking multiple ceramic 3D photonic crystals is developed. Periodically structured porous films are produced by vertical convective self-assembly of polystyrene (PS) microspheres. After infiltration of the opaline templates by atomic layer deposition (ALD) of titania and thermal decomposition of the polystyrene matrix, a ceramic 3D photonic crystal is formed. Further layers with different sizes of pores are deposited subsequently by repetition of the process. The influence of process parameters on morphology and photonic properties of double and triple stacks is systematically studied. Prolonged contact of amorphous titania films with warm water during self-assembly of the successive templates is found to result in exaggerated roughness of the surfaces re-exposed to ALD. Random scattering on rough internal surfaces disrupts ballistic transport of incident photons into deeper layers of the multistacks. Substantially smoother interfaces are obtained by calcination of the structure after each infiltration, which converts amorphous titania into the crystalline anatase before resuming the ALD infiltration. High quality triple stacks consisting of anatase inverse opals with different pore sizes are demonstrated for the first time. The elaborated fabrication method shows promise for various applications demanding broadband dielectric reflectors or titania photonic crystals with a long mean free path of photons.

  12. Biochars impact on water infiltration and water quality through a compacted subsoil layer

    USDA-ARS?s Scientific Manuscript database

    Soils in the Southeastern United States Coastal Plain region frequently have a compacted subsoil layer, which is a barrier for water movement. Four different biochars were evaluated to increase water movement through a compacted horizon from a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Ka...

  13. Depth of Intestinal Wall Infiltration and Clinical Presentation of Deep Infiltrating Endometriosis: Evaluation of 553 Consecutive Cases.

    PubMed

    Rossini, Roberto; Lisi, Giorgio; Pesci, Anna; Ceccaroni, Marcello; Zamboni, Giuseppe; Gentile, Irene; Rettore, Lorenzo; Ruffo, Giacomo

    2018-02-01

    Intestinal involvement in endometriosis was first described by Sampson in 1922. The reported incidence ranges between 3% and 37% in patients diagnosed with endometriosis. In literature, there are few studies that correlate the severity of endometriosis (in terms of intestinal infiltration) and its clinical presentation. The aim of this study was to review the correlation between the severity of symptoms, the depth of intestinal wall infiltration, and lymph node involvement in our tertiary referral center. We retrospectively analyzed 553 patients who had undergone intestinal resection for deep infiltrating endometriosis at our institution (Sacro Cuore Negrar Hospital) between 2004 and 2009. Based on intestinal wall infiltration, we divided patients into three groups (Group A: intestinal infiltration that reaches the muscle layer, Group B: infiltration to the submucosa, and Group C: endometriosis reaches the mucosa). Symptoms, intestinal stenosis, and positive lymph nodes were compared in the three groups with the chi-square test. No statistical correlation was found between symptoms and the intestinal wall infiltrations. The three groups were also compared on the basis of positive visceral lymph nodes and we did find a statistical difference (P = .05) in the lymph node count in the two main groups. There seems to be no statistically significant difference in symptoms between patients with different degrees of infiltration. Although visceral lymph node involvement has been occasionally described in literature, we found that it is related to submucosal infiltration.

  14. Synthetic Coal Slag Infiltration into Varying Refractory Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Tetsuya K; Thomas, Hugh; Bennett, James P

    The infiltrations of synthetic coal slag into 99%Al{sub 2}O{sub 3}, 85%Al{sub 2}O{sub 3}–15%SiO{sub 2}, and 90%Cr{sub 2}O{sub 3}–10%Al{sub 2}O{sub 3} refractories with a temperature gradient induced along the penetration direction were compared to one another. The infiltrating slag was synthesized with a composition that is representative of an average of the ash contents from U S coal feedstock. Experiments were conducted with a hot-face temperature of 1450°C in a CO/CO{sub 2} atmosphere. Minimal penetration was observed in the 90%Cr{sub 2}O{sub 3}–10%Al{sub 2}O{sub 3} material because interactions between the refractory and the slag produced a protective layer of FeCr{sub 2}O{sub 4},more » which impeded slag flow into the bulk of the refractory. After 5 h, the 99%Al{sub 2}O{sub 3} sample exhibited an average penetration of 12.7 mm whereas the 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} sample showed 3.8 mm. Slag infiltrated into the 99%Al{sub 2}O{sub 3} and 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} refractory systems by dissolving the respective refractories' matrix materials, which consist of fine Al{sub 2}O{sub 3} particles and an amorphous alumino-silicate phase. Due to enrichment in SiO{sub 2}, a network-former, infiltration into the 85%Al{sub 2}O{sub 3}–15%SiO{sub 2} system yielded a higher viscosity slag and hence, a shallower penetration depth. The results suggest that slag infiltration can be limited by interactions with the refractory through the formation of either a solid layer that physically impedes fluid flow or a more viscous slag that retards infiltration.« less

  15. Effects of Residual Solvent Molecules Facilitating the Infiltration Synthesis of ZnO in a Nonreactive Polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Xinyi; Kestell, John; Kisslinger, Kim

    Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less

  16. [Effects of rainfall intensity on rainfall infiltration and redistribution in soil on Loess slope land].

    PubMed

    Li, Yi; Shao, Ming'an

    2006-12-01

    With simulation test, this paper studied the patterns of rainfall infiltration and redistribution in soil on typical Loess slope land, and analyzed the quantitative relations between the infiltration and redistribution and the movement of soil water and mass, with rainfall intensity as the main affecting factor. The results showed that rainfall intensity had significant effects on the rainfall infiltration and water redistribution in soil, and the microcosmic movement of soil water. The larger the rainfall intensity, the deeper the wetting front of rainfall infiltration and redistribution was, and the wetting front of soil water redistribution had a slower increase velocity than that of rainfall infiltration. The power function of the wetting front with time, and also with rainfall intensity, was fitted well. There was also a quantitative relation between the wetting front of rainfall redistribution and the duration of rainfall. The larger the rainfall intensity, the higher the initial and steady infiltration rates were, and the cumulative infiltration increased faster with time. Moreover, the larger the rainfall intensity, the smaller the wetting front difference was at the top and the end of the slope. With the larger rainfall intensity, both the difference of soil water content and its descending trend between soil layers became more obvious during the redistribution process on slope land.

  17. Effects of Residual Solvent Molecules Facilitating the Infiltration Synthesis of ZnO in a Nonreactive Polymer

    DOE PAGES

    Ye, Xinyi; Kestell, John; Kisslinger, Kim; ...

    2017-05-04

    Infiltration synthesis, the atomic-layer-deposition-based organic–inorganic material hybridization technique that enables unique hybrid composites with improved material properties and inorganic nanostructures replicated from polymer templates, is shown to be driven by the binding reaction between reactive chemical groups of polymers and perfusing vapor-phase material precursors. Here in this paper, we discover that residual solvent molecules from polymer processing can react with infiltrating material precursors to enable the infiltration synthesis of metal oxides in a nonreactive polymer. The systematic study, which combines in situ quartz crystal microgravimetry, polarization-modulated infrared reflection–absorption spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy, shows that the ZnOmore » infiltration synthesis in nominally nonreactive SU-8 polymer is mediated by residual processing solvent cyclopentanone, a cyclic ketone whose Lewis-basic terminal carbonyl group can react with the infiltrating Lewis-acidic Zn precursor diethylzinc (DEZ). In addition, we find favorable roles of residual epoxy rings in the SU-8 film in further assisting the infiltration synthesis of ZnO. Lastly, the discovered rationale not only improves the understanding of infiltration synthesis mechanism, but also potentially expands its application to more diverse polymer systems for the generation of unique functional organic–inorganic hybrids and inorganic nanostructures.« less

  18. Imaging resin infiltration into non-cavitated carious lesions by optical coherence tomography.

    PubMed

    Schneider, Hartmut; Park, Kyung-Jin; Rueger, Claudia; Ziebolz, Dirk; Krause, Felix; Haak, Rainer

    2017-05-01

    Visualisation of the etching process and resin penetration at white spot carious lesions by spectral domain optical coherence tomography (SD-OCT). The non-cavitated carious lesions (ICDAS code 2) of four visually preselected extracted human molars and premolars were verified as enamel lesions by micro computed tomography (μCT). One region of interest (ROI) per tooth was marked by two drill-holes in occlusal-cervical direction. The lesions were imaged by SD-OCT. Lesions were infiltrated (Icon, DMG) according to the manufacturer's instructions. During each treatment step and after light curing of the infiltrant, the ROIs were imaged again by SD-OCT. Teeth were sectioned through the ROIs and section layers were imaged by scanning electron microscopy in order to compare with the OCT images. The image sequences for etching and infiltration were viewed in time lapse. During the etching process, numerous bubbles formed on the lesion surface. Using OCT, the process of resin penetration into the carious lesion body became visible. The early enamel carious lesion was completely infiltrated by the resin whereas infiltration of the advanced enamel carious lesion was incomplete and inhomogeneous. Resin infiltration can be increased by optimizing the etching process. Optical coherence tomography provides information about the process and degree of resin infiltration. Active acid application before resin infiltration is recommendable. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Role of slope on infiltration: A review

    NASA Astrophysics Data System (ADS)

    Morbidelli, Renato; Saltalippi, Carla; Flammini, Alessia; Govindaraju, Rao S.

    2018-02-01

    Partitioning of rainfall at the soil-atmosphere interface is important for both surface and subsurface hydrology, and influences many events of major hydrologic interest such as runoff generation, aquifer recharge, and transport of pollutants in surface waters as well as the vadose zone. This partitioning is achieved through the process of infiltration that has been widely investigated at the local scale, and more recently also at the field scale, by models that were designed for horizontal surfaces. However, infiltration, overland flows, and deep flows in most real situations are generated by rainfall over sloping surfaces that bring in additional effects. Therefore, existing models for local infiltration into homogeneous and layered soils and those as for field-scale infiltration, have to be adapted to account for the effects of surface slope. Various studies have investigated the role of surface slope on infiltration based on a theoretical formulations for the dynamics of infiltration, extensions of the Green-Ampt approach, and from laboratory and field experiments. However, conflicting results have been reported in the scientific literature on the role of surface slope on infiltration. We summarize the salient points from previous studies and provide plausible reasons for discrepancies in conclusions of previous authors, thus leading to a critical assessment of the current state of our understanding on this subject. We offer suggestions for future efforts to advance our knowledge of infiltration over sloping surfaces.

  20. Enhanced transport of materials into enamel nanopores via electrokinetic flow.

    PubMed

    Gan, H Y; Sousa, F B; Carlo, H L; Maciel, P P; Macena, M S; Han, J

    2015-04-01

    The ability to infiltrate various molecules and resins into dental enamel is highly desirable in dentistry, yet transporting materials into dental enamel is limited by the nanometric scale of their pores. Materials that cannot be infiltrated into enamel by diffusion/capillarity are often considered molecules with sizes above a critical threshold, which are often considered to be larger than the pores of enamel. We challenge this notion by reporting the use of electrokinetic flow to transport solutions with molecules with sizes above a critical threshold-namely, an aqueous solution with a high refractive index (Thoulet's solution) and a curable fluid resin infiltrant (without acid etching)-deep into the normal enamel layer. Volume infiltration by Thoulet's solution is increased by 5- to 6-fold, and resin infiltration depths as large as 600 to 2,000 µm were achieved, in contrast to ~10 µm resulting from diffusion/capillarity. Incubation with demineralization solution for 192 h resulted in significant demineralization at noninfiltrated histologic points but not at resin infiltrated. These results open new avenues for the transport of materials in dental enamel. © International & American Associations for Dental Research 2015.

  1. Assessing the dynamics of the upper soil layer relative to soil management practices

    USDA-ARS?s Scientific Manuscript database

    The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregat...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koo, Ja-Kong; Do, Nam-Young

    The K site near Seoul began landfilling in 1992. The landfilled wastes include municipal solid waste (66.4%), construction residues (20.4%), water and wastewater sludges (trace levels), and hazardous waste (trace levels). The water content of the municipal solid waste is very high (47.3%); as a result, the leachate level (average E.L.) of the landfill, the design value of which is 7.0 m, was measured at 10.3 m in January 1995 and is increasing. The increase of leachate level in the landfill site causes a problem with slope stability. The leachate level at each disposal stage divided by the intermediate covermore » layer was calculated with the HELP (Hydrologic Evaluation of Landfill Performance) model and calibrated with the data measured from February 1993 to June 1995. Also, the hydraulic conductivities of the waste layer and the intermediate cover layer in each stage were calibrated continuously with HELP model analysis. To verify these results, the total water balance in the landfill site was calculated using the infiltration rate calculated from HELP modeling. The leachate level was E.L. 10.0 m, which was close to the measured leachate level. To estimate the change of the leachate level in the future, the total water balances with different leachate discharge rates of 3,000, 3,500, and 5,000 m{sup 3}/day were analyzed. When the leachate discharge rate was 5,000 ton/day and the initial water content was decreased below 25%, the average leachate level was 10.8 m. This result satisfies the safety factor requirements (=1.3) for landfill slope stability. 4 refs., 8 figs., 1 tab.« less

  3. Eosinophilic esophageal myositis diagnosed by endoscopic ultrasound-guided fine-needle aspiration biopsy: a case report.

    PubMed

    Igarashi, Ryo; Irisawa, Atsushi; Shibukawa, Goro; Yamabe, Akane; Fujisawa, Mariko; Sato, Ai; Maki, Takumi; Arakawa, Noriyuki; Yoshida, Yoshitsugu; Yamamoto, Shogo; Ikeda, Tsunehiko

    2016-10-01

    Eosinophilic esophagitis (EoE) is diagnosed by microscopic findings of eosinophilic infiltration into the squamous epithelium. In contrast, another disease concept termed "eosinophilic esophageal myositis (EoEM)" has been proposed, whereby there is eosinophilic infiltration into the muscularis propria instead. A 60-year-old man was referred to our hospital for chest pain, dysphagia, and several episodes of esophageal food impaction. Although EoE was suspected based on clinical features, biopsy specimens showed no mucosal eosinophilic infiltration. Endoscopic ultrasound (EUS) showed thickening of the muscularis propria layer and subsequent EUS-guided fine-needle aspiration biopsy (EUS-FNA) revealed eosinophilic infiltration into the muscularis propria. Although the patient's symptoms gradually improved after steroid administration, complete remission was not achieved after 1 year of treatment. This case may reflect a disorder distinct from typical EoE based on eosinophilic infiltration of the muscularis propria but not the squamous epithelium, and we, therefore, diagnosed it as EoEM using the EUS-FNA findings as reference.

  4. Anti-infiltration for fabrication of a suspended nanoparticle layer on porous close-packed colloidal arrays.

    PubMed

    Teh, Lay K; Yan, Qingfeng; Wong, Chee C

    2009-04-01

    We develop a new method to fabricate suspended sheets of nanocrystals (NCs) on porous surfaces. The method relies on the resistance of an aqueous suspension droplet to infiltrate a porous network; hence, the method is named anti-infiltration. The process works by combining fluid dynamics of a liquid droplet during impact/absorption onto a porous surface with the convective self-assembly of NCs. The immobilization of the liquid droplet edge due to the self-assembly of NCs at the meniscus is harnessed to halt the lateral spreading of the droplet and, consequently, the capillary penetration of the liquid immediately after droplet impact. Further capillary penetration of the liquid is drastically reduced because of the competition between capillary forces and convective losses as well as the rapid occlusion of the pores as soon as a continuous NC film has formed upon evaporation of the suspension. This method holds promise for a wide variety of optoelectronic, sensing, and separation membrane applications. As an example, we demonstrate that these suspended NC layers are suitable candidates as planar defects embedded within a colloidal photonic crystal.

  5. The lisse effect revisited

    USGS Publications Warehouse

    Weeks, E.P.

    2002-01-01

    The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, ??f, analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than |??f| and that the depth of penetration of the wetting front is no more than several millimeters.

  6. Method to measure soil matrix infiltration in forest soil

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Lei, Tingwu; Qu, Liqin; Chen, Ping; Gao, Xiaofeng; Chen, Chao; Yuan, Lili; Zhang, Manliang; Su, Guangxu

    2017-09-01

    Infiltration of water into forest soil commonly involves infiltration through the matrix body and preferential passages. Determining the matrix infiltration process is important in partitioning water infiltrating into the soil through the soil body and macropores to evaluate the effects of soil and water conservation practices on hillslope hydrology and watershed sedimentation. A new method that employs a double-ring infiltrometer was applied in this study to determine the matrix infiltration process in forest soil. Field experiments were conducted in a forest field on the Loess Plateau at Tianshui Soil and Water Conservation Experimental Station. Nylon cloth was placed on the soil surface in the inner ring and between the inner and outer rings of infiltrometers. A thin layer of fine sands were placed onto the nylon cloth to shelter the macropores and ensure that water infiltrates the soil through the matrix only. Brilliant Blue tracers were applied to examine the exclusion of preferential flow occurrences in the measured soil body. The infiltration process was measured, computed, and recorded through procedures similar to those of conventional methods. Horizontal and vertical soil profiles were excavated to check the success of the experiment and ensure that preferential flow did not occur in the measured soil column and that infiltration was only through the soil matrix. The infiltration processes of the replicates of five plots were roughly the same, thereby indicating the feasibility of the methodology to measure soil matrix infiltration. The measured infiltration curves effectively explained the transient process of soil matrix infiltration. Philip and Kostiakov models fitted the measured data well, and all the coefficients of determination were greater than 0.9. The wetted soil bodies through excavations did not present evidence of preferential flow. Therefore, the proposed method can determine the infiltration process through the forest soil matrix. This method can also be applied to explore matrix infiltration in other land-use types.

  7. Ceramic-metal composites prepared via tape casting and melt infiltration methods

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Jun

    Melt infiltration of preforms prepared by tape casting and lamination has been accomplished using a short-time infiltration process that significantly suppresses reaction product formation. For layered materials produced via infiltration of laminated ceramic tapes, of particular interest is the effect that a large change in microstructure has on infiltration, phase formation, and mechanical properties. Hardness of the fine scale composite layers is approximately three times higher than coarse scale layers, due to greater strength of the fine B4C network. Fractography showed that crack propagation occurred by brittle fracture of the carbide and ductile extension of the metal. Despite large differences in hardness, the fracture mode of the fine and coarse scale microstructures appears identical. Fluid flow modeling for tape casting was conducted with a Newtonian slurry under a parallel blade, and the effect of beveling the blade based on a one dimensional flow model is shown. The discussion on slurry deformation after the blade exit suggests that the mode of slurry deformation depends on the relative importance of the pressure gradient and wall shear and that the existence of zero shear plane might have a negative effect on particle alignment in the tape. The analysis of the flow under a beveled blade predicts that this configuration is more advantageous than the parallel blade for productivity and parallel blade is better for producing uniform particle alignment and thinner tape. Also, the one dimensional flow model for the beveled blade is shown to be a valid approximation of the fluid behavior below a blade angle of 45 degrees. The flow visualization study on tape casting was conducted with a transparent apparatus and model slurry. Most investigators have concluded that the shear stress between the doctor blade and moving carrier causes the particle alignment, but, according to the result of visualization experiment, some degree of particle alignment is already established in the reservoir. The fluid flow concept of tape casting is incorporated with a metal infiltration technique to prepare the ceramic-metal composites with tailored porosity and pore orientation. Boron carbide-aluminum system was used to prepare the composites, and its stiffness constants were investigated. The aligned metal ligaments rarely affect the stiffness constant anisotropy which appears to be caused by tape casting operation.

  8. Soft-bed experiments beneath Engabreen, Norway: Regelation, infiltration, basal slip and bed deformation

    USGS Publications Warehouse

    Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Cohen, D.; Moore, P.L.; Jackson, M.; Lappegard, G.; Kohler, J.

    2007-01-01

    To avoid some of the limitations of studying soft-bed processes through boreholes, a prism of simulated till (1.8 m ?? 1.6 m ?? 0.45 m) with extensive instrumentation was constructed in a trough blasted in the rock bed of Engabreen, a temperate glacier in Norway. Tunnels there provide access to the bed beneath 213 m of ice. Pore-water pressure was regulated in the prism by pumping water to it. During experiments lasting 7-12 days, the glacier regelated downward into the prism to depths of 50-80 mm, accreting ice-infiltrated till at rates predicted by theory. During periods of sustained high pore-water pressure (70-100% of overburden), ice commonly slipped over the prism, due to a water layer at the prism surface. Deformation of the prism was activated when this layer thinned to a sub-millimeter thickness. Shear strain in the till was pervasive and decreased with depth. A model of slip by ploughing of ice-infiltrated till across the prism surface accounts for the slip that occurred when effective pressure was sufficiently low or high. Slip at low effective pressures resulted from water-layer thickening that increased non-linearly with decreasing effective pressure. If sufficiently widespread, such slip over soft glacier beds, which involves no viscous deformation resistance, may instigate abrupt increases in glacier velocity.

  9. Impact of stormwater infiltration basins on groundwater quality, Perth metropolitan region, Western Australia

    NASA Astrophysics Data System (ADS)

    Appleyard, S. J.

    1993-08-01

    Twelve bores were sunk adjacent to three stormwater infiltration basins in the Perth metropolitan area to examine the impact of runoff from a light industrial area, a medium-density residential area, and a major arterial road on groundwater quality, and to examine the hydrological response of the aquifer to runoff recharge. Automatic and manual water level monitoring between April and November 1990 indicated that groundwater levels responded within minutes to recharge from the infiltration basins. Peak water levels of up to 2.5 m above rest levels occurred 6 24 h after the commencement of ponding in the infiltration basins. There was a marked reduction in salinity and increase in dissolved oxygen concentrations in the upper part of the aquifer downgradient of the infiltration basins. Concentrations of toxic metals, nutrients, pesticides, and phenolic compounds in groundwater near the infiltration basins were low and generally well within Australian drinking water guidelines. However, sediment in the base of an infiltration basin draining a major road contained in excess of 3500 ppm of lead. Phthalates, which are US EPA priority pollutants, were detected in all but one bore near the infiltration basins. Their detection may be a sampling artifact, but they may also be derived from the plastic litter that accumulates in the infiltration basins. The concentration of iron in groundwater near the infiltration basins appears to be controlled by dissolved oxygen concentrations, with high iron concentrations occurring where dissolved oxygen concentrations are low. Pumping bores located near infiltration basins may suffer from iron encrustation problems caused by the mixing of shallow, oxygenated groundwater with water containing higher concentrations of iron from deeper in the aquifer.

  10. Collaboration for the Advancement of Indirect 3D Printing Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordero, Zachary; Elliott, Amy M.

    Amorphous powders often possess high hardness values and other useful mechanical properties. However, densifying these powders into complex shapes while retaining their unique properties is a challenge with standard processing routes. Pressureless sintering, for example, can densify intricate green parts composed of rapidly-solidified powders. But this process typically involves long exposures to elevated temperatures, during which the non-equilibrium microstructure of the powder can evolve towards lower energy configurations with inferior properties. Pressure-assisted compaction techniques, by contrast, can consolidate green parts with simple shapes while preserving the microstructure and properties of the powder feedstock. But parts made with these processes generallymore » require additional post-processing, including machining, which introduces new challenges due to the high hardness of these materials. One processing route that can potentially avoid these issues is Indirect 3D Printing (I-3DP; aka Binder Jetting) followed by melt infiltration. In I-3DP, an organic binder is used to join powder feedstock, layer-by-layer, into a green part. In melt infiltration, this green preform is densified by placing it in contact with a molten alloy that wets the preform and wicks into the pores as a result of capillary forces. When these processes are paired together, they offer two key advantages for the densification of rapidly-solidified powders. The first advantage is that the timescale associated with melt infiltration is on the order of seconds for parts with cm-scale dimensions. So in many instances, infiltration requires only a brief thermal excursion that does not degrade the feedstock’s microstructure. The second advantage is that the combination of binder-jet 3D printing and melt infiltration gives fully-dense net shape objects, minimizing the need for subsequent post-processing. In this work, fully-dense, net shape objects have been fabricated from an amorphous powder using I-3DP and molten bronze infiltration while maintaining the amorphous microstructure. X-ray diffraction, scanning electron microscopy, and differential thermal analysis were used to characterize the structural evolution of the powder feedstock during an infiltration heating cycle. Microindentation and bend tests were performed on the infiltrated material to evaluate its mechanical properties. It was found that infiltration improved both the ductility and strength of the sintered preforms by eliminating the stress concentration at the interparticle necks. The infiltrated material had an 11 GPa Vickers hardness and moderate damage tolerance, making it well-suited for applications requiring hard, net shape parts.« less

  11. Efficacy of a Fatty Acids Dietary Supplement in a Polyethylene Glycol-Induced Mouse Model of Retinal Degeneration

    PubMed Central

    Locri, Filippo; Lardner, Emma; Kvanta, Anders; Rusciano, Dario; Bagnoli, Paola

    2017-01-01

    Current knowledge of the benefits of nutrition supplements for eye pathologies is based largely on the use of appropriate animal models, together with defined dietary supplementation. Here, C57BL6 mice were subretinally injected with polyethylene glycol (PEG)-400, an established model of retinal degeneration with a dry age-related macular degeneration (AMD)-like phenotype, an eye pathology that lacks treatment. In response to PEG-400, markers of the complement system, angiogenesis, inflammation, gliosis, and macrophage infiltration were upregulated in both retinas and retinal pigment epithelium (RPE)/choroids, whereas dietary supplementation with a mixture based on fatty acids counteracted their upregulation. Major effects include a reduction of inflammation, in both retinas and RPE/choroids, and an inhibition of macrophage infiltration in the choroid, yet not in the retina, suggesting a targeted action through the choroidal vasculature. Histological analysis revealed a thinning of the outer nuclear layer (ONL), together with dysregulation of the epithelium layer in response to PEG-400. In addition, immunohistofluorescence demonstrated Müller cell gliosis and macrophage infiltration into subretinal tissues supporting the molecular findings. Reduced ONL thickness, gliosis, and macrophage infiltration were counteracted by the diet supplement. The present data suggest that fatty acids may represent a useful form of diet supplementation to prevent or limit the progression of dry AMD. PMID:28961167

  12. Production of a textile reinforced concrete protective layers with non-woven polypropylene fabric

    NASA Astrophysics Data System (ADS)

    Žák, J.; Štemberk, P.; Vodička, J.

    2017-09-01

    Textile concrete with nonwoven polypropylene fabric can be used for protective layers of reinforced concrete structures, reducing the thickness of the cover layer or reducing the water penetration rate into the structure. The material consists of cement matrix with finegrained aggregate and nonwoven textile reinforcement. The maximum grain size of the mixture suitable for the nonwoven textile infiltration is 0.25 mm. The interlayer contains larger aggregates and short fibers. Tensile loading causes a large amount of microcracks in the material. The material can withstand strain over 25% without collapsing. Increased quality and water-cement ratio reduction was achieved using the plasticizers and distribution of the mixture into a fabric using a vibrating trowel. It is possible to make flat plates and even curved structures from this material. Larger curvatures of structures should be solved by cutting and overlapping the fabric. Small curvatures can be solved within the deformability of the fabric. Proper infiltration of the cement mixture into the fabric is the most important task in producing this material.

  13. Infiltration processes in karstic chalk investigated through a spatial analysis of the geochemical properties of the groundwater: The effect of the superficial layer of clay-with-flints

    NASA Astrophysics Data System (ADS)

    Valdes, Danièle; Dupont, Jean-Paul; Laignel, Benoît; Slimani, Smaïl; Delbart, Célestine

    2014-11-01

    In the Paris Basin in Upper Normandy (France), the chalk plateaus are covered with thick deposits of loess and clay-with-flints, from a few meters to approximately 40 m thick locally. A perched groundwater is sometimes observed in the superficial layers in which evapotranspiration processes seem to occur. This study's objective was to understand the effects of the thick clay-with-flints layers on the infiltration processes. To achieve this, we adopted a spatial approach comparing the maps of the geochemical properties of the Chalk groundwater and the maps of the thickness of clay-with-flints. The French national groundwater database, ADES (Accès aux Données des Eaux, BRGM), provided the mean geochemical properties in the Chalk aquifer of Upper Normandy. This database was used to prepare maps of the environmental tracers: Ca2+, HCO3-, Mg2+, Cl-, Na+, NO3-, and SO42. The data are spatially well organized. Using principal component analysis (PCA), these maps were compared with the maps of the thickness of clay-with-flints. A focus on the coastal basins (northern Upper Normandy) shows a very strong spatial correlation between the maps of clay-with-flints thickness and all of the maps of the major ions. The thickness of clay-with-flints is negatively correlated with the autochthonous ions (HCO3- and Ca2+) and is positively correlated with the allochthonous ions (Cl-, Na+, SO42-, and NO3-). These results highlight that the thickness of clay-with-flints controls recharge. Two types of infiltration processes are proposed: (1) Thicker clay-with-flints allows storage in the perched groundwater, which allows evapotranspiration, resulting in high concentrations of allochthonous ions and a decrease in the dissolution potential of water and low concentrations of autochthonous ions. The infiltration of the perched groundwater is thus delayed and concentrated. (2) Thinner clay-with-flints causes the infiltration to be more diffuse, with low evapotranspiration and thus low concentrations of allochthonous ions in the Chalk groundwater; more, there is more dissolution and higher concentrations of autochthonous ions in the Chalk groundwater.

  14. Pathologic findings in human scabies.

    PubMed

    Fernandez, N; Torres, A; Ackerman, A B

    1977-03-01

    The histologic findings in the papular, vesicular, nodular, and Norwegian variant of scabies have in common a superficial and deep perivascular mixed inflammatory cell infiltrate of lymphocytes, histiocytes, and numerous eosinophils. A spongiotic vesicle occurs in the papulovesicular type, a dense cellular infiltrate in the nodular type, and a hyperkeratotic psoriasiform dermatitis in the Norwegian type. Eggs, larvae, and adult mites are abundant in the cornified layer of Norwegian scabies, are practically never found in biopsy specimens from lesions of nodular scabies, and are discovered only episodically in papulovesicular lesions.

  15. (abstract) A Polarimetric Model for Effects of Brine Infiltrated Snow Cover and Frost Flowers on Sea Ice Backscatter

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Kwok, R.; Yueh, S. H.

    1995-01-01

    A polarimetric scattering model is developed to study effects of snow cover and frost flowers with brine infiltration on thin sea ice. Leads containing thin sea ice in the Artic icepack are important to heat exchange with the atmosphere and salt flux into the upper ocean. Surface characteristics of thin sea ice in leads are dominated by the formation of frost flowers with high salinity. In many cases, the thin sea ice layer is covered by snow, which wicks up brine from sea ice due to capillary force. Snow and frost flowers have a significant impact on polarimetric signatures of thin ice, which needs to be studied for accessing the retrieval of geophysical parameters such as ice thickness. Frost flowers or snow layer is modeled with a heterogeneous mixture consisting of randomly oriented ellipsoids and brine infiltration in an air background. Ice crystals are characterized with three different axial lengths to depict the nonspherical shape. Under the covering multispecies medium, the columinar sea-ice layer is an inhomogeneous anisotropic medium composed of ellipsoidal brine inclusions preferentially oriented in the vertical direction in an ice background. The underlying medium is homogeneous sea water. This configuration is described with layered inhomogeneous media containing multiple species of scatterers. The species are allowed to have different size, shape, and permittivity. The strong permittivity fluctuation theory is extended to account for the multispecies in the derivation of effective permittivities with distributions of scatterer orientations characterized by Eulerian rotation angles. Polarimetric backscattering coefficients are obtained consistently with the same physical description used in the effective permittivity calculation. The mulitspecies model allows the inclusion of high-permittivity species to study effects of brine infiltrated snow cover and frost flowers on thin ice. The results suggest that the frost cover with a rough interface significantly increases the backscatter from thin saline ice and the polarimetric signature becomes closer to the isotropic characteristics. The snow cover also modifies polarimetric signatures of thin sea ice depending on the snow mixture and the interface condition.

  16. Visualization of soil structure and pore structure modifications by pioneering ground beetles (Cicindelidae) in surface sediments of an artificial catchment

    NASA Astrophysics Data System (ADS)

    Badorreck, Annika; Gerke, Horst H.; Weller, Ulrich; Vontobel, Peter

    2010-05-01

    An artificial catchment was constructed to study initial soil and ecosystem development. As a key process, the pore structure dynamics in the soil at the surface strongly influences erosion, infiltration, matter dynamics, and vegetation establishment. Little is known, however, about the first macropore formation in the very early stage. This presentation focuses on observations of soil pore geometry and its effect on water flow at the surface comparing samples from three sites in the catchment and in an adjacent "younger" site composed of comparable sediments. The surface soil was sampled in cylindrical plastic rings (10 cm³) down to 2 cm depth in three replicates each site and six where caves from pioneering ground-dwelling beetles Cicindelidae were found. The samples were scanned with micro-X-ray computed tomography (at UFZ-Halle, Germany) with a resolution of 0.084 mm. The infiltration dynamics were visualized with neutronradiography (at Paul-Scherer-Institute, Switzerland) on slab-type soil samples in 2D. The micro-tomographies exhibit formation of surface sealing whose thickness and intensity vary with silt and clay content. The CT images show several coarser- and finer-textured micro-layers at the sample surfaces that were formed as a consequence of repeated washing in of finer particles in underlying coarser sediment. In micro-depressions, the uppermost layers consist of sorted fine sand and silt due to wind erosion. Similar as for desert pavements, a vesicular pore structure developed in these sediments on top, but also scattered in fine sand- and silt-enriched micro-layers. The ground-dwelling activity of Cicindelidae beetles greatly modifies the soil structure through forming caves in the first centimetres of the soil. Older collapsed caves, which form isolated pores within mixed zones, were also found. The infiltration rates were severely affected both, by surface crusts and activity of ground-dwelling beetles. The observations demonstrate relatively high abiotic and biotic dynamics of soil pore structure in the soil surface even during the very early development stages. The structure formation has potentially great effects on changing runoff and infiltration by forming sealing layers or preferential flow paths.

  17. Invasion in breast lesions: the role of the epithelial-stroma barrier.

    PubMed

    Rakha, Emad A; Miligy, Islam M; Gorringe, Kylie L; Toss, Michael S; Green, Andrew R; Fox, Stephen B; Schmitt, Fernando C; Tan, Puay-Hoon; Tse, Gary M; Badve, Sunil; Decker, Thomas; Vincent-Salomon, Anne; Dabbs, David J; Foschini, Maria P; Moreno, Filipa; Wentao, Yang; Geyer, Felipe C; Reis-Filho, Jorge S; Pinder, Sarah E; Lakhani, Sunil R; Ellis, Ian O

    2018-06-01

    Despite the significant biological, behavioural and management differences between ductal carcinoma in situ (DCIS) and invasive carcinoma of the breast, they share many morphological and molecular similarities. Differentiation of these two different lesions in breast pathological diagnosis is based typically on the presence of an intact barrier between the malignant epithelial cells and stroma; namely, the myoepithelial cell (MEC) layer and surrounding basement membrane (BM). Despite being robust diagnostic criteria, the identification of MECs and BM to differentiate in-situ from invasive carcinoma is not always straightforward. The MEC layer around DCIS may be interrupted and/or show an altered immunoprofile. MECs may be absent in some benign locally infiltrative lesions such as microglandular adenosis and infiltrating epitheliosis, and occasionally in non-infiltrative conditions such as apocrine lesions, and in these contexts this does not denote malignancy or invasive disease with metastatic potential. MECs may also be absent around some malignant lesions such as some forms of papillary carcinoma, yet these behave in an indolent fashion akin to some DCIS. In Paget's disease, malignant mammary epithelial cells extend anteriorly from the ducts to infiltrate the epidermis of the nipple but do not typically infiltrate through the BM into the dermis. Conversely, BM-like material can be seen around invasive carcinoma cells and around metastatic tumour cell deposits. Here, we review the role of MECs and BM in breast pathology and highlight potential clinical implications. We advise caution in interpretation of MEC features in breast pathology and mindfulness of the substantive evidence base in the literature associated with behaviour and clinical outcome of lesions classified as benign on conventional morphological examination before changing classification to an invasive lesion on the sole basis of MEC characteristics. © 2017 John Wiley & Sons Ltd.

  18. Effective coupled optoelectrical design method for fully infiltrated semiconductor nanowires based hybrid solar cells.

    PubMed

    Wu, Dan; Tang, Xiaohong; Wang, Kai; Li, Xianqiang

    2016-10-31

    We present a novel coupled design method that both optimizes light absorption and predicts electrical performance of fully infiltrated inorganic semiconductor nanowires (NWs) based hybrid solar cells (HSC). This method provides a thorough insight of hybrid photovoltaic process as a function of geometrical parameters of NWs. An active layer consisting of GaAs NWs as acceptor and poly(3-hexylthiophene-2,5-diyl) (P3HT) as donor were used as a design example. Absorption spectra features were studied by the evolution of the leaky modes and Fabry-Perot resonance with wavelength focusing firstly on the GaAs/air layer before extending to GaAs/P3HT hybrid active layer. The highest absorption efficiency reached 39% for the hybrid active layer of 2 μm thickness under AM 1.5G illumination. Combined with the optical absorption analysis, our method further codesigns the energy harvesting to predict electrical performance of HSC considering exciton dissociation efficiencies within both inorganic NWs and a polymeric shell of 20 nm thickness. The validity of the simulation model was also proved by the well agreement of the simulation results with the published experimental work indicating an effective guidance for future high performance HSC design.

  19. Ordered nanoscale domains by infiltration of block copolymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darling, Seth B.; Elam, Jeffrey; Tseng, Yu-Chih

    A method of preparing tunable inorganic patterned nanofeatures by infiltration of a block copolymer scaffold having a plurality of self-assembled periodic polymer microdomains. The method may be used sequential infiltration synthesis (SIS), related to atomic layer deposition (ALD). The method includes selecting a metal precursor that is configured to selectively react with the copolymer unit defining the microdomain but is substantially non-reactive with another polymer unit of the copolymer. A tunable inorganic features is selectively formed on the microdomain to form a hybrid organic/inorganic composite material of the metal precursor and a co-reactant. The organic component may be optionally removedmore » to obtain an inorganic features with patterned nanostructures defined by the configuration of the microdomain.« less

  20. Effect on patient anxiety of lidocaine infiltration into nasal packing after septoplasty: prospective, controlled study.

    PubMed

    Sahin, C; Aras, H I

    2015-08-01

    This prospective, controlled study investigated the effect on patient anxiety of lidocaine infiltration into nasal packing following septoplasty. The study included 50 patients who underwent septoplasty operation. Patient anxiety levels were measured 24 hours pre-operatively; 48 hours post-operatively, before saline or lidocaine infiltration; and 15 minutes after lidocaine or saline infiltration into the packing. The patients were asked to mark their level of pain during pack removal on a visual analogue scale. Hamilton Anxiety Scale scores for lidocaine infiltration patients were: 15.1 ± 7.4 pre-operatively; 16 ±7.6 post-operatively, before infiltration; and 13.7 ± 6.6 at 15 minutes after infiltration. The scores for saline infiltration patients were: 16.3 ± 6.8 pre-operatively, 16.4 ± 5.5 before infiltration and 16.1 ± 6.1 after infiltration. The visual analogue scale pain score was 5.3 ± 2.0 in the lidocaine study group and 7.5 ± 1.8 in the control saline group. Infiltration of lidocaine into nasal packing significantly reduced patient pain. Patients developed mild to moderate anxiety before nasal packing removal. Use of techniques without nasal packing can be recommended after septoplasty to ease patient post-operative discomfort.

  1. Electrochemically influenced cation inter-diffusion and Co 3O 4 formation on La 0.6Sr 0.4CoO 3 infiltrated into SOFC cathodes

    DOE PAGES

    Song, Xueyan; Lee, Shiwoo; Chen, Yun; ...

    2015-06-18

    Nanosized LSC electrocatalyst was infiltrated into a porous scaffold cathode composed of Sm 2O 3-doped CeO 2 (SDC) and La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) in a commercial button solid oxide fuel cell (SOFC). To understand the stability of cathodes infiltrated with LSC, the infiltrated composite cells were subjected to both electrochemical operating and thermal aging states at 750 °C for 1500 h. Nanostructure and local chemistry evolution of La 0.6Sr 0.4CoO 3 (LSC) infiltrated cathodes upon operation and aging were investigated by transmission electron microscopy. After operation, the LSC remained a cubic perovskite, and the crystal grains exhibitmore » comparable size to as-infiltrated LSC grains. Inter-diffusion of Fe from the LSCF to a Fe-incorporated LSC layer developed on the LSCF backbone. However, only sharp interfaces were observed between LSC and SDC backbone in the as-infiltrated cathode and such interfaces remain after operation. The infiltrated LSC on the SDC backbone also retains granular particle morphology. Furthermore, newly grown Co 3O 4 nanocrystals were found in the operated cathode. After thermal aging, on the other hand, cation inter-diffusion across the interfaces of the infiltrate particles and the cathode backbones is less than that from the operated cells. Lastly, the following hypothesis is proposed: Co 3O 4 forms on LSC arising from local charge balancing between cobalt and oxygen vacancies.« less

  2. Snowmelt and Infiltration Deficiencies of SSiB and Their Resolution with a New Snow-Physics Scheme

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Mocko, David M.

    1999-01-01

    A two-year 1987-1988 integration of SSiB forced with ISLSCP Initiative I surface data (as part of the Global Soil Wetness Project, GSWP, evaluation and intercomparison) produced generally realistic land surface fluxes and hydrology. Nevertheless, the evaluation also helped to identify some of the deficiencies of the current version of the Simplified Simple Biosphere (SSiB) model. The simulated snowmelt was delayed in most regions, along with excessive runoff and lack of an spring soil moisture recharge. The SSIB model had previously been noted to have a problem producing accurate soil moisture as compared to observations in the Russian snowmelt region. Similarly, various GSWP implementations of SSIB found deficiencies in this region of the simulated soil moisture and runoff as compared to other non-SSiB land-surface models (LSMs). The origin of these deficiencies was: 1) excessive cooling of the snow and ground, and 2) deep frozen soil disallowing snowmelt infiltration. The problem was most severe in regions that experience very cold winters. In SSiB, snow was treated as a unified layer with the first soil layer, causing soil and snow to cool together in the winter months, as opposed to snow cover acting as an insulator. In the spring season, a large amount of heat was required to thaw a hard frozen snow plus deep soil layers, delaying snowmelt and causing meltwater to become runoff over the frozen soil rather than infiltrate into it.

  3. Storm Water Infiltration and Focused Groundwater Recharge in a Rain Garden: Finite Volume Model and Numerical Simulations for Different Configurations and Climates

    NASA Astrophysics Data System (ADS)

    Aravena, J.; Dussaillant, A. R.

    2006-12-01

    Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).

  4. Histopathology of balloon-dilation Eustachian tuboplasty.

    PubMed

    Kivekäs, Ilkka; Chao, Wei-Chieh; Faquin, William; Hollowell, Monica; Silvola, Juha; Rasooly, Tali; Poe, Dennis

    2015-02-01

    Surgical intervention of the Eustachian tube (ET) has become increasingly common in the past decade, and balloon dilation has shown promising results in recent studies. It is unclear how balloon dilation enhances ET function. Our aim was to evaluate histological changes in the ET's mucosal lumen comparing before balloon dilation, immediately after, and postoperatively. Case series. Thirteen patients with bilateral ET dysfunction were enrolled. Biopsies of the ET mucosa were obtained just before balloon dilation; immediately after; and in three cases, 5 to 12 weeks postoperatively. Specimens were retrospectively examined under light microscopy by two pathologists blinded to the clinical information and whether specimens were pre- or postballoon dilation. Preoperative biopsies were characterized by inflammatory changes within the epithelium and submucosal layer. Immediate response to balloon dilation was thinning of the mucosa, shearing of epithelium and crush injury to the submucosa, especially to lymphocytic infiltrates. Postoperative biopsies demonstrated healthy pseudocolumnar epithelium and replacement of lymphocytic infiltrate with a thinner layer of fibrous tissue. Reduction of inflammatory epithelial changes and submucosal inflammatory infiltrate appeared to be the principal result of balloon dilation. The balloon may shear or crush portions of inflamed epithelium but usually spared the basal layer, allowing for rapid healing. Additionally, it appeared to effectively crush lymphocytes and lymphocytic follicles that may become replaced with thinner fibrous scar. Histopathology of the ET undergoing balloon dilation demonstrated effects that could reduce the overall inflammatory burden and may contribute to clinical improvement in ET function. 4. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  5. A new silica-infiltrated Y-TZP obtained by the sol-gel method.

    PubMed

    Campos, T M B; Ramos, N C; Machado, J P B; Bottino, M A; Souza, R O A; Melo, R M

    2016-05-01

    The aim of this study was to evaluate silica infiltration into dental zirconia (VITA In-Ceram 2000 YZ, Vita Zahnfabrik) and its effects on zirconia's surface characteristics, structural homogeneity and bonding to a resin cement. Infiltration was performed by immersion of the pre-sintered zirconia specimens in silica sols for five days (ZIn). Negative (pure zirconia specimens, ZCon-) and positive controls (specimens kept in water for 5 days, ZCon+) were also performed. After sintering, the groups were evaluated by X-ray diffraction (XRD), grazing angle X-ray diffraction (DRXR), scanning electron microscopy (SEM), contact angle measurements, optical profilometry, biaxial flexural test and shear bonding test. Weibull analysis was used to determine the Weibull modulus (m) and characteristic strength (σ0) of all groups. There were no major changes in strength for the infiltrated group, and homogeneity (m) was also increased. A layer of ZrSiO4 was formed on the surface. The bond strength to resin cement was improved after zirconia infiltration, acid conditioning and the use of an MDP primer. The sol-gel method is an efficient and simple method to increase the homogeneity of zirconia. Infiltration also improved bonding to resin cement. The performance of a zirconia infiltrated by silica gel improved in at least two ways: structural homogeneity and bonding to resin cement. The infiltration is simple to perform and can be easily managed in a prosthesis laboratory. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method

    NASA Astrophysics Data System (ADS)

    Mosuro, G. O.; Omosanya, K. O.; Bayewu, O. O.; Oloruntola, M. O.; Laniyan, T. A.; Atobi, O.; Okubena, M.; Popoola, E.; Adekoya, F.

    2017-09-01

    This aim of this work is to assess the degree of leachate infiltration at a dumpsite in Agbara industrial estate, Southwestern Nigeria using electrical resistivity techniques. Around the dumpsite were 45 vertical electrical sounding (VES) stations and 3 electrical resistivity tomography profiles. Current electrode spread varied from 300 to 600 m for the electrical sounding. Electrode configuration includes Schlumberger and Wenner array for sounding and profiling. The state of leachate contamination was tested using parameters such as aquifer vulnerability index, overburden protective capacity and longitudinal unit conductance (S i) derived from the apparent resistivity values. Four principal geoelectric layers inferred from the VES data include the topsoil, sand, clayey sand, and clay/shale. Resistivity values for these layers vary from 3 to 1688, 203 to 3642 123 to 388, and 67 to 2201 Ω m with corresponding thickness of 0.8-2.4, 2.5-140, 3-26 m and infinity, respectively. The leachate plume occurs at a maximum depth of 10 m on the 2-D inverse models of real electrical resistivity with an average depth of infiltration being 6 m in the study area. The correlation between longitudinal conductance and overburden protective capacity show that aquifers around the dumpsite have poor protective capacity and are vulnerable to leachate contamination. Leachate infiltration is favored by the absence of lithological barriers such as clay which in the study area are either mixed with sand or positioned away from the aquifer.

  7. Y-27632, a Rho-associated protein kinase inhibitor, attenuates neuronal cell death after transient retinal ischemia.

    PubMed

    Hirata, Akira; Inatani, Masaru; Inomata, Yasuya; Yonemura, Naoko; Kawaji, Takahiro; Honjo, Megumi; Tanihara, Hidenobu

    2008-01-01

    Transient retinal ischemia induces the death of retinal neuronal cells. Postischemic damage is associated with the infiltration of leukocytes into the neural tissue through vascular endothelia. The current study aimed to investigate whether this damage was attenuated by the inhibition of Rho/ROCK (Rho kinases) signaling, recently shown to play a critical role in the transendothelial migration of leukocytes. Y-27632, a selective inhibitor of ROCK, was injected intravitreally into rat eyes with transient retinal ischemia. Cell loss of the ganglion cell layer (GCL) and thinning of the inner plexiform layer (IPL) with and without the administration of Y-27632 were evaluated by histological analysis, TUNEL assay and retrograde labeling of retinal ganglion cells (RGCs). To examine the attenuation of leukocyte infiltration in postischemic retinas with the administration of Y-27632, silver nitrate staining and immunohistochemistry using an anti-LCA antibody were performed. Cell loss of the GCL and thinning of the IPL were significantly attenuated when 100 nmol Y-27632 was administered within three hours of the induction of ischemia. TUNEL assay and retrograde labeling of RGCs showed a decreased number of apoptotic cells and an increased number of RGCs in Y-27632-injected retinas. Moreover, silver nitrate staining and immunohistochemical analysis using an anti-LCA antibody showed that Y-27632 injection dramatically inhibited leukocyte infiltration and endothelial disarrangement. Our data suggest that inhibition of Rho/ROCK signaling offers neuroprotective therapy against postischemic neural damage, by regulating leukocyte infiltration in the neural tissue.

  8. Combined geophysical methods for mapping infiltration pathways at the Aurora Water Aquifer recharge and recovery site

    NASA Astrophysics Data System (ADS)

    Jasper, Cameron A.

    Although aquifer recharge and recovery systems are a sustainable, decentralized, low cost, and low energy approach for the reclamation, treatment, and storage of post- treatment wastewater, they can suffer from poor infiltration rates and the development of a near-surface clogging layer within infiltration ponds. One such aquifer recharge and recovery system, the Aurora Water site in Colorado, U.S.A, functions at about 25% of its predicted capacity to recharge floodplain deposits by flooding infiltration ponds with post-treatment wastewater extracted from river bank aquifers along the South Platte River. The underwater self-potential method was developed to survey self-potential signals at the ground surface in a flooded infiltration pond for mapping infiltration pathways. A method for using heat as a groundwater tracer within the infiltration pond used an array of in situ high-resolution temperature sensing probes. Both relatively positive and negative underwater self-potential anomalies are consistent with observed recovery well pumping rates and specific discharge estimates from temperature data. Results from electrical resistivity tomography and electromagnetics surveys provide consistent electrical conductivity distributions associated with sediment textures. A lab method was developed for resistivity tests of near-surface sediment samples. Forward numerical modeling synthesizes the geophysical information to best match observed self- potential anomalies and provide permeability distributions, which is important for effective aquifer recharge and recovery system design, and optimization strategy development.

  9. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  10. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  11. Primary Systemic Amyloidosis and High Levels of Angiotensin-Converting Enzyme: Two Case Reports

    PubMed Central

    Praena-Segovia, J.; Sanchez-Gastaldo, A.; Bernabeu-Wittel, M.; Ocete-Pérez, R.; Ávila-Polo, R.; Martino, M. L.

    2013-01-01

    Infiltrative heart diseases are caused by a heterogeneous group of disorders; amyloidosis and sarcoidosis are two frequent causes of myocardial infiltration, which differ in clinical and biological outcome and treatment issues. The presence of high levels of angiotensin-converting enzyme (ACE) in a patient with infiltrative heart disease may increase suspicion of sarcoidosis. Nevertheless, no mention about increased ACE levels in extracerebral primary systemic amyloidosis is available. We present two cases of primary systemic amyloidosis, which are cardiac involvement and elevated ACE levels. PMID:24826302

  12. The Hydrologic Implications Of Unique Urban Soil Horizon Sequencing On The Functions Of Passive Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Shuster, W.; Schifman, L. A.; Herrmann, D.

    2017-12-01

    Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.

  13. A simple hydrologically based model of land surface water and energy fluxes for general circulation models

    NASA Technical Reports Server (NTRS)

    Liang, XU; Lettenmaier, Dennis P.; Wood, Eric F.; Burges, Stephen J.

    1994-01-01

    A generalization of the single soil layer variable infiltration capacity (VIC) land surface hydrological model previously implemented in the Geophysical Fluid Dynamics Laboratory (GFDL) general circulation model (GCM) is described. The new model is comprised of a two-layer characterization of the soil column, and uses an aerodynamic representation of the latent and sensible heat fluxes at the land surface. The infiltration algorithm for the upper layer is essentially the same as for the single layer VIC model, while the lower layer drainage formulation is of the form previously implemented in the Max-Planck-Institut GCM. The model partitions the area of interest (e.g., grid cell) into multiple land surface cover types; for each land cover type the fraction of roots in the upper and lower zone is specified. Evapotranspiration consists of three components: canopy evaporation, evaporation from bare soils, and transpiration, which is represented using a canopy and architectural resistance formulation. Once the latent heat flux has been computed, the surface energy balance is iterated to solve for the land surface temperature at each time step. The model was tested using long-term hydrologic and climatological data for Kings Creek, Kansas to estimate and validate the hydrological parameters, and surface flux data from three First International Satellite Land Surface Climatology Project Field Experiment (FIFE) intensive field campaigns in the summer-fall of 1987 to validate the surface energy fluxes.

  14. A new problem in inflammatory bladder diseases: use of mobile phones!

    PubMed

    Koca, Orhan; Gokce, Ali Murat; Akyuz, Mehmet; Ercan, Feriha; Yurdakul, Necati; Karaman, Muhammet Ihsan

    2014-01-01

    Technological developments provide a lot of conveniences to our lives. This issue is one of the risks that arise along with these conveniences. In our study we tried to understand the impact of electromagnetic waves from mobile phones on bladder tissue. Twenty-one adult male albino rats were divided into three equal groups. Group 1 was exposed to electromagnetic wave for 8 hours per day for 20 days and then their bladders were taken off immediately. Group 2 was firstly exposed to electromagnetic wave for 8 hours per day for 20 days then secondly another for 20 days without exposition to electromagnetic wave and then their bladders were taken off. Group 3 was the control group and they were not exposed to electromagnetic wave. Under microscopic examination of bladder tissue, in the first group severe inflammatory cell infiltration was seen in lamina propria and muscle layer in contrast to intact urothelium. In the second group mild inflammatory cell infiltration was seen in lamina propria and muscle layer. The mean scores for the three groups were 5.5 ± 2.5, 0.8 ± 1.3 and 1.2 ± 1.5 respectively. Mean score of group 1 was statistically higher than others (p = 0.001). Intensive use of mobile phones has negative impact on bladder tissue as well as the other organs. Keeping a minimum level of mobile phone use makes it easy to be kept under control of diseases in which inflammation is an etiologic factor.

  15. 78 FR 37995 - Energy Efficiency Standards for Manufactured Housing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ... address the relationship between potential reductions in levels of natural air infiltration and both... typical baseline levels of air infiltration through recently-built manufactured homes and information on...

  16. Investigation of artificial recharge of aquifers in Nebraska

    USGS Publications Warehouse

    Lichtler, William F.; Stannard, David I.; Kouma, Edwin

    1980-01-01

    Progressive declines of ground-water levels in some areas of Nebraska prompted this investigation into the technical feasibility of recharging aquifers through wells, impoundments, pits, and canals. Information gained from a literature search and from preliminary tests was used to design several artificial-recharge experiments in Nebraska from 1977 to 1979. In well experiments, 0.46 billion gallons of water from an aquifer recharged by the Platte River was transported by pipeline and injected through a well into a sand and gravel aquifer near Aurora. Recharge was at about 730 gallons per minute during tests of 6- and 8-months duration. No evidence of clogging of the aquifer due to chemical reactions, air entrainment, or bacteria was detected in either test. In the 6-month test, evidence of clogging due to fine sediment in the recharge water was detected; however, analysis of this test indicated that recharge could have continued for several years before rehabilitation would have become necessary. Results of the 8-month test confirmed results of the earlier test until casing failure in the supply well and subsequent sediment deposition in the recharge well caused rapid water-level rise in the recharge well. In surface-spreading experiments, maximum infiltration rates from 24-foot-diameter ring infiltrometers near Aurora and Tryon were 0.4 and 11 feet per day, respectively. Results indicate that large-scale surface spreading is feasible only where low-permeability layers are absent in the subsurface. Infiltration rates from reuse pits ranged from 0.01 to 1.6 feet per day, indicating highly variable subsurface permeability. Flow measurements in an irrigation canal near Farwell indicate an infiltration rate of 0.37 feet per day. (USGS)

  17. Graphite fiber/copper composites prepared by spontaneous infiltration

    NASA Astrophysics Data System (ADS)

    Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui

    2018-05-01

    The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.

  18. [Soil infiltration of snowmelt water in the southern Gurbantunggut Desert, Xinjiang, China].

    PubMed

    Hu, Shun-jun; Chen, Yong-bao; Zhu, Hai

    2015-04-01

    Soil infiltration of snow-melt water is an important income item of water balance in arid desert. The soil water content in west slope, east slope and interdune of sand dune in the southern Gurbantunggut Desert was monitored before snowfall and after snow melting during the winters of 2012-2013 and 2013-2014. According to the principle of water balance, soil infiltration of snow-melt in the west slope, east slope, interdune and landscape scale was calculated, and compared with the results measured by cylinder method. The results showed that the soil moisture recharge from unfrozen layer of unsaturated soil to surface frozen soil was negligible because the soil moisture content before snowfall was lower, soil infiltration of snow-melt water was the main source of soil water of shallow soil, phreatic water did not evaporate during freezing period, and did not get recharge after the snow melting. Snowmelt water in the west slope, east slope, interdune and landscape scale were 20-43, 27-43, 32-45, 26-45 mm, respectively.

  19. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China

    PubMed Central

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0–40 cm soil depth. Within JTACS, the speed of the wetting front’s downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world. PMID:25893832

  20. Soil Infiltration Characteristics in Agroforestry Systems and Their Relationships with the Temporal Distribution of Rainfall on the Loess Plateau in China.

    PubMed

    Wang, Lai; Zhong, Chonggao; Gao, Pengxiang; Xi, Weimin; Zhang, Shuoxin

    2015-01-01

    Many previous studies have shown that land use patterns are the main factors influencing soil infiltration. Thus, increasing soil infiltration and reducing runoff are crucial for soil and water conservation, especially in semi-arid environments. To explore the effects of agroforestry systems on soil infiltration and associated properties in a semi-arid area of the Loess Plateau in China, we compared three plant systems: a walnut (Juglans regia) monoculture system (JRMS), a wheat (Triticum aestivum) monoculture system (TAMS), and a walnut-wheat alley cropping system (JTACS) over a period of 11 years. Our results showed that the JTACS facilitated infiltration, and its infiltration rate temporal distribution showed a stronger relationship coupled with the rainfall temporal distribution compared with the two monoculture systems during the growing season. However, the effect of JTACS on the infiltration capacity was only significant in shallow soil layer, i.e., the 0-40 cm soil depth. Within JTACS, the speed of the wetting front's downward movement was significantly faster than that in the two monoculture systems when the amount of rainfall and its intensity were higher. The soil infiltration rate was improved, and the two peaks of soil infiltration rate temporal distribution and the rainfall temporal distribution coupled in rainy season in the alley cropping system, which has an important significance in soil and water conservation. The results of this empirical study provide new insights into the sustainability of agroforestry, which may help farmers select rational planting patterns in this region, as well as other regions with similar climatic and environmental characteristics throughout the world.

  1. Near room-temperature direct encapsulation of organic photovoltaics by plasma-based deposition techniques

    DOE PAGES

    Perrotta, Alberto; Fuentes-Hernandez, Canek; Khan, Talha M.; ...

    2016-12-02

    Plasma-assisted atomic layer deposition (ALD) is used for the deposition of environmental barriers directly onto organic photovoltaic devices (OPVs) at near room temperature (30 °C). To study the effect of the ALD process on the organic materials forming the device, the precursor diffusion and intermixing at the interface during the growth of different plasma- assisted ALD inorganic barriers (i.e. Al2O3 and TiO2) onto the organic photoactive layer (P3HT:ICBA) was investigated. Depth profile x-ray photoelectron spectroscopy was used to analyze the composition of the organic/inorganic interface to investigate the infiltration of the plasma-assisted ALD precursors into the photoactive layer as amore » function of the precursor dimension, the process temperature, and organic layer morphology. The free volume in the photoactive layer accessible to the ALD precursor was characterized by means of ellipsometric porosimetry (EP) and spectroscopic ellipsometry as a function of temperature. The organic layer is shown to exhibit free volume broadening at high temperatures, increasing the infiltration depth of the ALD precursor into the photoactive layer. Furthermore, based on previous investigations, the intrinsic permeation properties of the inorganic layers deposited by plasma-assisted ALD were predicted from the nano-porosity content as measured by EP and found to be in the 10-6 gm-2 d-1 range. Insight from our studies was used to design and fabricate multilayer barriers synthesized at near-room temperature by plasma-assisted ALD in combination with plasma-enhanced CVD onto organic photovoltaic (OPVs) devices. Encapsulated OPVs displayed shelf-lifetimes up to 1400 h at ambient conditions.« less

  2. Effect of carbon nanofibers on the infiltration and thermal conductivity of carbon/carbon composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jinsong, E-mail: lijinsong@buaa.edu.cn; School of Physics and Nuclear Energy Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191; Luo, Ruiying, E-mail: ryluo@buaa.edu.cn

    Highlights: {yields} The CNFs improve the infiltration rate and thermal properties of carbon/carbon composites. {yields} The densification rate increases with the CNF content increasing at the beginning of infiltration. {yields} The values of the thermal conductivity of the composite obtain their maximum values at 5 wt.%. -- Abstract: Preforms containing 0, 5, 10, 15 and 20 wt.% carbon nanofibers (CNFs) were fabricated by spreading layers of carbon cloth, and infiltrated using the electrified preform heating chemical vapor infiltration method (ECVI) under atmospheric pressure. Initial thermal gradients were determined. Resistivity and density evolutions with infiltration time have been recorded. Scanning electronmore » microscopy, polarized light micrograph and X-ray diffraction technique were used to analyze the experiment results. The results showed that the infiltration rate increased with the rising of CNF content, and after 120 h of infiltration, the density was the highest when the CNF content was 5 wt.%, but the composite could not be densified efficiently as the CNF content ranged from 10 wt.% to 20 wt.%. CNF-reinforced C/C composites have enhanced thermal conductivity, the values at 5 wt.% were increased by nearly 5.5-24.1% in the X-Y direction and 153.8-251.3% in the Z direction compared to those with no CNFs. When the additive content was increased to 20 wt.%, due to the holes and cavities in the CNF web and between carbon cloth and matrix, the thermal conductivities in the X-Y and Z directions decreased from their maximum values at 5 wt.%.« less

  3. Photochemical bonding of epithelial cell-seeded collagen lattice to rat muscle layer for esophageal tissue engineering: a pilot study

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.; Sato, M.; Vacanti, Joseph P.; Kochevar, Irene E.; Redmond, Robert W.

    2005-04-01

    Bilayered tube structures consist of epithelial cell-seeded collagen lattice and muscle layer have been fabricated for esophageal tissue engineering. Good adhesion between layers in order to facilitate cell infiltration and neovascularization in the collagen lattice is required. Previous efforts include using other bioglues such as fibrin glue and silicone tube as the physical support. However, the former is subjected to chances of transmitting blood-born infectious disease and is time consuming while the latter requires a second surgical procedure. The current project aimed to bond the cell-seeded collagen lattice to muscle layer using photochemical bonding, which has previously been demonstrated a rapid and non-thermal procedure in bonding collagenous tissues. Rat esophageal epithelial cells were seeded on collagen lattice and together with the latissimus dorsi muscle layer, were exposed to a photosensitizer rose Bengal at the bonding surface. An argon laser was used to irradiate the approximated layers. Bonding strength was measured during the peeling test of the collagen layer from the muscle layer. Post-bonding cell viability was assessed using a modified NADH-diaphorase microassay. A pilot in vivo study was conducted by directly bonding the cell-seeded collagen layer onto the muscle flap in rats and the structures were characterized histologically. Photochemical bonding was found to significantly increase the adherence at the bonding interface without compromising the cell viability. This indicates the feasibility of using the technique to fabricate multi-layered structures in the presence of living cells. The pilot animal study demonstrated integration of the collagen lattice with the muscle layer at the bonding interface although the subsequent surgical manipulation disturbed the integration at some region. This means that an additional procedure removing the tube could be avoided if the approximation and thus the bonding are optimized. Cell infiltration and neovascularization were also evident demonstrating that direct bonding of engineered tissue structures in particular those with low processability such as collagen lattice to the host tissue is feasible.

  4. Structure of gels layers with cells

    NASA Astrophysics Data System (ADS)

    Pokusaev, B. G.; Karlov, S. P.; Vyazmin, A. V.; Nekrasov, D. A.; Zakharov, N. S.; Khramtsov, D. P.; Skladnev, D. A.; Tyupa, D. V.

    2017-11-01

    The structure of two-layer agarose gels containing yeast cells is investigated experimentally by spectrometry, to shed a light on the theoretical foundations for the development of bioreactors by the method of 3D bioprinting. Due to division, cells overcome the layer of the dispersion phase separating successively applied layers of the agarose gel. However a gel layer of 100 μm thick with a high concentration of silver nanoparticles completely excludes the infiltration of yeast cells through it. A special sort of agarose is suggested where the concentration of silver nanoparticles formed by cells from salt of silver can serve as an indicator of the state of the yeast cells in the volume of the gel.

  5. Microstructures of BN/SiC coatings on nicalon fibers

    NASA Technical Reports Server (NTRS)

    Dickerson, R. M.; Singh, M.

    1995-01-01

    The microstructures of Nicalon silicon carbide (SiC) fibers and layered coatings of boron nitride (BN) followed by chemical vapor infiltrated silicon carbide (CVI-SiC) were characterized using optical and electron microscopy. Two different precursors and reactions were used to produce the BN layers while the deposition of CVI silicon carbide was nearly identical. Coated tows were examined in cross-section to characterize the chemistry and structures of the constituents and the interfaces. One BN precursor yielded three sublayers while the other gave a relatively homogeneous nanocrystalline layer.

  6. Transient Infiltration Analysis for Infinite Slopes using the Modified Function of Unsaturated Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Oh, Seboong; Achmad Zaky, Fauzi; Mog Park, Young

    2016-04-01

    The hydraulic behaviors in the soil layer are crucial to the transient infiltration analysis into natural slopes, in which unsaturated hydraulic conductivity (HC) can be evaluated theoretically from soil water retention curves (SWRC) by Mualem's equation. In the nonlinear infiltration analysis, the solution by some of smooth SWRCs is not converge for heavy rainfall condition, since the gradient of HCs is extremely steep near saturation. The van Genuchten's SWRC model has been modified near saturation and subsequently an analytical HC function was proposed to improve the van Genuchten-Mualem HC. Using the examples on 1-D infiltration analysis by the modified HC model, it is validated that any solutions can be converged for various rainfall conditions to keep numerical stability. Stability analysis based on unsaturated effective stress could simulate the infinite slope failure by the proposed HC model. The pore water pressure and the ratio of saturation increased from the surface to shallow depth (˜1m) and the factor of safety decreased gradually due to infiltration. Acknowledgements This research is supported by grants from Korean NRF (2012M3A2A1050974 and 2015R1A2A2A01), which are greatly appreciated.

  7. Simulating Heterogeneous Infiltration and Contaminant leaching Processes at Chalk River, Ontario

    NASA Astrophysics Data System (ADS)

    Ali, M. A.; Ireson, A. M.; Keim, D.

    2015-12-01

    A study is conducted at a waste management area in Chalk River, Ontario to characterize flow and contaminant transport with the aim of contributing to improved hydrogeological risk assessment in the context of waste management. Field monitoring has been performed to gain insights into the unsaturated zone characteristics, moisture dynamics, and contaminant transport rates. The objective is to provide quantitative estimates of surface fluxes (quantification of infiltration and evaporation) and investigations of unsaturated zone processes controlling water infiltration and spatial variability in head distributions and flow rates. One particular issue is to examine the effectiveness of the clayey soil cap installed to prevent infiltration of water into the waste repository and the top sand soil cover above the clayey layer to divert the infiltrated water laterally. The spatial variability in the unsaturated zone properties and associated effects on water flow and contaminant transport observed at the site, have led to a concerted effort to develop improved model of flow and transport based on stochastic concepts. Results obtained through the unsaturated zone model investigations are combined with the hydrogeological and geochemical components and develop predictive tools to assess the long term fate of the contaminants at the waste management site.

  8. Estimating the timing and location of shallow rainfall-induced landslides using a model for transient, unsaturated infiltration

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; Savage, William Z.

    2010-01-01

    Shallow rainfall-induced landslides commonly occur under conditions of transient infiltration into initially unsaturated soils. In an effort to predict the timing and location of such landslides, we developed a model of the infiltration process using a two-layer system that consists of an unsaturated zone above a saturated zone and implemented this model in a geographic information system (GIS) framework. The model links analytical solutions for transient, unsaturated, vertical infiltration above the water table to pressure-diffusion solutions for pressure changes below the water table. The solutions are coupled through a transient water table that rises as water accumulates at the base of the unsaturated zone. This scheme, though limited to simplified soil-water characteristics and moist initial conditions, greatly improves computational efficiency over numerical models in spatially distributed modeling applications. Pore pressures computed by these coupled models are subsequently used in one-dimensional slope-stability computations to estimate the timing and locations of slope failures. Applied over a digital landscape near Seattle, Washington, for an hourly rainfall history known to trigger shallow landslides, the model computes a factor of safety for each grid cell at any time during a rainstorm. The unsaturated layer attenuates and delays the rainfall-induced pore-pressure response of the model at depth, consistent with observations at an instrumented hillside near Edmonds, Washington. This attenuation results in realistic estimates of timing for the onset of slope instability (7 h earlier than observed landslides, on average). By considering the spatial distribution of physical properties, the model predicts the primary source areas of landslides.

  9. Implications of infiltrating immune cells within bone marrow of patients with diffuse large B-cell lymphoma.

    PubMed

    Jeong, Juhyeon; Oh, Eun Ji; Yang, Woo Ick; Kim, Soo Jeong; Yoon, Sun Och

    2017-06-01

    The implications of infiltrating immune cells, especially T cells and macrophages, in the bone marrow (BM) microenvironment of patients with diffuse large B-cell lymphoma (DLBCL) have rarely been studied. We aimed to investigate the significance of infiltrating immune cells in the BM microenvironment as a prognostic factor for DLBCL patients. Using the initial pretreatment BM biopsy obtained from 198 DLBCL patients, we semiquantitatively evaluated CD3+ T cells, CD8+ T cells, and CD163+ macrophages that infiltrate into the paratrabecular and interstitial areas of BM by immunohistochemistry and analyzed their clinicopathological and prognostic implications. Levels of infiltrating CD3+ T cells, CD8+ T cells, and CD163+ macrophages were significantly higher in BM with DLBCL involvement (BMI-positive group) than in that without DLBCL involvement (BMI-negative group). Infiltration of CD8+ T cells significantly increased in cases with advanced Ann Arbor stage, elevated lactate dehydrogenase level, extranodal site involvement ≥2 sites, higher Eastern Cooperative Oncology Group performance status, and higher International Prognostic Index (IPI) risk. High levels of CD3+ T cells were significantly associated with age ≤60, and high levels of CD163+ macrophages were associated with advanced Ann Arbor stage and higher IPI risk. High infiltration of CD8+ T cells was significantly related to inferior overall and recurrence-free survival rate, even in the BMI-negative group. High infiltration of CD8+ T cells within the pretreatment BM was related to poor prognosis, and might be a useful prognostic factor of DLBCL patients. Therefore, evaluation of CD8+ T cells is helpful for predicting prognosis in initial pretreatment BM biopsy of DLBCL patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A study of Ground Source Heat Pump based on a heat infiltrates coupling model established with FEFLOW

    NASA Astrophysics Data System (ADS)

    Chen, H.; Hu, C.; Chen, G.; Zhang, Q.

    2017-12-01

    Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. it is vital that engineers acquire a proper understanding about the Ground Source Heat Pump (GSHP). In this study, the model of the borehole exchanger under conduction manners and heat infiltrates coupling manners was established with FEFLOW. The energy efficiency, heat transfer endurance and heat transfer in the unit depth were introduced to quantify the energy efficient and the endurance period. The performance of a the Borehole Exchanger (BHE) in soil with and without groundwater seepage was analyzed of heat transfer process between the soil and the working fluid. Basing on the model, the varied regularity of energy efficiency performance an heat transfer endurance with the conditions including the different configuration of the BHE, the soil properties, thermal load characteristic were discussed. Focus on the heat transfer process in multi-layer soil which one layer exist groundwater flow. And an investigation about thermal dispersivity was also analyzed its influence on heat transfer performance. The final result proves that the model of heat infiltrates coupling model established in this context is reasonable, which can be applied to engineering design.

  11. Low Impact Development in Army Construction

    DTIC Science & Technology

    2012-05-01

    recycling , to reduce outdoor potable water consumption by a minimum of 50 percent over that consumed by conventional means (plant species and plant...Infiltration trenches • Subsurface infiltration beds • Bioretention • Level spreaders • Native revegetation • Pervious pavement with infiltration

  12. Hydraulic, water-quality, and temperature performance of three types of permeable pavement under high sediment loading conditions

    USGS Publications Warehouse

    Selbig, William R.; Buer, Nicolas

    2018-05-11

    Three permeable pavement surfaces - asphalt (PA), concrete (PC), and interlocking pavers (PIP) - were evaluated side-by-side to measure changes to the infiltrative capacity and water quality of stormwater runoff originating from a conventional asphalt parking lot in Madison, Wisconsin. During the 24-month monitoring period (2014-16), all three permeable pavements resulted in statistically significant reductions in the cumulative load of solids (total suspended solids and suspended sediment), total phosphorus, Escherichia coli (E. coli), and Enterococci. Most of the removal occurred through capture and retention in the void spaces of each permeable surface and aggregate base. The largest reduction in total suspended solids was for PC at 80 percent, followed by PIP and PA at 69 and 65 percent, respectively. Reductions (generally less than 50 percent) in total phosphorus also were observed, which might have been tempered by increases in the dissolved fraction observed in PIP and PA. Conversely, PC results indicated a slight reduction in dissolved phosphorus but failed to meet statistical significance. E. coli and Enterococci were reduced by about 80 percent for PC, almost twice the amount observed for PIP and PA.Results for the PIP and PC surfaces initially indicated higher pollutant load reduction than results for the PA surface. The efficiency of PIP and PC surfaces capturing sediment, however, led to a decline in infiltration rates that resulted in more runoff flowing over, not through, the permeable surface. This result led to a decline in treatment until the permeable surface was partially restored through maintenance practices, to which PIP responded more dramatically than PC or PA. Conversely, the PA surface was capable of infiltrating most of the influent runoff volume during the monitoring period and, thus, continued to provide some level of treatment. The combined effect of underdrain and overflow drainage resulted in similar pollutant treatment for all three permeable surfaces.Temperatures below each permeable surface generally followed changes in air temperature with a more gradual response observed in deeper layers. Therefore, permeable pavement may do little to mitigate heated runoff during summer. During winter, deeper layers remained above freezing even when air temperature was below freezing. Although temperatures were not high enough to melt snow or ice accumulated on the surface, temperatures below each permeable pavement did allow void spaces to remain open, which promoted infiltration of melted ice and snow as air temperatures rose above freezing. These open void spaces could potentially reduce the need for application of deicing agents in winter because melted snow and ice would infiltrate, thereby preventing refreezing of pooled water in what is known as the “black ice” effect.

  13. Trench infiltration for managed aquifer recharge to permeable bedrock

    USGS Publications Warehouse

    Heilweil, V.M.; Watt, D.E.

    2011-01-01

    Managed aquifer recharge to permeable bedrock is increasingly being utilized to enhance resources and maintain sustainable groundwater development practices. One such target is the Navajo Sandstone, an extensive regional aquifer located throughout the Colorado Plateau of the western United States. Spreading-basin and bank-filtration projects along the sandstone outcrop's western edge in southwestern Utah have recently been implemented to meet growth-related water demands. This paper reports on a new cost-effective surface-infiltration technique utilizing trenches for enhancing managed aquifer recharge to permeable bedrock. A 48-day infiltration trench experiment on outcropping Navajo Sandstone was conducted to evaluate this alternative surface-spreading artificial recharge method. Final infiltration rates through the bottom of the trench were about 0.5 m/day. These infiltration rates were an order of magnitude higher than rates from a previous surface-spreading experiment at the same site. The higher rates were likely caused by a combination of factors including the removal of lower permeability soil and surficial caliche deposits, access to open vertical sandstone fractures, a reduction in physical clogging associated with silt and biofilm layers, minimizing viscosity effects by maintaining isothermal conditions, minimizing chemical clogging caused by carbonate mineral precipitation associated with algal photosynthesis, and diminished gas clogging associated with trapped air and biogenic gases. This pilot study illustrates the viability of trench infiltration for enhancing surface spreading of managed aquifer recharge to permeable bedrock. ?? 2010.

  14. Infiltration modeling guidelines for commercial building energy analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gowri, Krishnan; Winiarski, David W.; Jarnagin, Ronald E.

    This report presents a methodology for modeling air infiltration in EnergyPlus to account for envelope air barrier characteristics. Based on a review of various infiltration modeling options available in EnergyPlus and sensitivity analysis, the linear wind velocity coefficient based on DOE-2 infiltration model is recommended. The methodology described in this report can be used to calculate the EnergyPlus infiltration input for any given building level infiltration rate specified at known pressure difference. The sensitivity analysis shows that EnergyPlus calculates the wind speed based on zone altitude, and the linear wind velocity coefficient represents the variation in infiltration heat loss consistentmore » with building location and weather data.« less

  15. An Investigation of Fat Infiltration of the Multifidus Muscle in Patients With Severe Neck Symptoms Associated With Chronic Whiplash-Associated Disorder.

    PubMed

    Karlsson, Anette; Leinhard, Olof Dahlqvist; Åslund, Ulrika; West, Janne; Romu, Thobias; Smedby, Örjan; Zsigmond, Peter; Peolsson, Anneli

    2016-10-01

    Study Design Cross-sectional study. Background Findings of fat infiltration in cervical spine multifidus, as a sign of degenerative morphometric changes due to whiplash injury, need to be verified. Objectives To develop a method using water/fat magnetic resonance imaging (MRI) to investigate fat infiltration and cross-sectional area of multifidus muscle in individuals with whiplash-associated disorders (WADs) compared to healthy controls. Methods Fat infiltration and cross-sectional area in the multifidus muscles spanning the C4 to C7 segmental levels were investigated by manual segmentation using water/fat-separated MRI in 31 participants with WAD and 31 controls, matched for age and sex. Results Based on average values for data spanning C4 to C7, participants with severe disability related to WAD had 38% greater muscular fat infiltration compared to healthy controls (P = .03) and 45% greater fat infiltration compared to those with mild to moderate disability related to WAD (P = .02). There were no significant differences between those with mild to moderate disability and healthy controls. No significant differences between groups were found for multifidus cross-sectional area. Significant differences were observed for both cross-sectional area and fat infiltration between segmental levels. Conclusion Participants with severe disability after a whiplash injury had higher fat infiltration in the multifidus compared to controls and to those with mild/moderate disability secondary to WAD. Earlier reported findings using T1-weighted MRI were reproduced using refined imaging technology. The results of the study also indicate a risk when segmenting single cross-sectional slices, as both cross-sectional area and fat infiltration differ between cervical levels. J Orthop Sports Phys Ther 2016;46(10):886-893. Epub 2 Sep 2016. doi:10.2519/jospt.2016.6553.

  16. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan

    2015-04-01

    Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. It is undergoing degradation under the background of global climate change, human activities and overgrazing. Soil moisture is important to alpine meadow ecology for its water and energy transfer processes, therefore soil hydraulic properties become key parameters for local eco-hydrological processes studies. However, little research focus on the changes and it's mechanisms of soil hydraulic properties during the degradation processes. In this study, soil basic and hydraulic properties at 0-10 cm and 40-50 cm soil layer depths under different degraded alpine meadow were analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil saturated hydraulic conductivity (Ks) as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. For soil unsaturated hydraulic conductivity, it reduced more slowly with decreasing pressure head under degraded conditions than non-degraded conditions. However, soil moisture showed no significant changes with increasing degradation. Soil Ks was significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most substantial decrease observed for the macropores in the 0-10 cm soil layer. The substantial decrease of macropores caused a cut in soil moisture and hydraulic conductivity.

  17. In vivo laser confocal microscopy findings of radial keratoneuritis in patients with early stage Acanthamoeba keratitis.

    PubMed

    Kobayashi, Akira; Yokogawa, Hideaki; Yamazaki, Natsuko; Ishibashi, Yasuhisa; Oikawa, Yosaburo; Tokoro, Masaharu; Sugiyama, Kazuhisa

    2013-07-01

    To investigate in vivo corneal changes of keratoneuritis in early stage Acanthamoeba keratitis (AK) using in vivo laser confocal microscopy. Single-center, prospective, clinical study. Thirteen eyes (12 patients; 5 men and 7 women; mean age ± standard deviation, 22.3 ± 4.2 years) with keratoneuritis resulting from early stage AK were included in this study. In vivo laser confocal microscopy was performed, paying special attention to keratoneuritis. Selected confocal images of corneal layers were evaluated qualitatively for shape and degree of light reflection of abnormal cells and deposits. In all patients, Acanthamoeba cysts were observed clearly in the basal epithelial cell layer as highly reflective round particles with a diameter of 10 to 20 μm. Bowman's layer infiltration of Acanthamoeba cysts was observed in only 1 case, and no cases showed stromal or nerve infiltration of Acanthamoeba cysts. In the stroma, all cases showed highly reflective activated keratocytes forming a honeycomb pattern; these changes were significant around the keratoneuritis. Infiltration of inflammatory cells, possibly polymorphonuclear cells, was observed along with keratocyte bodies in all cases. Numerous highly reflective spindle-shaped materials were observed around the keratoneuritis. Most notably, highly reflective patchy lesions were observed around the keratoneuritis in 11 cases (84.6%). Inflammatory cells also were observed in the endothelial cell layer in 4 cases (30.8%). In vivo laser confocal microscopy identified consistent corneal abnormalities around keratoneuritis in early stage AK patients, of which highly reflective patchy lesions may be characteristic of keratoneuritis. Further morphologic studies of corneas with early stage AK in a larger number of patients may elucidate the clinical significance of radial keratoneuritis and may help us to understand the interaction between Acanthamoeba organisms and host corneal cells or nerves. Copyright © 2013 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  18. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutherland, Kevin Jerome

    Over the last ten years, photonic band gap (PBG) theory and technology have become an important area of research because of the numerous possible applications ranging from high-efficiency laser diodes to optical circuitry. This research concentrates on reducing the length scale in the fabrication of layered photonic band gap structures and developing procedures to improve processing consistency. Various procedures and materials have been used in the fabrication of layered PBG structures. This research focused on an economical micro transfer molding approach to create the final PBG structure. A poly dimethylsiloxane (PDMS) rubber mold was created from a silicon substrate. Itmore » was filled with epoxy and built layer-by-layer to create a 3-D epoxy structure. This structure was infiltrated with nanoparticle titania or a titania sol-gel, then fired to remove the polymer mold, leaving a monolithic ceramic inverse of the epoxy structure. The final result was a lattice of titania rolds that resembles a face-centered tetragonal structure. The original intent of this research was to miniaturize this process to a bar size small enough to create a photonic band gap for wavelengths of visible electro-magnetic radiation. The factor limiting progress was the absence of a silicon master mold of small enough dimensions. The Iowa State Microelectronics Research Center fabricated samples with periodicities of 2.5 and 1.0 microns with the existing technology, but a sample was needed on the order of 0.3 microns or less. A 0.4 micron sample was received from Sandia National Laboratory, which was made through an electron beam lithography process, but it contained several defects. The results of the work are primarily from the 2.5 and 1.0 micron samples. Most of the work focused on changing processing variables in order to optimize the infiltration procedure for the best results. Several critical parameters were identified, ranging from the ambient conditions to the specifics of the procedure. It is believed that most critical for fabrication of high quality samples is control of the temperature of the sample during and after infiltration, and the rate and amount of time spent applying epoxy to the PDMS.« less

  19. Stable, Microfabricated Thin Layer Chromatography Plates without Volume Distortion on Patterned, Carbon and Al2O3-Primed Carbon Nanotube Forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, David S.; Kanyal, Supriya S.; Gupta, Vipul

    2012-09-28

    In a recent report (Song, J.; et al., Advanced Functional Materials 2011, 21, 1132-1139) some of us described the fabrication of thin layer chromatography (TLC) plates from patterned carbon nanotube (CNT) forests, which were directly infiltrated/coated with silicon by low pressure chemical vapor deposition (LPCVD) of silicon using SiH4. Following infiltration, the nanotubes were removed from the assemblies and the silicon simultaneously converted to SiO2 in a high temperature oxidation step. However, while straightforward, this process had some shortcomings, not the least of which was some distortion of the lithographically patterned features during the volume expansion that accompanied oxidation. Hereinmore » we overcome theis issue and also take substantial steps forward in the microfabrication of TLC plates by showing: (i) A new method for creating an adhesion promotion layer on CNT forests by depositing a few nanometers of carbon followed by atomic layer deposition (ALD) of Al2O3. This method for appears to be new, and X-ray photoelectron spectroscopy confirms the expected presence of oxygen after carbon deposition. ALD of Al2O3 alone and in combination with the carbon on patterned CNT forests was also explored as an adhesion promotion layer for CNT forest infiltration. (ii) Rapid, conformal deposition of an inorganic material that does not require subsequent oxidation: fast pseudo-ALD growth of SiO2 via alumina catalyzed deposition of tris(tert-butoxy)silanol onto the carbon/Al2O3-primed CNT forests. (iii) Faithful reproduction of the features in the masks used to microfabricate the TLC plates (M-TLC) this advance springs from the previous two points. (iv) A bonded (amino) phase on a CNT-templated microfabricated TLC plate. (v) Fast, highly efficient (125,000 - 225,000 N/m) separations of fluorescent dyes on M-TLC plates. (vi) Extensive characterization of our new materials by TEM, SEM, EDAX, DRIFT, and XPS. (vii) A substantially lower process temperature for the removal of the CNT scaffold as a result of the (already oxidized) materials used in this study.« less

  20. Oral eosinophilic or traumatic ulcer: A case report and brief review.

    PubMed

    Dhanrajani, Parmanand; Cropley, Peter W

    2015-01-01

    Eosinophilic ulcer of the oral mucosa is considered to be a benign, reactive, and self-limiting lesion, with unclear pathogenesis, manifesting as a rapidly developing solitary ulcer. We report a case of a 42-year-old man who presented with a chronic indurated ulcer of buccal mucosa adjacent to the right upper wisdom tooth. Histopathological examination showed polymorphic inflammatory infiltrate, rich in eosinophilis, involving the superficial mucosa, and the deeper muscle layer. Immunohistochemical analysis revealed single CD30+ cells scattered within an inflammatory infiltrate. The lesion was excised, and healing was uneventful with no recurrence in more than a year.

  1. Vadose zone controls on damping of climate-induced transient recharge fluxes in U.S. agroecosystems

    NASA Astrophysics Data System (ADS)

    Gurdak, Jason

    2017-04-01

    Understanding the physical processes in the vadose zone that link climate variability with transient recharge fluxes has particular relevance for the sustainability of groundwater-supported irrigated agriculture and other groundwater-dependent ecosystems. Natural climate variability on interannual to multidecadal timescales has well-documented influence on precipitation, evapotranspiration, soil moisture, infiltration flux, and can augment or diminish human stresses on water resources. Here the behavior and damping depth of climate-induced transient water flux in the vadose zone is explored. The damping depth is the depth in the vadose zone that the flux variation damps to 5% of the land surface variation. Steady-state recharge occurs when the damping depth is above the water table, and transient recharge occurs when the damping depth is below the water table. Findings are presented from major agroecosystems of the United States (U.S.), including the High Plains, Central Valley, California Coastal Basin, and Mississippi Embayment aquifer systems. Singular spectrum analysis (SSA) is used to identify quasi-periodic signals in precipitation and groundwater time series that are coincident with the Arctic Oscillation (AO) (6-12 mo cycle), Pacific/North American oscillation (PNA) (<1-4 yr cycle), El Niño/Southern Oscillation (ENSO) (2-7 yr cycle), North Atlantic Oscillation (NAO) (3-6 yr cycle), Pacific Decadal Oscillation (PDO) (15-30 yr cycle), and Atlantic Multidecadal Oscillation (AMO) (50-70 yr cycle). SSA results indicate that nearly all of the quasi-periodic signals in the precipitation and groundwater levels have a statistically significant lag correlation (95% confidence interval) with the AO, PNA, ENSO, NAO, PDO, and AMO indices. Results from HYDRUS-1D simulations indicate that transient water flux through the vadose zone are controlled by highly nonlinear interactions between mean infiltration flux and infiltration period related to the modes of climate variability and the local soil textures, layering, and depth to the water table. Simulation results for homogeneous profiles generally show that shorter-period climate oscillations, smaller mean fluxes, and finer-grained soil textures generally produce damping depths closer to land surface. Simulation results for layered soil textures indicate more complex responses in the damping depth, including the finding that finer-textured layers in a coarser soil profile generally result in damping depths closer to land surface, while coarser-textured layers in coarser soil profile result in damping depths deeper in the vadose zone. Findings from this study improve understanding of how vadose zone properties influences transient recharge flux and damp climate variability signals in groundwater systems, and have important implications for sustainable management of groundwater resources and coupled agroecosystems under future climate variability and change.

  2. Surgical Site Infiltration for Abdominal Surgery: A Novel Neuroanatomical-based Approach

    PubMed Central

    Janis, Jeffrey E.; Haas, Eric M.; Ramshaw, Bruce J.; Nihira, Mikio A.; Dunkin, Brian J.

    2016-01-01

    Background: Provision of optimal postoperative analgesia should facilitate postoperative ambulation and rehabilitation. An optimal multimodal analgesia technique would include the use of nonopioid analgesics, including local/regional analgesic techniques such as surgical site local anesthetic infiltration. This article presents a novel approach to surgical site infiltration techniques for abdominal surgery based upon neuroanatomy. Methods: Literature searches were conducted for studies reporting the neuroanatomical sources of pain after abdominal surgery. Also, studies identified by preceding search were reviewed for relevant publications and manually retrieved. Results: Based on neuroanatomy, an optimal surgical site infiltration technique would consist of systematic, extensive, meticulous administration of local anesthetic into the peritoneum (or preperitoneum), subfascial, and subdermal tissue planes. The volume of local anesthetic would depend on the size of the incision such that 1 to 1.5 mL is injected every 1 to 2 cm of surgical incision per layer. It is best to infiltrate with a 22-gauge, 1.5-inch needle. The needle is inserted approximately 0.5 to 1 cm into the tissue plane, and local anesthetic solution is injected while slowly withdrawing the needle, which should reduce the risk of intravascular injection. Conclusions: Meticulous, systematic, and extensive surgical site local anesthetic infiltration in the various tissue planes including the peritoneal, musculofascial, and subdermal tissues, where pain foci originate, provides excellent postoperative pain relief. This approach should be combined with use of other nonopioid analgesics with opioids reserved for rescue. Further well-designed studies are necessary to assess the analgesic efficacy of the proposed infiltration technique. PMID:28293525

  3. Quantifying Evaporation in a Permeable Pavement System ...

    EPA Pesticide Factsheets

    Studies quantifying evaporation from permeable pavement systems are limited to a few laboratory studies and one field application. This research quantifies evaporation for a larger-scale field application by measuring the water balance from lined permeable pavement sections. The U.S. Environmental Protection Agency (USEPA) constructed a 0.4-ha parking lot in Edison, NJ, that incorporated three different permeable pavement types in the parking lanes – permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). An impermeable liner installed 0.4 m below the driving surface in four 11.6-m by 4.74-m sections per each pavement type captures all infiltrating water and routes it to collection tanks that can contain events up to 38 mm. Each section has a design impervious area to permeable pavement area ratio of 0.66:1. Pressure transducers installed in the underdrain collection tanks measured water level for 24 months. Level was converted to volume using depth-to-volume ratios for individual collection tanks. Using a water balance approach, the measured infiltrate volume was compared to rainfall volume on an event-basis to determine the rainfall retained in the pavement strata and underlying aggregate. Evaporation since the previous event created additional storage in the pavement and aggregate layers. Events were divided into three groups based on antecedent dry period (ADP) and three, four-month categories of potential e

  4. Infection of lymphoid tissues in the macaque upper respiratory tract contributes to the emergence of transmissible measles virus.

    PubMed

    Ludlow, Martin; de Vries, Rory D; Lemon, Ken; McQuaid, Stephen; Millar, Emma; van Amerongen, Geert; Yüksel, Selma; Verburgh, R Joyce; Osterhaus, Albert D M E; de Swart, Rik L; Duprex, W Paul

    2013-09-01

    Measles virus (MV), a member of the family Paramyxoviridae, remains a major cause of morbidity and mortality in the developing world. MV is spread by aerosols but the mechanism(s) responsible for the high transmissibility of MV are largely unknown. We previously infected macaques with enhanced green fluorescent protein-expressing recombinant MV and euthanized them at a range of time points. In this study a comprehensive pathological analysis has been performed of tissues from the respiratory tract around the peak of virus replication. Isolation of virus from nose and throat swab samples showed that high levels of both cell-associated and cell-free virus were present in the upper respiratory tract. Analysis of tissue sections from lung and primary bronchus revealed localized infection of epithelial cells, concomitant infiltration of MV-infected immune cells into the epithelium and localized shedding of cells or cell debris into the lumen. While high numbers of MV-infected cells were present in the tongue, these were largely encapsulated by intact keratinocyte cell layers that likely limit virus transmission. In contrast, the integrity of tonsillar and adenoidal epithelia was disrupted with high numbers of MV-infected epithelial cells and infiltrating immune cells present throughout epithelial cell layers. Disruption was associated with large numbers of MV-infected cells or cell debris 'spilling' from epithelia into the respiratory tract. The coughing and sneezing response induced by disruption of the ciliated epithelium, leading to the expulsion of MV-infected cells, cell debris and cell-free virus, contributes to the highly infectious nature of MV.

  5. The influence of wetting dynamics on the residual air distribution

    NASA Astrophysics Data System (ADS)

    Sacha, J.; Snehota, M.; Trtik, P.; Vontobel, P.

    2016-12-01

    The amount and distribution of the residual air during the infiltration into a porous soil system has a strong influence on the infiltration rate. Concurrently, the amount of residual air is dependent on the wetting dynamics. In the presented study, two experiments were conducted on the same sample. The first experiment was performed under the constant water level condition (CWL) and the second under the constant water flux condition (CWF) at the top of the sample. The sample that composed of coarse and medium coarse fractions of sand and fine porous ceramics was packed into the quartz glass columns of the inner diameter of 29 mm. The coarse sand represented a highly conductive region connected from the top to the bottom of the sample with the exception of three low (2-3 mm) separation layers made up of the medium coarse sand. Three discs of fine ceramic formed slow flow regions. Infiltration experiments were monitored by neutron radiography on two different beamlines to produce two-dimensional (2D) projections. The CWL experiment was monitored by NEUTRA station with an acquisition time of 16 seconds per projection and the CWF experiment was visualized at BOA station with an acquisition time of 0.25 seconds per projection. Both stations are located at the Paul Scherrer Institut, Switzerland. The acquired radiograms of the dry sample were subtracted from all subsequent radiograms to determine the water thickness in projections. From series of corrected radiograms taken at the different angles three-dimensional (3D) image was reconstructed for steady state part of the experiment CWL and for entire experiment CWF. Then the series of 3D images mapped the wetting of the porous system over the corresponding phase of infiltration process. The results showed a faster steady state infiltration rate during the CWL. In this case, the air was mostly pushed out from the sample by moving wetting front. On the contrary, during the CWF the water infiltrated into the fine ceramics first and then into the medium coarse sand attracted by stronger capillary forces in comparison to the coarse sand. Due to this effect a significant amount of air was trapped in preferential pathways, and consequently blocking the water flow. The presence of medium coarse sand regions had a crucial impact on the water flow and amount of air trapping.

  6. Preparation of titanium dioxide films on etched aluminum foil by vacuum infiltration and anodizing

    NASA Astrophysics Data System (ADS)

    Xiang, Lian; Park, Sang-Shik

    2016-12-01

    Al2O3-TiO2 (Al-Ti) composite oxide films are a promising dielectric material for future use in capacitors. In this study, TiO2 films were prepared on etched Al foils by vacuum infiltration. TiO2 films prepared using a sol-gel process were annealed at various temperatures (450, 500, and 550 °C) for different time durations (10, 30, and 60 min) for 4 cycles, and then anodized at 100 V. The specimens were characterized using X-ray diffraction, field emission scanning electron microscopy, and field emission transmission electron microscopy. The results show that the tunnels of the specimens feature a multi-layer structure consisting of an Al2O3 outer layer, an Al-Ti composite oxide middle layer, and an aluminum hydrate inner layer. The electrical properties of the specimens, such as the withstanding voltage and specific capacitance, were also measured. Compared to specimens without TiO2 coating, the specific capacitances of the TiO2-coated specimens are increased. The specific capacitance of the anode Al foil with TiO2 coating increased by 42% compared to that of a specimen without TiO2 coating when annealed at 550 °C for 10 min. These composite oxide films could enhance the specific capacitance of anode Al foils used in dielectric materials.

  7. Multifunctional layered magnetic composites

    PubMed Central

    Siglreitmeier, Maria; Wu, Baohu; Kollmann, Tina; Neubauer, Martin; Nagy, Gergely; Schwahn, Dietmar; Pipich, Vitaliy; Faivre, Damien; Zahn, Dirk; Fery, Andreas

    2015-01-01

    Summary A fabrication method of a multifunctional hybrid material is achieved by using the insoluble organic nacre matrix of the Haliotis laevigata shell infiltrated with gelatin as a confined reaction environment. Inside this organic scaffold magnetite nanoparticles (MNPs) are synthesized. The amount of MNPs can be controlled through the synthesis protocol therefore mineral loadings starting from 15 wt % up to 65 wt % can be realized. The demineralized organic nacre matrix is characterized by small-angle and very-small-angle neutron scattering (SANS and VSANS) showing an unchanged organic matrix structure after demineralization compared to the original mineralized nacre reference. Light microscopy and confocal laser scanning microscopy studies of stained samples show the presence of insoluble proteins at the chitin surface but not between the chitin layers. Successful and homogeneous gelatin infiltration in between the chitin layers can be shown. The hybrid material is characterized by TEM and shows a layered structure filled with MNPs with a size of around 10 nm. Magnetic analysis of the material demonstrates superparamagnetic behavior as characteristic for the particle size. Simulation studies show the potential of collagen and chitin to act as nucleators, where there is a slight preference of chitin over collagen as a nucleator for magnetite. Colloidal-probe AFM measurements demonstrate that introduction of a ferrogel into the chitin matrix leads to a certain increase in the stiffness of the composite material. PMID:25671158

  8. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin

    PubMed Central

    Yang, Bin; Wen, Xuefa; Sun, Xiaomin

    2015-01-01

    Agricultural irrigation in the middle reaches of the Heihe River Basin consumes approximately 80% of the total river water. Whether the irrigation depth matches the water uptake depth of crops is one of the most important factors affecting the efficiency of irrigation water use. Our results indicated that the influence of plastic film on soil water δ18O was restricted to 0–30 cm soil depth. Based on a Bayesian model (MixSIR), we found that irrigated maize acquired water preferentially from 0–10 cm soil layer, with a median uptake proportion of 87 ± 15%. Additionally, maize utilised a mixture of irrigation and shallow soil water instead of absorbing the irrigation water directly. However, only 24.7 ± 5.5% of irrigation water remained in 0–10 cm soil layer, whereas 29.5 ± 2.8% and 38.4 ± 3.3% of the irrigation water infiltrated into 10–40 cm and 40–80 cm layers. During the 4 irrigation events, approximately 39% of the irrigation and rainwater infiltrated into soil layers below 80 cm. Reducing irrigation amount and developing water-saving irrigation methods will be important strategies for improving the efficiency of irrigation water use in this area. PMID:26463010

  9. New phytopharmaceutical agent CJ-20001 modulates stress-induced inflammatory infiltration into gastric mucosa.

    PubMed

    Yeo, Marie; Kim, Dong-Kyu; Cho, Sung Won; Lee, Song-Jin; Cho, Il-Hwan; Song, Geun-Seog; Moon, Byoung-Seok

    2012-05-01

    CJ-20001 is a phytopharmaceutical agent and currently being investigated in a Phase II trial for the treatment of acute and chronic gastritis patients in Korea. In this study we addressed the protective effects of CJ-20001 against water immersion restraint stress (WIRS)-induced gastric injury in rats and studied the underlying mechanisms. To evaluate the protective effect of CJ-20001 on stress-induced gastric lesions, rats were exposed to water immersion restraint stress. Inflammatory infiltration into gastric mucosa was examined by immunohistochemistry and in vitro invasion assay. Expression of proinflammatory cytokines was detected with reverse transcription-polymerase chain reaction (RT-PCR). Pretreatment with CJ-20001 dose-dependently attenuated the WIRS-induced gastric lesions as demonstrated by gross pathology and histology. WIRS increased infiltration of mast cells and macrophages into the gastric mucosa and submucosal layer, whereas the inflammatory infiltration was markedly inhibited by CJ-20001 administration. An in vitro cell invasion assay showed that treatment with CJ-20001 decreased the migration of macrophages. CJ-20001 suppressed the expression of proinflammatory cytokines, IL-18, IP-10 and GRO/KC, in lipopolysaccharides (LPS)-treated macrophages. These data suggest that novel phytopharmaceutical agent CJ-20001 has the potent anti-inflammatory properties through inhibition of inflammatory infiltration in psycho-physiological stress-induced gastric injury.

  10. Out-of-plane permeability of multilayer 0°/90° non-crimp fabrics

    NASA Astrophysics Data System (ADS)

    Fang, Liangchao; Wu, Wenyu; Xu, Chunting; Zhang, Hui

    2018-03-01

    Layer shift is the main source of the variations in permeability values for multilayer fabrics. This phenomenon could change the flow path and cause inadequate infiltration. In this paper, the out-of-plane permeability of multilayer 0°/90° non-crimp fabrics was analyzed statistically. Based on the prediction models of 2-layer fabrics, every two adjacent layers were regarded as porous media with different permeabilities. The out-of-plane permeability of multilayer fabrics was then modeled with the electrical resistance analogy. Analytical results were compared with experiment data. And the effect of number of layer on permeability was thoroughly researched based on the statistical point of view.

  11. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes.

    PubMed

    Zou, Qi Ming; Deng, Lei Min; Li, Da Wei; Zhou, Yun Shen; Golgir, Hossein Rabiee; Keramatnejad, Kamran; Fan, Li Sha; Jiang, Lan; Silvain, Jean-Francois; Lu, Yong Feng

    2017-10-25

    Traditional ceramic-based, high-temperature electrode materials (e.g., lanthanum chromate) are severely limited due to their conditional electrical conductivity and poor stability under harsh circumstances. Advanced composite structures based on vertically aligned carbon nanotubes (VACNTs) and high-temperature ceramics are expected to address this grand challenge, in which ceramic serves as a shielding layer protecting the VACNTs from the oxidation and erosive environment, while the VACNTs work as a conductor. However, it is still a great challenge to fabricate VACNT/ceramic composite structures due to the limited diffusion of ceramics inside the VACNT arrays. In this work, we report on the controllable fabrication of infiltrated (and noninfiltrated) VACNT/silicon composite structures via thermal chemical vapor deposition (CVD) [and laser-assisted CVD]. In laser-assisted CVD, low-crystalline silicon (Si) was quickly deposited at the VACNT subsurfaces/surfaces followed by the formation of high-crystalline Si layers, thus resulting in noninfiltrated composite structures. Unlike laser-assisted CVD, thermal CVD activated the precursors inside and outside the VACNTs simultaneously, which realized uniform infiltrated VACNT/Si composite structures. The growth mechanisms for infiltrated and noninfiltrated VACNT/ceramic composites, which we attributed to the different temperature distributions and gas diffusion mechanism in VACNTs, were investigated. More importantly, the as-farbicated composite structures exhibited excellent multifunctional properties, such as excellent antioxidative ability (up to 1100 °C), high thermal stability (up to 1400 °C), good high velocity hot gas erosion resistance, and good electrical conductivity (∼8.95 Sm -1 at 823 K). The work presented here brings a simple, new approach to the fabrication of advanced composite structures for hot electrode applications.

  12. Gadolinium doped ceria interlayers for Solid Oxide Fuel Cells cathodes: Enhanced reactivity with sintering aids (Li, Cu, Zn), and improved densification by infiltration

    NASA Astrophysics Data System (ADS)

    Nicollet, Clement; Waxin, Jenny; Dupeyron, Thomas; Flura, Aurélien; Heintz, Jean-Marc; Ouweltjes, Jan Pieter; Piccardo, Paolo; Rougier, Aline; Grenier, Jean-Claude; Bassat, Jean-Marc

    2017-12-01

    This paper reports the study of the densification of 20% Gd doped ceria (Ce0.8Gd0.2O1.9 (GDC)) interlayers in SOFC cathodes through two different routes: the well-known addition of sintering elements, and an innovative densification process by infiltration. First, Li, Cu, and Zn nitrates were added to GDC powders. The effect of these additives on the densification was studied by dilatometry on pellets, and show a large decrease of the sintering temperature from 1330 °C (pure GDC), down to 1080 °C, 950 °C, and 930 °C for Zn, Cu, and Li addition, respectively. However, this promising result does not apply to screen-printed layers, which are more porous than pellets and in which the shrinkage is constrained by the substrate. The second approach consists in preparing a pre-sintered GDC layer, which is subsequently infiltrated with Ce and Gd nitrates and sintered at 1250 °C to increase its density. Such an approach results in highly dense GDC interlayers. Using La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) as electrode, the influence of the interlayers on the cathode performance was studied. The addition of sintering aids dramatically increases the cell resistances, most likely because the additives increase the reactivity between GDC and either Yttria Stabilized Zirconia (YSZ) or LSCF, thus losing the expected benefit related to the decrease of sintering temperatures. The interlayers prepared by infiltration do not induce additional resistances in the cell, which results in power densities of single cells 40-50% higher than those of cells prepared with commercial GDC interlayers, making this approach a valuable alternative to sintering aids.

  13. Discussion of pore pressure transmission under rain infiltration in a soil layer

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jan, C. D.

    2017-12-01

    The vadose zone (or unsaturated zone) denotes the geologic media between ground surface and the water table in situ where the openings, or pores, in the soil (rock) layers are partially filled with water and air. In this landscape, rainwater infiltrates into soils advancing through this vadose zone and could generates a shallow saturation zone at soil bedrock boundary due to permeability contrast. This saturation zone leads to downslope shallow subsurface storm runoff that contributes to a part of saturation overland flow, dominating water reaching river channels. Hence, unsaturated processes (e.g., rain infiltration) is an important issue that can determine the timing and magnitude of positive pore pressure and discharge peaks, and the characteristics of runoff, water chemistry, hillslope stability is also tie to the processes. In this study, we investigated the transmission of pore pressure evolution in the vadose zone for diverse soil materials based on poroelasticity theory. Commonly, a traditional way is to utilize the Richard's equation to predict pore pressure evolution under unsaturated rain infiltration, ignoring the inertial effect on the process. Here we relax this limitation and propose two reference time tk and tep that can represent the arriving time at a certain depth of wave propagation and dissipation, respectively. Form ground surface to a depth of 1 m, tk has significant differences under nearly unsaturated conditions for diverse soil properties; however, no evident variations in tk can be observed under nearly saturated conditions. Values of tep for loose, cohesionless soils are much greater but decreases to the smallest one (within 1 day) than those for other soil properties under a nearly saturated condition. Results indicate that transient pore pressure transmission is mainly dominated by dynamic wave propagation but the effect of dissipation could become more important with increase in water saturation.

  14. Infiltration and Runoff Measurements on Steep Burned Hillslopes Using a Rainfall Simulator with Variable Rain Intensities

    USGS Publications Warehouse

    Kinner, David A.; Moody, John A.

    2008-01-01

    Multiple rainfall intensities were used in rainfall-simulation experiments designed to investigate the infiltration and runoff from 1-square-meter plots on burned hillslopes covered by an ash layer of varying thickness. The 1-square-meter plots were on north- and south-facing hillslopes in an area burned by the Overland fire northwest of Boulder near Jamestown on the Front Range of Colorado. A single-nozzle, wide-angle, multi-intensity rain simulator was developed to investigate the infiltration and runoff on steep (30- to 40-percent gradient) burned hillslopes covered with ash. The simulated rainfall was evaluated for spatial variability, drop size, and kinetic energy. Fourteen rainfall simulations, at three intensities (about 20 millimeters per hour [mm/h], 35 mm/h, and 50 mm/h), were conducted on four plots. Measurements during and after the simulations included runoff, rainfall, suspended-sediment concentrations, surface ash layer thickness, soil moisture, soil grain size, soil lost on ignition, and plot topography. Runoff discharge reached a steady state within 7 to 26 minutes. Steady infiltration rates with the 50-mm/h application rainfall intensity approached 20?35 mm/h. If these rates are projected to rainfall application intensities used in many studies of burned area runoff production (about 80 mm/h), the steady discharge rates are on the lower end of measurements from other studies. Experiments using multiple rainfall intensities (three) suggest that runoff begins at rainfall intensities around 20 mm/h at the 1-square-meter scale, an observation consistent with a 10-mm/h rainfall intensity threshold needed for runoff initiation that has been reported in the literature.

  15. Analysis of Instrumentation to Monitor the Hydrologic Performance of Green Infrastructure at the Edison Environmental Center

    EPA Science Inventory

    Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture and water level sensors to monitor surface infiltration and infiltration into the underlying soil for per...

  16. Net-infiltration map of the Navajo Sandstone outcrop area in western Washington County, Utah

    USGS Publications Warehouse

    Heilweil, Victor M.; McKinney, Tim S.

    2007-01-01

    As populations grow in the arid southwestern United States and desert bedrock aquifers are increasingly targeted for future development, understanding and quantifying the spatial variability of net infiltration and recharge becomes critically important for inventorying groundwater resources and mapping contamination vulnerability. A Geographic Information System (GIS)-based model utilizing readily available soils, topographic, precipitation, and outcrop data has been developed for predicting net infiltration to exposed and soil-covered areas of the Navajo Sandstone outcrop of southwestern Utah. The Navajo Sandstone is an important regional bedrock aquifer. The GIS model determines the net-infiltration percentage of precipitation by using an empirical equation. This relation is derived from least squares linear regression between three surficial parameters (soil coarseness, topographic slope, and downgradient distance from outcrop) and the percentage of estimated net infiltration based on environmental tracer data from excavations and boreholes at Sand Hollow Reservoir in the southeastern part of the study area.Processed GIS raster layers are applied as parameters in the empirical equation for determining net infiltration for soil-covered areas as a percentage of precipitation. This net-infiltration percentage is multiplied by average annual Parameter-elevation Regressions on Independent Slopes Model (PRISM) precipitation data to obtain an infiltration rate for each model cell. Additionally, net infiltration on exposed outcrop areas is set to 10 percent of precipitation on the basis of borehole net-infiltration estimates. Soils and outcrop net-infiltration rates are merged to form a final map.Areas of low, medium, and high potential for ground-water recharge have been identified, and estimates of net infiltration range from 0.1 to 66 millimeters per year (mm/yr). Estimated net-infiltration rates of less than 10 mm/yr are considered low, rates of 10 to 50 mm/yr are considered medium, and rates of more than 50 mm/yr are considered high. A comparison of estimated net-infiltration rates (determined from tritium data) to predicted rates (determined from GIS methods) at 12 sites in Sand Hollow and at Anderson Junction indicates an average difference of about 50 percent. Two of the predicted values were lower, five were higher, and five were within the estimated range. While such uncertainty is relatively small compared with the three order-of-magnitude range in predicted net-infiltration rates, the net-infiltration map is best suited for evaluating relative spatial distribution rather than for precise quantification of recharge to the Navajo aquifer at specific locations. An important potential use for this map is land-use zoning for protecting high net-infiltration parts of the aquifer from potential surface contamination.

  17. Method of making carbon-carbon composites

    DOEpatents

    Engle, Glen B.

    1993-01-01

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  18. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  19. The hydrological response to precipitations of a layered shallow sloping deposit: physical experiments and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Damiano, Emilia; Greco, Roberto; Guida, Andrea; Olivares, Lucio; Picarelli, Luciano

    2016-04-01

    Although rainfall-induced landslides are frequent, so that they can be probably considered the most widespread natural hazards, fortunately the occurrence of an extreme rainfall event only rarely corresponds to the triggering of landslides. This is due to the fact that slopes, although often considered as separated systems in the stability analyses, are actually part of a larger, more complex hydrological system, with which continuously exchange water. Indeed, most of the slopes do not fail, and when they are subjected to heavy precipitation, effective draining mechanisms spontaneously develop, such as overland and subsurface runoff, and sometimes even new preferential flow paths originated by mechanical processes, such as piping erosion or deformation cracks. Hence, the triggering of a rainfall-induced landslide requires these dynamically evolving (non-linear) drainage processes to be incapable of releasing the excess of water (and pressure) accumulating within the slope. For the case of shallow sloping covers, the capability of the slope to effectively drain the infiltrating water depends on the hydraulic properties of the involved soils (hydraulic conductivity and water retention curves) and on the hydraulic boundary conditions (at the base of the cover, where it lays upon the bedrock, and at the foot of the slope), which are in turn strongly influenced by the initial moisture state (often indicated as a predisposing cause), owing to the non-linearity of the hydraulic processes. Such an already complex picture is furthermore complicated by heterogeneity. In this study, we focus our attention onto the effects of a layered soil cover with contrasting hydraulic properties on the infiltration and drainage processes in a shallow pyroclastic deposit. This is a typical situation along many pyroclastic-covered slopes of Campania (southern Italy), which present alternations of ashes (silty sands) and pumices (sands with gravel) deposited by volcanic eruptions, and where shallow landslides are sometimes triggered by intense and long-lasting precipitations. Several studies have already pointed out that layering may play a crucial role in the development of the infiltration process, as the coarse-grained pumice layers may behave as capillary barriers, leading to the formation of perched saturated zones. The hydrological behavior of such kind of layered slopes is investigated by means of small-scale infiltration experiments carried out in an instrumented flume in the laboratory. The interpretation of the experimental results is made with the help of a mathematical model of 2-D Richards equation, which allows shedding some light in the hydraulic properties of the pumices, which are hardly measurable with standard laboratory techniques. The obtained results show how, depending on initial moisture conditions, slope inclination angle and applied rainfall intensity, the response of the slope may be very different, and that the formation of a capillary barrier is not always observed.

  20. Impact of increasing freight loads on rail substructure from fracking sand transportation.

    DOT National Transportation Integrated Search

    2014-03-01

    In this report the effect of surface infiltration of frac sand and heavy axle loads (HALs) were studied for their impact on the ballast layer. : Different combinations of ballast and fracking sand were constructed to observe long term trends of defor...

  1. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1

    PubMed Central

    Staunstrup, Nicklas Heine; Stenderup, Karin; Mortensen, Sidsel; Primo, Maria Nascimento; Steiniche, Torben; Liu, Ying; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Schrøder, Lisbeth Dahl; Svensson, Lars; Petersen, Thomas Kongstad; Callesen, Henrik; Bolund, Lars

    2017-01-01

    ABSTRACT Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. PMID:28679670

  2. Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study.

    PubMed

    Wolf, Gregory T; Chepeha, Douglas B; Bellile, Emily; Nguyen, Ariane; Thomas, Daffyd; McHugh, Jonathan

    2015-01-01

    Tumor infiltrating lymphocytes (TILs) in the microenvironment reflect may tumor biology and predict outcome. We previously demonstrated that infiltrates of CD4, CD8, and FoxP3 positive lymphocytes were associated with HPV-status and survival in oropharyngeal cancers. To determine if TILs were of prognostic importance in oral cancer, TIL levels were evaluated retrospectively in 52 oral cancer patients treated with surgery and correlations with outcome determined. Complete TIL and clinical data were available for 39 patients. Levels of CD4, CD8, FoxP3 (Treg), CD68 and NK cells were assessed by immunohistochemistry in tumor cores on a tissue microarray. Associations with clinical variables, tobacco and alcohol use and histologic features were assessed using Spearman correlation coefficient and the non-parametric Kruskal-Wallis testing. Time-to-event outcomes were determined using univariate and multivariate Cox models. Median follow up was 60 months. The ratio of CD4/CD8 (p=.01) and CD8 infiltrates (p=.05) were associated with tumor recurrence but not overall survival. Lower CD4 infiltrates were associated with alcohol use (p=.005) and poor tumor differentiation (p=.02). Interestingly, higher levels of CD68+ macrophages were found associated with positive nodes (p=.06) and poorer overall survival (p=.07). Overall and DSS survival were significantly shorter for patients with positive nodes, extracapsular spread, or perineural invasion. Infiltrating immune cell levels in oral cavity cancer appear influenced by health behaviors and tumor characteristics. In contrast to oropharynx cancer, infiltrates of CD68 positive tumor associated macrophages may contribute to metastatic behavior and outcome in advanced oral cavity carcinoma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Tumor Infiltrating Lymphocytes (TIL) and Prognosis in Oral Cavity Squamous Carcinoma: A Preliminary Study

    PubMed Central

    Wolf, Gregory T.; Chepeha, Douglas B.; Bellile, Emily; Nguyen, Ariane; Thomas, Daffyd; McHugh, Jonathan

    2014-01-01

    Objectives Tumor infiltrating lymphocytes (TILs) in the microenvironment reflect may tumor biology and predict outcome. We previously demonstrated that infiltrates of CD4, CD8, and FoxP3 positive lymphocytes were associated with HPV-status and survival in oropharyngeal cancers. To determine if TILs were of prognostic importance in oral cancer, TIL levels were evaluated retrospectively in 52 oral cancer patients treated with surgery and correlations with outcome determined. Methods Complete TIL and clinical data were available for 39 patients. Levels of CD4, CD8, FoxP3 (Treg), CD68 and NK cells were assessed by immunohistochemistry in tumor cores on a tissue microarray. Associations with clinical variables, tobacco and alcohol use and histologic features were assessed using Spearman correlation coefficient and the non-parametric Kruskal-Wallis testing. Timeto-event outcomes were determined using univariate and multivariate Cox models. Median follow up was 60 months. Results The ratio of CD4/CD8 (p=.01) and CD8 infiltrates (p=.05) were associated with tumor recurrence but not overall survival. Lower CD4 infiltrates were associated with alcohol use (p=.005) and poor tumor differentiation (p=.02). Interestingly, there higher levels of CD68+ macrophages were found associated with positive nodes (p=.06) and poorer overall survival (p=.07). Overall and DSS survival were significantly shorter for patients with positive nodes, extracapsular spread , or perineural invasion. Conclusions Infiltrating immune cell levels in oral cavity cancer appear influenced by health behaviors and tumor characteristics. In contrast to oropharynx cancer, infiltrates of CD68 positive tumor associated macrophages may contribute to metastatic behavior and outcome in advanced oral cavity carcinoma. PMID:25283344

  4. How does the wetting dynamics affect capillary trapping in heterogeneous soil: Neutron imaging study

    NASA Astrophysics Data System (ADS)

    Sacha, Jan; Snehota, Michal; Trtik, Pavel; Vontobel, Peter

    2017-04-01

    The wetting dynamics of the water infiltration into a porous soil system has a strong influence on the amount of entrapped air inside the soil. Simultaneously, a higher volume of entrapped air obstructs a water flow in the medium. This effect is more noticeable in soils with preferential pathways because the soil matrix has a higher capillary forces and therefore the air is accumulated in preferential pathways. In the presented study, two experiments were conducted on the same sample. The first experiment was performed under the constant water level condition (CWL) and the second experiment was carried out under the constant water flux condition (CWF) at the top of the sample. The sample was composed of coarse and medium coarse fractions of sand and fine porous ceramics. Materials were packed into the quartz glass column of the inner diameter of 29 mm. The coarse sand represented a highly conductive region connected from the top to the bottom of the sample with the exception of three thin (2-3 mm) separation layers made up of the medium coarse sand. Three discs of fine ceramics formed slow flow regions. Infiltration experiments were monitored by neutron radiography at two different beamlines to produce two-dimensional (2D) projections. The CWL experiment was monitored at NEUTRA station with an acquisition time of 16 seconds per projection and the CWF experiment was visualized at BOA station with an acquisition time of 0.25 seconds per projection. Both stations are located at the Paul Scherrer Institut, Switzerland. The acquired radiograms of the dry sample were subtracted from all subsequent radiograms to determine the water thickness in projections. From series of corrected radiograms taken at the different angles three-dimensional (3D) image was reconstructed for steady state stage of the CWL experiment and for the entire CWF experiment. Then the series of 3D images mapped the wetting of the porous system over the corresponding phase of infiltration process. The results show a higher steady state infiltration rate during the CWL experiment. In this case, the air was mostly pushed out from the sample by the moving wetting front. The infiltration rate was continuously decreasing during the infiltration up to the value of steady state infiltration rate. When the wetting front has reached the bottom of the sample the air was moving from matrix domain to preferential domain. Infiltration rate was still higher than during CWF. On the contrary, during the CWF the water infiltrated into the fine ceramics first and then into the medium coarse sand attracted by forces that were stronger in comparison to the coarse sand. Due to this effect a significant amount of air was trapped in preferential pathways, and consequently blocked the water flow primarily due to the presence of medium coarse sand regions.

  5. Translation of an Engineered Nanofibrous Disc-like Angle Ply Structure for Intervertebral Disc Replacement in a Small Animal Model

    PubMed Central

    Martin, John T.; Milby, Andrew H.; Chiaro, Joseph A.; Kim, Dong Hwa; Hebela, Nader M.; Smith, Lachlan J.; Elliott, Dawn M.; Mauck, Robert L.

    2015-01-01

    Intervertebral disc degeneration has been implicated in the etiology of low back pain; however the current surgical strategies for treating symptomatic disc disease are limited. A variety of materials have been developed to replace disc components, including the nucleus pulposus (NP), the annulus fibrosus (AF), and their combination into disc-like engineered constructs. We have previously shown that layers of electrospun poly(ε-caprolactone) scaffold, mimicking the hierarchical organization of the native AF, have functional parity with native tissue. Likewise, we have combined these structures with cell-seeded hydrogels (as an NP replacement) to form disc-like angle ply structures (DAPS). The objective of this study was to develop a model for the evaluation of DAPS in vivo. Through a series of studies, we developed a surgical approach to replace the rat caudal disc with an acellular DAPS and then stabilize the motion segment by external fixation. We then optimized cell infiltration into DAPS by including sacrificial poly(ethylene oxide) layers interspersed throughout the angle-ply structure. Our findings illustrate that DAPS are stable in the caudal spine, are infiltrated by cells from the peri-implant space, and that infiltration is expedited by providing additional routes for cell migration. These findings establish a new in vivo platform in which to evaluate and optimize the design of functional disc replacements. PMID:24560621

  6. Quantifying the effects of wildfire on changes in soil properties by surface burning of soils from the Boulder Creek Critical Zone Observatory

    USGS Publications Warehouse

    Wieting, Celeste; Ebel, Brian A.; Singha, Kamini

    2017-01-01

    Study regionThis study used intact soil cores collected at the Boulder Creek Critical Zone Observatory near Boulder, Colorado, USA to explore fire impacts on soil properties.Study focusThree soil scenarios were considered: unburned control soils, and low- and high-temperature burned soils. We explored simulated fire impacts on field-saturated hydraulic conductivity, dry bulk density, total organic carbon, and infiltration processes during rainfall simulations.New hydrological insights for the regionSoils burned to high temperatures became more homogeneous with depth with respect to total organic carbon and bulk density, suggesting reductions in near-surface porosity. Organic matter decreased significantly with increasing soil temperature. Tension infiltration experiments suggested a decrease in infiltration rates from unburned to low-temperature burned soils, and an increase in infiltration rates in high-temperature burned soils. Non-parametric statistical tests showed that field-saturated hydraulic conductivity similarly decreased from unburned to low-temperature burned soils, and then increased with high-temperature burned soils. We interpret these changes result from the combustion of surface and near-surface organic materials, enabling water to infiltrate directly into soil instead of being stored in the litter and duff layer at the surface. Together, these results indicate that fire-induced changes in soil properties from low temperatures were not as drastic as high temperatures, but that reductions in surface soil water repellency in high temperatures may increase infiltration relative to low temperatures.

  7. Sequestration of Sr-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of a Ca-Citrate-Phosphate Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szecsody, James E.; Rockhold, Mark L.; Oostrom, Martinus

    The objective of this project is to develop a method to emplace apatite precipitate in the 100N vadose zone, which results in sorption and ultimately incorporation of Sr-90 into the apatite structure. The Ca-citrate-PO4 solution can be infiltrated into unsaturated sediments to result in apatite precipitate to provide effective treatment of Sr-90 contamination. Microbial redistribution during solution infiltration and a high rate of citrate biodegradation for river water microbes (water used for solution infiltration) results in a relatively even spatial distribution of the citrate biodegradation rate and ultimately apatite precipitate in the sediment. Manipulation of the Ca-citrate-PO4 solution infiltration strategymore » can be used to result in apatite precipitate in the lower half of the vadose zone (where most of the Sr-90 is located) and within low-K layers (which are hypothesized to have higher Sr-90 concentrations). The most effective infiltration strategy to precipitate apatite at depth (and with sufficient lateral spread) was to infiltrate a high concentration solution (6 mM Ca, 15 mM citrate, 60 mM PO4) at a rapid rate (near ponded conditions), followed by rapid, then slow water infiltration. Repeated infiltration events, with sufficient time between events to allow water drainage in the sediment profile can be used to buildup the mass of apatite precipitate at greater depth. Low-K heterogeneities were effectively treated, as the higher residual water content maintained in these zones resulted in higher apatite precipitate concentration. High-K zones did not receive sufficient treatment by infiltration, although an alternative strategy of air/surfactant (foam) was demonstrated effective for targeting high-K zones. The flow rate manipulation used in this study to treat specific depths and heterogeneities are not as easy to implement at field scale due to the lack of characterization of heterogeneities and difficulty tracking the wetting front over a large subsurface area. However, the use of real-time surface and cross-borehole geophysics can be used to track the infiltrating Ca-citrate-PO4 front so some adjustments can be made in the infiltration rate to precipitate apatite in desired zones. In addition, the reactive transport code used in this study with field scale physical parameters for sediments can be used to evaluate infiltration strategies along with preliminary water infiltration tests at field scale.« less

  8. Oral eosinophilic or traumatic ulcer: A case report and brief review

    PubMed Central

    Dhanrajani, Parmanand; Cropley, Peter W.

    2015-01-01

    Eosinophilic ulcer of the oral mucosa is considered to be a benign, reactive, and self-limiting lesion, with unclear pathogenesis, manifesting as a rapidly developing solitary ulcer. We report a case of a 42-year-old man who presented with a chronic indurated ulcer of buccal mucosa adjacent to the right upper wisdom tooth. Histopathological examination showed polymorphic inflammatory infiltrate, rich in eosinophilis, involving the superficial mucosa, and the deeper muscle layer. Immunohistochemical analysis revealed single CD30+ cells scattered within an inflammatory infiltrate. The lesion was excised, and healing was uneventful with no recurrence in more than a year. PMID:27390505

  9. Vapor Intrusion from Entrapped NAPL Sources and Groundwater Plumes: Process Understanding and Improved Modeling Tools for Pathway Assessment

    DTIC Science & Technology

    2014-07-01

    into a building ....149 Figure 5.52: Effect of infiltration at 1 mm/hr for 24 hours on vapor signals in sandy clay loam scenario...shown above, there will also likely be large diameter sanitary sewers running the length of each street. Each house on the street will have a sewer...permeability, a discontinuous clay layer system, and a system with scattered obstacles (e.g. utilities). The layered systems indicated that the sequence of

  10. Fate and transport of carbamazepine in soil aquifer treatment (SAT) infiltration basin soils.

    PubMed

    Arye, Gilboa; Dror, Ishai; Berkowitz, Brian

    2011-01-01

    The transport and fate of the pharmaceutical carbamazepine (CBZ) were investigated in the Dan Region Reclamation Project (SHAFDAN), Tel-Aviv, Israel. Soil samples were taken from seven subsections of soil profiles (150 cm) in infiltration basins of a soil aquifer treatment (SAT) system. The transport characteristics were studied from the release dynamics of soil-resident CBZ and, subsequently, from applying a pulse input of wastewater containing CBZ. In addition, a monitoring study was performed to evaluate the fate of CBZ after the SAT. Results of this study indicate adsorption, and consequently retardation, in CBZ transport through the top soil layer (0-5 cm) and to a lesser extent in the second layer (5-25 cm), but not in deeper soil layers (25-150 cm). The soluble and adsorbed fractions of CBZ obtained from the two upper soil layers comprised 45% of the total CBZ content in the entire soil profile. This behavior correlated to the higher organic matter content observed in the upper soil layers (0-25 cm). It is therefore deduced that when accounting for the full flow path of CBZ through the vadose zone to the groundwater region, the overall transport of CBZ in the SAT system is essentially conservative. The monitoring study revealed that the average concentration of CBZ decreased from 1094 ± 166 ng L⁻¹ in the recharged wastewater to 560 ± 175 ng L⁻¹ after the SAT. This reduction is explained by dilution of the recharged wastewater with resident groundwater, which may occur as it flows to active reclamation wells. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Increased Adipocyte Size, Macrophage Infiltration, and Adverse Local Adipokine Profile in Perirenal Fat in Cushing's Syndrome.

    PubMed

    Roerink, Sean H P P; Wagenmakers, Margreet A E M; Langenhuijsen, Johan F; Ballak, Dov B; Rooijackers, Hanne M M; d'Ancona, Frank C; van Dielen, François M; Smit, Jan W A; Plantinga, Theo S; Netea-Maier, Romana T; Hermus, Ad R M M

    2017-08-01

    To analyze changes in fat cell size, macrophage infiltration, and local adipose tissue adipokine profiles in different fat depots in patients with active Cushing's syndrome. Subcutaneous (SC) and perirenal (PR) adipose tissue of 10 patients with Cushing's syndrome was compared to adipose tissue of 10 gender-, age-, and BMI-matched controls with regard to adipocyte size determined by digital image analysis on hematoxylin and eosin stainings, macrophage infiltration determined by digital image analysis on CD68 stainings, and adipose tissue leptin and adiponectin levels using fluorescent bead immunoassays and ELISA techniques. Compared to the controls, mean adipocyte size was larger in PR adipose tissue in patients. The percentage of macrophage infiltration of the PR adipose tissue and PR adipose tissue lysate leptin levels were higher and adiponectin levels were lower in SC and PR adipose tissue lysates in patients. The adiponectin levels were also lower in the SC adipose tissue supernatants of patients. Associations were found between the severity of hypercortisolism and PR adipocyte size. Cushing's syndrome is associated with hypertrophy of PR adipocytes and a higher percentage of macrophage infiltration in PR adipose tissue. These changes are associated with an adverse local adipokine profile. © 2017 The Obesity Society.

  12. Theory, Investigation and Stability of Cathode Electrocatalytic Activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Dong; Liu, Mingfei; Lai, Samson

    2012-09-30

    The main objective of this project is to systematically characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF, aiming to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating. The understanding gained will help us to optimize the composition and morphology of the catalyst layer and microstructure of the LSCF backbone for better performance. More specifically, the technical objectives include: (1) to characterize the surface composition, morphology, and electro-catalytic properties of catalysts coated on LSCF; (2) to characterize the microscopic details andmore » stability of the LSCF-catalyst (e.g., LSM) interfaces; (3) to establish the scientific basis for rational design of high-performance cathodes by combining a porous backbone (such as LSCF) with a thin catalyst coating; and (4) to demonstrate that the performance and stability of porous LSCF cathodes can be enhanced by the application of a thin-film coating of LSM through a solution infiltration process in small homemade button cells and in commercially available cells of larger dimension. We have successfully developed dense, conformal LSM films with desired structure, composition, morphology, and thickness on the LSCF surfaces by two different infiltration processes: a non-aqueous and a water-based sol-gel process. It is demonstrated that the activity and stability of LSCF cathodes can be improved by the introduction of a thin-film LSM coating through an infiltration process. Surface and interface of the LSM-coated LSCF cathode were systematically characterized using advanced microscopy and spectroscopy techniques. TEM observation suggests that a layer of La and Sr oxide was formed on LSCF surfaces after annealing. With LSM infiltration, in contrast, we no longer observe such La/Sr oxide layer on the LSM-coated LSCF samples after annealing under similar conditions. This was also confirmed by x-ray analyses. For example, soft x-ray XANES data reveal that Co cations displace the Mn cations as being more favored to be reduced. Variations in the Sr-O in the annealed LSCF Fourier-transformed (FT) EXAFS suggest that some Sr segregation is occurring, but is not present in the annealed LSM-infiltrated LSCF cathode materials. Further, a surface enhanced Raman technique was also developed into to probe and map LSM and LSCF phase on underlying YSZ substrate, enabling us to capture important chemical information of cathode surfaces under practical operating conditions. Electrochemical models for the design of test cells and understanding of mechanism have been developed for the exploration of fundamental properties of electrode materials. Novel catalyst coatings through particle depositions (SDC, SSC, and LCC) or continuous thin films (PSM and PSCM) were successfully developed to improve the activity and stability of LSCF cathodes. Finally, we have demonstrated enhanced activity and stability of LSCF cathodes over longer periods of time in homemade and commercially available cells by an optimized LSM infiltration process. Microstructure examination of the tested cells did not show obvious differences between blank and infiltrated cells, suggesting that the infiltrated LSM may form a coherent film on the LSCF cathodes. There was no significant change in the morphology or microstructure of the LSCF cathode due to the structural similarity of LSCF and LSM. Raman analysis of the tested cells indicated small peaks emerging on the blank cells that correspond to trace amounts of secondary phase formation during operation (e.g., CoO{sub x}). The formation of this secondary phase might be attributed to performance degradation. In contrast, there was no such secondary phase observed in the LSM infiltrated cells, indicating that the LSM modification staved off secondary phase formation and thus improved the stability.« less

  13. Does drought alter hydrological functions in forest soils? An infiltration experiment

    NASA Astrophysics Data System (ADS)

    Gimbel, K. F.; Puhlmann, H.; Weiler, M.

    2015-08-01

    The water cycle is expected to change in future and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey, loamy and sandy textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by WDPT tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the "drought-history" or generally the climatic conditions in the past of a soil are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; and also, that drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  14. Assessment of existing roadside swales with engineered filter soil: I. Characterization and lifetime expectancy.

    PubMed

    Ingvertsen, Simon T; Cederkvist, Karin; Régent, Yoann; Sommer, Harald; Magid, Jakob; Jensen, Marina B

    2012-01-01

    Roadside infiltration swales with well-defined soil mixtures (filter soil) for the enhancement of both infiltration and treatment of stormwater runoff from roads and parking areas have been common practice in Germany for approximately two decades. Although the systems have proven hydraulically effective, their treatment efficiency and thus lifetime expectancies are not sufficiently documented. The lack of documentation restricts the implementation of new such systems in Germany as well as other countries. This study provides an assessment of eight roadside infiltration swales with filter soil from different locations in Germany that have been operational for 6 to16 yr. The swales were assessed with respect to visual appearance, infiltration rate, soil pH, and soil texture, as well as soil concentration of organic matter, heavy metals (Cd, Cr, Cu, Pb, Zn), and phosphorus. Visually, the swales appeared highly variable with respect to soil color and textural layering as well as composition of plants and soil-dwelling organisms. Three swales still comply with the German design criteria for infiltration rate (10 m/s), while the remaining swales have lower, yet acceptable, infiltration rates around 10 m/s. Six of the eight studied soils have heavy metal concentrations exceeding the limit value for unpolluted soil. Provided that the systems are able to continuously retain existing and incoming pollutants, our analysis indicates that the soils can remain operational for another 13 to 136 yr if the German limit values for unrestricted usage in open construction works are applied. However, no official guidelines exist for acceptable soil quality in existing infiltration facilities. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  15. A simple biosphere model (SiB) for use within general circulation models

    NASA Technical Reports Server (NTRS)

    Sellers, P. J.; Mintz, Y.; Sud, Y. C.; Dalcher, A.

    1986-01-01

    A simple realistic biosphere model for calculating the transfer of energy, mass and momentum between the atmosphere and the vegetated surface of the earth has been developed for use in atmospheric general circulation models. The vegetation in each terrestrial model grid is represented by an upper level, representing the perennial canopy of trees and shrubs, and a lower level, representing the annual cover of grasses and other heraceous species. The vegetation morphology and the physical and physiological properties of the vegetation layers determine such properties as: the reflection, transmission, absorption and emission of direct and diffuse radiation; the infiltration, drainage, and storage of the residual rainfall in the soil; and the control over the stomatal functioning. The model, with prescribed vegetation parameters and soil interactive soil moisture, can be used for prediction of the atmospheric circulation and precipitaion fields for short periods of up to a few weeks.

  16. Study on preparation and mechanical performance of TPU/nonwoven composites

    NASA Astrophysics Data System (ADS)

    Sun, X. C.; Xi, B. J.

    2016-07-01

    In order to study the influence of resin content and layer sequence parameters on the mechanical properties of TPU/non-woven composite materials synthesized by moulding pressing technology. The effects of the resin content and layer sequence on composites were discussed. Through experiments and theoretical analysis, it was revealed how resin content, layer sequence impact on mechanical properties of composite. The mechanics properties of TPU/non-woven composite materials are improved. The process is pressure 0.5 MPa, temperature 110 °C and time 120s min. The melting of the TPU infiltrated into the fabric and filled the space between the fibers.

  17. Seven layers of security to help protect biomedical research facilities.

    PubMed

    Mortell, Norman

    2010-04-01

    In addition to risks such as theft and fire that can confront any type of business, the biomedical research community often faces additional concerns over animal rights extremists, infiltrations, data security and intellectual property rights. Given these concerns, it is not surprising that the industry gives a high priority to security. This article identifies security threats faced by biomedical research companies and shows how these threats are ranked in importance by industry stakeholders. The author then goes on to discuss seven key 'layers' of security, from the external environment to the research facility itself, and how these layers all contribute to the creation of a successfully secured facility.

  18. Analysis of Instrumentation Selection and Placement to Monitor the Hydrologic Performance of Permeable Pavement Systems and Bioinfiltration Areas at the Edison Environmental Center in New Jersey - proceedings paper

    EPA Science Inventory

    Infiltration is one of the primary functional mechanisms of green infrastructure stormwater controls, so this study explored selection and placement of embedded soil moisture, water level, and temperature sensors to monitor surface infiltration and infiltration into the underlyin...

  19. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  20. The Effects of Gx, Gy and Gz Forces on Cone Mesopic Vision

    DTIC Science & Technology

    1983-10-01

    Vitamin A transport or storage deficiencies - liver disease, protein malnutrition, tuberculosis 4. Disease states - retinitis pigmentosa , albinism, corneal...illnesses. retinitis pigmentosa -- Progressive atrophy of the retinal neuroep.thelium with pigmentary infiltration of the inner layers. retinopathy...Cardiovascular conditioning ..... ............... ... 35 Retinal blood supply ........ .................. ... 35 Head Movement

  1. Subsurface drainage processes and management impacts

    Treesearch

    Elizabeth T. Keppeler; David Brown

    1998-01-01

    Storm-induced streamflow in forested upland watersheds is linked to rainfall by transient, variably saturated flow through several different flow paths. In the absence of exposed bedrock, shallow flow-restrictive layers, or compacted soil surfaces, virtually all of the infiltrated rainfall reaches the stream as subsurface flow. Subsurface runoff can occur within...

  2. Polymer concrete overlay on the Big Swan Creek Bridge : condition of overlay after two years in service.

    DOT National Transportation Integrated Search

    1986-01-01

    The multiple-layer polymer concrete overlay on the Big Swan Creek Bridge was soundly bonded to the base concrete and providing excellent protection against the infiltration of chloride ions after 2 years in service. Evaluations of this and PC overlay...

  3. Circumferentially aligned fibers guided functional neoartery regeneration in vivo.

    PubMed

    Zhu, Meifeng; Wang, Zhihong; Zhang, Jiamin; Wang, Lina; Yang, Xiaohu; Chen, Jingrui; Fan, Guanwei; Ji, Shenglu; Xing, Cheng; Wang, Kai; Zhao, Qiang; Zhu, Yan; Kong, Deling; Wang, Lianyong

    2015-08-01

    An ideal vascular graft should have the ability to guide the regeneration of neovessels with structure and function similar to those of the native blood vessels. Regeneration of vascular smooth muscle cells (VSMCs) with circumferential orientation within the grafts is crucial for functional vascular reconstruction in vivo. To date, designing and fabricating a vascular graft with well-defined geometric cues to facilitate simultaneously VSMCs infiltration and their circumferential alignment remains a great challenge and scarcely reported in vivo. Thus, we have designed a bi-layered vascular graft, of which the internal layer is composed of circumferentially aligned microfibers prepared by wet-spinning and an external layer composed of random nanofibers prepared by electrospinning. While the internal circumferentially aligned microfibers provide topographic guidance for in vivo regeneration of circumferentially aligned VSMCs, the external random nanofibers can offer enhanced mechanical property and prevent bleeding during and after graft implantation. VSMCs infiltration and alignment within the scaffold was then evaluated in vitro and in vivo. Our results demonstrated that the circumferentially oriented VSMCs and longitudinally aligned ECs were successfully regenerated in vivo after the bi-layered vascular grafts were implanted in rat abdominal aorta. No formation of thrombosis or intimal hyperplasia was observed up to 3 month post implantation. Further, the regenerated neoartery exhibited contraction and relaxation property in response to vasoactive agents. This new strategy may bring cell-free small diameter vascular grafts closer to clinical application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Numerical results on the contribution of an earthworm hole to infiltration

    NASA Astrophysics Data System (ADS)

    Pezzotti, Dario; Barontini, Stefano; Casali, Federico; Comincini, Mattia; Peli, Marco; Ranzi, Roberto; Rizzo, Gabriele; Tomirotti, Massimo; Vitale, Paolo

    2017-04-01

    On 9 March 2016 the WormEx I experiment was launched at the experimental site of Cividate Camuno (274ma.s.l., Oglio river basin, Central Italian Alps), aiming at contributing to understand how the soil-fauna digging activity affects soil-water flow. Particularly the experiment investigates the effects of earthworms holes on the soil-water constitutive laws, in the uppermost layers of a shallow anthropized soil. In this framework a set of simulations of the water flow in presence of an earthworm hole was preliminarily performed. The FV-FD numerical code AdHydra was used to solve the Richards equation in an axis-symmetric 2D domain around a vertical earthworm hole. The hole was represented both as a void cylinder and as a virtual porous domain with typical constitutive laws of a Δ-soil. The hypothesis of Poiseuille flow and the Jourin-Borelli law applied to determine its conductivity and soil-water retention relationship. Different scenarios of hole depth and infiltration rate were explored. As a result a meaningful change in the downflow condition was observed when burrows intersect a layered soil, both in saturated and partially unsaturated soils, in case a perched water table onsets at the interface between an upper and more conductive soil layer and a lower and less conductive one. These results may contribute to a better understanding of the streamflow generation processes and soil-water movement in shallow layered soils.

  5. Natural water purification and water management by artificial groundwater recharge

    PubMed Central

    Balke, Klaus-Dieter; Zhu, Yan

    2008-01-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth’s surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save. PMID:18357624

  6. Natural water purification and water management by artificial groundwater recharge.

    PubMed

    Balke, Klaus-Dieter; Zhu, Yan

    2008-03-01

    Worldwide, several regions suffer from water scarcity and contamination. The infiltration and subsurface storage of rain and river water can reduce water stress. Artificial groundwater recharge, possibly combined with bank filtration, plant purification and/or the use of subsurface dams and artificial aquifers, is especially advantageous in areas where layers of gravel and sand exist below the earth's surface. Artificial infiltration of surface water into the uppermost aquifer has qualitative and quantitative advantages. The contamination of infiltrated river water will be reduced by natural attenuation. Clay minerals, iron hydroxide and humic matter as well as microorganisms located in the subsurface have high decontamination capacities. By this, a final water treatment, if necessary, becomes much easier and cheaper. The quantitative effect concerns the seasonally changing river discharge that influences the possibility of water extraction for drinking water purposes. Such changes can be equalised by seasonally adapted infiltration/extraction of water in/out of the aquifer according to the river discharge and the water need. This method enables a continuous water supply over the whole year. Generally, artificially recharged groundwater is better protected against pollution than surface water, and the delimitation of water protection zones makes it even more save.

  7. The influence of anisotropy on preferential flow in landslides

    NASA Astrophysics Data System (ADS)

    Cristiano, Elena; Barontini, Stefano; Bogaard, Thom A.; Shao, Wei

    2015-04-01

    Infiltration is one of the most important landslides triggering mechanisms and it is controlled by the hydraulic characteristics of the soil, which depends on the degree of saturation, the existence of preferential flow paths and by anisotropy. Many soils, indeed, exhibit a certain degree of anisotropy due to the stratification associated with soil forming process. Recently, various authors investigated the effect of rainfall in layered soils and its effect on rainfall triggered landslides by means of experimental, conceptual, numerical and theoretical approaches. However, the combined effect of anisotropy and preferential flow on infiltration process and related to rainfall induced landslides has, according to the authors best knowledge, not been studied yet. Aiming at better understanding the soil hydrological processes which take place during an infiltration process, the stability of a synthetic hill slope is numerically investigated. The geometry we considered for the model is a slope with two different layers: the upper soil layer consists of sandy loam, while the lower soil layer is made out of clay. The geometry was studied using both a single permeability and a dual permeability model. In the first case the hydraulic conductivity at saturation was considered isotropic, equal in all directions. Then the vertical component of the hydraulic conductivity tensor at saturation was reduced, while in the third scenario the horizontal component was reduced. In this way the anisotropy effects on both the principal directions were studied. In the dual permeability model, the influence of the anisotropy was considered only in the preferential flow domain, and the hydraulic conductivity at saturation of the soil matrix domain was defined as being isotropic. In order to evaluate also the effects of rainfall intensity on the slope, two different rainfall events were studied: a low intensity rainfall with a long time duration (2 mmh-1,150 h) and an high intensity rainfall with a short duration (20 mmh-1,15 h). The results show that the anisotropy facilitates the saturation process in the slope and that the vertical component of the soil water flow is set especially in the soil matrix domain, while the lateral component dominates in the preferential flow domain. In some scenarios the patterns of the water content in the unsaturated soil layers suggest the possibility of the onset of a perched water table.

  8. Toxoplasma gondii oral infection induces intestinal inflammation and retinochoroiditis in mice genetically selected for immune oral tolerance resistance.

    PubMed

    Dias, Raul Ramos Furtado; Carvalho, Eulógio Carlos Queiroz de; Leite, Carla Cristina da Silva; Tedesco, Roberto Carlos; Calabrese, Katia da Silva; Silva, Antonio Carlos; DaMatta, Renato Augusto; de Fatima Sarro-Silva, Maria

    2014-01-01

    Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis.

  9. Toxoplasma gondii Oral Infection Induces Intestinal Inflammation and Retinochoroiditis in Mice Genetically Selected for Immune Oral Tolerance Resistance

    PubMed Central

    Dias, Raul Ramos Furtado; de Carvalho, Eulógio Carlos Queiroz; Leite, Carla Cristina da Silva; Tedesco, Roberto Carlos; Calabrese, Katia da Silva; Silva, Antonio Carlos; DaMatta, Renato Augusto; de Fatima Sarro-Silva, Maria

    2014-01-01

    Toxoplasmosis is a worldwide disease with most of the infections originating through the oral route and generates various pathological manifestations, ranging from meningoencephalitis to retinochoroiditis and inflammatory bowel disease. Animal models for these pathologies are scarce and have limitations. We evaluated the outcome of Toxoplasma gondii oral infection with 50 or 100 cysts of the ME-49 strain in two lines of mice with extreme phenotypes of susceptibility (TS) or resistance (TR) to immune oral tolerance. Therefore, the aim of this study was to evaluate the behaviour of TS and TR mice, orally infected by T. gondii, and determine its value as a model for inflammatory diseases study. Mortality during the acute stage of the infection for TR was 50% for both dosages, while 10 and 40% of the TS died after infection with these respective dosages. In the chronic stage, the remaining TS succumbed while TR survived for 90 days. The TS displayed higher parasite load with lower intestinal inflammation and cellular proliferation, notwithstanding myocarditis, pneumonitis and meningoencephalitis. TR presented massive necrosis of villi and crypt, comparable to inflammatory bowel disease, with infiltration of lymphoid cells in the lamina propria of the intestines. Also, TR mice infected with 100 cysts presented intense cellular infiltrate within the photoreceptor layer of the eyes, changes in disposition and morphology of the retina cell layers and retinochoroiditis. During the infection, high levels of IL-6 were detected in the serum of TS mice and TR mice presented high amounts of IFN-γ and TNF-α. Both mice lineages developed different disease outcomes, but it is emphasized that TR and TS mice presented acute and chronic stages of the infection, demonstrating that the two lineages offer an attractive model for studying toxoplasmosis. PMID:25437299

  10. Optimization of conditions for transient Agrobacterium-mediated gene expression assays in Arabidopsis.

    PubMed

    Kim, Mi Jung; Baek, Kon; Park, Chung-Mo

    2009-08-01

    Transient genetic transformation of plant organs is an indispensable way of studying gene function in plants. This study was aimed to develop an optimized system for transient Agrobacterium-mediated transformation of the Arabidopsis leaves. The beta-glucuronidase (GUS) reporter gene was employed to evaluate growth and biochemical parameters that influence the levels of transient expression. The effects of plant culture conditions, Agrobacterial genetic backgrounds, densities of Agrobacterial cell suspensions, and of several detergents were analyzed. We found that optimization of plant culture conditions is the most critical factor among the parameters analyzed. Higher levels of transient expression were observed in plants grown under short day conditions (SDs) than in plants grown under long day conditions (LDs). Furthermore, incubation of the plants under SDs at high relative humidity (85-90%) for 24 h after infiltration greatly improved the levels of transient expression. Under the optimized culture conditions, expression of the reporter gene reached the peak 3 days after infiltration and was rapidly decreased after the peak. Among the five Agrobacterial strains examined, LAB4404 produced the highest levels of expression. We also examined the effects of detergents, including Triton X-100, Tween-20, and Silwet L-77. Supplementation of the infiltration media either with 0.01% Triton X-100 or 0.01% Tween-20 improved the levels of expression by approximately 1.6-fold. Our observations indicate that transient transformation of the Arabidopsis leaves in the infiltration media supplemented with 0.01% Triton X-100 and incubation of the infiltrated plants under SDs at high relative humidity are necessary for maximal levels of expression.

  11. Differences in synovial fluid cytokine levels but not in synovial tissue cell infiltrate between anti-citrullinated peptide/protein antibody-positive and –negative rheumatoid arthritis patients

    PubMed Central

    2013-01-01

    Introduction Comparative data on synovial cell infiltrate and cytokine levels in anti citrullinated peptide/protein antibody (ACPA)-positive and ACPA negative rheumatoid arthritis (RA) patients are scarce. Our aim was to analyze synovial cell infiltrate and synovial fluid (SF) levels of cytokines in patients with RA according to the presence or absence of ACPA in serum. Methods A cross-sectional study in a single center including consecutive RA patients was performed. Patients were defined as 'ACPA negative' if serum was negative to two different ACPAs [second generation commercial anti-cyclic citrullinated peptide antibodies (CCP2) and chimeric fibrin/filaggrin citrullinated antibodies]. Parallel synovial tissue (ST) biopsies and SF were obtained by knee arthroscopy. Synovial cell infiltrate and endothelial cells were analyzed by immunohistochemistry and SF levels of Th1, Th2, Th17 and pro-inflammatory cytokines by Quantibody(R) Human Array. Results A total of 83 patients underwent arthroscopy, with a mean age of 55.9 ± 12 years, and mean disease duration of 45 months (interquartile range, IQR 10.8 to 122). 62% were female and 77% were ACPA positive. No significant differences were found in clinical variables, acute phase reactants, synovial cell infiltrate or lymphoid neogenesis (LN) between ACPA positive and negative patients. However ACPA positive patients had significantly higher levels of IL-1β, IL-10, IL-17 F and CC chemokine ligand 20 (CCL-20) than ACPA negative patients. Conclusions In our cohort of patients with RA no significant differences were found in synovial cell infiltrate or synovial LN according to ACPA status. However, ACPA positive patients had higher levels of T-cell derived and pro-inflammatory cytokines than ACPA negative patients. As systemic and local inflammation was similar in the two groups, these findings support a distinct synovial physiopathology. PMID:24485167

  12. Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs.

    PubMed

    Weidenbacher, L; Abrishamkar, A; Rottmar, M; Guex, A G; Maniura-Weber, K; deMello, A J; Ferguson, S J; Rossi, R M; Fortunato, G

    2017-12-01

    The fabrication of functional 3D tissues is a major goal in tissue engineering. While electrospinning is a promising technique to manufacture a structure mimicking the extracellular matrix, cell infiltration into electrospun scaffolds remains challenging. The robust and in situ delivery of cells into such biomimetic scaffolds would potentially enable the design of tissue engineered constructs with spatial control over cellular distribution but often solvents employed in the spinning process are problematic due to their high cytotoxicity. Herein, microfluidic cell encapsulation is used to establish a temporary protection vehicle for the in situ delivery of cells for the development of a fibrous, cell-laden hybrid biograft. Therefore a layer-by-layer process is used by alternating fiber electrospinning and cell spraying procedures. Both encapsulation and subsequent electrospraying of capsules has no negative effect on the viability and myogenic differentiation of murine myoblast cells. Propidium iodide positive stained cells were analyzed to quantify the amount of dead cells and the presence of myosin heavy chain positive cells after the processes was shown. Furthermore, encapsulation successfully protects cells from cytotoxic solvents (such as dimethylformamide) during in situ delivery of the cells into electrospun poly(vinylidene fluoride-co-hexafluoropropylene) scaffolds. The resulting cell-populated biografts demonstrate the clear potential of this approach in the creation of viable tissue engineering constructs. Infiltration of cells and their controlled spatial distribution within fibrous electrospun membranes is a challenging task but allows for the development of functional highly organized 3D hybrid tissues. Combining polymer electrospinning and cell electrospraying in a layer-by-layer approach is expected to overcome current limitations of reduced cell infiltration after traditional static seeding. However, organic solvents, used during the electrospinning process, impede often major issues due to their high cytotoxicity. Utilizing microfluidic encapsulation as a mean to embed cells within a protective polymer casing enables the controlled deposition of viable cells without interfering with the cellular phenotype. The presented techniques allow for novel cell manipulation approaches being significant for enhanced 3D tissue engineering based on its versatility in terms of material and cell selection. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Synergic solventing-out crystallization with subsequent time-delay thermal annealing of PbI2 precursor in mesostructured perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Jia, Fujin; Guo, Yanqun; Che, Lijia; Liu, Zhiyong; Zeng, Zhigang; Cai, Chuanbing

    2018-06-01

    Although the two-step sequential deposition method provides an efficient route to fabricate high performance perovskite solar cells (PSSCs) with increasing reproducibility, the inefficient and incomplete conversion of PbI2 to perovskite is still quite a challenge. Following pioneering works, we found that the conversion process from PbI2 to perovskite mainly involves diffusion, infiltration, contact and reaction. In order to facilitate the conversion from PbI2 to perovskite, we demonstrate an effective method to regulate supersaturation level (the driving force to crystallization) of PbI2 by solventing-out crystallization combining with subsequent time-delay thermal annealing of PbI2 wet film. Enough voids and spaces in resulting porous PbI2 layer will be in favor of efficient diffusion, infiltration of CH3NH3I solution, and further enhance the contact and reaction between PbI2 and CH3NH3I in the whole film, leading to rapid, efficient and complete perovskite conversion with a conversion level of about 99.9%. Enhancement of light harvesting ranging from visible to near-IR region was achieved for the resultant high-quality perovskite. Upon this combined method, the fabricated mesostructured solar cells show tremendous power conversion efficiency (PCE) improvement from 3.2% to about 12.3% with less hysteresis owing to the simultaneous enhancement of short-circuit photocurrent density (J sc), open-circuit voltage (V oc) and fill factor (FF).

  14. Effects of a layer of vegetative ash layer on wettable and water repellent soil hydrology

    NASA Astrophysics Data System (ADS)

    Bodí, Merche B.; Doerr, Stefan H.; Cerdà, Artemi; Mataix-Solera, Jorge

    2010-05-01

    Following a wildfire, a layer of vegetative ash often covers the ground until it is dissolved or redistributed by wind and water erosion. Much of the existing literature suggests that the ash layer temporally reduces infiltration by clogging soil pores or by forming a surface crust (Mallik et al., 1984; Onda et al., 2008). However, an increasing number of field-based studies have found that, at least in the short term, ash increases infiltration by storing rainfall and protecting the underlying soil from sealing (Cerdà and Doerr, 2008; Woods and Balfour, 2008). On the other hand, after a fire the soil may have produced, enhanced or reduced its water repellency (Doerr et al., 2000). Very few studies have been taken into account the interaction of the ash and the repellent soil. The layer of ash may have similar role as a litter layer in delaying runoff and reducing erosion by storing water. In order to examine this interaction, it was been made a series of experiments using a laboratory rainfall simulation. It has been assessed the effects of an ash layer i) on a wettable and water repellent soil (WDPT > 7200s), ii) with different ash thicknesses (bare soil and 5 mm, 15 mm and 30 mm of ash), iii) preceding and following the first rain after a fire when the ground is still wetted and after being partially dried. Three replicates were done, being a total of 40 simulations. The ash used was collected from a Wildfire in Teruel (Spain) during summer of 2009. The simulations were conducted in metal boxes of 30x30 cm and filled with 3 cm of soil. The slope of the box was set at 10° (17%) and the intensity applied was 78-84 mm h-1during 40 minutes. The splash detachment was determined also using four splash cups. Overland flow and subsurface drainage was collected at 1-minute intervals and the former stored every 5 min to allow determination of sediment concentrations, yield and erosion rates. Each sample was examined at the end in terms of water repellency, infiltration pattern and ash incorporation into the soil. The results show that when ash covers the wettable soil, runoff occur for a short period of time in the middle of the event. It occurred latter on time but larger in quantity as the ash thickness increases (from 0% to 2% of runoff coefficient) and at the same time drainage is reduced (from 57 to 24%). This suggests that the ash layer became saturated and produce runoff until the water is able to drain into the soil. Oppositely, in water repellent soil as ash thickness increases both runoff is reduced (from 78% to 26%) and drainage is increased (from 0 to 16%). That fact indicates a modification in the hydraulic conductivity of the repellent soil due to the pressure of the ash layer. Splash and erosion rates are bigger in water repellent soils yet erosion rates never exceed 2.5 g m-2 h-1. The fact of wetting increases the runoff and drainage rates in wettable but reduce them in the water repellent soil. An irregular infiltration pattern is observed afterwards. After drying the soil, the increase in runoff indicates a crust formation. Moreover, in water repellent soils part of the repellency is reestablished. These findings demonstrate that the interaction of the soil-ash layer should be considered and better studied in the immediate hydrological response after wildfire due to its particular behavior. References Cerdà, A. and Doerr, S.H., 2008. The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74: 256-263. Doerr, S.H., Shakesby, R.A. and Walsh, R.P.D., 2000. Soil Water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth Science Reviews, 51: 33-65. Mallik, A.U., Gimingham, C.H. and Rahman, A.A., 1984. Ecological effects of heater burning. I. Water infiltration, moisture retention and porosity of surface soil. Journal of Ecology, 72: 767-776. Onda, Y., Dietrich, W.E. and Booker, F., 2008. Evolution of overland flow after a severe forest fire, Point Reyes, California. Catena, 72: 13-20. Woods, S.W. and Balfour, V., 2008. The effect of ash on runoff and erosion after a forest wildfire, Montana, U.S.A. International Journal of Wildland Fire, 17(5): 535-548.

  15. Translation of an engineered nanofibrous disc-like angle-ply structure for intervertebral disc replacement in a small animal model.

    PubMed

    Martin, John T; Milby, Andrew H; Chiaro, Joseph A; Kim, Dong Hwa; Hebela, Nader M; Smith, Lachlan J; Elliott, Dawn M; Mauck, Robert L

    2014-06-01

    Intervertebral disc degeneration has been implicated in the etiology of low back pain; however, the current surgical strategies for treating symptomatic disc disease are limited. A variety of materials have been developed to replace disc components, including the nucleus pulposus (NP), the annulus fibrosus (AF) and their combination into disc-like engineered constructs. We have previously shown that layers of electrospun poly(ε-caprolactone) scaffold, mimicking the hierarchical organization of the native AF, can achieve functional parity with native tissue. Likewise, we have combined these structures with cell-seeded hydrogels (as an NP replacement) to form disc-like angle-ply structures (DAPS). The objective of this study was to develop a model for the evaluation of DAPS in vivo. Through a series of studies, we developed a surgical approach to replace the rat caudal disc with an acellular DAPS and then stabilized the motion segment via external fixation. We then optimized cell infiltration into DAPS by including sacrificial poly(ethylene oxide) layers interspersed throughout the angle-ply structure. Our findings illustrate that DAPS are stable in the caudal spine, are infiltrated by cells from the peri-implant space and that infiltration is expedited by providing additional routes for cell migration. These findings establish a new in vivo platform in which to evaluate and optimize the design of functional disc replacements. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. A visual water vapor photonic crystal sensor with PVA/SiO2 opal structure

    NASA Astrophysics Data System (ADS)

    Yang, Haowei; Pan, Lei; Han, Yingping; Ma, Lihua; Li, Yao; Xu, Hongbo; Zhao, Jiupeng

    2017-11-01

    In study, we proposed a simple yet fast optical sensing motif based on thimbleful of polyvinyl alcohol (PVA) infiltrated photonic crystal (PC), which allows for high efficiency in vapor sensing through changes in their inter-layer space. Linear response to a broad dynamic range of vapor concentration was realized. Ultrafast response time (<1 s) and excellent recyclability were also demonstrated. Selective response to a vapor was exhibited, reflecting well the characteristic sorption properties of PVA, with which colorimetric reporting was readily achieved. These substantial improvements in performance are attributed to the efficacy of signal transduction and the enhanced signal transduction because of thimbleful PVA infiltrated space between adjacent SiO2 nanospheres.

  17. Coexistence of nail lichen planus and lichen planus pigmentosus.

    PubMed

    Lemes, Luciana Rodino; Verde, Renata Brandão Villa; Durães, Sandra Maria Barbosa; Araripe, Adolpho de Alencar; Pantaleão, Luciana

    2016-01-01

    We describe a fifty-six-year old, Afro-descendent female patient showing dystrophy of her twenty nails and hyperchromic, asymptomatic macule on her face. Histopathological examination of the macule showed vacuolization of the basal layer, melanophages in the superficial dermis and lymphoplasmocytic inflammatory infiltrate. Nail biopsy revealed orthokeratotic hyperkeratosis and lichenoid inflammatory infiltrate. Lichen planus pigmentosus is an uncommon variety of lichen planus. It is characterized by typical hyperpigmented macules on the face and neck. Nail changes might be present in 10% of lichen planus cases, but no associations with lichen planus pigmentosus have been described. We report a case of lichen planus in twenty nails associated with lichen planus pigmentosus on the patient's face.

  18. An Atypical Case of Eosinophilic Gastroenteritis Presenting as Hypovolemic Shock.

    PubMed

    Martillo, Miguel; Abed, Jean; Herman, Michael; Abed, Elie; Shi, Wenjing; Munot, Khushboo; Mankal, Pavan Kumar; Gurunathan, Rajan; Ionescu, Gabriel; Kotler, Donald P

    2015-01-01

    Eosinophilic gastroenteritis is an uncommon condition characterized by focal or diffuse infiltration of eosinophils in the gastrointestinal tract in the absence of secondary causes. The pathogenesis of this condition is not well understood and its clinical presentation depends on the segment and layer of the gastrointestinal tract affected. The definition of eosinophilic gastroenteritis may be difficult, as the normal ranges of eosinophil numbers in normal and abnormal gastric and intestinal mucosa are not standardized. We present the case of a 59-year-old male who came to the hospital with hypovolemic shock and lethargy secondary to severe diarrhea. Laboratory analysis was significant for peripheral eosinophilia, and pathology from both the duodenum and colon showed marked eosinophilic infiltration.

  19. Impact of Fat Infiltration in Cervical Extensor Muscles on Cervical Lordosis and Neck Pain: A Cross-Sectional Study.

    PubMed

    Kim, Choong-Young; Lee, Sang-Min; Lim, Seong-An; Choi, Yong-Soo

    2018-06-01

    Weakness of cervical extensor muscles causes loss of cervical lordosis, which could also cause neck pain. The aim of this study was to investigate the impact of fat infiltration in cervical extensor muscles on cervical lordosis and neck pain. Fifty-six patients who suffered from neck pain were included in this study. Fat infiltration in cervical extensor muscles was measured at each level of C2-3 and C6-7 using axial magnetic resonance imaging. The visual analogue scale (VAS), 12-Item Short Form Health Survey (SF-12), and Neck Disability Index (NDI) were used for clinical assessment. The mean fat infiltration was 206.3 mm 2 (20.3%) at C2-3 and 240.6 mm 2 (19.5%) at C6-7. Fat infiltration in cervical extensor muscles was associated with high VAS scores at both levels ( p = 0.047 at C2-3; p = 0.009 at C6-7). At C2-3, there was a negative correlation between fat infiltration of the cervical extensor muscles and cervical lordosis (r = -0.216; p = 0.020). At C6-7, fat infiltration in the cervical extensor muscles was closely related to NDI ( p = 0.003) and SF-12 ( p > 0.05). However, there was no significant correlation between cervical lordosis and clinical outcomes (VAS, p = 0.112; NDI, p = 0.087; and SF-12, p > 0.05). These results suggest that fat infiltration in the upper cervical extensor muscles has relevance to the loss of cervical lordosis, whereas fat infiltration in the lower cervical extensor muscles is associated with cervical functional disability.

  20. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management.

    PubMed

    Pal, Pallabi; Dadhich, Prabhash; Srivas, Pavan Kumar; Das, Bodhisatwa; Maulik, Dhrubajyoti; Dhara, Santanu

    2017-08-22

    Mimicking skin extracellular matrix hierarchy, the present work aims to develop a bilayer skin graft comprising a porous cotton-wool-like 3D layer with membranous structure of PCL-chitosan nanofibers. Emulsion electrospinning with differential stirring periods of PCL-chitosan emulsion results in development of a bilayer 3D structure with varied morphology. The electrospun membrane has fiber diameter ∼274 nm and pore size ∼1.16 μm while fluffy 3D layer has fiber diameter ∼1.62 μm and pore size ∼62 μm. The 3D layer was further coated with collagen I isolated from Cirrhinus cirrhosus fish scales to improve biofunctionality. Surface coating with collagen I resulted in bundling the fibers together, thereby increasing their average diameter to 2.80 μm and decreasing pore size to ∼45 μm. The architecture and composition of the scaffold promotes efficient cellular activity where interconnected porosity with ECM resembling collagen I coating assists cellular adhesion, infiltration, and proliferation from initial days of fibroblast seeding, while keratinocytes migrate on the surface only without infiltrating in the membranous nanofiber layer. Anatomy of the scaffold arising due to variation in pore size distribution at different layers thereby facilitates compartmentalization and prevents initial cellular transmigration. The scaffold also assists in extracellular matrix protein synthesis and keratinocyte stratification in vitro. Further, the scaffold effectively integrates and attaches with third-degree burn wound margins created in rat models and accelerates healing in comparison to standard Tegaderm dressing™. The bilayer scaffold is thus a promising, readily available, cost-effective, off-the-shelf matrix as a skin substitute.

  1. The effects of antecedent dry days on the nitrogen removal in layered soil infiltration systems for storm run-off control.

    PubMed

    Cho, Kang-Woo; Yoon, Min-Hyuk; Song, Kyung-Guen; Ahn, Kyu-Hong

    2011-01-01

    The effects of antecedent dry days (ADD) on nitrogen removal efficiency were investigated in soil infiltration systems, with three distinguishable layers: mulch layer (ML), coarse soil layer (CSL) and fine soil layer (FSL). Two sets of lab-scale columns with loamy CSL (C1) and sandy CSL (C2) were dosed with synthetic run-off, carrying chemical oxygen demand of 100 mg L(-1) and total nitrogen of 13 mg L(-1). The intermittent dosing cycle was stepwise adjusted for 5, 10 and 20 days. The influent ammonium and organic nitrogen were adsorbed to the entire depth in C1, while dominantly to the FSL in C2. In both columns, the effluent ammonium concentration increased while the organic nitrogen concentration decreased, as ADD increased from 5 to 20 days. The effluent of C1 always showed nitrate concentration exceeding influent, caused by nitrification, by increasing amounts as ADD increased. However, the wash-out of nitrate in C1 was not distinct in terms of mass since the effluent flow rate was only 25% of the influent. In contrast, efficient reduction (>95%) of nitrate loading was observed in C2 under ADD of 5 and 10 days, because of insignificant nitrification in the CSL and denitrification in the FSL. However, for the ADD of 20 days, a significant nitrate wash-out appeared in C2 as well, possibly because of the re-aeration by the decreasing water content in the FSL. Consequently, the total nitrogen load escaping with the effluent was always smaller in C2, supporting the effectiveness of sandy CSL over loamy FSL for nitrogen removal under various ADDs.

  2. The Eco-Hydrological Role of Physical Surface Sealing in Dry Environments

    NASA Astrophysics Data System (ADS)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2016-04-01

    Soil surface sealing is a widespread natural process in dry environments occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water availability and consequently transpiration rates. This effect is investigated here using two separate physically based models - a runoff model, and a root water uptake model. High resolution rainfall data is used to demonstrate the seal layer effect on runoff generation and vegetation water availability, while the seal layer effect on vegetation water uptake is studied using a long-term climatic dataset (44 years) from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes water uptake parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using an inverse calibration procedure using data from a lysimeter experiment. The results indicate that the presence of surface sealing increases significantly vegetation water availability through runoff generation. Following water infiltration, the shrub transpiration generally increases if the shrub is surrounded by a seal layer, but this effect can switch from positive to negative depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on inter-annual variability of the seal layer effect on the shrub transpiration, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. These results shed light on the importance of surface sealing on the eco-hydrology of dry environments and its contribution to the resilience of woody vegetation.

  3. Genomic signatures characterize leukocyte infiltration in myositis muscles.

    PubMed

    Zhu, Wei; Streicher, Katie; Shen, Nan; Higgs, Brandon W; Morehouse, Chris; Greenlees, Lydia; Amato, Anthony A; Ranade, Koustubh; Richman, Laura; Fiorentino, David; Jallal, Bahija; Greenberg, Steven A; Yao, Yihong

    2012-11-21

    Leukocyte infiltration plays an important role in the pathogenesis and progression of myositis, and is highly associated with disease severity. Currently, there is a lack of: efficacious therapies for myositis; understanding of the molecular features important for disease pathogenesis; and potential molecular biomarkers for characterizing inflammatory myopathies to aid in clinical development. In this study, we developed a simple model and predicted that 1) leukocyte-specific transcripts (including both protein-coding transcripts and microRNAs) should be coherently overexpressed in myositis muscle and 2) the level of over-expression of these transcripts should be correlated with leukocyte infiltration. We applied this model to assess immune cell infiltration in myositis by examining mRNA and microRNA (miRNA) expression profiles in muscle biopsies from 31 myositis patients and 5 normal controls. Several gene signatures, including a leukocyte index, type 1 interferon (IFN), MHC class I, and immunoglobulin signature, were developed to characterize myositis patients at the molecular level. The leukocyte index, consisting of genes predominantly associated with immune function, displayed strong concordance with pathological assessment of immune cell infiltration. This leukocyte index was subsequently utilized to differentiate transcriptional changes due to leukocyte infiltration from other alterations in myositis muscle. Results from this differentiation revealed biologically relevant differences in the relationship between the type 1 IFN pathway, miR-146a, and leukocyte infiltration within various myositis subtypes. Results indicate that a likely interaction between miR-146a expression and the type 1 IFN pathway is confounded by the level of leukocyte infiltration into muscle tissue. Although the role of miR-146a in myositis remains uncertain, our results highlight the potential benefit of deconvoluting the source of transcriptional changes in myositis muscle or other heterogeneous tissue samples. Taken together, the leukocyte index and other gene signatures developed in this study may be potential molecular biomarkers to help to further characterize inflammatory myopathies and aid in clinical development. These hypotheses need to be confirmed in separate and sufficiently powered clinical trials.

  4. A feasible method to eliminate nanoleakage in dentin hybrid layers.

    PubMed

    Chen, Ji-Hua; Liu, Yan; Niu, Li-Na; Lu, Shuai; Tay, Franklin R; Gao, Yu

    2014-10-01

    To determine whether high-pressure air blowing during adhesive application affects the infiltration of resin comonomers and nanoleakage manifestation in the resin/dentin interface under simulated pulpal pressure. Thirty mid-coronal dentin surfaces were bonded with an etch-and-rinse adhesive (Adper Single Bond 2) under simulated pulpal pressure. In the control group, the adhesive was thinned by ordinary air blowing with a pressure of 0.2 MPa, while in the experimental group, a high-pressure air blowing technique (pressure: 0.4 MPa) was used. All other procedures followed the manufacturer's instructions. Resin tag formation and nanoleakage in the bonding interface were evaluated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When adhesive was thinned with high pressure air blowing, longer and more homogeneous resin tags were formed. The bonding interface demonstrated good overall morphology and integrity. Almost perfect infiltration of resin and no obvious nanoleakage were observed. Thinning of adhesive with high-pressure air blowing provides a clinically feasible adjunctive procedure for better resin infiltration.

  5. Mechanical Behavior of a Hi-Nicalon(tm)/SiC Composite Having a Polycarbosilane Derived Matrix

    NASA Technical Reports Server (NTRS)

    Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.

    1999-01-01

    Polymer infiltration of a rigidized preform, followed by pyrolysis to convert the polymer to a ceramic, potentially offers a lower cost alternative to CVD. It also offers more moderate temperature requirements than melt infiltration approaches, which should minimize potential fiber damage during processing. However, polymer infiltration and pyrolysis results in a more microcracked matrix. Preliminary mechanical property characterization, including elevated temperature (1204 C) tensile, 500 h stress rupture behavior and low cycle fatigue, was conducted on Hi-Nicalon (TM)/Si-C-(O) composites having a dual layer BN/SiC interface and a matrix derived by impregnation and pyrolysis of allylhydridopolycarbosilane (AHPCS). Microstructural evaluation of failure surfaces and of polished transverse and longitudinal cross sections of the failed specimens was used to identify predominant failure mechanisms. In stress rupture testing at 1093 C, the failure was interface dominated, while at 1204 C in both stress rupture and two hour hold/fatigue tests failure was matrix dominated, resulting in specimen delamination.

  6. Dentin-cement Interfacial Interaction

    PubMed Central

    Atmeh, A.R.; Chong, E.Z.; Richard, G.; Festy, F.; Watson, T.F.

    2012-01-01

    The interfacial properties of a new calcium-silicate-based coronal restorative material (Biodentine™) and a glass-ionomer cement (GIC) with dentin have been studied by confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), micro-Raman spectroscopy, and two-photon auto-fluorescence and second-harmonic-generation (SHG) imaging. Results indicate the formation of tag-like structures alongside an interfacial layer called the “mineral infiltration zone”, where the alkaline caustic effect of the calcium silicate cement’s hydration products degrades the collagenous component of the interfacial dentin. This degradation leads to the formation of a porous structure which facilitates the permeation of high concentrations of Ca2+, OH-, and CO32- ions, leading to increased mineralization in this region. Comparison of the dentin-restorative interfaces shows that there is a dentin-mineral infiltration with the Biodentine, whereas polyacrylic and tartaric acids and their salts characterize the penetration of the GIC. A new type of interfacial interaction, “the mineral infiltration zone”, is suggested for these calcium-silicate-based cements. PMID:22436906

  7. Hydraulic characterization of a sealed loamy soil in a Mediterranean vineyard

    NASA Astrophysics Data System (ADS)

    Alagna, Vincenzo; Di Prima, Simone; Bagarello, Vincenzo; Guaitoli, Fabio; Iovino, Massimo; Keesstra, Saskia; Cerdà, Artemi

    2017-04-01

    Water infiltration measurements constitute a common way for an indirect characterization of sealed/crusted soils (Alagna et al., 2013). The Beerkan Estimation of Soil Transfer (BEST) parameters procedure by Lassabatere et al. (2006) is very attractive for practical use since it allows an estimation of both the soil water retention and hydraulic conductivity functions. The BEST method considers certain analytical formulae for the hydraulic characteristic curves and estimates their shape parameters, which are texture dependent, from particle-size analysis by physical-empirical pedotransfer functions. Structure dependent scale parameters are estimated by a beerkan experiment, i.e. a three-dimensional (3D) field infiltration experiment at ideally zero pressure head. BEST substantially facilitates the hydraulic characterization of unsaturated soils, and it is gaining popularity in soil science (Bagarello et al., 2014a; Di Prima, 2015; Di Prima et al., 2016b). Bagarello et al. (2014b) proposed a beerkan derived procedure to explain surface runoff and disturbance phenomena at the soil surface occurring during intense rainfall events. Di Prima et al. (2016a) applied this methodology in a vineyard with a sandy-loam texture. These authors compared this simple methodology with rainfall simulation experiments establishing a physical link between the two methodologies through the kinetic energy of the rainfall and the gravitational potential energy of the water used for the beerkan runs. They also indirectly demonstrated the occurrence of a certain degree of compaction and mechanical breakdown using a minidisk infiltrometer (Decagon, 2014). With this device, they reported a reduction of the unsaturated hydraulic conductivity by 2.3 times, due to the seal formation. The ability of the BEST method to distinguish between crusted and non-crusted soils was demonstrated by Souza et al. (2014). However, the potential of the beerkan runs to detect the effect of the seal on flow and BEST estimates is still largely unknown since only a few investigations have been carried out. In this study, the BEST method was applied to check the impact of sealing on soil hydraulic conductivity in a Mediterranean vineyard (western Sicily, Italy) under conventional tillage. An area of approximately 150 m2 was sampled on three different sampling campaigns covering two growing seasons. Beerkan infiltration experiments were carried out along the rows direction and in the inter-row areas. A 55 mm rainfall event that occurred between the first and second sampling campaigns contributed to form a sealed layer at the soil surface. The presence of the seal implied that the saturated soil hydraulic conductivity, Ks, was 1.5-1.8 times lower than that measured in the absence of the sealed layer. The seal layer only affected water infiltration between the rows, suggesting that the protective role of vegetation along the rows was effective. The tillage practices carried out in the spring 2016 removed any existing surface sealed layer and thereby increased soil infiltration properties, suggesting a cycling occurrence of layering phenomena within the year. In fact, differences between the Ks values measured between the rows (second against first and third sampling campaigns) were statistically significant. In this investigation, the sampling strategy implying beerkan tests carried out along and between the vine-rows was successfully applied. This strategy allowed to assess the reduction in hydraulic conductivity with extemporaneous measurements alone. Its main advantage is that it allows a rapid assessment of sealing severity affecting water infiltration taking advantage of the protective role of the vegetation along the rows. In conclusion, the hypothesis that the beerkan runs are suitable enough to detect the effect of the seal on flow and Ks values estimated by BEST was reasonable. In the future, testing the proposed procedure in conjunction with others field methodologies for soil hydraulic characterization implying alteration at the soil surface, such as rainfall simulation experiments or the beerkan derived procedure discussed above, should contribute to a better understanding of sealing severity affecting water infiltration on bare soils. Ring insertion for the infiltration run does not seem to alter the sealed layer but more investigations are required with reference to this point. Acknowledgements This study was supported by grants from the Research Project CISV under grant n˚ 2014COMM-0363 CUP 872114000570002. References Alagna, V., Bagarello, V., Di Prima, S., Giordano, G. and Iovino, M.: A simple field method to measure the hydrodynamic properties of soil surface crust, Journal of Agricultural Engineering, 44(25), 74-79, doi:10.4081/jae.2013.(s1):e14, 2013. Bagarello, V., Di Prima, S., Giordano, G. and Iovino, M.: A test of the Beerkan Estimation of Soil Transfer parameters (BEST) procedure, Geoderma, 221-222, 20-27, doi:10.1016/j.geoderma.2014.01.017, 2014a. Bagarello, V., Castellini, M., Di Prima, S. and Iovino, M.: Soil hydraulic properties determined by infiltration experiments and different heights of water pouring, Geoderma, 213, 492-501, doi:10.1016/j.geoderma.2013.08.032, 2014b. Decagon: Minidisk Infiltrometer User's Manual, Decagon Devices, Inc., Pullman, USA, 24, 2014. Di Prima, S.: Automated single ring infiltrometer with a low-cost microcontroller circuit, Computers and Electronics in Agriculture, 118, 390-395, doi:10.1016/j.compag.2015.09.022, 2015. Di Prima, S., Bagarello, V., Angulo-Jaramillo, R., Bautista, I., Burguet, M., Cerdà, A., Iovino, M., Lassabatère, L. and Prosdocimi, M.: Comparing Beerkan infiltration tests with rainfall simulation experiments for hydraulic characterization of a sandy-loam soil, Submitted to Hydrological Processes, 2016a. Di Prima, S., Lassabatere, L., Bagarello, V., Iovino, M. and Angulo-Jaramillo, R.: Testing a new automated single ring infiltrometer for Beerkan infiltration experiments, Geoderma, 262, 20-34, doi:10.1016/j.geoderma.2015.08.006, 2016b. Lassabatere, L., Angulo-Jaramillo, R., Soria Ugalde, J. M., Cuenca, R., Braud, I. and Haverkamp, R.: Beerkan Estimation of Soil Transfer Parameters through Infiltration Experiments—BEST, Soil Science Society of America Journal, 70(2), 521, doi:10.2136/sssaj2005.0026, 2006. Souza, E. S., Antonino, A. C. D., Heck, R. J., Montenegro, S. M. G. L., Lima, J. R. S., Sampaio, E. V. S. B., Angulo-Jaramillo, R. and Vauclin, M.: Effect of crusting on the physical and hydraulic properties of a soil cropped with Castor beans (Ricinus communis L.) in the northeastern region of Brazil, Soil and Tillage Research, 141, 55-61, doi:10.1016/j.still.2014.04.004, 2014.

  8. Histopathology of acute acalculous cholecystitis in critically ill patients.

    PubMed

    Laurila, J J; Ala-Kokko, T I; Laurila, P A; Saarnio, J; Koivukangas, V; Syrjälä, H; Karttunen, T J

    2005-11-01

    To illustrate the histopathological features of acute acalculous cholecystitis (AAC) of critically ill patients and to compare them with those of acute calculous cholecystitis (ACC) and normal gallbladders. We studied 34 gallbladders with AAC and compared them with 28 cases of ACC and 14 normal gallbladders. Histological features were systematically evaluated. Typical features in AAC were bile infiltration, leucocyte margination of blood vessels and lymphatic dilation. Bile infiltration in the gallbladder wall was more common and extended wider and deeper into the muscle layer in AAC compared with ACC. Epithelial degeneration and defects and widespread occurrence of inflammatory cells were typical features in ACC. Necrosis in the muscle layer was also more common and extended wider and deeper in ACC. There were no differences in the occurrence of capillary thromboses, lymphatic follicles or Rokitansky-Aschoff sinuses between the AAC and ACC samples. There are characteristic differences in histopathology between AAC and ACC, although due to overlap, none appeared to be specific as such for either condition. These results suggest that AAC is largely a manifestation of systemic critical illness, whereas ACC is a local disease of the gallbladder.

  9. Microstructures and Properties of the C/Zr-O-Si-C Composites Fabricated by Polymer Infiltration and Pyrolysis

    NASA Astrophysics Data System (ADS)

    Ma, Yan; Chen, Zhaohui

    2013-09-01

    A way to improve the ablation properties of the C/SiC composites in an oxyacetylene torch environment was investigated by the precursor infiltration and pyrolysis route using three organic precursors (zirconium butoxide, polycarbosilane, and divinylbenzene). The ceramic matrix derived from the precursors at 1200 °C was mainly a mixture of SiC, ZrO2, and C. After annealing at 1600 °C for 1 h, ZrO2 partly transformed to ZrC because of the carbothermic reductions and completely transformed to ZrC at 1800 °C in 1 h. The mechanical properties of the composites decreased with increasing temperature, while the ablation resistance increased due to the increasing content of ZrC. Compared with C/SiC composites, the ablation resistance of the C/Zr-O-Si-C composites overwhelms because of the oxide films which formed on the ablation surfaces. And, the films were composed of two layers: the porous surface layer (the mixture of ZrO2 and SiO2) and the dense underlayer (SiO2).

  10. Flood induced infiltration affecting a bank filtrate well at the River Enns, Austria

    NASA Astrophysics Data System (ADS)

    Wett, Bernhard; Jarosch, Hannes; Ingerle, Kurt

    2002-09-01

    Bank filtration employs a natural filtration process of surface water on its flow path from the river to the well. The development of a stable filter layer is of major importance to the quality of the delivered water. Flooding is expected to destabilise the riverbed, to reduce the filter efficiency of the bank and therefore to endanger the operation of water supply facilities near the riverbank. This paper provides an example of how bank storage in an unconfined alluvial aquifer causes a significant decrease of the seepage rate after a high-water event. Extensive monitoring equipment has been installed in the river bank of the oligotrophic alpine River Enns focusing on the first metre of the flow path. Head losses measured by multilevel probes throughout a year characterise the development of the hydraulic conductivity of different riverbed layers. Concentration profiles of nitrate, total ions and a NaCl tracer have been used to study infiltration rates of river water and its dilution with groundwater. Dynamic modelling was applied in order to investigate the propagation of flood induced head elevation and transport of pollutants.

  11. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration

    PubMed Central

    Yin, Anlin; Bowlin, Gary L.; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-01-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels. PMID:27482466

  12. Electrospun silk fibroin/poly (L-lactide-ε-caplacton) graft with platelet-rich growth factor for inducing smooth muscle cell growth and infiltration.

    PubMed

    Yin, Anlin; Bowlin, Gary L; Luo, Rifang; Zhang, Xingdong; Wang, Yunbing; Mo, Xiumei

    2016-12-01

    The construction of a smooth muscle layer for blood vessel through electrospinning method plays a key role in vascular tissue engineering. However, smooth muscle cells (SMCs) penetration into the electrospun graft to form a smooth muscle layer is limited due to the dense packing of fibers and lack of inducing factors. In this paper, silk fibroin/poly (L-lactide-ε-caplacton) (SF/PLLA-CL) vascular graft loaded with platelet-rich growth factor (PRGF) was fabricated by electrospinning. The in vitro results showed that SMCs cultured in the graft grew fast, and the incorporation of PRGF could induce deeper SMCs infiltrating compared to the SF/PLLA-CL graft alone. Mechanical properties measurement showed that PRGF-incorporated graft had proper tensile stress, suture retention strength, burst pressure and compliance which could match the demand of native blood vessel. The success in the fabrication of PRGF-incorporated SF/PLLA-CL graft to induce fast SMCs growth and their strong penetration into graft has important application for tissue-engineered blood vessels.

  13. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1.

    PubMed

    Staunstrup, Nicklas Heine; Stenderup, Karin; Mortensen, Sidsel; Primo, Maria Nascimento; Rosada, Cecilia; Steiniche, Torben; Liu, Ying; Li, Rong; Schmidt, Mette; Purup, Stig; Dagnæs-Hansen, Frederik; Schrøder, Lisbeth Dahl; Svensson, Lars; Petersen, Thomas Kongstad; Callesen, Henrik; Bolund, Lars; Mikkelsen, Jacob Giehm

    2017-07-01

    Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology and treatment of psoriasis. Expression of integrins, which is normally confined to the basal layer of the epidermis, is maintained in suprabasal keratinocytes in psoriatic skin, modulating proliferation and differentiation as well as leukocyte infiltration. Here, we generated minipigs co-expressing integrins α2 and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T-lymphocyte infiltration. These findings mark the first creation of minipigs with a psoriasiform phenotype resembling human psoriasis and demonstrate that integrin signaling plays a key role in psoriasis pathology. © 2017. Published by The Company of Biologists Ltd.

  14. Amelioration of ethanol induced apoptotic DNA damage and ulcerative injuries in the mice gastric tissues by starch oral administration.

    PubMed

    Hamad, Sherin Ramadan; Hamad Mohamed, Hanan Ramadan

    2018-02-01

    Nowadays, gastric ulcers have become very common gastrointestinal disorders and numerous natural plant extracts exert promising anti-ulcerative effects. Therefore, this study was designed to evaluate the possible protective effect of dietary starch against ethanol induced gastric ulcers in mice. Post-administration of dietary starch for three consecutive days caused remarkable ameliorations in hemorrhagic lesions in gastric mucus and significant suppression in % incidence of ulceration, ulcer index and ulcer score induced by ethanol single administration. Indeed, deep ulceration, necrosis, disruption and degeneration in large areas of mucosa layer together with dense inflammatory cells infiltration and edema in sub-mucosal layer induced by ethanol administration were attenuated by starch post-administration and normalized the tissue architecture of the stomach. This potential protective effect could be attributed to the potent anti-oxidative capacity of starch that causes scavenger of the reactive oxygen species and thereby decreasing single and double DNA stranded break inductions and apoptotic DNA damage revealed by returning the p53 and caspase-3 expression levels to the normal level compared to the ethanol treated group. In conclusion, dietary starch has a potent therapeutic effect against ethanol induced gastric ulcer in mice via its free radical scavengers ability. Thus, we recommended further studies on its possible use as antiulcer drugs.

  15. Simulation of Dynamic Soil Crusting Processes and Vegetative Feedbacks in Semi-Arid Regions

    NASA Astrophysics Data System (ADS)

    Sivandran, G.; Bras, R. L.

    2009-12-01

    Many soils, especially those in arid and semi-arid regions, develop compacted surface layers with hydrologic properties different to those of the underlying layers. These layers, referred to as soil crusts when dry and soil seals when wet, may be only a few millimeters thick but can have a significant impact by altering the partitioning of rainfall, increasing surface runoff and reducing infiltration. This reduces the quantity of water entering the root zone, limiting the amount of water available for primary productivity, while increasing erosion and negatively impacting seedling establishment and growth. Vegetation significantly alters soil hydraulic properties in the immediate vicinity of a vegetation patch. Root action has been shown to create macropores, increasing infiltration capacity around the base of vegetation. Shading protects the soil from evaporation and the formation of soil seals/crusts. Experiments have confirmed large variations in infiltration rates in below canopy and bare soil patches. It is believed that a positive feedback may occur between seals/crusts and vegetation patches resulting in systems that exhibit ‘islands of fertility’. The bare soil patches act to increase the micro-catchment area of the vegetation patch, thereby collecting moisture from a far greater area than the immediate footprint of its rooting system. Vegetation then alters the soil conditions directly beneath it, allowing for increased infiltration of this extra moisture. A coupled, dynamic vegetation and hydrologic model, tRIBS+VEGGIE, was used to explore the role of dynamic soil properties on hydrologic and energy fluxes. Rather than assigning the hydraulic properties of the surface soils a priori, soil seals/crusts were allowed to develop in the model depending on vegetation cover, soil type and rainfall intensity. The effects of plant shading and root action on infiltration in the immediate vicinity of vegetation patches were also included. These changes introduced both spatial and temporal heterogeneity into soil hydraulic properties and allowed for simulation of plant-soil feedbacks. The semi-arid Lucky Hills basin in the Walnut Gulch Experimental Watershed in Arizona was used as a case study to investigate the role of dynamic soil properties, which occur at patch scales, on the larger basin scale hydrologic and energy fluxes (sensible and latent heats, net radiation and rainfall partitioning). The model was used to test the contribution of dynamic soil properties to the establishment of a positive feedback between vegetation and soils that leads to the ‘islands of fertility’ that have been observed in many semi-arid systems. The model was also used to investigate the role that plant-soil interactions play in providing both stability to the larger system during periods of consistent climate forcing and some resilience to disturbance during climate perturbations.

  16. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis.

    PubMed

    Chen, Xu; Li, Shi-Jun; Ojcius, David M; Sun, Ai-Hua; Hu, Wei-Lin; Lin, Xu'ai; Yan, Jie

    2017-01-01

    To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.

  17. Influence of transitional volcanic strata on lateral diversion at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Lorraine E.; Flint, Alan L.; Selker, John S.

    2003-01-01

    Natural hydraulic barriers exist at Yucca Mountain, Nevada, a potential high‐level nuclear waste repository, that have been identified as possible lateral diversions for reducing deep percolation through the waste storage area. Historical development of the conceptual model of lateral diversion has been limited by available field data, but numerical investigations presented the possibility of significant lateral diversion due to the presence of a thin, porous rock layer, the Paintbrush nonwelded tuffs. Analytical analyses of the influence of transitional changes in properties suggest that minimal lateral diversion is likely at Yucca Mountain. Numerical models, to this point, have not accounted for the gradual transition of properties or the existence of multiple layers that could inadvertently influence the simulation of lateral diversion as an artifact of numerical model discretization. Analyses were made of subsurface matric potential measurements, and comparisons were made of surface infiltration estimates with deeper percolation flux calculations using chloride‐mass‐balance calculations and simulations of measured temperature profiles. These analyses suggest that insignificant lateral diversion has occurred above the repository horizon and that water generally moves vertically through the Paintbrush nonwelded tuffs.

  18. Travel of pollution, and purification en route, in sandy soils

    PubMed Central

    Baars, J. K.

    1957-01-01

    The travel of pollution in sandy soils, and the extent to which purification takes place en route, are discussed, with special reference to the possible contamination of ground water—a problem which is of particular importance in the Netherlands, where the water-supply for many of the large towns is drawn from the water underneath the dunes. Specifically, two types of soil pollution are considered: (a) severe pollution of the surface layers with matter concentrated in a small volume of water (e.g., faecal matter from pit privies at camping-sites); and (b) moderate pollution of the surface layers with matter contained in large quantities of water (e.g., organic matter and bacteria in river water used for the artificial recharge of ground water). It is shown that in both these types of pollution the self-purification is sufficient to prevent contamination of the ground water, provided that the soil is very fine and—in the case of the first type—dry and well aerated, and provided that the ground-water level is not too high or the rate of infiltration too great. PMID:13472428

  19. A study of subsurface wastewater infiltration systems for distributed rural sewage treatment.

    PubMed

    Qin, Wei; Dou, Junfeng; Ding, Aizhong; Xie, En; Zheng, Lei

    2014-08-01

    Three types of subsurface wastewater infiltration systems (SWIS) were developed to study the efficiency of organic pollutant removal from distributed rural sewage under various conditions. Of the three different layered substrate systems, the one with the greatest amount of decomposed cow dung (5%) and soil (DCDS) showed the highest removal efficiency with respect to total nitrogen (TN), where the others showed no significant difference. The TN removal efficiency was increased with an increasing filling height of DCDS. Compared with the TN removal efficiency of 25% in the system without DCDS, the removal efficiency of the systems in which DCDS filled half and one fourth of the height was increased by 72% and 31%, respectively. Based on seasonal variations in the discharge of the typical rural family, the SWIS were run at three different hydraulic loads of 6.5, 13 and 20 cm/d. These results illustrated that SWIS could perform well at any of the given hydraulic loads. The results of trials using different inlet configurations showed that the effluent concentration of the contaminants in the system operating a multiple-inlet mode was much lower compared with the system operated under single-inlet conditions. The effluent concentration ofa pilot-scale plant achieved the level III criteria specified by the Surface Water Quality Standard at the initial stage.

  20. Hydrological Effects of Recent Wildfires in the Southern Appalachian Mountains

    NASA Astrophysics Data System (ADS)

    Chen, J.; Stewart, R. D.

    2017-12-01

    In 2016, intense wildfires occurred throughout the southern Appalachian Mountains region due to severe drought conditions and high fuel loads. Most previous work on the effects of forest wildfire has concentrated on the western United States, and has shown that wildfires can induce a number of physical, chemical and biological changes in soils, including creating water repellency (hydrophobicity), altering color, decreasing structural stability, and altering nutrient availability. Drought intensity and wildfire activity are both predicted to increase in the southeastern United States, making it important to understand hydrological effects of wildfire in the forests of this region. In this study, we evaluated the effect of wildfire on soil hydrophobicity and soil water storage in two locations: Mount Pleasant Wildlife Refuge, Virginia, and Chimney Rock State Park, North Carolina. In each location unburned, moderately burned, and heavily burned sites were selected. Soil hydrophobicity was measured both in the field using water drop penetration time method at 0 cm, 2 cm, and 5 cm depth, and in the lab using WDPT method and water-solid contact angle method. Soil water content and unsaturated infiltration processes were also measured in the field using mini-disk infiltrometers. The results showed that hydrophobicity was detected after wildfires in both southeastern forests: the Mount Pleasant site had the highest hydrophobic layer in surface layer, while the Chimney Rock site had highest hydrophobicity at the 2 cm depth. Lab results were in accordance with the field results, and in both cases hysteresis between hydrophobicity and soil water content was observed. Burned soils had consistently lower soil water contents than unburned soils. The burned soils in the Mount Pleasant site had lower infiltration rates than the unburned sites, whereas in the Chimney Rock site the burned soils had higher infiltration rates. We hypothesize that the differences between the two sites may be related to the positions of hydrophobic layers in each (i.e., surface versus subsurface). Altogether, these results highlight the hydrological impacts of unprecedented wildfire activity in the southern Appalachians.

  1. Imaging groundwater infiltration dynamics in the karst vadose zone with long-term ERT monitoring

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Kaufmann, Olivier; Triantafyllou, Antoine; Poulain, Amaël; Chambers, Jonathan E.; Meldrum, Philip I.; Wilkinson, Paul B.; Hallet, Vincent; Quinif, Yves; Van Ruymbeke, Michel; Van Camp, Michel

    2018-03-01

    Water infiltration and recharge processes in karst systems are complex and difficult to measure with conventional hydrological methods. In particular, temporarily saturated groundwater reservoirs hosted in the vadose zone can play a buffering role in water infiltration. This results from the pronounced porosity and permeability contrasts created by local karstification processes of carbonate rocks. Analyses of time-lapse 2-D geoelectrical imaging over a period of 3 years at the Rochefort Cave Laboratory (RCL) site in south Belgium highlight variable hydrodynamics in a karst vadose zone. This represents the first long-term and permanently installed electrical resistivity tomography (ERT) monitoring in a karst landscape. The collected data were compared to conventional hydrological measurements (drip discharge monitoring, soil moisture and water conductivity data sets) and a detailed structural analysis of the local geological structures providing a thorough understanding of the groundwater infiltration. Seasonal changes affect all the imaged areas leading to increases in resistivity in spring and summer attributed to enhanced evapotranspiration, whereas winter is characterised by a general decrease in resistivity associated with a groundwater recharge of the vadose zone. Three types of hydrological dynamics, corresponding to areas with distinct lithological and structural features, could be identified via changes in resistivity: (D1) upper conductive layers, associated with clay-rich soil and epikarst, showing the highest variability related to weather conditions; (D2) deeper and more resistive limestone areas, characterised by variable degrees of porosity and clay contents, hence showing more diffuse seasonal variations; and (D3) a conductive fractured zone associated with damped seasonal dynamics, while showing a great variability similar to that of the upper layers in response to rainfall events. This study provides detailed images of the sources of drip discharge spots traditionally monitored in caves and aims to support modelling approaches of karst hydrological processes.

  2. Infiltration as Ventilation: Weather-Induced Dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Turner, William J.N.; Walker, Iain S.

    The purpose of outdoor air ventilation is to dilute or remove indoor contaminants to which occupants are exposed. It can be provided by mechanical or natural means. In most homes, especially older homes, weather-driven infiltration provides the dominant fraction of the total ventilation. As we seek to provide good indoor air quality at minimum energy cost, it is important to neither over-ventilate nor under-ventilate. Thus, it becomes critically important to evaluate correctly the contribution infiltration makes to the total outdoor air ventilation rate. Because weather-driven infiltration is dependent on building air leakage and weather-induced pressure differences, a given amount ofmore » air leakage will provide different amounts of infiltration. Varying rates of infiltration will provide different levels of contaminant dilution and hence effective ventilation. This paper derives these interactions and then calculates the impact of weather-driven infiltration for different climates. A new “N-factor” is introduced to provide a convenient method for calculating the ventilation contribution of infiltration for over 1,000 locations across North America. The results of this work could be used in indoor air quality standards (specifically ASHRAE 62.2) to account for the contribution of weather-driven infiltration towards the dilution of indoor pollutants.« less

  3. Comparison of intraosseous and infiltration injections for venous lidocaine blood concentrations and heart rate changes after injection of 2% lidocaine with 1:100,000 epinephrine.

    PubMed

    Wood, Mark; Reader, Al; Nusstein, John; Beck, Mike; Padgett, David; Weaver, Joel

    2005-06-01

    The purpose of this prospective, randomized study was to compare the venous blood levels of lidocaine and heart rate changes after intraosseous and infiltration injections of 1.8 ml of 2% lidocaine with 1:100,000 epinephrine. Using a crossover design, 20 subjects randomly received an intraosseous and infiltration injection at two separate appointments. The heart rate was measured using a pulse oximeter. Venous blood samples were collected before the injections and at 2, 5, 10, 15, 20, 25, 30, 45, and 60 min after the injections. The blinded plasma samples were analyzed for lidocaine concentrations using high-performance liquid chromatography (HPLC). The intraosseous injection resulted in a statistically significant increase in heart rate, when compared to the infiltration injection, during solution deposition and for 2 min after the injection. The plasma levels of lidocaine were not statistically different for maxillary anterior intraosseous and infiltration injections when using 1.8 ml of 2% lidocaine with 1:100,000 epinephrine.

  4. Critical level of water recharges in the catchment areas of Manna watershed Bengkulu Province Indonesia

    NASA Astrophysics Data System (ADS)

    Amri, Khairul; Nugraha, Loparedo; Barchia, Muhammad Faiz

    2017-11-01

    Land use changes in Manna watershed are caused degradation in the watershed functions. When water infiltration goes down, some water runs off flowing to Manna River cause submerged on the downstream. The aim of this study is to analyze how the Manna watershed overcoming environmentally degraded conditions. The critical level of the Manna catchment areas was determined by overlaying some digital maps based on procedure applying in the Ministry of Forestry, Republic of Indonesia (P.32/MENHUT-II/2009). Measuring the critical level of the catchment also needed natural and actual infiltrations map, and the interpretation process of the analysis used ArcGIS 10.1 software. Based on the spatial data analysis by overlaying maps of slope, soils, and rainfall, the natural infiltration rate in the Manna watershed categorized high level (44.1%). While, the critical level of the catchment areas of the Manna watershed classified in good condition cover about 64,5 % of the areas, and starting to degraded state cover about 35,5 % of the watershed areas. The environment degradation conditions indicated the land use changes in the Manna watershed could deteriorate infiltration rates. The cultivated agricultural activities neglected conservation rule could accelerate the critical catchment areas in the Manna watershed.

  5. Measuring the relative extent of pulmonary infiltrates by hierarchical classification of patient-specific image features

    NASA Astrophysics Data System (ADS)

    Tsevas, S.; Iakovidis, D. K.

    2011-11-01

    Pulmonary infiltrates are common radiological findings indicating the filling of airspaces with fluid, inflammatory exudates, or cells. They are most common in cases of pneumonia, acute respiratory syndrome, atelectasis, pulmonary oedema and haemorrhage, whereas their extent is usually correlated with the extent or the severity of the underlying disease. In this paper we propose a novel pattern recognition framework for the measurement of the extent of pulmonary infiltrates in routine chest radiographs. The proposed framework follows a hierarchical approach to the assessment of image content. It includes the following: (a) sampling of the lung fields; (b) extraction of patient-specific grey-level histogram signatures from each sample; (c) classification of the extracted signatures into classes representing normal lung parenchyma and pulmonary infiltrates; (d) the samples for which the probability of belonging to one of the two classes does not reach an acceptable level are rejected and classified according to their textural content; (e) merging of the classification results of the two classification stages. The proposed framework has been evaluated on real radiographic images with pulmonary infiltrates caused by bacterial infections. The results show that accurate measurements of the infiltration areas can be obtained with respect to each lung field area. The average measurement error rate on the considered dataset reached 9.7% ± 1.0%.

  6. Grass mulching effect on infiltration, surface runoff and soil loss of three agricultural soils in Nigeria.

    PubMed

    Adekalu, K O; Olorunfemi, I A; Osunbitan, J A

    2007-03-01

    Mulching the soil surface with a layer of plant residue is an effective method of conserving water and soil because it reduces surface runoff, increases infiltration of water into the soil and retard soil erosion. The effectiveness of using elephant grass (Pennisetum purpureum) as mulching material was evaluated in the laboratory using a rainfall simulator set at rainfall intensities typical of the tropics. Six soil samples, two from each of the three major soil series representing the main agricultural soils in South Western Nigeria were collected, placed on three different slopes, and mulched with different rates of the grass. The surface runoff, soil loss, and apparent cumulative infiltration were then measured under each condition. The results with elephant grass compared favorably with results from previous experiments using rice straw. Runoff and soil loss decreased with the amount of mulch used and increased with slope. Surface runoff, infiltration and soil loss had high correlations (R = 0.90, 0.89, and 0.86, respectively) with slope and mulch cover using surface response analysis. The mean surface runoff was correlated negatively with sand content, while mean soil loss was correlated positively with colloidal content (clay and organic matter) of the soil. Infiltration was increased and soil loss was reduced greatly with the highest cover. Mulching the soils with elephant grass residue may benefit late cropping (second cropping) by increasing stored soil water for use during dry weather and help to reduce erosion on sloping land.

  7. Preliminary development of the LBL/USGS three-dimensional site-scale model of Yucca Mountain, Nevada

    USGS Publications Warehouse

    1995-01-01

    A three-dimensional model of moisture flow within the unsaturated zone at Yucca Mountain is being developed at Lawrence Berkeley Laboratory (LBL) in cooperation with the U.S. Geological Survey (USGS). This site-scale model covers and area of about 34 km2 and is bounded by major faults to the north, east and west. The model geometry is defined (1) to represent the variations of hydrogeological units between the ground surface and the water table; (2) to be able to reproduce the effect of abrupt changes in hydrogeological parameters at the boundaries between hyrdogeological units; and (3) to include the influence of major faults. A detailed numerical grid has been developed based on the locations of boreholes, different infiltration zones, hydrogeological units and their outcrops, major faults, and water level data. Contour maps and isopatch maps are presented defining different types of infiltration zones, and the spatial distribution of Tiva Canyon, Paintbrush, and Topopah Spring hydrogeological units. The grid geometry consists of seventeen non-uniform layers which represent the lithological variations within the four main welded and non-welded hydrogeological units. Matrix flow is approximated using the van Genuchten model, and the equivalent continuum approximation is used to account for fracture flow in the welded units. The fault zones are explicitly modeled as porous medium using various assumptions regarding their permeabilities and characteristic curves. One-, two-, and three-dimensional simulations are conducted using the TOUGH2 computer program. Steady-state simulations are performed with various uniform and non-uniform infiltration rates. The results are interpreted in terms of the effect of fault characteristics on the moisture flow distribution, and on location and formation of preferential pathways.

  8. Low-Level Blast Exposure Increases Transient Receptor Potential Vanilloid 1 (TRPV1) Expression in the Rat Cornea

    PubMed Central

    Por, Elaine D.; Choi, Jae-Hyek; Lund, Brian J.

    2016-01-01

    ABSTRACT Background: Blast-related ocular injuries sustained by military personnel have led to rigorous efforts to elucidate the effects of blast exposure on neurosensory function. Recent studies have provided some insight into cognitive and visual deficits sustained following blast exposure; however, limited data are available on the effects of blast on pain and inflammatory processes. Investigation of these secondary effects of blast exposure is necessary to fully comprehend the complex pathophysiology of blast-related injuries. The overall purpose of this study is to determine the effects of single and repeated blast exposure on pain and inflammatory mediators in ocular tissues. Methods: A compressed air shock tube was used to deliver a single or repeated blast (68.0 ± 2.7 kPa) to anesthetized rats daily for 5 days. Immunohistochemistry was performed on ocular tissues to determine the expression of the transient receptor potential vanilloid 1 (TRPV1) channel, calcitonin gene-related peptide (CGRP), substance P (SP), and endothelin-1 (ET-1) following single and repeated blast exposure. Neutrophil infiltration and myeloperoxidase (MPO) expression were also assessed in blast tissues via immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) analysis, respectively. Results: TRPV1 expression was increased in rat corneas exposed to both single and repeated blast. Increased secretion of CGRP, SP, and ET-1 was also detected in rat corneas as compared to control. Moreover, repeated blast exposure resulted in neutrophil infiltration in the cornea and stromal layer as compared to control animals. Conclusion: Single and repeated blast exposure resulted in increased expression of TRPV1, CGRP, SP, and ET-1 as well as neutrophil infiltration. Collectively, these findings provide novel insight into the activation of pain and inflammation signaling mediators following blast exposure. PMID:27049881

  9. Influence of long term climate change on net infiltration at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan I.; Flint, Lorraine E.; Hevesi, Joseph A.

    1993-01-01

    Net infiltration and recharge at Yucca Mountain, Nevada, a potential site for a high level nuclear waste repository, are determined both by the rock properties and past and future changes in climate. A 1-dimensional model was constructed to represent a borehole being drilled through the unsaturated zone. The rock properties were matched to the lithologies expected to be encountered in the borehole. As current paleoclimate theory assumes that 18O increases with wetter and cooler global climates, a past climate scenario, built on depletion of 18O from ocean sediments was used as a basis for climate change over the past 700,000 years. The climate change was simulated by assigning net infiltration values as a linear function of 8O. Assuming the rock properties, lithologies and climate scenarios are correct, simulations indicated that Yucca Mountain is not in steady state equilibrium at the surface (250 meters. Based on the cyclic climate inputs, the near surface is currently in a long term drying trend (for the last 3,000 years) yet recharge into the water table is continuing to occur at an average rate equivalent to the average input rate of the climate model, indicating that conditions at depth are damped out over very long time periods. The Paintbrush Tuff nonwelded units, positioned between the Tiva Canyon and Topopah Spring welded Tuff Members, do not appear to act as capillary barrier and therefore would not perch water. The low porosity vitric caprock and basal vitrophyre of the Topopah Spring Member, however, act as restrictive layers. The higher porosity rock directly above the caprock reduces the potential for the caprock to perch water leaving the basal vitrophyre as the most likely location for perched water to develop.

  10. Atomic force microscopy and tridimensional topography analysis of human enamel after resinous infiltration and storage in water.

    PubMed

    Taher, Nadia M

    2013-04-01

    To evaluate the effect of water storage on surface roughness (Ra) of human enamel after treatment with resin infiltrant and fissure sealant, by utilizing atomic force microscopy (AFM) and microtomography. This study was conducted after registration and ethical approval clarification at the College of Dentistry Research Center, King Saud University, Riyadh, Kingdom of Saudi Arabia between January 2011 and August 2011. Thirty enamel surface specimens were prepared from caries-free human premolar teeth. Specimens were divided into 3 groups: Group I, was the control; Group II, a resin infiltrant (Icon) was applied on the enamel surfaces; and Group III, the teeth were treated with fissure sealant (SealRite). All specimens were stored in distilled water for 6 months and then, subjected to AFM Veeco CP11 1.2 analysis. A few specimens were scanned by skyscan-1072-x-ray microtomography. The Ra mean readings were recorded and statistical analysis was performed with the Statistical Package for Social Sciences Version 16 at the significance level of p<0.05. No significant differences in the mean Ra were recorded among the 3 groups, (Group I = 0.21+/-0.057), (Group II = 0.23+/-0.075), and (Group III = 0.20+/-0.039) at p=0.747. The AFM images of enamel surface show thin and inhomogeneous Icon resin in Group II, meanwhile, the SealRite in Group III showed a homogeneous layer in all specimens. The microtomography supported the findings of the AFM images. The persistence of the SealRite in all specimens revealed its low solubility in water and its protective effect on enamel surface.

  11. Comparison of rainfall and stemflow peak intensities and infiltration patterns for a mature coastal forest in British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    van Meerveld, Ilja; Spencer, Sheena

    2017-04-01

    Most studies on stemflow have focused on the amount of stemflow in different forests or for different rainfall events. So far, few studies have looked at how stemflow intensity varies during rainfall events and how peak stemflow intensities compare to peak rainfall intensities. High stemflow intensities at the base of the tree, where roots and other preferential flow pathways are prevalent, may lead to faster and deeper infiltration of stemflow than rainfall and thus affect soil moisture dynamics and potentially also subsurface stormflow generation. We measured stemflow intensities for three Western hemlock, two Western red cedar, two Douglas-fir and one Birch tree in a mature coniferous forest in coastal British Columbia to determine how stemflow intensities were related to rainfall intensity. We sprayed a blue dye tracer on two Western hemlock trees (29 and 52 cm diameter at breast height (DBH)) to determine how stemflow water flows through the soil and to what depth it infiltrates. We also applied the blue dye tracer to an area between the trees to compare infiltration of stemflow with rainfall. Stemflow increased linearly with event total precipitation for all trees. The larger trees almost exclusively had funneling ratios (i.e. the volume of stemflow per unit basal area divided by the rainfall) smaller than one, regardless of species and event size. The funneling ratios for the small trees were generally larger for larger events (up to a funneling ratio of 20) but there was considerable scatter in this relation. Trees with a DBH <35 cm, which represent 24% of the total basal area of the study site, contributed 72% of the estimated total stemflow amount. Stemflow intensities (volume of stemflow per unit basal area per hour) often increased in a stepwise manner. When there were two precipitation bursts, stemflow intensity was usually highest during the second precipitation burst. However, when there were several hours of very low rainfall intensity between consecutive precipitation bursts, stemflow intensity was lower during the first burst after the break in rainfall. Peak stemflow intensities were higher than the maximum precipitation intensity. The blue dye that was applied to the tree stems was found more frequently at depth than near the soil surface. Stemflow flowed primarily through the 10 cm organic rich upper layer of the soil around the tree before flowing between or along live and dead roots, inside dead roots, around rocks and boulders deeper into the soil. Lateral flow was observed above a dense clay layer but where roots were able to penetrate the clay layer, the infiltrating water flowed deeper into the soil and (almost) reached the soil-bedrock interface. Stemflow appeared to infiltrate deeper (122 cm) than rainfall (85 cm) but this difference was in part due to variations in maximum soil depth. These results suggest that even though stemflow is only a minor component of the water balance, the double funnelling of stemflow may significantly affect soil moisture, recharge and runoff generation.

  12. Enhancement of mechanical properties of 3D printed hydroxyapatite by combined low and high molecular weight polycaprolactone sequential infiltration.

    PubMed

    Suwanprateeb, Jintamai; Thammarakcharoen, Faungchat; Hobang, Nattapat

    2016-11-01

    A new infiltration technique using a combination of low and high molecular weight polycaprolactone (PCL) in sequence was developed as a mean to improve the mechanical properties of three dimensional printed hydroxyapatite (HA). It was observed that using either high (M n ~80,000) or low (M n ~10,000) molecular weight infiltration could only increase the flexural modulus compared to non-infiltrated HA, but did not affect strength, strain at break and energy at break. In contrast, a combination of low and high molecular infiltration in sequence increased the flexural modulus, strength and energy at break compared to those of non-infiltrated HA or infiltrated by high or low molecular weight PCL alone. This overall enhancement was found to be attributed to the densification of low molecular weight PCL and the reinforcement of high molecular PCL concurrently. The combined low and high molecular weight infiltration in sequence also maintained high osteoblast proliferation and differentiation of the composites at the similar level of the HA. Densification was a dominant mechanism for the change in modulus with porosity and density of the infiltrated HA/PCL composites. However, both densification and the reinforcing performance of the infiltration phase were crucial for strength and toughening enhancement of the composites possibly by the defect healing and stress shielding mechanisms. The sequence of using low molecular weight infiltration and followed by high molecular infiltration was seen to provide the greatest flexural properties and highest cells proliferation and differentiation capabilities.

  13. PubMed Central

    Carbonneau, Roch; Demers, Jean-Marie

    1965-01-01

    The object of this experiment was to study the influence of essential amino acids on the growth, fatty infiltration of liver and cholesterol level of the serum in ducklings. A 11 per cent protein basal diet, deficient in many essential amino acids, given to ducklings, resulted in poor growth, fatty infiltration of liver and high cholesterol level of the serum. In our experimental design, three amino acids, lysine, methionine and threonine were promoting growth whereas lysine and threonine were preventing fatty infiltration of liver but methionine failed to do so. Rather than a deficiency in lysine alone, simultaneous deficiencies in valine, arginine and lysine resulted in better growth for ducklings. This protective effect of deficiency in valine and arginine together with one in lysine was not effective against fatty infiltration of liver. The cholesterolemia found for the ducklings given basal diet or diets with deficiency in many essential amino acids was higher than that found for the ducklings given diets without essential amino acids deficiency. PMID:4220644

  14. Does drought alter hydrological functions in forest soils?

    NASA Astrophysics Data System (ADS)

    Gimbel, Katharina F.; Puhlmann, Heike; Weiler, Markus

    2016-04-01

    Climate change is expected to impact the water cycle and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually when projecting drought impacts on hydrological systems, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey-, loamy- and sandy-textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by water drop penetration time (WDPT) tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the drought history or, more generally, the climatic conditions of a soil in the past are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; furthermore, drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  15. A method for predicting the factor of safety of an infinite slope based on the depth ratio of the wetting front induced by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Chae, B.-G.; Lee, J.-H.; Park, H.-J.; Choi, J.

    2015-08-01

    Most landslides in Korea are classified as shallow landslides with an average depth of less than 2 m. These shallow landslides are associated with the advance of a wetting front in the unsaturated soil due to rainfall infiltration, which results in an increase in water content and a reduction in the matric suction in the soil. Therefore, this study presents a modified equation of infinite slope stability analysis based on the concept of the saturation depth ratio to analyze the slope stability change associated with the rainfall on a slope. A rainfall infiltration test in unsaturated soil was performed using a column to develop an understanding of the effect of the saturation depth ratio following rainfall infiltration. The results indicated that the rainfall infiltration velocity due to the increase in rainfall in the soil layer was faster when the rainfall intensity increased. In addition, the rainfall infiltration velocity tends to decrease with increases in the unit weight of soil. The proposed model was applied to assess its feasibility and to develop a regional landslide susceptibility map using a geographic information system (GIS). For that purpose, spatial databases for input parameters were constructed and landslide locations were obtained. In order to validate the proposed approach, the results of the proposed approach were compared with the landslide inventory using a ROC (receiver operating characteristics) graph. In addition, the results of the proposed approach were compared with the previous approach used: a steady-state hydrological model. Consequently, the approach proposed in this study displayed satisfactory performance in classifying landslide susceptibility and showed better performance than the steady-state approach.

  16. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition.

    PubMed

    Kern, M; Thompson, V P

    1994-05-01

    Silica coating can improve bonding of resin to glass-infiltrated aluminum oxide ceramic (In-Ceram), and sandblasting is a pretreatment to thermal silica coating (Silicoater MD system) or a tribochemical coating process (Rocatec system). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology, and surface composition of In-Ceram ceramic. Volume loss through sandblasting was 36 times less for In-Ceram ceramic compared with a feldspathic glass ceramic (IPS-Empress), and sandblasting of In-Ceram ceramic did not change its surface composition. After tribochemical coating with the Rocatec system, a layer of small silica particles remained that elevated the silica content to 19.7 weight percentage (energy-dispersive spectroscopy). Ultrasonic cleaning removed loose silica particles from the surface and decreased the silica content to 15.8 weight percentage, which suggested firm attachment of most of the silica layer to the surface. After treatment with the Silicoater MD system, the silica content increased only slightly from that of the sandblasted specimen. The silica layer created by these systems differs greatly in both morphology and thickness, which could result in different bond strengths. Sandblasting of all ceramic clinical restorations with feldspathic glass materials should be avoided, but for In-Ceram ceramic the volume loss was within an acceptable range and similar to that of noble metals.

  17. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Ferre, Ty P.A.; Creutzfeldt, Benjamin

    2016-01-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  18. Time-lapse gravity data for monitoring and modeling artificial recharge through a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Kennedy, Jeffrey; Ferré, Ty P. A.; Creutzfeldt, Benjamin

    2016-09-01

    Groundwater-level measurements in monitoring wells or piezometers are the most common, and often the only, hydrologic measurements made at artificial recharge facilities. Measurements of gravity change over time provide an additional source of information about changes in groundwater storage, infiltration, and for model calibration. We demonstrate that for an artificial recharge facility with a deep groundwater table, gravity data are more sensitive to movement of water through the unsaturated zone than are groundwater levels. Groundwater levels have a delayed response to infiltration, change in a similar manner at many potential monitoring locations, and are heavily influenced by high-frequency noise induced by pumping; in contrast, gravity changes start immediately at the onset of infiltration and are sensitive to water in the unsaturated zone. Continuous gravity data can determine infiltration rate, and the estimate is only minimally affected by uncertainty in water-content change. Gravity data are also useful for constraining parameters in a coupled groundwater-unsaturated zone model (Modflow-NWT model with the Unsaturated Zone Flow (UZF) package).

  19. Long-term stormwater quantity and quality performance of permeable pavement systems.

    PubMed

    Brattebo, Benjamin O; Booth, Derek B

    2003-11-01

    This study examined the long-term effectiveness of permeable pavement as an alternative to traditional impervious asphalt pavement in a parking area. Four commercially available permeable pavement systems were evaluated after 6 years of daily parking usage for structural durability, ability to infiltrate precipitation, and impacts on infiltrate water quality. All four permeable pavement systems showed no major signs of wear. Virtually all rainwater infiltrated through the permeable pavements, with almost no surface runoff. The infiltrated water had significantly lower levels of copper and zinc than the direct surface runoff from the asphalt area. Motor oil was detected in 89% of samples from the asphalt runoff but not in any water sample infiltrated through the permeable pavement. Neither lead nor diesel fuel were detected in any sample. Infiltrate measured 5 years earlier displayed significantly higher concentrations of zinc and significantly lower concentrations of copper and lead.

  20. Intrinsic vulnerability assessment of shallow aquifers of the sedimentary basin of southwestern Nigeria

    PubMed Central

    2018-01-01

    The shallow groundwater of the multi-layered sedimentary basin aquifer of southwestern Nigeria was assessed based on its intrinsic vulnerability property. The vulnerability evaluation involves determining the protective cover and infiltration condition of the unsaturated zone in the basin. This was achieved using the PI (P stands for protective cover effectiveness of the overlying lithology and I indicates the degree of infiltration bypass) vulnerability method of the European vulnerability approach. The PI method specifically measures the protection cover and the degree to which the protective cover is bypassed. Intrinsic parameters assessed were the subsoil, lithology, topsoil, recharge and fracturing for the protective cover. The saturated hydraulic conductivity of topsoil, infiltration processes and the lateral surface and subsurface flow were evaluated for the infiltration bypassed. The results show moderate to very low vulnerability areas. Low vulnerability areas were characterised by lithology with massive sandstone and limestone, subsoils of sandy loam texture, high slopes and high depth to water table. The moderate vulnerability areas were characterised by high rainfall and high recharge, low water table, unconsolidated sandstones and alluvium lithology. The intrinsic vulnerability properties shown in vulnerability maps will be a useful tool in planning and monitoring land use activities that can be of impact in groundwater pollution.

  1. Monitoring Soil Infiltration In Semi-Arid Regions With Meteosat And A Coupled Model Approach Using PROMET And SLC

    NASA Astrophysics Data System (ADS)

    Klug, P.; Bach, H.; Migdall, S.

    2013-12-01

    In arid regions the infiltration of sparse rainfalls and resulting ground water recharge is a critical quantity for the water cycle. With the PROMET model the infiltration process can be simulated in detail, since 4 soil layers together with the hourly calculation time step allow simulating the vertical water transport. Wet soils are darker than dry soils. Using the SLC reflectance model this effect can be simulated and compared to temporal high resolution time series of measured reflectances from Meteosat in order to monitor the drying process. This study demonstrates how MSG can be used to better parameterize the simulation of the infiltration process and reduce uncertainties in ground water recharge estimation. The study is carried out in the frame of the EU FP7 project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). According to climate projections, Mediterranean countries are at risk of changes in the hydrological budget, the agricultural productivity and drinking water supply in the future. The CLIMB FP-7 project coordinated by the University of Munich (LMU) aims at employing integrated hydrological modelling in a new framework to reduce existing uncertainties in climate change impact analysis of the Mediterranean region [1, 2].

  2. Cerebral distribution of immunoconjugate after treatment for neoplastic meningitis using an intrathecal radiolabeled monoclonal antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benjamin, J.C.; Moss, T.; Moseley, R.P.

    1989-08-01

    A detailed autopsy and autoradiographic study was performed after the death of a patient undergoing intrathecal, antibody-guided irradiation for carcinomatous meningitis. The results demonstrated tumor cells infiltrating the surface meninges and a severe astrocytic reaction associated with oedema in the periventricular and brain stem subpial white matter. This was not seen in cortical or other gray matter structures. Autoradiographic examination correlated well, demonstrating isotope within the oedematous areas of the white matter in addition to the expected concentration in the leptomeningeal layers. These findings are discussed in the context of antibody binding to tumor tissue and the possible benefits conferredmore » in the treatment of infiltrating tumor cells.« less

  3. Preparation of tungsten fiber reinforced-tungsten/copper composite for plasma facing component

    NASA Astrophysics Data System (ADS)

    He, Gang; Xu, Kunyuan; Guo, Shibin; Qian, Xueqiang; Yang, Zengchao; Liu, Guanghua; Li, Jiangtao

    2014-12-01

    W fiber reinforced-W/Cu composite is designed as a transition layer between CuCrZr heat sink material and W plasma facing material. A novel method was developed for the preparation of W fiber reinforced-W/Cu composite by combining combustion synthesis with centrifugal infiltration. Cu melt with a transient temperature over 2000 °C produced by the thermite reaction was infiltrated into the W powder and fiber bed with the assistance of a high gravity field. It was found that the W particles were sintered and bonded to the W fibers due to the high temperature produced by the thermite reaction. The bending strength of W/Cu composite improved 12.7% through W fibers reinforcement.

  4. An Atypical Case of Eosinophilic Gastroenteritis Presenting as Hypovolemic Shock

    PubMed Central

    Martillo, Miguel; Abed, Jean; Herman, Michael; Abed, Elie; Shi, Wenjing; Munot, Khushboo; Mankal, Pavan Kumar; Gurunathan, Rajan; Ionescu, Gabriel; Kotler, Donald P.

    2015-01-01

    Eosinophilic gastroenteritis is an uncommon condition characterized by focal or diffuse infiltration of eosinophils in the gastrointestinal tract in the absence of secondary causes. The pathogenesis of this condition is not well understood and its clinical presentation depends on the segment and layer of the gastrointestinal tract affected. The definition of eosinophilic gastroenteritis may be difficult, as the normal ranges of eosinophil numbers in normal and abnormal gastric and intestinal mucosa are not standardized. We present the case of a 59-year-old male who came to the hospital with hypovolemic shock and lethargy secondary to severe diarrhea. Laboratory analysis was significant for peripheral eosinophilia, and pathology from both the duodenum and colon showed marked eosinophilic infiltration. PMID:26078733

  5. IL-6 Mediates Macrophage Infiltration after Irradiation via Up-regulation of CCL2/CCL5 in Non-small Cell Lung Cancer.

    PubMed

    Wang, Xin; Yang, Xiaodong; Tsai, Ying; Yang, Li; Chuang, Kuang-Hsiang; Keng, Peter C; Lee, Soo Ok; Chen, Yuhchyau

    2017-01-01

    Radiotherapy is effective in reducing primary tumors, however, it may enhance macrophage infiltration to tumor sites, accelerating tumor progression in several ways. We investigated whether radiation can increase macrophage infiltration into non-small cell lung carcinoma (NSCLC) cells. Analysis of in vitro macrophage (differentiated THP-1 cells) migration to either nonirradiated or irradiated tumor cells showed increased migration to the irradiated tumor cells. Because the IL-6 levels in A549 and H157 cells were significantly increased after irradiation, we then investigated whether this increased IL-6 level contributes to radiation-induced macrophage migration. Radiation-induced macrophage infiltration was reduced when IL-6 was knocked down in tumor cells, indicating a positive IL-6 role in this process. To validate this in vitro result, an orthotopic mouse model was developed using a luciferase-tagged H157siIL-6/scramble control (sc) cell set. After tumors developed, the lungs were irradiated, and infiltration of endogenous macrophages and tail-vein injected fluorescent macrophages to tumor sites was investigated. In both groups, increased macrophage infiltration was observed in H157sc cell-derived xenografts compared to H157siIL-6 cell-derived xenografts, confirming the positive IL-6 role in the radiation-induced macrophage infiltration process. In mechanistic dissection studies, radiation-induced up-regulation of CCL2 and CCL5 by IL-6 was detected, and blocking the action of CCL2/CCL5 molecules significantly reduced the number of migrated macrophages to tumor cells after irradiation. These results demonstrate that targeting the IL-6 signaling or CCL2/CCL5 molecules in combination with conventional radiotherapy potentially blocks undesired radiation-induced macrophage infiltration.

  6. 2D and 3D Ground Penetrating Radar monitoring of a reinforced concrete asphalt plate affected by mechanical deformation.

    NASA Astrophysics Data System (ADS)

    Bavusi, M.; Dumoulin, J.; Loperte, A.; Rizzo, E.; Soldovieri, F.

    2012-04-01

    The main facility of Hydrogeosite Laboratory of the Italian National Research Council (Marsico Nuovo, CNR) is a 3m x 7m x 10m reinforced concrete pool filled by siliceous sand designed for hydrologic experiments. One of its peculiarities is the possibility to vary the water table depth by using a proper hydraulic system [1]. In the framework of the FP7 ISTIMES project (Integrated System for Transport Infrastructure surveillance and Monitoring by Electromagnetic Sensing), a 3m x 3m layered structure has been purposely built and placed in the pool of the Hydrogeosite Laboratory with the aim to carry out a long term monitoring, by using jointly several electromagnetic sensing technologies, during two different phases simulating the rising of the water table and a mechanical solicitation. Several layers composed the structure from the top to the bottom, such as: 5 cm of asphalt; 5-10 cm of reinforced concrete; 20-25 cm of conglomerate, 55 cm of sand. Moreover, in the sand layer, three (metallic and plastic) pipes of different size were buried to simulate utilities. Ground Penetrating Radar (GPR) surveys were performed by using a the GSSI SIR 3000 system equipped with 400 MHz and 1500 MHz central frequency antennas. Surveys carried out by means of 400 MHz antenna allowed to detect and localize the three pipes (one in plastic and two in metal) and to investigate the effects of the sand water content on their radar signature. Surveys carried out by using 1500 MHz antenna were focused to characterize the shallower layers of the structure. The Hydrogeosite experiment consisted in following stages: • Arising of a water table by infiltration from the bottom; • Water gravity infiltration condescendingly; • Infiltration by peristaltic pump in the very shallow layers of the structure; • Water table drawdown; • Mechanical structure deformation; • Asphalt plate restoration after mechanical solicitation. After each stage a series of GPR surveys was performed. Moreover, a zero setting acquisition was carried out before perturbing the plate. Described experience demonstrates the GPR is a reliable technique for the: • foundation soil characterization and monitoring • Reinforced structural elements monitoring • asphalt/reinforced concrete characterization and monitoring • detection of water infiltration, structural elements, defects • evaluation of restoration intervention. In fact, the GPR technique was able to investigate the layers beyond the asphalt and provides a spatial resolution complying with the needs of the technical problem at hand by use of different antennas. Moreover noticeable performances of this technique can be further improved by implementing 3D processing and MT inversion procedures in order to increase the amount of information by the survey [2]. Acknowledgements. The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement n. 225663 Joint Call FP7-ICT-SEC-2007-1 [1] Lapenna, V.; Cuomo, V.; Rizzo, E.; Fiore, S.; Troisi, S.; Straface, S. (2006). A new Large Lab-scale Facility for Hydro-Geophysical Experiments: Hydrogeosite. American Geophysical Union, Fall Meeting 2006, abstract #H31B-1422 [2] Bavusi M., Soldovieri F., Di Napoli R., Loperte A., Di Cesare A., Ponzo F.C and Lapenna V. (2011). Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy. J. Geophys. Eng. 8 S33 doi:10.1088/1742-2132/8/3/S04

  7. Ultrastructure of canine meninges after repeated epidural injection of S(+)-ketamine.

    PubMed

    Acosta, Alinne; Gomar, Carmen; Bombí, Josep A; Graça, Dominguita L; Garrido, Marta; Krauspenhar, Cristina

    2006-01-01

    The safety of ketamine when administered by the spinal route must be confirmed in various animal species before it is approved for use in humans. This study evaluates the ultrastructure of canine meninges after repeated doses of epidural S(+)-ketamine. Five dogs received S(+)-ketamine 5%, 1 mg/kg, twice a day for 10 days through an epidural catheter with its tip located at the L5 level. One dog received the same volume of normal saline at the same times. The spinal cord and meninges were processed for histopathological and ultrastructural studies. Clinical effects were assessed after each injection. Motor and sensory block appeared after each injection of S(+)-ketamine, but not in the dog receiving saline. No signs of clinical or neurologic alterations were observed. Using light microscopy, no meningeal layer showed alterations except focal infiltration at the catheter tip level by macrophages, lymphocytes, and a few mast cells. The cells of different layers were studied by electron microscopy and interpreted according to data from human and other animal species because no ultrastructural description of the canine meninges is currently available. There were no cellular signs of inflammation, phagocytosis, or degeneration in meningeal layers and no signs of atrophy, compression, or demyelinization in the areas of dorsal root ganglia and spinal cord around the arachnoid. These findings were common for dogs receiving S(+)-ketamine and the dog receiving saline. Repeated doses of epidural S(+)-ketamine 5%, 1 mg/kg, twice a day for 10 days was not associated to cellular alterations in canine meninges.

  8. Effect of Fruits Waste in Biopore Infiltration Hole Toward The Effectiveness of Water Infiltration Rate on Baraya Campus Land of Hasanuddin University

    NASA Astrophysics Data System (ADS)

    Santosa, Slamet

    2018-03-01

    The infiltration of water into the soil decreases due to the transfer of soill function or the lack of soil biopores. This study aims to determine the effectiveness of the use of fruits waste toward the water infiltration rate. Observation of the water level decrease is done every 5 minutes interval. Observation of biopore water infiltration rate was done after fruits waste decomposed for 15 and 30 days. Result of standard water infiltration rate at the first of 5 minutes is 2.18 mm/min, then decreases at interval of 5 minutes on next time as the soil begins to saturate the water. Baraya campus soil observed in soil depths of 100cm has a dusty texture character, grayish brown color and clumping structure. Soil character indicates low porosity. While biopore water infiltration rate at the first of 5 minute interval is 6.61and 6.95 mm/min on banana waste; 5.55 and 6.61mm/min on papaya waste and 4.26 and 5.39 mm/min on mango waste. The effectiveness of water infiltration rate is 44.45% and 41.93% on banana; 44.61% and 30.09% on papaya and 15.79% and 28.36% on mango. Study concluded that banana waste causes the water infiltration rate most effective in biopore infiltration hole.

  9. Soils Investigation for Infiltration-based Green Infrastructure for Sewershed Management (Omaha NE)

    EPA Science Inventory

    EPA Report Abstract: Infiltration-based green infrastructure and related retrofits for sewershed-level rainfall and stormwater volume capture (e.g., rain gardens, cisterns, etc.) are increasingly being recognized as management options to reduce stormwater volume contribution into...

  10. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release of NH₄⁺, the bloom of the microbial biomass, and the change in structure of the bacterial community. These results open new perspectives for basin management since the risk of OM and pollutant transfer to the aquifer is greatly affected by alternating dry and flood periods.

  11. Analysis of hydrological and geotechnical aspects related to landslides caused by rainfall infiltration

    NASA Astrophysics Data System (ADS)

    Capparelli, Giovanna; La Sala, Gabriella; Vena, Mirko; Donato, Antonio

    2015-04-01

    A landslide is defined as a perceptible downward and outward movement of slope-forming soil, rock, and vegetation under the influence of gravity. Landslides can be triggered by both natural and human-induced changes in the environment. However rainfall is recognized as a major precursor for many types of slope movements. As a result of rainfall events and subsequent infiltration into the subsoil, the soil moisture can be significantly changed with a decrease in matric suction in unsaturated soil layers and/or increase in pore-water pressure in saturated layers. As a consequence, in these cases, the shear strength can be reduced enough to trigger the failure. An effective way to develop such an understanding is by means of computer simulation using numerical model. As part of the project PON "Integrated Early Warning System" our main objective was just to develop a numerical models that was able to consider the relation between rainfall, pore pressure and slope stability taking into account several components, including specific site conditions, mechanical, hydraulic and physical soil properties, local seepage conditions, and the contribution of these to soil strength. In this work the mechanism behind rainfall-triggered landslides is modeled by using combined infiltration, seepage and stability analyses. This method allows the evaluation of the terrain and its response based on geological, physical, hydrogeological and mechanical characteristics. The model is based on the combined use of two modules: an hydraulic module, to analyze the subsoil water circulation due to the rainfall infiltration under transient conditions and a geotechnical module, which provides indications regarding the slope stability. With regard to hydraulic module, variably saturated porous media flows have been modeled by the classical nonlinear Richards equation; in the geotechnical module the differential equilibrium equations have been solved taking into account the linear constitutive equations (plane stress) and strain-displacement relationship. By means of the model it is possible to analyze subsoil water circulation, safety factor of the slope subjected to gravity loading and to the pore pressure calculated from hydraulic module, displacement, strain and stress under the effect of rainfall infiltration. As an application case, the analysis and the representative results obtained for the Torre Orsaia landslide (Campania region - Southern Italy) are described.

  12. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin

    USGS Publications Warehouse

    O'Reilly, Andrew M.; Wanielista, Martin P.; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G.

    2012-01-01

    Soil beneath a stormwater infiltration basin receiving runoff from a 22.7 ha predominantly residential watershed in central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop a prototype stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO3-/Cl-) ratios for the shallow groundwater indicate that prior to using BAM, NO3- concentrations were substantially influenced by nitrification or variations in NO3- input. In contrast, for the prototype basin utilizing BAM, NO3-/Cl- ratios indicate minor nitrification and NO3- losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest NO3- losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO43-) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO43-/Cl- ratios for shallow groundwater indicate predominantly minor increases and decreases in PO43- with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had not undergone significant chemical changes. Observed nitrogen and phosphorus losses demonstrate the potential, as well as future research needs to improve performance, of the prototype stormwater infiltration basin using BAM for providing passive, economical, stormwater nutrient-treatment technology to support green infrastructure.

  13. Pretreatment of pericardial patches with antibiotics does not alter patch healing in vivo.

    PubMed

    Bai, Hualong; Kuwahara, Go; Wang, Mo; Brownson, Kirstyn E; Foster, Trenton R; Yamamoto, Kota; Xing, Ying; Dardik, Alan

    2016-04-01

    Pretreatment with antibiotics is commonly performed before surgical implantation of prosthetic materials. We previously showed that pericardial patches are infiltrated by macrophages and arterial stem cells after implantation into an artery. We hypothesized that antibiotic pretreatment would diminish the number of cells infiltrating into the patch, potentially affecting early neointimal formation. Bovine pericardial patches were pretreated with saline, bacitracin (500 U/mL), or cephalexin (10 mg/mL) for 30 minutes before implantation into the Wistar rat infrarenal aorta. Patches were retrieved on day 7 or day 30 and analyzed for histology and cell infiltration. Markers of proliferation, apoptosis, vascular cell identity, and M1 and M2 macrophage subtypes were examined using immunofluorescence and immunohistochemistry. Extracted proteins were analyzed by Western blot. At day 7, pericardial patches pretreated with bacitracin or cephalexin showed similar amounts of neointimal thickening (P = .55) and cellular infiltration (P = .42) compared with control patches. Patches pretreated with antibiotics showed similar proliferation (P = .09) and apoptosis (P = .84) as control patches. The cell composition of the neointima in pretreated patches was similar to control patches, with a thin endothelial layer overlying a thin layer of smooth muscle cells (P = .45), and containing similar numbers of CD34-positive (P = .26) and vascular endothelial growth factor receptor 2-positive (P = .31) cells. Interestingly, within the body of the patch, there were fewer macrophages (P = .0003) and a trend towards fewer endothelial progenitor cells (P = .051). No M1 macrophages were found in or around any of the patches. M2 macrophages were present around the patches, and there was no difference in numbers of M2 macrophages surrounding control patches and patches pretreated with antibiotics (P = .24). There was no difference in neointimal thickness at day 30 between control patches and patches pretreated with antibiotics (P = .52). Pretreatment of bovine pericardial patches with the antibiotics bacitracin or cephalexin has no detrimental effect on early patch healing, with similar neointimal thickness, cellular infiltration, and numbers of M2 macrophages compared with control patches. These results suggest that the host vessel response to patch angioplasty using pericardial patches is adaptive remodeling (eg, arterial healing). Published by Elsevier Inc.

  14. Analysis of elemental maps from glaze to body of ancient Chinese Jun and Ru porcelain by micro-X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Cheng, Lin; Li, Rongwu; Pan, Qiuli; Li, Guoxia; Zhao, Weijuan; Liu, Zhiguo

    2009-01-01

    The reasons how the middle layer of Ru and Jun porcelain between the glaze and body came into being are still not completely understood. Here, elemental maps from the glaze to the body of pieces of ancient Chinese Ru and Jun porcelain were analyzed by micro-X-ray fluorescence. The results show the middle layer was probably formed by the chemical composition of the glaze turning into glassy states and undergoing complex physical-chemical reactions with the body. However, the middle layer of Jun porcelain was formed by the chemical composition of the glaze turning into glassy states and then infiltrating the body at high temperatures during the firing process.

  15. Spatial regression between soil surface elevation, water storage in root zone and biomass productivity of alfalfa within an irrigated field

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2014-05-01

    Efficiency of water use for the irrigation purposes is connected to the variety of circumstances, factors and processes appearing along the transportation path of water from its sources to the root zone of the plant. Water efficiency of agricultural irrigation is connected with variety of circumstances, the impacts and the processes occurring during the transportation of water from water sources to plant root zone. Agrohydrological processes occur directly at the irrigated field, these processes linked to the infiltration of the applied water subsequent redistribution of the infiltrated water within the root zone. One of them are agrohydrological processes occurring directly on an irrigated field, connected with infiltration of water applied for irrigation to the soil, and the subsequent redistribution of infiltrated water in the root zone. These processes have the strongly pronounced spatial character depending on the one hand from a spatial variation of some hydrological characteristics of soils, and from other hand with distribution of volume of irrigation water on a surface of the area of an irrigated field closely linked with irrigation technology used. The combination of water application parameters with agrohydrological characteristics of soils and agricultural vegetation in each point at the surface of an irrigated field leads to formation of a vector field of intensity of irrigation water. In an ideal situation, such velocity field on a soil surface should represent uniform set of vertically directed collinear vectors. Thus values of these vectors should be equal to infiltration intensities of water inflows on a soil surface. In soil profile the field of formed intensities of a water flow should lead to formation in it of a water storage accessible to root system of irrigated crops. In practice this ideal scheme undergoes a lot of changes. These changes have the different nature, the reasons of occurrence and degree of influence on the processes connected with formation of water flow and water storage. The major changes are formed as a result of imposing of the intensity fields on a soil surface and its field capillary infiltration rate. Excess of the first intensity over the second in each point of soil surface leads to formation of a layer of intensity of water not infiltrated in soil. Thus generate the new field of vectors of intensity which can consist of vertically directed vector of speed of evaporation, a quasi horizontal vector of intensity of a surface water flow and quasi vertical vector of intensity of a preferential flow directed downwards. Principal cause of excess of irrigation water application intensity over capillary infiltration rate can be on the one hand spatial non-uniformity of irrigation water application, and with other spatial variability of capillary infiltration rate, connected with spatial variability of water storage in the top layers of soil. As a result the spatial redistribution of irrigation water over irrigated filed forms distortions of ideal model of irrigation water storage in root zone of soil profile. The major differences consist in increasing of water storage in the depressions of a relief of an irrigated field and accordingly in their reduction on elevated zones of a relief, as well as losses of irrigation water outside of boundaries of a root zone of an irrigated field, in vertical, and horizontal directions. One of key parameters characterizing interaction between irrigation technology and soil state an irrigated field are intensity of water application, intensity and volume of a capillary infiltration, the water storage in root zone at the moment of infiltration starting and a topography of an irrigated field. Fnalyzing of spatial links between these characteristics a special research had been carried out on irrigated by sprinkler machine called Fregate at alfalfa field during the summer of 2012. This research carried out at experimental farm of the research institute VolgNIIGiM situated at a left bank of Volga River of Saratov Region of Russia (N51.384650°, E46.055890°). The digital elevation model of soil surface has been created, as well as monitoring of spatial water storage with EM 38 device and of a biomass were carried out. Layers of corresponding spatial data have been created and analyzed. The carried out analysis of spatial regresses has shown presence of links between productivity of a biomass of a alfalfa, water storage and topography. The obtained results shows the significance to include spatial characteristics of the topography and water storage to the irrigation models, as well as adaptation of sprinkler technology to allow differentiate the volume and rate of the applied water within the field. Special attention should be done to quantify relationships between uniform technology of water application by sprinkler and spatial nonuniformity of moisture storage (zoning of high soil moisture in depressions) in soil and as consequence of infiltration capacity.

  16. High Severity Wildfire Effect On Rainfall Infiltration And Runoff: A Cellular Automata Based Simulation

    NASA Astrophysics Data System (ADS)

    Vergara-Blanco, J. E.; Leboeuf-Pasquier, J.; Benavides-Solorio, J. D. D.

    2017-12-01

    A simulation software that reproduces rainfall infiltration and runoff for a storm event in a particular forest area is presented. A cellular automaton is utilized to represent space and time. On the time scale, the simulation is composed by a sequence of discrete time steps. On the space scale, the simulation is composed of forest surface cells. The software takes into consideration rain intensity and length, individual forest cell soil absorption capacity evolution, and surface angle of inclination. The software is developed with the C++ programming language. The simulation is executed on a 100 ha area within La Primavera Forest in Jalisco, Mexico. Real soil texture for unburned terrain and high severity wildfire affected terrain is employed to recreate the specific infiltration profile. Historical rainfall data of a 92 minute event is used. The Horton infiltration equation is utilized for infiltration capacity calculation. A Digital Elevation Model (DEM) is employed to reproduce the surface topography. The DEM is displayed with a 3D mesh graph where individual surface cells can be observed. The plot colouring renders water content development at the cell level throughout the storm event. The simulation shows that the cumulative infiltration and runoff which take place at the surface cell level depend on the specific storm intensity, fluctuation and length, overall terrain topography, cell slope, and soil texture. Rainfall cumulative infiltration for unburned and high severity wildfire terrain are compared: unburned terrain exhibits a significantly higher amount of rainfall infiltration.It is concluded that a cellular automaton can be utilized with a C++ program to reproduce rainfall infiltration and runoff under diverse soil texture, topographic and rainfall conditions in a forest setting. This simulation is geared for an optimization program to pinpoint the locations of a series of forest land remediation efforts to support reforestation or to minimize runoff.

  17. Genomic signatures characterize leukocyte infiltration in myositis muscles

    PubMed Central

    2012-01-01

    Background Leukocyte infiltration plays an important role in the pathogenesis and progression of myositis, and is highly associated with disease severity. Currently, there is a lack of: efficacious therapies for myositis; understanding of the molecular features important for disease pathogenesis; and potential molecular biomarkers for characterizing inflammatory myopathies to aid in clinical development. Methods In this study, we developed a simple model and predicted that 1) leukocyte-specific transcripts (including both protein-coding transcripts and microRNAs) should be coherently overexpressed in myositis muscle and 2) the level of over-expression of these transcripts should be correlated with leukocyte infiltration. We applied this model to assess immune cell infiltration in myositis by examining mRNA and microRNA (miRNA) expression profiles in muscle biopsies from 31 myositis patients and 5 normal controls. Results Several gene signatures, including a leukocyte index, type 1 interferon (IFN), MHC class I, and immunoglobulin signature, were developed to characterize myositis patients at the molecular level. The leukocyte index, consisting of genes predominantly associated with immune function, displayed strong concordance with pathological assessment of immune cell infiltration. This leukocyte index was subsequently utilized to differentiate transcriptional changes due to leukocyte infiltration from other alterations in myositis muscle. Results from this differentiation revealed biologically relevant differences in the relationship between the type 1 IFN pathway, miR-146a, and leukocyte infiltration within various myositis subtypes. Conclusions Results indicate that a likely interaction between miR-146a expression and the type 1 IFN pathway is confounded by the level of leukocyte infiltration into muscle tissue. Although the role of miR-146a in myositis remains uncertain, our results highlight the potential benefit of deconvoluting the source of transcriptional changes in myositis muscle or other heterogeneous tissue samples. Taken together, the leukocyte index and other gene signatures developed in this study may be potential molecular biomarkers to help to further characterize inflammatory myopathies and aid in clinical development. These hypotheses need to be confirmed in separate and sufficiently powered clinical trials. PMID:23171592

  18. Long-term Metal Performance of Three Permeable Pavements ...

    EPA Pesticide Factsheets

    EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected for six years beginning in January 2010 and analyzed for twenty-two metals. Although the infiltrate metals concentrations varied by surface, metal concentrations in more than 99% of the permeable pavement infiltrate samples met both the groundwater effluent limitations and maximum contaminant levels in national primary drinking water regulations for barium, chromium, copper, manganese, nickel and zinc. Arsenic, cadmium, lead and antimony met those standards in 60% to 98% of the samples with no measurable difference found among pavements. Aluminum and iron in pervious concrete and porous asphalt infiltrates met standards at more than 90%, however permeable interlocking concrete paver infiltrates have 50% and 93% samples exceeds standards, respectively. Concentrations of arsenic, iron, potassium, lithium, magnesium, antimony, tin, manganese, and zinc in all permeable pavement infiltrates decreased with time, whereas, aluminum, barium, calcium, chromium and strontium in porous asphalt infiltrates increased. Most metal concentrations in permeable pavement infiltrates either exhibited no significant difference between snow/no-snow seasons or showed statistically larger concentrations

  19. Reflectance confocal microscopy and features of melanocytic lesions: an internet-based study of the reproducibility of terminology.

    PubMed

    Pellacani, Giovanni; Vinceti, Marco; Bassoli, Sara; Braun, Ralph; Gonzalez, Salvador; Guitera, Pascale; Longo, Caterina; Marghoob, Ashfaq A; Menzies, Scott W; Puig, Susana; Scope, Alon; Seidenari, Stefania; Malvehy, Josep

    2009-10-01

    To test the interobserver and intraobserver reproducibility of the standard terminology for description and diagnosis of melanocytic lesions in in vivo confocal microscopy. A dedicated Web platform was developed to train the participants and to allow independent distant evaluations of confocal images via the Internet. Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy. The study population was composed of 15 melanomas, 30 nevi, and 5 Spitz/Reed nevi. Six expert centers were invited to participate at the study. Intervention Evaluation of 36 features in 345 confocal microscopic images from melanocytic lesions. Interobserved and intraobserved agreement, by calculating the Cohen kappa statistics measure for each descriptor. High overall levels of reproducibility were shown for most of the evaluated features. In both the training and test sets there was a parallel trend of decreasing kappa values as deeper anatomic skin levels were evaluated. All of the features, except 1, used for melanoma diagnosis, including roundish pagetoid cells, nonedged papillae, atypical cells in basal layer, cerebriform clusters, and nucleated cells infiltrating dermal papillae, showed high overall levels of reproducibility. However, less-than-ideal reproducibility was obtained for some descriptors, such as grainy appearance of the epidermis, junctional thickening, mild atypia in basal layer, plump bright cells, small bright cells, and reticulated fibers in the dermis. Conclusion The standard consensus confocal terminology useful for the evaluation of melanocytic lesions was reproducibly recognized by independent observers.

  20. Ground-Water Flow Model of the Sierra Vista Subwatershed and Sonoran Portions of the Upper San Pedro Basin, Southeastern Arizona, United States, and Northern Sonora, Mexico

    USGS Publications Warehouse

    Pool, D.R.; Dickinson, Jesse

    2007-01-01

    A numerical ground-water model was developed to simulate seasonal and long-term variations in ground-water flow in the Sierra Vista subwatershed, Arizona, United States, and Sonora, Mexico, portions of the Upper San Pedro Basin. This model includes the simulation of details of the groundwater flow system that were not simulated by previous models, such as ground-water flow in the sedimentary rocks that surround and underlie the alluvial basin deposits, withdrawals for dewatering purposes at the Tombstone mine, discharge to springs in the Huachuca Mountains, thick low-permeability intervals of silt and clay that separate the ground-water flow system into deep-confined and shallow-unconfined systems, ephemeral-channel recharge, and seasonal variations in ground-water discharge by wells and evapotranspiration. Steady-state and transient conditions during 1902-2003 were simulated by using a five-layer numerical ground- water flow model representing multiple hydrogeologic units. Hydraulic properties of model layers, streamflow, and evapotranspiration rates were estimated as part of the calibration process by using observed water levels, vertical hydraulic gradients, streamflow, and estimated evapotranspiration rates as constraints. Simulations approximate observed water-level trends throughout most of the model area and streamflow trends at the Charleston streamflow-gaging station on the San Pedro River. Differences in observed and simulated water levels, streamflow, and evapotranspiration could be reduced through simulation of climate-related variations in recharge rates and recharge from flood-flow infiltration.

  1. Groundwater response to the 2014 pulse flow in the Colorado River Delta

    USGS Publications Warehouse

    Kennedy, Jeffrey; Rodriguez-Burgueno, Eliana; Ramirez-Hernandez, Jorge

    2017-01-01

    During the March-May 2014 Colorado River Delta pulse flow, approximately 102 × 106 m3 (82,000 acre-feet) of water was released into the channel at Morelos Dam, with additional releases further downstream. The majority of pulse flow water infiltrated and recharged the regional aquifer. Using groundwater-level and microgravity data we mapped the spatial and temporal distribution of changes in aquifer storage associated with pulse flow. Surface-water losses to infiltration were greatest around the Southerly International Boundary, where a lowered groundwater level owing to nearby pumping created increased storage potential as compared to other areas with shallower groundwater. Groundwater levels were elevated for several months after the pulse flow but had largely returned to pre-pulse levels by fall 2014. Elevated groundwater levels in the limitrophe (border) reach extended about 2 km to the east around the midway point between the Northerly and Southerly International Boundaries, and about 4 km to the east at the southern end. In the southern part of the delta, although total streamflow in the channel was less due to upstream infiltration, augmented deliveries through irrigation canals and possible irrigation return flows created sustained increases in groundwater levels during summer 2014. Results show that elevated groundwater levels and increases in groundwater storage were relatively short lived (confined to calendar year 2014), and that depressed water levels associated with groundwater pumping around San Luis, Arizona and San Luis Rio Colorado, Sonora cause large, unavoidable infiltration losses of in-channel water to groundwater in the vicinity.

  2. Tumor-Associated Macrophages Associate with Cerebrospinal Fluid Interleukin-10 and Survival in Primary Central Nervous System Lymphoma (PCNSL).

    PubMed

    Sasayama, Takashi; Tanaka, Kazuhiro; Mizowaki, Takashi; Nagashima, Hiroaki; Nakamizo, Satoshi; Tanaka, Hirotomo; Nishihara, Masamitsu; Mizukawa, Katsu; Hirose, Takanori; Itoh, Tomoo; Kohmura, Eiji

    2016-07-01

    Increased tumor-associated macrophages (TAMs) have been reported to be associated with poor prognosis in various tumors; however, the importance of TAMs in primary central nervous system lymphoma (PCNSL) has not been clarified. In 47 patients with PCNSL who were treated with high-dose methotrexate (MTX) and radiotherapy, the relationships between the infiltration levels of TAMs and the clinicopathological parameters were analyzed. Univariate analysis of the Cox proportional hazards model using continuous scales revealed that increased CD68 positive (+) TAMs was significantly associated with inferior progression-free survival (PFS) (P = 0.04), and trends were observed for the increased CD163(+)  TAMs and having shorter PFS (P = 0.05). However, increased TAMs were not associated with overall survival. Because TAMs are known to produce various cytokines, we examined the relationships between cerebrospinal fluid (CSF) cytokines and TAMs. CSF interleukin-6 (IL-6) and soluble IL-2 receptor were not correlated with the infiltration rate of TAMs; however, CSF IL-10 level was correlated with infiltration levels of CD68 and CD163(+)  TAMs. We also confirmed the expression of IL-10 in CD68(+)  and CD163(+)  TAMs by double immunostaining analysis. Our results indicate that a high level of IL-10 in CSF may be positively associated with the infiltration level of TAMs in PCNSLs. © 2015 International Society of Neuropathology.

  3. An attempt to perform water balance in a Brazilian municipal solid waste landfill.

    PubMed

    São Mateus, Maria do Socorro Costa; Machado, Sandro Lemos; Barbosa, Maria Cláudia

    2012-03-01

    This paper presents an attempt to model the water balance in the metropolitan center landfill (MCL) in Salvador, Brazil. Aspects such as the municipal solid waste (MSW) initial water content, mass loss due to decomposition, MSW liquid expelling due to compression and those related to weather conditions, such as the amount of rainfall and evaporation are considered. Superficial flow and infiltration were modeled considering the waste and the hydraulic characteristics (permeability and soil-water retention curves) of the cover layer and simplified uni-dimensional empirical models. In order to validate the modeling procedure, data from one cell at the landfill were used. Monthly waste entry, volume of collected leachate and leachate level inside the cell were monitored. Water balance equations and the compressibility of the MSW were used to calculate the amount of leachate stored in the cell and the corresponding leachate level. Measured and calculated values of the leachate level inside the cell were similar and the model was able to capture the main trends of the water balance behavior during the cell operational period. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. McMurdo Ice Shelf Sounding and Radar Statistical Reconnaissance at 60-MHz: Brine Infiltration Extent and Surface Properties

    NASA Astrophysics Data System (ADS)

    Grima, C.; Rosales, A.; Blankenship, D. D.; Young, D. A.

    2014-12-01

    McMurdo Ice Shelf, Antarctica, is characterized by two particular geophysical processes. (1) Marine ice accretion supplies most of the ice shelf material rather than meteoric ice from glacier outflow and snow-falls. (2) A brine layer infiltrates the ice shelf laterally up to 20-km inward. The infiltration mainly initiates at the ice-front from sea water percolation when the firn/snow transition is below sea-level. A better characterization of the McMurdo ice shelf could constrain our knowledges of these mechanisms and assess the stability of the region that hosts numerous human activities from the close McMurdo station (USA) and Scott base (New-Zealand). McMurdo ice shelf is also an analog for the Jovian icy moon Europa where brine pockets are supposed to reside in the ice crust and accretion to occur at the 10-30-km deep ice-ocean interface.The University of Texas Institute for Geophysics (UTIG) acquired two radar survey grids over the McMurdo Ice Shelf during southern summers 2011-2012 and 2012-2013 with the High Capability Radar Sounder (HiCARS) on-board a Basler DC-3 aircraft. HiCARS transmits a chirped signal at 60-MHz central frequency and 15-MHz bandwidth. The corresponding vertical resolution in ice is 5-10 m. An important design goal of the radar was to maintain sufficient dynamic range to correctly measure echo intensities.Here we present the brine infiltration extent and bathymetry derived from its dielectric horizon well distinguishable on the HiCARS radargram. We complement the ice-shelf characterization by classifying its surface thanks to the novel Radar Statistical Reconnaissance (RSR) methodology. The RSR observable is the statistical distribution of the surface echo amplitudes from successive areas defined along-track. The distributions are best-fitted with a theoretical stochastic envelop parameterized with the signal reflectance and scattering. Once those two components are deduced from the fit, they are used in a backscattering model to invert surface properties such as roughness, density, and/or impurity load. This combined analysis gives new insights into the superficial processes and exchanges at the McMurdo ice shelf.

  5. Water movement through a thick unsaturated zone underlying an intermittent stream in the western Mojave Desert, southern California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Radyk, J.; Michel, R.L.

    2000-01-01

    Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, showy that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downward movement of water. Seasonal changes in water vapor composition underneath the wash are consistent with the rapid infiltration of a small quantity of water to great depths and subsequent equilibration of vapor with water in the surrounding material. It may be possible to supplement natural recharge from the wash with imported water. Recharge to the wash may be advantageous because the unsaturated zone is not as dry as most areas in the desert and concentrations of soluble salts are generally lower underneath the wash.Previous studies indicated that small amounts of recharge occur as infiltration of intermittent streamflow in washes in the upper Mojave River basin, in the western Mojave Desert, near Victorville, California. These washes flow only a few days each year after large storms. To reach the water table, water must pass through an unsaturated zone that is more than 130 m thick. Results of this study, done in 1994-1998, show that infiltration to depths below the root zone did not occur at control sites away from the wash. At these sites, volumetric water contents were as low as 0.01 and water potentials (measured as the combination of solute and matric potentials using a water activity meter) were as negative as -14,000 kPa. Water-vapor movement was controlled by highly negative solute potentials associated with the accumulation of soluble salts in the unsaturated zone. Highly negative matric potentials above and below the zone of maximum solute accumulation result from movement of water vapor toward the highly negative solute potentials at that depth. The ??18O and ??D (delta oxygen-18 and delta deuterium) isotopic composition of water in coarse-grained deposits plots along a Rayleigh distillation line consistent with removal of water in coarse-grained layers by vapor transport. Beneath Oro Grande Wash, water moved to depths below the root zone and, presumably, to the water table about 130 m below land surface. Underneath Oro Grande Wash, volumetric water contents were as high as 0.27 and water potentials (measured as matric potential using tensiometers) were between -1.8 and -50 kPa. On the basis of tritium data, water requires at least 180-260 years to infiltrate to the water table. Clay layers impede the downwa

  6. Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event.

    PubMed

    Vithanage, M; Engesgaard, P; Jensen, K H; Illangasekare, T H; Obeysekera, J

    2012-08-01

    This intermediate scale laboratory experimental study was designed to improve the conceptual understanding of aquifer flushing time associated with diffuse saltwater contamination of coastal aquifers due to a tsunami-like event. The motivation comes from field observations made after the tsunami in December, 2004 in South Asia. The focus is on the role and effects of heterogeneity on flushing effectiveness. A scheme that combines experimentation in a 4.8m long laboratory tank and numerical modeling was used. To demonstrate the effects of geologic heterogeneity, plume migration and flushing times were analyzed in both homogeneous and layered media and under different boundary conditions (ambient flow, saltwater infiltration rate, freshwater recharge). Saltwater and freshwater infiltrations imitate the results of the groundwater salinization from the tsunami and freshening from the monsoon rainfall. The saltwater plume behavior was monitored both through visual observations (digital photography) of the dyed salt water and using measurements taken from several electrical conductivity sensors installed through the tank walls. The variable-density, three dimensional code HST3D was used to simulate the tank experiments and understand the fate and movement of the saltwater plume under field conditions. The results from the tank experiments and modeling demonstrated that macro-scale heterogeneity significantly influenced the migration patterns and flushing times of diffuse saltwater contamination. Ambient flow had a direct influence on total flush-out time, and heterogeneity impacted flush-out times for the top part of the tank and total flush-out times. The presence of a continuous low-permeability layer caused a 40% increase in complete flush-out time due to the slower flow of salt water in the low-permeability layer. When a relatively small opening was introduced in the low-permeability layer, salt water migrated quickly into a higher-permeable layer below causing a reduction in flush-out time. Freshwater recharge caused an early dilution of salt water in the top part of the tank in the case of a layered media, but also pushed the saltwater plume into the low-permeability layer which led to increased total flush-out times. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Hydrogeologic barriers to the infiltration of treated wastewater at the Joint Base McGuire-Dix-Lakehurst Land Application Site, Burlington County, New Jersey

    USGS Publications Warehouse

    Fiore, Alex R.

    2016-09-02

    For the final phase of wastewater treatment operations at Joint Base McGuire-Dix-Lakehurst in Burlington County, New Jersey, treated effluent is pumped to 12 infiltration basins on a Land Application Site to recharge the unconfined Kirkwood-Cohansey aquifer system. Two of the 12 infiltration basins are operationally ineffective because discharged effluent fails to percolate and remains ponded on the basin surfaces. A study conducted by the U.S. Geological Survey, in cooperation with the U.S. Department of Defense, investigated the potential hydrogeologic conditions preventing infiltration in these basins by testing the geophysical, lithological, and hydraulic characteristics of the aquifer material underlying the site. Saturated sand, sandy clay, and unsaturated sand were encountered in succession through the upper 4 feet of sediment below land surface at the two ineffective basins. Water levels in auger borings penetrating the clay and underlying dry sand were measured as deeper than water levels in nested auger borings in the saturated sand overlying the clay, which indicates a downward vertical gradient was established after removal of the clay in the deeper borings created a conduit for drainage from the surficial saturated sands. Ground-penetrating radar surveys and additional water levels measured in piezometer wells adjacent to the infiltration basins indicated a lack of connectivity between the ponded basin water and the regional water table, and demonstrated that perched conditions were not present in native formation materials outside the inoperable basins. Therefore, the near-surface low permeability clay is likely preventing infiltration from the basin surface and causes the ineffectiveness of the two basins for wastewater land application operations.

  8. Large-scale magmatic layering in the Main Zone of the Bushveld Complex and episodic downward magma infiltration

    NASA Astrophysics Data System (ADS)

    Hayes, Ben; Ashwal, Lewis D.; Webb, Susan J.; Bybee, Grant M.

    2017-03-01

    The Bellevue drillcore intersects 3 km of Main and Upper Zone cumulates in the Northern Limb of the Bushveld Complex. Main Zone cumulates are predominately gabbronorites, with localized layers of pyroxenite and anorthosite. Some previous workers, using bulk rock major, trace and isotopic compositions, have suggested that the Main Zone crystallized predominantly from a single pulse of magma. However, density measurements throughout the Bellevue drillcore reveal intervals that show up-section increases in bulk rock density, which are difficult to explain by crystallization from a single batch of magma. Wavelet analysis of the density data suggests that these intervals occur on length-scales of 40 to 170 m, thus defining a scale of layering not previously described in the Bushveld Complex. Upward increases in density in the Main Zone correspond to upward increases in modal pyroxene, producing intervals that grade from a basal anorthosite (with 5% pyroxene) to gabbronorite (with 30-40% pyroxene). We examined the textures and mineral compositions of a 40 m thick interval showing upwardly increasing density to establish how this type of layering formed. Plagioclase generally forms euhedral laths, while orthopyroxene is interstitial in texture and commonly envelops finer-grained and embayed plagioclase grains. Minor interstitial clinopyroxene was the final phase to crystallize from the magma. Plagioclase compositions show negligible change up-section (average An62), with local reverse zoning at the rims of cumulus laths (average increase of 2 mol%). In contrast, interstitial orthopyroxene compositions become more primitive up-section, from Mg# 57 to Mg# 63. Clinopyroxene similarly shows an up-section increase in Mg#. Pyroxene compositions record the primary magmatic signature of the melt at the time of crystallization and are not an artefact of the trapped liquid shift effect. Combined, the textures and decoupled mineral compositions indicate that the upward density increase is produced by the downward infiltration of noritic magma into a previously emplaced plagioclase-rich crystal mush. Fresh noritic magma soaked down into the crystallizing anorthositic mush, partially dissolving plagioclase laths and assimilating Fe-enriched pore melt. The presence of multiple cycles showing upward increases in density in the Bellevue drillcore suggests that downward magma infiltration occurred episodically during crystallization of the Main Zone.

  9. Impact of alpine meadow degradation on soil hydraulic properties over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Zhang, Fan; Wang, Quanjiu; Chen, Yingying; Joswiak, Daniel R.

    2013-01-01

    SummaryAlpine meadow soil is an important ecosystem component of the Qinghai-Tibetan Plateau. However, the alpine meadow soil is undergoing serious degradation mainly due to global climate change, overgrazing, human activities and rodents. In this paper, spatial sequencing was chosen over time succession sequencing to study the changes of soil hydraulic properties under different degrees of alpine meadow degradation. Soil saturated hydraulic conductivity (Ks) and Gardner α both at the surface and at 40-50 cm depth were investigated in the field using tension infiltrometers. Soil physical and chemical properties, together with the root index at 0-10 cm and 40-50 cm soil layer depths were also analyzed. Pearson correlations were adopted to study the relationships among the investigated factors and principal component analysis was performed to identify the dominant factor. Results show that with increasing degree of degradation, soil sand content increased while soil Ks and Gardner α as well as soil clay content, soil porosity decreased in the 0-10 cm soil layers, and organic matter and root gravimetric density decreased in both the 0-10 cm and 40-50 cm soil layers. However, soil moisture showed no significant changes with increasing degradation. With decreasing pressure head, soil unsaturated hydraulic conductivity reduced more slowly under degraded conditions than non-degraded conditions. Soil Ks and Gardner α were significantly correlated (P = 0.01) with bulk density, soil porosity, soil organic matter and root gravimetric density. Among these, soil porosity is the dominant factor explaining about 90% of the variability in total infiltration flow. Under non-degraded conditions, the infiltration flow principally depended on the presence of macropores. With increasing degree of degradation, soil macropores quickly changed to mesopores or micropores. The proportion of total infiltration flow through macropores and mesopores significantly decreased with the most substantial decrease observed for the macropores in the 0-10 cm soil layer. The substantial decrease of macropores caused a cut in soil moisture and hydraulic conductivity. This study improves the understanding and prediction of alpine meadow soil and ecosystem changes and provides guidelines for improving water flow modeling under the background of global climate change over the Qinghai-Tibetan Plateau and similar regions.

  10. Control of interfaces in Al-C fibre composites

    NASA Technical Reports Server (NTRS)

    Warrier, S. G.; Blue, C. A.; Lin, R. Y.

    1993-01-01

    The interface of Al-C fiber composite was modified by coating a silver layer on the surface of carbon fibres prior to making composites, in an attempt to improve the wettability between molten aluminum and carbon fibers during infiltration. An electroless plating technique was adopted and perfected to provide a homogeneous silver coating on the carbon fiber surface. Al-C fiber composites were prepared using a liquid infiltration technique in a vacuum. It was found that silver coating promoted the wetting between aluminum and carbon fibers, particularly with polyacrylonitrile-base carbon fibers. However, due to rapid dissolution of silver in molten aluminum, it was believed that the improved infiltration was not due to the wetting behavior between molten aluminum and silver. The cleaning of the fiber surface and the preservation of the cleaned carbon surface with silver coating was considered to be the prime reason for the improved wettability. Interfacial reactions between aluminum and carbon fibers were observed. Amorphous carbon was found to react more with aluminum than graphitic carbon. This is believed to be because of the inertness of the graphitic basal planes.

  11. Lipoedematous scalp: is there an association with fatty infiltration of the parotid?

    PubMed

    Law, Sarah; Jayarajan, Rajshree

    2017-10-09

    Lipoedematous scalp (LS) is an extremely rare condition characterised by a soft and boggy consistency in the scalp due to an increased layer of subcutaneous tissue.In this report, we present a case of LS in a 64-year-old Indian woman. Clinical examination revealed only vague boggy lumpiness involving the whole of occipital scalp extending to parietal scalp. MRI scalp showed diffuse fatty infiltration of the scalp, particularly at the posterior parietal and occipital convexity extending to both lateral aspects of the cranium, with homogeneous signal in keeping with fat. Incidentally MRI also found diffuse fatty infiltration of the parotids.The aethiopathogenesis of LS is still unknown, however it is believed that the hormone leptin could be the key hormone in the dysregulation of fat deposition and distribution. This case report highlights the subtle features with which these cases can present and explores the literature on reported cases of LS. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. ADH1B promotes mesothelial clearance and ovarian cancer infiltration.

    PubMed

    Gharpure, Kshipra M; Lara, Olivia D; Wen, Yunfei; Pradeep, Sunila; LaFargue, Chris; Ivan, Cristina; Rupaimoole, Rajesha; Hu, Wei; Mangala, Lingegowda S; Wu, Sherry Y; Nagaraja, Archana S; Baggerly, Keith; Sood, Anil K

    2018-05-18

    Primary debulking surgery followed by adjuvant chemotherapy is the standard treatment for ovarian cancer. Residual disease after primary surgery is associated with poor patient outcome. Previously, we discovered ADH1B to be a molecular biomarker of residual disease. In the current study, we investigated the functional role of ADH1B in promoting ovarian cancer cell invasiveness and contributing to residual disease. We discovered that ADH1B overexpression leads to a more infiltrative cancer cell phenotype, promotes metastasis, increases the adhesion of cancer cells to mesothelial cells, and increases extracellular matrix degradation. Live cell imaging revealed that ADH1B-overexpressing cancer cells efficiently cleared the mesothelial cell layer compared to control cells. Moreover, gene array analysis revealed that ADH1B affects several pathways related to the migration and invasion of cancer cells. We also discovered that hypoxia increases ADH1B expression in ovarian cancer cells. Collectively, these findings indicate that ADH1B plays an important role in the pathways that promote ovarian cancer cell infiltration and may increase the likelihood of residual disease following surgery.

  13. Method of making a layered composite electrode/electrolyte

    DOEpatents

    Visco, Steven J.; Jacobson, Craig P.; DeJonghe, Lutgard C.

    2005-01-25

    An electrode/electrolyte structure is prepared by a plurality of methods. An unsintered (possibly bisque fired) moderately catalytic electronically-conductive or homogeneous mixed ionic electronic conductive electrode material is deposited on a layer composed of a sintered or unsintered ionically-conductive electrolyte material prior to being sintered. A layer of particulate electrode material is deposited on an unsintered ("green") layer of electrolyte material and the electrode and electrolyte layers are sintered simultaneously, sometimes referred to as "co-firing," under conditions suitable to fully densify the electrolyte while the electrode retains porosity. Or, the layer of particulate electrode material is deposited on a previously sintered layer of electrolyte, and then sintered. Subsequently, a catalytic material is added to the electrode structure by infiltration of an electrolcatalyst precursor (e.g., a metal salt such as a transition metal nitrate). This may be followed by low temperature firing to convert the precursor to catalyst. The invention allows for an electrode with high electronic conductivity and sufficient catalytic activity to achieve high power density in an ionic (electrochemical) device such as fuel cells and electrolytic gas separation systems.

  14. Triple-Layer Vascular Grafts Fabricated by Combined E-Jet 3D Printing and Electrospinning.

    PubMed

    Huang, Ruiying; Gao, Xiangkai; Wang, Jian; Chen, Haoxiang; Tong, Chunyi; Tan, Yongjun; Tan, Zhikai

    2018-05-29

    Small-diameter tissue-engineered vascular grafts are urgently needed for clinic arterial substitute. To simulate the structures and functions of natural blood vessels, we designed a novel triple-layer poly(ε-caprolactone) (PCL) fibrous vascular graft by combining E-jet 3D printing and electrospinning techniques. The resultant vascular graft consisted of an interior layer comprising 3D-printed highly aligned strong fibers, a middle layer made by electrospun densely fibers, and an exterior structure composed of mixed fibers fabricated by co-electrospraying. The biocompatible triple-layer graft was used for in vivo implantation, and results demonstrated that the longitudinally-aligned fibers within the lumen of the graft could enhance the proliferation and migration of endothelial cells, while maintained good mechanical properties. The exterior layer provided a pathway that encouraged cells to migrate into the scaffold after implantation. This experimental graft overcame the limitations of conventionally electrospun vascular grafts of inadequate porosity and lowly cell penetration. The unique structure of the triple-layer vascular graft promoted cell growth and infiltration in vivo, thus provided an encouraging substitute for in situ tissue engineering.

  15. Biomolecules in the treatment of lichen planus refractory to corticosteroid therapy: Clinical and histopathological assessment.

    PubMed

    Piñas, Laura; Alkhraisat, Mohammad Hamdan; Suárez-Fernández, Ricardo; Anitua, Eduardo

    2018-03-01

    Local deficit of several biomolecules have been described in oral lichen planus (OLP). Such a deficit impairs cellular functions and cell-matrix communication. Assess the efficacy of the local application of autologous biomolecules in the treatment of erosive OLP. In this study, the use of plasma rich in growth factors (PRGF) as a source of blood-derived and autologous growth factors and proteins were tested in erosive oral lichen planus refractory to corticosteroids. Histopathological features of the disease were also analysed at the time of diagnosis. Clinical data were the number of recurrences and achievement of pain reduction and complete healing of the lesions. A total of 10 patients with erosive OLP refractory to treatment by corticosteroids were included in the study. All patients were females with a mean age of 48±12years. A complete remission of the disease was achieved after one infiltration of PRGF in 8 patients. Only 2 patients required a total of 2 infiltrations to heal. Hydropic degeneration of the epithelium basal layer, band-like subepithelial lymphocytic infiltration and fibrin deposits in the epithelium were observed in all patients. Interestingly plasma cells were present in 2 patients. All patients presenting plasma cells healed after only one PRGF infiltration. However, 2 patients out of 6 (no plasma cells) required 2 infiltrations. The local administration of autologous local factors could overcome the deficit of biomolecular clues and thus improve cell functions and restore cell-matrix communication. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Quantification of soil and water losses in an extensive olive orchard catchment in Southern Spain

    NASA Astrophysics Data System (ADS)

    Rodrigo-Comino, Jesús; Taguas, Encarnación; Seeger, Manuel; Ries, Johannes B.

    2018-01-01

    A sound understanding of erosive processes at different scales can contribute substantially to the design of suitable management strategies. The main aim of this work was to evaluate key factors at the pedon scale that cause soil erosion to occur. To achieve this goal, we quantified infiltration, permeability, soil losses and runoff volumes in a small Southern Spanish catchment cultivated with olive orchards. To assess which factor contributed most to speeding up soil erosion, a Spearman rank coefficient and principal components analysis were carried out. The results confirmed low infiltration values (11.8 mm h-1) in the surface soil layers and high permeability values (24.6 mm h-1) in the sub-surface soil layers, and produced an average soil loss of 19.7 g m-2 and average runoff coefficients of 26.1%. Statistical analyses showed that: i) the generation of runoff was closely correlated with soil loss; and, ii) an increase in the vegetation cover helped reduce soil erosion. In comparison to larger areas such as a catchment, the pedon scale produced lower or similar soil losses and runoff coefficients in rainfall simulation conditions, although the influence of vegetation cover as a control factor was also detected.

  17. Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers

    USGS Publications Warehouse

    Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.

    2002-01-01

    In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.

  18. Hydrogeologic framework, arsenic distribution, and groundwater geochemistry of the glacial-sediment aquifer at the Auburn Road landfill superfund site, Londonderry, New Hampshire

    USGS Publications Warehouse

    Degnan, James R.; Harte, Philip T.

    2013-01-01

    Leachate continues to be generated from landfills at the Auburn Road Landfill Superfund Site in Londonderry, New Hampshire. Impermeable caps on the three landfills at the site inhibit direct infiltration of precipitation; however, high water-table conditions allow groundwater to interact with landfill materials from below, creating leachate and ultimately reducing conditions in downgradient groundwater. Reducing conditions can facilitate arsenic transport by allowing it to stay in solution or by liberating arsenic adsorbed to surfaces and from geologic sources, such as glacial sediments and bedrock. The site occupies a 180-acre parcel of land containing streams, ponds, wetlands, and former gravel pits located in glacial sediment. Four areas, totaling 14 acres, including three landfills and one septage lagoon, were used for waste disposal. The site was closed in 1980 after volatile organic compounds associated with industrial waste dumping were detected. The site was added to the U.S. Environmental Protection Agency National Priority List in 1982, and the landfills were capped in 1996. Although volatile organic compound concentrations in groundwater have declined substantially, some measurable concentrations remain. Temporally variable and persistent elevated arsenic concentrations have been measured in groundwater affected by the landfill leachate. Microbial consumption of carbon found in leachate is a driver of reducing conditions that liberate arsenic at the site. In addition to sources of carbon in landfill leachate, wetland areas throughout the site also could contribute carbon to groundwater, but it is currently unknown if any of the wetland areas have downward or reversing gradients that could allow the infiltration of surface water to groundwater. Red-stained sediments and water indicate iron-rich groundwater discharge to surface water and are also associated with elevated concentrations of arsenic in sediment and groundwater. Ironrich groundwater seeps have been observed in the wetland, streams, and pond downgradient of the landfills. Piezometers were installed in some of these locations to confirm groundwater discharge, measure vertical-flow gradients, and to provide a way to sample the discharging groundwater. Understanding the movement of leachate in groundwater is complicated by the presence of preferential flow paths through aquifer materials with differing hydraulic properties; these preferential flow paths can affect rates of recharge, geochemical conditions, and contaminant fluxes. In areas adjacent to the three capped landfills, infiltration of precipitation containing oxygenated water through permeable deltaic sediments in the former gravel pit area causes increases in dissolved oxygen concentrations and decreases in arsenic concentrations. Layered deltaic sediments produce anisotropic hydraulic characteristics and zones of high hydraulic conductivity. The glacial-sediment aquifer also includes glaciolacustrine sediments that have low permeability and limit infiltration at the surface Discharge of leachate-affected groundwater may be limited in areas of organic muck on the bottom of Whispering Pines Pond because the muck may act as a semiconfining layer. Geophysical survey results were used to identify several areas with continuous beds of muck and an underlying highresistivity layer on top of a layer of low resistivity that may represent leachate-affected groundwater. The high-resistivity layer is likely groundwater associated with oxygenated recharge, which would cause arsenic to adsorb onto aquifer sediments and reduce concentrations of dissolved arsenic in groundwater. Surface and borehole geophysical data collected in 2011 were used to identify potentially high-permeability or contaminated zones in the aquifer (preferential flowpaths) as well as low-permeability zones that may promote contamination through back diffusion. Some groundwater in parts of the glacial-sediment aquifer where the leachate plumes were present had low electrical resistivity, low dissolved oxygen, and high concentrations of arsenic. Low-resistivity zones in the underlying bedrock were associated with fractures that also may contain leachate. Although surveying the fractured bedrock was not a specific objective of this study, the results suggest that such a survey would help to determine if leachate and associated concentrations of arsenic are migrating downward into the fractured-bedrock-aquifer system. An uncalibrated, one-dimensional, reactive-transport model was used to assess several conditions that affect arsenic mobility. The results indicate that reductive dissolution and desorption from glacial sediments control dissolved arsenic concentrations. Parameter sensitivity analysis was used to identify key data that are needed in order to accurately assess the time required for arsenic concentrations to fall to levels below the maximum contaminant level at the site. Quantifying this time will require accurate characterization of carbon, sediment-surface sorption sites, and groundwater fluxes at the site.

  19. In-situ arsenic removal during groundwater recharge through unsaturated alluvium

    USGS Publications Warehouse

    O'Leary, David; Izbicki, John; T.J. Kim,; Clark Ajawani,; Suarez, Donald; Barnes, Thomas; Thomas Kulp,; Burgess, Matthew K.; Tseng, Iwen

    2015-01-01

    OBJECTIVES The purpose of this study was to determine the feasibility and sustainability of in-situ removal of arsenic from water infiltrated through unsaturated alluvium. BACKGROUND Arsenic is naturally present in aquifers throughout the southwestern United States and elsewhere. In January 2006, the U.S. Environmental Protection Agency (EPA) lowered the Maximum Contaminant Level (MCL) for arsenic from 50 to 10 micrograms per liter (g/L). This raised concerns about naturally-occurring arsenic in groundwater. Although commercially available systems using sorbent iron or aluminum oxide resins are available to treat high-arsenic water, these systems are expensive to build and operate, and may generate hazardous waste. Iron and aluminum oxides occur naturally on the surfaces of mineral grains that compose alluvial aquifers. In areas where alluvial deposits are unsaturated, these oxides may sorb arsenic in the same manner as commercial resins, potentially providing an effective low-cost alternative to commercially engineered treatment systems. APPROACH The Antelope Valley within the Mojave Desert of southern California contains a shallow water-table aquifer with arsenic concentrations of 5 g/L, and a deeper aquifer with arsenic concentrations of 30 g/L. Water was pumped from the deep aquifer into a pond and infiltrated through an 80 m-thick unsaturated zone as part of field-scale and laboratory experiments to treat high-arsenic groundwater and recharge the shallow water table aquifer at the site. The field-scale recharge experiment included the following steps: 1) construction of a recharge pond 2) test drilling for sample collection and instrument installation adjacent to the pond 3) monitoring downward migration of water infiltrated from the pond 4) monitoring changes in selected trace-element concentrations as water infiltrated through the unsaturated zone Data from instruments within the borehole adjacent to the pond were supplemented with borehole and surface geophysical data to evaluate the lateral spreading of water as it moved downward through the unsaturated zone. Three laboratory studies were undertaken. Sequential extraction was used to evaluate the abundance of iron, aluminum, and manganese oxides and selected trace elements on operationally defined sites on the surfaces of mineral grains collected before and after infiltration from the pond. Secondly, radio-labeled arsenic-73 microcosm experiments evaluated the potential for incorporation of arsenic sorbed to exchange sites on mineral grains into less reactive crystalline mineral structures with time. Finally, column studies evaluated arsenic sorption and the pH dependence of sorption for selected unsaturated zone materials.RESULTS/CONCLUSIONS Between December 2010 and July 2012, more than 120,000 cubic meters (m3 ) (about 97 acre-feet) of high-arsenic groundwater was pumped from the deep aquifer into a 0.11 hectare (about 0.27 acres) pond and infiltrated though an 80-meter (about 260 feet) thick unsaturated zone to recharge a water-table aquifer. Arsenic concentrations were lowered from 30 to 2 g/L as water infiltrated though the unsaturated zone at the site. Some uranium, possibly associated with past agricultural land use at the site, was mobilized to concentrations as high as 66 g/L within the unsaturated zone during the experiment. Uranium was resorbed and the high uranium concentrations did not reach the water table at the site. Concentrations of other trace elements, including antimony, chromium, vanadium, and selenium were low throughout the study. Infiltration rates from the pond were as high as 0.4 meters per day (1.1 feet per day, ft/d), and the wetting front moved downward about 25 centimeters per day (cm/d) (0.8 ft/d) to a depth of about 50 m (about 165 feet). Clay layers at that depth slowed the downward movement of the wetting front to about 5 cm/d (0.16 ft/d). Lateral movement of the wetting front was monitored using sequential direct-current (DC) surface and sequential electromagnetic (EM) and DC borehole resistivity. Most lateral movement occurred on a clay layer about 50 m (about 165 feet) below land surface. Infiltrated water reached the water table in January 2013. At the water table, the “wetted footprint” of water infiltrated from the pond, indicated by surface resistivity data, was about 13 hectares (about 32 acres). On the basis of data collected at the site, there is enough sorbent material to operate this pond and treat groundwater having an arsenic concentration of 30 g/L to 2 g/L for about 500 years. Toxicity Characteristic Leaching Procedure (TCLP) data showed arsenic concentrations to be below hazardous levels beneath the pond after the experiment. Pond maintenance may be required to keep infiltration rates high, and prevent accumulation of organic material on the pond bottom, although organic material on the pond bottom may increase removal of other trace elements in infiltrated water including chromium, selenium, and vanadium. Laboratory results are consistent with the field data and show sorption of arsenic in 10 cm (0.3 feet) columns to about 2 g/L over a pH range of 6 to 8, and at influent arsenic concentrations as high as 300 g/L, without breakthrough in 50 pore volumes. Column results suggest that the insitu treatment may remove arsenic in a range of hydrogeologic settings, and would not necessarily be restricted to alkaline alluvial aquifers common throughout the southwestern United States. Radiolabeled arsenic-73 experiments show that although arsenic is initially weakly sorbed (and potentially mobile), with time arsenic is incorporated into amorphous materials. One year after sorption onto surface exchange sites, most sorbed arsenic is incorporated into crystalline oxide minerals on the surfaces of primary mineral grains and is less mobile. Results of the study suggest that long-term land use restrictions on sites used for in-situ treatment of arsenic may not be needed to control water applied to surface materials. This minimizes some regulatory concerns about future land use at sites used for in-situ arsenic treatment. However, future land uses that may alter reduction-oxidation conditions in the subsurface should be avoided, such as infiltration of stormwater recharge or recharge with other water having high organic carbon concentrations (including unsewered residential land use, dairy or other confined animal operations).

  20. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  1. New Conceptual Model for Soil Treatment Units: Formation of Multiple Hydraulic Zones during Unsaturated Wastewater Infiltration.

    PubMed

    Geza, Mengistu; Lowe, Kathryn S; Huntzinger, Deborah N; McCray, John E

    2013-07-01

    Onsite wastewater treatment systems are commonly used in the United States to reclaim domestic wastewater. A distinct biomat forms at the infiltrative surface, causing resistance to flow and decreasing soil moisture below the biomat. To simulate these conditions, previous modeling studies have used a two-layer approach: a thin biomat layer (1-5 cm thick) and the native soil layer below the biomat. However, the effect of wastewater application extends below the biomat layer. We used numerical modeling supported by experimental data to justify a new conceptual model that includes an intermediate zone (IZ) below the biomat. The conceptual model was set up using Hydrus 2D and calibrated against soil moisture and water flux measurements. The estimated hydraulic conductivity value for the IZ was between biomat and the native soil. The IZ has important implications for wastewater treatment. When the IZ was not considered, a loading rate of 5 cm d resulted in an 8.5-cm ponding. With the IZ, the same loading rate resulted in a 9.5-cm ponding. Without the IZ, up to 3.1 cm d of wastewater could be applied without ponding; with the IZ, only up to 2.8 cm d could be applied without ponding. The IZ also plays a significant role in soil moisture distribution. Without the IZ, near-saturation conditions were observed only within the biomat, whereas near-saturation conditions extended below the biomat with the IZ. Accurate prediction of ponding is important to prevent surfacing of wastewater. The degree of water and air saturation influences pollutant treatment efficiency through residence time, volatility, and biochemical reactions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. Assessing the dynamics of the upper soil layer relative to soil management practices

    NASA Astrophysics Data System (ADS)

    Hatfield, J.; Wacha, K.; Dold, C.

    2017-12-01

    The upper layer of the soil is the critical interface between the soil and the atmosphere and is the most dynamic in response to management practices. One of the soil properties most reflective to changes in management is the stability of the aggregates because this property controls infiltration of water and exchange of gases. An aggregation model has been developed based on the factors that control how aggregates form and the forces which degrade aggregates. One of the major factors for this model is the storage of carbon into the soil and the interaction with the soil biological component. To increase soil biology requires a stable microclimate that provides food, water, shelter, and oxygen which in turn facilitates the incorporation of organic material into forms that can be combined with soil particles to create stable aggregates. The processes that increase aggregate size and stability are directly linked the continual functioning of the biological component which in turn changes the physical and chemical properties of the soil. Soil aggregates begin to degrade as soon as there is no longer a supply of organic material into the soil. These processes can range from removal of organic material and excessive tillage. To increase aggregation of the upper soil layer requires a continual supply of organic material and the biological activity that incorporates organic material into substances that create a stable aggregate. Soils that exhibit stable soil aggregates at the surface have a prolonged infiltration rate with less runoff and a gas exchange that ensures adequate oxygen for maximum biological activity. Quantifying the dynamics of the soil surface layer provides a quantitative understanding of how management practices affect aggregate stability.

  3. Evaluation of the tissue reaction to a new bilayered collagen matrix in vivo and its translation to the clinic.

    PubMed

    Ghanaati, Shahram; Schlee, Markus; Webber, Matthew J; Willershausen, Ines; Barbeck, Mike; Balic, Ela; Görlach, Christoph; Stupp, Samuel I; Sader, Robert A; Kirkpatrick, C James

    2011-02-01

    This study evaluates a new collagen matrix that is designed with a bilayered structure in order to promote guided tissue regeneration and integration within the host tissue. This material induced a mild tissue reaction when assessed in a murine model and was well integrated within the host tissue, persisting in the implantation bed throughout the in vivo study. A more porous layer was rapidly infiltrated by host mesenchymal cells, while a layer designed to be a barrier allowed cell attachment and host tissue integration, but at the same time remained impermeable to invading cells for the first 30 days of the study. The tissue reaction was favorable, and unlike a typical foreign body response, did not include the presence of multinucleated giant cells, lymphocytes, or granulation tissue. In the context of translation, we show preliminary results from the clinical use of this biomaterial applied to soft tissue regeneration in the treatment of gingival tissue recession and exposed roots of human teeth. Such a condition would greatly benefit from guided tissue regeneration strategies. Our findings demonstrate that this material successfully promoted the ingrowth of gingival tissue and reversed gingival tissue recession. Of particular importance is the fact that the histological evidence from these human studies corroborates our findings in the murine model, with the barrier layer preventing unspecific tissue ingrowth, as the scaffold becomes infiltrated by mesenchymal cells from adjacent tissue into the porous layer. Also in the clinical situation no multinucleated giant cells, no granulation tissue and no evidence of a marked inflammatory response were observed. In conclusion, this bilayered matrix elicits a favorable tissue reaction, demonstrates potential as a barrier for preferential tissue ingrowth, and achieves a desirable therapeutic result when applied in humans for soft tissue regeneration.

  4. The geochemical record in rock glaciers

    USGS Publications Warehouse

    Steig, E.J.; Fitzpatrick, J.J.; Potter, N.; Clark, D.H.

    1998-01-01

    A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.

  5. Performances of metal concentrations from three permeable pavement infiltrates.

    PubMed

    Liu, Jiayu; Borst, Michael

    2018-06-01

    The U.S. Environmental Protection Agency constructed a 4000-m 2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each permeable pavement infiltrate, surface runoff from traditional asphalt, and rainwater were analyzed in duplicate for 22 metals (total and dissolved) for 6 years. In more than 99% of the samples, the concentration of barium, chromium, copper, manganese, nickel and zinc, and in 60%-90% of the samples, the concentration of arsenic, cadmium, lead, and antimony in infiltrates from all three permeable pavements met both the groundwater effluent limitations (GEL) and maximum contaminant levels (MCL). The concentration of aluminum (50%) and iron (93%) in PICP infiltrates samples exceed the GELs; however, the concentration in more than 90% samples PA and PC infiltrates met the GELs. No measurable difference in metal concentrations was found from the five sources for arsenic, cadmium, lead, antimony, and tin. Large concentrations of eleven metals, including manganese, copper, aluminum, iron, calcium, magnesium, sodium, potassium, silica, strontium and vanadium, were detected in surface runoff than the rainwater. Chromium, copper, manganese, nickel, aluminum, zinc, iron and magnesium concentrations in PICP infiltrates; calcium, barium, and strontium concentrations in PA infiltrates; sodium, potassium and vanadium concentrations in PC infiltrates were statistically larger than the other two permeable pavement infiltrates. Published by Elsevier Ltd.

  6. Single domain YBa2Cu3Oy thick films on metallic substrates

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Noudem, J. G.; Goodilin, E. A.; Tarka, M.; Schmitz, G. J.

    2003-03-01

    The fabrication of single domain YBa2Cu3Oy (123) thick films (10-100 mum) on metallic substrates is reported. The process involves the formation of the 123 phase by a peritectic reaction between an air-brushed dense Y2BaCuO5 (211) layer on a Ag12Pd substrate and infiltrated liquid phases containing barium cuprates and copper oxides. Single domain growth is achieved by seeding the green films with a c-axis oriented NdBa2Cu3Oy crystal prior to processing. The maximum processing temperatures are lowered to 970 °C by modifying the characteristics of the liquid phases meant for infiltration by addition of Ag powder. The fabrication technique, processing conditions for single domain growth and the resulting microstructures are discussed.

  7. Histological and immunohistochemical characterization of uterine adenocarcinoma in an Asian elephant (Elephas Maximus).

    PubMed

    Laricchiuta, Pietro; Russo, Valeria; Costagliola, Alessandro; Piegari, Giuseppe; Capasso, Michele; Silvestre, Pasquale; Martano, Manuela; Paciello, Orlando

    2018-03-23

    A 56 year old nulliparous female Asian elephant (Elephas maximus) living at the zoological garden of Naples (Italy), with a clinical history of recurrent colic, was found in agonal state and humane euthanasia was elected. At necropsy the uterine body was moderately increased in size and the lumen was reduced due to a poorly demarcated and infiltrative neoplasm. Furthermore, multiple, whitish, firm nodules were present in both lungs. Histological examination of the uterine mass revealed epithelial cells arranged in tubular or solid pattern infiltrating the endometrium and the muscular layer. Immunohistochemical examination showed immunoreactivity of neoplastic cells to estrogen receptors antibody. Pulmonary lesions were histologically and immunohistochemically superimposable to the epithelial uterine neoplasm. A definitive diagnosis of uterine adenocarcinoma with pulmonary metastases was made.

  8. Thermal effect on the dynamic infiltration of water into single-walled carbon nanotubes.

    PubMed

    Zhao, Jianbing; Liu, Ling; Culligan, Patricia J; Chen, Xi

    2009-12-01

    Thermally induced variation in wetting ability in a confined nanoenvironment, indicated by the change in infiltration pressure as water molecules enter a model single-walled carbon nanotube submerged in aqueous environment, is investigated using molecular dynamics simulations. The temperature-dependent infiltration behavior is impacted in part by the thermally excited radial oscillation of the carbon nanotube, and in part by the variations of fundamental physical properties at the molecular level, including the hydrogen bonding interaction. The thermal effect is also closely coupled with the nanotube size effect and loading rate effect. Manipulation of the thermally responsive infiltration properties could facilitate the development of a next-generation thermal energy converter based on nanoporous materials.

  9. Impaired gut contractility following hemorrhagic shock is accompaied by IL-6 and G-CSF production and neutrophil infiltration.

    PubMed

    Hierholzer, C; Kalff, J C; Chakraborty, A; Watkins, S C; Billiar, T R; Bauer, A J; Tweardy, D J

    2001-02-01

    Recovery from hemorrhagic shock (HS) is frequently accompanied by bowel stasis. The aim of this study was to examine whether or not HS initiates an inflammatory response that includes production of cytokines, specifically G-CSF and interleukin-6 (IL-6), and recruitment of leukocytes within the intestinal muscularis which contribute to impaired muscle contractility. Sprague-Dawley rats were subjected to HS (MAP 40 mm Hg for 156 min) followed by resuscitation, and then they were killed at 4 hr. Shock animals demonstrated accumulation of PMNs in the jejunal muscularis and decreased spontaneous and bethanechol-stimulated muscle contractility. Semiquantitative RT-PCR demonstrated elevated levels of IL-6 and G-CSF mRNA in shock animals in full-thickness jejunum and in mucosa and muscularis layers compared to sham controls. Immunostaining demonstrated increased IL-6 protein production within the muscularis externa and submucosa. In situ hybridization studies localized G-CSF mRNA production to the submucosa. Gel shift assays revealed increased NF-kappaB and Stat3 activity in full-thickness jejunum and jejunal layers of shock animals. Activation of Stat3 also was demonstrated in normal muscularis tissue exposed to IL-6 and G-CSF in vitro. IL-6 and G-CSF are produced in the muscularis and mucosa layers of the gut in HS where they may contribute to PMN recruitment and smooth muscle dysfunction.

  10. Infiltrated W–Cu composites with combined architecture of hierarchical particulate tungsten and tungsten fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Shuhua, E-mail: liangsh@xaut.edu.cn; Shaanxi Province Key Laboratory for Electrical Materials and Infiltration Technology, Xi'an 710048; Chen, Long

    In this article, novel W–Cu composites reinforced with topologically-inserted tungsten fibers (W{sub f}) have been fabricated by hot-press sintering and infiltration method. By pre-sputtering of ~ 100 nm thick chromium layer onto the surface of W{sub f}, the contiguity or connectivity between W{sub f} and neighboring tungsten particles (W{sub p}) or Cu after sintering and infiltration was enhanced. Combined SEM, TEM and STEM techniques confirmed that the intact interfaces of W{sub f}/W{sub p} and W{sub f}/Cu free from precipitates, impurities and porosities would provide desirable strength and ductility. Further mechanical tests also validated its superior compressive strength and plasticity atmore » various temperatures, together with significantly improved tensile strength (by 23.6%) and hardness (by 9.3%) for the W–Cu composite after reinforcement with Cr-coated W{sub f}, which promotes the engineering application of the composite greatly. - Highlights: • W-fibers reinforced W–Cu composites were fabricated by sintering and infiltration. • The sputtered Cr onto W{sub f} has dissolved into adjacent W{sub f} and W{sub p} during fabrication. • The intact interfaces of W{sub f}/W{sub p} and W{sub f}/Cu confer enhanced strength and ductility. • Tensile strength and hardness improve by 23.6% and 9.3% after interface tuning.« less

  11. Modelling the Impact of Climate Change on Soil Water Availability and Plant Community Shifts in the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Gill, R. A.

    2016-12-01

    Climate change with an accompanying decrease in soil moisture is expected to have a significant impact on the sensitive, water-limited ecosystems of America's southwestern deserts. Already, studies have documented shifts in the distributions of competing grasses and shrubs in this region, potentially altering ecosystem function. Of particular interest is the loss of desert grasses and the expansion of desert shrubs over the past three decades. The objective of this work is to use a process-based hydrological model to extrapolate site-level measurements to assess trends in soil moisture availability that may impact plant communities in the Colorado Plateau and surrounding regions. The model, SOILWAT, simulates the daily movement of water through plant and soil layers, incorporating precipitation, interception, evaporation, infiltration between soil layers, and absorption and transpiration by plants, as well as physical site characteristics. We applied SOILWAT to 50 sites that were stratified through the northern, central, and southern regions of Ephedra viridis. We focused on E. viridis because it has displaced desert grasses in plot-scale studies. The model was driven using spatially interpolated daily weather data from the PRISM climate model over a 34-year period. We found that across all years, average soil water content in the sandy soil of the region was higher in soil layers 40-60 cm deep than in the top 20 cm, and highest in the deepest layers down to 100 cm. The consistently higher margin of water in deeper layers may indicate the vulnerability of shallow-rooted grass to increasing evaporation and an advantage to deeply-rooted shrubs such as Ephedra.

  12. Dental adhesives and strategies for displacement of water/solvents from collagen fibrils.

    PubMed

    Matuda, Larissa Sgarbosa de Araújo; Marchi, Giselle Maria; Aguiar, Thaiane Rodrigues; Leme, Ariene Arcas; Ambrosano, Gláucia M B; Bedran-Russo, Ana Karina

    2016-06-01

    To evaluate the influence of temperature of evaporation in adhesive systems with different solvents on the apparent modulus of elasticity and mass change of macro-hybrid layers modified by proanthocyanidins (PACs). Adhesive resin beams (A) from Single Bond Plus (SB), Excite (EX) and One Step Plus (OS) were prepared after solvent evaporation at 23°C or 40°C (n=12). Macro-hybrid layers (M) (n=12) were prepared using demineralized dentin beams sectioned from extracted human third molars. The demineralized dentin specimens were infiltrated with each one of the three adhesive systems at 23°C or 40°C; with or without prior dentin treatment with PACs for 10min. The apparent modulus of elasticity (E) and mass change (Wmc, %) of adhesives beams and resin-infiltrated specimens were assessed in dry and wet conditions after immersion in water (24h, 1, 3 and 6 months). The E was statistically analyzed by Tukey-Kramer test and the Wmc, % by Kruskal Wallis, and Dunn (α=0.05). Solvent evaporation at 40°C resulted in higher E values for adhesive resin beams at all storage conditions, regardless of the adhesive system (p<0.05). Increased mass loss (3 months: -0.01%; 6 months: -0.05%) was observed in One Step resin beams (p≤0.05). In the macro-hybrid layer models the pretreatment with PACs along with solvent evaporation at 40°C increased E and decreased the Wmc, % (3 months: -2.5; 6 months: 2.75%) for adhesives evaluated over time (p<0.05). No significant differences in ratio (resin/dentin) were found for the macro-hybrid layers (p>0.05). Improved solvent evaporation at higher temperature, and increased collagen cross-linking induced by PACs, enhanced the mechanical properties resulting in highly stable macro-hybrid layers over 6 months storage. Copyright © 2016 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. The Anti-Inflammatory Effect of Ripasudil (K-115), a Rho Kinase (ROCK) Inhibitor, on Endotoxin-Induced Uveitis in Rats.

    PubMed

    Uchida, Takatoshi; Honjo, Megumi; Yamagishi, Reiko; Aihara, Makoto

    2017-10-01

    To investigate the anti-inflammatory properties of ripasudil, a Rho kinase (ROCK) inhibitor, using endotoxin-induced uveitis (EIU) in rats. Endotoxin-induced uveitis was induced by footpad injection of lipopolysaccharide (LPS). Ripasudil was administered intraperitoneally 1 hour before and after LPS injection. The aqueous humor was collected 24 hours after injection, and the infiltrating cells, protein concentration, and levels of monocyte chemotactic protein-1 (MCP-1) were determined. Infiltrating cells in the iris ciliary body (ICB) and adherent leukocytes in retinal vessels were evaluated. The mRNA levels of IL-1β, IL-6, TNF-α, and MCP-1 in the retina and ICB were determined. A mouse macrophage cell line, RAW264.7, was stimulated with LPS in the presence or absence of ripasudil, and the expression of MCP-1 and nuclear translocation of nuclear factor (NF)-κB was analyzed. Ripasudil significantly reduced infiltrating cells and protein exudation in the aqueous humor, as well as the number of infiltrating cells in the ICB and adherent leukocytes in retinal vessels in EIU. Additionally, the protein level of MCP-1 in the aqueous humor and mRNA levels of IL-1β, IL-6, TNF-α, MCP-1, and intercellular adhesion molecule-1 in the ICB and retina were suppressed by ripasudil. The production of MCP-1 and nuclear translocation of NF-κB in RAW264.7 cells were also suppressed by ripasudil. The Rho/ROCK pathway plays a role in adhesion molecule expression and inflammatory cell infiltration in EIU, and ripasudil is a potent anti-inflammatory agent against ocular inflammatory diseases, including acute uveitis and possibly uveitic glaucoma.

  14. Manipulating femtosecond pulse shape using liquid crystals infiltrated one-dimensional graded index photonic crystal waveguides composed of coupled-cavities

    NASA Astrophysics Data System (ADS)

    Fathollahi Khalkhali, T.; Bananej, A.

    2017-10-01

    In this paper, we investigate the transmission of a 10-femtosecond pulse through an ordinary and graded index coupled-cavity waveguide, using finite-difference time-domain and transfer matrix method. The ordinary structure is composed of dielectric/liquid crystal layers in which four defect layers are placed symmetrically. Next, we introduce a graded structure based on the ordinary system in which dielectric refractive index slightly increases with a constant step value from the beginning to the end of the structure while liquid crystal layers are maintained unchanged. Simulation results reveal that by applying an external static electric field and controlling liquid crystal refractive index in graded structure, it is possible to transmit an ultrashort pulse with negligible distortion and attenuation.

  15. Influence of Vacuum Cooling on Escherichia coli O157:H7 Infiltration in Fresh Leafy Greens via a Multiphoton-Imaging Approach

    PubMed Central

    Vonasek, Erica

    2015-01-01

    Microbial pathogen infiltration in fresh leafy greens is a significant food safety risk factor. In various postharvest operations, vacuum cooling is a critical process for maintaining the quality of fresh produce. The overall goal of this study was to evaluate the risk of vacuum cooling-induced infiltration of Escherichia coli O157:H7 into lettuce using multiphoton microscopy. Multiphoton imaging was chosen as the method to locate E. coli O157:H7 within an intact lettuce leaf due to its high spatial resolution, low background fluorescence, and near-infrared (NIR) excitation source compared to those of conventional confocal microscopy. The variables vacuum cooling, surface moisture, and leaf side were evaluated in a three-way factorial study with E. coli O157:H7 on lettuce. A total of 188 image stacks were collected. The images were analyzed for E. coli O157:H7 association with stomata and E. coli O157:H7 infiltration. The quantitative imaging data were statistically analyzed using analysis of variance (ANOVA). The results indicate that the low-moisture condition led to an increased risk of microbial association with stomata (P < 0.05). Additionally, the interaction between vacuum cooling levels and moisture levels led to an increased risk of infiltration (P < 0.05). This study also demonstrates the potential of multiphoton imaging for improving sensitivity and resolution of imaging-based measurements of microbial interactions with intact leaf structures, including infiltration. PMID:26475109

  16. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  17. Immunopathology of recurrent uveitis in spontaneously diseased horses.

    PubMed

    Deeg, C A; Ehrenhofer, M; Thurau, S R; Reese, S; Wildner, G; Kaspers, B

    2002-08-01

    Equine recurrent uveitis (ERU) is the most serious eye disease in horses worldwide. Despite the fact that ERU is generally considered to be immune mediated, a detailed description of the histopathology of the posterior part of ERU eyes is lacking. Here, we examined sections of paraffin-embedded eyes using histological and immunhistological methods. Twenty seven eyes of 20 horses with ERU and 30 eyes of 15 healthy control horses were included in this study. We could consistently demonstrate an involvement of the retina and the choroid in all examined eyes of horses with spontaneous ERU. In eyes with minimal histopathological changes, the infiltrates consisted almost exclusively of T-cells. Histopathological changes start with the destruction of the photoreceptor outer segments, which often leads to focal retinal detachment. In more severely affected eyes, there is additional disintegration of the ganglion cell layer and the inner nuclear layer. In almost all examined eyes, lymphoid follicle formation could be demonstrated. Typical localizations of these follicles were the iris stroma and the choroid underneath the transition zone of the retina without photoreceptor cells to the region containing photoreceptor cells. These follicles consist of a T-cell rich periphery with a small center of CD3-negative lymphocytes. In cases with extreme histopathological changes, the retinal architecture is widely disintegrated with massive infiltration of the retina, the choroid, and the ciliary body by several types of inflammatory cells. Necrotic remnants of the retina are end-stage findings and there is only a minor inflammatory infiltration left. This study provides clear evidence that the retina is involved in all stages of ERU. Inflammation is mainly driven by T-cells as T-cells were demonstrated in mild stages of the disease and are also the predominating cell type in all other stages of ERU.

  18. Enhancing the Bioactivity of Yttria-Stabilized Tetragonal Zirconia Ceramics via Grain-Boundary Activation.

    PubMed

    Ke, Jinhuan; He, Fupo; Ye, Jiandong

    2017-05-17

    Yttria-stabilized tetragonal zirconia (Y-TZP) has been proposed as a potential dental implant because of its good biocompatibility, excellent mechanical properties, and distinctive aesthetic effect. However, Y-TZP cannot form chemical bonds with bone tissue because of its biological inertness, which affects the reliability and long-term efficacy of Y-TZP implants. In this study, to improve the bioactivity of Y-TZP ceramics while maintaining their good mechanical performance, Y-TZP was modified by grain-boundary activation via the infiltration of a bioactive glass (BG) sol into the surface layers of Y-TZP ceramics under different negative pressures (atmospheric pressure, -0.05 kPa, and -0.1 kPa), followed by gelling and sintering. The in vitro bioactivity, mechanical properties, and cell behavior of the Y-TZP with improved bioactivity were systematically investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), electron probe microanalysis (EPMA), and Raman spectroscopy. The results of the bioactivity test conducted by immersing Y-TZP in simulated body fluid (SBF) showed that a bonelike apatite layer was produced on the entire surface. The mechanical properties of the modified Y-TZP decreased as the negative pressure in the BG-infiltration process increased relative to those of the Y-TZP blank group. However, the samples infiltrated with the BG sol under -0.05 kPa and atmospheric pressure still retained good mechanical performance. The cell-culture results revealed that the bioactive surface modification of Y-TZP could promote cell adhesion and differentiation. The present work demonstrates that the bioactivity of Y-TZP can be enhanced by grain-boundary activation, and the bioactive Y-TZP is expected to be a potential candidate for use as a dental implant material.

  19. The herbicide glyphosate and its metabolite AMPA in the Lavaux vineyard area, western Switzerland: proof of widespread export to surface waters. Part II: the role of infiltration and surface runoff.

    PubMed

    Daouk, Silwan; De Alencastro, Luiz F; Pfeifer, Hans-Rudolf

    2013-01-01

    Two parcels of the Lavaux vineyard area, western Switzerland, were studied to assess to which extent the widely used herbicide, glyphosate, and its metabolite aminomethylphosphonic acid (AMPA) were retained in the soil or exported to surface waters. They were equipped at their bottom with porous ceramic cups and runoff collectors, which allowed retrieving water samples for the growing seasons 2010 and 2011. The role of slope, soil properties and rainfall regime in their export was examined and the surface runoff/throughflows ratio was determined with a mass balance. Our results revealed elevated glyphosate and AMPA concentrations at 60 and 80 cm depth at parcel bottoms, suggesting their infiltration in the upper parts of the parcels and the presence of preferential flows in the studied parcels. Indeed, the succession of rainy days induced the gradual saturation of the soil porosity, leading to rapid infiltration through macropores, as well as surface runoff formation. Furthermore, the presence of more impervious weathered marls at 100 cm depth induced throughflows, the importance of which in the lateral transport of the herbicide molecules was determined by the slope steepness. Mobility of glyphosate and AMPA into the unsaturated zone was thus likely driven by precipitation regime and soil characteristics, such as slope, porosity structure and layer permeability discrepancy. Important rainfall events (>10 mm/day) were clearly exporting molecules from the soil top layer, as indicated by important concentrations in runoff samples. The mass balance showed that total loss (10-20%) mainly occurred through surface runoff (96%) and, to a minor extent, by throughflows in soils (4%), with subsequent exfiltration to surface waters.

  20. Overcoming Film Quality Issues for Conjugated Polymers Doped with F4TCNQ by Solution Sequential Processing: Hall Effect, Structural, and Optical Measurements.

    PubMed

    Scholes, D Tyler; Hawks, Steven A; Yee, Patrick Y; Wu, Hao; Lindemuth, Jeffrey R; Tolbert, Sarah H; Schwartz, Benjamin J

    2015-12-03

    We demonstrate that solution-sequential processing (SqP) can yield heavily doped pristine-quality films when used to infiltrate the molecular dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into pure poly(3-hexylthiophene) (P3HT) polymer layers. Profilometry measurements show that the SqP method produces doped films with essentially the same surface roughness as pristine films, and 2-D grazing-incidence wide-angle X-ray scattering (GIWAXS) confirms that SqP preserves both the size and orientation of the pristine polymer's crystallites. Unlike traditional blend-cast F4TCNQ/P3HT doped films, our sequentially processed layers have tunable and reproducible conductivities reaching as high as 5.5 S/cm even when measured over macroscopic (>1 cm) distances. The high conductivity and superb film quality allow for meaningful Hall effect measurements, which reveal p-type conduction and carrier concentrations tunable from 10(16) to 10(20) cm(-3) and hole mobilities ranging from ∼0.003 to 0.02 cm(2) V(-1) s(-1) at room temperature over the doping levels examined.

  1. Modeling Groundwater Flow and Infiltration at Potential Low-Level Radioactive Waste Disposal Sites in Taiwan

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Lee, C.; Ma, C.; Knowlton, R. G.

    2006-12-01

    Taiwan is evaluating representative sites for the potential disposal of low-level radioactive waste (LLW), including consideration of shallow land burial and cavern disposal concepts. A representative site for shallow land burial is on a small island in the Taiwan Strait with basalt bedrock. The shallow land burial concept includes an engineered cover to limit infiltration into the waste disposal cell. A representative site for cavern disposal is located on the southeast coast of Taiwan. The tunnel system for this disposal concept would be several hundred meters below the mountainous land surface in argillite bedrock. The LLW will consist of about 966,000 drums, primarily from the operation and decommissioning of four nuclear power plants. Sandia National Laboratories and the Institute of Nuclear Energy Research have collaborated to develop performance assessment models to evaluate the long-term safety of LLW disposal at these representative sites. Important components of the system models are sub-models of groundwater flow in the natural system and infiltration through the engineered cover for the shallow land burial concept. The FEHM software code was used to simulate groundwater flow in three-dimensional models at both sites. In addition, a higher-resolution two-dimensional model was developed to simulate flow through the engineered tunnel system at the cavern site. The HELP software was used to simulate infiltration through the cover at the island site. The primary objective of these preliminary models is to provide a modeling framework, given the lack of site-specific data and detailed engineering design specifications. The steady-state groundwater flow model at the island site uses a specified recharge boundary at the land surface and specified head at the island shoreline. Simulated groundwater flow vectors are extracted from the FEHM model along a cross section through one of the LLW disposal cells for utilization in radionuclide transport simulations in the performance assessment model with the BLT-MS software. Infiltration through the engineered cover is simulated to be about 3 mm/yr and 49 mm/yr, with and without a geomembrane layer, respectively. For the cavern LLW disposal site, the FEHM basin-scale flow model uses specified recharge flux, constant head at the ocean shoreline, and head-dependent flux boundaries along flowing streams. Groundwater flow vectors are extracted along a cross section for use in radionuclide transport simulations. Transport simulations indicate that a significant fraction of contaminants may ultimately discharge to nearby streams. FEHM flow simulations with the drift-scale model indicate that the flow rates within the backfilled tunnels may be more than two orders of magnitude lower than in the host rock. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  2. [Infiltration of tumor associated macrophages in multiple myeloma and its clinical significance].

    PubMed

    Gui, Q L; Wang, Y S; Huang, S; Wan, Y; Wang, H P; Zhu, Z G; Li, M M; Zhu, H Y; Tao, Q S; Shen, Y Y; Zhang, Q; Qin, H

    2018-02-14

    Objective: To investigate the clinical significance of tumor associated macrophages (TAM) in multiple myeloma (MM) and the relationship with angiogenesis and immunosuppression. Methods: Seventy cases of MM patients diagnosed from August 2015 to June 2017 were enrolled in the study as experimental group, 20 cases of benign hematological diseases (13 with iron deficiency anemia and 7 with megaloblastic anemia) patients as control group. Immunohistochemical method was used to detect the expression of CD163, CD34 and VEGF in bone marrow samples, and flow cytometry was used to detect the proportion of regulatory T cell (Treg cells), ELISA was used to detect the level of IL-10, and the clinical features were analyzed. Results: ①Among the 70 patients, there were 31 males and 39 females with a median age of 65 (50~78) years old. TAM infiltration density, microvascular density (MVD), VEGF expression level, Treg ratio and IL-10 level in bone marrow samples of 70 MM patients were significantly higher than those of benign hematological diseases ( P <0.05). ②In the MM group, the above indexes of the patients with disease stabilized (15 cases) were lower than those of the newly diagnosed group (35 cases) and the relapse refractory group (20 cases) ( P <0.05), those of relapse refractory group were higher than those of newly diagnosed group ( P >0.05). ③Of the 35 newly diagnosed MM patients, 27 completed 4 courses of treatment. In the effective group (15 cases), the TAM infiltration density after treatment was significantly lower than that before treatment, the difference was statistically significant[(20.20±7.66) vs (28.87±11.97), t =2.362, P =0.025]; while in the ineffective group of 12 cases, the difference of the TAM infiltration density before and after treatment was not statistically significant[(42.00±13.76) vs (48.25±13.59), t =1.119, P =0.275]. ④TAM infiltration density in the effective group after bortezomib treatment (21 cases) were lower than those in the non-bortezomib treatment group (18 cases)[(16.52 ±4.26) vs (19.27 ±5.82), t =1.662, P =0.170]. ⑤The TAM infiltration density in MM patients was positively correlated with MVD, VEGF expression level, Treg cell ratio and IL-10 level ( P <0.001). Conclusion: The infiltration of TAM in the microenvironment of MM, which may promoting angiogenesis and inhibiting immune response, is related to the occurrence, development, therapeutic effect and drug resistance of MM.

  3. T cell infiltrate and outcome following resection of intermediate-grade primary neuroendocrine tumours and liver metastases.

    PubMed

    Katz, Steven C; Donkor, Charan; Glasgow, Kristen; Pillarisetty, Venu G; Gönen, Mithat; Espat, N Joseph; Klimstra, David S; D'Angelica, Michael I; Allen, Peter J; Jarnagin, William; Dematteo, Ronald P; Brennan, Murray F; Tang, Laura H

    2010-12-01

    Tumour-infiltrating lymphocytes (TILs) have been shown to predict survival in numerous malignancies. The importance of TILs in primary pancreatic neuroendocrine tumours (NETs) and NET liver metastases (NETLMs) has not been defined. We identified 87 patients with NETs and 39 with NETLMs who had undergone resection. Immunohistochemistry was performed to determine TIL counts. Recurrence-free survival (RFS) and overall survival (OS) were determined using the log-rank test. The median follow-up time was 62 months in NET patients and 48 months in NETLM patients. Vascular invasion and histologic grade were the only independent predictors of outcome for NETs and NETLMs, respectively. Analysis of intermediate-grade NETs indicated that a dense T cell (CD3+) infiltrate was associated with a median RFS of 128 months compared with 61 months for those with low levels of intratumoral T cells (P= 0.05, univariate analysis). Examination of NETLMs revealed that a low level of infiltrating regulatory T cells (Treg, FoxP3+) was a predictor of prolonged survival (P < 0.01, univariate analysis). A robust T cell infiltrate is associated with improved RFS following resection of intermediate-grade NETs, whereas the presence of more Treg correlated with shorter OS after treatment of NETLMs. Further study of the immune response to intermediate-grade NETs and NETLMs is warranted.

  4. Leukemia kidney infiltration can cause secondary polycythemia by activating hypoxia-inducible factor (HIF) pathway.

    PubMed

    Osumi, Tomoo; Awazu, Midori; Fujimura, Eriko; Yamazaki, Fumito; Hashiguchi, Akinori; Shimada, Hiroyuki

    2013-06-01

    Secondary polycythemia with increased production of erythropoietin (EPO) is known to occur in kidney diseases such as hydronephrosis and cystic disease, but the mechanism remains unclear. We report an 18-year-old female with isolated renal relapse of acute lymphoblastic leukemia accompanied by polycythemia. At the relapse, she presented with bilateral nephromegaly, mild renal dysfunction, and erythrocytosis with increased serum EPO levels up to 52.1 mIU/mL (9.1-32.8). Renal biopsy demonstrated diffuse lymphoblastic infiltration. The expression of hypoxia-inducible factor (HIF)-1α, which is undetectable in normal kidney, was observed in the renal tubule epithelium compressed by lymphoblastic cells. These findings suggest that erythrocytosis was caused by renal ischemia due to leukemic infiltration. Polycythemia probably became apparent because of the lack of leukemic involvement of the bone marrow. With chemotherapy, the serum EPO level rapidly decreased to normal range accompanied by the normalization of kidney size and function. Renal leukemic infiltration may enhance EPO production, although not recognized in the majority of cases because of bone marrow involvement. Our case has clarified the mechanism of previously reported polycythemia associated with renal diseases as renal ischemia. Furthermore, we have added renal ischemia resulting from tumor infiltration to the list of causes of secondary polycythemia.

  5. Micromechanics of fatigue in woven and stitched composites

    NASA Technical Reports Server (NTRS)

    Cox, B. N.; Dadkhah, M. S.; Inman, R. V.; Mitchell, M. R.; Morris, W. L.; Schroeder, S.

    1991-01-01

    The goal is to determine how microstructural factors, especially the architecture of microstructural factors, control fatigue damage in 3D reinforced polymer composites. Test materials were fabricated from various preforms, including stitched quasi-isotropic laminates, and through-the-thickness angle interlock, layer-to-layer angle interlock, and through-the-thickness stitching effect weaves. Preforms were impregnated with a tough resin by a special vacuum infiltration method. Most tests are being performed in uniaxial compression/compression loading. In all cases to date, failure has occurred not by delamination, but by shear failure, which occurs suddenly rather than by gradual macroscopic crack growth. Some theoretical aspects of bridging are also examined.

  6. The infiltration, and prognostic importance, of Th1 lymphocytes vary in molecular subgroups of colorectal cancer

    PubMed Central

    Ling, Agnes; Lundberg, Ida V; Eklöf, Vincy; Wikberg, Maria L; Öberg, Åke; Palmqvist, Richard

    2015-01-01

    Abstract Giving strong prognostic information, T‐cell infiltration is on the verge of becoming an additional component in the routine clinical setting for classification of colorectal cancer (CRC). With a view to further improving the tools for prognostic evaluation, we have studied how Th1 lymphocyte infiltration correlates with prognosis not only by quantity, but also by subsite, within CRCs with different molecular characteristics (microsatellite instability, CpG island methylator phenotype status, and BRAF and KRAS mutational status). We evaluated the Th1 marker T‐bet by immunohistochemistry in 418 archival tumour tissue samples from patients who underwent surgical resection for CRC. We found that a high number of infiltrating Th1 lymphocytes is strongly associated with an improved prognosis in patients with CRC, irrespective of intratumoural subsite, and that both extent of infiltration and patient outcome differ according to molecular subgroup. In brief, microsatellite instability, CpG island methylator phenotype‐high and BRAF mutated tumours showed increased infiltration of Th1 lymphocytes, and the most pronounced prognostic effect of Th1 infiltration was found in these tumours. Interestingly, BRAF mutated tumours were found to be more highly infiltrated by Th1 lymphocytes than BRAF wild‐type tumours whereas the opposite was seen for KRAS mutated tumours. These differences could be explained at least partly by our finding that BRAF mutated, in contrast to KRAS mutated, CRC cell lines and tumour specimens expressed higher levels of the Th1‐attracting chemokine CXCL10, and reduced levels of CCL22 and TGFB1, stimulating Th2/Treg recruitment and polarisation. In conclusion, the strong prognostic importance of Th1 lymphocyte infiltration in CRC was found at all subsites evaluated, and it remained significant in multivariable analyses, indicating that T‐bet may be a valuable marker in the clinical setting. Our results also indicate that T‐bet is of value when analysed in molecular subgroups of CRC, allowing identification of patients with especially poor prognosis who are in need of extended treatment. PMID:27499912

  7. Multifunctional Structural-energy Storage Nanocomposites for Ultra Lightweight Micro Autonomous Vehicles

    DTIC Science & Technology

    2013-02-01

    supplement the main power supply. Here we report on the use of flexible carbon nanotube (CNT)-based composites for multifunctional structural energy storage...TERMS Micro vehicle, Supercapacitor, Carbon Nanotubes , CNTs, Energy Storage, Multifunctional Materials 16. SECURITY CLASSIFICATION OF: 17...consists of a current collector, a porous electrode layer ( carbon nanotubes [CNTs], in this case) infiltrated with an electrolyte (i.e., a liquid

  8. Lessons from the Hayman Fire: Forest understory responses to the scarify-and-seed postfire rehabilitation treatment

    Treesearch

    Paula J. Fornwalt

    2009-01-01

    In unburned forests, organic plant litter and live vegetation help stabilize the soil and promote water infiltration. Much of this plant material is consumed during severe wildfires, leaving the bare ground susceptible to elevated postfire water runoff and soil erosion (Shakesby and Doerr 2006). Severe wildfires can also produce a water-repellant layer in the soil that...

  9. RUNON a hitherto little noticed factor - Field experiments comparing RUNOFF/RUNON processes

    NASA Astrophysics Data System (ADS)

    Kohl, Bernhard; Achleitner, Stefan; Lumassegger, Simon

    2017-04-01

    When ponded water moves downslope as overland flow, an important process called runon manifests itself, but is often ignored in rainfall-runoff studies (Nahar et al. 2004) linking infiltration exclusively to rainfall. Runon effects on infiltration have not yet or only scarcely been evaluated (e.g. Zheng et al. 2000). Runoff-runon occurs when spatially variable infiltration capacities result in runoff generated in one location potentially infiltrating further downslope in an area with higher infiltration capacity (Jones et al. 2013). Numerous studies report inverse relationships between unit area volumes of overland flow and plot lengths (Jones et al. 2016). This is an indication that the effects of rainfall and runon often become blurred. We use a coupled hydrological/2D hydrodynamic model to simulate surface runoff and pluvial flooding including the associated infiltration process. In frame of the research project SAFFER-CC (sensitivity assessment of critical condition for local flash floods - evaluating the recurrence under climate change) the influence of land use and soil conservation on pluvial flash flood modeling is assessed. Field experiments are carried out with a portable irrigation spray installation at different locations with a plot size 5m width and 10m length. The test plots were subjected first to a rainfall with constant intensity of 100 mm/h for one hour. Consecutively a super intense, one hour mid accentuated rainfall hydrograph was applied after 30 minutes at the same plots, ranging from 50 mm/h to 200 mm/h for 1hour. Finally, runon was simulated by upstream feeding of the test plots using two different inflow intensities. The irrigation test showed expected differences of runoff coefficients depending on the various agricultural management. However, these runoff coefficients change with the applied process (rainfall or runon). While a decrease was observed on a plot with a closed litter layer, runoff coefficient from runon increases on poor covered plots. At the same time, a similar variety in the characteristics of the infiltration behavior between rainfall and runoff could be observed. This extension of artificial rainfall simulations with concurrent and successive runon tests will enhance our process understanding.

  10. Subsurface Hydrologic Processes Revealed by Time-lapse GPR in Two Contrasting Soils in the Shale Hills CZO

    NASA Astrophysics Data System (ADS)

    Guo, L.; Lin, H.; Nyquist, J.; Toran, L.; Mount, G.

    2017-12-01

    Linking subsurface structures to their functions in determining hydrologic processes, such as soil moisture dynamics, subsurface flow patterns, and discharge behaviours, is a key to understanding and modelling hydrological systems. Geophysical techniques provide a non-invasive approach to investigate this form-function dualism of subsurface hydrology at the field scale, because they are effective in visualizing subsurface structure and monitoring the distribution of water. In this study, we used time-lapse ground-penetrating radar (GPR) to compare the hydrologic responses of two contrasting soils in the Shale Hills Critical Zone Observatory. By integrating time-lapse GPR with artificial water injection, we observed distinct flow patterns in the two soils: 1) in the deep Rushtown soil (over 1.5 m depth to bedrock) located in a concave hillslope, a lateral preferential flow network extending as far as 2 m downslope was identified above a less permeable layer and via a series of connected macropores; whereas 2) in the shallow Weikert soil ( 0.3 m depth to saprock) located in a planar hillslope, vertical infiltration into the permeable fractured shale dominated the flow field, while the development of lateral preferential flow along the hillslope was restrained. At the Weikert soil site, the addition of brilliant blue dye to the water injection followed by in situ excavation supported GPR interpretation that only limited lateral preferential flow formed along the soil-saprock interface. Moreover, seasonally repeated GPR surveys indicated different patterns of profile moisture distribution in the two soils that in comparison with the dry season, a dense layer within the BC horizon in the deep Rushtown soil prevented vertical infiltration in the wet season, leading to the accumulation of soil moisture above this layer; whereas, in the shallow Weikert soil, water infiltrated into saprock in wet seasons, building up water storage within the fractured bedrock (i.e., the rock moisture). Results of this study demonstrated the strong interplay between soil structures and subsurface hydrologic behaviors, and time-lapse GPR is an effective method to establish such a relationship under the field conditions.

  11. Sulforaphane protects rodent retinas against ischemia-reperfusion injury through the activation of the Nrf2/HO-1 antioxidant pathway.

    PubMed

    Pan, Hong; He, Meihua; Liu, Ruixing; Brecha, Nicholas C; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway.

  12. Sulforaphane Protects Rodent Retinas against Ischemia-Reperfusion Injury through the Activation of the Nrf2/HO-1 Antioxidant Pathway

    PubMed Central

    Liu, Ruixing; Brecha, Nicholas C.; Yu, Albert Cheung Hoi; Pu, Mingliang

    2014-01-01

    Retinal ischemia-reperfusion (I/R) injury induces oxidative stress, leukocyte infiltration, and neuronal cell death. Sulforaphane (SF), which can be obtained in cruciferous vegetables such as broccoli, exerts protective effects in response to oxidative stress in various tissues. These effects can be initiated through nuclear factor E2-related factor 2 (Nrf2)-mediated induction of heme oxygenase-1 (HO-1). This investigation was designed to elucidate the neural protective mechanisms of SF in the retinal I/R rat model. Animals were intraperitoneally (i.p.) injected with SF (12.5 mg/kg) or vehicle (corn oil) once a day for 7 consecutive days. Then, retinal I/R was made by elevating the intraocular pressure (IOP) to 130 mmHg for 1 h. To determine if HO-1 was involved in the Nrf2 antioxidant pathway, rats were subjected to protoporphyrin IX zinc (II) (ZnPP, 30 mg/kg, i.p.) treatments at 24 h before retinal ischemia. The neuroprotective effects of SF were assessed by determining the morphology of the retina, counting the infiltrating inflammatory cells and the surviving retinal ganglion cells (RGCs) and amacrine cells, and measuring apoptosis in the retinal layers. The expression of Nrf2 and HO-1 was studied by immunofluorescence analysis and western blotting. I/R induced a marked increase of ROS generation, caused pronounced inflammation, increased the apoptosis of RGCs and amacrine cells and caused the thinning of the inner retinal layer (IRL), and these effects were diminished or abolished by SF pretreatment. Meanwhile, SF pretreatment significantly elevated the nuclear accumulation of Nrf2 and the level of HO-1 expression in the I/R retinas; however, ZnPP reversed the protective effects of SF on I/R retinas. Together, we offer direct evidence that SF had protective effects on I/R retinas, which could be attributed, at least in part, to the activation of the Nrf2/HO-1 antioxidant pathway. PMID:25470382

  13. Mechanisms Underpinning Degradation of Protective Oxides and Thermal Barrier Coatings in High Hydrogen Content (HHC) - Fueled Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mumm, Daniel

    2013-08-31

    The overarching goal of this research program has been to evaluate the potential impacts of coal-derived syngas and high-hydrogen content fuels on the degradation of turbine hot-section components through attack of protective oxides and thermal barrier coatings. The primary focus of this research program has been to explore mechanisms underpinning the observed degradation processes, and connections to the combustion environments and characteristic non-combustible constituents. Based on the mechanistic understanding of how these emerging fuel streams affect materials degradation, the ultimate goal of the program is to advance the goals of the Advanced Turbine Program by developing materials design protocols leadingmore » to turbine hot-section components with improved resistance to service lifetime degradation under advanced fuels exposures. This research program has been focused on studying how: (1) differing combustion environments – relative to traditional natural gas fired systems – affect both the growth rate of thermally grown oxide (TGO) layers and the stability of these oxides and of protective thermal barrier coatings (TBCs); and (2) how low levels of fuel impurities and characteristic non-combustibles interact with surface oxides, for instance through the development of molten deposits that lead to hot corrosion of protective TBC coatings. The overall program has been comprised of six inter-related themes, each comprising a research thrust over the program period, including: (i) evaluating the role of syngas and high hydrogen content (HHC) combustion environments in modifying component surface temperatures, heat transfer to the TBC coatings, and thermal gradients within these coatings; (ii) understanding the instability of TBC coatings in the syngas and high hydrogen environment with regards to decomposition, phase changes and sintering; (iii) characterizing ash deposition, molten phase development and infiltration, and associated corrosive/thermo-chemical attack mechanisms; (iv) developing a mechanics-based analysis of the driving forces for crack growth and delamination, based on molten phase infiltration, misfit upon cooling, and loss of compliance; (v) understanding changes in TGO growth mechanisms associated with these emerging combustion product streams; and (vi) identifying degradation resistant alternative materials (including new compositions or bi-layer concepts) for use in mitigating the observed degradation modes. To address the materials stability concerns, this program integrated research thrusts aimed at: (1) Conducting tests in simulated syngas and HHC environments to evaluate materials evolution and degradation mechanisms; assessing thermally grown oxide development unique to HHC environmental exposures; carrying out high-resolution imaging and microanalysis to elucidate the evolution of surface deposits (molten phase formation and infiltration); exploring thermo-chemical instabilities; assessing thermo-mechanical drivers and thermal gradient effects on degradation; and quantitatively measuring stress evolution due to enhanced sintering and thermo-chemical instabilities induced in the coating. (2) Executing experiments to study the melting and infiltration of simulated ash deposits, and identifying reaction products and evolving phases associated with molten phase corrosion mechanisms; utilizing thermal spray techniques to fabricate test coupons with controlled microstructures to study mechanisms of instability and degradation; facilitating thermal gradient testing; and developing new materials systems for laboratory testing; (3) Correlating information on the resulting combustion environments to properly assess materials exposure conditions and guide the development of lab-scale simulations of material exposures; specification of representative syngas and high-hydrogen fuels with realistic levels of impurities and contaminants, to explore differences in heat transfer, surface degradation, and deposit formation; and facilitating combustion rig testing of materials test coupons.« less

  14. Influence of a compost layer on the attenuation of 28 selected organic micropollutants under realistic soil aquifer treatment conditions: insights from a large scale column experiment.

    PubMed

    Schaffer, Mario; Kröger, Kerrin Franziska; Nödler, Karsten; Ayora, Carlos; Carrera, Jesús; Hernández, Marta; Licha, Tobias

    2015-05-01

    Soil aquifer treatment is widely applied to improve the quality of treated wastewater in its reuse as alternative source of water. To gain a deeper understanding of the fate of thereby introduced organic micropollutants, the attenuation of 28 compounds was investigated in column experiments using two large scale column systems in duplicate. The influence of increasing proportions of solid organic matter (0.04% vs. 0.17%) and decreasing redox potentials (denitrification vs. iron reduction) was studied by introducing a layer of compost. Secondary effluent from a wastewater treatment plant was used as water matrix for simulating soil aquifer treatment. For neutral and anionic compounds, sorption generally increases with the compound hydrophobicity and the solid organic matter in the column system. Organic cations showed the highest attenuation. Among them, breakthroughs were only registered for the cationic beta-blockers atenolol and metoprolol. An enhanced degradation in the columns with organic infiltration layer was observed for the majority of the compounds, suggesting an improved degradation for higher levels of biodegradable dissolved organic carbon. Solely the degradation of sulfamethoxazole could clearly be attributed to redox effects (when reaching iron reducing conditions). The study provides valuable insights into the attenuation potential for a wide spectrum of organic micropollutants under realistic soil aquifer treatment conditions. Furthermore, the introduction of the compost layer generally showed positive effects on the removal of compounds preferentially degraded under reducing conditions and also increases the residence times in the soil aquifer treatment system via sorption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Local infiltration analgesia followed by continuous infusion of local anesthetic solution for total hip arthroplasty: a prospective, randomized, double-blind, placebo-controlled study.

    PubMed

    Solovyova, Olga; Lewis, Courtland G; Abrams, Jonathan H; Grady-Benson, John; Joyce, Michael E; Schutzer, Steven F; Arumugam, Sivasenthil; Caminiti, Stephanie; Sinha, Sanjay K

    2013-11-06

    We studied the efficacy of local infiltration analgesia in surgical wounds with 0.2% ropivacaine (50 mL), ketorolac (15 mg), and adrenaline (0.5 mg) compared with that of local infiltration analgesia combined with continuous infusion of 0.2% ropivacaine as a method of pain control after total hip arthroplasty. We hypothesized that as a component of multimodal analgesia, local infiltration analgesia followed by continuous infusion of ropivacaine would result in reduced postoperative opioid consumption and lower pain scores compared with infiltration alone, and that both of these techniques would be superior to placebo. In this prospective, double-blind, placebo-controlled study, 105 patients were randomized into three groups: Group I, in which patients received infiltration with ropivacaine, ketorolac, and adrenaline followed by continuous infusion of 0.2% ropivacaine at 5 mL/hr; Group II, in which patients received infiltration with ropivacaine, ketorolac, and adrenaline followed by continuous infusion of saline solution at 5 mL/hr; and Group III, in which patients received infiltration with saline solution followed by continuous infusion of saline solution at 5 mL/hr.All patients received celecoxib, pregabalin, and acetaminophen perioperatively and patient-controlled analgesia; surgery was performed under general anesthesia. Before wound closure, the tissues and periarticular space were infiltrated with ropivacaine, ketorolac, and adrenaline or saline solution and a fenestrated catheter was placed. The catheter was attached to a pump prefilled with either 0.2% ropivacaine or saline solution set to infuse at 5 mL/hr.The primary outcome measure was postoperative opioid consumption and the secondary outcome measures were pain scores, adverse side effects, and patient satisfaction. There were no differences between groups in the administration of opioids in the operating room, in the recovery room, or on the surgical floor. The pain scores on recovery room admission and discharge and the floor were low and similar between groups. There were no differences in the incidence of adverse side effects among groups. Patient satisfaction with pain management was similar in all groups. Local infiltration analgesia alone or followed by continuous infusion of ropivacaine as part of multimodal analgesia provides no additional analgesic benefit or reduction in opioid consumption compared with placebo following total hip arthroplasty. Therapeutic level I. See Instructions for Authors for a complete description of levels of evidence.

  16. Pirfenidone inhibits cryoablation induced local macrophage infiltration along with its associated TGFb1 expression and serum cytokine level in a mouse model.

    PubMed

    Gu, Yangkui; Srimathveeravalli, Govindarajan; Cai, Liqun; Ueshima, Eisuke; Maybody, Majid; Yarmohammadi, Hooman; Zhu, Yuan-Shan; Durack, Jeremy C; Solomon, Stephen B; Coleman, Jonathan A; Erinjeri, Joseph P

    2018-06-01

    To investigate the effects of pirfenidone (PFD) on post-cryoablation inflammation in a mouse model. In this IACUC-approved study, eighty Balb/c mice were randomly divided into four groups (20/group): sham + vehicle, sham + PFD, cryoablation + vehicle, and cryoablation + PFD. For cryoablation groups, a 20% freeze rate cryoablation (20 s to less than -100 °C) was used to ablate normal muscle in the right flank. For sham groups, the cryoprobe was advanced into the flank and maintained for 20 s without ablation. PFD or vehicle solution was intraperitoneally injected (5 mg/kg) at days 0, 1, 2, 3, and then every other day until day 13 after cryoablation. Mice were euthanized at days 1, 3, 7, and 14. Blood samples were used for serum IL-6, IL-10, and TGFβ1 analysis using electrochemiluminescence and ELISA assays, respectively. Immunohistochemistry-stained ablated tissues were used to analyze macrophage infiltration and local TGFβ1 expression in the border region surrounding the cryoablation-induced coagulation zone. Cryoablation induced macrophage infiltration and increased TGFβ1 expression in the border of the necrotic zone, and high levels of serum IL-6, peaking at days 7 (70.5 ± 8.46/HPF), 14 (228 ± 18.36/HPF), and 7 (298.67 ± 92.63), respectively. Animals receiving PFD showed reduced macrophage infiltration (35.5 ± 16.93/HPF at day 7, p < 0.01) and cytokine levels (60.2 ± 7.6/HPF at day 14, p < 0.01). PFD also significantly reduced serum IL-6 levels (p < 0.001 vs. all non-PFD groups). PFD mitigates cryoablation induced muscle tissue macrophage infiltration, increased IL-6 levels, and local TGFβ1 expression in a small animal model. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A Rare Case of Chronic Active Epstein-Barr Virus (EBV) Infection Accompanied by the Infiltration of EBV-infected CD8+ T Cells into the Muscle.

    PubMed

    Kobayashi, Nobuhiko; Mitsui, Takeki; Ogawa, Yoshiyuki; Iriuchishima, Hirono; Takizawa, Makiko; Yokohama, Akihiko; Saitoh, Takayuki; Koiso, Hiromi; Tsukamoto, Norifumi; Murakami, Hirokazu; Nojima, Yoshihisa; Handa, Hiroshi

    2018-04-01

    We describe a rare case of chronic active Epstein-Barr virus (CAEBV) infection, with infiltration of the skeletal muscle. A 19-year-old woman with swollen cervical lymph nodes and a fever was referred to our hospital. Swelling of the trapezium muscle and elevation of creatinine kinase level were observed. Biopsy results of the brachialis muscle revealed infiltration of Epstein-Barr virus (EBV)-encoded RNA-positive CD8 T lymphocytes. The EBV virus load in the peripheral blood was high, and EBV monoclonality was determined by Southern blot analysis. Owing to the rarity of CAEBV with skeletal muscle infiltration, this case alerts physicians to the potential diagnostic pitfalls of CAEBV.

  18. Evaluation of IgG4+ Plasma Cell Infiltration in Patients with Systemic Plasmacytosis and Other Plasma Cell-infiltrating Skin Diseases.

    PubMed

    Takeoka, Shintaro; Kamata, Masahiro; Hau, Carren Sy; Tateishi, Mihoko; Fukaya, Saki; Hayashi, Kotaro; Fukuyasu, Atsuko; Tanaka, Takamitsu; Ishikawa, Takeko; Ohnishi, Takamitsu; Sasajima, Yuko; Watanabe, Shinichi; Tada, Yayoi

    2018-04-27

    Systemic plasmacytosis is a rare skin disorder characterized by marked infiltration of plasma cells in the dermis. IgG4-related disease is pathologically characterized by lymphoplasmacytic infiltration rich in IgG4+ plasma cells, storiform fibrosis, and obliterative phlebitis, accompanied by elevated levels of serum IgG4. Reports of cases of systemic plasmacytosis with abundant infiltration of IgG4+ plasma cells has led to discussion about the relationship between systemic plasmacytosis and IgG4-related disease. This study examined IgG4+/IgG+ plasma cell ratios in 4 patients with systemic plasmacytosis and 12 patients with other skin diseases that show marked infiltration of plasma cells. Furthermore, we examined whether these cases met one of the pathological diagnostic criteria for IgG4-related disease (i.e. IgG4+/IgG plasma cells ratio of over 40%). Only one out of 4 patients with systemic plasmacytosis met the criterion. These results suggest that systemic plasmacytosis and IgG4-related disease are distinct diseases.

  19. The Local Pharmacokinetics of 3H-Ropivacaine and 14C-Lidocaine After Maxillary Infiltration Anesthesia in Rats

    PubMed Central

    Kimi, Hiromi; Yamashiro, Mikiko; Hashimoto, Shuichi

    2012-01-01

    The effects of infiltration anesthesia with ropivacaine on the dental pulp are considered to be weak. This may be partly associated with its permeation into the oral tissue. With the objective of investigating the local pharmacokinetics of ropivacaine and lidocaine following infiltration anesthesia, we injected 3H-ropivacaine or 14C-lidocaine to the palatal mucosa in rats, measured distributions of radioactivity in the maxilla, and compared the local pharmacokinetics of these agents. The animals were sacrificed at various times and the maxillas were removed. The palatal mucosa and maxillary nerve were resected, and the bone was divided into 6 portions. We measured radioactivity in each tissue and calculated the level of each local anesthetic (n  =  8). Lidocaine diffused to the surrounding tissue immediately after the injection, whereas ropivacaine tended to remain in the palatal mucosa for a longer period. Lidocaine showed a higher affinity for the maxillary bone than ropivacaine. There was a correlation between the distribution level of local anesthetics in the maxillary bone and that in the maxillary nerve. The lower-level effects of infiltration anesthesia with ropivacaine on the dental pulp may be because ropivacaine has a high affinity for soft tissue, and its transfer to bone is slight. PMID:22822994

  20. Evaluation in vivo of biocompatibility of differents resin-modified cements for bonding orthodontic bands.

    PubMed

    Mesquita, Janaina A; Lacerda-Santos, Rogério; Sampaio, Gêisa A M; Godoy, Gustavo P; Nonaka, Cassiano F W; Alves, Pollianna M

    2017-01-01

    The focus of this study was to test the hypothesis that there would be no difference between the biocompatibility of resin-modified glass ionomer cements. Sixty male Wistar rats were selected and divided into four groups: Control Group; Crosslink Group; RMO Group and Transbond Group. The materials were inserted into rat subcutaneous tissue. After time intervals of 7, 15 and 30 days morphological analyses were performed. The histological parameters assessed were: inflammatory infiltrate intensity; reaction of multinucleated giant cells; edema; necrosis; granulation reaction; young fibroblasts and collagenization. The results obtained were statistically analyzed by the Kruskal-Wallis and Dunn test (P<0.05). After 7 days, Groups RMO and Transbond showed intense inflammatory infiltrate (P=0.004), only Group RMO presented greater expression of multinucleated giant cell reaction (P=0.003) compared with the control group. After the time intervals of 15 and 30 days, there was evidence of light/moderate inflammatory infiltrate, lower level of multinucleated giant cell reaction and thicker areas of young fibroblasts in all the groups. The hypothesis was rejected. The Crosslink cement provided good tissue response, since it demonstrated a lower level of inflammatory infiltrate and higher degree of collagenization, while RMO demonstrated the lowest level of biocompatibility.

  1. E-Area Low-Level Waste Facility Vadose Zone Model: Confirmation of Water Mass Balance for Subsidence Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.

  2. PACE-90 water and solute transport calculations for 0.01, 0.1, and 0. 5 mm/yr infiltration into Yucca Mountain; Yucca Mountain Site Characterization Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykhuizen, R.C.; Eaton, R.R.; Hopkins, P.L.

    1991-12-01

    Numerical results are presented for the Performance Assessment Calculational Exercise (PACE-90). One- and two-dimensional water and solute transport are presented for steady infiltration into Yucca Mountain. Evenly distributed infiltration rates of 0.01, 0.1, and 0.5 mm/yr were considered. The calculations of solute transport show that significant amounts of radionuclides can reach the water table over 100,000 yr at the 0.5 mm/yr rate. For time periods less than 10,000 yr or infiltrations less than 0.1 mm/yr very little solute reaches the water table. The numerical simulations clearly demonstrate that multi-dimensional effects can result in significant decreases in the travel time ofmore » solute through the modeled domain. Dual continuum effects are shown to be negligible for the low steady state fluxes considered. However, material heterogeneities may cause local amplification of the flux level in multi-dimensional flows. These higher flux levels may then require modeling of a dual continuum porous medium.« less

  3. Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts

    USGS Publications Warehouse

    Herrick, J.E.; Van Zee, J. W.; Belnap, J.; Johansen, J.R.; Remmenga, M.

    2010-01-01

    We compared short-term effects of lug-soled boot trampling disturbance on water infiltration and soil erodibility on coarse-textured soils covered by a mixture of fine gravel and coarse sand over weak cyanobacterially-dominated biological soil crusts. Trampling significantly reduced final infiltration rate and total infiltration and increased sediment generation from small (0.5m2) rainfall simulation plots (p<0.01). Trampling had no effect on time to runoff or time to peak runoff. Trampling had similar effects at sites with both low and very low levels of cyanobacterial biomass, as indicated by chlorophyll a concentrations. We concluded that trampling effects are relatively independent of differences in the relatively low levels of cyanobacterial biomass in this environment. Instead, trampling appears to reduce infiltration by significantly reducing the cover of gravel and coarse sand on the soil surface, facilitating the development of a physical crust during rainfall events. The results of this study underscore the importance of carefully characterizing both soil physical and biological properties to understand how disturbance affects ecosystem processes. ?? 2010.

  4. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-01

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω □-1 and a conductivity of 11.6 S m-1. The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF6) displays a high capacity of 252 F g-1 at a current density of 1 A g-1 with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30318c

  5. Nutrient removal using biosorption activated media: preliminary biogeochemical assessment of an innovative stormwater infiltration basin.

    PubMed

    O'Reilly, Andrew M; Wanielista, Martin P; Chang, Ni-Bin; Xuan, Zhemin; Harris, Willie G

    2012-08-15

    Soil beneath a stormwater infiltration basin receiving runoff from a 23 ha predominantly residential watershed in north-central Florida, USA, was amended using biosorption activated media (BAM) to study the effectiveness of this technology in reducing inputs of nitrogen and phosphorus to groundwater. The functionalized soil amendment BAM consists of a 1.0:1.9:4.1 mixture (by volume) of tire crumb (to increase sorption capacity), silt and clay (to increase soil moisture retention), and sand (to promote sufficient infiltration), which was applied to develop an innovative stormwater infiltration basin utilizing nutrient reduction and flood control sub-basins. Comparison of nitrate/chloride (NO(3)(-)/Cl(-)) ratios for the shallow groundwater indicates that prior to using BAM, NO(3)(-) concentrations were substantially influenced by nitrification or variations in NO(3)(-) input. In contrast, for the new basin utilizing BAM, NO(3)(-)/Cl(-) ratios indicate minor nitrification and NO(3)(-) losses with the exception of one summer sample that indicated a 45% loss. Biogeochemical indicators (denitrifier activity derived from real-time polymerase chain reaction and variations in major ions, nutrients, dissolved and soil gases, and stable isotopes) suggest that NO(3)(-) losses are primarily attributable to denitrification, whereas dissimilatory nitrate reduction to ammonium is a minor process. Denitrification was likely occurring intermittently in anoxic microsites in the unsaturated zone, which was enhanced by the increased soil moisture within the BAM layer and resultant reductions in surface/subsurface oxygen exchange that produced conditions conducive to increased denitrifier activity. Concentrations of total dissolved phosphorus and orthophosphate (PO(4)(3-)) were reduced by more than 70% in unsaturated zone soil water, with the largest decreases in the BAM layer where sorption was the most likely mechanism for removal. Post-BAM PO(4)(3-)/Cl(-) ratios for shallow groundwater indicate predominantly minor increases and decreases in PO(4)(3-) with the exception of one summer sample that indicated a 50% loss. Differences in nutrient variations between the unsaturated zone and shallow groundwater may be the result of the intensity and duration of nutrient removal processes and mixing ratios with water that had undergone little biogeochemical transformation. Observed nitrogen and phosphorus losses demonstrate the potential, as well as the future research needs to improve performance, of the innovative stormwater infiltration basin using BAM for providing passive, economical, stormwater nutrient-treatment technology to support green infrastructure. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Estimating harvested rainwater at greenhouses in south Portugal aquifer Campina de Faro for potential infiltration in Managed Aquifer Recharge.

    NASA Astrophysics Data System (ADS)

    Costa, Luís; Monteiro, José Paulo; Leitão, Teresa; Lobo-Ferreira, João Paulo; Oliveira, Manuel; Martins de Carvalho, José; Martins de Carvalho, Tiago; Agostinho, Rui

    2015-04-01

    The Campina de Faro (CF) aquifer system, located on the south coast of Portugal, is an important source of groundwater, mostly used for agriculture purposes. In some areas, this multi-layered aquifer is contaminated with high concentration of nitrates, possibly arising from excessive usage of fertilizers, reaching to values as high as 300 mg/L. In order to tackle this problem, Managed Aquifer Recharge (MAR) techniques are being applied at demonstration scale to improve groundwater quality through aquifer recharge, in both infiltration basins at the river bed of ephemeral river Rio Seco and existing traditional large diameter wells located in this aquifer. In order to assess the infiltration capacity of the existing infrastructures, in particular infiltration basins and large diameter wells at CF aquifer, infiltration tests were performed, indicating a high infiltration capacity of the existing infrastructures. Concerning the sources of water for recharge, harvested rainwater at greenhouses was identified in CF aquifer area as one of the main potential sources for aquifer recharge, once there is a large surface area occupied by these infrastructures at the demo site. This potential source of water could, in some cases, be redirected to the large diameter wells or to the infiltration basins at the riverbed of Rio Seco. Estimates of rainwater harvested at greenhouses were calculated based on a 32 year average rainfall model and on the location of the greenhouses and their surface areas, the latter based on aerial photograph. Potential estimated annual rainwater intercepted by greenhouses at CF aquifer accounts an average of 1.63 hm3/year. Nonetheless it is unlikely that the totality of this amount can be harvested, collected and redirected to aquifer recharge infrastructures, for several reasons, such as the lack of appropriate greenhouse infrastructures, conduits or a close location between greenhouses and large diameter wells and infiltration basins. Anyway, this value is a good indication of the total amount of the harvested rainfall that could be considered for future MAR solutions. Given the estimates on the greenhouse harvested rainwater and the infiltration capacity of the infiltration basins and large diameter wells, it is intended to develop groundwater flow models in order to assess the nitrate washing rate in the CF aquifer. This work is being developed under the scope of MARSOL Project (MARSOL-GA-2013-619120), in which Campina de Faro aquifer system is one of the several case studies. This project aims to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence in finding solutions to water scarcity in Southern Europe.

  7. Design of a graphical user interface for an intelligent multimedia information system for radiology research

    NASA Astrophysics Data System (ADS)

    Taira, Ricky K.; Wong, Clement; Johnson, David; Bhushan, Vikas; Rivera, Monica; Huang, Lu J.; Aberle, Denise R.; Cardenas, Alfonso F.; Chu, Wesley W.

    1995-05-01

    With the increase in the volume and distribution of images and text available in PACS and medical electronic health-care environments it becomes increasingly important to maintain indexes that summarize the content of these multi-media documents. Such indices are necessary to quickly locate relevant patient cases for research, patient management, and teaching. The goal of this project is to develop an intelligent document retrieval system that allows researchers to request for patient cases based on document content. Thus we wish to retrieve patient cases from electronic information archives that could include a combined specification of patient demographics, low level radiologic findings (size, shape, number), intermediate-level radiologic findings (e.g., atelectasis, infiltrates, etc.) and/or high-level pathology constraints (e.g., well-differentiated small cell carcinoma). The cases could be distributed among multiple heterogeneous databases such as PACS, RIS, and HIS. Content- based retrieval systems go beyond the capabilities of simple key-word or string-based retrieval matching systems. These systems require a knowledge base to comprehend the generality/specificity of a concept (thus knowing the subclasses or related concepts to a given concept) and knowledge of the various string representations for each concept (i.e., synonyms, lexical variants, etc.). We have previously reported on a data integration mediation layer that allows transparent access to multiple heterogeneous distributed medical databases (HIS, RIS, and PACS). The data access layer of our architecture currently has limited query processing capabilities. Given a patient hospital identification number, the access mediation layer collects all documents in RIS and HIS and returns this information to a specified workstation location. In this paper we report on our efforts to extend the query processing capabilities of the system by creation of custom query interfaces, an intelligent query processing engine, and a document-content index that can be generated automatically (i.e., no manual authoring or changes to the normal clinical protocols).

  8. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts.

    PubMed

    Lee, Tsung-Ming; Chang, Nen-Chung; Lin, Shinn-Zong

    2017-03-01

    During myocardial infarction, infiltrated macrophages have pivotal roles in cardiac remodeling and delayed M1 toward M2 macrophage phenotype transition is considered one of the major factors for adverse ventricular remodeling. We investigated whether dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, attenuates cardiac fibrosis via regulating macrophage phenotype by a reactive oxygen and nitrogen species (RONS)/STAT3-dependent pathway in postinfarcted rats. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline, dapagliflozin (a specific SGLT2 inhibitor), phlorizin (a nonspecific SGLT1/2 inhibitor), dapagliflozin + S3I-201 (a STAT3 inhibitor), or phlorizin + S3I-201 for 4 weeks. There were similar infarct sizes among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased levels of superoxide and nitrotyrosine, which can be inhibited by administering either dapagliflozin or phlorizin. SGLT2 inhibitors significantly increased STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2 macrophage infiltration. At day 28 after infarction, SGLT2 inhibitors were associated with attenuated myofibroblast infiltration and cardiac fibrosis. Although phlorizin decreased myofibroblast infiltration, the effect of dapagliflozin on attenuated myofibroblast infiltration was significantly higher than phlorizin. The effects of SGLT2 inhibitors on cardiac fibrosis were nullified by adding S3I-201. Furthermore, the effects of dapagliflozin on STAT3 activity and myocardial IL-10 levels can be reversed by 3-morpholinosydnonimine, a peroxynitrite generator. Taken together, these observations provide a novel mechanism of SGLT2 inhibitors-mediated M2 polarization through a RONS-dependent STAT3-mediated pathway and selective SGLT2 inhibitors are more effective in attenuating myofibroblast infiltration during postinfarction remodeling. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Disinfection of secondary effluents by infiltration percolation.

    PubMed

    Makni, H

    2001-01-01

    Among the most attractive applications of reclaimed wastewater are: irrigation of public parks, sports fields, golf courses and market gardening. These uses require advanced wastewater treatment including disinfection. According to WHO guidelines (1989) and current rules and regulations in Tunisia, faecal coliform levels have to be reduced to < 10(3) or 10(2) CFU/100 mL. In Tunisia, most wastewater plants are only secondary treatment and, in order to meet health related regulations, the effluents need to be disinfected. However, it is usual for secondary effluents to need filtration prior to disinfection. Effectiveness of conventional disinfection processes, such as chlorination and UV radiation, are dependent upon the oxidation level and the levels of suspended solids of the treated water. Ozonation is relatively expensive and energy consuming. The consideration of the advantages and disadvantages of conventional techniques, their reliability, investment needs and operational costs will lead to the use of less sophisticated alternative techniques for certain facilities. Among alternative techniques, soil aquifer treatment and infiltration percolation through sand beds have been studied in Arizona, Israel, France, Spain and Morocco. Infiltration percolation plants have been intermittently fed with secondary or high quality primary effluents which percolated through 1.5-2 m unsaturated coarse sand and were recovered by under-drains. In such infiltration percolation facilities, microorganisms were eliminated through numerous physical, physicochemical and biological inter-related processes (mechanical filtration, adsorption and microbial degradation respectively). Efficiency of faecal coliform removal was dependent upon the water detention times in the filtering medium and on the oxidation of the filtered water. Effluents of Sfax town aerated ponds were infiltrated through 1.5 m deep sand columns in order to determine the performance of infiltration percolation in the polishing of secondary effluents. Elimination of bacteria (total and coliforms, faecal streptococci) and their relationship with the hydraulic load and the temperature were investigated.

  10. Monitoring induced denitrification during managed aquifer recharge in an infiltration pond

    NASA Astrophysics Data System (ADS)

    Grau-Martínez, Alba; Folch, Albert; Torrentó, Clara; Valhondo, Cristina; Barba, Carme; Domènech, Cristina; Soler, Albert; Otero, Neus

    2018-06-01

    Managed aquifer recharge (MAR) is a well-known technique for improving water quality and increasing groundwater resources. Denitrification (i.e. removal of nitrate) can be enhanced during MAR by coupling an artificial recharge pond with a permeable reactive layer (PRL). In this study, we examined the suitability of a multi-isotope approach for assessing the long-term effectiveness of enhancing denitrification in a PRL containing vegetal compost. Batch laboratory experiments confirmed that the PRL was still able to enhance denitrification two years after its installation in the infiltration pond. At the field scale, changes in redox indicators along a flow path and below the MAR-PRL system were monitored over 21 months during recharge and non-recharge periods. Results showed that the PRL was still releasing non-purgeable dissolved organic carbon five years after its installation. Nitrate concentration coupled with isotopic data collected from the piezometer network at the MAR system indicated that denitrification was occurring in the saturated zone immediately beneath the infiltration pond, where recharged water and native groundwater mix. Furthermore, longer operational periods of the MAR-PRL system increased denitrification extent. Multi-isotope analyses are therefore proved to be useful tools in identifying and quantifying denitrification in MAR-PRL systems.

  11. Pyrolytic-carbon coating in carbon nanotube foams for better performance in supercapacitors

    NASA Astrophysics Data System (ADS)

    He, Nanfei; Yildiz, Ozkan; Pan, Qin; Zhu, Jiadeng; Zhang, Xiangwu; Bradford, Philip D.; Gao, Wei

    2017-03-01

    Nowadays, the wide-spread adoption of supercapacitors has been hindered by their inferior energy density to that of batteries. Here we report the use of our pyrolytic-carbon-coated carbon nanotube foams as lightweight, compressible, porous, and highly conductive current collectors in supercapacitors, which are infiltrated with chemically-reduced graphene oxide and later compressed via mechanical and capillary forces to generate the active electrodes. The pyrolytic carbon coatings, introduced by chemical vapor infiltration, wrap around the CNT junctions and increase the surface roughness. When active materials are infiltrated, the pyrolytic-carbon coatings help prevent the π-stacking, enlarge the accessible surface area, and increase the electrical conductivity of the scaffold. Our best-performing device offers 48% and 57% higher gravimetric energy and power density, 14% and 23% higher volumetric energy and power density, respectively, and two times higher knee frequency, than the device with commercial current collectors, while the "true-performance metrics" are strictly followed in our measurements. We have further clarified the solution resistance, charge transfer resistance/capacitance, double-layer capacitance, and Warburg resistance in our system via comprehensive impedance analysis, which will shed light on the design and optimization of similar systems.

  12. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage.

    PubMed

    Kang, Yan-Ru; Li, Ya-Li; Hou, Feng; Wen, Yang-Yang; Su, Dong

    2012-05-21

    An electrically conductive and electrochemically active composite paper of graphene nanosheet (GNS) coated cellulose fibres was fabricated via a simple paper-making process of dispersing chemically synthesized GNS into a cellulose pulp, followed by infiltration. The GNS nanosheet was deposited onto the cellulose fibers, forming a coating, during infiltration. It forms a continuous network through a bridge of interconnected cellulose fibres at small GNS loadings (3.2 wt%). The GNS/cellulose paper is as flexible and mechanically tough as the pure cellulose paper. The electrical measurements show the composite paper has a sheet resistance of 1063 Ω□(-1) and a conductivity of 11.6 S m(-1). The application of the composite paper as a flexible double layer supercapacitor in an organic electrolyte (LiPF(6)) displays a high capacity of 252 F g(-1) at a current density of 1 A g(-1) with respect to GNS. Moreover, the paper can be used as the anode in a lithium battery, showing distinct charge and discharge performances. The simple process for synthesising the GNS functionalized cellulose papers is attractive for the development of high performance papers for electrical, electrochemical and multifunctional applications.

  13. Controlling the degradation kinetics of porous iron by poly(lactic-co-glycolic acid) infiltration for use as temporary medical implants

    PubMed Central

    Yusop, Abdul Hakim Md; Daud, Nurizzati Mohd; Nur, Hadi; Kadir, Mohammed Rafiq Abdul; Hermawan, Hendra

    2015-01-01

    Iron and its alloy have been proposed as biodegradable metals for temporary medical implants. However, the formation of iron oxide and iron phosphate on their surface slows down their degradation kinetics in both in vitro and in vivo scenarios. This work presents new approach to tailor degradation behavior of iron by incorporating biodegradable polymers into the metal. Porous pure iron (PPI) was vacuum infiltrated by poly(lactic-co-glycolic acid) (PLGA) to form fully dense PLGA-infiltrated porous iron (PIPI) and dip coated into the PLGA to form partially dense PLGA-coated porous iron (PCPI). Results showed that compressive strength and toughness of the PIPI and PCPI were higher compared to PPI. A strong interfacial interaction was developed between the PLGA layer and the iron surface. Degradation rate of PIPI and PCPI was higher than that of PPI due to the effect of PLGA hydrolysis. The fast degradation of PIPI did not affect the viability of human fibroblast cells. Finally, this work discusses a degradation mechanism for PIPI and the effect of PLGA incorporation in accelerating the degradation of iron. PMID:26057073

  14. Applying Reactive Barrier Technology to Enhance Microbially-mediated Denitrification during Managed Aquifer Recharge

    NASA Astrophysics Data System (ADS)

    Beganskas, S.; Weir, W. B.; Harmon, R. E.; Gorski, G.; Fisher, A. T.; Saltikov, C.; Young, K. S.; Runneals, D.; Teo, E. K.; Stoneburner, B.; Hernandez, J.

    2015-12-01

    We are running field experiments to observe and quantify microbially-mediated water quality improvement via denitrification during infiltration in the shallow subsurface. Nitrate is a pervasive groundwater contaminant, and nitrate removal through denitrification can occur during infiltration in natural and anthropogenic systems, including during managed aquifer recharge (MAR). The rate of denitrification can vary depending on factors such as infiltration rate; previous work suggests that denitrification rates can increase monotonically with infiltration rates until reaching a critical threshold. We are performing controlled field tests of variables that affect denitrification rate, including sampling to link water chemistry changes to microbial ecology and activity. This study explores how microbial activity and denitrification rates respond to different infiltration rates and the presence or absence of a reactive material (wood chips, a carbon source). We are conducting four two-week-long tests, each under different conditions. For each test, we measure bulk infiltration rate (the sum of lateral and vertical infiltration), vertical infiltration rate using heat as a tracer, and water level. We collect surface and subsurface water samples daily, and we collect soil samples at the start and end of each test. For each water sample, we are measuring NO3-, NO2-, NH3, DOC, and N and O isotopes in nitrate. Soil samples will be tested for grain size, total C/N, and the presence of microbiological genes associated with denitrification. These results will expand our knowledge of the conditions under which denitrification occurs by implicating specific microorganisms and physical infiltration parameters. Our design has the potential for additional experimentation with variables that impact water chemistry during infiltration. This study has broad applications for designing MAR systems that effectively improve water supply and water quality.

  15. MORPHOLOGICAL CHANGES IN MICE LIVER IN DYNAMICS OF CONCANAVALIN A - INDUCED HEPATITIS.

    PubMed

    Pavlovych, S I; Makogon, N V; Grushka, N G; Bryzgina, T M; Janchiy, R I

    The injure of the liver tissue and its infiltration by cells of the innate and adaptive immunity in dynamics of Con A-induced hepatitis in mice was studied. The semiquantitative method of damage rate of microcirculation channel and liver parenchyma was used, leukocyte liver infiltration and cellular composition of infiltrates were investigated also. Primary liver reaction to the Con-A was the inflammatory changes in the vascular bed, followed by disturbances in the parenchyma.The sufficient increasing of leukocyte migration to the liver was revealed. Besides, the neutrophile infiltration was increased first with a maximum at 6 hours of the experiment (63,9 ±4,6%, p<0,001 to the control level) ,and then the lymphocyte infiltration was increased with creation of manycellular lymphocytemacrophage infiltrates (62% at 48 hours comparing to 6 hours of experiment) and sufficient quantity of plasma cells population (4,9%, p<0,05 comparing to 6 hours of experiment). The obtained data gives the base to suggest that the elevated infiltration of liver tissue by leukocytes, particularly by lymphocytes and monocytes, together with necrotic death increasing creats the conditions for effective intracellular interaction and immune response to autoantigenes. This can be the essential pathogenic mechanism of development of autoimmune liver deseases.

  16. Wildfire effects on a ponderosa pine ecosystem: An Arizona case study

    Treesearch

    R. E. Campbell; Jr. Baker; P. F. Ffolliott; F. R. Larson; C. C. Avery

    1977-01-01

    A wildfire of variable severity swept through 717 acres (290 ha) of ponderosa pine forest in north-central Arizona in May 1972. Where the fire was intense it killed 90% of the small trees and 50% of the sawtimber, burned 2.6 in (6.5 cm) of forest floor to the mineral soil, and induced a water-repellent layer in the sandier soils. The reduced infiltration rates, which...

  17. Effects of Fiber Coatings on Tensile Properties of Hi-Nicalon SiC/RBSN Tow Composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.; Hull, David R.

    1997-01-01

    Uncoated Hi-Nicalon silicon carbide (SiC) fiber tows and those coated with a single surface layer of pyrolytic boron nitride (PBN), double layers of PBN/Si-rich PBN, and boron nitride (BN)/SiC coatings deposited by chemical vapor deposition (CVD) method were infiltrated with silicon slurry and then exposed to N2, for 4 hr at 1200 and 1400 C. Room temperature ultimate tensile fracture loads and microstructural characterization of uncoated and CVD coated Hi-Nicalon SiC fiber reinforced reaction-bonded silicon nitride (RBSN) tow composites were measured to select suitable interface coating(s) stable under RBSN processing conditions. Results indicate that room temperature ultimate fracture loads of the uncoated Hi-Nicalon SiC/RBSN tow composites nitrided at both temperatures were significantly lower than those of the uncoated Hi-Nicalon tows without slurry infiltration. In contrast, all CVD coated Hi-Nicalon SiC/RBSN tow composites retained a greater fraction of the dry tow fracture load after nitridation at 1200 C, but degraded significantly after nitridation at 1400 C. Reaction between metal impurities (Fe and Ni) present in the attrition milled silicon powder and uncoated regions of SiC fibers appears to be the probable cause for fiber degradation.

  18. A Case of Eosinophilic Gastroenteritis Forming a Rigid Chamber Mimicking Giant Duodenal Ulcer on Computed Tomography Imaging.

    PubMed

    Shimamoto, Yoko; Harima, Yohei

    2016-04-18

    The clinical manifestations of eosinophilic gastroenteritis are nonspecific and vary depending on which layer of the gastrointestinal tract is involved. Computed tomography (CT) is valuable for detecting and characterizing gastrointestinal wall abnormalities. We report a case of eosinophilic gastroenteritis that formed a chamber in the rigid duodenal wall of a 67-year-old woman. Abdominal CT showed symmetrical wall thickening of the gastric antrum and duodenal bulb, and the bowel walls consisted of 2 continuous, symmetrically stratified layers. There was a chamber mimicking a giant ulcer at the orifice of the descending duodenum. Eosinophilic inflammation was present through this rigid wall of the descending duodenum, accompanied by perienteric inflammation, which infiltrated the anterior pararenal space, gall bladder, and right colic flexure. Gastrointestinal endoscopy showed spotty erosions and reddish mucosa, with the edematous gastric antrum and duodenal bulb narrowed at their lumens. Just beyond the supraduodenal angle at the orifice of the descending duodenum, there was a chamber with only minor mucosal changes, and it was not a duodenal ulcer. Endoscopic biopsy of the duodenum showed intramucosal eosinophilic infiltration. Treatment with prednisolone resulted in normalization of radiologic and endoscopic abnormalities. We present a case of eosinophilic gastroenteritis with both mucosal and muscular involvement. CT imaging and endoscopic examination confirmed the diagnosis.

  19. Can forest transformation help reducing floods in forested watersheds? Certain aspects on soil hydraulics and organic matter properties

    NASA Astrophysics Data System (ADS)

    Wahl, N. A.; Wöllecke, B.; Bens, O.; Hüttl, R. F.

    Former floodplains in many European countries increasingly suffer from serious floods due to intensified human activity. These floods have caused safety and ecological problems as well as they have resulted in economic losses in agricultural used watersheds. In this context, the influence of the management practice of forest transformation in forested areas on soil hydraulic properties is presented and discussed as a means of preventing such disasters at a reasonable cost and during a foreseeable period. Investigations were carried out in northeastern Germany on forest stands differing in tree populations and stand structure. It was found that infiltration capacity and hydraulic conductivity K exhibit overall low values nevertheless the tree species. This finding appears to be related to water repellency, the predominating texture, and a poor macroporosity. During the different stages of forest transformation, the type and amount of soil organic matter and humus in the litter layer change, leading to a decrease of the water capacity of the litter layer and the uppermost part of the mineral soil. Furthermore, these changes affect soil properties connected with water repellency. It is concluded that for the approximate duration of one century the practice of forest transformation does not contribute to flood prevention through enhanced infiltration capacity or water retention.

  20. Study of penetration behavior of PCB-DNAPL in a sand layer by a column experiment.

    PubMed

    Okuda, Nobuyasu; Shimizu, Takaaki; Muratani, Masaru; Terada, Akihiko; Hosomi, Masaaki

    2014-11-01

    To better understand the infiltration performances of high concentration PCB oils (KC-300 and KC-1000 polychlorinated biphenyl (PCB) mixtures), representative dense non-aqueous phase liquid (DNAPL), under both saturated and unsaturated conditions, we conducted experiments on a sand column filled with Toyoura Standard Sand. When PCB oil with the volume comparable to the total porosity in the column was supplied, the residual PCB concentrations under PCB-water conditions were 4.9×10(4)mgkg(-1) in KC-300 and 3.9×10(4)mgkg(-1) in KC-1000. Under PCB-air conditions, residual PCB concentrations were 6.0×10(4)mgkg(-1) and 2.4×10(5)mgkg(-1) in the upper and lower parts for KC-300 and 3.6×10(4)mgkg(-1) and 1.5×10(5)mgkg(-1) in those for KC-1000, respectively, while the rest of the PCBs were infiltrated. On the other hand, when a small amount of PCB oil with the volume far smaller than the total porosity in the column was supplied, the original PCBs were not transported via water permeation. However, lower-chlorinated PCB congeners-e.g., di- or tri-chlorinated biphenyls-preferentially dissolved and were infiltrated from the bottom of the column. These propensities on PCB oil infiltration can be explained in conjunction with the degree of PCB saturation in the sand column. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Role of Vegetation and Mulch in Mitigating the Effects of Raindrop Impact on Runoff and Infiltration from Urban Vegetated Green Infrastructure

    NASA Astrophysics Data System (ADS)

    Alizadehtazi, B.; Montalto, F. A.

    2013-12-01

    Rain drop impact causes soil crust formation which, in turn, reduces infiltration rates and increases runoff, contributing to soil erosion, downstream flooding and non point source pollutant loads. Unprotected soil surfaces (e.g. without vegetation canopies, mulch, or other materials), are more susceptible to crust formation due to the higher kinetic energy associated with raindrop impact. This impulse breaks larger soil aggregates into smaller particles and disperses soil from its original position. The displaced soil particles self-stratify, with finer particles at the top forming the crust. By contrast, soil that is protected by vegetation canopies and mulch layers is less susceptible to crust formation, since these surfaces intercept raindrops, dissipating some of their kinetic energy prior to their impact with the soil. Very little research has sought to quantify the effect that canopies and mulch can have on this phenomenon. This presentation presents preliminary findings from ongoing study conducted using rainfall simulator to determine the ability of new urban vegetation and mulch to minimize soil crust formation. Three different scenarios are compared: a) bare soil, b) soil with mulch cover, and c) soil protected by vegetation canopies. Soil moisture, surface penetration resistance, and physical measurements of the volume of infiltrate and runoff are made on all three surface treatments after simulated rainfall events. The results are used to discuss green infrastructure facility maintenance and design strategies, namely whether heavily vegetated GI facilities require mulching to maintain infiltration capacity.

  2. Residence times and mixing of water in river banks: implications for recharge and groundwater-surface water exchange

    NASA Astrophysics Data System (ADS)

    Unland, N. P.; Cartwright, I.; Cendón, D. I.; Chisari, R.

    2014-12-01

    Bank exchange processes within 50 m of the Tambo River, southeast Australia, have been investigated through the combined use of 3H and 14C. Groundwater residence times increase towards the Tambo River, which suggests the absence of significant bank storage. Major ion concentrations and δ2H and δ18O values of bank water also indicate that bank infiltration does not significantly impact groundwater chemistry under baseflow and post-flood conditions, suggesting that the gaining nature of the river may be driving the return of bank storage water back into the Tambo River within days of peak flood conditions. The covariance between 3H and 14C indicates the leakage and mixing between old (~17 200 years) groundwater from a semi-confined aquifer and younger groundwater (<100 years) near the river, where confining layers are less prevalent. It is likely that the upward infiltration of deeper groundwater from the semi-confined aquifer during flooding limits bank infiltration. Furthermore, the more saline deeper groundwater likely controls the geochemistry of water in the river bank, minimising the chemical impact that bank infiltration has in this setting. These processes, coupled with the strongly gaining nature of the Tambo River are likely to be the factors reducing the chemical impact of bank storage in this setting. This study illustrates the complex nature of river groundwater interactions and the potential downfall in assuming simple or idealised conditions when conducting hydrogeological studies.

  3. Hydrologic behavior of two engineered barriers following extreme wetting.

    PubMed

    Porro, I

    2001-01-01

    Many engineered barriers are expected to function for hundreds of years or longer. Over the course of time, it is likely that some barriers will experience infiltration to the point of breakthrough. This study compares the recovery from breakthrough of two storage-evapotranspiration type engineered barriers. Replicates of test plots comprising thick soil and capillary-biobarrier covers were wetted to breakthrough in 1997. Test plots were kept cleared of vegetation to maximize hydrologic stress during recovery. Following cessation of drainage resulting from the wetting irrigations, water storage levels in all plots were at elevated levels compared with pre-irrigation levels. As a result, infiltration of melting snow during the subsequent spring overloaded the storage capacity and produced drainage in all plots. Relatively rapid melting of accumulated snowfall produced the most significant infiltration events each year during the study. Capillary barriers yielded less total drainage than thick soil barriers. By limiting drainage, capillary barriers increased water storage in the upper portions of the test plots, which led to increased evaporation from the capillary barrier plots compared with thick soil plots. Increased evaporation in the capillary barrier plots allowed more water to infiltrate in the second season following the wetting tests without triggering drainage. All thick soil plots again yielded drainage in the second season. Within two years of intentionally induced breakthrough, evaporation alone (without transpiration) restored the capability of the capillary barrier covers to function as intended, although water storage in these covers remained at elevated levels.

  4. Computational immune profiling in lung adenocarcinoma reveals reproducible prognostic associations with implications for immunotherapy

    PubMed Central

    Varn, Frederick S.; Tafe, Laura J.; Amos, Christopher I.; Cheng, Chao

    2018-01-01

    ABSTRACT Non-small cell lung cancer is one of the leading causes of cancer-related death in the world. Lung adenocarcinoma, the most common type of non-small cell lung cancer, has been well characterized as having a dense lymphocytic infiltrate, suggesting that the immune system plays an active role in shaping this cancer's growth and development. Despite these findings, our understanding of how this infiltrate affects patient prognosis and its association with lung adenocarcinoma-specific clinical factors remains limited. To address these questions, we inferred the infiltration level of six distinct immune cell types from a series of four lung adenocarcinoma gene expression datasets. We found that naive B cell, CD8+ T cell, and myeloid cell-derived expression signals of immune infiltration were significantly predictive of patient survival in multiple independent datasets, with B cell and CD8+ T cell infiltration associated with prolonged prognosis and myeloid cell infiltration associated with shorter survival. These associations remained significant even after accounting for additional clinical variables. Patients stratified by smoking status exhibited decreased CD8+ T cell infiltration and altered prognostic associations, suggesting potential immunosuppressive mechanisms in smokers. Survival analyses accounting for immune checkpoint gene expression and cellular immune infiltrate indicated checkpoint protein-specific modulatory effects on CD8+ T cell and B cell function that may be associated with patient sensitivity to immunotherapy. Together, these analyses identified reproducible associations that can be used to better characterize the role of immune infiltration in lung adenocarcinoma and demonstrate the utility in using computational approaches to systematically characterize tissue-specific tumor-immune interactions. PMID:29872556

  5. Enhancing 18F-FDG-PET/CT analysis in lung cancer patients. Is CT-CT image fusion helpful in predicting pleural involvement? A pilot study.

    PubMed

    Kapfhammer, A; Winkens, T; Lesser, T; Reissig, A; Steinert, M; Freesmeyer, M

    2015-01-01

    To retrospectively evaluate the feasibility and value of CT-CT image fusion to assess the shift of peripheral lung cancers with/-out chest wall infiltration, comparing computed tomography acquisitions in shallow-breathing (SB-CT) and deep-inspiration breath-hold (DIBH-CT) in patients undergoing FDG-PET/CT for lung cancer staging. Image fusion of SB-CT and DIBH-CT was performed with a multimodal workstation used for nuclear medicine fusion imaging. The distance of intrathoracic landmarks and the positional shift of tumours were measured using semi-transparent overlay of both CT series. Statistical analyses were adjusted for confounders of tumour infiltration. Cutoff levels were calculated for prediction of no-/infiltration. Lateral pleural recessus and diaphragm showed the largest respiratory excursions. Infiltrating lung cancers showed more limited respiratory shifts than non-infiltrating tumours. A large respiratory tumour-motility accurately predicted non-infiltration. However, the tumour shifts were limited and variable, limiting the accuracy of prediction. This pilot fusion study proved feasible and allowed a simple analysis of the respiratory shifts of peripheral lung tumours using CT-CT image fusion in a PET/CT setting. The calculated cutoffs were useful in predicting the exclusion of chest wall infiltration but did not accurately predict tumour infiltration. This method can provide additional qualitative information in patients with lung cancers with contact to the chest wall but unclear CT evidence of infiltration undergoing PET/CT without the need of additional investigations. Considering the small sample size investigated, further studies are necessary to verify the obtained results.

  6. A comparison of two methods of infiltration in breast reduction surgery.

    PubMed

    Armour, A D; Rotenberg, B W; Brown, M H

    2001-08-01

    The superwet technique has been shown in previous studies to dramatically reduce blood loss in breast reduction surgery, compared with standard infiltration. A retrospective chart review of 303 consecutive patients undergoing bilateral breast reduction surgery was undertaken to demonstrate additional differences in complication rate, operative time, or sponge use in the operating room. In this series, 132 consecutive patients received standard infiltration along incision lines (25 cc per breast of 1:100,000 epinephrine), and 171 patients received superwet infiltration with 240 cc per breast of 1:1,000,000 epinephrine. The average operative time was significantly reduced in the superwet group, from 78.5 minutes to 70.7 minutes (p < 0.01 level). The average number of sponges used intraoperatively was also decreased significantly (p < 0.01), from 26 to 20 sponges. Complication rates were equally low in both groups, demonstrating the safety of the superwet technique. In addition to limiting blood loss, the superwet infiltration effectively reduces operative time and sponge use without increasing complications in breast reduction surgery.

  7. Infiltration in layered loessial deposits: Revised numerical simulations and recharge assessment

    NASA Astrophysics Data System (ADS)

    Dafny, Elad; Šimůnek, Jirka

    2016-07-01

    The objective of this study is to assess recharge rates and their timing under layered loessial deposits at the edge of arid zones. Particularly, this study is focused on the case of the coastal plain of Israel and Gaza. First, results of a large-scale field infiltration test were used to calibrate the van Genuchten parameters of hydraulic properties of the loessial sediments using HYDRUS (2D/3D). Second, optimized soil hydraulic parameters were used by HYDRUS-1D to simulate the water balance of the sandy-loess sediments during a 25-year period (1990-2015) for three environmental conditions: bare soil, and soil with both sparse and dense natural vegetation. The best inverse parameter optimization run fitted the infiltration test data with the RMSE of 0.27 d (with respect to a moisture front arrival) and R2 of 96%. The calibrated model indicates that hydraulic conductivities of the two soil horizons, namely sandy loam and sandy clay loam, are 81 cm/d and 17.5 cm/d, respectively. These values are significantly lower than those previously reported, based on numerical simulations, for the same site. HYDRUS-1D simulation of natural recharge under bare soil resulted in recharge estimates (to the aquifer) in the range of 21-93 mm/yr, with an average recharge of 63 mm/yr. Annual precipitation in the same period varied between 100 and 300 mm/yr, with an average of 185 mm/yr. For semi-stabilized dunes, with 26% of the soil surface covered by local shrub (Artemisia monosperma), the mean annual recharge was 28 mm. For the stabilized landscape, with as much as 50% vegetation coverage, it was only 2-3 mm/yr. In other words, loessial sediments can either be a source of significant recharge, or of no recharge at all, depending on the degree of vegetative cover. Additionally, the time lag between specific rainy seasons and corresponding recharge events at a depth of 22 m, increased from 2.5 to 5 years, and to about 20 years, respectively, with an increasing vegetative cover. For this reason, and also likely due to a great depth of loessial sediments, no correlation was found between annual recharge and annual precipitations of the same year or subsequent years. Similarly, no differences were found between summer and winter recharge fluxes. Instead, numerical simulations indicated continuous year-round recharge of the aquifer. We conclude that the layered subsurface acts as a short-term (annual) and long-term (multi-annual) buffer to smooth sudden precipitation/infiltration events. Vegetation conditions can help in predicting long-term recharge rates (as percentage of annual precipitation), which in turn need to be considered when assigning recharge characteristics in regional assessments and models.

  8. Alternative design of pipe sleeve for liquid removal mechanism in mortar slab layer

    NASA Astrophysics Data System (ADS)

    Nazri, W. M. H. Wan; Anting, N.; Lim, A. J. M. S.; Prasetijo, J.; Shahidan, S.; Din, M. F. Md; Anuar, M. A. Mohd

    2017-11-01

    Porosity is one of the mortar’s characteristics that can cause problems, especially in the room space that used high amount of water, such as bathrooms. Waterproofing is one of the technology that normally used to minimize this problem which is preventing deep penetration of liquid water or moisture into underlying concrete layers. However, without the proper mechanism to remove liquid water and moisture from mortar system, waterproofing layer tends to be damaged after a long period of time by the static formation of liquid water and moisture at mortar layer. Thus, a solution has been proposed to drain out water that penetrated into the mortar layer. This paper introduces a new solution using a Modified Pipe Sleeve (MPS) that installed at the mortar layer. The MPS has been designed considering the percentage surface area of the pipe sleeve that having contact with mortar layer (2%, 4%, 6%, 8% and 10%) with angle of holes of 60°. Infiltration test and flow rate test have been conducted to identify the effectiveness of the MPS in order to drain out liquid water or moisture from the mortar layer. In this study shows that, MPS surface area 10%, angled 60°, function effectively as a water removal compared to other design.

  9. A Case of Loeffler Endocarditis That Showed Endomyocardial Systolic Dysfunction Detected by Layer Specific Strain Analysis.

    PubMed

    Jin, Xuanyi; Ma, Chunyan; Wang, Yonghuai; Yang, Jun

    2017-12-12

    Loeffler endocarditis is a rare comprehensive cardiac manifestation caused by eosinophilic cell infiltrations and is present in 50%-60% of patients with hypereosinophilic syndrome (HES). Left ventricle (LV) endocardial systolic dysfunction is a major cause of morbidity and mortality in HES and Loeffler endocarditis. We present a case of Loeffler endocarditis, whose left ventricular (LV) systolic dysfunction and endocardial systolic dysfunction were first neglected by conventional transthoracic echocardiography (TTE), but were later pointed out by layer-specific longitudinal strain analysis. With timely initial therapeutic management, the patient's outcome was remarkable. Thus, we strongly recommend strain analysis as a necessary supplementary test of conventional TTE in all patients with Loeffler endocarditis.

  10. Immune cell infiltration in head and neck squamous cell carcinoma and patient outcome: a retrospective study.

    PubMed

    Schneider, Karolin; Marbaix, Etienne; Bouzin, Caroline; Hamoir, Marc; Mahy, Pierre; Bol, Vanesa; Grégoire, Vincent

    2018-03-01

    Human papillomavirus (HPV) prevalence in oropharynx squamous cell carcinoma (OPSCC) is on the rise. HPV-linked OPSCCs represent a distinct clinical entity with a better treatment response and patient survival compared to tumors not linked to HPV. An emerging role in treatment response has been attributed to immune cell infiltration in human tumors. In this study, we investigated immune cell infiltration in human SCC of the head and neck region and its relation to overall survival after treatment with surgery (with or without radiotherapy) or concomitant chemo (or cetuximab)-radiotherapy. Paraffin-embedded tumor samples of 136 patients with SCC of the larynx, hypopharynx, oral cavity and oropharynx were processed for immunohistochemical detection of CD3 + T-cells, CD8 + cytotoxic T-cells, CD20 + B-cells and CD163 + M2 macrophages within the tumor infiltrated area. Clinico-pathological data were analyzed as a function of tumor location and p16-status. Immune cell infiltration was represented as stained area on the whole tumor infiltrated area, compared for the different tumor locations and correlated to patient survival. Patients with oropharynx tumors expressing significant p16 levels (p16-sg) had a 5-year overall survival of 85% compared to 43% for patients with no significant p16 (p16-ns) expression (HR: 0.3 - 95% CI: 0.1-0.6). Median immune cell infiltration (T- and B-lymphocytes) was significantly elevated in p16-sg oropharyngeal tumors, compared to p16-ns oropharyngeal tumors and to all other head and neck tumor locations. No difference in CD163 + macrophage infiltration was observed across the different patient groups. In the whole population, a high infiltration by CD3 + T-lymphocytes was associated to a significantly (p = .03; HR: 0.6, 95% CI: 0.4-0.97) better overall survival. Oropharynx cancer with significant p16 expression showed an increased overall survival and elevated T- and B-lymphocyte infiltration, which suggests a prognostic relevance of immune cell infiltration.

  11. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene-modified mesoscopic carbon-counter electrodes

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Han, Hongwei

    2013-01-01

    A monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene-modified mesoscopic carbon-counter electrode is developed. A TiO2-working electrode layer, ZrO2 spacer layer, and carbon counter electrode layer were constructed on a single conducting glass substrate by screen printing. The quasi-solid-state polymer gel electrolyte employed a polymer composite as the gelator, and effectively infiltrated the porous layers. Fabricated with normal carbon-counter electrode (NC-CE) containing graphite and carbon black, the DSSC had a power conversion efficiency (PCE) of 5.09% with the fill factor of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE was modified with graphene sheets, the PCE and fill factor were enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.

  12. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene modified mesoscopic carbon counter electrodes

    NASA Astrophysics Data System (ADS)

    Rong, Yaoguang; Li, Xiong; Liu, Guanghui; Wang, Heng; Ku, Zhiliang; Xu, Mi; Liu, Linfeng; Hu, Min; Yang, Ying; Han, Hongwei

    2013-03-01

    We have developed a monolithic quasi-solid-state dye-sensitized solar cell (DSSC) based on graphene modified mesoscopic carbon counter electrode (GC-CE), which offers a promising prospect for commercial applications. Based on the design of a triple layer structure, the TiO2 working electrode layer, ZrO2 spacer layer and carbon counter electrode (CE) layer are constructed on a single conducting glass substrate by screen-printing. The quasi-solid-state polymer gel electrolyte employs a polymer composite as the gelator and could effectively infiltrate into the porous layers. Fabricated with normal carbon counter electrode (NC-CE) containing graphite and carbon black, the device shows a power conversion efficiency (PCE) of 5.09% with the fill factor (FF) of 0.63 at 100 mW cm-2 AM1.5 illumination. When the NC-CE is modified with graphene sheets, the PCE and FF could be enhanced to 6.27% and 0.71, respectively. This improvement indicates excellent conductivity and high electrocatalytic activity of the graphene sheets, which have been considered as a promising platinum-free electrode material for DSSCs.

  13. Effect of CMAS composition on hot corrosion behavior of gadolinium zirconate thermal barrier coating materials

    DOE PAGES

    Deng, Wenzhuo; Fergus, Jeffrey W.

    2017-07-06

    The resistance of synthesized pyrochlore-type Gd 2Zr 2O 7 bulk specimens to four calcium-magnesium aluminosilicate (CMAS) compositions at different temperatures was investigated. The reaction products were identified by x-ray diffraction and penetration depths were examined using scanning electron microscopy. A dense reaction layer is comprised mainly of Ca 2Gd 8(SiO 4) 6O 2 and a cubic fluorite phase formed during the CMAS attack, and some unreacted CMAS was found in a transition layer below the reaction layer. The overall infiltration depth changed slightly with temperature, however, the thickness of the reaction layer and the morphology of the transition layer variedmore » distinctly with temperature. The sintered sample underwent the most severe degradation by the CaO-lean CMAS, whereas the effect of CaSO 4 and CaCO 3 was not significant. Furthermore, the Gd content of the ZrO 2-based cubic fluorite phase depends on the temperature and the molar ratio of Ca:Si in the CMAS.« less

  14. Pain Reduction in Untreated Symptomatic Irreversible Pulpitis Using Liposomal Bupivacaine (Exparel): A Prospective, Randomized, Double-blind Trial.

    PubMed

    Bultema, Kristy; Fowler, Sara; Drum, Melissa; Reader, Al; Nusstein, John; Beck, Mike

    2016-12-01

    In the treatment of patients with symptomatic irreversible pulpitis, endodontic debridement is a predictable method to relieve pain. However, there are clinical situations in which emergency care cannot be provided immediately. An unexplored treatment option in these cases may be the use of a long-acting anesthetic to reduce pain in untreated irreversible pulpitis. Some medical studies have shown potential for infiltrations of liposomal bupivacaine (Exparel; Pacira Pharmaceuticals, San Diego, CA) to prolong pain relief and reduce opioid use postoperatively. The Food and Drug Administration has approved Exparel only for infiltrations; therefore, the purpose of this study was to compare an infiltration of liposomal bupivacaine versus bupivacaine for pain control in untreated, symptomatic irreversible pulpitis. Ninety-five emergency patients received 2% lidocaine with 1:100,000 epinephrine via infiltration or an inferior alveolar nerve block to relieve their initial presenting pain. Patients then randomly received either 4 mL liposomal bupivacaine (13.3 mg/mL) or 4 mL 0.5% bupivacaine with 1:200,000 epinephrine by infiltration. Patients received a diary for the day of the appointment and 3 days postinjection to record soft tissue numbness, pain levels, and analgesic (non-narcotic and narcotic) use. No significant differences (P < .05) were found between the 2 anesthetic formulations for pain or the use of pain medications. A statistically higher level of soft tissue numbness was found on days 1 to 3 for the liposomal bupivacaine group. Although liposomal bupivacaine had some effect on soft tissue anesthesia, it did not reduce pain to manageable clinical levels in patients presenting with untreated, symptomatic irreversible pulpitis. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration.

    PubMed

    Petrini, Morena; Ferrante, Maurizio; Su, Bo

    2013-04-01

    Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.

  16. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice

    PubMed Central

    Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko

    2015-01-01

    The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise training on the infiltration of neutrophils and elastase expression in an obese mouse model. Four-week-old male C57BL/6J mice were randomly assigned to one of three groups that either received a normal diet (ND) plus sedentary activity (n = 15), a high-fat diet (HFD) plus sedentary activity (n = 15), or a HFD plus exercise training (n = 15). Mice were fed the ND or HFD from the age of 4 weeks until 20 weeks. Mice in the exercise group ran on a treadmill for 60 min/day, 5 days/week over the same experimental period. Mice fed with the HFD had increased content of macrophages in the AT and increased inflammatory cytokine mRNA levels, which were reduced by exercise training. Similarly, AT from the HFD sedentary mice contained more neutrophils than AT from the ND mice, and the amount of neutrophils in this tissue in HFD-fed mice was lowered by exercise training. The mRNA levels of neutrophil elastase in AT were lower in the HFD exercise-trained mice than those in the HFD sedentary mice. These results suggest that exercise training plays a critical role in reducing macrophage infiltration and AT inflammation by regulating the infiltration of neutrophils. PMID:26341995

  17. Response of the soil physical properties to restoration techniques in limestone quarries

    NASA Astrophysics Data System (ADS)

    Luna Ramos, Lourdes; Miralles Mellado, Isabel; Vignozzi, Nadia; Solé-Benet, Albert

    2016-04-01

    The devastating effects of soil erosion in mining areas from arid/semiarid environments have prompted efforts geared toward an improvement of the soil physical conditions for a fast establishment of vegetal cover. Restoration practices that increase soil moisture content are essential in drylands where rainfall is irregular or insufficient in order to accelerate ecological restoration. The aim of this study was to analyse the influence of organic amendments and mulches on the soil porosity as well as their impact on infiltration, five years after the beginning of an experimental restoration from limestone quarries in Sierra de Gádor (Almería, SE Spain). Nine plots 15 x 5 m were prepared at the site in a completely randomized 2 x 3 factorial design. The first factor, organic amendment, had three levels: sewage sludge (SA), compost from domestic organic residues (CA) and no amendment (NA). The second factor, mulches, also had three levels: gravel (GM), woodchip (WM) and no mulch (NM). In each experimental plot 75 native plants (Macrochloa tenacissima, Anthyllis terniflora and Anthyllis cytisoides) were planted. Infiltration was determined from rainfall simulations and soil porosity was assessed by image analysis of soil thin sections. Total porosity and pores distribution were measured according to pore shape (regular, irregular and elongated) and size (transmission pores [50-500 μm] and fissures [>500 μm]). Natural undisturbed soils around the mine area were used as a reference soil (RS). Restoration treatments showed higher total porosity, fissures and elongated pores than RS and we observed the highest values in treatments with WM. This fact is due to the disruption caused by the application of treatments rather that a good soil structure. Each combination exhibited different values of transmission pores, being greater in the combinations of NA-GM, SA-NM and CA-WM. Infiltration increased with the increase of the total porosity, fissures and elongated pores, especially in treatments with organic amendments and woodchip mulch. While in plots with this mulch, the wetting front only reaches a few centimetres in depth. This was probably due to the preferential orientation of woodchips pores parallel to the soil surface, which decreases the percolation to deeper soil layers. Neither treatment reached a wetting front like RS but, in view of the parameters related to good physical soil properties (pores distribution, infiltration and wetting front depth) the combination of SA-NM can allow a high soil moisture content to facilitate the plant cover establishment. It is right to conclude that sewage sludge is the most adequate treatment for restoring areas degraded by mining activities in a semiarid climate.

  18. Assessment of metal retention in newly constructed highway embankments.

    PubMed

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2016-12-01

    Newly constructed embankments should provide both a specific bearing capacity to enable trafficability in emergency cases and a sufficient pollutant retention capacity to protect the groundwater. A number of lysimeters were installed along the A115 highway to determine total and dissolved metal concentrations in road runoff and in the soil solution of newly constructed embankments. Dissolved concentrations in soil solution of the embankments did not exceed the trigger values of the German legislation. Depending on the metal, total concentrations in soil solution were more than twice as high as dissolved concentrations. The high infiltration rates lead to increased groundwater recharge beneath the embankments (up to 4100 mm a -1 ). Although metal concentrations were not problematic from the legislators' point of view, the elevated infiltration rates beside the road facilitated the transfer of high metal loads into deeper soil layers and potentially into the groundwater as well.

  19. Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Muñoz-Noval, Álvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Javier Serrano, José; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; Del Pozo, Francisco; Martín-Palma, Raúl J.

    2011-02-01

    This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.

  20. Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications.

    PubMed

    Muñoz-Noval, Alvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Serrano, José Javier; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; del Pozo, Francisco; Martín-Palma, Raúl J

    2011-02-01

    This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.

  1. Production of methanol from heat-stressed pepper and corn leaf disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.A.

    Early Calwonder'' pepper (Capsicum annuum L.) and Jubilee'' corn (Zea mays L.) leaf disks exposed to high temperature stress produced ethylene, ethane, methanol, acetaldehyde, and ethanol based on comparison of retention times during gas chromatography to authentic standards. Methanol, ethanol, and acetaldehyde were also identified by mass spectroscopy. Corn leaf disks produced lower levels of ethylene, ethane, and methanol, but more acetaldehyde and ethanol than pepper. Production of ethane, a by-product of lipid peroxidation, coincided with an increase in electrolyte leakage (EL) in pepper but not in corn. Compared with controls, pepper leaf disks infiltrated with linolenic acid evolved significantlymore » greater amounts of ethane, acetaldehyde, and methanol and similar levels of ethanol. EL and volatile hydrocarbon production were not affected by fatty acid infiltration in corn. Infiltration of pepper leaves with buffers increasing in pH from 5.5 to 9.5 increased methanol production.« less

  2. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  3. An Investigation of LSF-YSZ Conductive Scaffolds for Infiltrated SOFC Cathodes

    DOE PAGES

    Cheng, Yuan; Oh, Tae-Sik; Wilson, Rachel; ...

    2017-03-24

    Porous composites of Sr-doped LaFeO 3 (LSF) and yttria-stabilized zirconia (YSZ) were investigated as conductive scaffolds for infiltrated SOFC cathodes with the goal of producing scaffolds for which only a few perovskite infiltration steps are required to achieve sufficient conductivity. While no new phases form when LSF-YSZ composites are calcined to 1623 K, shifts in the lattice parameters indicate Zr can enter the perovskite phase. Measurements on dense, LSF-YSZ composites show that the level of Zr doping depends on the Sr:La ratio. Because conductivity of undoped LSF increases with Sr content while both the ionic and electronic conductivities of Zr-dopedmore » LSF decrease with the level of Zr in the perovskite phase, there is an optimum initial Sr content corresponding to La 0.9Sr 0.1FeO 3 (LSF91). Although scaffolds made with 100% LSF had a higher conductivity than scaffolds made with 50:50 LSF-YSZ mixtures, the 50:50 mixture provides the optimal interfacial structure with the electrolyte and sufficient conductivity, providing the best cathode performance upon infiltration of La 0.6Sr 0.4Co 0.2Fe 0.8O 3 (LSCF).« less

  4. Architectured Nanomembranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sturgeon, Matthew R.; Hu, Michael Z.

    2017-07-01

    This paper has reviewed the frontier field of “architectured membranes” that contains anisotropic oriented porous nanostructures of inorganic materials. Three example types of architectured membranes were discussed with some relevant results from our own research: (1) anodized thin-layer titania membranes on porous anodized aluminum oxide (AAO) substrates of different pore sizes, (2) porous glass membranes on alumina substrate, and (3) guest-host membranes based on infiltration of yttrium-stabilized zirconia inside the pore channels of AAO matrices.

  5. Histologic Assessment of Intratumoral Lymphoplasmacytic Infiltration Is Useful in Predicting Prognosis of Patients with Hepatocellular Carcinoma.

    PubMed

    Hayashi, Akimasa; Shibahara, Junji; Misumi, Kento; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi

    2016-01-01

    In the present study, we investigated the clinicopathologic significance of intratumoral lymphoplasmacytic infiltration in a large cohort of patients with solitary hepatocellular carcinoma (HCC). Based on examination of hematoxylin and eosin-stained sections, significant infiltration was defined as dense lymphoplasmacytic infiltration, either multifocal or diffuse, in 2 or more fields under low-power magnification. Of 544 cases, 216 (39.7%) were positive for significant infiltration (HCC-LI group), while 328 (60.3%) were negative (HCC-NLI group). There were no significant between-group differences in patient age, sex, or background etiology. The lower incidence of Child-Pugh stage B (P = 0.001) and lower level of indocyanine green retention rate at 15 minutes (P < 0.001) in the HCC-LI group indicated better liver function in this group. Histologically, tumors were significantly smaller in size in the HCC-LI group than in the HCC-NLI group (P < 0.001). In addition, prominent neutrophilic infiltration, interstitial fibrosis and tumor steatosis were significantly more frequent (P < 0.001) in the HCC-LI group, while tumor necrosis was significantly less frequent (P = 0.008). Kaplan-Meier analyses revealed that overall and recurrence-free survival were significantly better in the HCC-LI group (P < 0.001). Multivariate Cox regression analysis showed that intratumoral lymphoplasmacytic infiltration was independently prognostic of both overall and recurrence-free survival (P < 0.001), with absence of infiltration showing high Cox-hazard ratios for poor prognosis. In conclusion, intratumoral lymphoplasmacytic infiltration, as determined by assessment of hematoxylin and eosin-stained slides, was significantly associated with the clinical and pathologic features of HCC and has profound prognostic importance.

  6. Histologic Assessment of Intratumoral Lymphoplasmacytic Infiltration Is Useful in Predicting Prognosis of Patients with Hepatocellular Carcinoma

    PubMed Central

    Hayashi, Akimasa; Shibahara, Junji; Misumi, Kento; Arita, Junichi; Sakamoto, Yoshihiro; Hasegawa, Kiyoshi; Kokudo, Norihiro; Fukayama, Masashi

    2016-01-01

    In the present study, we investigated the clinicopathologic significance of intratumoral lymphoplasmacytic infiltration in a large cohort of patients with solitary hepatocellular carcinoma (HCC). Based on examination of hematoxylin and eosin-stained sections, significant infiltration was defined as dense lymphoplasmacytic infiltration, either multifocal or diffuse, in 2 or more fields under low-power magnification. Of 544 cases, 216 (39.7%) were positive for significant infiltration (HCC-LI group), while 328 (60.3%) were negative (HCC-NLI group). There were no significant between-group differences in patient age, sex, or background etiology. The lower incidence of Child-Pugh stage B (P = 0.001) and lower level of indocyanine green retention rate at 15 minutes (P < 0.001) in the HCC-LI group indicated better liver function in this group. Histologically, tumors were significantly smaller in size in the HCC-LI group than in the HCC-NLI group (P < 0.001). In addition, prominent neutrophilic infiltration, interstitial fibrosis and tumor steatosis were significantly more frequent (P < 0.001) in the HCC-LI group, while tumor necrosis was significantly less frequent (P = 0.008). Kaplan-Meier analyses revealed that overall and recurrence-free survival were significantly better in the HCC-LI group (P < 0.001). Multivariate Cox regression analysis showed that intratumoral lymphoplasmacytic infiltration was independently prognostic of both overall and recurrence-free survival (P < 0.001), with absence of infiltration showing high Cox-hazard ratios for poor prognosis. In conclusion, intratumoral lymphoplasmacytic infiltration, as determined by assessment of hematoxylin and eosin-stained slides, was significantly associated with the clinical and pathologic features of HCC and has profound prognostic importance. PMID:27195977

  7. Local infiltration of gonyautoxin is safe and effective in treatment of chronic tension-type headache.

    PubMed

    Lattes, K; Venegas, P; Lagos, N; Lagos, M; Pedraza, L; Rodriguez-Navarro, A J; García, C

    2009-04-01

    Gonyautoxin are phycotoxins, whose molecular mechanism of action is a reversible block of the voltage-gated sodium channels at axonal level, impeding nerve impulse propagation. To evaluate clinical efficacy of gonyautoxin in the treatment of patients with chronic tensional-type headache. Open trial from September 2004 to 2005 in Hospital Clínico Universidad de Chile. Twenty-seven patients with chronic tension-type headache were locally infiltrated with gonyautoxins (50 micrograms) in ten sites considered as pain trigger points in a fixed infiltration protocol. In each site, a volume of 200 microlitres was injected. EMG recording was performed before and immediately after infiltrations. Main outcome measures are where a significantly drop-off in acute headache pain score occurs and number of days without headache pain. No side effects were detected in the follow-up period. From base line of 2 weeks, 19 patients of 27 (70%) are the successfully responders to the treatment. They showed the remarkable immediate effect after infiltration demonstrated by trapezium EMG recording. Patients reported a fall in pain score 5 minutes post-injection from 5.0 +/- 2.8 to 1.6 +/- 1.6 (mean +/- SD). The responder showed an average of 8.1 +/- 9.9 weeks of headache pain-free, all of them without a second infiltration or use of any additional analgesic medication. The therapeutic properties of gonyautoxin local infiltration in chronic tension-type headache patients are shown to be safe and effective. This report describes a new therapy for chronic tension-type headache involving local infiltrations of gonyautoxins. The immediate headache pain relief effect shown only minutes after toxin infiltrations were the most remarkable feature of this protocol. This is the first gonyautoxins testing report in the treatment of chronic tension-type headache.

  8. Oxidative Stress in Aortas of Patients with Advanced Occlusive and Aneurysmal Diseases.

    PubMed

    Lucas, Márcio L; Carraro, Cristina C; Belló-Klein, Adriane; Kalil, Antônio N; Aerts, Newton R; Carvalho, Fabiano B; Fernandes, Marilda C; Zettler, Claudio G

    2018-06-06

    Aortoiliac occlusive disease (AOD) and abdominal aortic aneurysm (AAA) are very important cardiovascular diseases that present different aspects of pathophysiology; however, oxidative stress and inflammatory response seem be relevant in both of them. Our objective was to evaluate oxidative damage and degree of inflammatory infiltrate in aortas of patients surgically treated for AOD and AAA. Levels of reactive oxygen species (ROS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and myeloperoxidase (MPO) expression as well as nitrite levels and superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in aortas of patients with AOD (n = 16) or AAA (n = 14), while the control group was formed by cadaveric organ donors (n = 10). We also analyzed the degree of inflammatory infiltrate in these aortas. There was an increase in ROS levels and NADPH oxidase activity in patients with AOD and AAA when compared with the control group, and the AOD group demonstrated higher ROS production and NADPH oxidase activity and also nitrite levels when compared with the AAA group (P < 0.001). On the other hand, an increase of SOD activity in the AOD group and CAT activity in the AAA group was observed. Inflammatory infiltrate and MPO expression were higher in the AOD group when compared with the control group (P < 0.05). Oxidative stress is relevant in both AOD and AAA, though AOD presented higher ROS levels and NADPH activity. Increased activities of antioxidant enzymes may be a compensatory phenomenon which occurs in aortas of patients with AOD and AAA. Perhaps, a relationship between oxidative stress and degree of inflammatory infiltrate may exist in the pathophysiology of AOD and AAA. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Modeling Environmental Tobacco Smoke (ETS) Infiltration in Low-Income Multifamily Housing before and after Building Energy Retrofits

    PubMed Central

    Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian

    2016-01-01

    Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing. PMID:26999174

  10. Modeling Environmental Tobacco Smoke (ETS) Infiltration in Low-Income Multifamily Housing before and after Building Energy Retrofits.

    PubMed

    Fabian, Maria Patricia; Lee, Sharon Kitman; Underhill, Lindsay Jean; Vermeer, Kimberly; Adamkiewicz, Gary; Levy, Jonathan Ian

    2016-03-16

    Secondhand exposure to environmental tobacco smoke (ETS) in multifamily housing remains a health concern despite strong recommendations to implement non-smoking policies. Multiple studies have documented exposure to ETS in non-smoking units located in buildings with smoking units. However, characterizing the magnitude of ETS infiltration or measuring the impact of building interventions or resident behavior on ETS is challenging due to the complexities of multifamily buildings, which include variable resident behaviors and complex airflows between numerous shared compartments (e.g., adjacent apartments, common hallways, elevators, heating, ventilating and air conditioning (HVAC) systems, stack effect). In this study, building simulation models were used to characterize changes in ETS infiltration in a low income, multifamily apartment building in Boston which underwent extensive building renovations targeting energy savings. Results suggest that exterior wall air sealing can lead to increases in ETS infiltration across apartments, while compartmentalization can reduce infiltration. The magnitude and direction of ETS infiltration depends on apartment characteristics, including construction (i.e., level and number of exterior walls), resident behavior (e.g., window opening, operation of localized exhaust fans), and seasonality. Although overall ETS concentrations and infiltration were reduced post energy-related building retrofits, these trends were not generalizable to all building units. Whole building smoke-free policies are the best approach to eliminate exposure to ETS in multifamily housing.

  11. Electrical resistivity imaging study of near-surface infiltration

    NASA Astrophysics Data System (ADS)

    Lampousis, Angelos

    High resolution electrical resistivity images (ERI method) were obtained during vadose zone infiltration experiments on agricultural soils in cooperation with Cornell University's Agricultural Stewardship Program, Cooperative Extension of Suffolk County, Extension Education Center, Riverhead, New York [ as well as Cornell University's Long Island Horticultural Research & Extension Center (LIHREC) in Riverhead, New York]. One natural soil was also studied. Infiltration was monitored by means of image analysis of two-dimensional array resistivity generated by a Syscal Kid Switch resistivity system (Griffiths et al., 1990). The data was inverted with the computer program RES2DINV (Loke, 2004). The agricultural soils considered were Riverhead sandy loam (RdA), Haven loam (HaA), and Bridgehampton silt loam (BgA). The natural site was located in the Catskill Mountains of New York State. The soils there are classified as Schoharie silty clay loam. The electrical images of the three sites were compared against established soil properties, including particle size distribution, available water capacity, and soluble salts (from the literature), as well as against site-specific soil samples and penetrometer data, which were collected along with the geophysical measurements. This research evaluates the potential of acquiring high resolution, non-destructive measurements of infiltration in the uppermost 1.5 meter of the vadose zone. The results demonstrate that resistivity differences can detect infiltration in soils typical of the north-eastern United States. Temporal and spatial variations of soil water content in the upper 1.5 meters (relevant to agriculture) of the subsurface can be monitored successfully and non-destructively with ERI. The sensitivity of the method is higher in subsurface environments that demonstrate high overall apparent resistivity values (e.g. high sand content). Under conditions of increased soil heterogeneity, instead of the formation of a continuous water plume as occurred in the homogeneous agricultural soils, the location of the infiltrated water seems to be highly influenced by the soil heterogeneity, and the water front is scattered into discontinuous layers and travels in additional directions. The geophysical results during infiltration correlate well with soil compaction data. It follows that the ERI method can be used as a proxy for soil compaction and water content variations in agricultural applications. In a natural environment, ERI successfully maps the tree root zone of mature trees. Applications include continuous water content monitoring in high value cash crops, such as viticulture (precision agriculture).

  12. A landscape-scale assessment of plant communities, hydrologic processes, and state-and-transition theory in a western juniper dominated ecosystem

    NASA Astrophysics Data System (ADS)

    Petersen, Steven L.

    Western juniper has rapidly expanded into sagebrush steppe communities in the Intermountain West during the past 120 years. This expansion has occurred across a wide range of soil types and topographic positions. These plant communities, however, are typically treated in current peer-reviewed literature generically. The focus of this research is to investigate watershed level response to Western juniper encroachment at multiple topographic positions. Data collected from plots used to measure vegetation, soil moisture, and infiltration rates show that intercanopy sites within encroached Western juniper communities generally exhibit a significant decrease in intercanopy plant density and cover, decreased infiltration rates, increased water sediment content, and lower soil moisture content. High-resolution remotely sensed imagery and Geographic Information Systems were used with these plot level measurements to characterize and model the landscape-scale response for both biotic and abiotic components of a Western juniper encroached ecosystem. These data and their analyses included an inventory of plant density, plant cover, bare ground, gap distance and cover, a plant community classification of intercanopy patches and juniper canopy cover, soil moisture estimation, solar insulation prediction, slope and aspect. From these data, models were built that accurately predicted shrub density and shrub cover throughout the watershed study area, differentiated by aspect. We propose a new model of process-based plant community dynamics associated with current state-and-transition theory. This model is developed from field measurements and spatially explicit information that characterize the relationship between the matrix mountain big sagebrush plant community and intercanopy plant community patterns occurring within a Western juniper dominated woodland at a landscape scale. Model parameters (states, transitions, and thresholds) are developed based on differences in shrub density and cover, steady-state infiltration rates, water sediment content, and percent bare ground in response to juniper competition and topographic position. Results from both analysis of variance and multivariate hierarchical cluster analysis indicate that states, transitions, and thresholds can be accurately predicted for intercanopy areas occurring within the study area. In theory, this model and the GIS-based layers produced from this research can be used together to predict states, transitions, and thresholds for any location within the extent of the study area. This is a valuable tool for assessing sites at risk and those that have exceeded the ability to self-repair.

  13. Synchrotron-radiation phase-contrast imaging of human stomach and gastric cancer: in vitro studies.

    PubMed

    Tang, Lei; Li, Gang; Sun, Ying-Shi; Li, Jie; Zhang, Xiao-Peng

    2012-05-01

    The electron density resolution of synchrotron-radiation phase-contrast imaging (SR-PCI) is 1000 times higher than that of conventional X-ray absorption imaging in light elements, through which high-resolution X-ray imaging of biological soft tissue can be achieved. For biological soft tissue, SR-PCI can give better imaging contrast than conventional X-ray absorption imaging. In this study, human resected stomach and gastric cancer were investigated using in-line holography and diffraction enhanced imaging at beamline 4W1A of the Beijing Synchrotron Radiation Facility. It was possible to depict gastric pits, measuring 50-70 µm, gastric grooves and tiny blood vessels in the submucosa layer by SR-PCI. The fine structure of a cancerous ulcer was displayed clearly on imaging the mucosa. The delamination of the gastric wall and infiltration of cancer in the submucosa layer were also demonstrated on cross-sectional imaging. In conclusion, SR-PCI can demonstrate the subtle structures of stomach and gastric cancer that cannot be detected by conventional X-ray absorption imaging, which prompt the X-ray diagnosis of gastric disease to the level of the gastric pit, and has the potential to provide new methods for the imageology of gastric cancer.

  14. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum)

    PubMed Central

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27–33, 34–57, 58–85, 86–99, and 27–99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34–57 DAS) and enlargement (58–85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment. PMID:26630675

  15. Effect of Post-Infiltration Soil Aeration at Different Growth Stages on Growth and Fruit Quality of Drip-Irrigated Potted Tomato Plants (Solanum lycopersicum).

    PubMed

    Li, Yuan; Jia, Zongxia; Niu, Wenquan; Wang, Jingwei; Zhang, Mingzhi

    2015-01-01

    Soil hydraulic principles suggest that post-infiltration hypoxic conditions would be induced in the plant root-zone for drip-irrigated tomato production in small pots filled with natural soil. No previous study specifically examined the response of tomato plants (Solanum lycopersicum) at different growth stages to low soil aeration under these conditions. A 2 × 6 factorial experiment was conducted to quantify effects of no post-infiltration soil aeration versus aeration during 5 different periods (namely 27-33, 34-57, 58-85, 86-99, and 27-99 days after sowing), on growth and fruit quality of potted single tomato plants that were sub-surface trickle-irrigated every 2 days at 2 levels. Soil was aerated by injecting 2.5 liters of air into each pot through the drip tubing immediately after irrigation. Results showed that post-infiltration aeration, especially during the fruit setting (34-57 DAS) and enlargement (58-85 DAS) growth stages, can positively influence the yield, root dry weight and activity, and the nutritional (soluble solids and vitamin C content), taste (titratable acidity), and market quality (shape and firmness) of the tomato fruits. Interactions between irrigation level and post-infiltration aeration on some of these fruit quality parameters indicated a need for further study on the dynamic interplay of air and water in the root zone of the plants under the conditions of this experiment.

  16. Topic III - Infiltration and Drainage: A section in Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings (WRI 95-4015)

    USGS Publications Warehouse

    Prudic, David E.; Gee, Glendon; Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    Infiltration into and drainage from facilities for the disposal of low-level radioactive wastes is considered the major process by which non-volatile contaminants are transported away from the facilities. The session included 10 papers related to the processes of infiltration and drainage, and to the simulation of flow and transport through the unsaturated zone. The first paper, presented by David Stonestrom, was an overview regarding the application of unsaturated flow theory to infiltration and drainage. Stonestrom posed three basic questions, which are:How well do we know the relevant processes affecting flow and transport?How well can we measure the parametric functions used to quantify flow and transport?How do we treat complexities inherent in field settings?The other nine papers presented during the session gave some insight to these questions. Topics included: laboratory measurement of unsaturated hydraulic conductivities at low water contents, by John Nimmo; use of environmental tracers to identify preferential flow through fractured media and to quantify drainage, by Edmund Prych and Edwin Weeks; field experiments to evaluate relevant processes affecting infiltration and drainage, by Brian Andraski, Glendon Gee, and Peter Wierenga; and the use of determinist'c and stochastic models for simulating flow and transport through heterogeneous sediments, by Richard Hills, Lynn Gelhar, and Shlomo Neuman.

  17. Selected techniques for monitoring water movement through unsaturated alluvium during managed aquifer recharge

    USGS Publications Warehouse

    Nawikas, Joseph M.; O'Leary, David R.; Izbicki, John A.; Burgess, Matthew K.

    2016-10-21

    Managed aquifer recharge is used to augment natural recharge to aquifers. It can be used to replenish aquifers depleted by pumping or to store water during wetter years for withdrawal during drier years. Infiltration from ponds is a commonly used, inexpensive approach for managed aquifer recharge.At some managed aquifer-recharge sites, the time when infiltrated water arrives at the water table is not always clearly shown by water-level data. As part of site characterization and operation, it can be desirable to track downward movement of infiltrated water through the unsaturated zone to identify when it arrives at the water table.

  18. Protective effects of FTY720 on chronic allograft nephropathy by reducing late lymphocytic infiltration.

    PubMed

    Wang, Minghui; Liu, Shanying; Ouyang, Nengtai; Song, Erwei; Lutz, Jens; Heemann, Uwe

    2004-09-01

    Lymphocytic infiltration is obvious throughout early and late stages of chronic allograft nephropathy. Early infiltrating lymphocytes are involved in initial insults to kidney allografts, but the contribution of late infiltration to long-term allograft attrition is still controversial. Early application of FTY720 reduced the number of graft infiltrating lymphocytes, and inhibited acute rejection. The present study investigated the potential of FTY720 to reduce the number of infiltrating lymphocytes even at a late stage, and, thus, slow the pace of chronic allograft nephropathy. Fisher (F344) rat kidneys were orthotopically transplanted into Lewis recipients with an initial 10-day course of cyclosporine A (1.5 mg/kg/day). FTY720, at a dose of 0.5 mg/kg/day, or vehicle was administered to recipients either from weeks 12 to 24 or from 20 to 24 after transplantation. Animals were harvested 24 weeks after transplantation for histologic, immunohistologic, and molecular analysis. FTY720, either initiated at 12 or 20 weeks after transplantation, reduced urinary protein excretion, and significantly ameliorated glomerulosclerosis, interstitial fibrosis, tubular atrophy, and intimal proliferation of graft arteries at 24 weeks after transplantation. Furthermore FTY720 markedly suppressed lymphocyte infiltration and decreased mRNA levels of interleukin-10 (IL-10), transforming growth factor-beta (TGF-beta), and platelet-derived growth factor-B (PDGF-B) but enhanced the number of apoptotic cells in grafts. FTY720 ameliorated chronic allograft nephropathy even at advanced stages. Furthermore, our data suggest that this effect was achieved by a reduction of graft infiltrating lymphocytes.

  19. The use of acetone to enhance the infiltration of HA nanoparticles into a demineralized dentin collagen matrix.

    PubMed

    Besinis, Alexandros; van Noort, Richard; Martin, Nicolas

    2016-03-01

    This study investigates the role of acetone, as a carrier for nano-hydroxyapatite (nano-HA) in solution, to enhance the infiltration of fully demineralized dentin with HA nanoparticles (NPs). Dentin specimens were fully demineralized and subsequently infiltrated with two types of water-based nano-HA solutions (one containing acetone and one without). Characterization of the dentin surfaces and nano-HA particles was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface wettability and infiltration capacity of the nano-HA solutions were quantified by means of contact angle measurements and energy dispersive X-ray spectroscopy (EDS), respectively. Contact angle measurements were taken at baseline and repeated at regular intervals to assess the effect of acetone. The P and Ca levels of infiltrated dentin specimens were measured and compared to sound dentin and non-infiltrated controls. The presence of acetone resulted in an eight-fold decrease in the contact angles of the nano-HA solutions recorded on the surface of demineralized dentin compared to nano-HA solutions without acetone (one-way ANOVA, p<0.05). Perfect wetting of the demineralized dentin surface was achieved 5min after the application of the nano-HA solution containing acetone. Infiltration of demineralized dentin with the nano-HA solution containing acetone restored the lost mineral content by 50%, whereas the mean mineralization values for P and Ca in dentin treated with the acetone-free nano-HA solution were less than 6%. Acetone was shown to act as a vehicle to enhance the capacity to infiltrate demineralized dentin with HA NPs. The successful infiltration of dentin collagen with HA NPs provides a suitable scaffold, whereby the infiltrated HA NPs have the potential to act as seeds that may initiate heterogenous mineral growth when exposed to an appropriate mineral-rich environment. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. Gastroprotective Activity of Ethyl-4-[(3,5-di-tert-butyl-2-hydroxybenzylidene) Amino]benzoate against Ethanol-Induced Gastric Mucosal Ulcer in Rats

    PubMed Central

    Halabi, Mohammed Farouq; Shakir, Raied Mustafa; Bardi, Daleya Abdulaziz; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Hassandarvish, Pouya; Hajrezaie, Maryam; Norazit, Anwar; Abdulla, Mahmood Ameen

    2014-01-01

    Background The study was carried out to determine the cytotoxic, antioxidant and gastro-protective effect of ethyl-4-[(3,5-di-tert-butyl-2-hydroxybenzylid ene)amino] benzoate (ETHAB) in rats. Methodology/Principal Findings The cytotoxic effect of ETHAB was assessed using a MTT cleavage assay on a WRL68 cell line, while its antioxidant activity was evaluated in vitro. In the anti-ulcer study, rats were divided into six groups. Group 1 and group 2 received 10% Tween 20 (vehicle). Group 3 received 20 mg/kg Omeprazole. Groups 4, 5 and 6 received ETHAB at doses of 5, 10, and 20 mg/kg, respectively. After an hour, group 1 received the vehicle. Groups 2–6 received absolute ethanol to induce gastric mucosal lesions. In the WRL68 cell line, an IC50 of more than 100 µg/mL was observed. ETHAB results showed antioxidant activity in the DPPH, FRAP, nitric oxide and metal chelating assays. There was no acute toxicity even at the highest dosage (1000 mg/kg). Microscopy showed that rats pretreated with ETHAB revealed protection of gastric mucosa as ascertained by significant increases in superoxide dismutase (SOD), pH level, mucus secretion, reduced gastric lesions, malondialdehyde (MDA) level and remarkable flattened gastric mucosa. Histologically, pretreatment with ETHAB resulted in comparatively better gastric protection, due to reduction of submucosal edema with leucocyte infiltration. PAS staining showed increased intensity in uptake of Alcian blue. In terms of immunohistochemistry, ETHAB showed down-expression of Bax proteins and over-expression of Hsp70 proteins. Conclusion/Significance The gastroprotective effect of ETHAB may be attributed to antioxidant activity, increased gastric wall mucus, pH level of gastric contents, SOD activity, decrease in MDA level, ulcer area, flattening of gastric mucosa, reduction of edema and leucocyte infiltration of the submucosal layer, increased PAS staining, up-regulation of Hsp70 protein and suppressed expression of Bax. Key words: ethyl 4-(3, 5-di-ter-butyl-2-hydroxybenzylamino) benzoate; toxicity; antioxidant; gastric-ulcer; anti-ulcer; histology; immunohistochemistry. PMID:24800807

  1. Monitoring induced denitrification in an artificial aquifer recharge system.

    NASA Astrophysics Data System (ADS)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme literature ɛN values of -4o and -22o respectively (Aravena and Robertson, 1998; Pauwels et al., 2000). Ongoing denitrification batch experiments will allow us to determine the specific nitrogen and oxygen isotopic fractionation induced by the organic reactive layer, in order to estimate more precisely the extent of denitrification during artificial aquifer recharge. These results confirmed that the reactive layer induces denitrification in the recharge ponds area, proving the usefulness of an isotopic approach to characterize water quality improvement occurring during artificial aquifer recharge. References 1. Aravena, R., Robertson, W.D., 1998. Use of multiple isotope tracers to evaluate denitrification in ground water: Study of nitrate from a large-flux septic system plume. Ground Water, 36(6): 975-982. 2. Pauwels, H., J.C., Kloppmann, W., 2000. Denitrification and mixing in a schist aquifer: Influence on water chemistry and isotopes. Chemical Geology, 168(3-4): 307-324. Acknowledgment This study was supported by the projects CGL2011-29975-C04-01 from the Spanish Government, 2009SGR-00103 from the Catalan Government and ENPI/2011/280-008 from the European Commission. Please fill in your abstract text.

  2. Analysis on the influence of forest soil characteristics on radioactive Cs infiltration and evaluation of residual radioactive Cs on surfaces.

    PubMed

    Mori, Yoshitomo; Yoneda, Minoru; Shimada, Yoko; Fukutani, Satoshi; Ikegami, Maiko; Shimomura, Ryohei

    2018-03-29

    We investigated the depth profiles of radioactive Cs, ignition loss, and cation exchange capacity (CEC) in five types of forest soils sampled using scraper plates. We then simulated the monitored depth profiles in a compartment model, taking ignition loss as a parameter based on experimental results showing a positive correlation between ignition loss and the CEC. The calculated values were comparable with the monitored values, though some discrepancy was observed in the middle of the soil layer. Based on decontamination data on the surface dose rate and surface contamination concentration, we newly defined a surface residual index (SRI) to evaluate the residual radioactive Cs on surfaces. The SRI value tended to gradually decrease in forests and unpaved roads and was much smaller in forests and on unpaved roads than on paved roads. The radioactive Cs was assumed to have already infiltrated underground 18 months after the nuclear power plant accident, and the sinking was assumed to be ongoing. The SRI values measured on paved roads suggested that radioactive Cs remained on the surfaces, though a gradual infiltration was observed towards the end of the monitoring term. The SRI value is thought to be effective in grasping the rough condition of residual radioactive Cs quickly at sites of decontamination activity in the field. The SRI value may be serviceable for actual contamination works after further research is done to elucidate points such as the relation between the SRI and the infiltration of radioactive Cs in various types of objects.

  3. Low grade urothelial carcinoma mimicking basal cell hyperplasia and transitional metaplasia in needle prostate biopsy.

    PubMed

    Arista-Nasr, Julian; Martinez-Benitez, Braulio; Bornstein-Quevedo, Leticia; Aguilar-Ayala, Elizmara; Aleman-Sanchez, Claudia Natalia; Ortiz-Bautista, Raul

    2016-01-01

    The vast majority of urothelial carcinomas infiltrating the bladder are consistente with high-grade tumors that can be easily recognized as malignant in needle prostatic biopsies. In contrast, the histological changes of low-grade urothelial carcinomas in this kind of biopsy have not been studied. We describe the clinicopathologic features of two patients with low-grade bladder carcinomas infiltrating the prostate. They reported dysuria and hematuria. Both had a slight elevation of the prostate specific antigen and induration of the prostatic lobes. Needle biopsies were performed. At endoscopy bladder tumors were found in both cases. Both biopsies showed nests of basophilic cells and cells with perinuclear clearing and slight atypia infiltrating acini and small prostatic ducts. The stroma exhibited extensive desmoplasia and chronic inflammation. The original diagnosis was basal cell hyperplasia and transitional metaplasia. The bladder tumors also showed low-grade urothelial carcinoma. In one case, the neoplasm infiltrated the lamina propria, and in another, the muscle layer. In both, a transurethral resection was performed for obstructive urinary symptoms. The neoplasms were positive for high molecular weight keratin (34BetaE12) and thrombomodulin. No metastases were found in either of the patients, and one of them has survived for five years. The diagnosis of low-grade urothelial carcinoma in prostate needle biopsies is difficult and may simulate benign prostate lesions including basal cell hyperplasia and urothelial metaplasia. It is crucial to recognize low-grade urothelial carcinoma in needle biopsies because only an early diagnosis and aggressive treatment can improve the prognosis for these patients.

  4. Evaluation of diffuse and preferential flow pathways of infiltrated precipitation and irrigation using oxygen and hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Liang, Xing; Liu, Shaohua; Jin, Menggui; Nimmo, John R.; Li, Jing

    2017-05-01

    Subsurface-water flow pathways in three different land-use areas (non-irrigated grassland, poplar forest, and irrigated arable land) in the central North China Plain were investigated using oxygen (18O) and hydrogen (2H) isotopes in samples of precipitation, soils, and groundwater. Soil water in the top 10 cm was significantly affected by both evaporation and infiltration. Water at 10-40 cm depth in the grassland and arable land, and 10-60 cm in poplar forest, showed a relatively short residence time, as a substantial proportion of antecedent soil water was mixed with a 92-mm storm infiltration event, whereas below those depths (down to 150 cm), depleted δ18O spikes suggested that some storm water bypassed the shallow soil layers. Significant differences, in soil-water content and δ18O values, within a small area, suggested that the proportion of immobile soil water and water flowing in subsurface pathways varies depending on local vegetation cover, soil characteristics and irrigation applications. Soil-water δ18O values revealed that preferential flow and diffuse flow coexist. Preferential flow was active within the root zone, independent of antecedent soil-water content, in both poplar forest and arable land, whereas diffuse flow was observed in grassland. The depleted δ18O spikes at 20-50 cm depth in the arable land suggested the infiltration of irrigation water during the dry season. Temporal isotopic variations in precipitation were subdued in the shallow groundwater, suggesting more complete mixing of different input waters in the unsaturated zone before reaching the shallow groundwater.

  5. Groundwater infiltration, surface water inflow and sewerage exfiltration considering hydrodynamic conditions in sewer systems.

    PubMed

    Karpf, Christian; Hoeft, Stefan; Scheffer, Claudia; Fuchs, Lothar; Krebs, Peter

    2011-01-01

    Sewer systems are closely interlinked with groundwater and surface water. Due to leaks and regular openings in the sewer system (e.g. combined sewer overflow structures with sometimes reverse pressure conditions), groundwater infiltration and surface water inflow as well as exfiltration of sewage take place and cannot be avoided. In the paper a new hydrodynamic sewer network modelling approach will be presented, which includes--besides precipitation--hydrographs of groundwater and surface water as essential boundary conditions. The concept of the modelling approach and the models to describe the infiltration, inflow and exfiltration fluxes are described. The model application to the sewerage system of the City of Dresden during a flood event with complex conditions shows that the processes of infiltration, exfiltration and surface water inflows can be described with a higher reliability and accuracy, showing that surface water inflow causes a pronounced system reaction. Further, according to the simulation results, a high sensitivity of exfiltration rates on the in-sewer water levels and a relatively low influence of the dynamic conditions on the infiltration rates were found.

  6. Immunoexpression of vascular endothelial growth factor in periapical granulomas, radicular cysts, and residual radicular cysts.

    PubMed

    Nonaka, Cassiano Francisco Weege; Maia, Alexandre Pinto; Nascimento, George João Ferreira do; de Almeida Freitas, Roseana; Batista de Souza, Lélia; Galvão, Hébel Cavalcanti

    2008-12-01

    Our aim was to assess and compare the immunoexpression of vascular endothelial growth factor (VEGF) in periapical granulomas (PGs), radicular cysts (RCs), and residual radicular cysts (RRCs), relating it to the angiogenic index and the intensity of the inflammatory infiltrate. Twenty PGs, 20 RCs, and 10 RRCs were evaluated by immunohistochemistry using anti-VEGF antibody. Angiogenic index was determined by microvessel count (MVC) using anti-von Willebrand factor antibody. The PGs and RCs showed higher expression of VEGF than the RRCs. Lesions presenting few inflammatory infiltrate revealed the lowest immunoexpression of VEGF (P < .05). Irrespective of the intensity of the inflammatory infiltrate, most of the RCs and RRCs showed moderate to strong epithelial expression of VEGF. Lesions showing dense inflammatory infiltrate presented higher MVC indices (P < .05). VEGF expression and MVC did not reveal a significant correlation (P > .05). VEGF is present in periapical inflammatory lesions but at a lower level in RRCs. The expression of this proangiogenic factor is closely related to the intensity of the inflammatory infiltrate in these lesions.

  7. Channel Transmission Loss Studies During Ephemeral Flow Events: ER-5-3 Channel and Cambric Ditch, Nevada Test Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.J. Miller; S.A. Mizell; R.H. French

    2005-10-01

    Transmission losses along ephemeral channels are an important, yet poorly understood, aspect of rainfall-runoff prediction. Losses occur as flow infiltrates channel bed, banks, and floodplains. Estimating transmission losses in arid environments is difficult because of the variability of surficial geomorphic characteristics and infiltration capacities of soils and near-surface low-permeability geologic layers (e.g., calcrete). Transmission losses in ephemeral channels are nonlinear functions of discharge and time (Lane, 1972), and vary spatially along the channel reach and with soil antecedent moisture conditions (Sharma and Murthy, 1994). Rainfall-runoff models used to estimate peak discharge and runoff volume for flood hazard assessment are notmore » designed specifically for ephemeral channels, where transmission loss can be significant because of the available storage volume in channel soils. Accuracy of the flow routing and rainfall-runoff models is dependent on the transmission loss estimate. Transmission loss rate is the most uncertain parameter in flow routing through ephemeral channels. This research, sponsored by the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) and conducted at the Nevada Test Site (NTS), is designed to improve understanding of the impact of transmission loss on ephemeral flood modeling and compare various methodologies for predicting runoff from rainfall events. Various applications of this research to DOE projects include more site-specific accuracy in runoff prediction; possible reduction in size of flood mitigation structures at the NTS; and a better understanding of expected infiltration from runoff losses into landfill covers. Two channel transmission loss field experiments were performed on the NTS between 2001 and 2003: the first was conducted in the ER-5-3 channel (Miller et al., 2003), between March and June 2001, and the second was conducted in the Cambric Ditch (Mizell et al., 2005), between April and July 2003. Both studies used water discharged from unrelated drilling activities during well development and aquifer pump tests. Discharge measurements at several flumes located along the channels were used to directly measure transmission losses. Flume locations were chosen in relation to geomorphic surface types and ages, vegetative cover and types, subsurface indurated layers (calcrete), channel slopes, etc. Transmission losses were quantified using three different analysis methods. Method 1 uses Lane's Method (Lane, 1983) for estimating flood magnitude in ephemeral channels. Method 2 uses heat as a subsurface tracer for infiltration. Numerical modeling, using HYDRUS-2D (Simunek et al., 1999), a finite-element-based flow and transport code, was applied to estimate infiltration from soil temperature data. Method 3 uses hydraulic gradient and water content in a Darcy's Law approach (Freeze and Cherry, 1979) to calculate one-dimensional flow rates. Heat dissipation and water content data were collected for this analysis.« less

  8. TEM characterization of a silorane composite bonded to enamel/dentin.

    PubMed

    Mine, Atsushi; De Munck, Jan; Van Ende, Annelies; Cardoso, Marcio Vivan; Kuboki, Takuo; Yoshida, Yasuhiro; Van Meerbeek, Bart

    2010-06-01

    The low-shrinking composite composed of combined siloxane-oxirane technology (Filtek Silorane, 3M ESPE, Seefeld, Germany) required the development of a specific adhesive (Silorane System Adhesive, 3M ESPE), in particular because of the high hydrophobicity of the silorane composite. The purpose of this study was to characterize the interfacial ultra-structure at enamel and dentin using transmission electron microscopy (TEM). Non-demineralized/demineralized 70-90 nm sections were prepared following common TEM specimen processing procedures. TEM revealed a typical twofold build-up of the adhesive resin, resulting in a total adhesive layer thickness of 10-20 microm. At bur-cut enamel, a tight interface without distinct dissolution of hydroxyapatite was observed. At bur-cut dentin, a relatively thin hybrid layer of maximum a few hundreds of nanometer was formed without clear surface demineralization. No clear resin tags were formed. At fractured dentin, the interaction appeared very superficial (100-200 nm). Distinct resin tags were formed due to the absence of smear plugs. Silver-nitrate infiltration showed a varying pattern of both spot- and cluster-like appearance of nano-leakage. Traces of Ag were typically detected along some part of the enamel-adhesive interface and/or between the two adhesive resin layers. Substantially more Ag-infiltration was observed along the dentin-adhesive interface of bur-cut dentin, as compared to that of fractured dentin. The nano-interaction of Silorane System Adhesive should be attributed to its relatively high pH of 2.7. The obtained tight interface at both enamel and dentin indicates that the two-step self-etch adhesive effectively bridged the hydrophilic tooth substrate with the hydrophobic silorane composite. Copyright (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Muscle layer histopathology and manometry pattern of primary esophageal motility disorders including achalasia.

    PubMed

    Nakajima, N; Sato, H; Takahashi, K; Hasegawa, G; Mizuno, K; Hashimoto, S; Sato, Y; Terai, S

    2017-03-01

    Histopathology of muscularis externa in primary esophageal motility disorders has been characterized previously. We aimed to correlate the results of high-resolution manometry with those of histopathology. During peroral endoscopic myotomy, peroral esophageal muscle biopsy was performed in patients with primary esophageal motility disorders. Immunohistochemical staining for c-kit was performed to assess the interstitial cells of Cajal (ICCs). Hematoxylin Eosin and Azan-Mallory staining were used to detect muscle atrophy, inflammation, and fibrosis, respectively. Slides from 30 patients with the following motility disorders were analyzed: achalasia (type I: 14, type II: 5, type III: 3), one diffuse esophageal spasm (DES), two outflow obstruction (OO), four jackhammer esophagus (JE), and one nutcracker esophagus (NE). ICCs were preserved in high numbers in type III achalasia (n=9.4±1.2 cells/high power field [HPF]), compared to types I (n=3.7±0.3 cells/HPF) and II (n=3.5±1.0 cells/HPF). Moreover, severe fibrosis was only observed in type I achalasia and not in other types of achalasia, OO, or DES. Four of five patients with JE and NE had severe inflammation with eosinophilic infiltration of the esophageal muscle layer (73.8±50.3 eosinophils/HPF) with no epithelial eosinophils. One patient with JE showed a visceral myopathy pattern. Compared to types I and II, type III achalasia showed preserved ICCs, with variable data regarding DES and OO. In disorders considered as primary esophageal motility disorders, a disease category exists, which shows eosinophilic infiltration in the esophageal muscle layer with no eosinophils in the epithelium. © 2016 John Wiley & Sons Ltd.

  10. Fluid circulations in response to mantle exhumation at the passive margin setting in the north Pyrenean zone, France

    NASA Astrophysics Data System (ADS)

    Corre, B.; Boulvais, P.; Boiron, M. C.; Lagabrielle, Y.; Marasi, L.; Clerc, C.

    2018-02-01

    Sub-continental lithospheric mantle rocks are exhumed in the distal part of magma-poor passive margins. Remnants of the North Iberian paleo-passive margin are now exposed in the North-Pyrenean Zone (NPZ) and offers a field analogue to study the processes of continental crust thinning, subcontinental mantle exhumation and associated fluid circulations. The Saraillé Massif which belongs to the `Chaînons Béarnais' range (Western Pyrenees), displays field, petrographic and stable isotopic evidence of syn-kinematic fluid circulations. Using electron probe micro-analyses on minerals, O, C, Sr isotopes compositions and micro thermometry/Raman spectrometry of fluid inclusions, we investigate the history of fluid circulations along and in the surroundings of the Saraillé detachment fault. The tectonic interface between the pre-rift Mesozoic sedimentary cover and the mantle rocks is marked by a metasomatic talc-chlorite layer. This layer formed through the infiltration of a fluid enriched in chemical elements like Cr leached from the exhuming serpentinized mantle rocks. In the overlying sediments (dolomitic and calcitic marbles of Jurassic to Aptian age), a network of calcitic veins, locally with quartz, formed as a consequence of the infiltration of aqueous saline fluids (salinities up to 34 wt% NaCl are recorded in quartz-hosted fluid inclusions) at moderate temperatures ( 220 °C). These brines likely derived from the dissolution of the local Triassic evaporites. In the upper part of the metasomatic system, upward movement of fluids is limited by the Albian metasediments, which likely acted as an impermeable layer. The model of fluid circulation in the Saraillé Massif sheds light onto other synchronous metasomatic systems in the Pyrenean realm.

  11. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    PubMed

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  12. Ceramic impregnated superabrasives

    DOEpatents

    Radtke, Robert P.; Sherman, Andrew

    2009-02-10

    A superabrasive fracture resistant compact is formed by depositing successive layers of ceramic throughout the network of open pores in a thermally stable self-bonded polycrystalline diamond or cubic boron nitride preform. The void volume in the preform is from approximately 2 to 10 percent of the volume of the preform, and the average pore size is below approximately 3000 nanometers. The preform is evacuated and infiltrated under at least about 1500 pounds per square inch pressure with a liquid pre-ceramic polymerizable precursor. The precursor is infiltrated into the preform at or below the boiling point of the precursor. The precursor is polymerized into a solid phase material. The excess is removed from the outside of the preform, and the polymer is pyrolized to form a ceramic. The process is repeated at least once more so as to achieve upwards of 90 percent filling of the original void volume. When the remaining void volume drops below about 1 percent the physical properties of the compact, such as fracture resistance, improve substantially. Multiple infiltration cycles result in the deposition of sufficient ceramic to reduce the void volume to below 0.5 percent. The fracture resistance of the compacts in which the pores are lined with formed in situ ceramic is generally at least one and one-half times that of the starting preforms.

  13. Measurement of Sedimentary Interbed Hydraulic Properties and Their Hydrologic Influence near the Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory

    USGS Publications Warehouse

    Perkins, Kim S.

    2003-01-01

    Disposal of wastewater to unlined infiltration ponds near the Idaho Nuclear Technology and Engineering Center (INTEC), formerly known as the Idaho Chemical Processing Plant, at the Idaho National Engineering and Environmental Laboratory (INEEL) has resulted in the formation of perched water bodies in the unsaturated zone (Cecil and others, 1991). The unsaturated zone at INEEL comprises numerous basalt flows interbedded with thinner layers of coarse- to fine-grained sediments and perched ground-water zones exist at various depths associated with massive basalts, basalt-flow contacts, sedimentary interbeds, and sediment-basalt contacts. Perched ground water is believed to result from large infiltration events such as seasonal flow in the Big Lost River and wastewater discharge to infiltration ponds. Evidence from a large-scale tracer experiment conducted in 1999 near the Radioactive Waste Management Complex (RWMC), approximately 13 km from the INTEC, indicates that rapid lateral flow of perched water in the unsaturated zone may be an important factor in contaminant transport at the INEEL (Nimmo and others, 2002b). Because sedimentary interbeds, and possibly baked-zone alterations at sediment-basalt contacts (Cecil and other, 1991) play an important role in the generation of perched water it is important to assess the hydraulic properties of these units.

  14. Effect of soil disturbance on recharging fluxes: Case study on the Snake River Plain, Idaho National Laboratory, USA

    USGS Publications Warehouse

    Nimmo, J.R.; Perkins, K.S.

    2008-01-01

    Soil structural disturbance influences the downward flow of water that percolates deep enough to become aquifer recharge. Data from identical experiments in an undisturbed silt-loam soil and in an adjacent simulated waste trench composed of the same soil material, but disturbed, included (1) laboratory- and field-measured unsaturated hydraulic properties and (2) field-measured transient water content profiles through 24 h of ponded infiltration and 75 d of redistribution. In undisturbed soil, wetting fronts were highly diffuse above 2 m depth, and did not go much deeper than 2 m. Darcian analysis suggests an average recharge rate less than 2 mm/year. In disturbed soil, wetting fronts were sharp and initial infiltration slower; water moved slowly below 2 m without obvious impediment. Richards' equation simulations with realistic conditions predicted sharp wetting fronts, as observed for disturbed soil. Such simulations were adequate for undisturbed soil only if started from a post-initial moisture distribution that included about 3 h of infiltration. These late-started simulations remained good, however, through the 76 d of data. Overall results suggest the net effect of soil disturbance, although it reduces preferential flow, may be to increase recharge by disrupting layer contrasts. ?? Springer-Verlag 2007.

  15. Micro-CT application for infiltration technology in paedodontics and orthodontics

    NASA Astrophysics Data System (ADS)

    Ogodescu, Alexandru; Manescu, Adrian; Ogodescu, Ana Emilia; Giuliani, Alessandra; Todea, Carmen

    2014-01-01

    White spot lesions are an early evidence of the demineralization of the enamel surface and are the first step of future caries that will develop on those spots. Recently, a new and innovative biotechnology was developed - Icon, a caries infiltrant to be introduced in early tooth lesions, able to achieve a very good preservation of dental structures. In order to assess the infiltrant penetration level inside the white spot lesions, a non-destructive 3D visualization method is needed. Phase-contrast micro computed tomography using synchrotron radiation proved to be a powerful technique, allowing a 3D morphological investigation of all the components of interest: tooth structure, white spot lesions extension, infiltrant penetration inside the lesions, without the need of slicing the specimens. From our clinical experience and the conducted research we can conclude that this technology is effective and useful in many clinical situations encountered in pediatric dentistry.

  16. [Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats].

    PubMed

    Yu, Tao; Liu, Rui; Li, Mao; Li, Xian; Qiang, Ou; Huang, Wei; Tang, Chengwei

    2014-03-01

    To investigate effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats. SD rats were divided into control group (n = 14) and high-fat diet group (n = 36). Obese rats from the high-fat diet group were further divided into 2 groups: the obese group (n = 14) and the octreotide-treated group (n = 16). Rats in the octreotide-treated group were subcutaneously injected with octreotide per 12 h (40 mg/kg BW) for 8 days. Body weight, fasting plasma glucose (FPG), fasting serum insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) levels, pancreatic TG and FFA content were measured. Homeostatic model assessment (HOMA) index was calculated. Somatostatin (SST) and the expression of adipose differentiation-related protein (ADFP) in pancrea were measured. Pathological changes of pancreas were examined with light microscopy. Body weight, Lee's index, FPG, fasting serum insulin, TG, TC levels and HOMA index in the obese group were higher than those in the control group (P < 0.05), while the level of HDL-C in the obese group was lower than that in the control group (P < 0.05). Pancreatic TG, FFA contents and expression of ADFP in the obese group were significantly higher than those in the control group (P < 0.05), while pancreatic SST level in the obese group was lower than that in the control group (P < 0.05). Obvious pancreatic intra-lobular fatty infiltration was observed in the obese group. After treatment of octreotide, body weight, HOMA index, as well as other plasma parameters as above showed decrease as compared with those in the obese group (P < 0.05). In addition, pancreatic TG, FFA contents and the expression of ADFP in the octreotide treated group were also significantly decreased compared with those in the obese group (P < 0.05), pancreatic SST level was increased in the octreotide treated group than that in the obese group (P < 0.05), and pancreatic intra-lobular fatty infiltration was alleviated. Octreotide might improve pancreatic fatty infiltration, lipid disorder, insulin resistance and alleviate pancreatic injury by down-regulating the expression of ADFP in pancreas, and lowering the levels of plasma glucose and lipid in the high-fat diet induced obesity rats.

  17. Flexible Residential Test Facility: Impact of Infiltration and Ventilation on Measured Cooling Season Energy and Moisture Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  18. Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate, Cocoa, Florida (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  19. Technology Solutions Case Study: Impact of Infiltration and Ventilation on Measured Space Conditioning Energy and Moisture Levels in the Hot-Humid Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.

  20. Fuzzy logic-based assessment for mapping potential infiltration areas in low-gradient watersheds.

    PubMed

    Quiroz Londoño, Orlando Mauricio; Romanelli, Asunción; Lima, María Lourdes; Massone, Héctor Enrique; Martínez, Daniel Emilio

    2016-07-01

    This paper gives an account of the design a logic-based approach for identifying potential infiltration areas in low-gradient watersheds based on remote sensing data. This methodological framework is applied in a sector of the Pampa Plain, Argentina, which has high level of agricultural activities and large demands for groundwater supplies. Potential infiltration sites are assessed as a function of two primary topics: hydrologic and soil conditions. This model shows the state of each evaluated subwatershed respecting to its potential contribution to infiltration mainly based on easily measurable and commonly used parameters: drainage density, geomorphologic units, soil media, land-cover, slope and aspect (slope orientation). Mapped outputs from the logic model displayed 42% very low-low, 16% moderate, 41% high-very high contribution to potential infiltration in the whole watershed. Subwatersheds in the upper and lower section were identified as areas with high to very high potential infiltration according to the following media features: low drainage density (<1.5 km/km(2)), arable land and pastures as the main land-cover categories, sandy clay loam to loam - clay loam soils and with the geomorphological units named poorly drained plain, channelized drainage plain and, dunes and beaches. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Laboratory testing on infiltration in single synthetic fractures

    NASA Astrophysics Data System (ADS)

    Cherubini, Claudia; Pastore, Nicola; Li, Jiawei; Giasi, Concetta I.; Li, Ling

    2017-04-01

    An understanding of infiltration phenomena in unsaturated rock fractures is extremely important in many branches of engineering for numerous reasons. Sectors such as the oil, gas and water industries are regularly interacting with water seepage through rock fractures, yet the understanding of the mechanics and behaviour associated with this sort of flow is still incomplete. An apparatus has been set up to test infiltration in single synthetic fractures in both dry and wet conditions. To simulate the two fracture planes, concrete fractures have been moulded from 3D printed fractures with varying geometrical configurations, in order to analyse the influence of aperture and roughness on infiltration. Water flows through the single fractures by means of a hydraulic system composed by an upstream and a downstream reservoir, the latter being subdivided into five equal sections in order to measure the flow rate in each part to detect zones of preferential flow. The fractures have been set at various angles of inclination to investigate the effect of this parameter on infiltration dynamics. The results obtained identified that altering certain fracture parameters and conditions produces relevant effects on the infiltration process through the fractures. The main variables influencing the formation of preferential flow are: the inclination angle of the fracture, the saturation level of the fracture and the mismatch wavelength of the fracture.

  2. Polymer Nanocarriers for Dentin Adhesion

    PubMed Central

    Osorio, R.; Osorio, E.; Medina-Castillo, A.L.; Toledano, M.

    2014-01-01

    To obtain more durable adhesion to dentin, and to protect collagen fibrils of the dentin matrix from degradation, calcium- and phosphate-releasing particles have been incorporated into the dental adhesive procedure. The aim of the present study was to incorporate zinc-loaded polymeric nanocarriers into a dental adhesive system to facilitate inhibition of matrix metalloproteinases (MMPs)-mediated collagen degradation and to provide calcium ions for mineral deposition within the resin-dentin bonded interface. PolymP-nActive nanoparticles (nanoMyP) were zinc-loaded through 30-minute ZnCl2 immersion and tested for bioactivity by means of 7 days’ immersion in simulated body fluid solution (the Kokubo test). Zinc-loading and calcium phosphate depositions were examined by scanning and transmission electron microscopy, elemental analysis, and x-ray diffraction. Nanoparticles in ethanol solution infiltrated into phosphoric-acid-etched human dentin and Single Bond (3M/ESPE) were applied to determine whether the nanoparticles interfered with bonding. Debonded sticks were analyzed by scanning electron microscopy. A metalloproteinase collagen degradation assay was also performed in resin-infiltrated dentin with and without nanoparticles, measuring C-terminal telopeptide of type I collagen (ICTP) concentration in supernatants, after 4 wk of immersion in artificial saliva. Numerical data were analyzed by analysis of variance (ANOVA) and Student-Newman-Keuls multiple comparisons tests (p < .05). Nanoparticles were effectively zinc-loaded and were shown to have a chelating effect, retaining calcium regardless of zinc incorporation. Nanoparticles failed to infiltrate demineralized intertubular dentin and remained on top of the hybrid layer, without altering bond strength. Calcium and phosphorus were found covering nanoparticles at the hybrid layer, after 24 h. Nanoparticle application in etched dentin also reduced MMP-mediated collagen degradation. Tested nanoparticles may be incorporated into dental adhesive systems to provide the appropriate environment in which dentin MMP collagen degradation is inhibited and mineral growth can occur. PMID:25227634

  3. Overexpression of decoy receptor 3 in synovial tissues of inflammatory arthritis.

    PubMed

    Chen, Ming-Han; Chen, Wei-Sheng; Tsai, Chang-Youh; Liao, Hsien-Tzung; Chen, Chun-Hsiung; Chou, Chung-Tei

    2012-01-01

    Decoy receptor 3 (DCR3) was a newly identified soluble receptor which was reported to modulate the function of T cells, dendritic cells and macrophages. The aim of this study was to investigate DCR3 expression on the synovial tissue in different types of arthritis. We obtained synovial tissues from 17 rheumatoid arthritis (RA), 17 ankylosing spondylitis (AS) and 17 osteoarthritis (OA) patients. Synovial specimens were stained with hematoxylin and eosin. The amount of lymphocytes and mononuclear cells infiltration and vascularity during light microscopic examination was scored from 0-4. The expression of CD3, CD4, CD8, CD68 and DCR3 in lining layer (LL) and sublining layer (SL) cells was stained using the immunohistochemical method and analysed by microscopic examination (score from 0-4, 0=absent, 1=slight, 2=moderate, 3=large, 4=extreme). OA patients were older than the RA and AS patients (65.9±10.3 years for OA, 58.4±17.7 for RA, and 43.2±16.4 for AS). Synovial tissues in RA patients had significantly increased mononuclear cells infiltration when compared to AS and OA patients (2.3±0.6, 1.9±0.5, 1.6±0.5, respectively, p<0.05). There was no striking difference in DCR3 expression in the synovial LL between RA, AS, and OA patients. CD4+ T cells and CD68+ monocytes/macrophages in the SL were more prominent in RA and AS than in OA (p<0.05). Similarly, DCR3 in the SL was more overexpressed in RA and AS than in OA (1.83±0.21, 1.71±0.36, 1.39±0.31, respectively, p<0.01). The increased synovial inflammatory cells infiltration in RA and AS was associated with the elevated DCR3 expression.

  4. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    NASA Astrophysics Data System (ADS)

    Nimmo, John R.; Creasey, Kaitlyn M.; Perkins, Kim S.; Mirus, Benjamin B.

    2017-03-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  5. Preferential flow, diffuse flow, and perching in an interbedded fractured-rock unsaturated zone

    USGS Publications Warehouse

    Nimmo, John R.; Creasey, Kaitlyn M; Perkins, Kimberlie; Mirus, Benjamin B.

    2017-01-01

    Layers of strong geologic contrast within the unsaturated zone can control recharge and contaminant transport to underlying aquifers. Slow diffuse flow in certain geologic layers, and rapid preferential flow in others, complicates the prediction of vertical and lateral fluxes. A simple model is presented, designed to use limited geological site information to predict these critical subsurface processes in response to a sustained infiltration source. The model is developed and tested using site-specific information from the Idaho National Laboratory in the Eastern Snake River Plain (ESRP), USA, where there are natural and anthropogenic sources of high-volume infiltration from floods, spills, leaks, wastewater disposal, retention ponds, and hydrologic field experiments. The thick unsaturated zone overlying the ESRP aquifer is a good example of a sharply stratified unsaturated zone. Sedimentary interbeds are interspersed between massive and fractured basalt units. The combination of surficial sediments, basalts, and interbeds determines the water fluxes through the variably saturated subsurface. Interbeds are generally less conductive, sometimes causing perched water to collect above them. The model successfully predicts the volume and extent of perching and approximates vertical travel times during events that generate high fluxes from the land surface. These developments are applicable to sites having a thick, geologically complex unsaturated zone of substantial thickness in which preferential and diffuse flow, and perching of percolated water, are important to contaminant transport or aquifer recharge.

  6. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions.

    PubMed

    Kessler, Martina; Esser, Eva; Groll, Jürgen; Tessmar, Jörg

    2016-11-01

    A bilateral barrier membrane for the prevention of postsurgical adhesions was developed. Thereby, a smooth PLA side was supposed to keep the affected tissues glidingly separated, while a mucoadhesive side made of alginate was meant to keep the barrier resident on the site of injury so that suturing becomes redundant or at least the membrane stays long enough to facilitate surgical handling. Because hydrophilic alginate and lipophilic PLA films show only low cohesion, solution electrospun meshes of PLA and PLA-PEG-PLA triblock copolymers with varying poly(ethylene glycol) [PEG] content were investigated as cohesion promoter to avoid an easy separation of the functionally different layers. Using direct electrospinning onto the PLA film, a modified contact surface of the mesh was created, which allowed the tested alginate solutions (3%, 5%) to infiltrate to different extents. Thereby, an increasing content of hydrophilic PEG within the mesh copolymer and a lower alginate concentration facilitated the infiltration. As a result, the PLA film with a PLA35k-PEG10k-PLA35k (racemic PLA chains) mesh and an alginate layer cast from a 3% alginate solution appeared to be the most effective combination as examined by means of a t peel test, a mucoadhesion test, a tensile test and optical evaluations. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1563-1570, 2016. © 2015 Wiley Periodicals, Inc.

  7. Sandwich-structured C/C-SiC composites fabricated by electromagnetic-coupling chemical vapor infiltration.

    PubMed

    Hu, Chenglong; Hong, Wenhu; Xu, Xiaojing; Tang, Sufang; Du, Shanyi; Cheng, Hui-Ming

    2017-10-13

    Carbon fiber (CF) reinforced carbon-silicon carbide (C/C-SiC) composites are one of the most promising lightweight materials for re-entry thermal protection, rocket nozzles and brake discs applications. In this paper, a novel sandwich-structured C/C-SiC composite, containing two exterior C/SiC layers, two gradient C/C-SiC layers and a C/C core, has been designed and fabricated by two-step electromagnetic-coupling chemical vapor infiltration (E-CVI) for a 20-hour deposition time. The cross-section morphologies, interface microstructures and SiC-matrix growth characteristics and compositions of the composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), respectively. Microstructure characterization indicates that the SiC growth includes an initial amorphous SiC zone, a gradual crystallization of SiC and grow-up of nano-crystal, and a columnar grain region. The sandwich structure, rapid deposition rate and growth characteristics are attributed to the formation of thermal gradient and the establishment of electromagnetic field in the E-CVI process. The composite possesses low density of 1.84 g/cm 3 , high flexural strength of 325 MPa, and low linear ablation rate of 0.38 μm/s under exposure to 5-cycle oxyacetylene flame for 1000 s at ~1700 °C.

  8. CO2 laser debridement of sulphur mustard (bis-2-chloroethyl sulphide) induced cutaneous lesions accelerates production of a normal epidermis with elimination of cytological atypia.

    PubMed

    Smith, K J; Skelton, H G; Martin, J L; Hurst, C G; Hackley, B E

    1997-10-01

    Sulphur mustard (bis-2-chloroethyl sulphide; HD) exposure acutely produces lesions that vary from mild erythema, to blister formation, to necrosis. When blisters occur, with or without necrosis, healing of the lesions is delayed. Weanling pigs exposed to a mild erythema-producing dose of HD and to a moderate erythema-producing dose that consistently gave microblister formation were treated with CO2 laser (Tru-Pulse) debridement at 6, 24 or 48 h after exposure. The histopathological features observed at 14 days after exposure in control skin and skin exposed to both HD doses were compared with the features observed in CO2 laser-debrided skin in non-exposed and HD-exposed skin sites. The overlying epidermis in the non-laser treated lesions was thin, with cytological atypia and squamoid changes within the basal cell layer, as well as scattered apoptotic/necrotic keratinocytes. An increased inflammatory infiltrate and necrobiotic changes in the dermis were seen at the higher HD dose. All laser-treated lesions appeared identical, with a thick, differentiated epidermis and a well-formed basal cell layer. There was minimal inflammatory infiltrate. In the papillary dermis there were increased stromal cells. Laser debridement of mild clinical lesions induced by HD produced a more functional epidermis by 14 days as well as clearing the epidermis of damaged keratinocytes.

  9. Inflammatory Cell Infiltrates in Acute and Chronic Thoracic Aortic Dissection.

    PubMed

    Wu, Darrell; Choi, Justin C; Sameri, Aryan; Minard, Charles G; Coselli, Joseph S; Shen, Ying H; LeMaire, Scott A

    2013-12-01

    Thoracic aortic dissection (TAD) is a highly lethal cardiovascular disease. Injury to the intima and media allows pulsatile blood to enter the media, leading to dissection formation. Inflammatory cells then infiltrate the site of aortic injury to clear dead cells and damaged tissue. This excessive inflammation may play a role in aneurysm formation after dissection. Using immunohistochemistry, we compared aortic tissues from patients with acute TAD (n = 11), patients with chronic TAD (n = 35), and donor controls (n = 20) for the presence of CD68+ macrophages, neutrophils, mast cells, and CD3+ T lymphocytes. Tissue samples from patients with acute or chronic TAD generally had significantly more inflammatory cells in both the medial and adventitial layers than did the control samples. In tissues from patients with acute TAD, the adventitia had more of the inflammatory cells studied than did the media. The pattern of increase in inflammatory cells was similar in chronic and acute TAD tissues, except for macrophages, which were seen more frequently in the adventitial layer of acute TAD tissue than in the adventitia of chronic TAD tissue. The inflammatory cell content of both acute and chronic TAD tissue was significantly different from that of control tissue. However, the inflammatory cell profile of aneurysmal chronic TAD was similar to that of acute TAD. This may reflect a sustained injury response that contributes to medial degeneration and aneurysm formation.

  10. Use of «MLCM3» software for flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Sokolova, Daria; Kuzmin, Vadim

    2017-04-01

    Accurate and timely flash floods forecasting, especially, in ungauged and poorly gauged basins, is one of the most important and challenging problems to be solved by the international hydrological community.In changing climate and variable anthropogenic impact on river basins, as well as due to low density of surface hydrometeorological network, flash flood forecasting based on "traditional" physically based, or conceptual, or statistical hydrological models often becomes inefficient. Unfortunately, most of river basins in Russia are poorly gauged or ungauged; besides, lack of hydrogeological data is quite typical, especially, in remote regions of Siberia. However, the developing economy and population safety make us to issue warnings based on reliable forecasts. For this purpose, a new hydrological model, MLCM3 (Multi-Layer Conceptual Model, 3rd generation) has been developed in the Russian State Hydrometeorological University. MLCM3 is a "rainfall-runoff"model with flexible structure and high level of"conceptualization".Model forcing includes precipitation and evaporation data basically coming from NWP model output. Water comes to the outlet through several layers; their number as well as two parameters (thickness and infiltration rate) for each of them, surface flow velocity (when the top layer is full of water) are optimized. The main advantage of the MLCM3, in comparison to the Sacramento Soil Moisture Accounting Model (SAC-SMA), Australian Water Balance Model (AWBM), Soil Moisture Accounting and Routing (SMAR) model and similar models, is that its automatic calibration is very fast and efficient with less volume of information. For instance, in comparison to SAC-SMA, which is calibrated using either Shuffled Complex Evolution algorithm (SCE-UA), or Stepwise Line Search (SLS), automatically calibrated MLCM3 gives better or comparable results without using any "a priori" data or essential processor resources. This advantage allows using the MLCM3 for very fast streamflow prediction in many basins. When assimilated NWP model output data used to force the model, the forecasts accuracy is quite acceptable and enough for automatic warning. Also please note that, in comparison to the 2nd generation of the model, a very useful new option has been added. Now it is possible to set upvariable infiltration rate of the top layer; this option is quite promising in terms of spring floods modeling. (At the moment it is necessary to perform more numerical experiments with snow melting; obtained results will be reported later). Recently new software for MLCM3 was developed. It contains quite usual and understandable options. Formation of the model "input" can be done in manual and automatic mode. Manual or automatic calibration of the model can be performed using either purposely developed for this model optimization algorithm, or Nelder-Mead's one, or SLS. For the model calibration, the multi-scale objective function (MSOF) proposed by Koren is used. It has shown its very high efficiency when model forcing data have high level of uncertainty. Other types of objective functions also can be used, such as mean square error and Nash-Sutcliff criterion. The model showed good results in more than 50 tested basins.

  11. Fiber Optic Distributed Temperature Sensing of Recharge Basin Percolation Dynamics

    NASA Astrophysics Data System (ADS)

    Becker, M.; Allen, E. M.; Hutchinson, A.

    2014-12-01

    Infiltration (spreading) basins are a central component of managed aquifer and recovery operations around the world. The concept is simple. Water is percolated into an aquifer where it can be withdrawn at a later date. However, managing infiltration basins can be complicated by entrapped air in sediments, strata of low permeability, clogging of the recharge surface, and biological growth, among other factors. Understanding the dynamics of percolation in light of these complicating factors provides a basis for making management decisions that increase recharge efficiency. As an aid to understanding percolation dynamics, fiber optic distribute temperature sensing (DTS) was used to track heat as a tracer of water movement in an infiltration basin. The diurnal variation of temperature in the basin was sensed at depth. The time lag between the oscillating temperature signal at the surface and at depth indicated the velocity of water percolation. DTS fiber optic cables were installed horizontally along the basin and vertically in boreholes to measure percolation behavior. The horizontal cable was installed in trenches at 0.3 and 1 m depth, and the vertical cable was installed using direct push technology. The vertical cable was tightly wound to produce a factor of 10 increase in spatial resolution of temperature measurements. Temperature was thus measured every meter across the basin and every 10 cm to a depth of 10 m. Data from the trenched cable suggested homogeneous percolation across the basin, but infiltration rates were a function of stage indicating non-ideal percolation. Vertical temperature monitoring showed significant lateral flow in sediments underlying the basin both during saturation and operation of the basin. Deflections in the vertical temperature profile corresponded with fine grained layers identified in core samples indicating a transient perched water table condition. The three-dimensional flow in this relatively homogenous surficial geology calls into question the relevance of simple wetting models for predicting percolation behavior in infiltration basins.

  12. Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlyta, M., E-mail: miroslawa.pawlyta@polsl.pl; Tomiczek, B.; Dobrzański, L.A.

    The porous ceramic preforms were manufactured using the powder metallurgy technique. First, the start-up material (halloysite with the addition of carbon fibres as the pore-forming agent) was slowly heated to 800 °C and then sintered at 1300 °C. Degradation of the carbon fibres enabled the open canals to form. At the end of the sintering process, the porous ceramic material consisting mainly of two phases (mullite and cristobalite) was formed, without any residual carbon content. During infiltration, the liquid metal filled the empty spaces (pores) effectively and formed the three-dimensional network of metal in the ceramic. The cristobalite was almostmore » entirely decomposed. In the areas of its previous occurrence, there are new pores, only in the ceramic grains. The mullite, which was formed from halloysite during annealing, crystallized in the Pbam orthorhombic space group, with the (3Al{sub 2}O{sub 3}·2SiO{sub 2}) stoichiometric composition. The mullite structure does not change during the infiltration. The composite components are tightly connected. A transition zone between the ceramics and the metal, having the thickness of about 200 nm, was formed. The nanocrystalline zone, identified as γ-Al{sub 2}O{sub 3}, was formed by diffusing the product of the cristobalite decomposition into the aluminium alloy matrix. There is an additional, new phase, identified as (Mg,Si)Al{sub 2}O{sub 4} in the outer parts of the transition zone. - Highlights: • Phase changes after the infiltration of aluminium into porous mullite preforms were observed by TEM. • TEM observations confirm that during infiltration cristobalite was decomposed and the structure of mullite did not change. • Between the ceramic and the metal, a transition zone comprising a layer of γ-Al{sub 2}O{sub 3} and (Mg,Si)Al{sub 2}O{sub 4} was formed.« less

  13. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp

  14. Muscle atrophy and fatty infiltration after an acute rotator cuff repair in a sheep model

    PubMed Central

    Luan, Tammy; Liu, Xuhui; Easley, Jeremiah T.; Ravishankar, Bharat; Puttlitz, Christian; Feeley, Brian T.

    2015-01-01

    Summary Introduction rotator cuff tears (RCTs) are the most common tendon injury seen in orthopedic patients. Muscle atrophy and fatty infiltration of the muscle are crucial factors that dictate the outcome following rotator cuff surgery. Though less studied in humans, rotator cuff muscle fibrosis has been seen in animal models as well and may influence outcomes as well. The purpose of this study was to determine if the rotator cuff would develop muscle changes even in the setting of an acute repair in a sheep model. We hypothesized that fatty infiltration and fibrosis would be present even after an acute repair six months after initial surgery. Methods twelve female adult sheep underwent an acute rotator cuff tear and immediate repair on the right shoulder. The left shoulder served as a control and did not undergo a tear or a repair. Six months following acute rotator cuff repairs, sheep muscles were harvested to study atrophy, fatty infiltration, and fibrosis by histological analysis, western blotting, and reverse transcription polymerase chain reaction (RT-PCR). Results the repair group demonstrated an increase expression of muscle atrophy, fatty infiltration, and fibrosis related genes. Significantly increased adipocytes, muscle fatty infiltration, and collagen deposition was observed in rotator cuff muscles in the tendon repair group compared to the control group. Conclusions rotator cuff muscle undergoes degradation changes including fatty infiltration and fibrosis even after the tendons are repair immediately after rupture. Level of Evidence Basic Science Study. PMID:26261789

  15. Correlation of serum metal ion levels with pathological changes of ARMD in failed metal-on-metal-hip-resurfacing arthroplasties.

    PubMed

    Grammatopoulos, George; Munemoto, Mitsuru; Pollalis, Athanasios; Athanasou, Nicholas A

    2017-08-01

    Metal-on-metal-hip-resurfacing arthroplasties (MoMHRAs) have been associated with an increased failure rates due to an adverse-response-to-metal-debris (ARMD) associated with a spectrum of pathological features. Serum levels of cobalt (Co) and chromium (Cr) are used to assess MoMHRAs, with regard to ARMD, but it is not certain whether ion levels correlate with pathological changes in periprosthetic tissues. Serum Co and Cr levels were correlated with histological findings in 38 revised MoMHRAs (29 pseudotumour cases and 9 non-pseudotumour cases revised for pain). The extent of necrosis and macrophage infiltrate as well as the aseptic lymphocyte-dominated vasculitis-associated lesion (ALVAL) response was assessed semi-quantitatively; the prosthesis linear wear rate (PLWR) was also determined in ten cases. Cr levels were elevated in 82% and Co levels elevated in 53% of cases; the PLWR correlated with Cr level (rho = 0.8, p = 0.006). Tissue necrosis and macrophage infiltration were noted in all, most of which also exhibited significant ALVAL. Although a discrete correlation was not seen between Co and/or Cr ion levels and the extent of necrosis, degree of macrophage infiltration, or ALVAL score, it was noted that cases with acceptable metal ions levels had high ALVAL score. Histological features of both innate and adaptive immune response to metal wear are seen in periprosthetic tissues in cases with both elevated and non-elevated metal ion levels. MoMHRA failures with acceptable ion levels exhibited a pronounced ALVAL response. Although metal ion levels are elevated in most cases of MoMHRA failure due to ARMD, the finding of a normal metal ion level does not exclude this diagnosis.

  16. Mast Cell Activation Protects Cornea by Promoting Neutrophil Infiltration via Stimulating ICAM-1 and Vascular Dilation in Fungal Keratitis.

    PubMed

    Xie, Yanting; Zhang, Hongmin; Liu, Susu; Chen, Guoming; He, Siyu; Li, Zhijie; Wang, Liya

    2018-05-30

    The role of mast cells (MCs) in fungal infection is largely unknown. This study was to explore a protective role and mechanism of MCs in fungal keratitis. Experimental fungal keratitis (FK) mouse model was developed. Mice untreated (UT) or receiving corneal wound without fungal infection (Mock) were used as controls. Large number of connective tissue MCs was found in normal mice. MC activation with degranulation was largely observed, and the percentage of degranulated/total cells was high in FK. Dilated limbal vasculature with increased permeability, as well as largely infiltrated neutrophils with stimulated ICAM-1 protein levels were observed in corneas of FK mice, when compared with Mock and UT mice. Interestingly, pretreatment with cromolyn sodium (Block) significantly blocked MC degranulation, dramatically suppressed vascular dilation and permeability, and markedly reduced neutrophil infiltration with lower ICAM-1 levels in FK mice at 6-24 hours. Furthermore, the Block mice manifested prolonged disease course, increased pathological damage, and vigorous fungus growth, with much higher corneal perforation rate than FK mice at 72 h. These findings reveal a novel phenomenon that MCs play a vital role in protecting cornea against fungal infection through degranulation that promotes neutrophil infiltration via stimulating ICAM-1 production and limbal vascular dilation and permeability.

  17. Camouflage effects following resin infiltration of postorthodontic white-spot lesions in vivo: One-year follow-up.

    PubMed

    Eckstein, Amely; Helms, Hans-Joachim; Knösel, Michael

    2015-05-01

    To assess camouflage effects by concealment of postorthodontic white-spot lesions (WSLs) to sound adjacent enamel (SAE) achieved over 12 months with resin infiltration (Icon, DMG, Hamburg, Germany). Twenty subjects (trial teeth nteeth = 111) who had received resin infiltration treatment of noncavitated postorthodontic WSLs were contacted for a 1-year follow-up assessment of CIE-L*a*b* colors (T12). Color and lightness (CIE-L*a*b*) data for WSLs and SAE were compared to baseline data assessed before infiltration (T0) and those assessed after 6 months (T6), using a spectrophotometer. The target parameter was the difference between the summarized color and lightness values (ΔEWSL/SAE). Intergroup (WSL, SAE) and intertime comparisons (T0 vs T6, T12) were performed using paired t-tests at a significance level of α = 5%. Nine subjects (trial teeth nteeth = 49; male/female ratio 5/4; age range 13-19 years) were available at T12. After the highly significant reduction of ΔEWSL/SAE discrepancies between T0 and T6, analysis of 12-month records revealed color and lightness discrepancy of WSL vs SAE that was significantly decreased compared with baseline, indicating an assimilation of WSL color to SAE appearance after infiltration, while an additional reduction of discrepancies between T6 and T12 was not significant. As color and lightness characteristics of the Icon infiltrant as well as the esthetic camouflage effects achieved by WSL infiltration were not altered significantly or clinically relevant after 12 months, the method of resin infiltration can be recommended for an enduring esthetic improvement of postorthodontic WSL.

  18. On the performance of capillary barriers as landfill cover

    NASA Astrophysics Data System (ADS)

    Kämpf, M.; Montenegro, H.

    Landfills and waste heaps require an engineered surface cover upon closure. The capping system can vary from a simple soil cover to multiple layers of earth and geosynthetic materials. Conventional design features a compacted soil layer, which suffers from drying out and cracking, as well as root and animal intrusion. Capillary barriers consisting of inclined fine-over-coarse soil layers are investigated as an alternative cover system. Under unsaturated conditions, the textural contrast delays vertical drainage by capillary forces. The moisture that builds up above the contact will flow downdip along the interface of the layers. Theoretical studies of capillary barriers have identified the hydraulic properties of the layers, the inclination angle, the length of the field and the infiltration rate as the fundamental characteristics of the system. However, it is unclear how these findings can lead to design criteria for capillary barriers. To assess the uncertainty involved in such approaches, experiments have been carried out in a 8 m long flume and on large scale test sites (40 m x 15 m). In addition, the ability of a numerical model to represent the relevant flow processes in capillary barriers has been examined.

  19. Morphology of melt-rich channels formed during reaction infiltration experiments on partially molten mantle rocks

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is planar and no channels develop. However, if the melt migration velocity exceeds ˜5 μm/s the reaction layer locally protrudes into the partially molten rock forming finger-like melt-rich channels. The morphology and spacing of the channels depends on the initial melt fraction. With 20 vol% melt, multiple and voluminous channels with an elliptical core formed of pure melt develop. At lower melt contents, fewer and thinner channels develop. Our experiments demonstrate that melt-rock reactions can lead to melt channelization in mantle lithologies. The morphology of the channels seems to depend on the initial permeability perturbations present in the starting material. The observed lithological transformations are in broad agreement with natural observations. However, the resulting channels lack the tabular anastomozing shapes which are likely caused by shear deformation in nature. Therefore, both reaction-driven as well as stress-driven melt segregation have to interact in nature to form the observed dunite channels. Szymczak, P., and A. J. C. Ladd (2014), Reactive-infiltration instabilities in rocks. Part 2. Dissolution of a porous matrix, J. Fluid Mech., 738, 591-630. Pec, M., B. K. Holtzman, M. Zimmerman, and D. L. Kohlstedt (2015), Reaction infiltration instabilities in experiments on partially molten mantle rocks, Geology, 43(7), 575-578, doi:10.1130/G36611.1.

  20. The corrosion behavior of CVI SiC matrix in SiCf/SiC composites under molten fluoride salt environment

    NASA Astrophysics Data System (ADS)

    Wang, Hongda; Feng, Qian; Wang, Zhen; Zhou, Haijun; Kan, Yanmei; Hu, Jianbao; Dong, Shaoming

    2017-04-01

    High temperature corrosion behavior and microstructural evolution of designed chemical-vapor-infiltrated SiC matrix in SiC fiber reinforced SiC ceramic matrix composites in 46.5LiF-11.5NaF-42.0KF (mol. %) eutectic salt at 800 °C for various corrosion time was studied. Worse damage was observed as extending the exposure time, with the mass loss ratio increasing from 0.716 wt. % for 50 h to 5.914 wt. % for 500 h. The mass loss rate showed a trend of first decrease and then increase with the extended corrosion exposure. Compared with the near-stoichiometric SiC matrix layers, the O-contained boundaries between deposited matrix layers and the designed Si-rich SiC matrix layers were much less corrosion resistant and preferentially corroded. Liner relationship between the mass loss ratio and the corrosion time obtained from 50 h to 300 h indicated that the corrosion action was reaction-control process. Further corrosion would lead to matrix layer exfoliation and higher mass loss ratio.

  1. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    PubMed

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  2. Real-time monitoring of enzyme activity in a mesoporous silicon double layer

    PubMed Central

    Orosco, Manuel M.; Pacholski, Claudia; Sailor, Michael J.

    2009-01-01

    A double layer mesoporous silicon with different pore sizes functions as a nano-reactor that can isolate, filter and quantify the kinetics of enzyme reactions in real-time by optical reflectivity. This tiny reactor may be used to rapidly characterize a variety of isolated enzymes in a label-free manner. Activity of certain protease enzymes is often an indicator of disease states such as cancer1,2, stroke2, and neurodegeneracy3, and thus, there is a need for rapid assays that can characterize the kinetics and substrate specificity of enzymatic reactions. Nanostructured membranes can efficiently separate biomolecules4 but coupling a sensitive detection method remains difficult. Here we report a single mesoporous nano-reactor that can isolate and quantify in real-time the reaction products of proteases. The reactor consists of two layers of porous films electrochemically prepared from crystalline silicon. The upper layer with large pore sizes traps the protease enzymes and acts as the reactor while the lower layer with smaller pore sizes excludes the large proteins and captures the reaction products. Infiltration of the digested fragments into the lower layer produces a measurable change in optical reflectivity and this allows label-free quantification of enzyme kinetics in real-time within a volume of approximately 5 nanoliters. PMID:19350037

  3. Characterizing redox conditions and monitoring attenuation of selected pharmaceuticals during artificial recharge through a reactive layer.

    PubMed

    Valhondo, Cristina; Carrera, Jesús; Ayora, Carlos; Tubau, Isabel; Martinez-Landa, Lurdes; Nödler, Karsten; Licha, Tobias

    2015-04-15

    A permeable reactive layer was installed at the floor of an infiltration basin. The reactive layer comprised 1) vegetable compost to provide a sorption surface for neutral organic compounds and to release easily degradable organic matter, thus generating a sequence of redox states, and 2) minor amounts of clay and iron oxide to increase sorption of cationic and anionic species, respectively. Field application of this design was successful in generating denitrification, and manganese-, and iron-reducing conditions beneath the basin. This, together with the increase in types of sorption sites, may explain the improved removal of three of the four selected pharmaceuticals compared with their behavior prior to installation of the layer. After installation of the reactive layer, atenolol concentrations were below the detection limits in the vadose zone. Moreover, concentrations of gemfibrozil and cetirizine were reduced to 20% and 40% of their initial concentrations, respectively, after 200 h of residence time. In contrast, prior to installation of the reactive layer, the concentrations of these three pharmaceuticals in both the vadose zone and the aquifer were more than 60% of the initial concentration. Carbamazepine exhibited recalcitrant behavior both prior to and after the reactive barrier installation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Research on apoptotic signaling pathways of recurrent spontaneous abortion caused by dysfunction of trophoblast infiltration.

    PubMed

    Sun, Q; Zhang, X-L

    2017-07-01

    To study the apoptotic signaling pathways of recurrent spontaneous abortion caused by dysfunction of trophoblast infiltration. 60 patients with recurrent spontaneous abortion and normal abortion were selected consecutively as recurrent spontaneous abortion group and abortion group, respectively. Villous tissues were obtained and cell apoptosis was observed under a microscope; terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (Tunel) method was used to test the apoptosis rate. In situ hybridization was adopted to detect expressions of Fas messenger RNA (Fas mRNA) and Fas ligand messenger RNA (FasL mRNA); expression of Fas, FasL and protein kinase C (PKC) were examined by immunohistochemistry at protein level; fluorescence spectrophotometer was used to test Ca2+ level. The apoptosis rate, expressions of Fas mRNA, and FasL mRNA, expressions of Fas and FasL proteins, as well as Ca2+ level, were significantly higher in the recurrent spontaneous abortion group than in abortion group. The level of PKC protein was significantly lower in recurrent spontaneous abortion group than in abortion group (p<0.05). Fas-FasL and PKC signaling pathways, as well as Ca2+, may mediate the dysfunction of trophoblast infiltration, which leads to recurrent spontaneous abortion.

  5. Guinea-pig interpubic joint (symphysis pubica) relaxation at parturition: Underlying cellular processes that resemble an inflammatory response

    PubMed Central

    Rodríguez, Horacio A; Ortega, Hugo H; Ramos, Jorge G; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2003-01-01

    Background At term, cervical ripening in coordination with uterine contractions becomes a prerequisite for a normal vaginal delivery. Currently, cervical ripening is considered to occur independently from uterine contractions. Many evidences suggest that cervical ripening resembles an inflammatory process. Comparatively little attention has been paid to the increased flexibility of the pelvic symphysis that occurs in many species to enable safe delivery. The aim of this study was to investigate whether the guinea-pig interpubic joint relaxation process observed during late pregnancy and parturition resembles an inflammatory process. Methods Samples of pubic symphysis were taken from pregnant guinea-pigs sacrificed along gestation, parturition and postpartum. Serial sections of paraffin-embedded tissues were used to measure the interpubic distance on digitalized images, stained with Giemsa to quantify leukocyte infiltration and to describe the vascular area changes, or studied by the picrosirius-polarization method to evaluate collagen remodeling. P4 and E2 serum levels were measured by a sequential immunometric assay. Results Data showed that the pubic relaxation is associated with an increase in collagen remodeling. In addition, a positive correlation between E2 serum levels and the increase in the interpubic distance was found. On the other hand, a leukocyte infiltration in the interpubic tissue around parturition was described, with the presence of almost all inflammatory cells types. At the same time, histological images show an increase in vascular area (angiogenesis). Eosinophils reached their highest level immediately before parturition; whereas for the neutrophilic and mononuclear infiltration higher values were recorded one day after parturition. Correlation analysis showed that eosinophils and mononuclear cells were positively correlated with E2 levels, but only eosinophilic infiltration was associated with collagen remodeling. Additionally, we observed typical histological images of dissolution of the connective tissue matrix around eosinophils. Conclusion The present study shows that a timely regulated influx of infiltrating leukocytes is associated with an extensive collagen remodeling process that allows the pubic separation for a normal delivery in guinea-pig. Thus, the findings in this study support the hypothesis that the guinea-pig pubic symphyseal relaxation at parturition resembles an inflammatory process. PMID:14633278

  6. Molecular correlates in urine for the obesity and prostatic inflammation of BPH/LUTS patients.

    PubMed

    Tyagi, Pradeep; Motley, Saundra S; Koyama, Tatsuki; Kashyap, Mahendra; Gingrich, Jeffrey; Yoshimura, Naoki; Fowke, Jay H

    2018-01-01

    Benign prostatic hyperplasia (BPH) is strongly associated with obesity and prostatic tissue inflammation, but the molecular underpinning of this relationship is not known. Here, we examined the association between urine levels of chemokines/adipokines with histological markers of prostate inflammation, obesity, and lower urinary tract symptoms LUTS in BPH patients. Frozen urine specimens from 207 BPH/LUTS patients enrolled in Nashville Men's Health Study were sent for blinded analysis of 11 analytes, namely sIL-1RA, CXC chemokines (CXCL-1, CXCL-8, CXCL-10), CC chemokines (CCL2, CCL3, CCL5), PDGF-BB, interleukins IL-6, IL-17, and sCD40L using Luminex™ xMAP® technology. After adjusting for age and medication use, the urine levels of analytes were correlated with the scales of obesity, prostate inflammation grade, extent, and markers of lymphocytic infiltration (CD3 and CD20) using linear regression. sIL-1RA levels were significantly raised with higher BMI, waist circumference and waist-hip ratio in BPH patients after correction for multiple testing (P = 0.02). Men with greater overall extent of inflammatory infiltrates and maximal CD3 infiltration were marginally associated with CXCL-10 (P = 0.054) and CCL5 (P = 0.054), respectively. CCL3 in 15 patients with moderate to severe grade inflammation was marginally associated with maximal CD20 infiltration (P = 0.09), whereas CCL3 was undetectable in men with mild prostate tissue inflammation. There was marginal association of sCD40L with AUA-SI scores (P = 0.07). Strong association of sIL-1RA in urine with greater body size supports it as a major molecular correlate of obesity in the urine of BPH patients. Increased urine levels of CXCL-10, CCL5, and CCL3 were marginally associated with the scores for prostate tissue inflammation and lymphocytic infiltration. Overall, elevated urinary chemokines support that BPH is a metabolic disorder and suggest a molecular link between BPH/LUTS and prostatic inflammation. © 2017 Wiley Periodicals, Inc.

  7. Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Low-Temperature Processed Y-Doped SnO2 Nanosheets as Electron Selective Layers.

    PubMed

    Yang, Guang; Lei, Hongwei; Tao, Hong; Zheng, Xiaolu; Ma, Junjie; Liu, Qin; Ke, Weijun; Chen, Zhiliang; Xiong, Liangbin; Qin, Pingli; Chen, Zhao; Qin, Minchao; Lu, Xinhui; Yan, Yanfa; Fang, Guojia

    2017-01-01

    Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO 2 ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO 2 ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO 2 nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO 2 nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO 2 NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO 2 NSA ESLs. The champion cell using Y-SnO 2 NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO 2 NSA is a promising ESL for fabricating efficient and hysteresis-less PSC. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Predicting deep percolation with eddy covariance under mulch drip irrigation

    NASA Astrophysics Data System (ADS)

    Ming, Guanghui; Tian, Fuqiang; Hu, Hongchang

    2016-04-01

    Water is essential for the agricultural development and ecological sustainability of the arid and semi-arid oasis with rare precipitation input and high evaporation demand. Deep percolation (DP) defined as excess irrigation water percolating below the plant root zone will reduce irrigation water use efficiency (WUE). But the DP was often ignored in mulch drip irrigation (MDI) which has reached the area of 1.6 million hectares in Xinjiang, the northwest of China. In this study DP experiments were conducted at an agricultural experiment station located within an irrigation district in the Tarim River Basin for four cotton growing periods. First it was detected the irrigation water infiltrated into the soil layers below 100cm and the groundwater level responded to the irrigation events well. Then DP below 100cm soil layers was calculated using the soil water balance method with the aid of eddy covariance (with the energy balance closure of 0.72). The negative DP (groundwater contribution to the crop-water use through capillary rising) at the seedling and harvesting stages can reach 77mm and has a good negative correlation with the groundwater level and positive correlation with potential evaporation. During the drip irrigation stage approximately 45% of the irrigation became DP and resulted in the low irrigation WUE of 0.6. The DP can be 164mm to 270mm per year which was positive linearly correlated to irrigation depth and negative linear correlated to irrigation interval. It is better to establish the irrigation schedule with small irrigation depth and given frequently to reduce deep percolation and meet crop needs.

  9. How could a freshwater swamp produce a chemical signature characteristic of a saltmarsh?

    USGS Publications Warehouse

    McCloskey, Terrence; Smith, Christopher G.; Liu, Kam-biu; Marot, Marci E.; Haller, Christian

    2018-01-01

    Reduction–oxidation (redox) reaction conditions, which are of great importance for the soil chemistry of coastal marshes, can be temporally dynamic. We present a transect of cores from northwest Florida wherein radical postdepositional changes in the redox regime has created atypical geochemical profiles at the bottom of the sedimentary column. The stratigraphy is consistent along the transect, consisting of, from the bottom upward, carbonate bedrock, a gray clay, an organic mud section, a dense clay layer, and an upper organic mud unit representing the current saltwater marsh. However, the geochemical signature of the lower organic mud unit suggests pervasive redox reactions, although the interval has been identified as representing a freshwater marsh, an unlikely environment for such conditions. Analyses indicate that this discrepancy results from postdepositional diagenesis driven by millennial-scale environmental parameters. Rising sea level that led to the deposition of the capping clay layer, created anaerobic conditions in the freshwater swamp interval, and isolated it hydrologically from the rest of the sediment column. The subsequent infiltration of marine water into this organic material led to sulfate reduction, the buildup of H2S and FeS, and anoxic conditions. Continued sulfidation eventually resulted in euxinic conditions, as evidenced by elevated levels of Fe, S, and especially Mo, the diagnostic marker of euxinia. Because this chemical transformation occurred long after the original deposition the geochemical signature does not reflect soil chemistry at the time of deposition and cannot be used to infer syn-depositional environmental conditions, emphasizing the importance of recognizing diagenetic processes in paleoenvironmental studies.

  10. Simulated ground-water flow and sources of water in the Killbuck Creek Valley near Wooster, Wayne County, Ohio

    USGS Publications Warehouse

    Breen, K.J.; Kontis, A.L.; Rowe, G.L.; Haefner, R.J.

    1995-01-01

    The stratified-drift aquifer in the 3,000-ft (feet)-wide and 100-ft-deep buried valley of Killbuck Creek near Wooster in northeastern Ohio was studied. The stratified drift with adjacent sandstone and shale bedrock produce a system of ground-water flow representative of the western part of the glaciated north-eastern United States. The stratified-drift aquifer is an excellent source of water for municipal and industrial wells. The aquifer is recharged locally by water from precipitation on the valley floor and uplands, by infiltration from streams, and by lateral flow to the valley from the uplands. As a result, the aquifer is vulnerable to surface or subsurface spills of contaminants in the valley or the adjacent uplands. Quality of water in the stratified drift is affected by influx of water from bedrock lateral to or beneath the valley. This influx is controlled, in part, by the pumping stress placed on the stratified-drift aquifer. Hydrogeologic and aqueous-geochemical data were analyzed to establish the framework necessary for stead-state and transient simulations of ground-water flow in stratified drift and bedrock with a three-layer ground-water-flow model. A new model routine, the Variable-Recharge procedure, was developed to simulate areal recharge and the contribution of the uplands to the drift system. This procedure allows for water applied to land surface to infiltrate or to be rejected. Rejected recharge and ground water discharged when the water table is at land surface form surface runoff-this excess upland water can be redirected as runoff to other parts of the model. Infiltration of streamwater, areal recharge to uplands and valley, and lateral subsurface flow from the uplands to the valley are sources of water to the stratufued0druft aquifer. Water is removed from the stratified-drift aquifer at Wooster primarily by production wells pumping at a rate of approximately 8.5 ft3/s (cubic feet per second). The ground-water budget resulting from two types of simulations of ground-water flow in this study indicates the primary sources of water to the wells are recharge at or near land surface and lateral subsurface flow from the shale and sandstone bedrock. Components of recharge at land surface include induced infiltration from streams, precipitation on the valley floor, and infiltration of unchanneled upland runoff that reaches the valley floor. The steady-state simulation was designed to represent conditions during the fall of 1984. The transient simulation was designed to represent an 11-day snowmelt event, 23 February to 5 March 1985, that caused water levels to rise significantly throughout the valley. Areal recharge to the valley and flow from the uplands to the valley were determined through the Variable-Recharge procedure. The total steady-state recharge to the valley was 12.5 ft3/s. Upland sources, areal valley recharge, and induced infiltration from Killnuck Creek accounted for 63, 23, and 8 percent, respectively, of the valley recharge. An analysis of the simulated vertical flow to the buried stratified drift through surficial slit, clay, and fine sand indicates that about 75 percent of the total recharge to the buried deposits is the sum of areally extensive, relatively small flows less than about 0.01 ft? /s per model node), whereas about 25 percent of the recharge results from a really restricted, relatively large flows (greater than about 0.01 ft? /s per model node). The large-magnitude flows are located primarily beneath Clear and Little Killbuck Creeks where seepage provides abundant recharge and the surficial sediments grade into coarser alluvial-fan deposits. Chemical and isotopic studies of ground water and streamwater combined with measurements of stream infiltration provide independent support for the conclusions derived from computer simulation of ground-water flow. In addition, the chemical and isotopic studies helped quantity the rate and pathways of infiltrating water from

  11. Numerical model to support the management of groundwater resources of a coastal karstic aquifer (southern Italy)

    NASA Astrophysics Data System (ADS)

    Polemio, Maurizio; Romanazzi, Andrea

    2013-04-01

    The main purpose of the research is to define management apporouches for a coastal karstic aquifer. The core of the tools uses numerical modelling, applied to groundwater resource of Salento (southern Italy) and criteria to reduce the quantitative and qualitative degradation risks. The computer codes selected for numerical groundwater modelling were MODFLOW and SEAWAT. The approach chosen was based on the concept of a equivalent homogeneous porous medium by which it is assumed that the real heterogeneous aquifer can be simulated as homogeneous porous media within cells or elements. The modelled aquifer portion extends for 2230 km2, and it was uniformly discretized into 97,200 cells, each one of 0.6 km2. Vertically, to allow a good lithological and hydrogeological discretization, the area was divided into 12 layers, from 214 to -350 m asl. Thickness and geometry of layers was defined on the basis of the aquifer conceptualisation based on the 3d knowledge of hydrogeological complexes. For the boundary conditions, inactive cells were used along the boundary with the rest of Murgia-Salento aquifer, as conceptual underground watershed due to the absence of flow. About the sea boundary was used CHD boundary cells (Constant Head Boundary). Additional boundary conditions were used for SEAWAT modelling, as initial concentration and constant concentration, in the latter case for cells shaping the coastline. A mean annual net rainfall (recharge) was calculated in each cell with a GIS elaboration, ranged from 68 to 343 mm, 173 mm an average. The recharge or infiltration was calculated using an infiltration coefficient (IC) (defined as infiltration/net rainfall ratio) for each hydrogeological complex, assuming values equal to 1 inside endorheic areas. The mean annual recharge was equal to 150 mm. The model was implemented using MODFLOW and SEAWAT codes in steady-state conditions to obtain a starting point for following transient scenarios, using piezometric data of thirties as in that period the discharge level was negligeable. The model was calibrated through the use of PEST (Non-Linear Parameter Estimation) code, a standard in the geo-environmental modelling. The calibration was realised using data of 17 selected wells. The results of calibration can be summarised considering these control parameters: the correlation coefficient, equal to 0.92, the standard deviation, equal to 0.7, the mean square error, equal about to 0.65, and the absolute mean residue (RMS), equal to 12%. The result emphasize the intrusion phenomena of seawater into aquifer with a important reduction of the quality of water and shown the importance of define management policies of groundwater extraction.

  12. Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties (Postprint)

    DTIC Science & Technology

    2013-07-01

    numerically modeled. The composite under investigation was a 10 layer T300 carbon/ SiC composite in which carbon fabric was impregnated using a polymer ...fraction. (3) Melt Infiltrated in situ BN SiC / SiC composite comprising a stochiometric SiC (Sylramic™) fiber, with an in situ boron nitride treatment...SiNC composite is listed in Table 4. Polymer derived SiC and SiNC matrix material do not ex- hibit a major change in their elastic properties at

  13. Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein

    DOEpatents

    Sease, J.D.; Harrington, F.E.

    1973-12-11

    Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)

  14. Eotaxin/CCL11 in idiopathic retroperitoneal fibrosis.

    PubMed

    Mangieri, Domenica; Corradi, Domenico; Martorana, Davide; Malerba, Giovanni; Palmisano, Alessandra; Libri, Irene; Bartoli, Veronica; Carnevali, Maria L; Goldoni, Matteo; Govoni, Paolo; Alinovi, Rossella; Buzio, Carlo; Vaglio, Augusto

    2012-10-01

    Idiopathic retroperitoneal fibrosis (IRF) is a rare fibro-inflammatory disorder characterized by a periaortic tissue which often encases the ureters causing acute renal failure. IRF histology shows fibrosis and a chronic inflammatory infiltrate with frequent tissue eosinophilia. We assessed a panel of molecules promoting eosinophilia and fibrosis in IRF patients and performed an immunogenetic study. Serum levels of eotaxin/CCL11, regulated and normal T-cell expressed and secreted (RANTES), granulocyte colony-stimulating factor (G-CSF), interleukin (IL)-5, platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) were measured using a multiplex assay in 24 newly diagnosed, untreated IRF patients and 14 healthy controls. Retroperitoneal biopsies (available in 8/24 patients) were histologically evaluated to assess eosinophil infiltration, whereas mast cells (MCs) were identified by immunohistochemical analysis for human tryptase. Immunohistochemistry for eotaxin/CCL11 and its receptor CCR3 was also performed. Six single nucleotide polymorphisms (SNPs) within the CCL11 gene (rs6505403, rs1860184, rs4795896, rs17735961, rs16969415 and rs17809012) were investigated in 142 IRF patients and 214 healthy controls. Serum levels of eotaxin/CCL11 were higher in IRF patients than in controls (P = 0.009). Eotaxin/CCL11 drives tissue infiltration of eosinophils and MCs, which can promote fibrosis. Eosinophilic infiltration was prominent (>5 cells/hpf) in five (62.5%) cases, and abundant tryptase-positive MCs were found in all cases; notably, MCs were in a degranulating state. Immunohistochemistry showed that CCL11 was highly produced by infiltrating mononuclear cells and that its receptor CCR3 was expressed by infiltrating eosinophils, MCs, lymphocytes and fibroblasts. None of the tested CCL11 SNPs showed disease association, but the TTCCAT haplotype was significantly associated with IRF (P = 0.0005). These findings suggest that the eotaxin/CCL11-CCR3 axis is active in IRF and may contribute to its pathogenesis; the TTCCAT haplotype within the CCL11 gene is significantly associated with IRF.

  15. Biogeochemistry of the Amazon River Basin: the role of aquatic ecosystems in the Amazon functioning

    NASA Astrophysics Data System (ADS)

    Victoria, R. L.; Ballester, V. R.; Krushe, A. V.; Richey, J. E.; Aufdenkampe, A. K.; Kavaguishi, N. L.; Gomes, B. M.; Victoria, D. D.; Montebello, A. A.; Niell, C.; Deegan, L.

    2004-12-01

    In this study we present the results of an integrated analysis of physical and anthropogenic controls of river biogeochemistry in Amazônia. At the meso-scale level, our results show that both soil properties and land use are the main drivers of river biogeochemistry and metabolism, with pasture cover and soil exchange cation capacity explaining 99% (p < 0.01) of the variability observed in surface water ions and nutrients concentrations. In small rivers, forest clearing can increase cations, P and C inputs. P and light are the main PPL limiting factors in forested streams, while in pasture streams N becomes limiting. P export to streams may increase or remain nearly undetectable after forest-to-pasture conversion, depending on soil type. Pasture streams on Oxisols have very low P export, while on Ultisols P export is increased. Conversions of forest to pasture leads to extensive growth of in channel Paspalum resulting in higher DOC concentrations and respiration rates. Pasture streams have higher DOC fluxes when compared to the forest ones. In pasture areas the soil are compacted, there is less infiltration and higher surface run off, leaching soil superficial layers and caring more DOC to the streams. In forest areas infiltration is deeper into the soils and canopy interaction is higher. Mineralogy and soil properties are key factors determining exports of nutrients to streams. Therefore, land use change effects on nutrient export from terrestrial to aquatic ecosystems and the atmosphere must be understood within the context of varying soil properties across the Amazon Basin.

  16. Synovial inflammation in patients with different stages of knee osteoarthritis.

    PubMed

    Ene, Răzvan; Sinescu, Ruxandra Diana; Ene, Patricia; Cîrstoiu, Monica Mihaela; Cîrstoiu, Florin Cătălin

    2015-01-01

    The synovium is an intra-articular mesenchymal tissue and essential for the normal joint function. It is involved in many pathological characteristic processes and sometimes specific for this distinctive tissue. In this study, we refer to synovial proliferative disorders according to the stage of osteoarthritis (OA) disease. Forty-three patients with knee OA were treated in the Department of Orthopedics and Traumatology, Emergency University Hospital of Bucharest, Romania, in the last two years. In all cases, we used at least five criteria for the knee OA: knee pain, knee joint tenderness, no palpable warmth over the knee, stiffness, erythrocyte sedimentation rate and C-reactive protein levels. In all the cases the synovial tissue was selected by the orthopedic surgeon. X-ray examination was taken in every case of the affected joint. Patients who were considered to have early OA underwent arthroscopic synovial biopsy of the symptomatic joint. Synovial tissue samples from patients with late OA were obtained at the time of knee joint arthroplasty. Microscopic examination in early osteoarthritis revealed for more than half of patients with synovial biopsy through arthroscopic technique having synovitis lesions with mononuclear infiltrates, diffuse fibrosis, thickening of the lining layer, macrophages appearance and neoformation vessels also. The synovitis seen in advanced OA knees tends to be diffuse and is not mandatory localized to areas of chondral defects, although an association has been reported between chondral defects and associated synovitis in the knee medial tibio-femoral compartment. The overexpression of mediators of inflammation and the increased mononuclear cell infiltration were seen in early OA, compared with late OA.

  17. Inhibitory effect of indigo naturalis on tumor necrosis factor-α-induced vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells.

    PubMed

    Chang, Hsin-Ning; Pang, Jong-Hwei Su; Yang, Sien-Hung; Hung, Chi-Feng; Chiang, Chi-Hsin; Lin, Tung-Yi; Lin, Yin-Ku

    2010-09-14

    The use of indigo naturalis to treat psoriasis has proved effective in our previous clinical studies. The present study was designed to examine the anti-inflammatory effect of indigo naturalis in primary cultured human umbilical vein endothelial cells (HUVECs). Pretreatment of cells with indigo naturalis extract attenuated TNF-α-induced increase in Jurkat T cell adhesion to HUVECs as well as decreased the protein and messenger (m)RNA expression levels of vascular cell adhesion molecule-1 (VCAM-1) on HUVECs. Indigo naturalis extract also inhibited the protein expression of activator protein-1 (AP-1)/c-Jun, a critical transcription factor for the activation of VCAM-1 gene expression. Since the reduction of lymphocyte adhesion to vascular cells by indigo naturalis extract could subsequently reduce the inflammatory reactions caused by lymphocyte infiltration in the epidermal layer and help to improve psoriasis, this study provides a potential mechanism for the anti-inflammatory therapeutic effect of indigo naturalis extract in psoriasis.

  18. Analysis of the ability of water resources to reduce the urban heat island in the Tokyo megalopolis.

    PubMed

    Nakayama, Tadanobu; Hashimoto, Shizuka

    2011-01-01

    Simulation procedure integrated with multi-scale in horizontally regional-urban-point levels and in vertically atmosphere-surface-unsaturated-saturated layers, was newly developed in order to predict the effect of urban geometry and anthropogenic exhaustion on the hydrothermal changes in the atmospheric/land and the interfacial areas of the Japanese megalopolis. The simulated results suggested that the latent heat flux in new water-holding pavement (consisting of porous asphalt and water-holding filler made of steel by-products based on silica compound) has a strong impact on hydrologic cycle and cooling temperature in comparison with the observed heat budget. We evaluated the relationship between the effect of groundwater use as a heat sink to tackle the heat island and the effect of infiltration on the water cycle in the urban area. The result indicates that effective management of water resources would be powerful for ameliorating the heat island and recovering sound hydrologic cycle there. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Soil Erosion in agro-industrially used Landscapes between High and Anti-Atlas

    NASA Astrophysics Data System (ADS)

    Peter, K. D.; Ries, J. B.; Marzolff, I.; d'Oleire-Oltmanns, S.

    2012-04-01

    The Souss basin is characterised by high population dynamics and changing land use. Extensive plantations of citrus fruits, bananas and vegetables in monocropping, mainly for the European market, replace the traditional mixed agriculture with small-area olive orchards and cereal fields. A precipitation of around 200 mm enforces the irrigation of cultivation by deep wells. The spatial vicinity of highly engineered irrigation areas, which are often created by land-levelling measures, and housing estates with highly active gully systems and rapid badland development presents a risk to both the agro-industrial land use and the population settlements. It is investigated whether the levelling measures influence surface runoff and soil erosion and thereby affect the further gully development. The influences of surface characteristics on runoff and soil erosion are analysed. Therefore 91 rainfall simulation experiments using a small portable rainfall simulator and 33 infiltrations by means of a single ring infiltrometer are carried out on seven test sites nearby the city of Taroudant. The rainfall simulations (30 minutes, 40 mm h-1) show an average runoff coefficient of between 54 and 59 % on test sites with land-levelling measures and average runoff coefficients ranging between 36 and 48 % on mostly non-levelled test sites. The average of soil erosion lies on levelled test sites between 52.1 and 81.8 g m-2, on non-levelled test-sites between 13.2 und 23.2 g m-2 per 30 minutes. Accordingly, all the test sites have a rather low infiltration capacity. This can also be confirmed by the low average infiltration depth of only 15.5 cm on levelled test sites. There is often a clear borderline at horizons with a high bulk density caused by compaction. In contrast, on non-levelled test sites, the average infiltration depth reaches 22.2 cm. Reinforcing factors for runoff and soil erosion are slope and soil crusts. Vegetation cover has a reducing influence on surface process activity. Medium rock fragment cover shows high rates of runoff and soil erosion. Hitherto collected data show an explicit difference between levelled and non-levelled test sites. Land-levelling measures clearly influence the generation of surface runoff and soil erosion and consequently, advance the further gully development.

  20. Seasonal Variation of Infiltration Rates in a Managed Aquifer Recharge System: A Belgian Example

    NASA Astrophysics Data System (ADS)

    Samanta, S.; Sheng, Z.; Munster, C. L.; Houtte, E. V.

    2017-12-01

    Managed Aquifer Recharge (MAR) is a powerful tool in addressing water resources management issues. The Torreele water reuse facility is using MAR to address the problem of water sustainability in a coastal aquifer of Belgium. The Torreele MAR facility uses infiltration ponds to maintain the groundwater level and to prevent saltwater intrusion into the aquifer. The source of recharge is treated wastewater from the Torreele wastewater treatment plant (TWWTP) located 1.2 km inland. The TWWTP uses a state-of-the-art filtration mechanism with a combination of ultrafiltration (UF) and Reverse Osmosis (RO) techniques to assure that recharge water is of very high quality. Data collected at the Torreele MAR facility indicates reduced infiltration rates during the winter season when pond water temperatures vary from 1 to 10ºC. The proposed hypothesis for these lower infiltration rates may be a reduction in hydraulic conductivity due to changes in water viscosity. This study involves the determination of relationship between water temperature, infiltration rates, and hydraulic conductivity at the Torreele MAR facility. The results of this study will lead to an effective administration of the facility and provide an extensive understanding of the system.

  1. LOCAL PERIARTICULAR ANALGESIA IN TOTAL KNEE ARTHROPLASTY

    PubMed Central

    Sadigursky, David; Simões, Daniel Pereira; de Albuquerque, Raphael Araújo; Silva, Monize Zórnio; Fernandes, Rogério Jamil Carneiro; Colavolpe, Paulo Oliveira

    2017-01-01

    ABSTRACT Objective: To evaluate the use of infiltration of periarticular analgesic agents intraoperatively in total knee arthroplasty (TKA), with regard to benefits, reduction of pain, opioid consumption, improvement of range of motion and early ambulation. Methods: To analyze the benefits of periarticular drug infiltration, the patients submitted to TKA were evaluated, being separated into two groups. One group received the local periarticular infiltration protocol containing 0.5% bupivacaine (400mg/20ml), 1/1000 epinephrine (0.3ml), triamcinolone hexacetonide (20mg/1ml), clonidine (150mcg/1ml) and 20 ml of saline (0.9% SS) and, the other group underwent conventional intravenous analgesia. The results were compared and the variables analyzed were age, sex, BMI, comorbidities, postoperative complications, pain, functional capacity, range of motion, transfusion and rescue opioids for analgesia. Results: The mean age of the patients was 68 years and most were female and presented involvement of the left knee. Postoperatively, patients who had received periarticular infiltration showed improvement of pain as well as functional capacity. Conclusion: The analysis of data obtained demonstrated that the periarticular infiltration of analgesic agents is significantly effective for pain control and functional recovery.Level of Evidence II, Prospective Comparative Study. PMID:28642656

  2. Stability of infinite slopes under transient partially saturated seepage conditions

    NASA Astrophysics Data System (ADS)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  3. Hydrological balance and water transport processes of partially sealed soils

    NASA Astrophysics Data System (ADS)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how important process orientated studies for different types of sealing material are.

  4. The head and neck cancer immune landscape and its immunotherapeutic implications

    PubMed Central

    Mandal, Rajarsi; Şenbabaoğlu, Yasin; Havel, Jonathan J.; Dalin, Martin G.; Riaz, Nadeem; Lee, Ken-Wing; Ganly, Ian; Hakimi, A. Ari; Chan, Timothy A.; Morris, Luc G.T.

    2016-01-01

    Recent clinical trials have demonstrated a clear survival advantage in advanced head and neck squamous cell carcinoma (HNSCC) patients treated with immune checkpoint blockade. These emerging results reveal that HNSCC is one of the most promising frontiers for immunotherapy research. However, further progress in head and neck immuno-oncology will require a detailed understanding of the immune infiltrative landscape found in these tumors. We leveraged transcriptome data from 280 tumors profiled by The Cancer Genome Atlas (TCGA) to comprehensively characterize the immune landscape of HNSCC in order to develop a rationale for immunotherapeutic strategies in HNSCC and guide clinical investigation. We find that both HPV+ and HPV– HNSCC tumors are among the most highly immune-infiltrated cancer types. Strikingly, HNSCC had the highest median Treg/CD8+ T cell ratio and the highest levels of CD56dim NK cell infiltration, in our pan-cancer analysis of the most immune-infiltrated tumors. CD8+ T cell infiltration and CD56dim NK cell infiltration each correlated with superior survival in HNSCC. Tumors harboring genetic smoking signatures had lower immune infiltration and were associated with poorer survival, suggesting these patients may benefit from immune agonist therapy. These findings illuminate the immune landscape of HPV+ and HPV– HNSCC. Additionally, this landscape provides a potentially novel rationale for investigation of agents targeting modulators of Tregs (e.g., CTLA-4, GITR, ICOS, IDO, and VEGFA) and NK cells (e.g., KIR, TIGIT, and 4-1BB) as adjuncts to anti–PD-1 in the treatment of advanced HNSCC. PMID:27777979

  5. Field infiltration measurements in grassed roadside drainage ditches: Spatial and temporal variability

    NASA Astrophysics Data System (ADS)

    Ahmed, Farzana; Gulliver, John S.; Nieber, J. L.

    2015-11-01

    Roadside drainage ditches (grassed swales) are an attractive stormwater control measure (SCM) since they can reduce runoff volume by infiltrating water into the soil, filter sediments and associated pollutants out of the water, and settle solids onto the soil surface. In this study a total of 722 infiltration measurements were collected in five swales located in Twin-Cities, MN and one swale located in Madison, WI to characterize the field-saturated hydraulic conductivity (Kfs) derived from the infiltration measurements of these swales. Measurements were taken with a falling head device, the Modified Philip Dunne (MPD) infiltrometer, which allows the collection of simultaneous infiltration measurements at multiple locations with several infiltrometers. Field-saturated hydraulic conductivity was higher than expected for different soil texture classes. We hypothesize that this is due to plant roots creating macropores that break up the soil for infiltration. Statistical analysis was performed on the Kfs values to analyze the effect of initial soil moisture content, season, soil texture class and distance in downstream direction on the geometric mean Kfs value of a swale. Because of the high spatial variation of Kfs in the same swale no effect of initial soil moisture content, season and soil texture class was observed on the geometric mean Kfs value. But the distance in downstream direction may have positive or negative effect on the Kfs value. An uncertainty analysis on the Kfs value indicated that approximately twenty infiltration measurements is the minimum number to obtain a representative geometric mean Kfs value of a swale that is less than 350 m long within an acceptable level of uncertainty.

  6. Anti-inflammation effects of corn silk in a rat model of carrageenin-induced pleurisy.

    PubMed

    Wang, Guang-Qiang; Xu, Tao; Bu, Xue-Mei; Liu, Bao-Yi

    2012-06-01

    Pleurisy is an inflammation of the pleural layers that surround the lungs. Despite much research into inflammatory diseases, no drugs with favorable safety profiles are available yet for their treatment. Corn silk has been used in many parts of the world for the treatment of edema, cystitis, gout, kidney stones nephritis, and prostitutes. However, no scientific reports on the anti-inflammatory effects of corn silk were so far available. To test the anti-inflammatory efficacy of corn silk extract (CSEX) in a rat model of carrageenin (Cg)-induced pleurisy, exudate formation, and cellular infiltration, tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), vascular endothelial growth factor alpha (VEGF-α), interleukin-17 (IL-17), C3 and C4 complement protein levels, adhesion molecule (ICAM-1) and inducible nitric oxide synthase (iNOS) levels, nuclear factor kappa B (NF-κB) activation, and total antioxidant activity were studied, respectively. Pretreatment with CSEX reduced Cg-induced pleurisy exudate, number of leukocytes, oxidative stress, C3 protein level, and O (2)(-) levels at the inflammatory site. Pretreatment with CSEX also inhibited TNF-α, IL-1β, VEGF-α, and IL-17A and blocked inflammation-related events (ICAM-1 and iNOS) by activation of NF-κB. Supplementation with CSEX may be a promising treatment for inflammatory diseases that involve oxidative stress.

  7. The 1D Richards' equation in two layered soils: a Filippov approach to treat discontinuities

    NASA Astrophysics Data System (ADS)

    Berardi, Marco; Difonzo, Fabio; Vurro, Michele; Lopez, Luciano

    2018-05-01

    The infiltration process into the soil is generally modeled by the Richards' partial differential equation (PDE). In this paper a new approach for modeling the infiltration process through the interface of two different soils is proposed, where the interface is seen as a discontinuity surface defined by suitable state variables. Thus, the original 1D Richards' PDE, enriched by a particular choice of the boundary conditions, is first approximated by means of a time semidiscretization, that is by means of the transversal method of lines (TMOL). In such a way a sequence of discontinuous initial value problems, described by a sequence of second order differential systems in the space variable, is derived. Then, Filippov theory on discontinuous dynamical systems may be applied in order to study the relevant dynamics of the problem. The numerical integration of the semidiscretized differential system will be performed by using a one-step method, which employs an event driven procedure to locate the discontinuity surface and to adequately change the vector field.

  8. Wetting transition on patterned surfaces: transition states and energy barriers.

    PubMed

    Ren, Weiqing

    2014-03-18

    We study the wetting transition on microstructured hydrophobic surfaces. We use the string method [J. Chem. Phys. 2007, 126, 164103; J. Chem. Phys. 2013, 138, 134105] to accurately compute the transition states, the energy barriers, and the minimum energy paths for the wetting transition from the Cassie-Baxter state to the Wenzel state. Numerical results are obtained for the wetting of a hydrophobic surface textured with a square lattice of pillars. It is found that the wetting of the solid substrate occurs via infiltration of the liquid in a single groove, followed by lateral propagation of the liquid front. The propagation of the liquid front proceeds in a stepwise manner, and a zipping mechanism is observed during the infiltration of each layer. The minimum energy path for the wetting transition goes through a sequence of intermediate metastable states, whose wetted areas reflect the microstructure of the patterned surface. We also study the dependence of the energy barrier on the drop size and the gap between the pillars.

  9. Diffuse emission and control of copper in urban surface runoff.

    PubMed

    Boller, M A; Steiner, M

    2002-01-01

    Copper washed off from roofs and roads is considered to be a major contribution to diffuse copper pollution of urban environments. In order to guarantee sustainable protection of soils and water, the long-term strategy is to avoid or replace copper containing materials on roofs and fagades. Until achievement of this goal, a special adsorber system is suggested to control the diffuse copper fluxes by retention of copper by a mixture of granulated iron-hydroxide (GEH) and calcium carbonate. Since future stormwater runoff concepts are based on decentralised runoff infiltration into the underground, solutions are proposed which provide for copper retention in infiltration sites using GEH adsorption layers. The example of a large copper façade of which the runoff is treated in an adsorption trench reveals the first full-scale data on façade runoff and adsorber performance. During the first year of investigation average façade runoff concentrations in the range of 1-10 mg Cu/l are reduced by 96-99% in the adsorption ditch.

  10. Thermo-Mechanical Properties of SiC/SiC Composites with Hybrid CVI-PIP Matrices

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; DiCarlo, J. A.

    2004-01-01

    For long term structural service, the upper temperature capability for slurry-cast melt infiltrated (MI) SiC/SiC composites is limited to approx. 1315 C because of silicon reaction with the SiC fibers. For applications requiring material temperatures in excess of 1315 C, alternate methods of manufacturing the SiC matrices without silicon are being investigated, such as a hybrid combination of CVI and PIP. In this study, stacked fabric plies of Sylramic i-BN SiC fibers were coated with a CVI BN interface layer followed by a partial CVI SiC matrix. The remaining porosity in the SiC/SiC preforms was then infiltrated with silicon carbide matrix by PIP. Thermo-mechanical property measurements indicate that these composites are stable to 1700 C in inert environments under no load conditions for 100 h and under load conditions to 1450 C in air for 300 h. The advantages, disadvantages, and potential of this composite system for high temperature applications will be discussed.

  11. Soil water movement in the unsaturated zone of an inland arid region: Mulched drip irrigation experiment

    NASA Astrophysics Data System (ADS)

    Han, Dongmei; Zhou, Tiantian

    2018-04-01

    Agricultural irrigation with trans-basin water diversion can effectively relieve the water paucity in arid and semi-arid regions, however, this may be accompanied by eco-environmental problems (e.g., saline soils, rising groundwater levels, water quality problems). The mechanism of soil water movement under irrigation in the unsaturated zone of arid regions is a key scientific problem that should be solved in order to evaluate agricultural water management and further improve current irrigation practices. This study investigated the impact of drip irrigation on soil water movement in the unsaturated zone of a cotton field in an inland arid region (the Karamay Agricultural Development Area), northwest China. Combining in situ observational physical data with temporal variation in stable isotopic compositions of soil water, we described the soil water flow system and mechanism in severe (Plot 1) and mild (Plot 2) saline-alkali cotton fields. The infiltration depths are 0-150 cm for both plots. Drip irrigation scheduling makes no significant contribution to local groundwater recharge, however, groundwater can move into the unsaturated zone through capillary rise during cotton flowering and boll periods. Plot 2 is less prone to having secondary soil salinization than Plot 1 due to the existence of a middle layer (approximately 100 cm thick), which elongated the distance between the root zone and aquifer. Rise in the water table (approximately 60 cm for Plot 1 and 50 cm for Plot 2) could be caused by lateral groundwater flow instead of vertical infiltration. We estimated the soil water storage changes in the unsaturated zone and proposed a conceptual model for deciphering the movement process of soil water. This study provides a scientific basis for determining the rise of groundwater levels and potential development of saline soils and improving agricultural water management in arid regions.

  12. Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Mahmoodian, Reza; Hamdi, M.

    2014-01-01

    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.

  13. Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis

    PubMed Central

    Hassan, M. A.; Mahmoodian, Reza; Hamdi, M.

    2014-01-01

    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration. PMID:24430621

  14. Modified smoothed particle hydrodynamics (MSPH) for the analysis of centrifugally assisted TiC-Fe-Al2O3 combustion synthesis.

    PubMed

    Hassan, M A; Mahmoodian, Reza; Hamdi, M

    2014-01-16

    A modified smoothed particle hydrodynamic (MSPH) computational technique was utilized to simulate molten particle motion and infiltration speed on multi-scale analysis levels. The radial velocity and velocity gradient of molten alumina, iron infiltration in the TiC product and solidification rate, were predicted during centrifugal self-propagating high-temperature synthesis (SHS) simulation, which assisted the coating process by MSPH. The effects of particle size and temperature on infiltration and solidification of iron and alumina were mainly investigated. The obtained results were validated with experimental microstructure evidence. The simulation model successfully describes the magnitude of iron and alumina diffusion in a centrifugal thermite SHS and Ti + C hybrid reaction under centrifugal acceleration.

  15. A microstructural study of the degradation and calcium release from hydroxyapatite-calcium oxide ceramics made by infiltration.

    PubMed

    Zhang, Qinghao; Schmelzer, Eva; Gerlach, Jörg C; Nettleship, Ian

    2017-04-01

    Hydroxyapatite pellets, partially densified in a low-temperature heat treatment, were infiltrated with calcium nitrate solution followed by in-situ precipitation of Ca(OH) 2 and CaCO 3 . The infiltrated bodies were then densified to high relative density and the calcium carbonate transformed to calcium oxide during sintering and resulted in biphasic hydroxyapatite-CaO ceramics. This work investigated the influence of the infiltration on surface morphology, weight change, and microstructural-level degradation caused by exposure to saline at pH=7.4 and a temperature of 20°C. The CaO rendered the materials more susceptible to degradation, and released calcium into the saline faster than single phase, calcium deficient hydroxyapatite (HA) that were used as a control. In consequence, these ceramics could be used to release calcium into the culture microenvironments of bone tissue or bone marrow cells next to a scaffold surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Measurement of infiltration rates in urban sewer systems by use of oxygen isotopes.

    PubMed

    De Bénédittis, J; Bertrand-Krajewski, J L

    2005-01-01

    The paper presents the principle of a method to measure infiltration rates in sewer systems based on the use of oxygen isotopes and its application in Lyon (France). In the urban area of Lyon, significant differences in delta 18O that can reach 3 per thousand are observed between the oxygen isotopic compositions of groundwater originating from Rhone, Saone and from their associated alluvial aquifers. Drinking water supplying Lyon results mainly from pumping in the Rhone alluvial aquifer. Therefore, in some areas, the difference of isotopic composition between wastewater resulting from the consumption of drinking water and local groundwater can be used to measure infiltration in sewer systems. The application in the catchment of Ecully shows that the infiltration flow rate presents strong fluctuations at an hourly scale: it varies between 15 and 40 m3/h. This variability could be explained by non-constant discharges of pumping and by variations of the water level in the sewer.

  17. Estimated infiltration, percolation, and recharge rates at the Rillito Creek focused recharge investigation site, Pima County, Arizona: Chapter H in Ground-water recharge in the arid and semiarid southwestern United States (Professional Paper 1703)

    USGS Publications Warehouse

    Hoffmann, John P.; Blasch, Kyle W.; Pool, Don R.; Bailey, Matthew A.; Callegary, James B.; Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    A large fraction of ground water stored in the alluvial aquifers in the Southwest is recharged by water that percolates through ephemeral stream-channel deposits. The amount of water currently recharging many of these aquifers is insufficient to meet current and future demands. Improving the understanding of streambed infiltration and the subsequent redistribution of water within the unsaturated zone is fundamental to quantifying and forming an accurate description of streambed recharge. In addition, improved estimates of recharge from ephemeral-stream channels will reduce uncertainties in water-budget components used in current ground-water models.This chapter presents a summary of findings related to a focused recharge investigation along Rillito Creek in Tucson, Arizona. A variety of approaches used to estimate infiltration, percolation, and recharge fluxes are presented that provide a wide range of temporal- and spatial-scale measurements of recharge beneath Rillito Creek. The approaches discussed include analyses of (1) cores and cuttings for hydraulic and textural properties, (2) environmental tracers from the water extracted from the cores and cuttings, (3) seepage measurements made during sustained streamflow, (4) heat as a tracer and numerical simulations of the movement of heat through the streambed sediments, (5) water-content variations, (6) water-level responses to streamflow in piezometers within the stream channel, and (7) gravity changes in response to recharge events. Hydraulic properties of the materials underlying Rillito Creek were used to estimate long-term potential recharge rates. Seepage measurements and analyses of temperature and water content were used to estimate infiltration rates, and environmental tracers were used to estimate percolation rates through the thick unsaturated zone. The presence or lack of tritium in the water was used to determine whether or not water in the unsaturated zone infiltrated within the past 40 years. Analysis of water-level and temporal-gravity data were used to estimate recharge volumes. Data presented in this chapter were collected from 1999 though 2002. Precipitation and streamflow during this period were less than the long-term average; however, two periods of significant streamflow resulted in recharge—one in the summer of 1999 and the other in the fall/winter of 2000.Flux estimates of infiltration and recharge vary from less than 0.1 to 1.0 cubic meter per second per kilometer of streamflow. Recharge-flux estimates are larger than infiltration estimates. Larger recharge fluxes than infiltration fluxes are explained by the scale of measurements. Methods used to estimate recharge rates incorporate the largest volumetric and temporal scales and are likely to have fluxes from other nearby sources, such as unmeasured tributaries, whereas the methods used to estimate infiltration incorporate the smallest scales, reflecting infiltration rates at individual measurement sites.

  18. Hybrid Perovskite/Perovskite Heterojunction Solar Cells.

    PubMed

    Hu, Yinghong; Schlipf, Johannes; Wussler, Michael; Petrus, Michiel L; Jaegermann, Wolfram; Bein, Thomas; Müller-Buschbaum, Peter; Docampo, Pablo

    2016-06-28

    Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and high power conversion efficiency. Advances in perovskite film optimization have led to an outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus toward new device architectures holds great potential to induce the next leap in device performance. Here, we demonstrate a perovskite/perovskite heterojunction solar cell. We developed a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering experiments were performed to gain insights into the crystallite orientation and the formation process of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an enhancement of the open-circuit voltage and power conversion efficiency due to reduced recombination losses, as well as improved moisture stability in the resulting photovoltaic devices.

  19. Safe extensive tumescent liposuction with segmental infiltration of lower concentration lidocaine under monitored anesthesia care.

    PubMed

    Wang, Gang; Cao, Wei-Gang; Li, Sheng-Li; Liu, Li-Na; Jiang, Zhao-Hua

    2015-01-01

    Tumescent anesthesia makes it feasible to perform liposuction in an office setting. There are often patients who desire extensive liposuction on approximately 30% of total body surface area, which means the lidocaine total dose might be over the dosing recommendation. So the segmental infiltration is applied, although the concentration of lidocaine in tumescent fluid is gradually reduced to 0.0252%. Moreover, supplemental intravenous (IV) sedation using monitored anesthesia care is usually applied concurrently to help alleviate discomfort and pain of the patients during tumescent anesthetic infusion and fat extraction which in turn increases the risks of potential lidocaine toxicity due to possible drug interactions. This study was to demonstrate the safety of segmental infiltration of tumescent fluid with lower lidocaine concentration combined with IV sedation in extensive liposuction and determine whether the risk of lidocaine toxicity is increased in this protocol. Ten female patients who requested the extensive liposuction participated in the study. The targeted areas were divided into 2 segments and treated in turn in 1 session. Lidocaine (1600 mg) was infiltrated into the first segment, and approximately 928 mg lidocaine was subsequently infiltrated after accomplishment of the first segment operation. Serum levels of lidocaine were taken every 4 hours during the first 24 hours after the second infiltration. The average time of the procedure is 222 (33) minutes. The dose and total amount of lidocaine injected are 40.7 (5.8) mg/kg and 2528.2 (155.2) mg, respectively. The total volume of the infusates and aspirates are 9918.1 (494) and 6325 (1461.6) mL, respectively, the ratio of total infusates to total aspirates is 1.66 (0.45). The total aspirated fat and fluids are 3280 (1051.8) and 3045 (824.1) mL, respectively. The peak lidocaine levels [2.18 (0.63) μg/mL] occurred after 12 to 20 hours [16.4 (2.27) hours]. No significant correlation between dose per kilogram body weight or total dose of lidocaine infiltrated and its peak levels or time existed. The extensive liposuction covering the 30% total body surface areas was well tolerated by the patients under tumescent anesthesia in combination with the supplemental IV sedation. Our previous study on the fluid management has demonstrated the risk of hypovolemia or fluid overload is very low with this technique, although the patients who received only maintenance fluid (500 mL) in the operating room and could discharge and resume oral intake after 6 hours of recovery room stay. The adequate anesthesia support is available in our office-based setting with adequate recovery facilities in place. It has a high margin of safety, without increasing of lidocaine toxicity or adverse cardiopulmonary sequelae while using a segmental tumescent infiltration with lower concentration of lidocaine.

  20. Interferon-γ and interleukin-17 production from PPD-stimulated PBMCss of patients with pulmonary tuberculosis.

    PubMed

    Nunnari, Giuseppe; Pinzone, Marilia R; Vancheri, Carlo; Palermo, Filippo; Cacopardo, Bruno

    2013-04-01

    The purpose of this study was to evaluate Interferon (IFN)-γ and Interleukin(IL)-17 profiles in patients with different clinical presentations of pulmonary tuberculosis (TB) and to compare them with those of tuberculin-negative and tuberculin-reactive healthy controls Peripheral blood mononuclear cells (PBMCss), isolated from patients (n=52) and controls (n=30), were stimulated ex vivo with purified protein derivative (PPD) and IFN-γ and IL-17 levels in the supernatant were measured. At baseline, PBMCss from patients with TB released a significantly lower amount of IL-17 (p=0.043) than PBMCss from healthy controls, whereas IFN-γ levels were similar in the two groups. After PPD stimulation, a significant rise in IL-17 levels was found only among healthy controls (p=0.02). This rise in IL-17 levels was similar between tuberculin-reactive and tuberculin-negative subjects. After PPD stimulation, patients with infiltrative TB secreted higher levels of IL-17 and IFN-γ than those affected with chronic, miliary and cavitary TB (p < 0.01). IFN-γ production from patients with infiltrative TB was even higher than for healthy controls (p < 0.01). PBMCss from tuberculin-reactive patients released higher levels of IFN-γ than tuberculin-negative subjects after PPD stimulation (p < 0.01). Ex vivo PPD stimulation of PBMCs from patients with pulmonary TB does not significantly stimulate IL-17 release; however, higher IL-17 and IFN-γ levels are found in patients with infiltrative disease, in comparison with those affected with miliary, cavitary and chronic TB.

Top