Science.gov

Sample records for lband radiometric behaviour

  1. The L-band radiometric measurements of FIFE test site in 1987-1988

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Shiue, J. C.; Schmugge, T. J.; Engman, E. T.

    1990-01-01

    Emissivity dependence in the L-band on senescent vegetation is examined with the Push-Broom Microwave Radiometer (PBMR) aboard a NASA C-130 with special attention given to areas near two watersheds. Volumetric soil moisture is examined, and comparisons are given of burned and unburned areas. The factors are examined that contribute to differences between soil-moisture values and the ratio of L-band PBMR brightness temperature and the soil temperature measured at 2.5 cm. The explanations posited include improper calibration, extreme dryness at the time of measurements, and the difference in vegetation covers.

  2. Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hong, Liang; Pellerano, Fernando A.

    2015-01-01

    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.

  3. NASA Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara

    2006-01-01

    This viewgraph presentation reviews the characterization of radiometric data by NASA. The objective was to perform radiometric vicarious calibrations of imagery and compare with vendor-provided calibration coefficients. The approach was to use multiple, well-characterized sites. These sites are widely used by the NASA science community for radiometric characterization of airborne and space borne sensors. Using the data from these sites, the investigators performed independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  4. Galactic Noise and Passive Microwave Remote Sensing from Space At L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Hildebrand Peter H. (Technical Monitor)

    2002-01-01

    The spectral window at L-band (1.4 GHz) is important for passive remote sensing of soil moisture and ocean salinity from space, parameters that are needed to understand the hydrologic cycle and ocean circulation. At this frequency, radiation from extraterrestrial (mostly galactic) sources is strong and, unlike the constant cosmic background, this radiation is spatially variable. This paper presents a modern radiometric map of the celestial sky at L-band and a solution for the problem of determining what portion of the sky is seen by a radiometer in orbit. The data for the radiometric map is derived from recent radio astronomy surveys and is presented as equivalent brightness temperature suitable for remote sensing applications. Examples using orbits and antennas representative of those contemplated for remote sensing of soil moisture and sea surface salinity from space are presented to illustrate the signal levels to be expected. Near the galactic plane, the contribution can exceed several Kelvin.

  5. NASA's L-band imaging scatterometer

    NASA Astrophysics Data System (ADS)

    Hildebrand, Peter; Rincon, Rafael; Hilliard, Larry

    2006-12-01

    The NASA RADSTAR instrument is a compact scatterometer-radiometer system designed for airborne and space remote sensing of Earth surface properties such as soil moisture and sea surface salinity. In this paper we describe the active portion of RADSTAR, the L-band Imaging Scatterometer (LIS). The system employs electronic steering and digital beamforming techniques to generate multiple, low-sidelobe beams over a scan range of +/-50 degrees below an aircraft. We discuss the design and testing of LIS, and the planned merging of the scatterometer with the radiometric components of the final instrument. In its final configuration, RadSTAR will employ a single broadband antenna to efficiently support simultaneous scatterometer (LIS) and radiometer measurements in airborne and spaceborne applications. LIS is currently being flown along with the ESTAR synthetic aperture radiometer aboard the NASA P-3 aircraft in order to prove the concept of coregistered data, setting the path for future spaceborne, single aperture, electronically scanned, radar/radiometer systems.

  6. NASA IKONOS Radiometric Characterization

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Frisbee, Troy; Zanoni, Vicki; Blonski, Slawek; Daehler, Erik; Grant, Brennan; Holekamp, Kara; Ryan, Robert; Sellers, Richard; Smith, Charles

    2002-01-01

    The objective of this program: Perform radiometric vicarious calibrations of IKQNOS imagery and compare with Space Imaging calibration coefficients The approach taken: utilize multiple well-characterized sites which are widely used by the NASA science community for radiometric characterization of airborne and spaceborne sensors; and to Perform independent characterizations with independent teams. Each team has slightly different measurement techniques and data processing methods.

  7. Radiometric correction procedure study

    NASA Technical Reports Server (NTRS)

    Colby, C.; Sands, R.; Murphrey, S.

    1978-01-01

    A comparison of MSS radiometric processing techniques identified as a preferred radiometric processing technique a procedure which equalizes the mean and standard deviation of detector-specific histograms of uncalibrated scene data. Evaluation of MSS calibration data demonstrated that the relationship between detector responses is essentially linear over the range of intensities typically observed in MSS data, and that the calibration wedge data possess a high degree of temporal stability. An analysis of the preferred radiometric processing technique showed that it could be incorporated into the MDP-MSS system without a major redesign of the system, and with minimal impact on system throughput.

  8. Radio-frequency interference mitigating hyperspectral L-band radiometer

    NASA Astrophysics Data System (ADS)

    Toose, Peter; Roy, Alexandre; Solheim, Frederick; Derksen, Chris; Watts, Tom; Royer, Alain; Walker, Anne

    2017-02-01

    Radio-frequency interference (RFI) can significantly contaminate the measured radiometric signal of current spaceborne L-band passive microwave radiometers. These spaceborne radiometers operate within the protected passive remote sensing and radio-astronomy frequency allocation of 1400-1427 MHz but nonetheless are still subjected to frequent RFI intrusions. We present a unique surface-based and airborne hyperspectral 385 channel, dual polarization, L-band Fourier transform, RFI-detecting radiometer designed with a frequency range from 1400 through ≈ 1550 MHz. The extended frequency range was intended to increase the likelihood of detecting adjacent RFI-free channels to increase the signal, and therefore the thermal resolution, of the radiometer instrument. The external instrument calibration uses three targets (sky, ambient, and warm), and validation from independent stability measurements shows a mean absolute error (MAE) of 1.0 K for ambient and warm targets and 1.5 K for sky. A simple but effective RFI removal method which exploits the large number of frequency channels is also described. This method separates the desired thermal emission from RFI intrusions and was evaluated with synthetic microwave spectra generated using a Monte Carlo approach and validated with surface-based and airborne experimental measurements.

  9. Broadband Radiometric LED Measurements

    PubMed Central

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2017-01-01

    At present, broadband radiometric measurements of LEDs with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed. PMID:28649167

  10. Small satellite radiometric measurements

    SciTech Connect

    Weber, P.G.

    1991-01-01

    A critical need for the Mission to Planet Earth is to provide continuous, well-calibrated radiometric data for the radiation budget. This paper describes a new, compact, flexible radiometer which will provide both spectrally integrated data and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted vehicles (RPVs). 12 refs., 2 figs.

  11. Broadband radiometric LED measurements

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Cooksey, C. C.; Yoon, H. W.; Hanssen, L. M.; Podobedov, V. B.; Vest, R. E.; Arp, U.; Miller, C. C.

    2016-09-01

    At present, broadband radiometric LED measurements with uniform and low-uncertainty results are not available. Currently, either complicated and expensive spectral radiometric measurements or broadband photometric LED measurements are used. The broadband photometric measurements are based on the CIE standardized V(λ) function, which cannot be used in the UV range and leads to large errors when blue or red LEDs are measured in its wings, where the realization is always poor. Reference irradiance meters with spectrally constant response and high-intensity LED irradiance sources were developed here to implement the previously suggested broadband radiometric LED measurement procedure [1, 2]. Using a detector with spectrally constant response, the broadband radiometric quantities of any LEDs or LED groups can be simply measured with low uncertainty without using any source standard. The spectral flatness of filtered-Si detectors and low-noise pyroelectric radiometers are compared. Examples are given for integrated irradiance measurement of UV and blue LED sources using the here introduced reference (standard) pyroelectric irradiance meters. For validation, the broadband measured integrated irradiance of several LED-365 sources were compared with the spectrally determined integrated irradiance derived from an FEL spectral irradiance lamp-standard. Integrated responsivity transfer from the reference irradiance meter to transfer standard and field UV irradiance meters is discussed.

  12. Radiometric Dating Does Work!

    ERIC Educational Resources Information Center

    Dalrymple, G. Brent

    2000-01-01

    Discusses the accuracy of dating methods and creationist arguments that radiometric dating does not work. Explains the Manson meteorite impact and the Pierre shale, the ages of meteorites, the K-T tektites, and dating the Mount Vesuvius eruption. (Author/YDS)

  13. Radiometric Dating Does Work!

    ERIC Educational Resources Information Center

    Dalrymple, G. Brent

    2000-01-01

    Discusses the accuracy of dating methods and creationist arguments that radiometric dating does not work. Explains the Manson meteorite impact and the Pierre shale, the ages of meteorites, the K-T tektites, and dating the Mount Vesuvius eruption. (Author/YDS)

  14. Photovoltaics radiometric issues and needs

    SciTech Connect

    Myers, D.R.

    1995-11-01

    This paper presents a summary of issues discussed at the photovoltaic radiometric measurements workshop. Topics included radiometric measurements guides, the need for well-defined goals, documentation, calibration checks, accreditation of testing laboratories and methods, the need for less expensive radiometric instrumentation, data correlations, and quality assurance.

  15. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  16. Some features observed by the L-band push broom microwave radiometer over the Konza Prairie during 1985-1989

    NASA Astrophysics Data System (ADS)

    Wang, J. R.

    1995-12-01

    Airborne L-band radiometric measurements were conducted over the Konza Prairie near Manhattan, Kansas, in the summers of 1985, 1987, 1988, and 1989 to study the relationship among surface microwave emission, soil moisture, and vegetation cover. The annual surface treatments that were applied to the watersheds in the experimental area appeared to show a significant impact on the surface microwave emission. A watershed that was burned every year showed a better sensitivity to soil moisture variation than those burned less frequently. This feature persisted even though the radiometric measurements were made over those watersheds that were burned in the same year. It was concluded that the burning process might not completely remove a thatch layer of efficient microwave absorption, which was developed through years of accumulation of senescent vegetation. Results from the analysis of these radiometric data sets also suggest the need of an adequate estimation of vegetation biomass in order to obtain a reliable retrieval of surface soil moisture from L-band radiometric measurements. On the basis of the data acquired from the 1987 and 1989 field campaigns, the push broom microwave radiometer (PBMR) measurements are likely to give errors of the order of ±0.065 g/cm3 in surface soil moisture estimation if there are no measurements of vegetation biomass. Measurements of vegetation biomass to an accuracy of ±0.46 kg/m2 improve the corresponding PBMR estimation of surface soil moisture to an accuracy of ±0.032 g/cm3.

  17. Simplified Vicarious Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Stanley, Thomas; Ryan, Robert; Holekamp, Kara; Pagnutti, Mary

    2010-01-01

    A measurement-based radiance estimation approach for vicarious radiometric calibration of spaceborne multispectral remote sensing systems has been developed. This simplified process eliminates the use of radiative transfer codes and reduces the number of atmospheric assumptions required to perform sensor calibrations. Like prior approaches, the simplified method involves the collection of ground truth data coincident with the overpass of the remote sensing system being calibrated, but this approach differs from the prior techniques in both the nature of the data collected and the manner in which the data are processed. In traditional vicarious radiometric calibration, ground truth data are gathered using ground-viewing spectroradiometers and one or more sun photometer( s), among other instruments, located at a ground target area. The measured data from the ground-based instruments are used in radiative transfer models to estimate the top-of-atmosphere (TOA) target radiances at the time of satellite overpass. These TOA radiances are compared with the satellite sensor readings to radiometrically calibrate the sensor. Traditional vicarious radiometric calibration methods require that an atmospheric model be defined such that the ground-based observations of solar transmission and diffuse-to-global ratios are in close agreement with the radiative transfer code estimation of these parameters. This process is labor-intensive and complex, and can be prone to errors. The errors can be compounded because of approximations in the model and inaccurate assumptions about the radiative coupling between the atmosphere and the terrain. The errors can increase the uncertainty of the TOA radiance estimates used to perform the radiometric calibration. In comparison, the simplified approach does not use atmospheric radiative transfer models and involves fewer assumptions concerning the radiative transfer properties of the atmosphere. This new technique uses two neighboring uniform

  18. Radiometric sounding system

    SciTech Connect

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Shaw, W.J.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making such measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.

  19. [Laser-based radiometric calibration].

    PubMed

    Li, Zhi-gang; Zheng, Yu-quan

    2014-12-01

    Increasingly higher demands are put forward to spectral radiometric calibration accuracy and the development of new tunable laser based spectral radiometric calibration technology is promoted, along with the development of studies of terrestrial remote sensing, aeronautical and astronautical remote sensing, plasma physics, quantitative spectroscopy, etc. Internationally a number of national metrology scientific research institutes have built tunable laser based spectral radiometric calibration facilities in succession, which are traceable to cryogenic radiometers and have low uncertainties for spectral responsivity calibration and characterization of detectors and remote sensing instruments in the UK, the USA, Germany, etc. Among them, the facility for spectral irradiance and radiance responsivity calibrations using uniform sources (SIRCCUS) at the National Institute of Standards and Technology (NIST) in the USA and the Tunable Lasers in Photometry (TULIP) facility at the Physikalisch-Technische Bundesanstalt (PTB) in Germany have more representatives. Compared with lamp-monochromator systems, laser based spectral radiometric calibrations have many advantages, such as narrow spectral bandwidth, high wavelength accuracy, low calibration uncertainty and so on for radiometric calibration applications. In this paper, the development of laser-based spectral radiometric calibration and structures and performances of laser-based radiometric calibration facilities represented by the National Physical Laboratory (NPL) in the UK, NIST and PTB are presented, technical advantages of laser-based spectral radiometric calibration are analyzed, and applications of this technology are further discussed. Laser-based spectral radiometric calibration facilities can be widely used in important system-level radiometric calibration measurements with high accuracy, including radiance temperature, radiance and irradiance calibrations for space remote sensing instruments, and promote the

  20. L-Band Radiometer Measurements of Conifer Forests

    NASA Technical Reports Server (NTRS)

    Lang, R.; LeVine, D.; Chauhan, N.; deMatthaeis, P.; Bidwell, S.; Haken, M.

    2000-01-01

    Airborne radiometer measurements have been made at L-band over conifer forests in Virginia to study radiometric response to biomass and soil moisture. The horizontally polarized synthetic aperture radiometer, ESTAR, has been deployed abroad a NASA-P3 aircraft which is based at the Goddard Space Flight Center's Wallops Flight Facility. The instrument has been mounted in the bomb bay of the P-3 and images data in the cross track direction. Aircraft and surface measurements were made in July, August and November of 1999 over relatively homogeneous conifer stands of varying biomass. The surface measurements included soil moisture measurements in several stands. The soil moisture was low during the July flight and highest in November after heavy rains had occurred. The microwave images clearly distinguished between the different forest stands. Stand age, obtained from International Paper Corporation which owns the stands, showed a strong correlation between brightness temperature and stand age. This agrees with previous simulation studies of conifer forests which show that the brightness temperature increases with increasing stand biomass. Research is continuing to seek a quantitative correlation between the observed brightness temperature of the stands and their biomass and surface soil moisture.

  1. Development of a High-Stability Microstrip-based L-band Radiometer for Ocean Salinity Measurements

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Horgan, Kevin A.; Wilson, William J.; Tanner, Alan B.

    2004-01-01

    The development of a microstrip-based L-band Dicke radiometer with the long-term stability required for future ocean salinity measurements to an accuracy of 0.1 psu is presented. This measurement requires the L-band radiometers to have calibration stabilities of less than or equal to 0.05 K over 2 days. This research has focused on determining the optimum radiometer requirements and configuration to achieve this objective. System configuration and component performance have been evaluated with radiometer test beds at both JPL and GSFC. The GSFC testbed uses a cryogenic chamber that allows long-term characterization at radiometric temperatures in the range of 70 - 120 K. The research has addressed several areas including component characterization as a function of temperature and DC bias, system linearity, optimum noise diode injection calibration, and precision temperature control of components. A breadboard radiometer, utilizing microstrip-based technologies, has been built to demonstrate this long-term stability.

  2. L-Band Front End SAW Filters.

    DTIC Science & Technology

    1981-04-01

    design of L-band SAW Filters for the Global - Positioning System ( GPS ) RF front end is described. Filters on lithium niobate with loss as low as 4.5 dB at...INTRODUCTION The performance of the Global Positioning System ( GPS ) receiver may be greatly improved by incorporation of L-Band Surface Acoustic Wave...SAW) filters. The RF front end of the GPS system is shown in Figure 1. Microwave power incident on the GPS antenna is amplified and diplexed. Signals

  3. Radiometric and Spectral Measurement Instruments

    DTIC Science & Technology

    1992-03-18

    NSWCCR/RDTN-92/0003 AD-A250 771LI~ llliii11l li l l iillt111 RADIOMETRIC AND SPECTRAL MEASUREMENT INSTRUMENTS CRANE DIVISION NAVAL SURFACE WARFARE... INSTRUMENTS 6. AUTHOR(S) B. E. DOUDA H. A. WEBSTER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) a. PERFORMING ORGANIZATION REPORT NIJMBER...Maxiry-um 200 w ords) THIS IS A DESCRIPTION OF AN ASSORTMENT OF RADIOMETRIC AND SPECTRAL INSTRUMENTATION USED FOR MEASUREMENT OF THE RADIATIVE OUTPUT OF

  4. Radiometric Navigation Update

    NASA Astrophysics Data System (ADS)

    Nettles, James L.; Witsmeer, A. James; Wilt, Robert E.

    1980-12-01

    Boeing Aerospace Company (BAC) of Seattle, Washington and Sperry Microwave Electronics of Clearwater, Florida have developed a multiple-beam radiometric navigation update system. This paper describes the system design, flight test program, and preliminary results. The system was designed and its performance evaluated using analytically derived formulas for performance measures and detailed Monte Carlo simulations. As a result BAC recommended a five or seven fixed beam radiometer. Sperry built a seven-beam, 35 GHz radiometer which BAC flight tested in 1979 to demonstrate its effectiveness over a variety of test scenes under various environmental conditions. Four scenes were selected for the flight test varying from land-water to highly forested regions. Preliminary analysis of the flight test results confirm the expected performance improvement over the single-fixed-beam system tested in 1975. This approach to a terrain sensing millimeter wave radiometer would be applicable to low altitude penetrating aircraft. The system is low cost, with no moving parts; low volume, requiring only a single receiver with small wide-beam antennas; and stealthy, being completely passive. Radiometry can also be complementary to todays terrain correlation approach since flat areas usually contain a maximum of cultural features; where one system works poorly the other works well. This test program provides a data base for studying a wide variety of pattern matching and correlation algorithms, with and without attitude compensation, and using various subsets of the full seven-beam combination.

  5. Uncooled radiometric camera performance

    NASA Astrophysics Data System (ADS)

    Meyer, Bill; Hoelter, T.

    1998-07-01

    Thermal imaging equipment utilizing microbolometer detectors operating at room temperature has found widespread acceptance in both military and commercial applications. Uncooled camera products are becoming effective solutions to applications currently using traditional, photonic infrared sensors. The reduced power consumption and decreased mechanical complexity offered by uncooled cameras have realized highly reliable, low-cost, hand-held instruments. Initially these instruments displayed only relative temperature differences which limited their usefulness in applications such as Thermography. Radiometrically calibrated microbolometer instruments are now available. The ExplorIR Thermography camera leverages the technology developed for Raytheon Systems Company's first production microbolometer imaging camera, the Sentinel. The ExplorIR camera has a demonstrated temperature measurement accuracy of 4 degrees Celsius or 4% of the measured value (whichever is greater) over scene temperatures ranges of minus 20 degrees Celsius to 300 degrees Celsius (minus 20 degrees Celsius to 900 degrees Celsius for extended range models) and camera environmental temperatures of minus 10 degrees Celsius to 40 degrees Celsius. Direct temperature measurement with high resolution video imaging creates some unique challenges when using uncooled detectors. A temperature controlled, field-of-view limiting aperture (cold shield) is not typically included in the small volume dewars used for uncooled detector packages. The lack of a field-of-view shield allows a significant amount of extraneous radiation from the dewar walls and lens body to affect the sensor operation. In addition, the transmission of the Germanium lens elements is a function of ambient temperature. The ExplorIR camera design compensates for these environmental effects while maintaining the accuracy and dynamic range required by today's predictive maintenance and condition monitoring markets.

  6. Radiometric framework for image mosaicking.

    PubMed

    Litvinov, Anatoly; Schechner, Yoav Y

    2005-05-01

    Nonuniform exposures often affect imaging systems, e.g., owing to vignetting. Moreover, the sensor's radiometric response may be nonlinear. These characteristics hinder photometric measurements. They are particularly annoying in image mosaicking, in which images are stitched to enhance the field of view. Mosaics suffer from seams stemming from radiometric inconsistencies between raw images. Prior methods feathered the seams but did not address their root cause. We handle these problems in a unified framework. We suggest a method for simultaneously estimating the radiometric response and the camera nonuniformity, based on a frame sequence acquired during camera motion. The estimated functions are then compensated for. This permits image mosaicking, in which no seams are apparent. There is no need to resort to dedicated seam-feathering methods. Fundamental ambiguities associated with this estimation problem are stated.

  7. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Zhang, Zuyin; Chen, Zhengwen

    1998-08-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees 3 dB beamwidth scan the scene alternately and two pseudo-color images of two channels are displayed on the screen of PC in real time. Simultaneously all parameters of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers of flight and radiometric data are stored in hard disk for postprocessing. The sensitivity of the radiometers (Delta) T equals 0.16K. A new display method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate the AMRI is available to work steadily and accurately.

  8. L-Band Microwave Experiment On Russian Investigational Satellite, First Results And Comparison With SMOS Data

    NASA Astrophysics Data System (ADS)

    Smirnov, M.; Khaldin, A.

    2013-12-01

    The main scientific objective of mission with Zond-PP on Russian investigational satellite MKA-FKI No1 is development of techniques for retrieval: sea salinity in open oceans, soil moisture in global scales, vegetation state characteristics, sea ice characteristics. At the beginning stage of space experiments the main goals were to develop and test new space microwave radiometric instrument in order to solve technical objectives: investigation of RFI in L-band all over the globe, development and testing in-flight calibration techniques and others. First obtained results of our observations are presented. Zond-PP results were compared with MIRAS. For comparison were used results of brightness temperatures measurements obtained from Zond-PP and MIRAS in the same regions with minimal time difference. Results of comparison show general accordance in the brightness temperatures levels.

  9. Verification of L-band SAR calibration

    NASA Technical Reports Server (NTRS)

    Larson, R. W.; Jackson, P. L.; Kasischke, E.

    1985-01-01

    Absolute calibration of a digital L-band SAR system to an accuracy of better than 3 dB has been verified. This was accomplished with a calibration signal generator that produces the phase history of a point target. This signal relates calibration values to various SAR data sets. Values of radar cross-section (RCS) of reference reflectors were obtained using a derived calibration relationship for the L-band channel on the ERIM/CCRS X-C-L SAR system. Calibrated RCS values were compared to known RCS values of each reference reflector for verification and to obtain an error estimate. The calibration was based on the radar response to 21 calibrated reference reflectors.

  10. Modeling of Microwave Emissions from the Marie-Byrd Antarctic Region: A Stable Calibration Target in the L-band

    NASA Astrophysics Data System (ADS)

    Misra, S.; Brown, S.

    2010-12-01

    With the recent launch of SMOS (Soil Moisture Ocean Salinity) and upcoming missions Aquarius and SMAP (Soil Moisture Active Passive), calibration in L-band has become an important issue. The Aquarius mission, due to be launched in April 2011, is responsible for globally mapping sea-surface salinity. Due to the high sensitivity of brightness temperature to salinity and high precision of the Aquarius radiometers, it is necessary to have temporally stable calibration sources. Previously, Dome-C in the east Antarctic region was suggested as a promising area to monitor radiometer calibrations in the L-band toward the hot end of the brightness temperature spectrum (Macelloni et al., 2006; Macelloni et al., 2007). We present the Marie-Byrd region in west Antarctica as an excellent calibration reference, due to both its temporal stability over years as well as spatial vastness. In order to identify stable calibration regions for L-band we used 6-37GHz AMSR-E data. The spatial and temporal variability of AMSR-E brightness temperatures over the Antarctic region was analyzed, and only regions that were stable in both domains (like Marie-Byrd) were identified as radiometrically stable. Using data obtained from Automatic Weather Stations (AWS) near Marie-Byrd, the correlation between surface temperature and deep-ice temperature, as measured by microwaves was calculated. Results indicate that as the microwave frequency is lowered, the peak-to-peak annual variation of brightness temperature decreases. The bulk of emission for low frequencies occurs deep in the ice which is very stable over time and decorrelated with short term surface temperature fluctuations. As a result, at L-band the ice-regions like Marie-Byrd in Antarctica serve as an excellent source of calibration. A coupled ice heat-transport and radiative-transfer model was developed to predict brightness temperatures observed at low microwave frequencies. The ice model takes into account the surface fluctuations of

  11. HIGH CURRENT L-BAND LINAC

    SciTech Connect

    S. RUSSELL; B. CARLSTEN; J. GOETTEE

    2001-02-01

    The Sub-Picosecond Accelerator (SPA) at the Los Alamos National Laboratory is an L-band photoinjector. Using magnetic compression, the SPA routinely compresses 8 MeV, 1 nC per bunch electron beams from an initial temporal FWHM bunch length of 20 ps to less than 1 ps. In recent plasma wakefield accelerator experiments, we have compressed a 2 nC per bunch electron beam to an approximate temporal length of 1 ps.

  12. Large Aperture, Scanning, L-Band SAR

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array.

  13. Large Aperture, Scanning, L-Band SAR

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; DelCastillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array

  14. Large Aperture, Scanning, L-Band SAR

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; Del Castillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array.

  15. Large Aperture, Scanning, L-Band SAR

    NASA Technical Reports Server (NTRS)

    Moussessian, Alina; DelCastillo, Linda; Bach, Vinh; Grando, Maurio; Quijano, Ubaldo; Smith, Phil; Zawadzki, Mark

    2011-01-01

    We have developed the first L-band membrane-based active phased array. The antenna is a 16x16 element patch array with dimensions of 2.3mx2.6m. The array uses membrane-compatible Transmit/Receive (T/R) modules for electronic beam steering. We will discuss the antenna design, the fabrication of this large array, the T/R module development, the signal distribution approach and the measured results of the array

  16. Radiometric Calibration Techniques for Signal-of-Opportunity Reflectometers

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Shah, Rashmi; Deshpande, Manohar; Johnson, Carey

    2014-01-01

    Bi-static reflection measurements utilizing global navigation satellite service (GNSS) or other signals of opportunity (SoOp) can be used to sense ocean and terrestrial surface properties. End-to-end calibration of GNSS-R has been performed using well-characterized reflection surface (e.g., water), direct path antenna, and receiver gain characterization. We propose an augmented approach using on-board receiver electronics for radiometric calibration of SoOp reflectometers utilizing direct and reflected signal receiving antennas. The method calibrates receiver and correlator gains and offsets utilizing a reference switch and common noise source. On-board electronic calibration sources, such as reference switches, noise diodes and loop-back circuits, have shown great utility in stabilizing total power and correlation microwave radiometer and scatterometer receiver electronics in L-band spaceborne instruments. Application to SoOp instruments is likely to bring several benefits. For example, application to provide short and long time scale calibration stability of the direct path channel, especially in low signal-to-noise ratio configurations, is directly analogous to the microwave radiometer problem. The direct path channel is analogous to the loopback path in a scatterometer to provide a reference of the transmitted power, although the receiver is independent from the reflected path channel. Thus, a common noise source can be used to measure the gain ratio of the two paths. Using these techniques long-term (days to weeks) calibration stability of spaceborne L-band scatterometer and radiometer has been achieved better than 0.1. Similar long-term stability would likely be needed for a spaceborne reflectometer mission to measure terrestrial properties such as soil moisture.

  17. L-band radar scattering from grass

    NASA Technical Reports Server (NTRS)

    Chauhan, N.; O'Neill, P.; Le Vine, D.; Lang, R.; Khadr, N.

    1992-01-01

    A radar system based on a network analyzer has been developed to study the backscatter from vegetation. The radar is operated at L-band. Radar measurements of a grass field were made in 1991. The radar returns from the grass were measured at three incidence angles. Ground truth and canopy parameters such as blade and stem dimensions, moisture content of the grass and the soil, and blade and stem density, were measured. These parameters are used in a distorted Born approximation model to compute the backscatter coefficients from the grass layer. The model results are compared with the radar data.

  18. L-band radar scattering from grass

    NASA Technical Reports Server (NTRS)

    Chauhan, N.; O'Neill, P.; Le Vine, D.; Lang, R.; Khadr, N.

    1992-01-01

    A radar system based on a network analyzer has been developed to study the backscatter from vegetation. The radar is operated at L-band. Radar measurements of a grass field were made in 1991. The radar returns from the grass were measured at three incidence angles. Ground truth and canopy parameters such as blade and stem dimensions, moisture content of the grass and the soil, and blade and stem density, were measured. These parameters are used in a distorted Born approximation model to compute the backscatter coefficients from the grass layer. The model results are compared with the radar data.

  19. Airborne microwave radiometric imaging system

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  20. The Radiometric Map of Australia

    NASA Astrophysics Data System (ADS)

    Minty, Brian; Franklin, Ross; Milligan, Peter; Richardson, Murray; Wilford, John

    2009-12-01

    Geoscience Australia and the Australian State and Territory Geological Surveys have systematically surveyed most of the Australian continent over the past 40 years using airborne gamma-ray spectrometry to map potassium, uranium and thorium elemental concentrations at the Earth's surface. However, the individual surveys that comprise the national gamma-ray spectrometric radioelement database are not all registered to the same datum. This limits the usefulness of the database as it is not possible to easily combine surveys into regional compilations or make accurate comparisons between radiometric signatures in different survey areas. To solve these problems, Geoscience Australia has undertaken an Australia-Wide Airborne Geophysical Survey (AWAGS), funded under the Australian Government's Onshore Energy Security Program, to serve as a radioelement baseline for all current and future airborne gamma-ray spectrometric surveys in Australia. The AWAGS survey has been back-calibrated to the International Atomic Energy Agency's (IAEA) radioelement datum. We have used the AWAGS data to level the national radioelement database by estimating survey correction factors that, once applied, minimise both the differences in radioelement estimates between surveys (where these surveys overlap) and the differences between the surveys and the AWAGS traverses. The database is thus effectively levelled to the IAEA datum. The levelled database has been used to produce the first `Radiometric Map of Australia' - levelled and merged composite potassium (% K), uranium (ppm eU) and thorium (ppm eTh) grids over Australia at 100m resolution. Interpreters can use the map to reliably compare the radiometric signatures observed over different parts of Australia. This enables the assessment of key mineralogical and geochemical properties of bedrock and regolith materials from different geological provinces and regions with contrasting landscape histories.

  1. Earth Studies Using L-band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    1999-01-01

    L-band SAR has played an important role in studies of the Earth by revealing the nature of the larger-scale (decimeter) surface features. JERS-1, by supplying multi-seasonal coverage of the much of the earth, has demonstrated the importance of L-band SARs. Future L-band SARs such as ALOS and LightSAR will pave the way for science missions that use SAR instruments. As technology develops to enable lower cost SAR instruments, missions will evolve to each have a unique science focus. International coordination of multi-parameter constellations and campaigns will maximize science return.

  2. Radiometric studies of Mycobacterium lepraemurium.

    PubMed

    Camargo, E E; Larson, S M; Tepper, B S; Wagner, H N

    1976-01-01

    The radiometric method has been applied for studying the metabolism of M. lepraemurium and the conditions which might force or inhibit its metabolic activity in vitro. These organisms assimilate and oxidize (U-14C) glycerol, and (U-14C) acetate, but are unable to oxidize (U-14C) glucose, (U-14C) pyruvate, (U-14C) glycine and 14C-formate. When incubated at 30 degrees C M. lepraemurium oxidizes (U-14C) acetate to 14CO2 faster than 37 degrees C. The smae effect was observed with increasing concentrations of polysorbate 80 (Tween 80), or the 14C-substrate. No change in metabolic rate was observed when the organisms were kept at -20 degrees C for 12 days. Although tried several times, it was not possible to demonstrate any "inhibitors" of bacterial metabolism in the reaction system. The radiometric method seems to be an important tool for studying metabolic pathways and the influence of physical and biochemical factors on the metabolism of M. lepraemurium in vitro.

  3. Sea surface as seen at L-band microwaves: modeling and applications

    NASA Astrophysics Data System (ADS)

    Floury, Nicolas; Toso, Giovanni

    2002-01-01

    In the microwave domain, the development of interaction models has proved itself necessary for the understanding of the interaction between the electromagnetic wave and the sea surface and for the efficient retrieval of surface parameters from spaceborne measurements, such as in altimetry and wind scatterometry. New potential applications of microwaves over oceans involve frequencies such as L-band (around 1.5 GHz), both for active (such as the use of reflected GNSS signals for scatterometry and altimetry) and passive (extraction of ocean salinity from radiometric products) measurements. Classical models, mostly developed for higher frequencies and for close-to-nadir geometry's, may show limitations when applied to these new configurations. Another important issue is the sea surface description, which may need to be somehow refined to enable a complete picture of the interaction mechanisms at these wavelengths. L-band measurements of the sea surface (concurrent to local measurements of the sea state) are still quite scarce and this makes difficult the validation of modeling tools. It is however possible to use a well controlled full-wave approach, such as the moment method, as a reference to evaluate the assets and drawbacks of simpler asymptotic models (Physical Optics, two-scale model, etc .). The objective of this exercise is to exhibit a parameterization of the simpler models efficient enough to ensure an adequate restitution of the main scattering/emission mechanisms. Studies are conducted for different sea conditions. The wave-surface interaction mechanisms expected to drive the signal are studied for different configurations of observation. Then, the preliminary consequences in terms of interaction model accuracy at these wavelengths are pointed out.

  4. Reflectivity and Emissivity of Sea Foam at L-band

    NASA Astrophysics Data System (ADS)

    Anguelova, M. D.; Burrage, D. M.; Bettenhausen, M. H.

    2015-12-01

    The ubiquitous use of the Global Positioning System (GPS) for navigation is well known. GPS operates at L-band frequencies of 1-2 GHz. Because these low microwave frequencies penetrate clouds and rain, GPS signals can detect the specular reflection and diffuse scattering from flat and rough surfaces. This makes the GPS signals useful for geophysical measurements in all weather conditions. Aircraft and satellite-borne GPS reflectometers have been shown to successfully sense ocean surface wind. L-band reflectometry measures changes in ocean surface reflectivity due to changes of ocean surface roughness as wind increases. The use of GPS, together with other Global Navigation Satellite Systems, will soon provide hundreds of L-band transmitters in space and thus high temporal resolution for geophysical measurements. With its all weather capability and high temporal resolution, GPS reflectometry can provide wind speed data in hurricane conditions. Such capabilities enable the new Cyclone Global Navigation Satellite System (CYGNSS) project which aims to improve the skill of hurricane intensity forecasts. However, wave breaking under high winds produces sea foam (whitecaps) and sea spray, which complicate processes acting at the air-sea interface. Whitecaps and sea spray have high emissivity at L-band and will thus reduce the ocean reflectivity needed for wind speed retrieval. A combination of L-band reflectometry and L-band radiometry can thus help to better understand and model the physical mechanisms governing the L-band sensor responses. We use a radiative transfer model formulated in terms of foam layer thickness and void fraction to evaluate both the reflectivity and emissivity of a foam-covered sea surface. We report on the attenuation of L-band radiation in foam layers, and the corresponding foam reflectivity, for layers with varying thicknesses and void fractions. The reflected GPS signal sensitivity to wind speed variations in the presence of foam is assessed.

  5. Miniature L-Band Radar Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, Dalia; Price, Douglas; Edelstein, Wendy

    2007-01-01

    A miniature L-band transceiver that operates at a carrier frequency of 1.25 GHz has been developed as part of a generic radar electronics module (REM) that would constitute one unit in an array of many identical units in a very-large-aperture phased-array antenna. NASA and the Department of Defense are considering the deployment of such antennas in outer space; the underlying principles of operation, and some of those of design, also are applicable on Earth. The large dimensions of the antennas make it advantageous to distribute radio-frequency electronic circuitry into elements of the arrays. The design of the REM is intended to implement the distribution. The design also reflects a requirement to minimize the size and weight of the circuitry in order to minimize the weight of any such antenna. Other requirements include making the transceiver robust and radiation-hard and minimizing power demand. Figure 1 depicts the functional blocks of the REM, including the L-band transceiver. The key functions of the REM include signal generation, frequency translation, amplification, detection, handling of data, and radar control and timing. An arbitrary-waveform generator that includes logic circuitry and a digital-to-analog converter (DAC) generates a linear-frequency-modulation chirp waveform. A frequency synthesizer produces local-oscillator signals used for frequency conversion and clock signals for the arbitrary-waveform generator, for a digitizer [that is, an analog-to-digital converter (ADC)], and for a control and timing unit. Digital functions include command, timing, telemetry, filtering, and high-rate framing and serialization of data for a high-speed scientific-data interface. The aforementioned digital implementation of filtering is a key feature of the REM architecture. Digital filters, in contradistinction to analog ones, provide consistent and temperature-independent performance, which is particularly important when REMs are distributed throughout a large

  6. Radiometric correction of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N.; Kumar, R. (Principal Investigator); Cavalcanti, L. A.

    1977-01-01

    The author has identified the following significant results. The six independent sensors of the multispectral band scanner are supposed to be identical; however, in actual practice, they may have different gain settings and offset factors, which result in the effect known as stripping (black lines at regular intervals) of the imagery. A simple two parameter method to correct the gain settings and offset factors of each of the sensors with respect to one sensor, taken as reference, was developed. This method assumes: (1) the response of a detector varies linearly with the radiance of radiation received, and (2) the means, as well as the standard deviations, of a reasonably large number of pixels, in a given wavelength band, are equal for each of the detectors for the radiometrically corrected data.

  7. Small satellite radiometric measurement system

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for the earth's radiation budget. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted aircraft (RPAs). An example of the implementation of this radiometer on a small satellite is given. Significant benefits derive from simultaneous measurements of specific narrow (in wavelength) spectral features; such data may be obtained by combining LARI with a compact spectrometer on the same platform. Well-chosen satellite orbits allow one to use data from other satellites (e.g. DMSP) to enhance the data product, or to provide superior coverage of specific locations. 23 refs.

  8. Small satellite radiometric measurement system

    SciTech Connect

    Weber, P.G.

    1992-01-01

    A critical need for the US Global Change Research Program is to provide continuous, well-calibrated radiometric data for the earth`s radiation budget. This paper describes a new, compact, relatively light-weight, adaptable radiometer which will provide both spectrally integrated measurements and data in selected spectral bands. The radiometer design is suitable for use on small satellites, aircraft, or remotely piloted aircraft (RPAs). An example of the implementation of this radiometer on a small satellite is given. Significant benefits derive from simultaneous measurements of specific narrow (in wavelength) spectral features; such data may be obtained by combining LARI with a compact spectrometer on the same platform. Well-chosen satellite orbits allow one to use data from other satellites (e.g. DMSP) to enhance the data product, or to provide superior coverage of specific locations. 23 refs.

  9. L-band Overhauser dynamic nuclear polarization.

    PubMed

    Garcia, Sandra; Walton, Jeffrey H; Armstrong, Brandon; Han, Songi; McCarthy, Michael J

    2010-03-01

    We present the development of an Overhauser dynamic nuclear polarization (DNP) instrument at 0.04 T using 1.1 GHz (L-band) electron spin resonance frequencies (ESR) and 1.7 MHz (1)H nuclear magnetic resonance frequencies. Using this home-built DNP system, the electron-nucleus coupling factor of 4-oxo-TEMPO dissolved in water was determined as 0.39+/-0.06 at 0.04 T. The higher coupling factor obtained at this field compared to higher magnetic fields, such as 0.35 T, directly translates to higher enhancement of the NMR signal and opens up a wider time scale window for observing water dynamics interacting with macromolecular systems, including proteins, polymers or lipid vesicles. The higher enhancements obtained will facilitate the observation of water dynamics at correlation times up to 10 ns, that corresponds to more than one order of magnitude slower dynamics than accessible at 0.35 T using X-band ESR frequencies. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  10. Extended- and Point-Source Radiometric Program

    DTIC Science & Technology

    1962-08-08

    Radiometric Measurements of Cs1 37 Sources Made with NaI Detector. . 60 6.2 Aerial Radiometric Measurements of Co 60 Sources Made with Bioplastic ...Hanford aircraft consisted of an NaI scintillator, bioplastic scintillator, and a 40-liter ionization chamber. The aircraft employed was a twin-engine...supply, amplifier, and count rate, was transistorized portable equipment designed and fabricated at Hanford. The bioplastic instrument consisted of a 5

  11. Lansat MSS, Radiometric Processing Improvement

    NASA Astrophysics Data System (ADS)

    Saunier, Sebastien; Salgues, Germain; Gascon, Ferran; Biaasutti, Roberto

    2016-08-01

    The reprocessing campaigns of Landsat European Space Agency (ESA) data archive have been initiated since 3 years [1]. As part of this project, the processing algorithms have been upgraded. This article focuses on the radiometric processing of historical data observed with the Multi Spectral Scanner (MSS) instruments on board Landsat 1, 2, 3, 4 and 5.The Landsat MSS data have been recorded data from 1972 up to 1990. The MSS instruments have been designed with four visible bands covering the near / infrared regions of the electromagnetic spectrum, allowing the spatial sampling of our Earth surface at 60 meter.The current calibration method has shown some limitations in case of data observed out of mid latitude areas, where the Earth surface is bright because of desert or snow. The resulting image data suffers from saturations and is not fit for the potential application purposes.Although, when saturation exist, further investigations have shown that the radiometry of the raw data involved in the production of the Level 1 images is generally correct. As consequences, experiments have been undertaken to adapt the current processing in order to produce image data saturation free products.

  12. Radiometric calibration updates to the Landsat collection

    NASA Astrophysics Data System (ADS)

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2016-09-01

    The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.

  13. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region

    NASA Astrophysics Data System (ADS)

    Li, Guiying; Lu, Dengsheng; Moran, Emilio; Dutra, Luciano; Batistella, Mateus

    2012-06-01

    This paper explores the use of ALOS (Advanced Land Observing Satellite) PALSARL-band (Phased Array type L-band Synthetic Aperture Radar) and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. Transformed divergence was used to identify potential textural images which were calculated with the gray-level co-occurrence matrix method. The standard deviation of selected textural images and correlation coefficients between them were then used to determine the best combination of texture images for land-cover classification. Classification results based on different scenarios with maximum likelihood classifier were compared. Based on the identified best scenarios, different classification algorithms - maximum likelihood classifier, classification tree analysis, Fuzzy ARTMAP (a neural-network method), k-nearest neighbor, object-based classification, and support vector machine were compared for examining which algorithm was suitable for land-cover classification in the tropical moist region. This research indicates that the combination of radiometric images and their textures provided considerably better classification accuracies than individual datasets. The L-band data provided much better land-cover classification than C-band data but neither L-band nor C-band was suitable for fine land-cover classification system, no matter which classification algorithm was used. L-band data provided reasonably good classification accuracies for coarse land-cover classification system such as forest, succession, agropasture, water, wetland, and urban with an overall classification accuracy of 72.2%, but C-band data provided only 54.7%. Compared to the maximum likelihood classifier, both classification tree analysis and Fuzzy ARTMAP provided better performances, object-based classification and support vector machine had similar performances, and k-nearest neighbor performed poorly. More research should address the use of multitemporal radar data and the

  14. Radiometric surveys in underground environment

    NASA Astrophysics Data System (ADS)

    Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo

    2010-05-01

    Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected

  15. Rapid radiometric serum test for antibiotic activity.

    PubMed

    D'Antonio, R G; Camargo, E E; Gedra, T; Wagner, H N; Charache, P

    1982-02-01

    We have developed a 4-h radiometric method to predict the bacteriostatic endpoint by the tube dilution method. A mixture of [U-14C] glucose, [guanido-14C] arginine, and [U-14C] glycine was used to monitor the metabolic activity of both gram-positive and gram-negative organisms. The tube dilution method and the radiometric method were performed in parallel in 18 clinical serum samples. In the radiometric method, the samples were separated into control and test portions and serially diluted in Mueller-Hinton broth. Antibiotics in the control portion were inactivated with penicillinase or cellulose phosphate or both. The radioactive mixture and a 1-h culture of the patient's infecting organisms were added to all vials. The 14CO2 production after a 3-h incubation at 37 degrees C was measured, and the percent inhibition was determined for each vial by using the control vials as reference (no inhibition). Radiometric dose-response curves obtained for all samples showed that, by using a greater than or equal to 60% inhibition at 1:8 dilution, the radiometric method correctly predicted the outcome of the tube dilution method in 16 or 18 clinical samples.

  16. a Comparison of LIDAR Reflectance and Radiometrically Calibrated Hyperspectral Imagery

    NASA Astrophysics Data System (ADS)

    Roncat, A.; Briese, C.; Pfeifer, N.

    2016-06-01

    In order to retrieve results comparable under different flight parameters and among different flight campaigns, passive remote sensing data such as hyperspectral imagery need to undergo a radiometric calibration. While this calibration, aiming at the derivation of physically meaningful surface attributes such as a reflectance value, is quite cumbersome for passively sensed data and relies on a number of external parameters, the situation is by far less complicated for active remote sensing techniques such as lidar. This fact motivates the investigation of the suitability of full-waveform lidar as a "single-wavelength reflectometer" to support radiometric calibration of hyperspectral imagery. In this paper, this suitability was investigated by means of an airborne hyperspectral imagery campaign and an airborne lidar campaign recorded over the same area. Criteria are given to assess diffuse reflectance behaviour; the distribution of reflectance derived by the two techniques were found comparable in four test areas where these criteria were met. This is a promising result especially in the context of current developments of multi-spectral lidar systems.

  17. Effective tree scattering and opacity at L-band

    USDA-ARS?s Scientific Manuscript database

    This paper investigates vegetation effects at L-band by using a first-order radiative transfer (RT) model and truck-based microwave measurements over natural conifer stands to assess the performance of the tau-omega model over trees. The tau-omega model is a zero-order RT solution and it accounts f...

  18. Challenges for continuity of L-Band observations over land

    USDA-ARS?s Scientific Manuscript database

    Over land, L-band observations are primarily used for the detection of soil freeze/thaw events and the quantification of surface soil moisture content. Both products have important science, climate and decision support applications and would benefit from longer historical data records derived from s...

  19. Effective Tree Scattering at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; ONeill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    For routine microwave Soil Moisture (SM) retrieval through vegetation, the tau-omega [1] model [zero-order Radiative Transfer (RT) solution] is attractive due to its simplicity and eases of inversion and implementation. It is the model used in baseline retrieval algorithms for several planned microwave space missions, such as ESA's Soil Moisture Ocean Salinity (SMOS) mission (launched November 2009) and NASA's Soil Moisture Active Passive (SMAP) mission (to be launched 2014/2015) [2 and 3]. These approaches are adapted for vegetated landscapes with effective vegetation parameters tau and omega by fitting experimental data or simulation outputs of a multiple scattering model [4-7]. The model has been validated over grasslands, agricultural crops, and generally light to moderate vegetation. As the density of vegetation increases, sensitivity to the underlying SM begins to degrade significantly and errors in the retrieved SM increase accordingly. The zero-order model also loses its validity when dense vegetation (i.e. forest, mature corn, etc.) includes scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. The tau-omega model (when applied over moderately to densely vegetated landscapes) will need modification (in terms of form or effective parameterization) to enable accurate characterization of vegetation parameters with respect to specific tree types, anisotropic canopy structure, presence of leaves and/or understory. More scattering terms (at least up to first-order at L-band) should be included in the RT solutions for forest canopies [8]. Although not really suitable to forests, a zero-order tau-omega model might be applied to such vegetation canopies with large scatterers, but that equivalent or effective parameters would have to be used [4]. This requires that the effective values (vegetation opacity and single scattering albedo) need to be evaluated (compared) with theoretical definitions of

  20. Rapid radiometric susceptibility testing of Mycobacterium tuberculosis.

    PubMed

    Kertcher, J A; Chen, M F; Charache, P; Hwangbo, C C; Camargo, E E; McIntyre, P A; Wagner, H N

    1978-04-01

    A 48-hour radiometric test for determining the drug susceptibility of Mycobacterium tuberculosis has been developed. The test is based on the measurement of 14CO2 produced by the oxidation of formate labeled with carbon-14. The test system uses 5 X 10(7) organisms in 1 ml of Middlebrook 7H9 medium plus albumin-dextrose-catalase enrichment and 1 muCi of [14C]formate. The 14CO2 produced is measured in an ionization chamber at 24-, 48-, and 72-hour intervals, with and without the addition of antituberculous drugs. Isoniazid, streptomycin, rifampin, and ethambutol were each tested at 3 concentrations by the radiometric method and the reference (agar dilution) method. Six standard strains and 21 patient isolates were compared by both methods. Production of 14CO2 was quantitatively decreased in the presence of drugs that inhibit the organism. The radiometric method requires 2 days; the agar dilution, 14 to 21 days.

  1. AIRS radiometric calibration validation for climate research

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Pagano, Thomas S.; Elliott, Denis; Gaiser, Steve; Gregorich, Dave; Broberg, Steve

    2005-01-01

    Climate research using data from satellite based radiometers makes extreme demands on the traceability and stability of the radiometric calibration. The selection of a cooled grating array spectrometer for the Atmospheric Infrared Sounder, AIRS, is key, but does not ensured that AIRS data will be of climate quality. Additional design features, plus additional pre-launch testing, and extensive on-orbit calibration subsystem monitoring beyond what would suffice for application of the data to weather forecasting were required to ensure the radiometric data quality required for climate research. Validation that climate data quality are being generated makes use of the sea surface skin temperatures (SST and (obs-calc).

  2. Kernel MAD Algorithm for Relative Radiometric Normalization

    NASA Astrophysics Data System (ADS)

    Bai, Yang; Tang, Ping; Hu, Changmiao

    2016-06-01

    The multivariate alteration detection (MAD) algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA) which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA). The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1) data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.

  3. Based on Narcissus of radiometric calibration technology

    NASA Astrophysics Data System (ADS)

    Jin, Libing; Tang, Shaofan; Liu, Jianfeng; Peng, Honggang

    2015-08-01

    Thermal radiation is an inherent property of all objects. Generally, it is believed that the body, which temperature is above absolute zero, can keep generating infrared radiation. Infrared remote sensing, using of satellite-borne or airborne sensors, collects infrared information to identify the surface feature and inversion of surface parameters, temperature, etc. In order to get more accurately feature information, quantitative measurement is required. Infrared radiometric calibration is one of the key technologies of quantitative infrared remote sensing. Most high-resolution thermal imaging systems are cooling. For the infrared optical system which is having a cooled detector, there are some special phenomenons. Since the temperature of the detector's photosensitive surface is generally low, which is very different from system temperature, it is a very strong cold radiation source. Narcissus refers to the case that the cooled detector can "see" its own reflecting image, which may affect the image quality of infrared system seriously. But for radiometric calibration of satellite-borne infrared camera, it can sometimes take advantage of the narcissus instead of cold cryogenic radiometric calibration. In this paper, the use of narcissus to carry out radiometric calibration is summarized, and simulation results show the feasibility.

  4. Radiometric Characterization of IKONOS Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Ryan, Robert E.; Kelly, Michelle; Holekamp, Kara; Zanoni, Vicki; Thome, Kurtis; Schiller, Stephen

    2002-01-01

    A radiometric characterization of Space Imaging's IKONOS 4-m multispectral imagery has been performed by a NASA funded team from the John C. Stennis Space Center (SSC), the University of Arizona Remote Sensing Group (UARSG), and South Dakota State University (SDSU). Both intrinsic radiometry and the effects of Space Imaging processing on radiometry were investigated. Relative radiometry was examined with uniform Antarctic and Saharan sites. Absolute radiometric calibration was performed using reflectance-based vicarious calibration methods on several uniform sites imaged by IKONOS, coincident with ground-based surface and atmospheric measurements. Ground-based data and the IKONOS spectral response function served as input to radiative transfer codes to generate a Top-of-Atmosphere radiance estimate. Calibration coefficients derived from each vicarious calibration were combined to generate an IKONOS radiometric gain coefficient for each multispectral band assuming a linear response over the full dynamic range of the instrument. These calibration coefficients were made available to Space Imaging, which subsequently adopted them by updating its initial set of calibration coefficients. IKONOS imagery procured through the NASA Scientific Data Purchase program is processed with or without a Modulation Transfer Function Compensation kernel. The radiometric effects of this kernel on various scene types was also investigated. All imagery characterized was procured through the NASA Scientific Data Purchase program.

  5. EMI survey for maritime satellite, L-band, shipboard terminal

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Hill, J. S.; Brandel, D. L.

    1974-01-01

    The United States Lines 15,690-ton commercial-container ship, American Alliance, was selected as lead ship for an onboard EMI survey prior to installation of L-Band shipboard terminals for operation with two, geostationary, maritime satellites. In general, the EMI survey revealed tolerable interference levels onboard ship: radiometer measurements indicate antenna-noise temperatures less than 70 K, at elevation angles of 5 deg and greater, at 1559 MHz, at the output terminals of the 1.2-m-diameter, parabolic-dish antenna for the L-Band shipboard terminal. Other EMI measurements include field intensity from 3 cm- and 10 cm-wavelength pulse radars, and conducted-emission tests of primary power lines to both onboard radars.

  6. L-band maritime experiments. [using ATS 6 satellite

    NASA Technical Reports Server (NTRS)

    Brandel, D. L.; Kaminsky, Y.

    1975-01-01

    Results are presented for the technical experiments conducted by the U.S. Maritime Administration (MARAD) using the ATS-6 satellite operating in the L-band fan beam mode. The MARAD experiments were conducted with satellite terminals placed on two commercial ships for evaluation of the communication service similar to that which will be available with a maritime commercial satellite system. Evaluation of position determination with a satellite was also made. Three modems having voice and digital data and a stabilized shipboard L-band antenna system were assessed. The ship antenna demonstrated successful tracking of the satellites for test period intervals of 4 to 6 hr without the need for operator adjustment. The ship position determination tests showed good measurement repeatability. The data analyzed supported the ability of future commercial satellite systems to achieve a probability of bit error of better than 0.00001.

  7. A portable L-band voice transceiver for satellite communication

    NASA Technical Reports Server (NTRS)

    Maruschak, J.; Nace, D.

    1978-01-01

    A portable L-band voice transceiver was developed as a feasibility model and can provide a half-duplex voice link to another terminal via the L-band transponder on the Applications Technology Satellite, ATS-6. The narrow band FM transceiver utilizes commercial subsystems including a UHF transceiver, provides an RF output power of 20 watts, weights less than 25 lbs., is housed in a plastic briefcase, can be powered by an automobile electrical system, and has been successfully operated with ATS-6 on numerous occasions. Design considerations and operation of the transceiver are described, along with alignment and testing procedures, packaging and cost considerations, subsystem performance requirements and overall transceiver performance characteristics.

  8. RF performance of a proposed L-band antenna system

    NASA Technical Reports Server (NTRS)

    Withington, J. R.; Reilly, H. F., Jr.; Bathker, D. A.

    1983-01-01

    Scale model work to determine efficiencies and bandwidth were made on a smooth wall dual mode feedhorn to study the feasibility of its use at L-Band for the Venus Balloon Project. Measured feedhorn patterns were made and scattered from a symmetrical subreflector. A perturbation technique was then used to predict efficiencies due to scanning effects. A correction for the asymmetrical subreflector was also made. Tables of results and patterns are included.

  9. Flux tube analysis of L-band ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.; Butala, M. D.; Pi, X.; Valladares, C. E.

    2013-06-01

    This manuscript presents magnetic flux tube analysis of L-band signal scintillation in the nighttime equatorial and low-latitude ionosphere. Residues of the scintillation index S4 estimated from the L-band signals received from Geostationary Earth Orbit (GEO) satellites are employed in the analysis. The S4 estimates have been shown to be associated with simultaneous GPS VTEC variations derived from JPL's GIPSY-GIM package. We have applied the wavelet decomposition technique simultaneously on the S4 time series in a flux tube over the equatorial and low-latitude regions. The technique decomposes the S4 signal to identify the dominant mode of variabilities and the temporal variations of scintillation-producing irregularities in the context of a flux tube. Statistically significant regions of the wavelet power spectra considered in our study have mainly shown that (a) dominant plasma irregularities associated with S4 variabilities in a flux tube have periods of about 4 to 15 minutes (horizontal irregularity scales of about 24 to 90 km). These periods match short period gravity waves, (b) scintillation-producing irregularities are anisotropic along the flux tube and in the east-west direction, and (c) the occurrences of scintillation-producing irregularities along the flux tube indicate that the entire flux tube became unstable. However, plasma instability occurrences were not simultaneous in most cases along the flux tube, there were time delays of various orders. Understanding the attributes of L-band scintillation-producing irregularities could be important for developing measures to mitigate L-band signal degradation.

  10. The Candela and Photometric and Radiometric Measurements

    PubMed Central

    Parr, Albert C.

    2001-01-01

    The national measurement system for photometric and radiometric quantities is presently based upon techniques that make these quantities traceable to a high-accuracy cryogenic radiometer. The redefinition of the candela in 1979 provided the opportunity for national measurement laboratories to base their photometric measurements on optical detector technology rather than on the emission from high-temperature blackbody optical sources. The ensuing technical developments of the past 20 years, including the significant improvements in cryogenic radiometer performance, have provided the opportunity to place the fundamental maintenance of photometric quantities upon absolute detector based technology as was allowed by the 1979 redefinition. Additionally, the development of improved photodetectors has had a significant impact on the methodology in most of the radiometric measurement areas. This paper will review the status of the NIST implementation of the technical changes mandated by the 1979 redefinition of the candela and its effect upon the maintenance and dissemination of optical radiation measurements. PMID:27500020

  11. Infrared radiometric technique in temperature measurement

    NASA Technical Reports Server (NTRS)

    Glazer, S.; Madding, R.

    1988-01-01

    One class of commercially available imaging infrared radiometers using cooled detectors is sensitive to radiation over the 3 to 12 micron wavelength band. Spectral filters can tailor instrument sensitivity to specific regions where the target exhibits optimum radiance. The broadband spectral response coupled with real time two-dimensional imaging and emittance/background temperature corrections make the instruments useful for remote measurement of surface temperatures from -20 C to +1500 C. Commonly used radiometric techniques and assumptions are discussed, and performance specifications for a typical modern commercial instrument are presented. The potential usefulness of an imaging infrared radiometer in space laboratories is highlighted through examples of research, nondestructive evaluation, safety, and routine maintenance applications. Future improvements in instrument design and application of the radiometric technique are discussed.

  12. Geometric and Radiometric Evaluation of Rasat Images

    NASA Astrophysics Data System (ADS)

    Cam, Ali; Topan, Hüseyin; Oruç, Murat; Özendi, Mustafa; Bayık, Çağlar

    2016-06-01

    RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space) Technologies Research Institute (Ankara). RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD) and RGB (15 m GSD) bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R) of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM) reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  13. Radiometric age map of southwest Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  14. Radiometric age map of southcentral Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  15. Radiometric age map of northern Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  16. Radiometric age map of Aleutian Islands

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  17. Radiometric age map of southeast Alaska

    USGS Publications Warehouse

    Wilson, Frederic H.; Turner, D.L.

    1975-01-01

    This map includes published, thesis, and open-file radiometric data available to us as of June, 1975. Some dates are not plotted because of inadequate location data in the original references.The map is divided into five sections, based on 1:1,000,000 scale enlargements of the National Atlas maps of Alaska. Within each section (e.g., southeastern Alaska), radiometric dates are plotted and keyed to 1:250,000 scale quadrangles. Accompanying each map section is table 1, listing map numbers and the sample identification numbers used in DGGS Special Report 10: Radiometric Dates from Alaska-A 1975 Compilation”. The reader is referred to Special Report 10 for more complete information on location, rock type, dating method, and literature references for each age entry. A listing of dates in Special Report lo which require correction or deletion is included S table 2. Corrected and additional entries are listed in table 3. The listings in tables 2 and 3 follow the format of Special Report 10. Table 4 is a glossary of abbreviations used for quadrangle name, rock type, mineral dated, and type of dating method used.

  18. Revised landsat-5 thematic mapper radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Barsi, J.A.

    2007-01-01

    Effective April 2, 2007, the radiometric calibration of Landsat-5 (L5) Thematic Mapper (TM) data that are processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) will be updated. The lifetime gain model that was implemented on May 5, 2003, for the reflective bands (1-5, 7) will be replaced by a new lifetime radiometric-calibration curve that is derived from the instrument's response to pseudoinvariant desert sites and from cross calibration with the Landsat-7 (L7) Enhanced TM Plus (ETM+). Although this calibration update applies to all archived and future L5 TM data, the principal improvements in the calibration are for the data acquired during the first eight years of the mission (1984-1991), where the changes in the instrument-gain values are as much as 15%. The radiometric scaling coefficients for bands 1 and 2 for approximately the first eight years of the mission have also been changed. Users will need to apply these new coefficients to convert the calibrated data product digital numbers to radiance. The scaling coefficients for the other bands have not changed.

  19. Radiometric, geometric, and image quality assessment of ALOS AVNIR-2 and PRISM sensors

    USGS Publications Warehouse

    Saunier, S.; Goryl, P.; Chander, G.; Santer, R.; Bouvet, M.; Collet, B.; Mambimba, A.; Kocaman, Aksakal S.

    2010-01-01

    The Advanced Land Observing Satellite (ALOS) was launched on January 24, 2006, by a Japan Aerospace Exploration Agency (JAXA) H-IIA launcher. It carries three remote-sensing sensors: 1) the Advanced Visible and Near-Infrared Radiometer type 2 (AVNIR-2); 2) the Panchromatic Remote-Sensing Instrument for Stereo Mapping (PRISM); and 3) the Phased-Array type L-band Synthetic Aperture Radar (PALSAR). Within the framework of ALOS Data European Node, as part of the European Space Agency (ESA), the European Space Research Institute worked alongside JAXA to provide contributions to the ALOS commissioning phase plan. This paper summarizes the strategy that was adopted by ESA to define and implement a data verification plan for missions operated by external agencies; these missions are classified by the ESA as third-party missions. The ESA was supported in the design and execution of this plan by GAEL Consultant. The verification of ALOS optical data from PRISM and AVNIR-2 sensors was initiated 4 months after satellite launch, and a team of principal investigators assembled to provide technical expertise. This paper includes a description of the verification plan and summarizes the methodologies that were used for radiometric, geometric, and image quality assessment. The successful completion of the commissioning phase has led to the sensors being declared fit for operations. The consolidated measurements indicate that the radiometric calibration of the AVNIR-2 sensor is stable and agrees with the Landsat-7 Enhanced Thematic Mapper Plus and the Envisat MEdium-Resolution Imaging Spectrometer calibration. The geometrical accuracy of PRISM and AVNIR-2 products improved significantly and remains under control. The PRISM modulation transfer function is monitored for improved characterization.

  20. The radiometric characteristics of KOMPSAT-3A by using reference radiometric tarps and ground measurement

    NASA Astrophysics Data System (ADS)

    Yeom, Jong-Min

    2016-09-01

    In this study, we performed the vicarious radiometric calibration of KOMPSAT-3A multispectral bands by using 6S radiative transfer model, radiometric tarps, MFRSR measurements. Furthermore, to prepare the accurate input parameter, we also did experiment work to measure the BRDF of radiometric tarps based on hyperspectral gonioradiometer to compensate the observation geometry difference between satellite and ASD Fieldspec 3. Also, we measured point spread function (PSF) by using the bright star and corrected multispectral bands based on the Wiener filter. For accurate atmospheric constituent effects such as aerosol optical depth, column water, and total ozone, we used MFRSR instrument and estimated related optical depth of each gases. Based on input parameters for 6S radiative transfer model, we simulated top of atmosphere (TOA) radiance by observed by KOMPSAT-3A and matched-up the digital number. Consequently, DN to radiance coefficients was determined based on aforementioned methods and showed reasonable statistics results.

  1. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept.

    PubMed

    Bosch-Lluis, Xavier; Camps, Adriano; Ramos-Perez, Isaac; Marchan-Hernandez, Juan Fernando; Rodriguez-Alvarez, Nereida; Valencia, Enric

    2008-07-28

    The Passive Advanced Unit (PAU) for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD) and a GPS reflectometer (PAU-GNSS/R). These instruments in conjunction with an infra-red radiometer (PAU-IR) will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4x4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR). PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR's radiometer calibration algorithms and their performance.

  2. PAU/RAD: Design and Preliminary Calibration Results of a New L-Band Pseudo-Correlation Radiometer Concept

    PubMed Central

    Bosch-Lluis, Xavier; Camps, Adriano; Ramos-Perez, Isaac; Marchan-Hernandez, Juan Fernando; Rodriguez-Alvarez, Nereida; Valencia, Enric

    2008-01-01

    The Passive Advanced Unit (PAU) for ocean monitoring is a new type of instrument that combines in a single receiver and without time multiplexing, a polarimetric pseudo-correlation microwave radiometer at L-band (PAU-RAD) and a GPS reflectometer (PAU-GNSS/R). These instruments in conjunction with an infra-red radiometer (PAU-IR) will respectively provide the sea surface temperature and the sea state information needed to accurately retrieve the sea surface salinity from the radiometric measurements. PAU will consist of an array of 4×4 receivers performing digital beamforming and polarization synthesis both for PAU-RAD and PAU-GNSS/R. A concept demonstrator of the PAU instrument with only one receiver has been implemented (PAU-One Receiver or PAU-OR). PAU-OR has been used to test and tune the calibration algorithms that will be applied to PAU. This work describes in detail PAU-OR's radiometer calibration algorithms and their performance. PMID:27879943

  3. Characterization and discrimination of evolving mineral and plant oil slicks based on L-band synthetic aperture radar (SAR)

    NASA Astrophysics Data System (ADS)

    Jones, Cathleen E.; Espeseth, Martine M.; Holt, Benjamin; Brekke, Camilla; Skrunes, Stine

    2016-10-01

    Evolution of the damping ratio for Bragg wavenumbers in the range 32-43 rad/m is evaluated for oil slicks of different composition released in the open ocean and allowed to develop naturally. The study uses quad-polarimetric L-band airborne synthetic aperture radar data acquired over three mineral oil emulsion releases of different, known oil-to-water ratio, and a near-coincident release of 2-ethylhexyl oleate that served as a biogenic look-alike. The experiment occurred during the 2015 Norwegian oil-on-water exercise in the North Sea during a period of relatively high winds ( 12 m/s). NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) was used to repeatedly image the slicks over a period of eight hours, capturing the slicks' early development and providing a time series from which to track the evolution of the slicks' size, position, and radiometric characteristics. Particular emphasis is given in this analysis to identification of zones of higher damping ratio within the slicks (zoning) as potential indicators of thicker oil, and to comparison of the evolution of emulsion and plant oil damping ratios. It was found that all mineral oil slicks initially exhibited zoning apparent in VV, HH, and HV intensities, and that the areas of higher damping ratio persisted the longest for the highest oil content emulsion (80% oil by volume). In contrast, zoning was not unambiguously evident for plant oil at any time from 44 minutes to 8.5 hours after release.

  4. A compact L-band Ortho Mode Junction

    NASA Astrophysics Data System (ADS)

    Pisanu, T.; Marongiu, P.; Navarrini, A.; Valente, G.

    2010-07-01

    We describe the design construction and performance of a L-band (1300-1800 MHz) Ortho Mode Junction for the L-P dual-band receiver to be installed on the 64 m Sardinia Radio Telescope (SRT), a new radio telescope which is being built in Sardinia, Italy. The Ortho Mode Junction (OMJ) separates two orthogonal linearly polarized signals propagating in a 172 mm diameter circular waveguide and couple them into four coaxial outputs. The OMJ is part of an OMT (Ortho Mode Transducer), which includes two 1800 hybrids allowing to recombine the out-of-phase signals from the balanced OMJ outputs. The OMJ consists of four probes arranged in symmetrical configuration across the circular waveguide. A shaped tuning stub with cylindrical profile is placed a quarter wavelength away from the probes to guarantee broadband operation with low reflection coefficient across L-band. The four identical probes have a cylindrical structure, each consisting of three concentric cylinders that attach to the central pin of standard 50 Ω 7/16-type coaxial connectors. The OMJ will be cooled at 80 K inside a compact dewar together with directional couplers and Low Noise Amplifiers. The two linearly polarized signals from an input 190 mm diameter room temperature L-band feed couple into the cryogenic dewar through a vacuum window located across the waveguide. Inside the dewar, the 190 mm diameter circular waveguide is tapered down to 172 mm using a conical transition (length 85 mm) filled with a Styrodur® foam that provides mechanical support for a 0.125 mm thick Kapton vacuum barrier. A 0.6 mm air gap across the 172 mm circular waveguide provides thermal decoupling between the ambient temperature and the 80 K OMJ, which is connected to the conical transition output.

  5. L-Band TEC Measurements and Lower Frequency Scintillation

    NASA Astrophysics Data System (ADS)

    Pedersen, T. R.; Beach, T. L.

    2003-12-01

    Signal amplitude measurements from the GPS satellites are currently limited to L-band frequencies above 1 GHz, which often remain unaffected by conditions causing even severe scintillation at more sensitive lower frequencies. Use of differential carrier phase data from dual frequency receivers to drive phase screen models and estimate scintillation at other frequencies is one potential means of monitoring scintillation over a wider range of frequencies. However, this process is complicated by the presence of a diffractive component in the L-band signal phase which can obscure the true structure in total electron content (TEC) needed as input to phase screen models. Signal amplitudes and phases at L1 and L2 frequencies (1.57 and 1.23 GHz, respectively) are calculated after propagation through one-dimensional power-law phase screens and then the resulting differential carrier phase compared with the initial phase values in the screen. Scintillation at a variety of frequencies is then computed from both the original screen and the simulated differential carrier phase, and the two results compared to examine the effects of the unobservable diffractive phase component contained in observational TEC data. Initial results show an increase of ~10% in S4 index computed at 250 MHz from simulated differential carrier phase compared to the direct phase screen computation. These results suggest that under many conditions L-band TEC observations can be used effectively to estimate VHF and UHF scintillation over a wide range of scintillation levels, and that the differences resulting from use of observed TEC instead of true ionospheric phase can be accounted for by a relatively simple correction factor.

  6. UAVSAR: Airborne L-band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.

    2009-01-01

    The primary objectives of the UAVSAR Project were to: a) develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for use on an unmanned aerial vehicle (UAV) or piloted vehicle. b) develop the associated processing algorithms for repeat-pass differential interferometric measurements using a single antenna. c) conduct measurements of geophysical interest, particularly changes of rapidly deforming surfaces such as volcanoes or earthquakes. Two complete systems were developed. Operational Science Missions began on February 18, 2009 ... concurrent development and testing of the radar system continues.

  7. Picture processing of SAR L-band imagery

    NASA Technical Reports Server (NTRS)

    Bryan, M. L.; Stromberg, W. D.; Farr, T.

    1977-01-01

    Data digitization and thresholding are applied to two scenes - sea ice and fresh-water lakes - to define the possible uses of automatic picture processing of uncalibrated SAR L-band imagery. It is shown that certain types of features, those which have constant returns which are also very high or very low in intensity can be effectively studied using simple automatic picture processing techniques applied to uncalibrated radar data. In areas which are generally inaccessible or in which monitoring of the changes of some types of earth surfaces are required, the uncalibrated SAR data can provide valuable inputs for modeling and mapping purposes.

  8. L-band RF gun with a thermionic cathode

    SciTech Connect

    Nagaitsev, S.; Andrews, R.; Church, M.; Lunin, A.; Nezhevenko, O.; Solyak, N.; Sun, D.; Yakovlev, V.; /Fermilab

    2008-06-01

    We present a conceptual design for an L-band (1.3 GHz) rf gun with a two-grid thermionic cathode assembly. The rf gun is designed to provide a 9 mA average beam current for 1 ms pulses at a 5 Hz rate. These parameters match the beam requirements for both the ILC and the Fermilab Project X test facilities. In our simulations we are able to attain a full bunch length of 20-30 degrees, while the output energy can vary from 2 to 4 MeV. Simulations as well as a preliminary design will be presented.

  9. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  10. Mapping Greenland's Firn Aquifer using L-band Microwave Radiometry

    NASA Astrophysics Data System (ADS)

    Miller, J.; Bringer, A.; Jezek, K. C.; Johnson, J. T.; Scambos, T. A.; Long, D. G.

    2016-12-01

    Greenland's recently discovered firn aquifer is one of the most interesting, yet still mysterious, components of the ice sheet system. Many open questions remain regarding timescales of refreezing and/or englacial drainage of liquid meltwater, and the connections of firn aquifers to the subglacial hydrological system. If liquid meltwater production at the surface of the Greenland ice sheet continues to increase, subsequent increases in the volume of mobile liquid meltwater retained within Greenland's firn aquifer may increase the possibility of crevasse-deepening via hydrofracture. Hydrofracture is an important component of supraglacial lake drainage leading to at least temporary accelerated flow velocities and ice sheet mass balance changes. Firn aquifers may also support hydrofracture-induced drainage and thus are potentially capable of significantly influencing ice sheet mass balance and sea level rise. Spaceborne L-band microwave radiometers provide an innovative tool for ice-sheet wide mapping of the spatiotemporal variability of Greenland's firn aquifer. Both refreezing and englacial drainage may be observable given the sensitivity of the microwave response to the upper surface of liquid meltwater retained within snow and firn pore space as well as the ability of L band instruments to probe the ice sheet from the surface to the firn-ice transition at pore close-off depth. Here we combine L-band (1.4 GHz) brightness temperature observations from multiple sources to demonstrate the potential of mapping firn aquifers on ice sheets using L-band microwave radiometry. Data sources include the interferometric MIRAS instrument aboard ESA's Soil Moisture and Ocean Salinity (SMOS) satellite mission and the radiometer aboard NASA's Soil Moisture Active Passive (SMAP) satellite mission. We will also present mulit-frequency L-band brightness temperature data (0.5-2 GHz) that will be collected over several firn aquifer areas on the Greenland ice sheet by the Ohio State

  11. Low-profile metamaterial-based L-band antennas

    NASA Astrophysics Data System (ADS)

    Burokur, Shah Nawaz; Lepage, Anne-Claire; Varault, Stefan; Begaud, Xavier; Piau, Gérard-Pascal; de Lustrac, André

    2016-04-01

    The aim of the present contribution is to show that metasurfaces such as reactive impedance surfaces (RIS) and artificial magnetic conductors can be efficiently used in the design of low-profile circularly polarized L-band antennas. We present the design and simulation of the compact and low-profile antennas. The solution based on RIS will be compared to a circularly polarized microstrip patch antenna using the same materials in order to prove the benefit of metasurfaces. The engineered metasurfaces allow increasing the bandwidths with few modifications on the thickness and the overall antenna size.

  12. Omni-directional L-band antenna for mobile communications

    NASA Technical Reports Server (NTRS)

    Kim, C. S.; Moldovan, N.; Kijesky, J.

    1988-01-01

    The principle and design of an L-band omni-directional mobile communication antenna are discussed. The antenna is a circular wave guide aperture with hybrid circuits attached to higher order mode excitation. It produces polarized and symmetric two split beams in elevation. The circular waveguide is fed by eight probes with a 90 degree phase shift between their inputs. Radiation pattern characteristics are controlled by adjusting the aperture diameter and mode excitation. This antenna satisfies gain requirements as well as withstanding the harsh environment.

  13. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  14. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    Raw thematic mapper (TM) calibration data from pre-launch tests and in-orbit acquisitions from LANDSAT 4 and 5 satellites are analyzed to assess the radiometric characteristics of the TM sensor. A software program called TM radiometric and algorithmic performance program (TRAPP) was used for the majority of analyses. Radiometric uncertainty in the final TM image originates from: (1) scene variability (solar irradiance and atmospheric scattering); (2) optical and electrical variability of the sensor; and (3) variability introduced during image processing.

  15. Radiometric instrumentation and measurements guide for photovoltaic performance testing

    SciTech Connect

    Myers, D.

    1997-04-01

    The Photovoltaic Module and Systems Performance and Engineering Project at the National Renewable Energy Laboratory performs indoor and outdoor standardization, testing, and monitoring of the performance of a wide range of photovoltaic (PV) energy conversion devices and systems. The PV Radiometric Measurements and Evaluation Team (PVSRME) within that project is responsible for measurement and characterization of natural and artificial optical radiation which stimulates the PV effect. The PV manufacturing and research and development community often approaches project members for technical information and guidance. A great area of interest is radiometric instrumentation, measurement techniques, and data analysis applied to understanding and improving PV cell, module, and system performance. At the Photovoltaic Radiometric Measurements Workshop conducted by the PVSRME team in July 1995, the need to communicate knowledge of solar and optical radiometric measurements and instrumentation, gained as a result of NREL`s long-term experiences, was identified as an activity that would promote improved measurement processes and measurement quality in the PV research and manufacturing community. The purpose of this document is to address the practical and engineering need to understand optical and solar radiometric instrument performance, selection, calibration, installation, and maintenance applicable to indoor and outdoor radiometric measurements for PV calibration, performance, and testing applications. An introductory section addresses radiometric concepts and definitions. Next, concepts essential to spectral radiometric measurements are discussed. Broadband radiometric instrumentation and measurement concepts are then discussed. Each type of measurement serves as an important component of the PV cell, module, and system performance measurement and characterization process.

  16. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors

    PubMed Central

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-01

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors’ radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors’ application, and as such will promote the development of Chinese satellite data. PMID:28117745

  17. Evaluation on Radiometric Capability of Chinese Optical Satellite Sensors.

    PubMed

    Yang, Aixia; Zhong, Bo; Wu, Shanlong; Liu, Qinhuo

    2017-01-22

    The radiometric capability of on-orbit sensors should be updated on time due to changes induced by space environmental factors and instrument aging. Some sensors, such as Moderate Resolution Imaging Spectroradiometer (MODIS), have onboard calibrators, which enable real-time calibration. However, most Chinese remote sensing satellite sensors lack onboard calibrators. Their radiometric calibrations have been updated once a year based on a vicarious calibration procedure, which has affected the applications of the data. Therefore, a full evaluation of the sensors' radiometric capabilities is essential before quantitative applications can be made. In this study, a comprehensive procedure for evaluating the radiometric capability of several Chinese optical satellite sensors is proposed. In this procedure, long-term radiometric stability and radiometric accuracy are the two major indicators for radiometric evaluation. The radiometric temporal stability is analyzed by the tendency of long-term top-of-atmosphere (TOA) reflectance variation; the radiometric accuracy is determined by comparison with the TOA reflectance from MODIS after spectrally matching. Three Chinese sensors including the Charge-Coupled Device (CCD) camera onboard Huan Jing 1 satellite (HJ-1), as well as the Visible and Infrared Radiometer (VIRR) and Medium-Resolution Spectral Imager (MERSI) onboard the Feng Yun 3 satellite (FY-3) are evaluated in reflective bands based on this procedure. The results are reasonable, and thus can provide reliable reference for the sensors' application, and as such will promote the development of Chinese satellite data.

  18. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  19. Optical Imaging and Radiometric Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Ha, Kong Q.; Fitzmaurice, Michael W.; Moiser, Gary E.; Howard, Joseph M.; Le, Chi M.

    2010-01-01

    OPTOOL software is a general-purpose optical systems analysis tool that was developed to offer a solution to problems associated with computational programs written for the James Webb Space Telescope optical system. It integrates existing routines into coherent processes, and provides a structure with reusable capabilities that allow additional processes to be quickly developed and integrated. It has an extensive graphical user interface, which makes the tool more intuitive and friendly. OPTOOL is implemented using MATLAB with a Fourier optics-based approach for point spread function (PSF) calculations. It features parametric and Monte Carlo simulation capabilities, and uses a direct integration calculation to permit high spatial sampling of the PSF. Exit pupil optical path difference (OPD) maps can be generated using combinations of Zernike polynomials or shaped power spectral densities. The graphical user interface allows rapid creation of arbitrary pupil geometries, and entry of all other modeling parameters to support basic imaging and radiometric analyses. OPTOOL provides the capability to generate wavefront-error (WFE) maps for arbitrary grid sizes. These maps are 2D arrays containing digital sampled versions of functions ranging from Zernike polynomials to combination of sinusoidal wave functions in 2D, to functions generated from a spatial frequency power spectral distribution (PSD). It also can generate optical transfer functions (OTFs), which are incorporated into the PSF calculation. The user can specify radiometrics for the target and sky background, and key performance parameters for the instrument s focal plane array (FPA). This radiometric and detector model setup is fairly extensive, and includes parameters such as zodiacal background, thermal emission noise, read noise, and dark current. The setup also includes target spectral energy distribution as a function of wavelength for polychromatic sources, detector pixel size, and the FPA s charge

  20. L-band orthogonal-mode crossed-slot antenna and VHF crossed-loop antenna

    NASA Technical Reports Server (NTRS)

    Olsson, T.

    1972-01-01

    A low gain, circularly polarized, L-band antenna; a low gain, linealy polarized, L-band antenna; and a low gain, circularly polarized, upper hemisphere, VHF satellite communications antenna intended for airborne applications are described. The text includes impedance and antenna radiation pattern data, along with physical description of the construction of the antennas.

  1. Systematic biases in radiometric diameter determinations

    NASA Technical Reports Server (NTRS)

    Spencer, John R.; Lebofsky, Larry A.; Sykes, Mark V.

    1989-01-01

    Radiometric diameter determinations are presently shown to often be significantly affected by the effect of rotation. This thermal effect of rotation depends not only on the object's thermal inertia, rotation rate, and pole orientation, but also on its temperature, since colder objects having constant rotation rate and thermal inertia will radiate less of their heat on the diurnal than on the nocturnal hemisphere. A disk-integrated beaming parameter of 0.72 is determined for the moon, and used to correct empirically for the roughness effects in thermophysical models; the standard thermal model is found to systematically underestimate cold object diameters, while overstating their albedos.

  2. LLM: An L-band multibeam land mobile payload for Europe

    NASA Technical Reports Server (NTRS)

    Benedicto, J.; Rammos, E.; Oppenhaeuser, G.; Roederer, A.

    1990-01-01

    The European Space Agency is developing, in the context of the ARTEMIS program, a multibeam reconfigurable mobile payload to provide pre-operational land-mobile satellite services at the L-band over Europe. The L-band Land-Mobile (LLM) payload features high capacity at L-band, efficient use of the L-band spectrum resources, and flexibility in reconfiguring the allocation of bandwith and RF power resources to the different beams. Additionally, a number of features were added to the payload purely for experimental purposes, like the provision of one steerable spot beam which can be repositioned anywhere within the coverage area, and the possibility to reuse L-band frequencies by spatial discrimination between non-adjacent beams, or via orthogonal polarizations. The architecture of the payload and the hardware implementation of the most critical subsystems are described.

  3. Severe Marine Weather Studies using SMOS L-band Sensor

    NASA Astrophysics Data System (ADS)

    Reul, Nicolas; Chapron, Bertrand; Zabolotskikh, Elizaveta

    2014-05-01

    The Soil Moisture and Ocean Salinity (SMOS) mission provides multi-angular L-band (1.4 GHz) brightness temperature images of the Earth. Because upwelling radiation at 1.4 GHz is significantly less affected by rain and atmospheric effects than at higher microwave frequencies, the SMOS measurements offer unique opportunities to complement existing ocean satellite high wind observations that are often erroneous in these extreme conditions. In this talk, we shall provide an overview of the results of an ESA project which aims to exploit the identified capability of SMOS L1 Brightness Temperatures to monitor wind speed and whitecap statistical properties beneath Tropical Cyclones and severe storms. We shall present an overview of these new capabilities and of the potential of the synergy between L-band and C-band sensor data for severe marine weather monitoring. In particular, we will show the results from SMOS for several Hurricanes and Typhoons since 2010 and an analysis of the combined SMOS and AMSR-2 data acquired during the passage of the Typhoon Haiyan, the strongest tropical storms to date and the second-deadliest Philippine typhoon on record.

  4. Examples of recent ground based L-band radiometer experiments

    NASA Astrophysics Data System (ADS)

    Schwank, Mike; Voelksch, I.; Maetzler, Ch.; Wigneron, Jean-Pierre; Kerr, Y. H.; Antolin, M. C.; Coll, A.; Millan-Scheiding, C.; Lopez-Baeza, Ernesto

    L-band (1 -2 GHz) microwave radiometry is a remote sensing technique to monitor soil mois-ture over land surfaces. The European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) radiometer mission aims at providing global maps of soil moisture, with accuracy bet-ter than 0.04 m3 m-3 every 3 days, with a spatial resolution of approximately 40 km. Monitoring the large scale moisture dynamics at the boundary between the deep bulk soil and the atmo-sphere provides essential information both for terrestrial and atmospheric modellers. Perform-ing ground based radiometer campaigns before the mission launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the used radiative transfer models. This presentation starts with an outline of the basic concepts behind remote moisture retrieval from passive L-band radiation. Then the results from a selection of ground based microwave campaigns performed ü with the ELBARA radiometer and its successor models (JULBARA, ELBARAII) are pre-sented. Furthermore, some of the most important technical features, which were implemented in ELBARAII as the result of the experiences made with the forerunner, are outlined.

  5. L-band RFI Detected by SMOS and Aquarius

    NASA Technical Reports Server (NTRS)

    Soldo, Yan; Le Vine, David M.; de Matthaeis, Paolo; Richaume, Philippe

    2017-01-01

    Ocean salinity and soil moisture are key parameters for understanding the global water cycle, weather, and climate. These parameters are being measured with spaceborne radiometers operating in the L-band window at 14001427 MHz. Although man-made activity in this band is prohibited, radio frequency interference (RFI) is still a problem over significant portions of the earth. This paper reports a comparison of the RFI environment in this window as observed by two L-band radiometer systems, Aquarius and Soil Moisture and Ocean Salinity. The observed RFI environment depends on the sources and also on the characteristics of the instrument. Comparing the observations provides insight into the extent of the problem (actual sources), the influence of the instrument on the observation of RFI, and on potential ways of mitigating the effects. As this report shows, the global distribution of RFI is largely consistent between the two instruments, but the details, especially at low levels of RFI, depend on the characteristics of the instrument.

  6. Radiometric dates from Alaska: A 1975 compilation

    USGS Publications Warehouse

    Turner, D.L.; Grybeck, Donald; Wilson, Frederic H.

    1975-01-01

    The following table of radiometric dates from Alaska includes published material through 1972 as well as some selected later data. The table includes 726 mineral and whole-rock dates determined by the K-Ar, Rb-Sr, fission-track U-Pb, and Pb-alpha techniques.The data are organized in alphabetical order of the 1:250,000 scale quadrangles in which the dated rocks are located. The latitude and longitude of each sample are given. In addition, each sample is located on a 1:250,000 quadrangle map by a grid system. The initial point of the grid is taken as the southwest corner of the quadrangle and the location of the sample is measured in inches east and inches north from that corner, e.g., "156E 126N" indicated 15.6 inches east and 12.6 inches north of the southwest corner of the quadrangle. Zeroes in the location columns for some dates indicate that accurate locations are not available.Rock type, dating method, mineral dated, radiometric age, sample identification number, and reference are also listed where possible. Short comments, mostly geographic locality names, are given for some dates. These comments have been taken from the original references.Sample identification numbers beginning with "AA" or "BB" have been assigned arbitrarily in cases where sample numbers were not assigned in the original references. Abbreviations are explained in the appendix at the end of table 1.

  7. Photovoltaic radiometric measurements workshop introduction and overview

    SciTech Connect

    Myers, D.R.

    1995-09-01

    The National Renewable Energy Laboratory supports the U.S. Department of Energy`s photovoltaic (PV) program through research in basic and engineering sciences related to improving the performance and commercial viability of PV energy conversion as an alternative energy source. Since 1975, much progress and technological evolution has taken place, chronicled in part by periodic scientific and engineering conferences, program reviews, and workshops involving manufacturers, universities, and private and government research laboratories. The growth of the PV program resulted in more specialized and topical workshops sponsored in part by the NREL Photovoltaic Module and Systems Performance and Engineering Project to address specific program issues. Solar and optical radiometric measurements and data are crucial in quantifying PV research progress, available solar resources, and predicted and installed PV array performance. This workshop is an effort to focus on the state-of-the-art, needs, future research directions, and NREL action items for radiometric instrumentation, data, and research to maintain the momentum of progress toward the fundamental understanding of, improvement in, and sustainability of PV technology as an alternative energy source.

  8. Real-time adaptive radiometric compensation.

    PubMed

    Grundhöfer, Anselm; Bimber, Oliver

    2008-01-01

    Recent radiometric compensation techniques make it possible to project images onto colored and textured surfaces. This is realized with projector-camera systems by scanning the projection surface on a per-pixel basis. Using the captured information, a compensation image is calculated that neutralizes geometric distortions and color blending caused by the underlying surface. As a result, the brightness and the contrast of the input image is reduced compared to a conventional projection onto a white canvas. If the input image is not manipulated in its intensities, the compensation image can contain values that are outside the dynamic range of the projector. These will lead to clipping errors and to visible artifacts on the surface. In this article, we present an innovative algorithm that dynamically adjusts the content of the input images before radiometric compensation is carried out. This reduces the perceived visual artifacts while simultaneously preserving a maximum of luminance and contrast. The algorithm is implemented entirely on the GPU and is the first of its kind to run in real-time.

  9. Landsat-7 ETM+ radiometric calibration status

    NASA Astrophysics Data System (ADS)

    Barsi, Julia A.; Markham, Brian L.; Czapla-Myers, Jeffrey S.; Helder, Dennis L.; Hook, Simon J.; Schott, John R.; Haque, Md. Obaidul

    2016-09-01

    Now in its 17th year of operation, the Enhanced Thematic Mapper + (ETM+), on board the Landsat-7 satellite, continues to systematically acquire imagery of the Earth to add to the 40+ year archive of Landsat data. Characterization of the ETM+ on-orbit radiometric performance has been on-going since its launch in 1999. The radiometric calibration of the reflective bands is still monitored using on-board calibration devices, though the Pseudo-Invariant Calibration Sites (PICS) method has proven to be an effective tool as well. The calibration gains were updated in April 2013 based primarily on PICS results, which corrected for a change of as much as -0.2%/year degradation in the worst case bands. A new comparison with the SADE database of PICS results indicates no additional degradation in the updated calibration. PICS data are still being tracked though the recent trends are not well understood. The thermal band calibration was updated last in October 2013 based on a continued calibration effort by NASA/Jet Propulsion Lab and Rochester Institute of Technology. The update accounted for a 0.036 W/m2 sr μm or 0.26K at 300K bias error. The updated lifetime trend is now stable to within +/- 0.4K.

  10. Understanding Satellite Characterization Knowledge Gained from Radiometric Data

    DTIC Science & Technology

    2011-09-01

    UNDERSTANDING SATELLITE CHARACTERIZATION KNOWLEDGE GAINED FROM RADIOMETRIC DATA Andrew Harms Princeton University Kris Hamada, Charles J. Wetterer...framework for determining satellite characterization knowledge, in the form of estimated parameter uncertainties, from radiometric observation type...uncer- tainties into satellite characterization parameter space. These parameters can include size, shape, orientation, material properties, etc., and

  11. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    DTIC Science & Technology

    2015-03-31

    Final March 2013 -- February 2015 Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements N00014-13-1-0352 Yue, Dick K.P... Dick K.P. and Yuming Liu 617-253-6823; 617-252-1647 1 Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements Dick K.P

  12. Relative radiometric calibration of LANDSAT TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.

    1984-01-01

    A common scientific methodology and terminology is outlined for characterizing the radiometry of both TM sensors. The magnitude of the most significant sources of radiometric variability are discussed and methods are recommended for achieving the exceptional potential inherent in the radiometric precision and accuracy of the TM sensors.

  13. Best practices for radiometric modeling of imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Zellinger, Lou; Silny, John F.

    2015-09-01

    This paper provides best practices for the radiometric performance modeling of imaging spectrometers. A set of standard terminology is proposed to use when modeling imaging spectrometers. The calculation of various radiometric sensitivity metrics and their contrast counterparts are outlined. Modeling approaches are described for both solar reflected and thermally emitted bands. Finally, this approach is applied to an example hyperspectral sensor.

  14. Validation of Landsat 7 ETM+ band 6 radiometric performance

    NASA Technical Reports Server (NTRS)

    Palluconi, Frank; Hook, Simon; Abtahi, Ali; Alley, Ron

    2005-01-01

    Since shortly after launch the radiometric performance of band 6 of the ETM+ instrument on Landsat 7 has been evaluated using vicarious calbiration techniques for both land and water targets. This evaluation indicates the radiometric performance of band 6 has been both highly stable and accurate.

  15. Enhancing the Accessibility and Utility of UAVSAR L-band SAR Data

    NASA Astrophysics Data System (ADS)

    Atwood, D.; Arko, S. A.; Gens, R.; Sanches, R. R.

    2011-12-01

    The UAVSAR instrument, developed at NASA Jet Propulsion Lab, is a reconfigurable L-band, quad-polarimetric Synthetic Aperture Radar (SAR) developed specifically for repeat-track differential interferometry (InSAR). It offers resolution of approximately 5m and swaths greater than 16 km. Although designed to be flown aboard a UAV (Uninhabited Aerial Vehicle), it is currently being flown aboard a Gulfstream III in an ambitious set of campaigns around the world. The current archive from 2009 contains data from more than 100 missions from North America, Central America, the Caribbean, and Greenland. Compared with most SAR data from satellites, UAVSAR offers higher resolution, full-polarimetry, and an impressive noise floor. For scientists, these datasets present wonderful opportunities for understanding Earth processes and developing new algorithms for information extraction. Yet despite the diverse range of coverage, UAVSAR is still relatively under-utilized. In its capacity as the NASA SAR DAAC, the Alaska Satellite Facility (ASF) is interested in expanding recognition of this data and serving data products that can be readily downloaded into a Geographic Information System (GIS) environment. Two hurdles exist: one is the large size of the data products and the second is the format of the data. The data volumes are in excess of several GB; presenting slow downloads and overwhelming many software programs. Secondly, while the data is appropriately formatted for expert users, it may prove challenging for scientists who have not previously worked with SAR. This paper will address ways that ASF is working to reduce data volume while maintaining the integrity of the data. At the same time, the creation of value-added products that permit immediate visualization in a GIS environment will be described. Conversion of the UAVSAR polarimetric data to radiometrically terrain-corrected Pauli images in a GeoTIFF format will permit researchers to understand the scattering

  16. New Combined L-band Active/Passive Soil Moisture Retrieval Algorithm Optimized for Argentine Plains

    NASA Astrophysics Data System (ADS)

    Bruscantini, C. A.; Grings, F. M.; Salvia, M.; Ferrazzoli, P.; Karszenbaum, H.

    2015-12-01

    The ability of L-band passive microwave satellite observations to provide soil moisture (mv) measurements is well known. Despite its high sensitivity to near-surface mv, radiometric technology suffers from having a relatively low spatial resolution. Conversely active microwave observations, although their finer resolution, are difficult to be interpreted for mv content due to the confounding effects of vegetation and roughness. There have been and there are strong motivations for the realization of satellite missions that carry passive and active microwave instruments on board. This has also led to important contributions in algorithm development. In this line of work, NASA-CONAE SAC-D/Aquarius mission had on board an L band radiometer and scatterometer. This was followed by the launch of NASA SMAP mission (Soil Moisture Active Passive), as well as several airborne campaigns that provide active and passive measurements. Within this frame, a new combined active/passive mv retrieval algorithm is proposed by deriving an analytical expression of brightness temperature and radar backscattering relation using explicit semi-empirical models. Simple models (i.e. that can be easily inverted and have relatively low amount of ancillary parameters) were selected: ω-τ model (Jackson et al., 1982, Water Resources Research) and radar-only model (Narvekar et al., 2015, IEEE Transactions on Geoscience and Remote Sensing). A major challenge involves coupling the active and passive models to be consistent with observations. Coupling equations can be derived using theoretical active/passive high-order radiative transfer models, such as 3D Numerical Method of Maxwell equations (Zhou et al., 2004, IEEE Transactions on Geoscience and Remote Sensing) and Tor Vergata (Ferrazzoli et al., 1995,Remote Sensing of Environment) models. In this context, different coupling equations can be optimized for different land covers using theoretical forward models with specific parametrization for each

  17. Effective Tree Scattering and Opacity at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.; Joseph, Alicia T.; Cosh, Michael H.; Jackson, Thomas J.

    2011-01-01

    This paper investigates vegetation effects at L-band by using a first-order radiative transfer (RT) model and truck-based microwave measurements over natural conifer stands to assess the applicability of the tau-omega) model over trees. The tau-omega model is a zero-order RT solution that accounts for vegetation effects with effective vegetation parameters (vegetation opacity and single-scattering albedo), which represent the canopy as a whole. This approach inherently ignores multiple-scattering effects and, therefore, has a limited validity depending on the level of scattering within the canopy. The fact that the scattering from large forest components such as branches and trunks is significant at L-band requires that zero-order vegetation parameters be evaluated (compared) along with their theoretical definitions to provide a better understanding of these parameters in the retrieval algorithms as applied to trees. This paper compares the effective vegetation opacities, computed from multi-angular pine tree brightness temperature data, against the results of two independent approaches that provide theoretical and measured optical depths. These two techniques are based on forward scattering theory and radar corner reflector measurements, respectively. The results indicate that the effective vegetation opacity values are smaller than but of similar magnitude to both radar and theoretical estimates. The effective opacity of the zero-order model is thus set equal to the theoretical opacity and an explicit expression for the effective albedo is then obtained from the zero- and first- order RT model comparison. The resultant albedo is found to have a similar magnitude as the effective albedo value obtained from brightness temperature measurements. However, it is less than half of that estimated using the theoretical calculations (0.5 - 0.6 for tree canopies at L-band). This lower observed albedo balances the scattering darkening effect of the large theoretical albedo

  18. Thematic mapper: detailed radiometric and geometric characteristics

    USGS Publications Warehouse

    Kieffer, Hugh

    1983-01-01

    Those radiometric characteristics of the Landsat 4 Thematic Mapper (TM) that can be established without absolute calibration of spectral data have been examined. Subscenes of radiometric all raw data (B-data) were examined on an individual detector basis: areas of uniform radiance were used to characterize subtle radiometric differences and noise problems. A variety of anomalies have been discovered with magnitude of a few digital levels or less: the only problem not addressable by ground processing is irregular width of the digital levels. Essentially all of this non-ideal performance is incorporated in the fully processed (P-type) images, but disguised by the geometric resampling procedure. The overall performance of the Thematic Mapper is a great improvement over previous Landsat scanners. The effective resolution in radiance is degraded by about a factor of two by irregular width of the digital levels. Several detectors have a change of gain with a period of several scans, the largest effect is about 4%. These detectors appear to switch between two response levels during scan direction reversal; there is no apparent periodicity to these changes. This can cause small apparent difference between forward and reverse scans for portions of an image. The high-frequency noise level of each detector was characterized by the standard deviation of the first derivative in the sample direction across a flat field. Coherent sinusoidal noise patterns were determined using one-dimensional Fourier transforms. A "stitching" pattern in Band 1 has a period of 13.8 samples with a peak-to-peak amplitude ranging from 1 to 5 DN. Noise with a period of 3.24 samples is pronounced for most detectors in band 1, to a lesser extent in bands 2, 3, and 4, and below background noise levels in bands 5, 6, and 7. The geometric fidelity of the GSFC film writer used for Thematic Mapper (TM) images was assessed by measurement with accuracy bette than three micrometers of a test grid. A set of 55

  19. Visible/infrared radiometric calibration station

    SciTech Connect

    Byrd, D.A.; Maier, W.B. II; Bender, S.C.; Holland, R.F.; Michaud, F.D.; Luettgen, A.L.; Christensen, R.W.; O`Brian, T.R.

    1994-07-01

    We have begun construction of a visible/infrared radiometric calibration station that will allow for absolute calibration of optical and IR remote sensing instruments with clear apertures less than 16 inches in diameter in a vacuum environment. The calibration station broadband sources will be calibrated at the National Institute of Standards and Technology (NIST) and allow for traceable absolute radiometric calibration to within {plus_minus}3% in the visible and near IR (0.4--2.5 {mu}m), and less than {plus_minus}1% in the infrared, up to 12 {mu}m. Capabilities for placing diffraction limited images or for sensor full-field flooding will exist. The facility will also include the calibration of polarization and spectral effects, spatial resolution, field of view performance, and wavefront characterization. The configuration of the vacuum calibration station consists of an off-axis 21 inch, f/3.2, parabolic collimator with a scanning fold flat in collimated space. The sources are placed, via mechanisms to be described, at the focal plane of the off-axis parabola. Vacuum system pressure will be in the 10{sup {minus}6} Torr range. The broadband white-light source is a custom design by LANL with guidance from Labsphere Inc. The continuous operating radiance of the integrating sphere will be from 0.0--0.006 W/cm{sup 2}/Sr/{mu}m (upper level quoted for {approximately}500 nm wavelength). The blackbody source is also custom designed at LANL with guidance from NIST. The blackbody temperature will be controllable between 250--350{degrees}K. Both of the above sources have 4.1 inch apertures with estimated radiometric instability at less than 1%. The designs of each of these units will be described. The monochromator and interferometer light sources are outside the vacuum, but all optical relay and beam shaping optics are enclosed within the vacuum calibration station. These sources are described, as well as the methodology for alignment and characterization.

  20. Comparing C- and L-band SAR images for sea ice motion estimation

    NASA Astrophysics Data System (ADS)

    Lehtiranta, J.; Siiriä, S.; Karvonen, J.

    2015-02-01

    Pairs of consecutive C-band synthetic-aperture radar (SAR) images are routinely used for sea ice motion estimation. The L-band radar has a fundamentally different character, as its longer wavelength penetrates deeper into sea ice. L-band SAR provides information on the seasonal sea ice inner structure in addition to the surface roughness that dominates C-band images. This is especially useful in the Baltic Sea, which lacks multiyear ice and icebergs, known to be confusing targets for L-band sea ice classification. In this work, L-band SAR images are investigated for sea ice motion estimation using the well-established maximal cross-correlation (MCC) approach. This work provides the first comparison of L-band and C-band SAR images for the purpose of motion estimation. The cross-correlation calculations are hardware accelerated using new OpenCL-based source code, which is made available through the author's web site. It is found that L-band images are preferable for motion estimation over C-band images. It is also shown that motion estimation is possible between a C-band and an L-band image using the maximal cross-correlation technique.

  1. Radiometrically accurate FTS for atmospheric emission observations

    NASA Technical Reports Server (NTRS)

    Revercomb, H. E.; Smith, W. L.; Stromovsky, L. A.; Knuteson, R. O.; Buijs, H.

    1989-01-01

    The calibration and operational performance of an FTIR-based airborne high-resolution interferometer sounder (HIS) for use in broadband measurements of atmospheric emission at 3.8-16.6 microns are described. The radiometric and wavelength calibration procedures in the laboratory involved the use of reference black bodies at 300 and 245 K and the known wavelength of the HIS HeNe laser (corrected for FOV effects), respectively. The atmospheric verification program included downlooking observations from the NASA U2/ER2 aircraft (where resolving power of 1800-3800 was demonstrated) and uplooking observations from the ground; good agreement with data from balloon-borne radiosondes is obtained, with absolute temperature uncertainties of less than 0.5 K and reproducibilities of 0.1-0.2 K over most of the measurement domain.

  2. A Radiometric Uncertainty Tool for OLCI

    NASA Astrophysics Data System (ADS)

    Hunt, S.; Nieke, J.

    2016-08-01

    With its first satellite launched in February 2016, the Sentinel-3 mission will support Ocean, Land, Atmospheric, Emergency, Security and Cryospheric applications and related Copernicus services (http://www.copernicus.eu). One of the key payloads carried by the satellite, OLCI (Ocean and Land Colour Instrument), is a push-broom imaging spectrometer designed to image the Earth's surface in 21 spectral bands, from the visible to the near infrared, across a 1200 km swath. An understanding of the quality of the Level 1b (L1) data produced by OLCI is important for many of its applications. As such, work has been ongoing to develop a software tool to determine the per pixel uncertainty of these images to be used by L1 product users. This tool has been named OLCI-RUT (OLCI - Radiometric Uncertainty Tool) and this report provides a description of its development.

  3. GIFTS SM EDU Radiometric and Spectral Calibrations

    NASA Technical Reports Server (NTRS)

    Tian, J.; Reisse, R. a.; Johnson, D. G.; Gazarik, J. J.

    2007-01-01

    The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) Sensor Module (SM) Engineering Demonstration Unit (EDU) is a high resolution spectral imager designed to measure infrared (IR) radiance using a Fourier transform spectrometer (FTS). The GIFTS instrument gathers measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. This paper describes the processing algorithms involved in the calibration. The calibration procedures can be subdivided into three categories: the pre-calibration stage, the calibration stage, and finally, the post-calibration stage. Detailed derivations for each stage are presented in this paper.

  4. L-band quadriphase phase shift keyed modulator

    NASA Astrophysics Data System (ADS)

    Shoho, R. K.; Arain, M. H.

    1982-09-01

    The design of a phase shift keyed modulator, which is a part of an L-band transmitter developed for the space related portion of a detection and digital communication network, is discussed. The important aspect of the design is that, unlike a conventional 2-bit phase shifter, this device utilizes 180-degree bit phase shifters which are identical and achieve a 90-degree offset between them by virtue of the inherent 90-degree phase difference of the backward wave coupler. In this case, the backward wave coupler is realized as a Lange, interdigital microstrip device. An inherent 3 dB power loss with this configuration is of no consequence since amplitude leveling by an AGC circuit preceding the phase shift keyed modulator is used and is an acceptable tradeoff for phase stability purposes.

  5. Precision radiometric surface temperature (PRST) sensor

    NASA Astrophysics Data System (ADS)

    Daly, James T.; Roberts, Carson; Bodkin, Andrew; Sundberg, Robert; Beaven, Scott; Weinheimer, Jeffrey

    2013-05-01

    There is a need for a Precision Radiometric Surface Temperature (PRST) measurement capability that can achieve noncontact profiling of a sample's surface temperature when heated dynamically during laser processing, aerothermal heating or metal cutting/machining. Target surface temperature maps within and near the heated spot provide critical quantitative diagnostic data for laser-target coupling effectiveness and laser damage assessment. In the case of metal cutting, this type of measurement provides information on plastic deformation in the primary shear zone where the cutting tool is in contact with the workpiece. The challenge in these cases is to measure the temperature of a target while its surface's temperature and emissivity are changing rapidly and with incomplete knowledge of how the emissivity and surface texture (scattering) changes with temperature. Bodkin Design and Engineering, LLC (BDandE), with partners Spectral Sciences, Inc. (SSI) and Space Computer Corporation (SCC), has developed a PRST Sensor that is based on a hyperspectral MWIR imager spanning the wavelength range 2-5 μm and providing a hyperspectral datacube of 20-24 wavelengths at 60 Hz frame rate or faster. This imager is integrated with software and algorithms to extract surface temperature from radiometric measurements over the range from ambient to 2000K with a precision of 20K, even without a priori knowledge of the target's emissivity and even as the target emissivity may be changing with time and temperature. In this paper, we will present a description of the PRST system as well as laser heating test results which show the PRST system mapping target surface temperatures in the range 600-2600K on a variety of materials.

  6. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  7. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-07-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark datasets for both inter-calibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and -B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through one year of simultaneous nadir overpass (SNO) observations to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the longwave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both Polar and Tropical SNOs. The combined global SNO datasets indicate that, the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 comparison spectral regions and they range from 0.15 to 0.21 K in the remaining 4 spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  8. Radiometric consistency assessment of hyperspectral infrared sounders

    NASA Astrophysics Data System (ADS)

    Wang, L.; Han, Y.; Jin, X.; Chen, Y.; Tremblay, D. A.

    2015-11-01

    The radiometric and spectral consistency among the Atmospheric Infrared Sounder (AIRS), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) is fundamental for the creation of long-term infrared (IR) hyperspectral radiance benchmark data sets for both intercalibration and climate-related studies. In this study, the CrIS radiance measurements on Suomi National Polar-orbiting Partnership (SNPP) satellite are directly compared with IASI on MetOp-A and MetOp-B at the finest spectral scale and with AIRS on Aqua in 25 selected spectral regions through simultaneous nadir overpass (SNO) observations in 2013, to evaluate radiometric consistency of these four hyperspectral IR sounders. The spectra from different sounders are paired together through strict spatial and temporal collocation. The uniform scenes are selected by examining the collocated Visible Infrared Imaging Radiometer Suite (VIIRS) pixels. Their brightness temperature (BT) differences are then calculated by converting the spectra onto common spectral grids. The results indicate that CrIS agrees well with IASI on MetOp-A and IASI on MetOp-B at the long-wave IR (LWIR) and middle-wave IR (MWIR) bands with 0.1-0.2 K differences. There are no apparent scene-dependent patterns for BT differences between CrIS and IASI for individual spectral channels. CrIS and AIRS are compared at the 25 spectral regions for both polar and tropical SNOs. The combined global SNO data sets indicate that the CrIS-AIRS BT differences are less than or around 0.1 K among 21 of 25 spectral regions and they range from 0.15 to 0.21 K in the remaining four spectral regions. CrIS-AIRS BT differences in some comparison spectral regions show weak scene-dependent features.

  9. Verification of the radiometric map of the Czech Republic.

    PubMed

    Matolín, Milan

    2017-01-01

    The radiometric map of the Czech Republic is based on uniform regional airborne radiometric total count measurements (1957-1959) which covered 100% of the country. The airborne radiometric instrument was calibrated to a (226)Ra point source. The calibration facility for field gamma-ray spectrometers, established in the Czech Republic in 1975, significantly contributed to the subsequent radiometric data standardization. In the 1990's, the original analogue airborne radiometric data were digitized and using the method of back-calibration (IAEA, 2003) converted to dose rate. The map of terrestrial gamma radiation expressed in dose rate (nGy/h) was published on the scale 1:500,000 in 1995. Terrestrial radiation in the Czech Republic, formed by magmatic, sedimentary and metamorphic rocks of Proterozoic to Quaternary age, ranges mostly from 6 to 245 nGy/h, with a mean of 65.6 ± 19.0 nGy/h. The elevated terrestrial radiation in the Czech Republic, in comparison to the global dose rate average of 54 nGy/h, reflects an enhanced content of natural radioactive elements in the rocks. The 1995 published radiometric map of the Czech Republic was successively studied and verified by additional ground gamma-ray spectrometric measurements and by comparison to radiometric maps of Germany, Poland and Slovakia in border zones. A ground dose rate intercomparison measurement under participation of foreign and domestic professional institutions revealed mutual dose rate deviations about 20 nGy/h and more due to differing technical parameters of applied radiometric instruments. Studies and verification of the radiometric map of the Czech Republic illustrate the magnitude of current deviations in dose rate data. This gained experience can assist in harmonization of dose rate data on the European scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Intraband radiometric performance of the Landsat Thematic Mappers.

    USGS Publications Warehouse

    Kieffer, H.H.; Cook, D.A.; Eliason, E.M.; Eliason, P.T.

    1985-01-01

    Radiometric characteristics have been examined of the Landsat-4 and Landsat-5 Thematic Mappers (TMs) that can be established without absolute calibration of spectral data. This analysis is based on radiometrically and geometrically raw (B-type) data of both uniform (flat-field) and high-contrast scenes. Subscenes selected for uniform radiance were used to characterized subtle radiometric differences and noise problems. Although the general performance of the Thematic Mappers is excellent, various anomalies that have a magnitude of a few digital levels (DN) or less are quantified. -from Authors

  11. Radiometric cloud imaging with an uncooled microbolometer thermal infrared camera.

    PubMed

    Shaw, Joseph; Nugent, Paul; Pust, Nathan; Thurairajah, Brentha; Mizutani, Kohei

    2005-07-25

    An uncooled microbolometer-array thermal infrared camera has been incorporated into a remote sensing system for radiometric sky imaging. The radiometric calibration is validated and improved through direct comparison with spectrally integrated data from the Atmospheric Emitted Radiance Interferometer (AERI). With the improved calibration, the Infrared Cloud Imager (ICI) system routinely obtains sky images with radiometric uncertainty less than 0.5 W/(m(2 )sr) for extended deployments in challenging field environments. We demonstrate the infrared cloud imaging technique with still and time-lapse imagery of clear and cloudy skies, including stratus, cirrus, and wave clouds.

  12. Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly

    2006-01-01

    Objectives: a) To determine the magnitude of radiometric tarp BRDF; b) To determine whether an ASD FieldSpec Pro spectroradiometer can be used to perform the experiment. Radiometric tarps with nominal reflectance values of 52%, 35%, and 3.5%, deployed for IKONOS. QuickBird, and OrbView-3 overpasses Ground-based spectroradiometric measurements of tarp and Spectralon@ panel taken during overpass using ASD FieldSpec Pro spectroradiometer, and tarp reflectance calculated. Reflectance data used in atmospheric radiative transfer model (MODTRAN) to predict satellite at-sensor radiance for radiometric calibration. Reflectance data also used to validate atmospheric correction of high-spatial-resolution multispectral image products

  13. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  14. DSN 64-meter antenna L-band (1668-MHz) microwave system performance overview

    NASA Technical Reports Server (NTRS)

    Withington, J.

    1988-01-01

    In 1985, L-band (1668 MHz) receive-only feed systems were installed on the three Deep Space Network 64 meter antennas to provide tracking support for two non-NASA spacecraft. The specifications, design approach, and operational test results are presented. The L-band microwave system met all of its tracking goals and is currently being upgraded to include a C-band (5000 MHz) uplink.

  15. Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data

    Treesearch

    Eric S. Kasischke; Mihai A. Tanase; Laura L. Bourgeau-Chavez; Matthew Borr

    2011-01-01

    A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007...

  16. MODIS On-orbit Radiometric Calibration Algorithms

    NASA Astrophysics Data System (ADS)

    Xiong, X.; Chiang, K.; Adimi, F.; Sun, J.; Esposito, J.; Barnes, W. L.

    2002-05-01

    The MODerate Resolution Imaging Spectroradiometer (MODIS), a key instrument for NASA's Earth Observing System (EOS), consists of 36 spectral bands with wavelengths ranging form 0.41 micron to 14.4 microns and spatial resolutions of 0.25km (2 bands), 0.5km (5 bands), and 1.0km at nadir. The 36 spectral bands are distributed on four Focal Plane Assemblies (FPA): visible (VIS), near-infrared (NIR), short- and mid-wave infrared (SMIR), and long-wave infrared (LWIR). A Spectral Radiometric Calibration Assembly (SRCA), built into the MODIS instrument, is used to characterize the relative band to band registration and VIS and NIR bands' spectral stability. The MODIS 2-sided paddle wheel scan mirror provides a -55 degree to +55 degree scan of the Earth covering a 10km (at nadir) along track by 2330km along scan swath. The MODIS ProtoFlight Model (PFM) was launched on-board the EOS Terra spacecraft on December 18, 1999 (Sun-synchronous near polar orbit, 10:30 am equator crossing time, descending node). MODIS has been providing the science community global coverage of the land, oceans, and atmosphere. A second instrument, the Flight Model 1 (FM1), will be launched on the EOS Aqua spacecraft in April 2002 (Sun-synchronous near polar orbit, 1:30 pm equator crossing time, ascending node). The MODIS Characterization Support Team (MCST), funded by the MODIS Science Team, is responsible for the instrument pre-launch and on-orbit calibration and characterization and for developing, maintaining, and improving the Level 1B algorithm that converts the instrument digital counts to radiometrically calibrated top of the atmosphere (TOA) radiance and reflectance products. The Level1B data, along with other science products (oceans, land, and atmosphere), are freely available to the public through NASA Goddard Earth Science (GES) Distributed Active Archive Center (DAAC). The MODIS 20 reflective solar bands (RSB) from 0.41 to 2.1 microns are calibrated on-orbit by a solar diffuser (SD) and

  17. L-Band SAR Interferometry for Mapping Arctic Landfast Ice

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Mahoney, A.; Eicken, H.; Denny, C. L.

    2010-12-01

    Landfast sea ice is a key element of the arctic coastal system. Its presence can mitigate the effect of winter storms on the coast and impact the degree of coastal erosion. Landfast ice is also of great importance to coastal communities who use the ice for travel and to hunt. Furthermore, its presence and stability is of considerable economic importance for offshore oil and gas development in parts of the Arctic. In recent years, there has been a reduced presence of landfast sea ice throughout the Arctic. E.g., along Alaska’s northern coast, although the annual maximum extent has changed little, landfast sea ice appears to forming later and breaking up earlier than it did during the 1970s. As a result of these changes together with increasing commercial interest in coastal areas of the Arctic, it has become important in recent years to be able to identify landfast ice from remote sensing data. In recent years methods have been developed to extract the seaward landfast ice edge from series of remote sensing images, with most of them relying on incoherent change detection in optical, infrared, or radar amplitude imagery. While such approaches provide valuable results, some still lack the required level of robustness and all lack the ability to fully automate the detection and mapping of landfast ice over large areas and long time spans. Furthermore, it is often not so much the presence, but the stability of landfast ice that matters most in practical applications, in particular use of sea ice as a platform. This paper presents an alternative approach to mapping landfast ice extent and assessing ice stability. The method is based on interferometric processing of L-band SAR image pairs acquired by the spaceborne SAR sensor PALSAR on board the Japanese Advanced Land Observing Satellite (ALOS). With interferometric phase and interferometric coherence, SAR interferometry (InSAR) comprises two measurements that have the potential for assessing both landfast ice extent

  18. Radiometric detection of yeasts in blood cultures of cancer patients

    SciTech Connect

    Hopfer, R.L.; Orengo, A.; Chesnut, S.; Wenglar, M.

    1980-09-01

    During a 12-month period, 19,457 blood cultures were collected. Yeasts were isolated from 193 cultures derived from 76 cancer patients. Candida albicans or Candida tropicalis accounted for 79% of isolates. Of the three methods compared, the radiometric method required 2.9 days to become positive, blind subculture required 2.6 days, and Gram stains required 1 day. However, the radiometric method was clearly superior in detecting positive cultures, since 73% of all cultures were first detected radiometrically, 22% were detected by subculture, and only 5% were detected by Gram stain. Although 93% of the isolates were detected by aerobic culture, five (7%) isolates were obtained only from anaerobic cultures. Seven days of incubation appear to be sufficient for the radiometric detection of yeasts.

  19. Accumulation Rates in the Dry Snow Zone of the Greenland Ice Sheet Inferred from L-band InSAR Data

    NASA Astrophysics Data System (ADS)

    Chen, A. C.; Zebker, H. A.

    2012-12-01

    The Greenland ice sheet contains about 2.9 million km3 of ice and would raise global sea levels by about 7.1 m if it melted completely. Two unusually large iceberg calving events at Petermann Glacier in the past several years, along with the unusually large extent of ice sheet melt this summer point to the relevance of understanding the mass balance of the Greenland ice sheet. In this study, we use data from the PALSAR instrument aboard the ALOS satellite to form L-band (23-centimeter carrier wavelength) InSAR images of the dry snow zone of the Greenland ice sheet. We form geocoded differential interferograms, using the ice sheet elevation model produced by Howat et.al. [1]. By applying phase and radiometric calibration, we can examine interferograms formed between any pair of transmit and receive polarization channels. In co-polarized interferograms, the InSAR correlation ranges from about 0.35 at the summit (38.7 deg W, 73.0 deg N) where accumulation is about 20 cm w.e./yr to about 0.70 at the north-eastern part of the dry snow zone (35.1 deg W, 77.1 deg N), where accumulation is about 11.7 cm w.e./yr. Cross-polarized interferograms show similar geographic variation with overall lower correlation. We compare our InSAR data with in-situ measurements published by Bales et.al. [2]. We examine the applicability of dense-medium radiative transfer electromagnetic scattering models for estimating accumulation rates from L-band InSAR data. The large number and broad coverage of ALOS scenes acquired between 2007 and 2009 with good InSAR coherence at 46-day repeat times and 21.5 degree incidence angles gives us the opportunity to examine the empirical relationship between in-situ accumulation rate observations and the polarimetric InSAR correlation and radar brightness at this particular imaging geometry. This helps us quantify the accuracy of accumulation rates estimated from InSAR data. In some regions, 46-day interferograms acquired in the winters of several consecutive

  20. Geostatistical analysis as applied to two environmental radiometric time series.

    PubMed

    Dowdall, Mark; Lind, Bjørn; Gerland, Sebastian; Rudjord, Anne Liv

    2003-03-01

    This article details the results of an investigation into the application of geostatistical data analysis to two environmental radiometric time series. The data series employed consist of 99Tc values for seaweed (Fucus vesiculosus) and seawater samples taken as part of a marine monitoring program conducted on the coast of northern Norway by the Norwegian Radiation Protection Authority. Geostatistical methods were selected in order to provide information on values of the variables at unsampled times and to investigate the temporal correlation exhibited by the data sets. This information is of use in the optimisation of future sampling schemes and for providing information on the temporal behaviour of the variables in question that may not be obtained during a cursory analysis. The results indicate a high degree of temporal correlation within the data sets, the correlation for the seawater and seaweed data being modelled with an exponential and linear function, respectively. The semi-variogram for the seawater data indicates a temporal range of correlation of approximately 395 days with no apparent random component to the overall variance structure and was described best by an exponential function. The temporal structure of the seaweed data was best modelled by a linear function with a small nugget component. Evidence of drift was present in both semi-variograms. Interpolation of the data sets using the fitted models and a simple kriging procedure were compared, using a cross-validation procedure, with simple linear interpolation. Results of this exercise indicate that, for the seawater data, the kriging procedure outperformed the simple interpolation with respect to error distribution and correlation of estimates with actual values. Using the unbounded linear model with the seaweed data produced estimates that were only marginally better than those produced by the simple interpolation.

  1. RFI at L-band in Synthetic Aperture Radiometers

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Haken, M.; Wang, James R. (Technical Monitor)

    2003-01-01

    The spectral window at 1.413 GHz (L-band), set aside for passive use only, is critical for passive remote sensing of the earth from space. It is the largest spectral window available in the long wavelength end of the microwave spectrum where measurements are needed to monitor parameters of the surface such as soil moisture and sea surface salinity. The sensitivity to these parameters is rapidly lost at higher frequencies and is compromised by the ionosphere and antenna size at lower frequencies. Instruments for remote sensing from space in this spectral window are being developed by NASA (Aquarius) and ESA (SMOS) and are expected to be in orbit in a few years (2006). Although the band at 1.413 GHz is protected for passive use, RFI is a common problem. For example, the synthetic aperture radiometer, ESTAR (L-band, Horizontal polarization), has frequently experienced problems with RFI. During the Southern Great Plains Experiments (1997 and 1999), ESTAR experienced RFI significant enough to warrant changes in flight lines. The largest sources of RFI were identified as originating in airports and a likely source is air traffic control radar. In experiments in the vicinity of Richmond, VA, RFI in the form of periodic spikes was recorded, again suggestive of radar. However, in most cases the sources of the RFI are unknown. RFI is a sufficiently common problem that the first step in processing ESTAR data is a screening for RFI (a filter is used to detect large, rapid changes in brightness). Recently, measurements have been made with a new synthetic aperture radiometer, 2D-STAR. Examples of RFI observed simultaneously with ESTAR and the new synthetic aperture radiometer will be presented. 2D-STAR is an airborne instrument designed to develop the technology of aperture synthesis in two dimensions. It employs dual polarized patch antennas arranged in a cross configuration (+). Synthesis in two dimensions offers the potential for optimal thinning, but because of the wide

  2. Radiometric detection of the metabolic activity of Mycobacterium tuberculosis.

    PubMed

    Cummings, D M; Ristroph, D; Camargo, E E; Larson, S M; Wagner, H N

    1975-12-01

    A radiometric test capable of detecting the metabolic rate of M. tuberculosis within 18 hr after inoculation has been developed. The technique is based on the measurement of 14CO2 produced by the bacterial metabolism of 14C-U-glycerol of 14C-U-acetate. The test is an important first step in the development of rapid radiometric techniques for clinical study of Mycobacterium tuberculosis.

  3. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements

    DTIC Science & Technology

    2013-09-30

    Radiometric Measurements Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321 77 Massachusetts Ave...comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES ...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurements 5a

  4. Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

    DTIC Science & Technology

    2013-09-30

    Radiometric Measurement Lian Shen Department of Mechanical Engineering & St. Anthony Falls Laboratory University of Minnesota Minneapolis, MN...information if it does not display a currently valid OMB control number. 1. REPORT DATE 30 SEP 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00...2013 4. TITLE AND SUBTITLE Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement 5a. CONTRACT NUMBER 5b. GRANT NUMBER

  5. Radiometric Measurements of Powerline Cables at 94 GHz

    DTIC Science & Technology

    2001-02-01

    ARMY RESEARCH LABORATORY Radiometric Measurements of Powerline Cables at 94 GHz David A. Wikner and Thomas J. Pizzillo ARL-TR-837 February 2001...MD 20783-1197 ARL-TR-837 February 2001 Radiometric Measurements of Powerline Cables at 94 GHz David A. Wikner and Thomas J. Pizzillo Sensors and...collision avoidance system," Proc. SPIE 3088 (April 1997), pp 57-63. 5. D. Wikner and T. Pizzillo, "Measurement of nadir and near-nadir 94-GHz

  6. The Radiometric Bode's Law and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, T. Joseph, W.; Farrell, W. M.; Dietrick, Jill; Greenlees, Elizabeth; Hogan, Emily; Jones, Christopher; Hennig, L. A.

    2004-09-01

    We predict the radio flux densities of the extrasolar planets in the current census, making use of an empirical relation-the radiometric Bode's law-determined from the five ``magnetic'' planets in the solar system (the Earth and the four gas giants). Radio emission from these planets results from solar wind-powered electron currents depositing energy in the magnetic polar regions. We find that most of the known extrasolar planets should emit in the frequency range 10-1000 MHz and, under favorable circumstances, have typical flux densities as large as 1 mJy. We also describe an initial, systematic effort to search for radio emission in low radio frequency images acquired with the Very Large Array (VLA). The limits set by the VLA images (~300 mJy) are consistent with, but do not provide strong constraints on, the predictions of the model. Future radio telescopes, such as the Low Frequency Array and the Square Kilometer Array, should be able to detect the known extrasolar planets or place austere limits on their radio emission. Planets with masses much lower than those in the current census will probably radiate below 10 MHz and will require a space-based array.

  7. Radiometric dating of the Siloam Tunnel, Jerusalem.

    PubMed

    Frumkin, Amos; Shimron, Aryeh; Rosenbaum, Jeff

    2003-09-11

    The historical credibility of texts from the Bible is often debated when compared with Iron Age archaeological finds (refs. 1, 2 and references therein). Modern scientific methods may, in principle, be used to independently date structures that seem to be mentioned in the biblical text, to evaluate its historical authenticity. In reality, however, this approach is extremely difficult because of poor archaeological preservation, uncertainty in identification, scarcity of datable materials, and restricted scientific access into well-identified worship sites. Because of these problems, no well-identified Biblical structure has been radiometrically dated until now. Here we report radiocarbon and U-Th dating of the Siloam Tunnel, proving its Iron Age II date; we conclude that the Biblical text presents an accurate historic record of the Siloam Tunnel's construction. Being one of the longest ancient water tunnels lacking intermediate shafts, dating the Siloam Tunnel is a key to determining where and when this technological breakthrough took place. Siloam Tunnel dating also refutes a claim that the tunnel was constructed in the second century bc.

  8. Calibrated infrared ground/air radiometric spectrometer

    NASA Astrophysics Data System (ADS)

    Silk, J. K.; Schildkraut, Elliot Robert; Bauldree, Russell S.; Goodrich, Shawn M.

    1996-06-01

    The calibrated infrared ground/air radiometric spectrometer (CIGARS) is a new high performance, multi-purpose, multi- platform Fourier transform spectrometer (FPS) sensor. It covers the waveband from 0.2 to 12 micrometer, has spectral resolution as fine as 0.3 cm-1, and records over 100 spectra per second. Two CIGARS units are being used for observations of target signatures in the air or on the ground from fixed or moving platforms, including high performance jet aircraft. In this paper we describe the characteristics and capabilities of the CIGARS sensor, which uses four interchangeable detector modules (Si, InGaAs, InSb, and HgCdTe) and two optics modules, with internal calibration. The data recording electronics support observations of transient events, even without precise information on the timing of the event. We present test and calibration data on the sensitivity, spectral resolution, stability, and spectral rate of CIGARS, and examples of in- flight observations of real targets. We also discuss plans for adapting CIGARS for imaging spectroscopy observations, with simultaneous spectral and spatial data, by replacing the existing detectors with a focal plane array (FPA).

  9. Blast investigation by fast multispectral radiometric analysis

    NASA Astrophysics Data System (ADS)

    Devir, A. D.; Bushlin, Y.; Mendelewicz, I.; Lessin, A. B.; Engel, M.

    2011-06-01

    Knowledge regarding the processes involved in blasts and detonations is required in various applications, e.g. missile interception, blasts of high-explosive materials, final ballistics and IED identification. Blasts release large amount of energy in short time duration. Some part of this energy is released as intense radiation in the optical spectral bands. This paper proposes to measure the blast radiation by a fast multispectral radiometer. The measurement is made, simultaneously, in appropriately chosen spectral bands. These spectral bands provide extensive information on the physical and chemical processes that govern the blast through the time-dependence of the molecular and aerosol contributions to the detonation products. Multi-spectral blast measurements are performed in the visible, SWIR and MWIR spectral bands. Analysis of the cross-correlation between the measured multi-spectral signals gives the time dependence of the temperature, aerosol and gas composition of the blast. Farther analysis of the development of these quantities in time may indicate on the order of the detonation and amount and type of explosive materials. Examples of analysis of measured explosions are presented to demonstrate the power of the suggested fast multispectral radiometric analysis approach.

  10. Transportable high sensitivity small sample radiometric calorimeter

    SciTech Connect

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-12-31

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most {sup 238}Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size.

  11. Aquarius Active-Passive RFI Environment at L-Band

    NASA Technical Reports Server (NTRS)

    Le Vine, David M.; De Matthaeis, Paolo

    2014-01-01

    Active/Passive instrument combinations (i.e., radiometer and radar) are being developed at L-band for remote sensing of sea surface salinity and soil moisture. Aquarius is already in orbit and SMAP is planned for launch in the Fall of 2014. Aquarius has provided for the first time a simultaneous look at the Radio Frequency Interference (RFI) environment from space for both active and passive instruments. The RFI environment for the radiometer observations is now reasonably well known and examples from Aquarius are presented in this manuscript that show that RFI is an important consideration for the scatterometer as well. In particular, extensive areas of the USA, Europe and Asia exhibit strong RFI in both the radiometer band at 1.41 GHz and in the band at 1.26 GHz employed by the Aquarius scatterometer. Furthermore, in areas such as the USA, where RFI at 1.4 GHz is relatively well controlled, RFI in the scatterometer band maybe the limiting consideration for the operation of combination active/passive instruments.

  12. L-band orthomode transducer for the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Navarrini, Alessandro; Pisanu, Tonino

    2008-07-01

    We describe the design, construction, and characterization results of a compact L-band (1.3-1.8 GHz) Orthomode Transducer (OMT) for the Sardinia Radio Telescope (SRT), a 64 m diameter telescope which is being built in the Sardinia island, Italy. The OMT consists of three distinct mechanical parts connected through ultra low loss coaxial cables: a turnstile junction and two identical 180° hybrid power combiners. The turnstile junction is based on a circular waveguide input (diameter of 190 mm,) and on four WR650 rectangular waveguide cavities from which the RF signals are extracted using coaxial probes. The OMT was optimized using a commercial 3D electromagnetic simulator. The main mechanical part of the turnstile junction was machined out of an Aluminum block whose final external shape is a cylinder with diameter 450 mm and height 98 mm. From 1.3 to 1.8 GHz the measured reflection coefficient was less than -22 dB, the isolation between the outputs was less than -45 dB, and the cross polarization was less than -50 dB for both polarization channels.

  13. Recalibration and Validation of the SMAP L-Band Radiometer

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey; Le Vine, David M.; Dinnat, Emmanuel; Bindlish, Rajat; De amici, Giovanni; Mohammed, Priscilla; Misra, Sidharth; Yueh, Simon; Meissner, Thomas

    2017-01-01

    SMAP mission was launched on 31st January 2015 in a 6 AM 6 PM sun-synchronous orbit at 685 km altitude to measure soil moisture and freethaw globally. The passive instrument of SMAP is a fully polarimetric L-band radiometer (1.4GHz) operating with a bandwidth of 24MHz. The radiometer L1B data product version 3 has been released for public science activities. Post-launch calibration and validation activities are described in [4,5]. Validation results show that SMAP antenna temperature (TA) is 2.6 K warmer over galactic Cold Sky (CS), and land TB is 2.6 K colder comparing to SMOS land TB (compared at the top of the atmosphere) after the update of the reflectors thermal model. Due to the biases, the SMAP radiometer is under re-calibration for next data release in 2018.We present the updated calibration approaches for the SMAP radiometer product. We will discuss the various radiometer calibration parameters and part of the validation process and result.

  14. The L-band PBMR measurements of surface soil moisture in FIFE. [First International satellite land surface climatology project Field Experiment

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Shiue, James C.; Schmugge, Thomas J.; Engman, Edwin T.

    1990-01-01

    The NASA Langley Research Center's L-band pushbroom microwave radiometer (PBMR) aboard the NASA C-130 aircraft was used to map surface soil moisture at and around the Konza Prairie Natural Research Area in Kansas during the four intensive field campaigns of FIFE in May-October 1987. There was a total of 11 measurements was made when soils were known to be saturated. This measurement was used for the calibration of the vegetation effect on the microwave absorption. Based on this calibration, the data from other measurements on other days were inverted to generate the soil moisture maps. Good agreement was found when the estimated soil moisture values were compared to those independently measured on the ground at a number of widely separated locations. There was a slight bias between the estimated and measured values, the estimated soil moisture on the average being lower by about 1.8 percent. This small bias, however, was accounted for by the difference in time of the radiometric measurements and the soil moisture ground sampling.

  15. Comparing C- and L-band SAR images for sea ice motion estimation

    NASA Astrophysics Data System (ADS)

    Lehtiranta, J.; Siiriä, S.; Karvonen, J.

    2014-05-01

    Pairs of consecutive C-band SAR images are routinely used for sea ice motion estimation. In addition to the surface roughness L-band SAR imagery provides information of the seasonal sea ice inner structure, which is especially useful in the Baltic Sea lacking multiyear ice and icebergs. In this work, L-band SAR images are investigated for sea ice motion estimation using the well-established maximal cross-correlation approach. This work provides the first comparison of L-band and C-band SAR images for the purpose of motion estimation. The cross-correlation calculations are hardware accelerated using new OpenCL-based source code, which is made available through the author's web site. It is found that L-band images are preferable for motion estimation over C-band images. It is also shown that motion estimation is possible between a C-band and an L-band image using the maximal cross-correlation technique.

  16. Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-Band SAR Data

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Tanase, Mihai A.; Bourgeau-Chavez, Laura L.; Borr, Matthew

    2011-01-01

    A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and (L-HH) and (L-HV) for the data collected on each of the three dates, with the highest correlation found using the LHV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur

  17. Soil Moisture Limitations on Monitoring Boreal Forest Regrowth Using Spaceborne L-Band SAR Data

    NASA Technical Reports Server (NTRS)

    Kasischke, Eric S.; Tanase, Mihai A.; Bourgeau-Chavez, Laura L.; Borr, Matthew

    2011-01-01

    A study was carried out to investigate the utility of L-band SAR data for estimating aboveground biomass in sites with low levels of vegetation regrowth. Data to estimate biomass were collected from 59 sites located in fire-disturbed black spruce forests in interior Alaska. PALSAR L-band data (HH and HV polarizations) collected on two dates in the summer/fall of 2007 and one date in the summer of 2009 were used. Significant linear correlations were found between the log of aboveground biomass (range of 0.02 to 22.2 t ha-1) and (L-HH) and (L-HV) for the data collected on each of the three dates, with the highest correlation found using the LHV data collected when soil moisture was highest. Soil moisture, however, did change the correlations between L-band and aboveground biomass, and the analyses suggest that the influence of soil moisture is biomass dependent. The results indicate that to use L-band SAR data for mapping aboveground biomass and monitoring forest regrowth will require development of approaches to account for the influence that variations in soil moisture have on L-band microwave backscatter, which can be particularly strong when low levels of aboveground biomass occur

  18. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory.

    PubMed

    Brown, Steven W; Johnson, B Carol; Biggar, Stuart F; Zalewski, Edward F; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  19. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory

    SciTech Connect

    Brown, Steven W.; Johnson, B. Carol; Biggar, Stuart F.; Zalewski, Edward F.; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A.; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  20. Deep Space Network Radiometric Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  1. Deep Space Network Radiometric Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid, and precipitation, emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band because communication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of water vapor-induced propagation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity wave experiments, and radio science missions. During 1993, WVRs provided data for propagation model development, supported planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  2. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  3. Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.

    2004-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.

  4. Comparison of Model Prediction with Measurements of Galactic Background Noise at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, Willam J.; Skou, Niels; Sobjaerg, S.

    2004-01-01

    The spectral window at L-band (1.413 GHz) is important for passive remote sensing of surface parameters such as soil moisture and sea surface salinity that are needed to understand the hydrological cycle and ocean circulation. Radiation from celestial (mostly galactic) sources is strong in this window and an accurate accounting for this background radiation is often needed for calibration. Modem radio astronomy measurements in this spectral window have been converted into a brightness temperature map of the celestial sky at L-band suitable for use in correcting passive measurements. This paper presents a comparison of the background radiation predicted by this map with measurements made with several modem L-band remote sensing radiometers. The agreement validates the map and the procedure for locating the source of down-welling radiation.

  5. Preliminary geologic evaluation of L-band radar imagery: Arkansas test site

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Waite, W. P.

    1977-01-01

    The relatively small angles of incidence (steep depression angles) of the L-band system provide minimal shadowing on terrain back-slopes and considerable foreshortening on terrain fore-slopes which sacrifice much of the topographic enhancement afforded by a more oblique angle of illumination. In addition, the dynamic range of the return from vegetated surfaces is substantially less for the L-band system, and many surface features defined primarily by subtle changes in vegetation are lost. In areas having terrain conditions similar to those of northern Arkansas, and where LANDSAT and shorter wavelength aircraft radar data are available, the value of the JPL L-band imagery as either a complimentary or supplementary geologic data source is not obvious.

  6. ELBARA II, an L-Band Radiometer System for Soil Moisture Research

    PubMed Central

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1–2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user. PMID:22315556

  7. Large Scale Assessment of Radio Frequency Interference Signatures in L-band SAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Nicoll, J.

    2011-12-01

    Imagery of L-band Synthetic Aperture Radar (SAR) systems such as the PALSAR sensor on board the Advanced Land Observing Satellite (ALOS) has proven to be a valuable tool for observing environmental changes around the globe. Besides offering 24/7 operability, the L-band frequency provides improved interferometric coherence, and L-band polarimetric data has shown great potential for vegetation monitoring, sea ice classification, and the observation of glaciers and ice sheets. To maximize the benefit of missions such as ALOS PALSAR for environmental monitoring, data consistency and calibration are vital. Unfortunately, radio frequency interference (RFI) signatures from ground-based radar systems regularly impair L-band SAR data quality and consistency. With this study we present a large-scale analysis of typical RFI signatures that are regularly observed in L-band SAR data over the Americas. Through a study of the vast archive of L-band SAR data in the US Government Research Consortium (USGRC) data pool at the Alaska Satellite Facility (ASF) we were able to address the following research goals: 1. Assessment of RFI Signatures in L-band SAR data and their Effects on SAR Data Quality: An analysis of time-frequency properties of RFI signatures in L-band SAR data of the USGRC data pool is presented. It is shown that RFI-filtering algorithms implemented in the operational ALOS PALSAR processor are not sufficient to remove all RFI-related artifacts. In examples, the deleterious effects of RFI on SAR image quality, polarimetric signature, SAR phase, and interferometric coherence are presented. 2. Large-Scale Assessment of Severity, Spatial Distribution, and Temporal Variation of RFI Signatures in L-band SAR data: L-band SAR data in the USGRC data pool were screened for RFI using a custom algorithm. Per SAR frame, the algorithm creates geocoded frame bounding boxes that are color-coded according to RFI intensity and converted to KML files for analysis in Google Earth. From

  8. Ultrashort stretched-pulse L-band laser using carbon-nanotube saturable absorber.

    PubMed

    Kwon, Won Sik; Lee, Hyub; Kim, Jin Hwan; Choi, Jindoo; Kim, Kyung-Soo; Kim, Soohyun

    2015-03-23

    In the paper, a passively mode-locked erbium-doped fiber ring laser in the long-wavelength band (L-band) is presented by using a single-wall nanotube saturable absorber (SWNT-SA). The optical properties of the SWNT-SA are compared with those in the C-band in view of the absorbance spectrum and the power-dependent transmittance of the SWNT-SA film. The effects of the net cavity dispersion and the length of the erbium-doped fiber (EDF) on L-band stretched pulse generation are discussed. The designed stretched-pulse L-band laser has a net dispersion of 0.017-ps2 and generates ultrashort (110 fs), broad-spectrum (41 nm) pulses with a signal-to-noise ratio over 70 dB.

  9. ELBARA II, an L-band radiometer system for soil moisture research.

    PubMed

    Schwank, Mike; Wiesmann, Andreas; Werner, Charles; Mätzler, Christian; Weber, Daniel; Murk, Axel; Völksch, Ingo; Wegmüller, Urs

    2010-01-01

    L-band (1-2 GHz) microwave radiometry is a remote sensing technique that can be used to monitor soil moisture, and is deployed in the Soil Moisture and Ocean Salinity (SMOS) Mission of the European Space Agency (ESA). Performing ground-based radiometer campaigns before launch, during the commissioning phase and during the operative SMOS mission is important for validating the satellite data and for the further improvement of the radiative transfer models used in the soil-moisture retrieval algorithms. To address these needs, three identical L-band radiometer systems were ordered by ESA. They rely on the proven architecture of the ETH L-Band radiometer for soil moisture research (ELBARA) with major improvements in the microwave electronics, the internal calibration sources, the data acquisition, the user interface, and the mechanics. The purpose of this paper is to describe the design of the instruments and the main characteristics that are relevant for the user.

  10. JACIE Radiometric Assessment of QuickBird Multispectral Imagery

    NASA Technical Reports Server (NTRS)

    Pagnutti, Mary; Carver, David; Holekamp, Kara; Knowlton, Kelly; Ryan, Robert; Zanoni, Vicki; Thome, Kurtis; Aaron, David

    2004-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can place confidence in the imagery they use and can fully understand its properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Stennis Space Center (SSC) Earth Science Applications (ESA) directorate,through the Joint Agency for Commercial Imagery Evaluation (JACIE) framework, established a commercial imaging satellite radiometric calibration team consisting of two groups: 1) NASA SSC ESA, supported by South Dakota State University, and 2) the University of Arizona Remote Sensing Group. The two groups determined the absolute radiometric calibration coefficients of the Digital Globe 4-band, 2.4-m QuickBird multispectral product covering the visible through near-infrared spectral region. For a 2-year period beginning in 2002, both groups employed some variant of a reflectance-based vicarious calibration approach, which required ground-based measurements coincident with QuickBird image acquisitions and radiative transfer calculations. The groups chose several study sites throughout the United States that covered nearly the entire dynamic range of the QuickBird sensor. QuickBird at-sensor radiance values were compared with those estimated by the two independent groups to determine the QuickBird sensor's radiometric accuracy. Approximately 20 at-sensor radiance estimates were vicariously determined each year. The estimates were combined to provide a high-precision radiometric gain calibration coefficient. The results of this evaluation provide the user community with an independent assessment of the QuickBird sensor's absolute calibration and stability over the 2-year period. While the techniques and method described reflect those developed at the NASA SSC, the results of both JACIE team groups are

  11. Evaluation of computational radiometric and spectral sensor calibration techniques

    NASA Astrophysics Data System (ADS)

    Manakov, Alkhazur

    2016-04-01

    Radiometric and spectral calibration are essential for enabling the use of digital sensors for measurement purposes. Traditional optical calibration techniques require expensive equipment such as specialized light sources, monochromators, tunable filters, calibrated photo-diodes, etc. The trade-offs between computational and physics-based characterization schemes are, however, not well understood. In this paper we perform an analysis of existing computational calibration schemes and elucidate their weak points. We highlight the limitations by comparing against ground truth measurements performed in an optical characterization laboratory (EMVA 1288 standard). Based on our analysis, we present accurate and affordable methods for the radiometric and spectral calibration of a camera.

  12. Radiometric normalization with multi-image pseudo-invariant features

    NASA Astrophysics Data System (ADS)

    Barazzetti, Luigi; Gianinetto, Marco; Scaioni, Marco

    2016-08-01

    Radiometric image normalization is one of the basic pre-processing methods used in satellite time series analysis. This paper presents a new multi-image approach able to estimate the parameters of relative radiometric normalization through a multiple and simultaneous regression with a dataset of a generic number of images. The method was developed to overcome the typical drawbacks of standard one-to-one techniques, where image pairs are independently processed. The proposed solution is based on multi-image pseudo-invariant features incorporated into a unique regression solved via Least Squares. Results for both simulated and real data are presented and discussed.

  13. Comparison of Measured Galactic Background Radiation at L-Band with Model

    NASA Technical Reports Server (NTRS)

    LeVine, David M.; Abraham, Saji; Kerr, Yann H.; Wilson, William J.; Skou, Niels; Sobjaerg, Sten

    2004-01-01

    Radiation from the celestial sky in the spectral window at 1.413 GHz is strong and an accurate accounting of this background radiation is needed for calibration and retrieval algorithms. Modern radio astronomy measurements in this window have been converted into a brightness temperature map of the celestial sky at L-band suitable for such applications. This paper presents a comparison of the background predicted by this map with the measurements of several modern L-band remote sensing radiometer Keywords-Galactic background, microwave radiometry; remote sensing;

  14. A Passive Microwave L-Band Boreal Forest Freeze/Thaw and Vegetation Phenology Study

    NASA Astrophysics Data System (ADS)

    Roy, A.; Sonnentag, O.; Pappas, C.; Mavrovic, A.; Royer, A.; Berg, A. A.; Rowlandson, T. L.; Lemay, J.; Helgason, W.; Barr, A.; Black, T. A.; Derksen, C.; Toose, P.

    2016-12-01

    The boreal forest is the second largest land biome in the world and thus plays a major role in the global and regional climate systems. The extent, timing and duration of seasonal freeze/thaw (F/T) state influences vegetation developmental stages (phenology) and, consequently, constitute an important control on how boreal forest ecosystems exchange carbon, water and energy with the atmosphere. The effective retrieval of seasonal F/T state from L-Band radiometry was demonstrated using satellite mission. However, disentangling the seasonally differing contributions from forest overstory and understory vegetation, and the soil surface to the satellite signal remains challenging. Here we present initial results from a radiometer field campaign to improve our understanding of the L-Band derived boreal forest F/T signal and vegetation phenology. Two L-Band surface-based radiometers (SBR) are installed on a micrometeorological tower at the Southern Old Black Spruce site in central Saskatchewan over the 2016-2017 F/T season. One radiometer unit is installed on the flux tower so it views forest including all overstory and understory vegetation and the moss-covered ground surface. A second radiometer unit is installed within the boreal forest overstory, viewing the understory and the ground surface. The objectives of our study are (i) to disentangle the L-Band F/T signal contribution of boreal forest overstory from the understory and ground surface, (ii) to link the L-Band F/T signal to related boreal forest structural and functional characteristics, and (iii) to investigate the use of the L-Band signal to characterize boreal forest carbon, water and energy fluxes. The SBR observations above and within the forest canopy are used to retrieve the transmissivity (γ) and the scattering albedo (ω), two parameters that describe the emission of the forest canopy though the F/T season. These two forest parameters are compared with boreal forest structural and functional

  15. Development of an L-Band RF Electron Gun for SASE in the Infrared Region

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Shigeru; Kato, Ryukou; Isoyama, Goro; Hayano, Hitoshi; Urakawa, Junji

    2010-02-01

    We conduct research on Self-Amplified Spontaneous Emission (SASE) in the infrared region using the 40 MeV, 1.3 GHz L-band linac of Osaka University. The linac equipped with a thermionic electron gun can accelerate a high-intensity single-bunch beam though its normalized emittance is high. In order to advance the research on SASE, we have begun development of an RF gun for the L-band linac in collaboration with KEK. We will report conceptual design of the RF gun and present the status of development of another RF gun for STF at KEK.

  16. How Does Dew Affect L-band Backscatter? Analysis of PALS Data at the Iowa Validation Site and Implications for SMAP

    USDA-ARS?s Scientific Manuscript database

    NASA's Soil Moisture Active Passive satellite mission will use both an L-band radiometer and radar to produce global-scale measurements of soil moisture. L-band backscatter is also sensitive to the water content of vegetation. We found that a moderate dew increased the L-band backscatter of a soybea...

  17. L-band radiometry for sea ice applications

    NASA Astrophysics Data System (ADS)

    Heygster, G.; Hedricks, S.; Mills, P.; Kaleschke, L.; Stammer, D.; Tonboe, R.

    2009-04-01

    Peake (1976). This expression was used by Menashi et al. (1993) to derive the thickness of sea ice from UHF (0.6 GHz) radiometer. Second, retrieval algorithms for sea ice parameters with emphasis on ice-water discrimination from L-band observations considering the specific SMOS observations modes and geometries are investigated. A modified Menashi model with the permittivity depending on brine volume and temperature suggests a thickness sensitivity of up to 150 cm for low salinity (multi year or brackish) sea ice at low temperatures. At temperatures approaching the melting point the thickness sensitivity reduces to a few centimetres. For first year ice the modelled thickness sensitivity is roughly half a meter. Runs of the model MEMLS with input data generated from a 1-d thermodynamic sea ice model lead to similar conclusio. The results of the forward model may strongly vary with the input microphysical details. E.g. if the permittivity is modelled to depend in addition on the sea ice thickness as supported by several former field campaigns for thin ice, the model predictions change strongly. Prior to the launch of SMOS, an important source of observational data is the SMOS Sea-Ice campaign held near Kokkola, Finland, March 2007 conducted as an add-on of the POL-ICE campaign. Co-incident L-band observations taken with the EMIRAD instrument of the Technical University of Denmark, ice thickness values determined from the EM bird of AWI and in situ observations during the campaign are combined. Although the campaign data are to be use with care, for selected parts of the flights the sea ice thickness can be retrieved correctly. However, as the instrumental conditions and calibration were not optimal, more in situ data, preferably from the Arctic, will be needed before drawing clear conclusions about a future the sea ice thickness product based on SMOS data. Use of additional information from other microwave sensors like AMSR-E might be needed to constrain the conditions, e

  18. Landsat-7 Enhanced Thematic Mapper plus radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Boncyk, Wayne C.; Helder, D.L.; Barker, J.L.

    1997-01-01

    Landsat-7 is currently being built and tested for launch in 1998. The Enhanced Thematic Mapper Plus (ETM+) sensor for Landsat-7, a derivative of the highly successful Thematic Mapper (TM) sensors on Landsats 4 and 5, and the Landsat-7 ground system are being built to provide enhanced radiometric calibration performance. In addition, regular vicarious calibration campaigns are being planned to provide additional information for calibration of the ETM+ instrument. The primary upgrades to the instrument include the addition of two solar calibrators: the full aperture solar calibrator, a deployable diffuser, and the partial aperture solar calibrator, a passive device that allows the ETM+ to image the sun. The ground processing incorporates for the first time an off-line facility, the Image Assessment System (IAS), to perform calibration, evaluation and analysis. Within the IAS, processing capabilities include radiometric artifact characterization and correction, radiometric calibration from the multiple calibrator sources, inclusion of results from vicarious calibration and statistical trending of calibration data to improve calibration estimation. The Landsat Product Generation System, the portion of the ground system responsible for producing calibrated products, will incorporate the radiometric artifact correction algorithms and will use the calibration information generated by the IAS. This calibration information will also be supplied to ground processing systems throughout the world.

  19. Silicon crystal surface temperature: Computational and radiometric studies

    SciTech Connect

    Khounsary, A.M.; Kuzay, T.M.; Forster, G.A.

    1988-12-01

    The surface temperature of the three-channel, gallium cooled Cornell silicon crystal was evaluated for the given system configuration and specifications. The THTB thermal-hydraulic program is used for the numerical solution of the problem, and the results are to be compared with the radiometric measurements obtained at Cornell.

  20. Laboratory-based bidirectional reflectance distribution functions of radiometric tarps

    SciTech Connect

    Georgiev, Georgi T.; Butler, James J

    2008-06-20

    Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 deg., 10 deg., and 30 deg.; scatter zenith angles from 0 deg. to 60 deg.; and scatter azimuth angles of 0 deg., 45 deg., 90 deg., 135 deg., and 180 deg.. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 deg. incident angle and 12% at 30 deg. incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

  1. Radiometric estimation of water vapor content over Brazil

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Maiti, M.; Sett, S.; Angelis, C. F.; Machado, L. A. T.

    2011-11-01

    A multi-channel microwave radiometre (make: Radiometrics Corporation) is installed at Instituto Nacional de Pesquisas Espaciais-INPE, Brazil (22°S). The radiometric output of two channels of the radiometer in the form of brightness temperature at 23.834 GHz and 30 GHz, initially, were used to find out the ambient water vapor content and the non-precipitable cloud liquid water content. The necessary algorithm was developed for the purpose. The best results were obtained using the hinge frequency 23.834 GHz and 30 GHz pair having an r.m.s. error of only 2.64. The same methodology was then adopted exploiting 23.034 GHz and 30 GHz pair. In that case the r.m.s. error was 3.42. These results were then compared with those obtained over Kolkata (22°N), India, by using 22.234 GHz and 31.4 GHz radiometric data. This work conclusively suggests the use of a frequency should not be at the water vapor resonance line. Instead, while measuring the vapor content for separation of vapor and cloud liquid, one of them should be a few GHz left or right from the resonance line i.e., at 23.834 GHz and the other one should be around 30 GHz.

  2. A Non-Radiative Transfer Approach to Radiometric Vicarious Calibration

    NASA Technical Reports Server (NTRS)

    Ryan, Robert; Holekamp, Kara; Pagnutti, Mary; Stanley, Thomas

    2007-01-01

    TOA (top-of-atmosphere) radiance from high-spatial-resolution satellite imagery systems is important for a wide variety of research and applications. Many research initiatives require data with absolute radiometric accuracy better than a few percent. The conversion of satellite digital numbers to radiance depends on accurate radiometric calibration. A common method for determining and validating radiometric calibrations is to rely upon vicarious calibration approaches. Historically, vicarious calibration methods use radiative transfer codes with ground-based atmosphere and surface reflectance or radiance inputs for estimating TOA radiance values. These TOA radiance values are compared against the satellite digital numbers to determine the radiometric calibration. However, the radiative transfer codes used depend on many assumptions about the aerosol properties and the atmospheric point spread function. A measurement-based atmospheric radiance estimation approach for high-spatial-resolution, multispectral, visible/near-infrared sensors is presented that eliminates the use of radiative transfer codes and many of the underlying assumptions. A comparison between the radiative transfer and non-radiative transfer approaches is made.

  3. A preliminary study of a very large space radiometric antenna

    NASA Technical Reports Server (NTRS)

    Agrawal, P. K.

    1979-01-01

    An approach used to compute the size of a special radiometric reflector antenna is presented. Operating at 1 GHz, this reflector is required to produce 200 simultaneous contiguous beams, each with a 3 dB footprint of 1 km from an assumed satellite height of 650 km. The overall beam efficiency for each beam is required to be more than 90%.

  4. Radiometric sources for the Los Alamos National Laboratory calibration Laboratory

    SciTech Connect

    Maier, W.B. II; Holland, R.; Bender, S.; Byrd, D.; Michaud, F.D.; Moore, S.; O`Brian, T.R.

    1994-07-01

    Los Alamos is developing a laboratory that will support state of the art calibration of moderate-aperture instrumentation (< 40 cm diameter) having high spatial and thermal resolution. Highly accurate calibration in the reflected solar and thermal infrared spectral regions are required for newly developed instrumentation. Radiometric calibration of the instrumentation requires well-characterized, extensive sources of radiation from 0.45 to 12 {mu}m. For wavelengths above 2.5 {mu}m, blackbodies having temperature control and radiometric uniformity to within 100 mK are being designed and will be radiometrically characterized at the National Institute of Standards and Technology (NIST). For the spectral range 0.45--2.5 {mu}m, a ``whitebody`` integrating sphere equipped with tungsten-halogen lamps and enclosed inside a vacuum shroud will be used; this vacuum-compatible extensive standard diffuse source utilizes well-known technology and will be characterized at NIST`s existing facilities. Characterization of instrumental contrast performance for wavelengths, {lambda}, beyond 2.5 {mu}m will utilize a recently designed absolute variable-contrast IR radiometric calibrator, and preliminary data indicate that this calibrator will perform satisfactorily. Conceptual design and status of these extensive broad-band sources and of a monochromatic source to be used for spectral calibrations will be presented.

  5. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration

    PubMed Central

    Kashani, Alireza G.; Olsen, Michael J.; Parrish, Christopher E.; Wilson, Nicholas

    2015-01-01

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record “intensity”, loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of “normalization”, “correction”, or “calibration” techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration. PMID:26561813

  6. A Review of LIDAR Radiometric Processing: From Ad Hoc Intensity Correction to Rigorous Radiometric Calibration.

    PubMed

    Kashani, Alireza G; Olsen, Michael J; Parrish, Christopher E; Wilson, Nicholas

    2015-11-06

    In addition to precise 3D coordinates, most light detection and ranging (LIDAR) systems also record "intensity", loosely defined as the strength of the backscattered echo for each measured point. To date, LIDAR intensity data have proven beneficial in a wide range of applications because they are related to surface parameters, such as reflectance. While numerous procedures have been introduced in the scientific literature, and even commercial software, to enhance the utility of intensity data through a variety of "normalization", "correction", or "calibration" techniques, the current situation is complicated by a lack of standardization, as well as confusing, inconsistent use of terminology. In this paper, we first provide an overview of basic principles of LIDAR intensity measurements and applications utilizing intensity information from terrestrial, airborne topographic, and airborne bathymetric LIDAR. Next, we review effective parameters on intensity measurements, basic theory, and current intensity processing methods. We define terminology adopted from the most commonly-used conventions based on a review of current literature. Finally, we identify topics in need of further research. Ultimately, the presented information helps lay the foundation for future standards and specifications for LIDAR radiometric calibration.

  7. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  8. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  9. Parametric exponentially correlated surface emission model for L-band passive microwave soil moisture retrieval

    USDA-ARS?s Scientific Manuscript database

    Surface soil moisture is an important parameter in hydrology and climate investigations. Current and future satellite missions with L-band passive microwave radiometers can provide valuable information for monitoring the global soil moisture. A factor that can play a significant role in the modeling...

  10. Impact of the ionosphere on an L-band space based radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.

    2006-01-01

    We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data.

  11. Inter-comparison of SMAP, SMOS and Aquarius L-band brightness temperature observations

    USDA-ARS?s Scientific Manuscript database

    Verifying the calibration of the SMAP radiometer over land observations is an important mission requirement. Inter-comparison of L-band brightness temperature observations from different satellites (SMAP, SMOS and Aquarius) is a useful tool for radiometer calibration. Brightness temperatures observa...

  12. Precipitation estimation using L-Band and C-Band soil moisture retrievals

    USDA-ARS?s Scientific Manuscript database

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterome...

  13. The design of a linear L-band high power amplifier for mobile communication satellites

    NASA Technical Reports Server (NTRS)

    Whittaker, N.; Brassard, G.; Li, E.; Goux, P.

    1990-01-01

    A linear L-band solid state high power amplifier designed for the space segment of the Mobile Satellite (MSAT) mobile communication system is described. The amplifier is capable of producing 35 watts of RF power with multitone signal at an efficiency of 25 percent and with intermodulation products better than 16 dB below carrier.

  14. Radar measurement of L-band signal fluctuations caused by propagation through trees

    NASA Technical Reports Server (NTRS)

    Durden, Stephen L.; Klein, Jeffrey D.; Zebker, Howard A.

    1991-01-01

    Fluctuations of an L-band, horizontally polarized signal that was transmitted from the ground through a coniferous forest canopy to an airborne radar are examined. The azimuth synthetic aperture radar (SAR) impulse response in the presence of the measured magnitude fluctuations shows increased sidelobes over the case with no trees. Statistics of the observed fluctuations are similar to other observations.

  15. Coherent model of L-band radar scattering by soybean plants: model development, validation and retrieval

    USDA-ARS?s Scientific Manuscript database

    An improved coherent branching model for L-band radar remote sensing of soybean is proposed by taking into account the correlated scattering among scatterers. The novel feature of the analytic coherent model consists of conditional probability functions to eliminate the overlapping effects of branc...

  16. Inter-comparison of SMAP, Aquarius and SMOS L-band brightness temperature observations

    USDA-ARS?s Scientific Manuscript database

    Soil Moisture Active Passive (SMAP) mission is scheduled for launch on January 29, 2015. SMAP will make observations with an L-band radar and radiometer using a shared 6 m rotating reflector antenna. SMAP is a fully polarimetric radiometer with the center frequency of 1.41 GHz. The target accuracy o...

  17. Soil Moisture Active/Passive (SMAP) L-band microwave radiometer post-launch calibration

    USDA-ARS?s Scientific Manuscript database

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM / 6 PM sun-synchronous orbit at 685-km altitude. Since April 2015, the radiometer has been under calibration and validation to assess the quality of the radiometer L1B data product. Calibrat...

  18. Forest canopy effects on the estimation of soil moisture at L-Band

    USDA-ARS?s Scientific Manuscript database

    Truck-based measurements of brightness temperature at Lband over small deciduous stands located in Maryland were made in 2006 and 2007. Ground truth data related to forest stands and the ground were also collected. The deciduous trees were modeled by the Distorted Born Approximation (DBA) in conjunc...

  19. Estimation of Soil Moisture for Vegetated Surfaces Using Multi-Temporal L-Band SAR Measurements

    NASA Technical Reports Server (NTRS)

    Shi, Jian-Cheng; Sun, G.; Hsu, A.; Wang, J.; ONeill, P.; Ranson, J.; Engman, E. T.

    1997-01-01

    This paper demonstrates the technique to estimate ground surface and vegetation scattering components, based on the backscattering model and the radar decomposition theory, under configuration of multi-temporal L-band polarimetric SAR measurement. This technique can be used to estimate soil moisture of vegetated surface.

  20. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin; Hensley, Scott; Lou, Yunling

    2004-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeatpass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV or minimally piloted vehicle (MPV).

  1. Effective Albedo of Vegetated Terrain at L-Band

    NASA Technical Reports Server (NTRS)

    Kurum, Mehmet; O'Neill, Peggy E.; Lang, Roger H.

    2011-01-01

    This paper derives an explicit expression for an effective albedo of vegetated terrain from the zero- and multiple- order radiative transfer (RT) model comparison. The formulation establishes a direct physical link between the effective vegetation parameterization and the theoretical description of absorption and scattering within the canopy. The paper will present an evaluation of the derived albedo for corn canopies with data taken during an experiment at Alabama A&M Winfield A. Thomas Agricultural Research Station near Huntsville, Alabama in June, 1998. The test site consisted of two 50-m x 60-m plots - one with a bare surface and the other with grass cover - and four 30-m x 50-m plots of corn at different planting densities. One corn field was planted at a full density of 9.5 plants/sq m while the others were planted at 1/3, 1/2 and 2/3 of the full density. The fields were observed with a truck-mounted L-band radiometer at incident angle of 15 degree for the period of two weeks. Soil moisture (SM) changed daily due to irrigation and natural rainfall. Variations in gravimetric SM from 18 % to 34 % were seen during this period. Ground truth data, including careful characterization of the corn size and orientation statistics, and its dielectric, was also collected and used to simulate the effective albedo for the vegetation. The single-scattering albedo is defined as the fractional power scattered from individual vegetation constituents with respect to canopy extinction. It represents single-scattering properties of vegetation elements only, and is independent of ground properties. The values of the albedo get higher when there is dense vegetation (i.e. forest, mature corn, etc.) with scatterers, such as branches and trunks (or stalks in the case of corn), which are large with respect to the wavelength. This large albedo leads to a reduction in brightness temperature in the zero-order RT solution (known as tau-omega model). Higher-order multiple-scattering RT

  2. Aperture-Coupled Thin-Membrane L-Band Antenna

    NASA Technical Reports Server (NTRS)

    Huang, John

    2007-01-01

    The upper part of the figure depicts an aperture-coupled L-band antenna comprising patterned metal conductor films supported on two thin polyimide membranes separated by an air gap. In this antenna, power is coupled from a microstrip line on the lower surface of the lower membrane, through a slot in a metal ground plane on the upper surface of the lower membrane, to a radiating metal patch on the upper surface of the upper membrane. The two-membrane configuration of this antenna stands in contrast to a three-membrane configuration heretofore considered as the basis for developing arrays of dual-polarization, wideband microwave antennas that could be thin and could be, variously, incorporated into, or supported on, thin structures, including inflatable structures. By reducing the number of membranes from three to two, the present design simplifies the problems of designing and fabricating such antennas or arrays of such antennas, including the problems of integrating such antennas or arrays with thin-membrane-mounted transmit/ receive modules. In addition, the use of aperture (slot) coupling eliminates the need for rigid coaxial feed pins and associated solder connections on thin membranes, making this antenna more mechanically reliable, relative to antennas that include coaxial feed pins. This antenna is designed for a nominal frequency of 1.26 GHz. The polyimide membranes are 0.05 mm thick and have a relative permittivity of 3.4. The radiating patch is square, 8.89 cm on each side. This radiating patch lies 1.27 cm above the ground plane. The feeding microstrip line is 0.12 mm wide and has a characteristic impedance of 50 . The aperture-coupling slot, etched in the ground plane, is 0.48 mm wide and 79.5 mm long. In order to maximize coupling, the microstrip line is extended beyond the middle of the slot by a length of 36 mm, which corresponds to a transmission- line electrical length of about a quarter wavelength. The other end of the microstrip line is

  3. Land cover classification accuracy from electro-optical, X, C, and L-band Synthetic Aperture Radar data fusion

    NASA Astrophysics Data System (ADS)

    Hammann, Mark Gregory

    The fusion of electro-optical (EO) multi-spectral satellite imagery with Synthetic Aperture Radar (SAR) data was explored with the working hypothesis that the addition of multi-band SAR will increase the land-cover (LC) classification accuracy compared to EO alone. Three satellite sources for SAR imagery were used: X-band from TerraSAR-X, C-band from RADARSAT-2, and L-band from PALSAR. Images from the RapidEye satellites were the source of the EO imagery. Imagery from the GeoEye-1 and WorldView-2 satellites aided the selection of ground truth. Three study areas were chosen: Wad Medani, Sudan; Campinas, Brazil; and Fresno- Kings Counties, USA. EO imagery were radiometrically calibrated, atmospherically compensated, orthorectifed, co-registered, and clipped to a common area of interest (AOI). SAR imagery were radiometrically calibrated, and geometrically corrected for terrain and incidence angle by converting to ground range and Sigma Naught (?0). The original SAR HH data were included in the fused image stack after despeckling with a 3x3 Enhanced Lee filter. The variance and Gray-Level-Co-occurrence Matrix (GLCM) texture measures of contrast, entropy, and correlation were derived from the non-despeckled SAR HH bands. Data fusion was done with layer stacking and all data were resampled to a common spatial resolution. The Support Vector Machine (SVM) decision rule was used for the supervised classifications. Similar LC classes were identified and tested for each study area. For Wad Medani, nine classes were tested: low and medium intensity urban, sparse forest, water, barren ground, and four agriculture classes (fallow, bare agricultural ground, green crops, and orchards). For Campinas, Brazil, five generic classes were tested: urban, agriculture, forest, water, and barren ground. For the Fresno-Kings Counties location 11 classes were studied: three generic classes (urban, water, barren land), and eight specific crops. In all cases the addition of SAR to EO resulted

  4. Characterization of radiometric calibration of LANDSAT-4 TM reflective bands

    NASA Technical Reports Server (NTRS)

    Barker, J. L.; Abrams, R. B.; Ball, D. L.; Leung, K. C.

    1984-01-01

    Prelaunch and postlaunch internal calibrator, image, and background data is to characterize the radiometric performance of the LANDSAT-4 TM and to recommend improved procedures for radiometric calibration. All but two channels (band 2, channel 4; band 5, channel 3) behave normally. Gain changes relative to a postlaunch reference for channels within a band vary within 0.5 percent as a group. Instrument gain for channels in the cold focal plane oscillates. Noise in background and image data ranges from 0.5 to 1.7 counts. Average differences in forward and reverse image data indicate a need for separate calibration processing of forward and reverse scans. Precision is improved by increasing the pulse integration width from 31 to 41 minor frames, depending on the band.

  5. Detection of coliform organisms in drinking water by radiometric method.

    PubMed

    Khurshid, S J; Bibi, S

    1991-07-01

    The radiometric method has been used for detection of coliform bacteria in water. The method is based on measuring the released metabolic 14CO2 from 14C-lactose in growth media containing coliform organisms incubated at 37 degrees C under continuous shaking. This rapid and sensitive radiometric method permits the detection of even single coliform organisms within 6 hours of incubation. Using this automated method, a total of 102 samples (in duplicate) collected from different areas in and around Rawalpindi and Islamabad were assessed for coliform bacteria. Of these 102 samples, 50 were tap water samples, 40 from wells and 6 each were from Rawal and Simly dams. About 47% and 67% tap water samples, while 62% and 74% well water samples were found unsatisfactory from around Islamabad and Rawalpindi areas, respectively. About 83% and 66% water samples from Rawal dam and Simly dam respectively were found to be unsatisfactory.

  6. Issues in Absolute Spectral Radiometric Calibration: Intercomparison of Eight Sources

    NASA Technical Reports Server (NTRS)

    Goetz, Alexander F. H.; Kindel, Bruce; Pilewskie, Peter

    1998-01-01

    The application of atmospheric models to AVIRIS and other spectral imaging data to derive surface reflectance requires that the sensor output be calibrated to absolute radiance. Uncertainties in absolute calibration are to be expected, and claims of 92% accuracy have been published. Measurements of accurate surface albedos and cloud absorption to be used in radiative balance calculations depend critically on knowing the absolute spectral-radiometric response of the sensor. The Earth Observing System project is implementing a rigorous program of absolute radiometric calibration for all optical sensors. Since a number of imaging instruments that provide output in terms of absolute radiance are calibrated at different sites, it is important to determine the errors that can be expected among calibration sites. Another question exists about the errors in the absolute knowledge of the exoatmospheric spectral solar irradiance.

  7. SLC-off Landsat-7 ETM+ reflective band radiometric calibration

    USGS Publications Warehouse

    Markham, B.L.; Barsi, J.A.; Thome, K.J.; Barker, J.L.; Scaramuzza, P.L.; Helder, D.L.; ,

    2005-01-01

    Since May 31, 2003, when the scan line corrector (SLC) on the Landsat-7 ETM+ failed, the primary foci of Landsat-7 ETM+ analyses have been on understanding and attempting to fix the problem and later on developing composited products to mitigate the problem. In the meantime, the Image Assessment System personnel and vicarious calibration teams have continued to monitor the radiometric performance of the ETM+ reflective bands. The SLC failure produced no measurable change in the radiometric calibration of the ETM+ bands. No trends in the calibration are definitively present over the mission lifetime, and, if present, are less than 0.5% per year. Detector 12 in Band 7 dropped about 0.5% in response relative to the rest of the detectors in the band in May 2004 and recovered back to within 0.1% of its initial relative gain in October 2004.

  8. The 90 GHz radiometric imaging. [for terrain analysis

    NASA Technical Reports Server (NTRS)

    King, H. E.; White, J. D.; Wilson, W. J.; Mori, T. T.; Hollinger, J. P.; Troy, B. E.; Kenney, J. E.; Mcgoogan, J. T.

    1976-01-01

    A 90-GHz (3 mm wavelength) radiometer with a noise output fluctuation of 0.22 K (RMS), with a scanning antenna beam mirror, and the data processing system are described. Real-time radiometric imaging of terrain and man-made objects are shown. Flying at an altitude of 1500 ft a radiometer antenna with a 2 degrees halfpower beamwidth can distinguish landforms, waterways, roads, runways, bridges, ships at sea and their wakes, aircraft on runways, and athletic fields. A flight taken at an altitude of 3000 ft with approximately 2000 ft of clouds below the radiometer demonstrates the ability to distinguish bridges, rivers, marshland and other landforms even though the clouds are optically opaque. The radiometric images of a few representative scenes along with photographs of the corresponding scenes are presented to demonstrate the resolution of the imager system.

  9. Development and calibration of UV/VUV radiometric sources

    NASA Technical Reports Server (NTRS)

    Bridges, J. M.

    1993-01-01

    A program exists at NIST to calibrate radiometric sources for the spectral range from 118-350 nm. These include deuterium lamps, hollow-cathode lamps, RF-excited dimer lamps, and wall-stabilized argon arcs. Sources have been calibrated for and used by researchers in solar physics, astrophysics, atmospheric physics (ozone measurements), magnetically controlled fusion, and photobiology. The argon arcs were developed in our laboratory, and provide intense sources of both radiance and irradiance. Calibrations are performed relative to two primary sources, a wall-stabilized hydrogen arc and a 12,000 K black-body line arc, both developed in our laboratory. Also we recently have begun periodic calibrations on the NIST storage ring, SURF II, to insure consistency between our respective radiometric bases. Various sources have been calibrated for space' applications, including several which are flyable. Also, some development and testing of radiometers for semiconductor lithography were recently carried out with an intense argon arc source.

  10. Calibration transfer target for a microwave radiometric profiling system

    NASA Astrophysics Data System (ADS)

    Jordan, J.; Decker, M.

    1990-11-01

    The Wave Propagation Laboratory has been operating a six-channel radiometer profiler since 1981 at Stapleton International Airport in Denver, Colorado, to retrieve temperature profiles. The atmospheric absorption at these frequencies is too large for tipping calibrations to be used. Therefore, data from collocated National Weather Service radiosondes were used to calibrate the radiometric profiles. The technique provides the necessary profiler calibration but limits its use to locations with regular radiosonde launches. Therefore, a prototype calibration transfer target was constructed at Stapleton Airport to demonstrate the feasibility of using the target to help maintain a network of radiometric profilers not located at radiosonde sites. The calibration target is described, along with potential error sources.

  11. Application of a scattered-light radiometric power meter.

    PubMed

    Caron, James N; DiComo, Gregory P; Ting, Antonio C; Fischer, Richard P

    2011-04-01

    The power measurement of high-power continuous-wave laser beams typically calls for the use of water-cooled thermopile power meters. Large thermopile meters have slow response times that can prove insufficient to conduct certain tests, such as determining the influence of atmospheric turbulence on transmitted beam power. To achieve faster response times, we calibrated a digital camera to measure the power level as the optical beam is projected onto a white surface. This scattered-light radiometric power meter saves the expense of purchasing a large area power meter and the required water cooling. In addition, the system can report the power distribution, changes in the position, and the spot size of the beam. This paper presents the theory of the scattered-light radiometric power meter and demonstrates its use during a field test at a 2.2 km optical range. © 2011 American Institute of Physics

  12. The OLI Radiometric Scale Realization Round Robin Measurement Campaign

    NASA Technical Reports Server (NTRS)

    Cutlip, Hansford; Cole,Jerold; Johnson, B. Carol; Maxwell, Stephen; Markham, Brian; Ong, Lawrence; Hom, Milton; Biggar, Stuart

    2011-01-01

    A round robin radiometric scale realization was performed at the Ball Aerospace Radiometric Calibration Laboratory in January/February 2011 in support of the Operational Land Imager (OLI) Program. Participants included Ball Aerospace, NIST, NASA Goddard Space Flight Center, and the University of Arizona. The eight day campaign included multiple observations of three integrating sphere sources by nine radiometers. The objective of the campaign was to validate the radiance calibration uncertainty ascribed to the integrating sphere used to calibrate the OLI instrument. The instrument level calibration source uncertainty was validated by quatnifying: (1) the long term stability of the NIST calibrated radiance artifact, (2) the responsivity scale of the Ball Aerospace transfer radiometer and (3) the operational characteristics of the large integrating sphere.

  13. Radiometric Methods for Rapid Diagnosis of Viral Infection.

    DTIC Science & Technology

    1975-11-01

    4, 6, 24, 48, and 72 hours postinfection, infection time beginning when the 14C-labeled medium was added. Nucleic acid sT, thesis system. Stationary...coccus epidermidis, Pseudomonas aeruginosa, and Acinetobacter caloaceticus var. anitratus) had no effect on the DNA synthesis of HSV-1 infected or...7 UNCLASS 41 RADIOMETRIC METHODS FOR RAPID DIAGNIS F VIRA ~ /fl INFECTION (U) JOHNS HOPKINS UNIV BALTIMORE MDUNC . IFEDH N WAG ER FT AL. NOV 75

  14. Radiometric measurements of gap probability in conifer tree canopies

    NASA Technical Reports Server (NTRS)

    Albers, Bryan J.; Strahler, Alan H.; Li, Xiaowen; Liang, Shunlin; Clarke, Keith C.

    1990-01-01

    Measurements of gap probability were made for some moderate-sized, open-grown conifers of varying species. Results of the radiometric analysis show that the gap probability, which is taken as the mean of the binomial, fits well a negative exponential function of a path length. The conifer shadow, then, is an object of almost uniform darkness with some bright holes or gaps that are found near the shadow's edge and rapidly disappear toward the shadows center.

  15. Radiometric observations of the nucleus of Comet Halley

    NASA Technical Reports Server (NTRS)

    Delamere, W. A.; Reitsema, H. J.; Huebner, W. F.; Schmidt, H. U.; Keller, H. U.; Schmidt, W. K. H.; Wilhelm, K.; Whipple, Fred L.

    1986-01-01

    Images obtained by the Halley multicolor camera (HMC) were used to determine the surface brightness of the nucleus. Radiometric values of jet-free areas of the surface are presented and a range of possible surface brightness values are derived. These direct measures are compared with brightnesses derived from the size of the nucleus, as determined from HMC images, and ground-based observations obtained before the onset of coma activity.

  16. Novel techniques for the analysis of the TOA radiometric uncertainty

    NASA Astrophysics Data System (ADS)

    Gorroño, Javier; Banks, Andrew; Gascon, Ferran; Fox, Nigel P.; Underwood, Craig I.

    2016-10-01

    In the framework of the European Copernicus programme, the European Space Agency (ESA) has launched the Sentinel-2 (S2) Earth Observation (EO) mission which provides optical high spatial -resolution imagery over land and coastal areas. As part of this mission, a tool (named S2-RUT, from Sentinel-2 Radiometric Uncertainty Tool) estimates the radiometric uncertainties associated to each pixel using as input the top-of-atmosphere (TOA) reflectance factor images provided by ESA. The initial version of the tool has been implemented — code and user guide available1 — and integrated as part of the Sentinel Toolbox. The tool required the study of several radiometric uncertainty sources as well as the calculation and validation of the combined standard uncertainty in order to estimate the TOA reflectance factor uncertainty per pixel. Here we describe the recent research in order to accommodate novel uncertainty contributions to the TOA reflectance uncertainty estimates in future versions of the tool. The two contributions that we explore are the radiometric impact of the spectral knowledge and the uncertainty propagation of the resampling associated to the orthorectification process. The former is produced by the uncertainty associated to the spectral calibration as well as the spectral variations across the instrument focal plane and the instrument degradation. The latter results of the focal plane image propagation into the provided orthoimage. The uncertainty propagation depends on the radiance levels on the pixel neighbourhood and the pixel correlation in the temporal and spatial dimensions. Special effort has been made studying non-stable scenarios and the comparison with different interpolation methods.

  17. LANDSAT-4 multispectral scanner (MSS) subsystem radiometric characterization

    NASA Technical Reports Server (NTRS)

    Alford, W. (Editor); Barker, J. (Editor); Clark, B. P.; Dasgupta, R.

    1983-01-01

    The multispectral band scanner (mass) and its spectral characteristics are described and methods are given for relating video digital levels on computer compatible tapes to radiance into the sensor. Topics covered include prelaunch calibration procedures and postlaunch radiometric processng. Examples of current data resident on the MSS image processing system are included. The MSS on LANDSAT 4 is compared with the scanners on earlier LANDSAT satellites.

  18. High speed radiometric measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Spidell, Matthew T.; Gordon, J. Motos; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Continuum emission is predominant in fireball spectral phenomena and in some demonstrated cases, fine detail in the temporal evolution of infrared spectral emissions can be used to estimate size and chemical composition of the device. Recent work indicates that a few narrow radiometric bands may reveal forensic information needed for the explosive discrimination and classification problem, representing an essential step in moving from "laboratory" measurements to a rugged, fieldable system. To explore phenomena not observable in previous experiments, a high speed (10μs resolution) radiometer with four channels spanning the infrared spectrum observed the detonation of nine home made explosive (HME) devices in the < 100lb class. Radiometric measurements indicate that the detonation fireball is well approximated as a single temperature blackbody at early time (0 < t <~ 3ms). The effective radius obtained from absolute intensity indicates fireball growth at supersonic velocity during this time. Peak fireball temperatures during this initial detonation range between 3000.3500K. The initial temperature decay with time (t <~ 10ms) can be described by a simple phenomenological model based on radiative cooling. After this rapid decay, temperature exhibits a small, steady increase with time (10 <~ t <~ 50ms) and peaking somewhere between 1000.1500K-likely the result of post-detonation combustion-before subsequent cooling back to ambient conditions . Radius derived from radiometric measurements can be described well (R2 > 0.98) using blast model functional forms, suggesting that energy release could be estimated from single-pixel radiometric detectors. Comparison of radiometer-derived fireball size with FLIR infrared imagery indicate the Planckian intensity size estimates are about a factor of two smaller than the physical extent of the fireball.

  19. Changes in the Radiometric Sensitivity of SeaWiFS

    NASA Technical Reports Server (NTRS)

    McClain, Charles R.; Barnes, Robert A.; Eplee, Robert E., Jr.; Patt, Frederick S.

    1998-01-01

    We report on the lunar and solar measurements used to determine the changes in the radiometric sensitivity of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Radiometric sensitivity is defined as the output from the instrument (or from one of the instrument bands) per unit spectral radiance at the instrument's input aperture. Knowledge of the long-term repeatability of the SeaWiFS measurements is crucial to maintaining the quality of the ocean scenes derived from measurements by the instrument. For SeaWiFS bands 1 through 6 (412 nm through 670 rim), the change in radiometric sensitivity is less than 0.2% for the period from November 1997 through November 1998. For band 7 (765 nm), the change is about 1.5%, and for band 8 (865 nm) about 5%. The rates of change of bands 7 and 8, which were linear with time for the first eight months of lunar measurements, are now slowing. The scatter in the data points about the trend lines in this analysis is less than 0.3% for all eight SeaWiFS bands. These results are based on monthly measurements of the moon. Daily solar measurements using an onboard diffuser show that the radiometric sensitivities of the SeaWiFS bands have changed smoothly during the time intervals between lunar measurements. Since SeaWiFS measurements have continued past November 1998, the results presented here are considered as a snapshot of the instrument performance as of that date.

  20. Analysis and Applications of Radiometric Forces in Rarefied Gas Flows

    DTIC Science & Technology

    2010-06-16

    Forces in Rarefied Gas Flows 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sergey F. Gimelshein & Natalia E. Gimelshein (ERC, Inc...Forces in Rarefied Gas Flows Sergey F. Gimelshein∗, Natalia E. Gimelshein∗, Andrew D. Ketsdever† and Nathaniel P. Selden∗∗ ∗ERC, Inc, Edwards AFB, CA 93524...geometries. Keywords: Radiometric force, shear, ES-BGK equation PACS: 51.10.+y INTRODUCTION Rarefied gas flow surrounding a thin vane with a temperature

  1. The Radiometric Bode’s law and Extrasolar Planets

    DTIC Science & Technology

    2004-09-01

    THE RADIOMETRIC BODE’S LAW AND EXTRASOLAR PLANETS T. Joseph, W. Lazio Naval Research Laboratory, Code 7213, Washington, DC 20375-5351; joseph.lazio...the magnetic polar regions. We find that most of the known extrasolar planets should emit in the frequency range 10–1000 MHz and, under favorable...detect the known extrasolar planets or place austere limits on their radio emission. Planets with masses much lower than those in the current census

  2. BOREAS TE-18, 60-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 2 1 Jun-1995. The 23 rectified images cover the period of 07-Jul-1985 to 18-Sep-1994 in the SSA and 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (1991). The original Landsat TM data were received from CCRS for use in the BOREAS project. Due to the nature of the radiometric rectification process and copyright issues, the full-resolution (30-m) images may not be publicly distributed. However, this spatially degraded 60-m resolution version of the images may be openly distributed and is available on the BOREAS CD-ROM series. After the radiometric rectification processing, the original data were degraded to a 60-m pixel size from the original 30-m pixel size by averaging the data over a 2- by 2-pixel window. The data are stored in binary image-format files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  3. Laboratory-Based BRDF Calibration of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Georgiev, Georgi T.; Butler, James J.

    2007-01-01

    The current study provides the remote sensing community with important high accuracy laboratory-based BRDF calibration of radiometric tarps. The results illustrate the dependence of tarps' weft and warp threads orientation on BRDF. The study was done at incident angles of 0deg, 10deg, and 30deg; scatter zenith angles from 0deg to 60deg, and scatter azimuth angles of 0deg, 45deg, 90deg, 135deg, and 180deg. The wavelengths were 485nm, 550nm, 633nm and 800nm. The dependence is well defined at all measurement geometries and wavelengths. It can be as high as 8% at 0deg incident angle and 2% at 30deg incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps is reported. The backward scatter is well pronounced for the white samples. The black sample has well pronounced forward scatter. The BRDF characterization of radiometric tarps can be successfully extended to other structured surface fabric samples. The results are NIST traceable.

  4. User's guide to the Radiometric Age Data Bank (RADB)

    USGS Publications Warehouse

    Zartman, Robert Eugene; Cole, James C.; Marvin, Richard F.

    1976-01-01

    The Radiometric Age Data Bank (RADB) has been established by the U.S. Geological Survey, as a means for collecting and organizing the estimated 100,000 radiometric ages presently published for the United States. RADB has been constructed such that a complete sample description (location, rock type, etc.), literature citation, and extensive analytical data are linked to form an independent record for each sample reported in a published work. Analytical data pertinent to the potassium-argon, rubidium-strontium, uranium-thorium-lead, lead-alpha, and fission-track methods can be accommodated, singly or in combinations, for each record. Data processing is achieved using the GIPSY program (University of Oklahoma) which maintains the data file and builds, updates, searches, and prints the records using simple yet versatile command statements. Searching and selecting records is accomplished by specifying the presence, absence, or (numeric or alphabetic) value of any element of information in the data bank, and these specifications can be logically linked to develop sophisticated searching strategies. Output is available in the form of complete data records, abbreviated tests, or columnar tabulations. Samples of data-reporting forms, GIPSY command statements, output formats, and data records are presented to illustrate the comprehensive nature and versatility of the Radiometric Age Data Bank.

  5. A Preliminary Analysis of LANDSAT-4 Thematic Mapper Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Justice, C.; Fusco, L.; Mehl, W.

    1985-01-01

    The NASA raw (BT) product, the radiometrically corrected (AT) product, and the radiometrically and geometrically corrected (PT) product of a TM scene were analyzed examine the frequency distribution of the digital data; the statistical correlation between the bands; and the variability between the detectors within a band. The analyses were performed on a series of image subsets from the full scence. Results are presented from one 1024 c 1024 pixel subset of Realfoot Lake, Tennessee which displayed a representative range of ground conditions and cover types occurring within the full frame image. From this cursory examination of one of the first seven channel TM data sets, it would appear that the radiometric performance of the system is most satisfactory and largely meets pre-launch specifications. Problems were noted with Band 5 Detector 3 and Band 2 Detector 4. Differences were observed between forward and reverse scan detector responses both for the BT and AT products. No systematic variations were observed between odd and even detectors.

  6. Radiometric calibration of tempospatially modulated polarization interference imaging spectrometer.

    PubMed

    Gao, Peng; Ai, Jingjing; Zhang, Chunmin

    2016-12-10

    The tempospatially modulated polarization interference imaging spectrometer (TSMPIIS) nominated by the Ministry of Scence and Technology, takes part in the "Eleventh Five-Year National Science and Technology Exhibition." In order to improve the detecting precision of the TSMPIIS, its radiometric calibration scheme is proposed on the basis of the solar simulator, integrating sphere, monochromator, and spectroradiometer. Under the conditions of changing the exposure time and radiant brightness, the CCD linear responses for the TSMPIIS were first tested to validate the reliability of the radiometric calibration performed with a linear response model, and the linear errors were less than 0.15% and 1.15%, respectively. A novel method is put forward to calibrate the nonuniformity of CCD pixels, and the least squares method can commendably correct the uneven effect in the spatial direction. Besides, the absolute radiometric calibration establishes a corresponding relation between the dimensionless intensity output from the TSMPIIS and the target radiant brightness. The study lays the foundation for the engineering application of the TSMPIIS, such as remote sensing detection, and has an important significance for the development of our instrument and equipment technology with independent intellectual property rights.

  7. Detection of mycobacteria by radiometric and standard plate procedures.

    PubMed Central

    Damato, J J; Collins, M T; Rothlauf, M V; McClatchy, J K

    1983-01-01

    A group of 89 smear-positive sputum specimens were evaluated by radiometric and standard plate procedures to determine the methodology which would provide the earliest detection of mycobacteria and maximum test sensitivity. Digested non-decontaminated specimens were concentrated and inoculated into modified selective BACTEC radiometric 7H12 broth and Mitchison selective 7H10 agar. Sodium hydroxide (1.5% final concentration) was then used to decontaminate these specimens. They were then concentrated and inoculated into both selective and nonselective 7H12 radiometric broths and into selective 7H10 and nonselective Middlebrook 7H11 agar media. The specimen processing and media combinations providing the earliest detection were non-decontaminated specimens with modified selective 7H12 BACTEC broth and decontaminated specimens with 7H12 BACTEC broths. Maximum sensitivity (percent positive) was obtained by using non-decontaminated specimens on Mitchison selective 7H10 Agar (98%) or decontaminated specimens in 7H12 BACTEC broth (95%). The decontamination process was found to reduce significantly the number of mycobacteria in clinical specimens, particularly the mycobacteria other than Mycobacterium tuberculosis. The specimen processing-media combinations providing the earliest detection and maximum recovery of mycobacteria (100%) were non-decontaminated specimens with modified selective 7H12 BACTEC broth or Mitchison selective agar and decontaminated specimens with 7H12 BACTEC broth or 7H11 agar. PMID:6348076

  8. Granite petrogenesis revealed by combined gravimetric and radiometric imaging

    NASA Astrophysics Data System (ADS)

    Tartèse, Romain; Boulvais, Philippe; Poujol, Marc; Vigneresse, Jean-Louis

    2011-03-01

    In peneplaned terranes, it is often impossible to get a full 3D view of geological objects. In the case of granitic plutons, for which intrusive relationships between constituent units can provide first order information regarding their petrogenesis, this lack of 3D field evidence is a major issue. Indirect observations can be provided by geophysical surveys. Here, we interpret field gravity data and airborne gamma ray radiometric maps with whole rock geochemistry data in order to obtain information on granite petrogenesis. First, we test our proposed combined geophysical and geochemical approach on the Huelgoat Variscan intrusion (Armorican Massif, France) and we show that ternary radiometric maps are a good proxy for the distribution of K, U and Th radioelements. Then, we apply our method to the Lizio and Questembert Variscan granitic intrusions (Armorican Massif) and show that some features characteristic of the intrusions, such as the feeding zones, can be localised by geophysical imaging. Indeed, radiometric maps constitute a frozen image of the latest stage of the magmatic building of plutons.

  9. Radiometric cross-calibration of KOMPSAT-3 with Landsat-8

    NASA Astrophysics Data System (ADS)

    Shin, Dongyoon; Jin, Cheonggil; Ahn, Hoyong; Choi, Chuluong

    2015-10-01

    This paper presents a radiometric cross calibration of KOMPSAT-3 AEISS based on Landsat-8 OLI. Cross calibration between the two sensors using simultaneous image pairs, acquired during an underfly event over the Libya 4 pseudo invariant calibration site (PICS) site. The spectral profile of the target comes from the near-simultaneous EO-1 Hyperion data over these sites for apply Spectral Band Adjustment Factor (SBAF). The results indicate that the Top Of Atmosphere (TOA) reflectance measurements for KOMPSAT-3 agree with Landsat-8 to within 5% after the application of SBAF. To validate radiometric coefficient, comparison TOA reflectance executed in north Virginia, USA. The difference in TOA reflectance was calculated to within a maximum ±1.55%. There was a huge improvement when the standard deviation altered from 0.1 to 0.01, when applying the SBAF. The result of radiometric coefficient presented here appear to be a good standard for maintaining the optical quality of the KOMPSAT-3, for which prelaunch, onboard, and vicarious calibration data are lacking.

  10. Preliminary radiometric calibration assessment of ALOS AVNIR-2

    USGS Publications Warehouse

    Bouvet, M.; Goryl, P.; Chander, G.; Santer, R.; Saunier, S.

    2008-01-01

    This paper summarizes the activities carried out in the frame of the data quality activities of the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) sensor onboard the Advanced Land Observing Satellite (ALOS). Assessment of the radiometric calibration of the AVNIR-2 multi-spectral imager is achieved via three intercomparisons to currently flying sensors over the Libyan desert, during the first year of operation. AU three methodologies indicate a slight underestimation of AVNIR-2 in band 1 by 4 to 7% with respect to other sensors radiometric scale. Band 2 does not show any obvious bias. Results for band 3 are affected by saturation due to inappropriate gain setting. Two methodologies indicate no significant bias in band 4. Preliminary results indicate possible degradations of the AVNIR-2 channels, which, when modeled as an exponentially decreasing functions, have time constants of respectively 13.2 %.year-1, 8.8%.year-1 and 0.1%.year-1 in band 1, 2 and 4 (with respect to the radiometric scale of the MEdium Resolution Imaging Spectrometer, MERIS). Longer time series of AVNIR-2 data are needed to draw final conclusions. ?? 2007 IEEE.

  11. On the estimation of snow depth from microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Wang, James R.; Chang, Alfred T. C.; Sharma, Awdhesh K.

    1992-01-01

    Multiple-channel microwave radiometric measurements made over Alaska at aircraft (near 90 and 183 GHz) and satellite (at 37 and 85 GHz) altitudes are used to study the effect of atmospheric absorption on the estimation of snow depth. The estimation is based on the radiative transfer calculations using an early theoretical model of Mie scattering of single-size particles. It is shown that the radiometric correction for the effect of atmospheric absorption is important even at 37 GHz for a reliable estimation of snow depth. Under a dry atmosphere and based on single-frequency radiometric measurements, the underestimation of snow depth could amount to 50 percent at 85 GHz and 20-30 percent at 37 GHz if the effect of atmospheric absorption is not taken into account. The snow depths estimated from the 90-GHz aircraft and 85-GHz satellite measurements are found to be in reasonable agreement. However, there is a discrepancy in the snow depths estimated from the 37-GHz (at both vertical and horizontal polarizations) and 85-GHz satellite measurements.

  12. Results of magnetic HGI and radiometric surveys in W. Canada

    SciTech Connect

    LeSchack, L.A.

    1997-05-19

    This article presents four case histories in which ground-based magnetic horizontal gradient intensity (HGI) and radiometric surveys were used in Western Canada for cost-effective geochemical exploration for hydrocarbons. The authors has developed these two surface exploration techniques from published studies and adapted them for use on the prairies the past 7 years. These surveys are used in conjunction with the usual geologic and seismic studies for: (1) evaluating prospects and land; (2) verifying seismic anomalies and inexpensively locating areas for conducting expensive 3D seismic surveys. Occasionally, as in two of the case histories discussed, these surveys were used successfully as stand-alone exploration methods where seismic exploration is not effective. The HGI and radiometric surveys measure, by geophysical methods, those effects associated with geochemical alterations due to vertical microseepage of hydrocarbons. The total cost, including permitting, data acquisition, data processing, and interpretation of the combination HGI and radiometric surveys is about 15% the total cost of a 3D seismic survey. Because of this, the author finds them an attractive and rapid survey adjunct to traditional exploration. They substantially reduce finding costs and significantly raise the probability of financial success.

  13. A high-stability single-pumped L-band superfluorescent fiber source for the fiber optic gyroscope

    NASA Astrophysics Data System (ADS)

    Huang, Wencai; Wang, Xiulin; Zheng, Benrui; Xu, Huiying; Cai, Zhiping

    2008-12-01

    In this paper, a simple single-backward configuration with a section of un-pump fiber is presented to achieve a stable L-band superfluorescent fiber source (SFS). The effects of the structural parameters on the output characteristics of the L-band SFS in terms of output spectrum, mean wavelength, and linewidth are theoretically examined. By selecting suitable structure parameters, an L-band SFS with mean wavelength insensitive to pump power is achieved under a pump power of 190mW, corresponding to a mean wavelength of 1583.20nm, an output power of 47mW, and a spectral linewidth of 49.6nm. The proposed L-band SFS design shows its tremendous advantages as simple structure and good performances that make it be useful in WDM system, fiber optic gyroscopes and fiber sensor systems applications.

  14. Preliminary Evaluation of the Radiometric Calibration of LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Park, W.; Fitzgerald, A.

    1985-01-01

    The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.

  15. Using multiple-polarization L-band radar to monitor marsh burn recovery

    USGS Publications Warehouse

    Ramsey, Elijah W.; Nelson, G.A.; Sapkota, S.K.; Laine, S.C.; Verdi, J.; Rrasznay, S.

    1999-01-01

    Aircraft L-band VV-, HH-, and VH-polarizations were examined as tools for monitoring burn recovery in a coastal marsh. Significant relationships were observed between time-since-burn (difference between burn and image collection dates; 550-900 days after burn) and returns related to all polarizations. As marsh burn recovery progressed, VV returns decreased while HH and VH returns increased. Radar returns extracted from control sites adjacent to each burn-simulated nonburn marsh and were not individually or in combination significantly related to the timesince-burn. Normalized by the control data, VH-polarization explained up to 83% of the total variations. Overall, the L-band multipolarization radars estimated time-since-burn within ??59 to ??92 days. ?? 1999 IEEE.

  16. Tropical forest tree stands characterization with L-band polarimetric radar

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1990-01-01

    The effectiveness of using L-band polarimetric data to determine tropical tree-stand parameters is discussed with specific attention given to the correction of the radar data. Tree-parameter data from ground studies is compared to L-band polarimetric data (in both uncorrected and topographically corrected forms) for two test areas. The test sites are at two different elevations but both include 81 test plots with topographic data and tree-characteristic data given. Synthetic-aperture radar (SAR) data are found to be related to bole volume and tree volume, and the topographically corrected data show results similar to the uncorrected data. Similar r-values are given for both data sets because the data with incidence-angle values below 35 and above 55 are removed. Topographical correction is important when local incidence angles exceed the limits.

  17. Converter-Modulator Design and Operations for the ILC L-band Test Stand

    SciTech Connect

    Reass, William A.; Burkhart, C.; Adolphsen, Chris E.; Beukers, T.; Cassel, R.; de Lira, A.; Papas, C.; Nguyen, M.; Went, R.; Anderson, David E.; /Oak Rdige

    2007-09-10

    To facilitate a rapid response to the International Linear Collider (ILC) L-band development program at SLAC, a spare converter-modulator was shipped from LANL. This modulator was to be a spare for the spallation neutron source (SNS) accelerator at ORNL. The ILC application requires a 33% higher peak output power (15 MW) and output current (120 Amp). This presents significant design challenges to modify the existing hardware and yet maintain switching parameters and thermal cycling within the semiconductor component ratings. To minimize IGBT commutation and free-wheeling diode currents, a different set of optimizations, as compared to the SNS design, were used to tune the resonant switching networks. Additional complexities arose as nanocrystalline cores with different performance characteristics (as compared to SNS), were used to fabricate the resonant 'boost' transformers. This paper will describe the electrical design, modeling efforts, and resulting electrical performance as implemented for the ILC L-band test stand.

  18. Tropical forest tree stands characterization with L-band polarimetric radar

    NASA Technical Reports Server (NTRS)

    Wu, Shih-Tseng

    1990-01-01

    The effectiveness of using L-band polarimetric data to determine tropical tree-stand parameters is discussed with specific attention given to the correction of the radar data. Tree-parameter data from ground studies is compared to L-band polarimetric data (in both uncorrected and topographically corrected forms) for two test areas. The test sites are at two different elevations but both include 81 test plots with topographic data and tree-characteristic data given. Synthetic-aperture radar (SAR) data are found to be related to bole volume and tree volume, and the topographically corrected data show results similar to the uncorrected data. Similar r-values are given for both data sets because the data with incidence-angle values below 35 and above 55 are removed. Topographical correction is important when local incidence angles exceed the limits.

  19. Reflection L-band erbium-doped fiber-amplifier-based fiber loop mirror

    NASA Astrophysics Data System (ADS)

    Meng, Hongyun; Liu, Songhao; Dong, Xiaoyi

    2005-01-01

    We constructed a reflection L-band erbium-doped fiber amplifier based on fiber loop mirror, which reflects the backward ASE to the EDF as a secondary pumping source. A gain of 30 dB increased 6 dB compared to the forward end-pumped EDFA has been achieved in the wavelength region from 1570 to 1603 nm. In order to improve the gain and NF further, we constructed a novel configuration for reflection L-band erbium-doped fiber amplifier via inserting a 980 nm LD in the input part. Adjusting the ratio of power of the two LDs, the gain and NF are greatly improved in different degree in the region from 1565 to 1615 nm. Compared to the configuration pumped by only 1480 nm LD with given power, the gain enhanced 1.5-9.9 dB and the NF decreases 1.3-9.4 dB.

  20. Study of precise positioning at L-band using communications satellites

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The L-band positioning experiment is reported which encompassed experiment design, experimentation, and data reduction and analysis. In the experiment the ATS-5 synchronous satellite L-band transponder was used in conjunction with the modified ALPHA 2 navigation receivers to demonstrate the technical capability of precision position fixing for oceanographic purposes. The feasibility of using relative ranging techniques implemented by two identical receiving systems, properly calibrated, to determine a line of position accurately on the surface of the earth was shown. The program demonstrated the level of resolution, repeatibility, precision, and accuracy of existing modest-cost effective navigation equipment. The experiment configuration and data reduction techniques were developed in parallel with the hardware modification tasks. Test results verify the ability of a satellite-based system to satisfy the requirements of precision position fixing.

  1. Gain enhanced L-band optical fiber amplifiers and tunable fiber lasers with erbium-doped fibers

    NASA Astrophysics Data System (ADS)

    Chen, H.; Leblanc, M.; Schinn, G. W.

    2003-02-01

    We report on the experimental investigation of gain enhanced L-band erbium-doped fiber amplifiers (EDFA) by either recycling residual ASE or using a second C-band wavelength pump laser and on the experimental demonstration of L-band tunable erbium-doped fiber ring lasers. We observed that by reflecting ASE from pumped erbium-doped fiber (EDF) the L-band EDFA gain can be enhanced of 2-15 dB depending on amplifier designs. We also studied wavelength and power dependence of second pump laser on the gain enhanced L-band EDFA and found that an optimum wavelength for second pump laser was between 1550 and 1560 nm. Finally, a L-band tunable erbium-doped fiber laser was also constructed in which lazing oscillation was observed closed to 1624 nm by recycling residual ASE. This L-band tunable laser has a line-width of about 300 MHz, an output power of 1 mW, and a signal to source spontaneous emission ratio of 60 dB.

  2. Decorrelation of L-band and C-band interferometry to volcanic risk prevention

    NASA Astrophysics Data System (ADS)

    Malinverni, E. S.; Sandwell, D.; Tassetti, A. N.; Cappelletti, L.

    2013-10-01

    SAR has several strong key features: fine spatial resolution/precision and high temporal pass frequency. Moreover, the InSAR technique allows the accurate detection of ground deformations. This high potential technology can be invaluable to study volcanoes: it provides important information on pre-eruption surface deformation, improving the understanding of volcanic processes and the ability to predict eruptions. As a downside, SAR measurements are influenced by artifacts such as atmospheric effects or bad topographic data. Correlation gives a measure of these interferences, quantifying the similarity of the phase of two SAR images. Different approaches exists to reduce these errors but the main concern remain the possibility to correlate images with different acquisition times: snow-covered or heavily-vegetated areas produce seasonal changes on the surface. Minimizing the time between passes partly limits decorrelation. Though, images with a short temporal baseline aren't always available and some artifacts affecting correlation are timeindependent. This work studies correlation of pairs of SAR images focusing on the influence of surface and climate conditions, especially snow coverage and temperature. Furthermore, the effects of the acquisition band on correlation are taken into account, comparing L-band and C-band images. All the chosen images cover most of the Yellowstone caldera (USA) over a span of 4 years, sampling all the seasons. Interferograms and correlation maps are generated. To isolate temporal decorrelation, pairs of images with the shortest baseline are chosen. Correlation maps are analyzed in relation to snow depth and temperature. Results obtained with ENVISAT and ERS satellites (C-band) are compared with the ones from ALOS (L-band). Results show a good performance during winter and a bad attitude towards wet snow (spring and fall). During summer both L-band and C-band maintain a good coherence with L-band performing better over vegetation.

  3. Estimation of Soil Moisture with the Combined L-Band Radar and Radiometer Measurements

    DTIC Science & Technology

    2005-01-01

    important role in the interactions between the land surface and the atmosphere, as well as the partitioning of precipitation into runoff and ground...water storage. Therefore, the spatial and temporal dynamics of soil moisture are important parameters for various processes in the soil-vegetation...atmosphere-interface. The Hydrosphere State Mission (Hydros) with both Active/Passive L-band instruments has been approved by NASA for monitoring

  4. Design of an L-Band Microwave Radiometer with Active Mitigation of Interference

    NASA Technical Reports Server (NTRS)

    Ellingson, Steven W.; Hampson, G. A.; Johnson, J. T.

    2003-01-01

    For increased sensitivity in L-band radiometry, bandwidths on the order of 100 MHz are desirable. This will likely require active countermeasures to mitigate RFI. In this paper, we describe a new radiometer which coherently samples 100 MHz of spectrum and applies real-time RFI mitigation techniques using FPGAs. A field test of an interim version of this design in a radio astronomy observation corrupted by radar pulses is described.

  5. Design of an L-band Microwave Radiometer with Active Mitigation of Interference

    NASA Technical Reports Server (NTRS)

    Ellingson, S. W.; Johnson, J. T.

    2003-01-01

    Radio frequency interference (RFI) impairs L-band radiometry outside the protected 20 MHz frequency band around 1413 MHz. However, bandwidths of 100 MHz or more are desired for certain remote sensing applications as well as certain astronomy applications. Because much of the RFI in this band is from radars with pulse lengths on the order of microseconds, traditional radiometers (i.e., those which directly measure total power or power spectral density integrated over time scales of milliseconds or greater) are poorly-suited to this task. Simply reducing integration time and discarding contaminated outputs may not be a practical answer due to the wide variety of modulations and pulse lengths observed in L-band RFI signals, the dynamic and complex nature of the associated propagation channels, and the logistical effort associated with post-measurement data editing. This motivates the design and development of radiometers capable of coherent sampling and adaptive, real-time mitigation of interference. Such a radiometer will be described in this presentation. This design is capable of coherently-sampling up to 100 MHz bandwidth at L-band. RFI mitigation is implemented in FPGA components so that real-time suppression is achieved. The system currently uses a cascade of basic time- and frequency- domain detection and blanking techniques; more advanced algorithms are un- der consideration. The modular FPGA-based architecture provides other benefits, such as the ability to implement extremely stable digital filters and the ability to reconfigure the system "on the fly". An overview of the basic design along with on-the-air results from an initial implementation will be provided in the presentation. Related L-band RFI surveys will be described to illustrate the relevance of this approach in a variety of operating conditions.

  6. Design of an L-band Microwave Radiometer with Active Mitigation of Interference

    NASA Technical Reports Server (NTRS)

    Hampson, G. A.; Ellingson, S. W.; Johnson, J. T.

    2003-01-01

    Radio frequency interference (RFI) impairs L-band radiometry outside the protected 20 MHz frequency band around 1413 MHz. However, bandwidths of 100 MHz or more are desired for certain remote sensing applications as well as certain astronomy applications. Because much of the RFI in this band is from radars with pulse lengths on the order of microseconds, traditional radiometers (i.e., those which directly measure total power or power spectral density integrated over time scales of milliseconds or greater) are poorly-suited to this task. Simply reducing integration time and discarding contaminated outputs may not be a practical answer due to the wide variety of modulations and pulse lengths observed in L-band RFI signals, the dynamic and complex nature of the associated propagation channels, and the logistical effort associated with post-measurement data editing. This motivates the design and development of radiometers capable of coherent sampling and adaptive, real-time mitigation of interference. Such a radiometer will be described in this presentation. This design is capable of coherently-sampling up to 100 MHz bandwidth at L-band. RFI mitigation is implemented in FPGA components so that real-time suppression is achieved. The system currently uses a cascade of basic time- and frequency-domain detection and blanking techniques; more advanced algorithms are under consideration. The modular FPGA-based architecture provides other benefits, such as the ability to implement extremely stable digital filters and the ability to reconfigure the system "on the fly". An overview of the basic design along with on-the-air results from an initial implementation will be provided in the presentation. Related L-band RFI surveys will be described to illustrate the relevance of this approach in a variety of operating conditions.

  7. Multi-Resolution L-Band Microwave Observations for Growing Vegetation during SMAPVEX16-IA

    NASA Astrophysics Data System (ADS)

    Judge, J.; Liu, P. W.; Chakrabarti, S.; De Roo, R. D.; Colliander, A.; Misra, S.; Yueh, S. H.; Williamson, R.; Ramos, I.; Tripp, S.; England, A. W.

    2016-12-01

    Microwave observations, such as those at L-band, are highly sensitive to soil moisture in the upper few centimeters (near-surface). The NASA Soil Moisture Active/Passive (SMAP) mission includes passive sensor at L-band that provides global observations of SM at 36 km, with a repeat coverage of every 2-3 days. These observations can significantly improve root zone soil moisture when data assimilated into land surface models (LSMs). The SMAP Validation Experiment-2016 (SMAPVEX16) was conducted during the summer from May through August 2016 in predominantly agricultural regions in Iowa (SMAPVEX16-IA) and Manitoba. During the experiment, aircraft and ground-based observations of L-band active and passive signatures of corn and soybean were obtained at the SMAP incidence angle of 40•. The aircraft measurements were obtained from the NASA/JPL Passive Active L- and S-band Sensor (PALS) during the time of SMAP overpasses from May 23 through June 3 and from August 3 through August 16, 2016. The ground-based University of Florida (UFLMR) and University of Michigan L-band Radiometer (UMLMR) systems observed microwave signatures of soybean and corn, respectively, at the Sweeney Farms, about 70 km north of Ames, IA. The ground-based sensors conducted every 15-minutes observations from May 23 through September 2, 2016. In addition, soil, vegetation, and micro-meteorological conditions were also monitored throughout the growing season. In this study, we discuss the satellite observations from SMAP and ESA Soil Moisture and Ocean Salinity (SMOS) along with those from PALS, and UFLMR/UMLMR at differing resolutions to understand implications of spatial heterogeneity on soil moisture retrievals in agricultural regions. resolutions. The preliminary results show SMAP observations at 36 km correspond well with the ground-based observations for corn, the predominant land cover in the region.

  8. Deformation Survey of Volcanoes in Central America Using Japanese L-Band SAR Satellite ALOS-1

    NASA Astrophysics Data System (ADS)

    Amelug, F.; Lebowitz, J.

    2015-12-01

    The Japanese L-Band SAR satellite ALOS-1 has proven intself to be a useful tool for deformation monitoring of active volcanoes. Here we present a systematic deformation survey of volcanoes in Central America for the 2007-2011 time frame using the Small Baseline InSAR time-series approach. We present results for deforming volcanoes and non-deforming volcanoes, including simple elastic source models for the volcanoes that show surface deformation.

  9. Examples L-Band Interference will be Presented and Discussed, as well as the Importance of L-Band Soil Moisture Observations

    NASA Technical Reports Server (NTRS)

    Kim, Edward

    2010-01-01

    Examples of L-band interference will be presented and discussed, as well as the importance of L-band soil moisture observations, as part of this one-day GEOSS workshop XXXVII on "Data Quality and Radio Spectrum Allocation Impact on Earth Observations" will address the broad challenges of data quality and the impact of generating reliable information for decision makers who are Earth data users but not necessarily experts in the Earth observation field. GEO has initiated a data quality assessment task (DA-09-01a) and workshop users will review and debate the directions and challenges of this effort. Radio spectrum allocation is an element of data availability and data quality, and is also associated with a GEO task (AR-06-11). A recent U.S. National Research Council report on spectrum management will be addressed as part of the workshop. Key representatives from industry, academia, and government will provide invited talks on these and related issues that impact GEOSS implementation.

  10. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    NASA Technical Reports Server (NTRS)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  11. Detection and Monitoring of Inundation with Polarimetric L-Band SAR

    NASA Astrophysics Data System (ADS)

    Chapman, B. D.; Celi, J. E.; Hamilton, S. K.; McDonald, K. C.

    2014-12-01

    It has been known for decades that at wavelengths L-band or longer, SAR is a sensitive indicator of inundation underneath forest canopies. The high resolution detection of below-canopy inundation is difficult to accomplish at regional to continental scales using other types of remote sensing sensors, making it a compelling SAR measurement especially useful for studying wetland inundation dynamics, particularly in difficult-to-reach access, canopy-covered tropical forest environments. Most results have utilized spaceborne SAR observations with less than fully polarimetric data. Since one of the objectives of the NISAR mission is to characterize and understand the fundamental process that drives changes to ecosystems such as wetland inundated areas, we will discuss the sensitivity of L-band SAR to inundation. We will illustrate the detection of inundation using fully polarimetric L-band SAR data from UAVSAR, NASA's airborne SAR, over a tropical forest region in Ecuador and Peru. At the same time as the data collection, measurements were made on the ground to characterize vegetation and inundation characteristics. The field data were used to validate the results of classifying the vanZyl decomposition of the polarimetric data. We compare this classification with that possible with a reduced subset of the polarimetric observations.

  12. Precipitation estimation using L-band and C-band soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Koster, Randal D.; Brocca, Luca; Crow, Wade T.; Burgin, Mariko S.; De Lannoy, Gabrielle J. M.

    2016-09-01

    An established methodology for estimating precipitation amounts from satellite-based soil moisture retrievals is applied to L-band products from the Soil Moisture Active Passive (SMAP) and Soil Moisture and Ocean Salinity (SMOS) satellite missions and to a C-band product from the Advanced Scatterometer (ASCAT) mission. The precipitation estimates so obtained are evaluated against in situ (gauge-based) precipitation observations from across the globe. The precipitation estimation skill achieved using the L-band SMAP and SMOS data sets is higher than that obtained with the C-band product, as might be expected given that L-band is sensitive to a thicker layer of soil and thereby provides more information on the response of soil moisture to precipitation. The square of the correlation coefficient between the SMAP-based precipitation estimates and the observations (for aggregations to ˜100 km and 5 days) is on average about 0.6 in areas of high rain gauge density. Satellite missions specifically designed to monitor soil moisture thus do provide significant information on precipitation variability, information that could contribute to efforts in global precipitation estimation.

  13. Measurement and modeling of land mobile satellite propagation at UHF and L-band

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Hong, Ui-Seok

    1988-01-01

    A propagation experiment is described in which a stratospheric balloon served as a transmitter platform at 870 and 1502 MHz in simulation of a land mobile satellite. A vehicle followed the drifting balloon along roads of western Texas and New Mexico, collecting at L-band amplitude and phase, and at UHF amplitude information only for elevation angles between 25 and 45 deg. The data obtained have been analyzed and are presented along with results from modeling of multipath scattering and roadside tree attenuation. The signal, with variations caused by multipath propagation and tree shadowing, was reduced by 3 dB at L-band and 2 dB at UHF for one percent of all locations. A median ratio of 3.9 was found between peak-to-peak phase (degrees) and power (dB) fluctuations. The ratio between L-band and UHF dB attenuation averages varied from 1.3 to 1.0 at fade levels from 6 to 23 dB. Optical sky brightness was measured and used to predict fade distribution with great accuracy. A single-scatterer multipath model is introduced. It is used to duplicate some of the measured data and to show the dependence of power variations on satellite elevation angle. Using Fresnel diffraction theory, the attenuation caused by a model tree was calculated to be near 10 dB and the maximum fade was found to increase by the logarithm of the number of branches.

  14. Measurement and modeling of land mobile satellite propagation at UHF and L-band

    NASA Astrophysics Data System (ADS)

    Vogel, Wolfhard J.; Hong, Ui-Seok

    1988-05-01

    A propagation experiment is described in which a stratospheric balloon served as a transmitter platform at 870 and 1502 MHz in simulation of a land mobile satellite. A vehicle followed the drifting balloon along roads of western Texas and New Mexico, collecting at L-band amplitude and phase, and at UHF amplitude information only for elevation angles between 25 and 45 deg. The data obtained have been analyzed and are presented along with results from modeling of multipath scattering and roadside tree attenuation. The signal, with variations caused by multipath propagation and tree shadowing, was reduced by 3 dB at L-band and 2 dB at UHF for one percent of all locations. A median ratio of 3.9 was found between peak-to-peak phase (degrees) and power (dB) fluctuations. The ratio between L-band and UHF dB attenuation averages varied from 1.3 to 1.0 at fade levels from 6 to 23 dB. Optical sky brightness was measured and used to predict fade distribution with great accuracy. A single-scatterer multipath model is introduced. It is used to duplicate some of the measured data and to show the dependence of power variations on satellite elevation angle. Using Fresnel diffraction theory, the attenuation caused by a model tree was calculated to be near 10 dB and the maximum fade was found to increase by the logarithm of the number of branches.

  15. Design and Performance of a Miniature Radar L-Band Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, D.; Price, D.; Edelstein, W.

    2004-01-01

    Radar electronics developed for past JPL space missions historically had been custom designed and as such, given budgetary, time, and risk constraints, had not been optimized for maximum flexibility or miniaturization. To help reduce cost and risk of future radar missions, a generic radar module was conceived. The module includes a 1.25-GHz (L-band) transceiver and incorporates miniature high-density packaging of integrated circuits in die/chip form. The technology challenges include overcoming the effect of miniaturization and high packaging density to achieve the performance, reliability, and environmental ruggedness required for space missions. The module was chosen to have representative (generic) functionality most likely required from an L-band radar. For very large aperture phased-array spaceborne radar missions, the large dimensions of the array suggest the benefit of distributing the radar electronics into the antenna array. For such applications, this technology is essential in order to bring down the cost, mass, and power of the radar electronics module replicated in each panel of the array. For smaller sized arrays, a single module can be combined with the central radar controller and still provide the bene.ts of configuration .exibility, low power, and low mass. We present the design approach for the radar electronics module and the test results for its radio frequency (RF) portion: a miniature, low-power, radiation-hard L-band transceiver.

  16. Design and Performance of a Miniature Radar L-Band Transceiver

    NASA Astrophysics Data System (ADS)

    McWatters, D.; Price, D.; Edelstein, W.

    2004-08-01

    Radar electronics developed for past JPL space missions historically had been custom designed and as such, given budgetary, time, and risk constraints, had not been optimized for maximum flexibility or miniaturization. To help reduce cost and risk of future radar missions, a "generic" radar module was conceived. The module includes a 1.25-GHz (L-band) transceiver and incorporates miniature high-density packaging of integrated circuits in die/chip form. The technology challenges include overcoming the effect of miniaturization and high packaging density to achieve the performance, reliability, and environmental ruggedness required for space missions. The module was chosen to have representative (generic) functionality most likely required from an L-band radar. For very large aperture phased-array spaceborne radar missions, the large dimensions of the array suggest the benefit of distributing the radar electronics into the antenna array. For such applications, this technology is essential in order to bring down the cost, mass, and power of the radar electronics module replicated in each panel of the array. For smaller sized arrays, a single module can be combined with the central radar controller and still provide the benefits of configuration flexibility, low power, and low mass. We present the design approach for the radar electronics module and the test results for its radio frequency (RF) portion: a miniature, low-power, radiation-hard L-band transceiver.

  17. Estimating vegetation optical depth using L-band passive microwave airborne data in HiWATER

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Chai, Linna

    2014-11-01

    In this study, a relationship between polarization differences of soil emissivity at different incidence angles was constructed from a large quantity of simulated soil emissivity based on the Advanced Integrated Emission Model (AIEM) input parameters include: a frequency of 1.4 GHz (L-band), incident angles varying from 1°to 60° at a 1° interval, a wide range of soil moisture content and land surface roughness parameters. Then, we used this relationship and the ω-τ zero-order radiation transfer model to develop an inversion method of low vegetation optical depth at L-band, this work were under the assumption that there was no significant polarization difference between the vegetation signals. Based on this inversion method of low vegetation optical depth, we used the land surface passive microwave brightness temperature of Heihe Watershed obtained by airborne Polarimetric L-band Multibeam Radiometer (PLMR) in 2012 Heihe Watershed Allied Telemetry Experimental Research (HiWATER) to retrieve the corn optical depth in the flight areas, then the results were compared with the measured corn LAI. Results show that the retrieved corn optical depths were consisted with the measured LAI of corn. It proved that the corn optical depth inversion method proposed in this study was feasible. Moreover, the method was promising to apply to the satellite observations.

  18. High gain low noise L-band preamplifier with cascade double-pass structure

    NASA Astrophysics Data System (ADS)

    Jia, Dongfang; Wang, Yanyong; Bao, Huanmin; Yang, Tianxin; Li, Shichen

    2005-06-01

    An optimized two-stage-cascade double-pass structure L-band preamplifier was proposed and experimentally studied to overcome the shortcomings of low gain coefficient and high noise figure of L-band erbium-doped fiber amplifier (EDFA). The fiber lengthes of 6.5 and 32.5 m, pump powers of 130 and 119 mW for the first and second stages respectively are used in the experiment. When input signal power is -30 dBm, the amplifier can provide gain above 38.84 dB in a wavelength range of 34 nm (1568---1602 nm), gain ripple less than 2.04 dB (40.88---38.84 dB), and noise figures lower than 5.29 dB with the lowest value of 3.95 dB at 1590 nm. Experimental and simulation results show that this low cost and high pump efficiency amplifier is suitable for the application as an L-band preamplifier in the broadband fiber communication system.

  19. Evaluation of Spaceborne L-band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada

    NASA Technical Reports Server (NTRS)

    Roy, A.; Royer, A.; Derksen, C.; Brucker, L.; Langlois, A.; Mailon, A.; Kerr, Y.

    2015-01-01

    The landscape freeze/thaw (FT) state has an important impact on the surface energy balance, carbon fluxes, and hydrologic processes; the timing of spring melt is linked to active layer dynamics in permafrost areas. L-band (1.4 GHz) microwave emission could allow the monitoring of surface state dynamics due to its sensitivity to the pronounced permittivity difference between frozen and thawed soil. The aim of this paper is to evaluate the performance of both Aquarius and Soil Moisture and Ocean Salinity (SMOS) L-band passive microwave measurements using a polarization ratio-based algorithm for landscape FT monitoring. Weekly L-band satellite observations are compared with a large set of reference data at 48 sites across Canada spanning three environments: tundra, boreal forest, and prairies. The reference data include in situ measurements of soil temperature (Tsoil) and air temperature (Tair), and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and snow cover area (SCA) products. Results show generally good agreement between Lband FT detection and the surface state estimated from four reference datasets. The best apparent accuracies for all seasons are obtained using Tair as the reference. Aquarius radiometer 2 (incidence angle of 39.6) data gives the best accuracies (90.8), while for SMOS the best results (87.8 of accuracy) are obtained at higher incidence angles (55- 60). The FT algorithm identifies both freeze onset and end with a delay of about one week in tundra and two weeks in forest and prairies, when compared to Tair. The analysis shows a stronger FT signal at tundra sites due to the typically clean transitions between consistently frozen and thawed conditions (and vice versa) and the absence of surface vegetation. Results in the prairies were poorer because of the influence of vegetation growth in summer (which decreases the polarization ratio) and the high frequency of ephemeral thaw events during winter. Freeze onset

  20. Rain effect on Aquarius L-band Emissivity and Backscatter Model Functions

    NASA Astrophysics Data System (ADS)

    Tang, W.; Yueh, S. H.; Fore, A.; Neumann, G.; Hayashi, A.

    2012-12-01

    Remote sensing of sea surface salinity (SSS) is being performed by Aquarius and SMOS missions, which are using L-band radiometry to sense the microwave emissions from sea surfaces. To enable accurate SSS retrieval, it is essential to correct the impact of sea surface roughness on L-band brightness temperatures. In addition, the impact of rain has to be carefully assessed and accounted for. Although the atmospheric attenuation caused by raindrops are likely negligible at 1.4GHz, other factors must be considered because they may have indirect but important contribution to the surface roughness and consequently L-band brightness temperatures. For example, the wind speed dependent roughness correction will be corrupted when rain striking the water, creating rings, stalks, and crowns from which the signal scatters. It is also unknown how long the freshwater stays at surface while through the oceanic mixing process at various regions over global oceans. We collocated the Aquarius L-band data with various wind products, including SSM/I, NCEP, ASCAT and WindSAT, as well as the SSM/I and WindSAT rain products. During the first four months of Aquarius mission, near 1.9 million pixels are identified under rain conditions by either SSM/I or WindSAT. We derived the L-band emissivity and backscatter geophysical model functions (GMF), parameterized by SSM/I and NCEP winds for rain-free conditions. However, the residual ocean surface emissivity (the Aquarius measured minus the rain-free model predictions) reveals profound resemblance with global precipitation pattern. In region dominated by rain, e.g. ITCZ, northern hemisphere storm track, and Indian Ocean partially under the influence of summer monsoon, the GMF built using rain free data underestimates excess emissivity about 0.5 to 1 K. The dependence of residual of emissivity and backscatter is shown as a function of wind speed and rain rate. A modified GMF is developed including rain rate as one of the parameters. Due to

  1. Evaluation of Spaceborne L-band Radiometer Measurements for Terrestrial Freeze/Thaw Retrievals in Canada

    NASA Technical Reports Server (NTRS)

    Roy, A.; Royer, A.; Derksen, C.; Brucker, L.; Langlois, A.; Mailon, A.; Kerr, Y.

    2015-01-01

    The landscape freeze/thaw (FT) state has an important impact on the surface energy balance, carbon fluxes, and hydrologic processes; the timing of spring melt is linked to active layer dynamics in permafrost areas. L-band (1.4 GHz) microwave emission could allow the monitoring of surface state dynamics due to its sensitivity to the pronounced permittivity difference between frozen and thawed soil. The aim of this paper is to evaluate the performance of both Aquarius and Soil Moisture and Ocean Salinity (SMOS) L-band passive microwave measurements using a polarization ratio-based algorithm for landscape FT monitoring. Weekly L-band satellite observations are compared with a large set of reference data at 48 sites across Canada spanning three environments: tundra, boreal forest, and prairies. The reference data include in situ measurements of soil temperature (Tsoil) and air temperature (Tair), and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) and snow cover area (SCA) products. Results show generally good agreement between Lband FT detection and the surface state estimated from four reference datasets. The best apparent accuracies for all seasons are obtained using Tair as the reference. Aquarius radiometer 2 (incidence angle of 39.6) data gives the best accuracies (90.8), while for SMOS the best results (87.8 of accuracy) are obtained at higher incidence angles (55- 60). The FT algorithm identifies both freeze onset and end with a delay of about one week in tundra and two weeks in forest and prairies, when compared to Tair. The analysis shows a stronger FT signal at tundra sites due to the typically clean transitions between consistently frozen and thawed conditions (and vice versa) and the absence of surface vegetation. Results in the prairies were poorer because of the influence of vegetation growth in summer (which decreases the polarization ratio) and the high frequency of ephemeral thaw events during winter. Freeze onset

  2. Microwave radiometric measurements of soil moisture in Italy

    NASA Astrophysics Data System (ADS)

    Macelloni, G.; Paloscia, S.; Pampaloni, P.; Santi, E.; Tedesco, M.

    Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz). The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz), is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC) were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM) and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths.

  3. Effect of Forest Canopy on Remote Sensing Soil Moisture at L-band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R. H.; Jackson, T. J.; Haken, M.

    2005-01-01

    Global maps of soil moisture are needed to improve understanding and prediction of the global water and energy cycles. Accuracy requirements imply the use of lower frequencies (L-band) to achieve adequate penetration into the soil and to minimize attenuation by the vegetation canopy and effects of surface roughness. Success has been demonstrated over agricultural areas, but canopies with high biomass (e.g. forests) still present a challenge. Examples from recent measurements over forests with the L-band radiometer, 2D-STAR, and its predecessor, ESTAR, will be presented to illustrate the problem. ESTAR and 2D-STAR are aircraft-based synthetic aperture radiometers developed to help resolve both the engineering and algorithm issues associated with future remote sensing of soil moisture. ESTAR, which does imaging across track, was developed to demonstrate the viability of aperture synthesis for remote sensing. The instrument has participated several soil moisture experiments (e.g. at the Little Washita Watershed in 1992 and the Southern Great Plains experiments in 1997 and 1999). In addition, measurements have been made at a forest site near Waverly, VA which contains conifer forests with a variety of biomass. These data have demonstrated the success of retrieving soil moisture at L-band over agricultural areas and the response of passive observations at L-band to biomass over forests. 2D-STAR is a second generation instrument that does aperture synthesis in two dimensions (along track and cross track) and is dual polarized. This instrument has the potential to provide measurements at L-band that simulate the measurements that will be made by the two L-band sensors currently being developed for future remote sensing of soil moisture from space: Hydros (conical scan and real aperture) and SMOS (multiple incidence angle and synthetic aperture). 2D-STAR participated in the SMEX-03 soil moisture experiment, providing images from the NASA P-3 aircraft. Preliminary results

  4. Site characterization for calibration of radiometric sensors using vicarious method

    NASA Astrophysics Data System (ADS)

    Parihar, Shailesh; Rathore, L. S.; Mohapatra, M.; Sharma, A. K.; Mitra, A. K.; Bhatla, R.; Singh, R. S.; Desai, Yogdeep; Srivastava, Shailendra S.

    2016-05-01

    Radiometric performances of earth observation satellite/sensors vary from ground pre-launch calibration campaign to post launch period extended to lifetime of the satellite due to launching vibrations. Therefore calibration is carried out worldwide through various methods throughout satellite lifetime. In India Indian Space Research Organization (ISRO) calibrates the sensor of Resourcesat-2 satellite by vicarious method. One of these vicarious calibration methods is the reflectance-based approach that is applied in this study for radiometric calibration of sensors on-board Resouresat-2 satellite. The results of ground-based measurement of atmospheric conditions and surface reflectance are made at Bap, Rajasthan Calibration/Validation (Cal/Val) site. Cal/Val observations at site were carried out with hyper-spectral Spectroradiometer covering spectral range of 350nm- 2500nm for radiometric characterization of the site. The Sunphotometer/Ozonometer for measuring the atmospheric parameters has also been used. The calibrated radiance is converted to absolute at-sensor spectral reflectance and Top-Of-Atmosphere (TOA) radiance. TOA radiance was computed using radiative transfer model `Second simulation of the satellite signal in the solar spectrum' (6S), which can accurately simulate the problems introduced by the presence of the atmosphere along the path from Sun to target (surface) to Sensor. The methodology for band averaged reflectance retrieval and spectral reflectance fitting process are described. Then the spectral reflectance and atmospheric parameters are put into 6S code to predict TOA radiance which compare with Resourcesat-2 radiance. Spectral signature and its reflectance ratio indicate the uniformity of the site. Thus the study proves that the selected site is suitable for vicarious calibration of sensor of Resourcesat-2. Further the study demonstrates the procedure for similar exercise for site selection for Cal/Val analysis of other satellite over India

  5. Radiometric calibration of digital cameras using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Schall, Martin; Grunwald, Michael; Umlauf, Georg; Franz, Matthias O.

    2015-05-01

    Digital cameras are subject to physical, electronic and optic effects that result in errors and noise in the image. These effects include for example a temperature dependent dark current, read noise, optical vignetting or different sensitivities of individual pixels. The task of a radiometric calibration is to reduce these errors in the image and thus improve the quality of the overall application. In this work we present an algorithm for radiometric calibration based on Gaussian processes. Gaussian processes are a regression method widely used in machine learning that is particularly useful in our context. Then Gaussian process regression is used to learn a temperature and exposure time dependent mapping from observed gray-scale values to true light intensities for each pixel. Regression models based on the characteristics of single pixels suffer from excessively high runtime and thus are unsuitable for many practical applications. In contrast, a single regression model for an entire image with high spatial resolution leads to a low quality radiometric calibration, which also limits its practical use. The proposed algorithm is predicated on a partitioning of the pixels such that each pixel partition can be represented by one single regression model without quality loss. Partitioning is done by extracting features from the characteristic of each pixel and using them for lexicographic sorting. Splitting the sorted data into partitions with equal size yields the final partitions, each of which is represented by the partition centers. An individual Gaussian process regression and model selection is done for each partition. Calibration is performed by interpolating the gray-scale value of each pixel with the regression model of the respective partition. The experimental comparison of the proposed approach to classical flat field calibration shows a consistently higher reconstruction quality for the same overall number of calibration frames.

  6. Radiometric calibration of the Landsat MSS sensor series

    USGS Publications Warehouse

    Helder, Dennis L.; Karki, Sadhana; Bhatt, Rajendra; Micijevik, Esad; Aaron, David; Jasinski, Benjamin

    2012-01-01

    Multispectral remote sensing of the Earth using Landsat sensors was ushered on July 23, 1972, with the launch of Landsat-1. Following that success, four more Landsat satellites were launched, and each of these carried the Multispectral Scanner System (MSS). These five sensors provided the only consistent multispectral space-based imagery of the Earth's surface from 1972 to 1982. This work focuses on developing both a consistent and absolute radiometric calibration of this sensor system. Cross-calibration of the MSS was performed through the use of pseudoinvariant calibration sites (PICSs). Since these sites have been shown to be stable for long periods of time, changes in MSS observations of these sites were attributed to changes in the sensors themselves. In addition, simultaneous data collections were available for some MSS sensor pairs, and these were also used for cross-calibration. Results indicated substantial differences existed between instruments, up to 16%, and these were reduced to 5% or less across all MSS sensors and bands. Lastly, this paper takes the calibration through the final step and places the MSS sensors on an absolute radiometric scale. The methodology used to achieve this was based on simultaneous data collections by the Landsat-5 MSS and Thematic Mapper (TM) instruments. Through analysis of image data from a PICS location and through compensating for the spectral differences between the two instruments, the Landsat-5 MSS sensor was placed on an absolute radiometric scale based on the Landsat-5 TM sensor. Uncertainties associated with this calibration are considered to be less than 5%.

  7. BOREAS TE-18, 30-m, Radiometrically Rectified Landsat TM Imagery

    NASA Technical Reports Server (NTRS)

    Hall, Forrest G. (Editor); Knapp, David

    2000-01-01

    The BOREAS TE-18 team used a radiometric rectification process to produce standardized DN values for a series of Landsat TM images of the BOREAS SSA and NSA in order to compare images that were collected under different atmospheric conditions. The images for each study area were referenced to an image that had very clear atmospheric qualities. The reference image for the SSA was collected on 02-Sep-1994, while the reference image for the NSA was collected on 21-Jun-1995. the 23 rectified images cover the period of 07-Jul-1985 to 18 Sep-1994 in the SSA and from 22-Jun-1984 to 09-Jun-1994 in the NSA. Each of the reference scenes had coincident atmospheric optical thickness measurements made by RSS-11. The radiometric rectification process is described in more detail by Hall et al. (199 1). The original Landsat TM data were received from CCRS for use in the BOREAS project. The data are stored in binary image-format files. Due to the nature of the radiometric rectification process and copyright issues, these full-resolution images may not be publicly distributed. However, a spatially degraded 60-m resolution version of the images is available on the BOREAS CD-ROM series. See Sections 15 and 16 for information about how to possibly acquire the full resolution data. Information about the full-resolution images is provided in an inventory listing on the CD-ROMs. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  8. A new radiometric unit of measure to characterize SWIR illumination

    NASA Astrophysics Data System (ADS)

    Richards, A.; Hübner, M.

    2017-05-01

    We propose a new radiometric unit of measure we call the `swux' to unambiguously characterize scene illumination in the SWIR spectral band between 0.8μm-1.8μm, where most of the ever-increasing numbers of deployed SWIR cameras (based on standard InGaAs focal plane arrays) are sensitive. Both military and surveillance applications in the SWIR currently suffer from a lack of a standardized SWIR radiometric unit of measure that can be used to definitively compare or predict SWIR camera performance with respect to SNR and range metrics. We propose a unit comparable to the photometric illuminance lux unit; see Ref. [1]. The lack of a SWIR radiometric unit becomes even more critical if one uses lux levels to describe SWIR sensor performance at twilight or even low light condition, since in clear, no-moon conditions in rural areas, the naturally-occurring SWIR radiation from nightglow produces a much higher irradiance than visible starlight. Thus, even well-intentioned efforts to characterize a test site's ambient illumination levels in the SWIR band may fail based on photometric instruments that only measure visible light. A study of this by one of the authors in Ref. [2] showed that the correspondence between lux values and total SWIR irradiance in typical illumination conditions can vary by more than two orders of magnitude, depending on the spectrum of the ambient background. In analogy to the photometric lux definition, we propose the SWIR irradiance equivalent `swux' level, derived by integration over the scene SWIR spectral irradiance weighted by a spectral sensitivity function S(λ), a SWIR analog of the V(λ) photopic response function.

  9. Radiometric correction and equalization of satellite digital data

    NASA Technical Reports Server (NTRS)

    Algazi, V. R.; Ford, G. E.; Kazakoff, J. A.

    1979-01-01

    Satellite digital data from Landsat and NOAA satellites is often marred by striping or streaking errors due to variations in the response of the radiometric sensors. In this paper, we discuss the equalization of the digital data as a preprocessing step, prior to image enhancement or automatic classification. The methods described make use of statistics of the data itself to generate nonlinear or linear memory-less equalization algorithms. These algorithms, by contrast to multidimensional filtering, do not result in a loss of spatial resolution. Examples of applications to Landsat and NOAA-3 thermal infrared data are given and illustrated.

  10. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  11. Evaluation of S190A radiometric exposure test data

    NASA Technical Reports Server (NTRS)

    Lockwood, H. E.; Goodding, R. A.

    1974-01-01

    The S190A preflight radiometric exposure test data generated as part of preflight and system test of KM-002 Sequence 29 on flight camera S/N 002 was analyzed. The analysis was to determine camera system transmission using available data which included: (1) films exposed to a calibrated light source subject; (2) filter transmission data; (3) calibrated light source data; (4) density vs. log10 exposure curves for the films; and (5) spectral sensitometric data for the films. The procedure used is outlined, and includes the data and a transmission matrix as a function of field position for nine measured points on each station-film-filter-aperture-shutter speed combination.

  12. Spectrally and Radiometrically Stable, Wideband, Onboard Calibration Source

    NASA Technical Reports Server (NTRS)

    Coles, James B.; Richardson, Brandon S.; Eastwood, Michael L.; Sarture, Charles M.; Quetin, Gregory R.; Porter, Michael D.; Green, Robert O.; Nolte, Scott H.; Hernandez, Marco A.; Knoll, Linley A.

    2013-01-01

    The Onboard Calibration (OBC) source incorporates a medical/scientific-grade halogen source with a precisely designed fiber coupling system, and a fiber-based intensity-monitoring feedback loop that results in radiometric and spectral stabilities to within less than 0.3 percent over a 15-hour period. The airborne imaging spectrometer systems developed at the Jet Propulsion Laboratory incorporate OBC sources to provide auxiliary in-use system calibration data. The use of the OBC source will provide a significant increase in the quantitative accuracy, reliability, and resulting utility of the spectral data collected from current and future imaging spectrometer instruments.

  13. Radiometric calibration of Landsat Thematic Mapper multispectral images

    USGS Publications Warehouse

    Chavez, P.S.

    1989-01-01

    A main problem encountered in radiometric calibration of satellite image data is correcting for atmospheric effects. Without this correction, an image digital number (DN) cannot be converted to a surface reflectance value. In this paper the accuracy of a calibration procedure, which includes a correction for atmospheric scattering, is tested. Two simple methods, a stand-alone and an in situ sky radiance measurement technique, were used to derive the HAZE DN values for each of the six reflectance Thematic Mapper (TM) bands. The DNs of two Landsat TM images of Phoenix, Arizona were converted to surface reflectances. -from Author

  14. MARS-3 matrix radiometric system for RATAN-600

    NASA Astrophysics Data System (ADS)

    Berlin, A. B.; Parijskij, Yu. N.; Nizhelskij, N. A.; Mingaliev, M. G.; Tsybulev, P. G.; Kratov, D. V.; Udovitskiy, R. Yu.; Smirnov, V. V.; Pylypenko, O. M.

    2012-07-01

    The MARS-3 third-generation matrix radiometric system has been developed, manufactured, and is currently being used in observations within the framework of the "Cosmological Gene" program. The system is based on new hardware components and consists of 16 independent radiometers (32 horns with a step of 20 mm). Each pair of horns is connected to the input of an amplifier unit via a square-loop modulator. The parameters of each radiometer are: central frequency, 30.0 GHz; bandwidth, 5GHz; average noise temperature of the system, 250 K; and a sensitivity of about 5 mK for τ = RC = 1 s.

  15. Virtual and remote experiments for radiometric and photometric measurements

    NASA Astrophysics Data System (ADS)

    Thoms, L.-J.; Girwidz, R.

    2017-09-01

    The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.

  16. Radiometric method for the rapid detection of Leptospira organisms

    SciTech Connect

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  17. Cropland measurement using Thematic Mapper data and radiometric model

    NASA Technical Reports Server (NTRS)

    Lyon, John G.; Khuwaiter, I. H. S.

    1989-01-01

    To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.

  18. Cropland measurement using Thematic Mapper data and radiometric model

    NASA Technical Reports Server (NTRS)

    Lyon, John G.; Khuwaiter, I. H. S.

    1989-01-01

    To halt erosion and desertification, it is necessary to quantify resources that are affected. Necessary information includes inventory of croplands and desert areas as they change over time. Several studies indicate the value of remote sensor data as input to inventories. In this study, the radiometric modeling of spectral characteristics of soil and vegetation provides the theoretical basis for the remote sensing approach. Use of Landsat Thematic Mapper images allows measurement of croplands in Saudi Arabia, demonstrating the capability of the approach. The inventory techniques and remote sensing approach presented are potentially useful in developing countries.

  19. Radiometric calibration to consider in quantitative clinical fluorescence imaging measurements

    NASA Astrophysics Data System (ADS)

    Litorja, M.; Urbas, A.; Zong, Y.

    2015-03-01

    The fluorescent light detected by a clinical imager is assumed to be proportional only to the amount of fluorescent substance present in the sample and the level of excitation. Unfortunately, there are many factors that can add or subtract to the light signal directly attributable to the desired fluorescence emission, especially with fluorescence from inside the body imaged remotely. The quantification of fluorescence emission is feasible by calibrating the imager using international system of units (SI)-traceable physical and material calibration artifacts such that the detector's digital numbers (DN) can be converted to radiometric units. Here we discuss three calibration methods for quantitative clinical fluorescence imaging systems.

  20. Principal Component Noise Filtering for NAST-I Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Smith, William L., Sr.

    2011-01-01

    The National Polar-orbiting Operational Environmental Satellite System (NPOESS) Airborne Sounder Testbed- Interferometer (NAST-I) instrument is a high-resolution scanning interferometer that measures emitted thermal radiation between 3.3 and 18 microns. The NAST-I radiometric calibration is achieved using internal blackbody calibration references at ambient and hot temperatures. In this paper, we introduce a refined calibration technique that utilizes a principal component (PC) noise filter to compensate for instrument distortions and artifacts, therefore, further improve the absolute radiometric calibration accuracy. To test the procedure and estimate the PC filter noise performance, we form dependent and independent test samples using odd and even sets of blackbody spectra. To determine the optimal number of eigenvectors, the PC filter algorithm is applied to both dependent and independent blackbody spectra with a varying number of eigenvectors. The optimal number of PCs is selected so that the total root-mean-square (RMS) error is minimized. To estimate the filter noise performance, we examine four different scenarios: apply PC filtering to both dependent and independent datasets, apply PC filtering to dependent calibration data only, apply PC filtering to independent data only, and no PC filters. The independent blackbody radiances are predicted for each case and comparisons are made. The results show significant reduction in noise in the final calibrated radiances with the implementation of the PC filtering algorithm.

  1. On the observability of Mars entry navigation using radiometric measurements

    NASA Astrophysics Data System (ADS)

    Yu, Zhengshi; Cui, Pingyuan; Zhu, Shengying

    2014-10-01

    A thorough observability analysis of the Mars entry navigation using radiometric measurements from ground based beacons is performed. This analysis involves the evaluation of the Fisher information matrix which is derived from the maximum likelihood estimation. A series of navigation cases with multiple beacons are investigated, and both range and range-rate measurements are considered. The determinant of Fisher information matrix is used to quantify the observability of navigation system, while the trace of Fisher information matrix is used to determine the lower-bound of estimation errors. For one and two beacon cases, the navigation system is unobservable. However, the eigenvectors of Fisher information matrix give the observable and unobservable component. When three or more beacon measurements are employed, the states of entry vehicle become observable. Some valuable analytic conclusions on the relationship between the geometric configuration of beacons and observability are obtained consequently. Finally, simulation results from two navigation examples indicate that our effort is useful for understanding and assessing the observability of the Mars entry navigation using radiometric measurements.

  2. Radiometric calibration of Landsat Thematic Mapper Thermal Band

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Gibbons, D. E.; Martucci, L. M.; Foote, H. P.

    1989-01-01

    Radiometric calibration of satellite-acquired data is essential for quantitative scientific studies, as well as for a variety of image-processing applications. This paper describes a multiyear, on-orbit radiometric calibration of the Landsat Thematic Mapper (TM) Band 6 conducted at DOE's Pacific Northwest Laboratory. Numerous Landsat TM scenes acquired and analyzed included day and night coverages at several geographical locations over several seasons. Concurrent with Landsat overpasses, thermal field and local meteorological (surface and radiosonde) measurements were collected. At-satellite (uncorrected) radiances and temperatures for water and nonwater land cover were compared to ground truth (GT) measurements after making adjustments for atmospheric (using LOWTRAN), mixed-pixel, and emissivity effects. Results indicate that, for both water and nonwater features, TM Band 6 average corrected temperature determinations using local radiosonde data to adjust for atmospheric effects, and using appropriate emissivities, are within 1.0 C of GT temperature values. Temperatures of water pixels derived from uncorrected TM Band 6 data varied roughly between 1 and 3 C of ground truth values for water temperatures ranging between 4 and 24 C. Moreover, corrections using nonlocal and noncoincident radiosonde data resulted in errors as large as 12 C. Corrections using the U.S. Standard Atmosphere gave temperature values within 1 to 2 C of GT. The average uncertainty for field instruments was + or - 0.2 C; average uncertainty for Landsat TM corrected temperature determinations was + or - 0.4 C.

  3. Reduction of Radiometric Miscalibration—Applications to Pushbroom Sensors

    PubMed Central

    Rogaß, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework—Reduction Of Miscalibration Effects (ROME)—considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data. PMID:22163960

  4. Radiometric measurement of differential metabolism of fatty acid by mycobacteria.

    PubMed

    Camargo, E E; Kertcher, J A; Larson, S M; Tepper, B S; Wagner, H N

    1982-06-01

    An assay system has been developed based on automated radiometric quantification of 14CO2 produced through oxidation of [1-14C] fatty acids by mycobacteria. Two stains of M. tuberculosis (H37Rv and Erdman) and one of M. bovis (BCG) in 7H9 medium (ADC) with 1.0 microCi of one of the fatty acids (butyric, hexanoic, octanoic, decanoic, lauric, myristic, palmitic, stearic, oleic, linoleic and linolenic) were studied. Results previously published on M. lepraemurium (Hawaiian) were also included for comparison. Both strains of M. tuberculosis had maximum 14CO2 production from hexanoic acid. Oxidation of butyric and avid oxidation of lauric acids were also found with the H37Rv strain but not with Erdman. In contrast, 14CO2 production by M. bovis was greatest from lauric and somewhat less from decanoic acid. M. lepraemurium showed increasing oxidation rates from myristic, decanoic and lauric acids. Assimilation studies of M. tuberculosis H37Rv confirmed that most of the oxidized substrates were converted into by-products with no change in those from which no oxidation was found. These data suggest that the radiometric measurement of differential fatty acid metabolism may provide a basis of strain identification of the genus Mycobacterium.

  5. Radiometric measurement of metabolic activity of Mycobacterium lepraemurium.

    PubMed

    Camargo, E E; Larson, S M; Tepper, B S; Wagner, H N

    1974-09-01

    A sensitive and nondestructive radiometric method has been applied to the detection of metabolism of Mycobacterium lepraemurium, as a model for the study of the metabolism and substrate requirements of M. leprae. The method is based on the measurement of the (14)CO(2) produced through the bacterial conversion of [U-(14)C]acetate or [U-(14)C]glycerol by 7 x 10(9) bacteria suspended in 10 ml of either a simple buffer system (K-36) or a complex medium (NC-5). Metabolism of the bacilli was easily detected within 3 days after inoculation and was measured daily. NC-5 medium supported metabolism of M. lepraemurium for several weeks longer than the simple K-36 buffer. The radiometric technique shows promise as a rapid and efficient system for evaluating the metabolism of mycobacteria without introducing any changes in the physiologic state of the organisms, studying their metabolic pathways, determining conditions potentially favorable for multiplication of these organisms in vitro, and studying their susceptibility to inhibition by drugs.

  6. Investigation of radiometric properties of the LANDSAT-4 multispectral scanner

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Rice, D. P.

    1983-01-01

    The radiometric data quality of the LANDSAT 4 multispectral scanner (MSS) was examined using several LANDSAT 4 frames. It was found that LANDSAT 4 MSS produces high-quality data of the caliber experienced with previous LANDSATS. For example, the detector equalization procedure worked well, leaving a residual banding effect of about 0.3 digital counts RMS, close to the theoretical minimum value of quantization error. Nevertheless, artifacts of the data were found, two of which were not experienced in previous MSS data. A low-level coherent noise effect was observed in all bands, with a magnitude of about 0.5 digital counts and a frequency of approximately 28 KHz (representing a wavelength of about 3.6 pixels); a substantial increase in processing complexity would be required to reduce this artifact in the data. Also, a substantial scan-length variation (of up to six pixels) was noted in MSS data when the TM sensor was operating; the LANDSAT 4 correction algorithms being applied routinely by the EROS Data Center to produce a p-type data should remove most of this variation. Between-satellite calibrations were examined in paired LANDSAT 3 and LANDSAT 4 MSS data sets, which were closely matched in acquisition time and place. Radiometric comparisons showed that all bands were highly linear in digital counts, and a well-determined linear transformation between the MSS's was established.

  7. Radiometric Characterization of Hyperspectral Imagers using Multispectral Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Kurt, Thome; Leisso, Nathan; Anderson, Nikolaus; Czapla-Myers, Jeff

    2009-01-01

    The Remote Sensing Group (RSG) at the University of Arizona has a long history of using ground-based test sites for the calibration of airborne and satellite based sensors. Often, ground-truth measurements at these test sites are not always successful due to weather and funding availability. Therefore, RSG has also automated ground instrument approaches and cross-calibration methods to verify the radiometric calibration of a sensor. The goal in the cross-calibration method is to transfer the calibration of a well-known sensor to that of a different sensor, This work studies the feasibility of determining the radiometric calibration of a hyperspectral imager using multispectral a imagery. The work relies on the Moderate Resolution Imaging Spectroradiometer (M0DIS) as a reference for the hyperspectral sensor Hyperion. Test sites used for comparisons are Railroad Valley in Nevada and a portion of the Libyan Desert in North Africa. Hyperion bands are compared to MODIS by band averaging Hyperion's high spectral resolution data with the relative spectral response of M0DlS. The results compare cross-calibration scenarios that differ in image acquisition coincidence, test site used for the calibration, and reference sensor. Cross-calibration results are presented that show agreement between the use of coincident and non-coincident image pairs within 2% in most brands as well as similar agreement between results that employ the different MODIS sensors as a reference.

  8. Radiometric and conventional drug susceptibility testing of Mycobacterium tuberculosis.

    PubMed

    Hoel, T; Eng, J

    1991-11-01

    One hundred and four clinical isolates of M. tuberculosis were susceptibility tested by the radiometric method (RAD) using the BACTEC system in parallel with a conventional modified proportion method (CON). In the latter, the strains were tested against four concentrations of drugs in Lowenstein-Jensen medium (isoniazid (INH), streptomycin (SM) and ethambutol (EMB)) OR 7H10 agar medium (rifampicin (RIF)) and reported as "sensitive", "intermediate" or "resistant" from the minimum inhibitory concentrations observed. The radiometric results were classified in the same three groups in accordance with the BACTEC methodology. The overall agreement between the results obtained by the two methods was 97.4% (INH 95.2%, EMB 96.2%, SM 98.1% and RIF 100%). In addition, the agreement between RAD and each of the drug concentration steps employed in CON was examined and the results discussed in relation to the established critical concentrations of the drugs. The BACTEC technique was found to be a rapid and convenient method for routine use.

  9. Radiometric infrared focal plane array imaging system for thermographic applications

    NASA Technical Reports Server (NTRS)

    Esposito, B. J.; Mccafferty, N.; Brown, R.; Tower, J. R.; Kosonocky, W. F.

    1992-01-01

    This document describes research performed under the Radiometric Infrared Focal Plane Array Imaging System for Thermographic Applications contract. This research investigated the feasibility of using platinum silicide (PtSi) Schottky-barrier infrared focal plane arrays (IR FPAs) for NASA Langley's specific radiometric thermal imaging requirements. The initial goal of this design was to develop a high spatial resolution radiometer with an NETD of 1 percent of the temperature reading over the range of 0 to 250 C. The proposed camera design developed during this study and described in this report provides: (1) high spatial resolution (full-TV resolution); (2) high thermal dynamic range (0 to 250 C); (3) the ability to image rapid, large thermal transients utilizing electronic exposure control (commandable dynamic range of 2,500,000:1 with exposure control latency of 33 ms); (4) high uniformity (0.5 percent nonuniformity after correction); and (5) high thermal resolution (0.1 C at 25 C background and 0.5 C at 250 C background).

  10. Calculated sensitivities of several optical radiometric indices for vegetation canopies

    NASA Technical Reports Server (NTRS)

    Shultis, J. K.

    1991-01-01

    The present study employs a radiative transfer model for a vegetation canopy to compute several quantities used in remote sensing applications and to determine the sensitivity of these radiometric quantities to several of the important problem parameters. Attention is given to the ratio of near IR to visible reflected intensities in the nadir direction, the ratio of the fraction of incident energy reflected in the near IR to that in the visible, the normalized difference between the near IR and visible nadir-reflected intensities, and the visible intensity transmitted in a given downward direction. A realistic radiative transfer model is proposed for calculating these radiometric quantities. With these models, the sensitivity of the reflected and transmitted quantities to various canopy and illumination conditions are then determined. The sensitivity of the calculated quantities are presented as a function of the leaf area index of the canopy, and, for the reflected quantities, also as a function of the fraction of visible light absorbed in the canopy.

  11. Reduction of radiometric miscalibration--applications to pushbroom sensors.

    PubMed

    Rogass, Christian; Spengler, Daniel; Bochow, Mathias; Segl, Karl; Lausch, Angela; Doktor, Daniel; Roessner, Sigrid; Behling, Robert; Wetzel, Hans-Ulrich; Kaufmann, Hermann

    2011-01-01

    The analysis of hyperspectral images is an important task in Remote Sensing. Foregoing radiometric calibration results in the assignment of incident electromagnetic radiation to digital numbers and reduces the striping caused by slightly different responses of the pixel detectors. However, due to uncertainties in the calibration some striping remains. This publication presents a new reduction framework that efficiently reduces linear and nonlinear miscalibrations by an image-driven, radiometric recalibration and rescaling. The proposed framework-Reduction Of Miscalibration Effects (ROME)-considering spectral and spatial probability distributions, is constrained by specific minimisation and maximisation principles and incorporates image processing techniques such as Minkowski metrics and convolution. To objectively evaluate the performance of the new approach, the technique was applied to a variety of commonly used image examples and to one simulated and miscalibrated EnMAP (Environmental Mapping and Analysis Program) scene. Other examples consist of miscalibrated AISA/Eagle VNIR (Visible and Near Infrared) and Hawk SWIR (Short Wave Infrared) scenes of rural areas of the region Fichtwald in Germany and Hyperion scenes of the Jalal-Abad district in Southern Kyrgyzstan. Recovery rates of approximately 97% for linear and approximately 94% for nonlinear miscalibrated data were achieved, clearly demonstrating the benefits of the new approach and its potential for broad applicability to miscalibrated pushbroom sensor data.

  12. Radiometric calibration of Landsat Thematic Mapper Thermal Band

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Gibbons, D. E.; Martucci, L. M.; Foote, H. P.

    1989-01-01

    Radiometric calibration of satellite-acquired data is essential for quantitative scientific studies, as well as for a variety of image-processing applications. This paper describes a multiyear, on-orbit radiometric calibration of the Landsat Thematic Mapper (TM) Band 6 conducted at DOE's Pacific Northwest Laboratory. Numerous Landsat TM scenes acquired and analyzed included day and night coverages at several geographical locations over several seasons. Concurrent with Landsat overpasses, thermal field and local meteorological (surface and radiosonde) measurements were collected. At-satellite (uncorrected) radiances and temperatures for water and nonwater land cover were compared to ground truth (GT) measurements after making adjustments for atmospheric (using LOWTRAN), mixed-pixel, and emissivity effects. Results indicate that, for both water and nonwater features, TM Band 6 average corrected temperature determinations using local radiosonde data to adjust for atmospheric effects, and using appropriate emissivities, are within 1.0 C of GT temperature values. Temperatures of water pixels derived from uncorrected TM Band 6 data varied roughly between 1 and 3 C of ground truth values for water temperatures ranging between 4 and 24 C. Moreover, corrections using nonlocal and noncoincident radiosonde data resulted in errors as large as 12 C. Corrections using the U.S. Standard Atmosphere gave temperature values within 1 to 2 C of GT. The average uncertainty for field instruments was + or - 0.2 C; average uncertainty for Landsat TM corrected temperature determinations was + or - 0.4 C.

  13. Radiometric tests on wet and dry antenna reflector surface panels

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Franco, M. M.

    1990-01-01

    The results of X-band noise temperature tests on two types of antenna surface panels are presented. The first type tested was a solid antenna panel, while the second type was a perforated panel with 3/16-in.-diameter holes. Measurements were made at 8.45 GHz using an X-band radiometric system. Included in this article are measured noise temperature contributions from: (1) thermal diffusive white paint on solid and perforated panels, and (2) water sprayed on both painted and unpainted perforated panels. Experiments on perforated panels were restricted to the 3/16-in.-diameter hole panels formerly used on Deep Space Network 64-m antennas. Rigorous calibration equations, applicable to a variety of antenna panel and dichroic plate test configurations, are presented. It was demonstrated that an accurate, stable radiometric measurement system of the type used for the results of this research makes it possible to obtain information that would be much more difficult to obtain using other techniques.

  14. Branching Ratios for The Radiometric Calibration of EUNIS-2012

    NASA Technical Reports Server (NTRS)

    Daw, Adrian N.; Bhatia, A. K.; Rabin, Douglas M.

    2012-01-01

    The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona and transition region with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. The upcoming flight will incorporate a new wavelength channel covering the range 524-630 Angstroms, the previously-flown 300-370 Angstroms channel, and the first flight demonstration of cooled active pixel sensor (APS) arrays. The new 524-630 Angstrom channel incorporates a Toroidal Varied Line Space (TVLS) grating coated with B4C/Ir, providing broad spectral coverage and a wide temperature range of 0.025 to 10 MK. Absolute radiometric calibration of the two channels is being performed using a hollow cathode discharge lamp and NIST-calibrated AXUV-100G photodiode. Laboratory observations of He I 584 Angstroms and He II 304 Angstroms provide absolute radiometric calibrations of the two channels at those two respective wavelengths by using the AXUV photodiode as a transfer standard. The spectral responsivity is being determined by observing line pairs with a common upper state in the spectra of Ne I-III and Ar II-III. Calculations of A-values for the observed branching ratios are in progress.

  15. Ocean Surface Emissivity at L-band (1.4 GHz): The Dependence on Salinity and Roughness

    NASA Astrophysics Data System (ADS)

    Le Vine, D. M.; Lang, R. H.; Wentz, F. J.; Meissner, T.

    2012-12-01

    A characterization of the emissivity of sea water at L-band is important for the remote sensing of sea surface salinity. Measurements of salinity are currently being made in the radio astronomy band at 1.413 GHz by ESA's Soil Moisture and Ocean Salinity (SMOS) mission and NASA's Aquarius instrument aboard the Aquarius/SAC-D observatory. The goal of both missions is accuracy on the order of 0.2 psu. This requires accurate knowledge of the dielectric constant of sea water as a function of salinity and temperature and also the effect of waves (roughness). The former determines the emissivity of an ideal (i.e. flat) surface and the later is the major source of error from predictions based on a flat surface. These two aspects of the problem of characterizing the emissivity are being addressed in the context of the Aquarius mission. First, laboratory measurements are being made of the dielectric constant of sea water. This is being done at the George Washington University using a resonant cavity. In this technique, sea water of known salinity and temperature is fed into the cavity along its axis through a narrow tube. The sea water changes the resonant frequency and Q of the cavity which, if the sample is small enough, can be related to the dielectric constant of the sample. An extensive set of measurements have been conducted at 1.413 GHz to develop a model for the real and imaginary part of the dielectric constant as a function of salinity and temperature. The results are compared to the predictions of models based on parameterization of the Debye resonance of the water molecule. The models and measurements are close; however, the differences are significant for remote sensing of salinity. This is especially true at low temperatures where the sensitivity to salinity is lowest. Second, observations from Aquarius are being used to develop a model for the effect of wind-driven roughness (waves) on the emissivity in the open ocean. This is done by comparing the measured

  16. Evaluating Radiometric Measurements Using a Fixed 45 Degrees Responsivity and Zenith Angle Dependent Responsivities (Poster)

    SciTech Connect

    Dooraghi, M.; Habte, A.; Reda, I.; Sengupta, M.; Gotseff, P.; Andreas, A.; Anderberg, M.

    2014-03-01

    This poster seeks to demonstrate the importance and application of an existing but unused approach that ultimately reduces the uncertainty of radiometric measurements. Current radiometric data is based on a single responsivity value that introduces significant uncertainty to the data, however, through using responsivity as a function of solar zenith angle, the uncertainty could be decreased by 50%.

  17. Galileo SSI/Gaspra Radiometrically Calibrated Images V1.0

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.

    2015-05-01

    This data set includes Galileo Orbiter SSI radiometrically calibrated images of the asteroid 951 Gaspra, created using ISIS software and assuming nadir pointing. This is an original delivery of radiometrically calibrated files, not an update to existing files. All images archived include the the asteroid within the image frame. Calibration was performed in 2013-2014.

  18. Galileo SSI/Ida Radiometrically Calibrated Images V1.0

    NASA Astrophysics Data System (ADS)

    Domingue, D. L.

    2016-05-01

    This data set includes Galileo Orbiter SSI radiometrically calibrated images of the asteroid 243 Ida, created using ISIS software and assuming nadir pointing. This is an original delivery of radiometrically calibrated files, not an update to existing files. All images archived include the asteroid within the image frame. Calibration was performed in 2013-2014.

  19. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    USDA-ARS?s Scientific Manuscript database

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  20. L-Band Emission of Soil Freeze-Thaw State in a Tibetan Meadow Ecosystem

    NASA Astrophysics Data System (ADS)

    Zheng, Donghai; Wang, Xin; van der Velde, Rogier; Su, Zhongbo; Zeng, Yijian; Wen, Jun; Wang, Zuoliang; Schwank, Mike; Ferrazzoli, Paolo

    2017-04-01

    Soil freeze-thaw transition monitoring is essential for quantifying climate change and hydrologic dynamics over cold regions, for instance, the Tibetan Plateau. We investigate the L-band (1.4 GHz) microwave emission characteristics of soil freeze-thaw cycle via analysis of tower-based brightness temperature (TB) measurements using the ELBARA III radiometer in combination with simulations performed by a model of soil emission considering vertical variations of permittivity and soil temperature. Vegetation effects are modelled using the Tor Vergata discrete model. As part of Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) calibration and validation activities, the ELBARA III radiometer is installed on a 4.8 m high tower located in a seasonally frozen Tibetan meadow ecosystem to measure diurnal cycles of L-band TB. The daily measurements include elevation scanning sequences toward the ground and zenith (sky) measurements. The angular range considered for the elevation scans is performed every 30 min between 40°-70° (relative to nadir) in steps of 5°. The sky measurement is performed at 23:55 every day with an observation angle of 155°. Supporting micro-meteorological (e.g. solar radiation, air temperature and humidity) as well as soil moisture and temperature profile measurements are also conducted near the radiometer. Analyses of the measurements reveal that the impact on TB caused by diurnal changes of ground permittivity is generally stronger than the effect of changing ground temperature. Moreover, the simulations performed with the integrated Tor Vergata model and Noah land surface model indicate that the TB signatures of diurnal soil freeze-thaw cycle is most sensitive to the liquid water content of the soil surface layer, and the measurements taken at 5 cm depth are less representative for the L-band emission.

  1. Evidence of Dissipation of Circumstellar Disks from L-band Spectra of Bright Galactic Be Stars

    NASA Astrophysics Data System (ADS)

    Sabogal, B. E.; Ubaque, K. Y.; García-Varela, A.; Álvarez, M.; Salas, L.

    2017-01-01

    We present L-band spectra of the Be stars γ Cas, ϕ Per, 28 Tau, θ CrB, 66 Oph, o Her, and 28 Cyg, obtained through use of the CID-InSb spectrograph with the 2.1-m telescope at OAN/UNAM San Pedro Martir Observatory. This is the first report of L-band spectra of o Her and θ CrB, and of the data obtained with this spectrograph. We obtain flux ratios of hydrogen lines for these stars, finding that they have optically thin envelopes, except by 66 Oph and θ CrB, which do not show evidence of a circumstellar disk. γ Cas and ϕ Per have flux ratio values of hydrogen lines closer to the optically thick case than the other stars. We use the line flux ratio diagram and optical spectra reported in the literature to study the life cycles of the disks. We find clear evidence of the dissipating process of the envelopes of 66 Oph and 28 Cyg, i.e., they are decaying stars. 28 Tau seems to have passed by a similar process. γ Cas and ϕ Per are stable stars because their circumstellar disks do not show notorious changes for many years. Finally, the stars in a build-up phase, whose envelopes are generated after a decaying phase or for the first time, have not yet been observed in the L-band. It would be useful to monitor more Be stars to observe this class of stars that probably change from a very tenuous envelope to an optically thick circumstellar disk. The line flux ratio diagram seems to confirm that late Be stars have more tenuous disks than early-type Be stars, as they tend to be separated at the left bottom and the top right parts of the diagram, respectively. Larger samples of Be stars are needed to confirm this hypothesis through a statistical analysis.

  2. Soil Moisture Retrievals Using L-band Radiometer Observations in SMEX02: Successes and Challenges

    NASA Astrophysics Data System (ADS)

    Crosson, W. L.; Limaye, A. S.; Laymon, C. A.

    2004-05-01

    Measurements at L-band are widely considered to be optimal for soil moisture remote sensing, taking into account emitting depth and complications arising from roughness and vegetation. Although there is no operational satellite-borne L-band radiometer today, plans are underway to deploy one by the end of the decade. During the Soil Moisture Experiments in 2002 (SMEX02), the Passive and Active L and S-band (PALS) instrument was flown over the Walnut Creek Watershed in Iowa. This agricultural region was selected to facilitate testing of microwave remote sensing algorithms under conditions of highly variable and sometimes dense vegetation cover. L-band brightness temperature observations from PALS were used to retrieve near-surface soil moisture for conditions representative of the dominant corn and soybean land covers in the watershed. Sensitivities of the retrieved soil moisture to surface temperature, surface roughness and the vegetation B parameter have been evaluated for both crops. Retrievals for corn were found to be highly sensitive to the vegetation B parameter, while retrievals for soybeans were most sensitive to surface roughness. The vegetation water content of approximately 4 kg/m2 for the corn sites appears to be high enough to make soil moisture retrievals problematic, but retrievals appear relatively robust for soybeans with a vegetation water content of 0.3-0.7 kg/m2. For both corn and soybeans there is considerable overlap in the parameter spaces (combinations of surface roughness and vegetation B parameter) that yield accurate moisture retrievals for three wet days analyzed, but these parameter values do not translate well to dry conditions. This may indicate potential deficiencies in the roughness and vegetation correction algorithms for agricultural areas and raises concerns about global operational soil moisture retrieval from satellite-borne microwave sensors.

  3. Satellite Based Soil Moisture Product Validation Using NOAA-CREST Ground and L-Band Observations

    NASA Astrophysics Data System (ADS)

    Norouzi, H.; Campo, C.; Temimi, M.; Lakhankar, T.; Khanbilvardi, R.

    2015-12-01

    Soil moisture content is among most important physical parameters in hydrology, climate, and environmental studies. Many microwave-based satellite observations have been utilized to estimate this parameter. The Advanced Microwave Scanning Radiometer 2 (AMSR2) is one of many remotely sensors that collects daily information of land surface soil moisture. However, many factors such as ancillary data and vegetation scattering can affect the signal and the estimation. Therefore, this information needs to be validated against some "ground-truth" observations. NOAA - Cooperative Remote Sensing and Technology (CREST) center at the City University of New York has a site located at Millbrook, NY with several insitu soil moisture probes and an L-Band radiometer similar to Soil Moisture Passive and Active (SMAP) one. This site is among SMAP Cal/Val sites. Soil moisture information was measured at seven different locations from 2012 to 2015. Hydra probes are used to measure six of these locations. This study utilizes the observations from insitu data and the L-Band radiometer close to ground (at 3 meters height) to validate and to compare soil moisture estimates from AMSR2. Analysis of the measurements and AMSR2 indicated a weak correlation with the hydra probes and a moderate correlation with Cosmic-ray Soil Moisture Observing System (COSMOS probes). Several differences including the differences between pixel size and point measurements can cause these discrepancies. Some interpolation techniques are used to expand point measurements from 6 locations to AMSR2 footprint. Finally, the effect of penetration depth in microwave signal and inconsistencies with other ancillary data such as skin temperature is investigated to provide a better understanding in the analysis. The results show that the retrieval algorithm of AMSR2 is appropriate under certain circumstances. This validation algorithm and similar study will be conducted for SMAP mission. Keywords: Remote Sensing, Soil

  4. L-Band System Engineering - Concepts of Use, Systems Performance Requirements, and Architecture

    NASA Technical Reports Server (NTRS)

    Henriksen, Stephen; Zelkin, Natalie

    2011-01-01

    This document is being provided as part of ITT s NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: New ATM Requirements-Future Communications, C-band and L-band Communications Standard Development. Task 7 was motivated by the five year technology assessment performed for the Federal Aviation Administration (FAA) under the joint FAA-EUROCONTROL cooperative research Action Plan (AP-17), also known as the Future Communications Study (FCS). It was based on direction provided by the FAA project-level agreement (PLA FY09_G1M.02-02v1) for "New ATM Requirements-Future Communications." Task 7 was separated into two distinct subtasks, each aligned with specific work elements and deliverable items. Subtask 7-1 addressed C-band airport surface data communications standards development, systems engineering, test bed development, and tests/demonstrations to establish operational capability for what is now referred to as the Aeronautical Mobile Airport Communications System (AeroMACS). Subtask 7-2, which is the subject of this report, focused on preliminary systems engineering and support of joint FAA/EUROCONTROL development and evaluation of a future L-band (960 to 1164 MHz) air/ground (A/G) communication system known as the L-band digital aeronautical communications system (L-DACS), which was defined during the FCS. The proposed L-DACS will be capable of providing ATM services in continental airspace in the 2020+ timeframe. Subtask 7-2 was performed in two phases. Phase I featured development of Concepts of Use, high level functional analyses, performance of initial L-band system safety and security risk assessments, and development of high level requirements and architectures. It also included the aforementioned support of joint L-DACS development and evaluation, including inputs to L-DACS design specifications. Phase II provided a refinement of the systems engineering activities performed during Phase I, along

  5. Soil Moisture Active Passive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth's surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  6. Landscape freeze/thaw retrievals from soil moisture active passive (SMAP) L-band radar measurements

    NASA Astrophysics Data System (ADS)

    Colliander, A.; Derksen, C.

    2015-12-01

    The NASA Soil Moisture Active Passive (SMAP) mission produces a daily landscape freeze/thaw product (L3_FT_A) which provides categorical (frozen, thawed, or [inverse] transitional) classification of the surface state (for land areas north of 45°N) derived from ascending and descending orbits of SMAP high-resolution L-band radar measurements. The FT retrievals are output to 3 km resolution polar and global grids with temporal revisit of 2 days or better north of ~55°N and 3 days or better north of 45°N. The algorithm classifies the land surface freeze/thaw state based on the time series of L-band radar backscatter compared to frozen and thawed reference states. This presentation will describe pre-launch L3_FT_A algorithm implementation and evaluation using NASA/SAC-D Aquarius L-band radar data, and provide an update on the current status of the SMAP L3_FT_A product. In advance of SMAP measurements, the L3_FT_A algorithm was configured and evaluated using Aquarius measurements. While the temporal (weekly) and spatial (~100 km) resolution is much coarser than SMAP, Aquarius provides L-band radar measurements at an incidence angle (normalized to 40 degrees) which is close to SMAP. Evaluation of FT retrievals derived using both Aquarius freeze/thaw references and backscatter time series as inputs identified good agreement during the fall freeze-up period with FT flag agreement (Aquarius versus in situ) exceeding the 80% SMAP mission requirement when summarized on a monthly basis. Disagreement was greater during the spring thaw transition due in part to uncertainty in characterizing the surface state from in situ measurements and backscatter sensitivity to the onset of snow melt, independent of the soil temperature beneath the snowpack. Initial challenges for SMAP derived FT retrievals include the scale difference between the Aquarius references (~100 km) and the SMAP measurements (3 km) which is particularly problematic in areas of complex topography and/or mixed

  7. Progress in L-Band Power Distribution System R&D at SLAC

    SciTech Connect

    Nantista, Christopher; Adolphsen, Chris; Wang, Faya; /SLAC

    2008-10-20

    We report on the L-band RF power distribution system (PDS) developed at SLAC for Fermilab's NML superconducting test accelerator facility. The makeup of the system, which allows tailoring of the power distribution to cavities by pairs, is briefly described. Cold test measurements of the system and the results of high power processing are presented. We also investigate the feasibility of eliminating the expensive, lossy circulators from the PDS by pair-feeding cavities through custom 3-dB hybrids. A computational model is used to simulate the impact on cavity field stability due to the reduced cavity-to-cavity isolation.

  8. L-band Radiometer Calibration Consistency Assessment for the SMOS, SMAP, and Aquarius Instruments

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel; Le Vine, David

    2016-01-01

    Three L-band radiometers have been observing the Earth in order to retrieve soil moisture and ocean salinity. They use different instrument configurations and calibration and retrieval algorithms. In any case, the brightness temperature retrieved at the Earth surface should be consistent between all instruments. One reason for inconsistency would be the use of different approaches for the instrument calibration or the use of different models to retrieve surface brightness temperature. We report on the different approaches used for the SMOS, SMAP and Aquarius instruments and their impact on the observations consistency.

  9. Propagation effects by roadside trees measured at UHF and L-band for mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1988-01-01

    Propagation field tests were performed in Central Maryland and involved a helicopter and mobile van as the source and receiving platforms, respectively. Tests were implemented at both UHF (870 MHz) and L-band (1.5 GHz) during a period in which the trees were in full blossom and contained maximum moisture. Cumulative fade distributions were determined from the data for various fixed elevation angles, side of the road driving, and road types for both worst and best case path geometries and for overall average road conditions.

  10. Mapping water bodies over tropical bassins from SMOS L-band brightness temperature

    NASA Astrophysics Data System (ADS)

    Parrens, Marie; Al-Bitar, Ahmad; Kerr, Yann; Cote, Rémi; Richaume, Philippe; Crétaux, Jean-François; Cherchali, Selma; Wigneron, Jean-Pierre

    2015-04-01

    Wetlands and land surface waters play a crucial role in the global water and biogeochimal cycles. Since the 80's, remote sensing techniques provide quantitative estimates of open water surfaces over land. They appear to be a valuable tool to monitor natural and anthropogenic evolution of this variable over the globe. A large array of frequencies has been used to retrieve surface water over land: visible, infrared, radar and passive microwave. In this work, the passive microwave L-band acquisitions from Soil Moisture and Ocean Salinity (SMOS) mission are used to retrieve the water fraction. At this frequency, the signal is highly sensitive to surface waters. At L-band, the signal is expected to penetrate deeper in vegetation than signal in other frequency, such as visible and infrared and to some extent C-Band microwave. This asset permits to L-band signal to be more sensitive to open water under dense vegetation. In this study, authors focus on the Amazon and Congo basins. It is shown from a preliminary analysis of multi-angular, full polarized brightness temperature data that the dynamics observed over these study areas are related to the changing water bodies than the change in physical temperature. Based on this conclusion, a simple model had been built to obtain open water maps over the Amazon and Congo basin from SMOS brightness temperature at a coarse spatial resolution (25 km x 25 km) and high temporal frequency (2-days). These maps reveal the potential of L-band to monitor the evolution of open water and inundation over land. This new SMOS product is validated with visible data LandSAT. It is also compared to altimeter data (Jason-2) over the Rio Negro river. It was found that the water fraction estimated by SMOS was highly correlated with water levels measured by Jason-2 (R > 0.98). These maps exhibit also a phase shift of three months in the precipitation regime between the South and the North of the Amazon basin.

  11. Newly Formed Sea Ice in Arctic Leads Monitored by C- and L-Band SAR

    NASA Astrophysics Data System (ADS)

    Johansson, A. Malin; Brekke, Camilla; Spreen, Gunnar; King, Jennifer A.; Gerland, Sebastian

    2016-08-01

    We investigate the scattering entropy and co-polarization ratio for Arctic lead ice using C- and L-band synthetic aperture radar (SAR) satellite scenes. During the Norwegian Young sea ICE (N-ICE2015) cruise campaign overlapping SAR scenes, helicopter borne sea ice thickness measurements and photographs were collected. We can therefore relate the SAR signal to sea ice thickness measurements as well as photographs taken of the sea ice. We show that a combination of scattering and co-polarization ratio values can be used to distinguish young ice from open water and surrounding sea ice.

  12. Study of radio frequency breakdown in pressurized L-band waveguide for the International Linear Collider

    NASA Astrophysics Data System (ADS)

    Wang, Faya; Adolphsen, Chris; Nantista, Christopher

    2013-09-01

    An L-band (1.3 GHz) radio frequency (rf) waveguide system was assembled at SLAC to test components of a high power distribution scheme proposed for the International Linear Collider (ILC). All parts were made of aluminum and pressurized with dry nitrogen. The rf breakdown rate measured in this resonantly powered system is presented as a function of field level at different gas pressures and rf pulse widths (typically, only breakdown thresholds are reported.). The data are compared to predictions of a simple model which relates the breakdown phenomenon to the rate at which the free electron density builds in the gas.

  13. Soil moisture estimation from L-band radiometry: SMOS and the SMOSREX ground experiment

    NASA Astrophysics Data System (ADS)

    Saleh, K.; Calvet, J.-C.; de Rosnay, P.; Escorihuela, M. J.; Kerr, Y.; Lopez-Baeza, E.; Waldteufel, P.; Wigneron, J.-P.

    In the short term it will be possible to apply the science of passive microwave remote sensing at L-band (1.4 GHz) to data delivered by the SMOS (Soil Moisture and Ocean Salinity) mission from the European Space Agency (ESA). Currently, the preparation for the mission involves the construction and testing of the SMOS L-band instrument while numerous studies address the problem of surface soil moisture estimation. Amongst them, two approaches are particularly interesting for their application at a global scale. On the one hand, the forward inversion of a simple radiative model (LMEB model) would allow the estimation of surface soil moisture from multi-configuration brightness temperature observations. On the other hand, some authors have established statistical relationships between soil moisture and multi-configuration brightness temperature which show a good performance when applied to synthetic data. These two approaches are investigated from data gathered by the The Surface Monitoring Of the Soil Reservoir Experiment (SMOSREX, Toulouse, France). SMOSREX is an ongoing (January 2003- ) long term experiment (2 years) aimed at studying the microwave signature at 1.4 GHz of two independent surfaces, a bare soil field and a fallow site, and at assessing the assimilation of multi-spectral data into a SVAT model. The site is equipped with a highly sensitive L-band radiometer (LEWIS, L-band Radiometer For Estimating Water In Soils). Other sensors provide infrared measurements, luminance measurements, meteorological data and soil moisture and temperature profiles. Measurements of the dry and wet biomass in the plant and litter, LAI, and surface roughness are performed regularly. The duration of the experiment results in a rich data set, exhibiting a large variation of the soil moisture conditions, as well as of the plant phenologic state and the water storing capacity of the litter layer. The soil moisture estimation methods presented here rely on multi-angular brightness

  14. Processing and Breakdown Localization Rresults For an L-Band Standing-Wave Cavity

    SciTech Connect

    Wang, Faya; Adolphsen, Chris; /SLAC

    2009-08-03

    An L-band (1.3 GHz), normal-conducting, 5-cell, standing-wave cavity that was built as a prototype capture accelerator for the ILC is being high-power processed at SLAC. The goal is to demonstrate stable operation at 15 MV/m with 1 msec, 5 Hz pulses and the cavity immersed in a 0.5 Telsa solenoidal magnetic field. This paper summarizes the performance that was ultimately achieved and describes a novel analysis of the modal content of the stored energy in the cavity after a breakdown to determine on which iris it occurred.

  15. SRRC/ANL high current l-band single cell photocathode rf gun.

    SciTech Connect

    Ho, C. H.

    1998-07-16

    A high current L-band photocathode rf gun is under development at SRRC (Synchrotron Radiation Research Center, Taiwan) in collaboration with ANL (Argonne National Laboratory, USA). The goal is to produce up to 100 nC charge with the surface field gradient of over 90 MV/m at the center of the photocathode. In this report, they present the detailed design and initial test results. If successful, this gun will be used as the future AWA (Argonne Wakefield Accelerator)[1] high current gun.

  16. L-Band DME Multipath Environment in the Microwave Landing System (MLS) Approach and Landing Region.

    DTIC Science & Technology

    1982-04-13

    present hope is that an L-band DME which is fully compatible with current VOR/DME navigation and/or RNAV requirements can provide range guidance which is...adequate for all the MLS needs (e.g., RNAV to MLS transition, complex terminal maneuvers for curved approach, flare initiation and the flare maneu...NTERROGATOR ANTENA 4r 1 X1ro 2 ANTENNA I - T V1- - - - - - - - - h RUNWAYI’ M~ Fig 3-. Cnfi~raionused to determine multipath parameters due to scatterinlg

  17. A Dual-polarized Microstrip Subarray Antenna for an Inflatable L-band Synthetic Aperture Radar

    NASA Technical Reports Server (NTRS)

    Zawadzki, Mark; Huang, John

    1999-01-01

    Inflatable technology has been identified as a potential solution to the problem of achieving small mass, high packaging efficiency, and reliable deployment for future NASA spaceborne synthetic aperture radar (SAR) antennas. Presently, there exists a requirement for a dual-polarized L-band SAR antenna with an aperture size of 10m x 3m, a center frequency of 1.25GHz, a bandwidth of 80MHz, electronic beam scanning, and a mass of less than 100kg. The work presented below is part of the ongoing effort to develop such an inflatable antenna array.

  18. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  19. Estimating Sea Surface Salinity and Wind Using Combined Passive and Active L-Band Microwave Observations

    NASA Technical Reports Server (NTRS)

    Yueh, Simon H.; Chaubell, Mario J.

    2012-01-01

    Several L-band microwave radiometer and radar missions have been, or will be, operating in space for land and ocean observations. These include the NASA Aquarius mission and the Soil Moisture Active Passive (SMAP) mission, both of which use combined passive/ active L-band instruments. Aquarius s passive/active L-band microwave sensor has been designed to map the salinity field at the surface of the ocean from space. SMAP s primary objectives are for soil moisture and freeze/thaw detection, but it will operate continuously over the ocean, and hence will have significant potential for ocean surface research. In this innovation, an algorithm has been developed to retrieve simultaneously ocean surface salinity and wind from combined passive/active L-band microwave observations of sea surfaces. The algorithm takes advantage of the differing response of brightness temperatures and radar backscatter to salinity, wind speed, and direction, thus minimizing the least squares error (LSE) measure, which signifies the difference between measurements and model functions of brightness temperatures and radar backscatter. The algorithm uses the conjugate gradient method to search for the local minima of the LSE. Three LSE measures with different measurement combinations have been tested. The first LSE measure uses passive microwave data only with retrieval errors reaching 1 to 2 psu (practical salinity units) for salinity, and 1 to 2 m/s for wind speed. The second LSE measure uses both passive and active microwave data for vertical and horizontal polarizations. The addition of active microwave data significantly improves the retrieval accuracy by about a factor of five. To mitigate the impact of Faraday rotation on satellite observations, the third LSE measure uses measurement combinations invariant under the Faraday rotation. For Aquarius, the expected RMS SSS (sea surface salinity) error will be less than about 0.2 psu for low winds, and increases to 0.3 psu at 25 m/s wind speed

  20. Tunable C- and L-band laser source based on colorless laser diode

    NASA Astrophysics Data System (ADS)

    Peng, P. C.; Jhang, J. J.; Peng, Y. W.; Bitew, M. A.; Chi, Y. C.; Wu, W. C.; Wang, H. Y.; Lin, G. R.; Li, C. Y.; Lu, H. H.

    2017-03-01

    In this letter, we propose and demonstrate a tunable laser source which covers C- and L-bands based on a colorless laser diode. The proposed laser source is tunable widely and it can tune single-wavelength, dual-wavelength, and triple-wavelength. Additionally, the optical side mode suppression ratio exceeds 30 dB. Since we combine the colorless laser diode with a tunable optical filter, the proposed tunable laser source stabilizes multi-wavelengths simultaneously. Our proposed tunable laser source is very useful for applications such as optical test instruments, optical communication systems, and optical fiber sensing systems.

  1. A L-Band Superstrate Lens Enhanced Antenna and Array for Tactical Operations

    DTIC Science & Technology

    2013-07-01

    JUL 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE A L-Band Superstrate Lens Enhanced Antenna and Array for...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The design of a 1.2 GHz microstrip antenna utilizing a superstrate layer for gain enhancement is...dB of gain enhancement in simulation through the use of the superstrate lens. The 4 x 1 superstrate array achieves approximately 2.5 dB of gain

  2. The Landsat Data Continuity Mission Operational Land Imager (OLI) Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Murphy-Morris, Jeanine E.; Knight, Edward J.; Kvaran, Geir; Barsi, Julia A.

    2010-01-01

    The Operational Land Imager (OLI) on the Landsat Data Continuity Mission (LDCM) has a comprehensive radiometric characterization and calibration program beginning with the instrument design, and extending through integration and test, on-orbit operations and science data processing. Key instrument design features for radiometric calibration include dual solar diffusers and multi-lamped on-board calibrators. The radiometric calibration transfer procedure from NIST standards has multiple checks on the radiometric scale throughout the process and uses a heliostat as part of the transfer to orbit of the radiometric calibration. On-orbit lunar imaging will be used to track the instruments stability and side slither maneuvers will be used in addition to the solar diffuser to flat field across the thousands of detectors per band. A Calibration Validation Team is continuously involved in the process from design to operations. This team uses an Image Assessment System (IAS), part of the ground system to characterize and calibrate the on-orbit data.

  3. C- and L-band tunable fiber ring laser using a two-taper Mach-Zehnder interferometer filter.

    PubMed

    Wang, Xiaozhen; Li, Yi; Bao, Xiaoyi

    2010-10-15

    A stable C- and L-band tunable fiber ring laser, using a two-taper Mach-Zehnder interferometer (MZI) as a filter, is proposed and demonstrated experimentally. One of the two taper waists is mechanically bent to tune the laser wavelength. Being amplified by an L-band erbium-doped fiber amplifier and an erbium-doped fiber, respectively, the fiber ring laser has a full L-band (1564-1605nm) and C-band (1550-1565nm) tuning range with a side-mode suppression ratio as high as 50dB. The laser linewidth and the minimum tuning step are related to the MZI's cavity length. It was also found that thermal annealing relieved the internal stresses of the tapers and greatly improved the laser performance.

  4. ROSCAM: a 95-GHz radiometric one-second camera

    NASA Astrophysics Data System (ADS)

    Smith, Roger M.; Sundstrom, Bryce M.; Belcher, Byron W.; Ewen, Doc

    1998-08-01

    The ability to obtain millimeter wave images under a variety of environmental conditions, such as rain, snow, fog, smoke, dust, etc., has numerous DoD as well as commercial applications. The demonstrated ability to look through doors, walls and clothing has recently extended potential millimeter wave applications to contraband detection and surveillance within buildings. Though the phenomenology supports the generation of high quality millimeter wave images, present-day frame time capabilities limit the use of millimeter wave cameras. Several solutions to frame time reduction are currently being investigated within government and industry. Two popular approaches include: (1) Electronic scanning focal plane arrays (FPA); (2) Mechanical raster scanning of a single antenna beam. One significant difference between the two approaches noted above is the number of receiving channels required. This is important because camera cost is driven by the number of receiver channels used in a camera, as well as the added complexities associated with inter-channel gain stability. There are a number of applications that do not require a motion picture capability. Images obtained sequentially at a nominal rate of one per second would satisfy the needs of a wide range of applications. It is evident, however, that the motion picture quality of a starring FPA may ultimately reduce the market for one-second cameras. In the interim, the one-second camera fills an important need. The goal of the Radiometric One Second Camera (ROSCAM) investigation is to demonstrate a practical millimeter-wave imaging (MMWI) camera, with a frame time of approximately one second. The approach combines a high-speed mechanical raster scanning antenna system with a single-channel radiometric receiving system. For baseline comparison, it is assumed that the scene is comprised of 1,000 pixels, each sampled for one millisecond, to generate a single frame in one second. The ROSCAM is based on combining a state

  5. Station to instrumented aircraft L-band telemetry system and RF signal controller for spacecraft simulations and station calibration

    NASA Technical Reports Server (NTRS)

    Scaffidi, C. A.; Stocklin, F. J.; Feldman, M. B.

    1971-01-01

    An L-band telemetry system designed to provide the capability of near-real-time processing of calibration data is described. The system also provides the capability of performing computerized spacecraft simulations, with the aircraft as a data source, and evaluating the network response. The salient characteristics of a telemetry analysis and simulation program (TASP) are discussed, together with the results of TASP testing. The results of the L-band system testing have successfully demonstrated the capability of near-real-time processing of telemetry test data, the control of the ground-received signal to within + or - 0.5 db, and the computer generation of test signals.

  6. New Sentinel-2 radiometric validation approaches (SEOM program)

    NASA Astrophysics Data System (ADS)

    Bruniquel, Véronique; Lamquin, Nicolas; Ferron, Stéphane; Govaerts, Yves; Woolliams, Emma; Dilo, Arta; Gascon, Ferran

    2016-04-01

    SEOM is an ESA program element whose one of the objectives aims at launching state-of-the-art studies for the scientific exploitation of operational missions. In the frame of this program, ESA awarded ACRI-ST and its partners Rayference and National Physical Laboratory (NPL) early 2016 for a R&D study on the development and intercomparison of algorithms for validating the Sentinel-2 radiometric L1 data products beyond the baseline algorithms used operationally in the frame of the S2 Mission Performance Centre. In this context, several algorithms have been proposed and are currently in development: The first one is based on the exploitation of Deep Convective Cloud (DCC) observations over ocean. This method allows an inter-band radiometry validation from the blue to the NIR (typically from B1 to B8a) from a reference band already validated for example with the well-known Rayleigh method. Due to their physical properties, DCCs appear from the remote sensing point of view to have bright and cold tops and they can be used as invariant targets to monitor the radiometric response degradation of reflective solar bands. The DCC approach is statistical i.e. the method shall be applied on a large number of measurements to derive reliable statistics and decrease the impact of the perturbing contributors. The second radiometric validation method is based on the exploitation of matchups combining both concomitant in-situ measurements and Sentinel-2 observations. The in-situ measurements which are used here correspond to measurements acquired in the frame of the RadCalNet networks. The validation is performed for the Sentinel-2 bands similar to the bands of the instruments equipping the validation site. The measurements from the Cimel CE 318 12-filters BRDF Sun Photometer installed recently in the Gobabeb site near the Namib desert are used for this method. A comprehensive verification of the calibration requires an analysis of MSI radiances over the full dynamic range

  7. Radiometric calibration and SNR calculation of a SWIR imaging telescope

    SciTech Connect

    Yilmaz, Ozgur; Turk, Fethi; Selimoglu, Ozgur

    2012-09-06

    Radiometric calibration of an imaging telescope is usually made using a uniform illumination sphere in a laboratory. In this study, we used the open-sky images taken during bright day conditions to calibrate our telescope. We found a dark signal offset value and a linear response coefficient value for each pixel by using three different algorithms. Then we applied these coefficients to the taken images, and considerably lowered the image non-uniformity. Calibration can be repeated during the operation of telescope with an object that has better uniformity than open-sky. Also SNR (Signal to Noise Ratio) of each pixel was calculated from the open-sky images using the temporal mean and standard deviations. It is found that SNR is greater than 80 for all pixels even at low light levels.

  8. Radiometric Ages of Martian Meteorites compared to Martian Surfaces Ages

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Shih, C.-Y.

    1999-01-01

    The surprisingly young Rb-Sr age of the Shergotty meteorite contributed to early suggestions that it might be of martian origin. their redox state and oxygen isotopic compositions linked the shergottites to the clino-pyroxenite nakhlites and the dunite Chassigny, causing them to be grouped as SNC meteorites. These characteristics, but especially the similarity of the elemental and isotopic compositions of gases trapped in shergottites to those of the martian atmosphere, have caused the martian origin of the SNC and related meteorites to be widely accepted. Although the young ages were one of the early hints of a martian origin for the SNC meteorites, their interpretation has remained somewhat ambiguous. We will review the radiometric ages of the martian meteorites and attempt to place them into the context of martian surface ages.

  9. Summary of flight technology workshop on radiometric calibration

    NASA Technical Reports Server (NTRS)

    Dodgen, J. A.

    1980-01-01

    The conclusions and recommendations from a three-day NASA sponsored workshop to assess deficiencies and shortcomings of previously flown electro-optical space sensors are summarized. Space technologists for NASA, NOAA, DOD, and industry also developed recommendations for improving instrumentation and calibration technology. The conclusions reached include the fact that the past knowledge of in-orbit radiometric accuracy has been poor relative to available calibration standards, whereas stringent accuracy requirements for planned NASA programs will require significant SOA improvements. The Shuttle contamination environment may also compromise future sensor accuracy. A number of panel recommendations to improve in-orbit accuracy of future sensors will be summarized, including one to establish a set of National Standards for Remote Sensors at NBS as a basis for long term accuracy.

  10. Determination of precipitation profiles from airborne passive microwave radiometric measurements

    NASA Technical Reports Server (NTRS)

    Kummerow, Christian; Hakkarinen, Ida M.; Pierce, Harold F.; Weinman, James A.

    1991-01-01

    This study presents the first quantitative retrievals of vertical profiles of precipitation derived from multispectral passive microwave radiometry. Measurements of microwave brightness temperature (Tb) obtained by a NASA high-altitude research aircraft are related to profiles of rainfall rate through a multichannel piecewise-linear statistical regression procedure. Statistics for Tb are obtained from a set of cloud radiative models representing a wide variety of convective, stratiform, and anvil structures. The retrieval scheme itself determines which cloud model best fits the observed meteorological conditions. Retrieved rainfall rate profiles are converted to equivalent radar reflectivity for comparison with observed reflectivities from a ground-based research radar. Results for two case studies, a stratiform rain situation and an intense convective thunderstorm, show that the radiometrically derived profiles capture the major features of the observed vertical structure of hydrometer density.

  11. Radiometric resolution for monitoring vegetation: How many bits are needed?

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.

    1979-01-01

    The significance of the various number of radiometric quantizing levels required for satellite monitoring of vegetation resources was evaluated by using in situ collected spectral reflectance data, an atmospheric radiative transfer simulation model, and a satellite sensor simulation model. Reflectance data were converted to radiance data; passed through a model atmosphere to an altitude of 706 km; and subsequently quantized at 16, 32, 64, 128, 256, and 512 digital count levels for Thematic Mapper bands TM3(0.63 - 0.69 microns) and TM4(0.76 - 0.90 microns). The simulated digital count data were regressed against the in situ biological data to quantify the relationship between quantizing levels.

  12. Radiometric performance of the Viking Mars lander cameras

    NASA Technical Reports Server (NTRS)

    Huck, F. O.; Burcher, E. E.; Taylor, E. J.; Wall, S. D.

    1975-01-01

    The Viking lander cameras feature an array of 12 silicon photodiodes for electronic focus selection and multispectral imaging. Comparisons of absolute radiometric calibrations of the four cameras selected for the mission to Mars with performance predictions based on their design data revealed minor discrepancies. These discrepancies were caused primarily by the method used to calibrate the photosensor array and apparently also from light reflections internal to the array. The sensitivity and dynamic range of all camera channels are found to be sufficient for high quality pictures, providing that the commandable gains and offsets can be optimized for the scene radiance; otherwise, the quantization noise may be too high or the dynamic range too low for an adequate characterization of the scene.

  13. Active radiometric calorimeter for absolute calibration of radioactive sources

    SciTech Connect

    Stump, K.E.; DeWerd, L.A.; Rudman, D.A.; Schima, S.A.

    2005-03-01

    This report describes the design and initial noise floor measurements of a radiometric calorimeter designed to measure therapeutic medical radioactive sources. The instrument demonstrates a noise floor of approximately 2 nW. This low noise floor is achieved by using high temperature superconducting (HTS) transition edge sensor (TES) thermometers in a temperature-control feedback loop. This feedback loop will be used to provide absolute source calibrations based upon the electrical substitution method. Other unique features of the calorimeter are (a) its ability to change sources for calibration without disrupting the vacuum of the instrument, and (b) the ability to measure the emitted power of a source in addition to the total contained source power.

  14. Retrieval of effective cloud field parameters from radiometric data

    NASA Astrophysics Data System (ADS)

    Paulescu, Marius; Badescu, Viorel; Brabec, Marek

    2017-06-01

    Clouds play a key role in establishing the Earth's climate. Real cloud fields are very different and very complex in both morphological and microphysical senses. Consequently, the numerical description of the cloud field is a critical task for accurate climate modeling. This study explores the feasibility of retrieving the effective cloud field parameters (namely the cloud aspect ratio and cloud factor) from systematic radiometric measurements at high frequency (measurement is taken every 15 s). Two different procedures are proposed, evaluated, and discussed with respect to both physical and numerical restrictions. None of the procedures is classified as best; therefore, the specific advantages and weaknesses are discussed. It is shown that the relationship between the cloud shade and point cloudiness computed using the estimated cloud field parameters recovers the typical relationship derived from measurements.

  15. High dynamic range infrared thermography by pixelwise radiometric self calibration

    NASA Astrophysics Data System (ADS)

    Ochs, M.; Schulz, A.; Bauer, H.-J.

    2010-03-01

    A procedure is described where the response function of each pixel of an InSb detector is determined by radiometric self-calibration. With the present approach no knowledge of the spectral characteristics of the IR system is required to recover a quantity which is linear with the incident irradiance of the object. The inherent detector non-uniformity is corrected on the basis of self-calibrated scaled irradiance. Compared to the standard two-point non-uniformity correction procedure - performed with the detector signal - only two NUC-tables are required for arbitrary integration times. Images obtained at various exposures are fused to a single high dynamic range image. The procedure is validated with synthetic data and its performance is demonstrated by measurements performed with a high resolution InSb FPA.

  16. Revised radiometric calibration technique for LANDSAT-4 Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Butlin, T.; Duff, P.; Fitzgerald, A.

    1984-01-01

    Depending on detector number, there are random fluctuations in the background level for spectral band 1 of magnitudes ranging from 2 to 3.5 digital numbers (DN). Similar variability is observed in all the other reflective bands, but with smaller magnitude in the range 0.5 to 2.5 DN. Observations of background reference levels show that line dependent variations in raw TM image data and in the associated calibration data can be measured and corrected within an operational environment by applying simple offset corrections on a line-by-line basis. The radiometric calibration procedure defined by the Canadian Center for Remote Sensing was revised accordingly in order to prevent striping in the output product.

  17. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  18. Polarization properties of FEL lamps as applied to radiometric calibration.

    PubMed

    Voss, Kenneth J; Belmar da Costa, Leonardo

    2016-11-01

    The polarization of the irradiance from several 1000 W FEL lamps was measured between 450 and 900 nm. These lamps are universally used as irradiance calibration standards in radiometric laboratories. The irradiance was polarized between 2.3% and 3.2%, with the polarization axis aligned with the coiled filament, nearly perpendicular to the lamp axis. We have presented a simple model of the filament that explains the degree of polarization and the plane of polarization, based on the polarized emissivity of tungsten, and gives an approximate value for this polarization. While the irradiance is polarized, this polarization does not significantly effect the polarization of the light when reflected from a Spectralon plaque (Labsphere, Inc.). The polarization of these lamps should be considered when these FEL lamps are used to characterize optical instruments, particularly grating spectrometers without polarization scrambling devices.

  19. Laboratory Measurement of Bidirectional Reflectance of Radiometric Tarps

    NASA Technical Reports Server (NTRS)

    Knowlton, Kelly

    2004-01-01

    This experiment measured the reflectance of tarps with ground instruments in order to check radiometric calibration, validate atmospheric correction, and predict at-sensor radiance for satellite instruments. The procedure of this experiment is as follows: 1) Assemble laboratory apparatus to duplicate ground reference measurement geometry and satellite measurement geometry; 2) Measure spectral radiance with Optronics OL 750 double monochromator/spectroradiometer; 3) Measure radiance of NIST-calibrated Spectralon panel irradiated by collimated light at incidence angle of calibrated reflectance (20 deg, 30 deg, 40 deg, or 50 deg), viewing normal to panel surface; 4) Measure radiance of Spectralon panel irradiated at incidence angle equal to solar zenith angle at time of overpass; 5) Calculate reflectance of Spectralon panel irradiated at solar zenith angle, viewing normal to panel surface (ground geometry).

  20. Validation of the Thematic Mapper radiometric and geometric correction algorithms

    NASA Technical Reports Server (NTRS)

    Fischel, D.

    1984-01-01

    The radiometric and geometric correction algorithms for Thematic Mapper are critical to subsequent successful information extraction. Earlier Landsat scanners, known as Multispectral Scanners, produce imagery which exhibits striping due to mismatching of detector gains and biases. Thematic Mapper exhibits the same phenomenon at three levels: detector-to-detector, scan-to-scan, and multiscan striping. The cause of these variations has been traced to variations in the dark current of the detectors. An alternative formulation has been tested and shown to be very satisfactory. Unfortunately, the Thematic Mapper detectors exhibit saturation effects suffered while viewing extensive cloud areas, and is not easily correctable. The geometric correction algorithm has been shown to be remarkably reliable. Only minor and modest improvements are indicated and shown to be effective.

  1. Airborne Millimeter-Wave Radiometric Observations of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.

    1997-01-01

    This paper reports the first radiometric measurements of cirrus clouds in the frequency range of 89-325 GHz from a high-altitude aircraft flight. The measurements are conducted with a Millimeter-wave Imaging Radiometer (MIR) on board the NASA ER-2 aircraft over a region in northern Oklahoma. Aboard the same aircraft are a cloud lidar system and a multichannel radiometer operating at the visible and infrared wavelengths. The instrument ensemble is well suited for identifying cirrus clouds. It is shown that the depressions in brightness temperatures associated with a few intense cirrus clouds occur at all frequency channels of the MIR. Estimates of total ice water path of the cirrus clouds are derived from comparisons of radiative transfer calculations and observed brightness depressions.

  2. [In-flight absolute radiometric calibration of UAV multispectral sensor].

    PubMed

    Chen, Wei; Yan, Lei; Gou, Zhi-Yang; Zhao, Hong-Ying; Liu, Da-Ping; Duan, Yi-Ni

    2012-12-01

    Based on the data of the scientific experiment in Urad Front Banner for UAV Remote Sensing Load Calibration Field project, with the help of 6 hyperspectral radiometric targets with good Lambertian property, the wide-view multispectral camera in UAV was calibrated adopting reflectance-based method. The result reveals that for green, red and infrared channel, whose images were successfully captured, the linear correlation coefficients between the DN and radiance are all larger than 99%. In final analysis, the comprehensive error is no more than 6%. The calibration results demonstrate that the hyperspectral targets equipped by the calibration field are well suitable for air-borne multispectral load in-flight calibration. The calibration result is reliable and could be used in the retrieval of geophysical parameters.

  3. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Jack; Lee, Shihyan; Schwarting, Tom

    2015-01-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 kilometers) cross-track scanning radiometer with spatial resolutions of 370 and 740 meters at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 microns to 12.01 microns]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  4. JPSS-1 VIIRS pre-launch radiometric performance

    NASA Astrophysics Data System (ADS)

    Oudrari, Hassan; McIntire, Jeff; Xiong, Xiaoxiong; Butler, James; Efremova, Boryana; Ji, Qiang; Lee, Shihyan; Schwarting, Tom

    2015-09-01

    The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the first Joint Polar Satellite System (JPSS) completed its sensor level testing on December 2014. The JPSS-1 (J1) mission is scheduled to launch in December 2016, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. VIIRS instrument was designed to provide measurements of the globe twice daily. It is a wide-swath (3,040 km) cross-track scanning radiometer with spatial resolutions of 370 and 740 m at nadir for imaging and moderate bands, respectively. It covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands [0.412 μm to 12.01 μm]. VIIRS observations are used to generate 22 environmental data products (EDRs). This paper will briefly describe J1 VIIRS characterization and calibration performance and methodologies executed during the pre-launch testing phases by the independent government team, to generate the at-launch baseline radiometric performance, and the metrics needed to populate the sensor data record (SDR) Look-Up-Tables (LUTs). This paper will also provide an assessment of the sensor pre-launch radiometric performance, such as the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field and stray light responses. A set of performance metrics generated during the pre-launch testing program will be compared to the SNPP VIIRS pre-launch performance.

  5. IRCM spectral signature measurements instrumentation featuring enhanced radiometric accuracy

    NASA Astrophysics Data System (ADS)

    Lantagne, Stéphane; Prel, Florent; Moreau, Louis; Roy, Claude; Willers, Cornelius J.

    2015-10-01

    Hyperspectral Infrared (IR) signature measurements are performed in military applications including aircraft- and -naval vessel stealth characterization, detection/lock-on ranges, and flares efficiency characterization. Numerous military applications require high precision measurement of infrared signature characterization. For instance, Infrared Countermeasure (IRCM) systems and Infrared Counter-Countermeasure (IRCCM) system are continuously evolving. Infrared flares defeated IR guided seekers, IR flares became defeated by intelligent IR guided seekers and Jammers defeated the intelligent IR guided seekers [7]. A precise knowledge of the target infrared signature phenomenology is crucial for the development and improvement of countermeasure and counter-countermeasure systems and so precise quantification of the infrared energy emitted from the targets requires accurate spectral signature measurements. Errors in infrared characterization measurements can lead to weakness in the safety of the countermeasure system and errors in the determination of detection/lock-on range of an aircraft. The infrared signatures are analyzed, modeled, and simulated to provide a good understanding of the signature phenomenology to improve the IRCM and IRCCM technologies efficiency [7,8,9]. There is a growing need for infrared spectral signature measurement technology in order to further improve and validate infrared-based models and simulations. The addition of imagery to Spectroradiometers is improving the measurement capability of complex targets and scenes because all elements in the scene can now be measured simultaneously. However, the limited dynamic range of the Focal Plane Array (FPA) sensors used in these instruments confines the ranges of measurable radiance intensities. This ultimately affects the radiometric accuracy of these complex signatures. We will describe and demonstrate how the ABB hyperspectral imaging spectroradiometer features enhanced the radiometric accuracy

  6. WISE 2000 campaign: sea surface salinity and wind retrievals from L-band radiometry

    NASA Astrophysics Data System (ADS)

    Camps, Adriano; Corbella, Ignasi; Font, Jordi; Etchetto, Jacqueline; Duffo, Nuria; Vall-llossera, Merce; Bara, Javier; Torres, Francisco; Wursteisen, Patrick; Martin-Neira, Manuel

    2000-12-01

    Sea surface salinity (SSS) has been recognized as a key parameter in climatological studies. SSS can be measured by passive microwave remote sensing at L band, where the sensitivity of the brightness temperatures shows a maximum and the atmosphere is almost transparent. To provide global coverage of this basic parameter with a 3-day revisit time, the SMOS mission was recently selected by ESA within the frame of the Earth Explorer Opportunity Missions. The SMOS mission will carry the MIRAS instrument, the first 2D L-band aperture synthesis interferometric radiometer. To address new challenges that this mission presents, such as incidence angle variation with pixel, polarization mixing, effect of wind and foam and others, a measurement campaign has been sponsored by ESA under the name of WISE 2000 and it is scheduled for October-November 2000. Two L-band radiometers, a video, a IR and a stereo-camera and four oceanographic and meteorological buoys will be installed in the oil platform 'Casablanca' located at 40 Km off the coast of Tarragona, where the sea conditions are representative of the Mediterranean open sea with periodic influence of the Ebro river fresh water plume.

  7. Extending ALFALFA: Reducing L-Band Wide Observations of Optically Selected Galaxies

    NASA Astrophysics Data System (ADS)

    Smith, Evan; O'Donoghue, Aileen A.; Haynes, Martha P.; Koopmann, Rebecca A.; Undergraduate ALFALFA Team

    2016-01-01

    Observations of galaxies in the Virgo Cluster were completed at the Arecibo Observatory in the spring and summer of 2015. 161 targets were observed, selected by photometry criteria such as magnitude and shape from the Sloan Digital Sky Survey. The targets, some too dim to be detected by Arecibo's ALFA drift scanner, were observed with the L-Band Wide detector. Once reductions in an IDL environment were done, these data were matched to the targets from the Sloan Digital Sky Survey and the GALEX/MAST catalog. 115 of the 161 targets observed had positive detections, a 71% success rate. Comparing the galaxies that were detected against the galaxies that were not detected (by the L-Band Wide receiver) will allow us to refine our method of using photometric data to select HI-rich galaxies in the 2000 km/s to 9000 km/s range to refine our selection for the Arecibo Pisces-Perseus Supercluster Survey (APPSS), which uses the same method of target selection.

  8. Impact of the Ionosphere on an L-band Space Based Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Chan, Samuel F.; Chapman, Bruce D.; Chen, Curtis W.; Martin, Jan M.; Michel, Thierry R.; Muellerschoen, Ronald J.; Pi, Xiaoqing; Rosen, Paul A.

    2006-01-01

    We have quantified the impact that the ionosphere would have on a L-band interferometric Synthetic Aperture Radar (SAR) mission using a combination of simulation, modeling, Global Positioning System (GPS) data collected during the last solar maximum, and existing spaceborne SAR data. We conclude that, except for high latitude scintillation related effects, the ionosphere will not significantly impact the performance of an L-band InSAR mission in an appropriate orbit. We evaluated the strength of the ionospheric irregularities using GPS scintillation data collected at Fairbanks, Alaska and modeled the impact of these irregularities on azimuth resolution, azimuth displacement, peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR). Although we predict that less than 5% of auroral zone data would show scintillation related artifacts, certain sites imaged near the equinoxes could be effected up to 25% of the time because the frequency of occurrence of scintillation is a strong function of season and local time of day. Our examination of ionospheric artifacts observed in InSAR data has revealed that the artifacts occur primarily in the polar cap data, not auroral zone data as was previously thought.

  9. Mangrove vegetation structure in Southeast Brazil from phased array L-band synthetic aperture radar data

    NASA Astrophysics Data System (ADS)

    de Souza Pereira, Francisca Rocha; Kampel, Milton; Cunha-Lignon, Marilia

    2016-07-01

    The potential use of phased array type L-band synthetic aperture radar (PALSAR) data for discriminating distinct physiographic mangrove types with different forest structure developments in a subtropical mangrove forest located in Cananéia on the Southern coast of São Paulo, Brazil, is investigated. The basin and fringe physiographic types and the structural development of mangrove vegetation were identified with the application of the Kruskal-Wallis statistical test to the SAR backscatter values of 10 incoherent attributes. The best results to separate basin to fringe types were obtained using copolarized HH, cross-polarized HV, and the biomass index (BMI). Mangrove structural parameters were also estimated using multiple linear regressions. BMI and canopy structure index were used as explanatory variables for canopy height, mean height, and mean diameter at breast height regression models, with significant R2=0.69, 0.73, and 0.67, respectively. The current study indicates that SAR L-band images can be used as a tool to discriminate physiographic types and to characterize mangrove forests. The results are relevant considering the crescent availability of freely distributed SAR images that can be more utilized for analysis, monitoring, and conservation of the mangrove ecosystem.

  10. Design of an Airborne L-Band Cross-Track Scanning Scatterometer

    NASA Technical Reports Server (NTRS)

    Hilliard, Lawrence M. (Technical Monitor)

    2002-01-01

    In this report, we describe the design of an airborne L-band cross-track scanning scatterometer suitable for airborne operation aboard the NASA P-3 aircraft. The scatterometer is being designed for joint operation with existing L-band radiometers developed by NASA for soil moisture and ocean salinity remote sensing. In addition, design tradeoffs for a space-based radar system have been considered, with particular attention given to antenna architectures suitable for sharing the antenna between the radar and radiometer. During this study, we investigated a number of imaging techniques, including the use of real and synthetic aperture processing in both the along track and cross-track dimensions. The architecture selected will permit a variety of beamforming algorithms to be implemented, although real aperture processing, with hardware beamforming, provides better sidelobe suppression than synthetic array processing and superior signal-to-noise performance. In our discussions with the staff of NASA GSFC, we arrived at an architecture that employs complete transmit/receive modules for each subarray. Amplitude and phase control at each of the transmit modules will allow a low-sidelobe transmit pattern to be generated over scan angles of +/- 50 degrees. Each receiver module will include all electronics necessary to downconvert the received signal to an IF offset of 30 MHz where it will be digitized for further processing.

  11. First calculation of phase and coherence of longitudinally separated L-band equatorial ionospheric scintillation

    NASA Astrophysics Data System (ADS)

    Shume, E. B.; Mannucci, A. J.

    2013-07-01

    We present the first calculation of phase and coherence of cross-wavelet transform applied to longitudinally separated L-band equatorial ionospheric scintillation observations received from Geostationary Earth Orbit (GEO) satellites. The phase and coherence analysis were employed on two pairs of observations: (1) São Luís and Rio Branco and (2) Alta Floresta and Huancayo. For these case studies, in statistically significant and high-coherence regions, scintillation observations over São Luís (Alta Floresta) lead that of Rio Branco (Huancayo) by ˜2 to 3 h with a 95%frequency. If L-band scintillation happens over São Luís (Alta Floresta), there is a 95%likelihood that scintillation would happen to the west over Rio Branco (Huancayo) after ˜2 to 3 h, suggesting that a forecast can be made ahead of scintillation occurrences. The phase and coherence relationships between the longitudinally separated scintillation-producing regions can be connected to the large-scale wave structures which are reported to be related to the generation of equatorial spread F and scintillation.

  12. L-Band SAR Backscatter Prospects for Burn Severity Estimation in Boreal Forests

    NASA Astrophysics Data System (ADS)

    Tanase, Mihai; Santoro, Maurizio; de la Riva, Juan; Kasischke, Eric; Korets, Michael A.

    2010-12-01

    L-band Synthetic Aperture Radar (SAR) data has been investigated to establish the relationship between backscatter and burn severity in boreal forests. Advanced Land Observation Satellite (ALOS) Phased Array-type L-band Synthetic Aperture Radar (PALSAR) dual polarized images were available for the study of the backscattering coefficient at two locations. Statistical analysis was used to assess the average backscatter coefficient as a function of burn severity level after stratifying the data by local incidence angle. Determination coefficients were used to quantify the relationship between radar data and burn severity estimates. The analysis for a given range of local incidence angle showed that HH and HV polarized backscatter decreases with burn severity for both polarizations when images are acquired under dry environmental conditions. For data acquired under wet conditions HH polarized backscatter increased with burn severity. The higher backscatter of the severely burned areas was explained by the enhanced contribution of the ground component due to higher soil moisture content. Backscatter variation between burned and unburned forest was around 2-3 dB at HH polarization and around 3-6 dB at HV polarization. This study indicates that L- band SAR backscatter trend as a function of burn severity is not significantly different when compared to previously studied mediterranean forests.

  13. The Detection and Mitigation of RFI with the Aquarius L-Band Scatterometer

    NASA Technical Reports Server (NTRS)

    Freedman, A. P.; Piepmeier, J. R.; Fischman, M. A.; McWatters, D. A.; Spencer, M. W.

    2008-01-01

    The Aquarius sea-surface salinity mission includes an L-band scatterometer to sense sea-surface roughness. This radar is subject to radio-frequency interference (RFI) in its passband from 1258 to 1262 MHz, a region also allocated for terrestrial radio location. Due to its received power sensitivity requirements, the expected RFI environment poses significant challenges. We present the results of a study evaluating the severity of terrestrial RFI sources on the operation of the Aquarius scatterometer, and propose a scheme to both detect and remove problematic RFI signals in the ocean backscatter measurements. The detection scheme utilizes the digital sampling of the ambient input power to detect outliers from the receiver noise floor which are statistically significant, and flags nearby radar echoes as potentially contaminated by RFI. This detection strategy, developed to meet tight budget and data downlink requirements, has been implemented and tested in hardware, and shows great promise for the detection and global mapping of L-band RFI sources.

  14. L-Band Brightness Temperature Variations at Dome C and Snow Metamorphism at the Surface

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel; Picard, Ghislain; Champollion, Nicolas

    2014-01-01

    The Antarctic Plateau is a promising site to monitor microwave radiometers' drift, and to inter-calibrate microwave radiometers, especially 1.4 GigaHertz (L-band) radiometers on board the Soil Moisture and Ocean Salinity (SMOS), and AquariusSAC-D missions. The Plateau is a thick ice cover, thermally stable in depth, with large dimensions, and relatively low heterogeneities. In addition, its high latitude location in the Southern Hemisphere enables frequent observations by polar-orbiting satellites, and no contaminations by radio frequency interference. At Dome C (75S, 123E), on the Antarctic Plateau, the substantial amount of in-situ snow measurements available allows us to interpret variations in space-borne microwave brightness temperature (TB) (e.g. Macelloni et al., 2007, 2013, Brucker et al., 2011, Champollion et al., 2013). However, to analyze the observations from the Aquarius radiometers, whose sensitivity is 0.15 K, the stability of the snow layers near the surface that are most susceptible to rapidly change needs to be precisely assessed. This study focuses on the spatial and temporal variations of the Aquarius TB over the Antarctic Plateau, and at Dome C in particular, to highlight the impact of snow surface metamorphism on the TB observations at L-band.

  15. Investigation of L-band shipboard antennas for maritime satellite applications

    NASA Technical Reports Server (NTRS)

    Heckert, G. P.

    1972-01-01

    A basic conceptual investigation of low cost L-band antenna subsystems for shipboard use was conducted by identifying the various pertinent design trade-offs and related performance characteristics peculiar to the civilian maritime application, and by comparing alternate approaches for their simplicity and general suitability. The study was not directed at a single specific proposal, but was intended to be parametric in nature. Antenna system concepts were to be investigated for a range of gain of 3 to 18 dB, with a value of about 10 dB considered as a baseline reference. As the primary source of potential complexity in shipboard antennas, which have beamwidths less than hemispherical as the beam pointing or selecting mechanism, major emphasis was directed at this aspect. Three categories of antenna system concepts were identified: (1) mechanically pointed, single-beam antennas; (2) fixed antennas with switched-beams; and (3) electronically-steered phased arrays. It is recommended that an L-band short backfire antenna subsystem, including a two-axis motor driven gimbal mount, and necessary single channel monopulse tracking receiver portions be developed for demonstration of performance and subsystem simplicity.

  16. Design analysis and simulation study of an efficiency enhanced L-band MILO

    NASA Astrophysics Data System (ADS)

    Dixit, Gargi; Kumar, Arjun; Jain, P. K.

    2017-01-01

    In this article, an experimental L-band compact magnetically insulated transmission line oscillator (MILO) has been simulated using the 3D PIC simulation code "Particle Studio," and an improvement in the device efficiency has been obtained. The detailed interaction and operating mechanism describing the role of sub-assemblies have been explained. The performance of the device was found to be the function of the distance between the end-surface of the cathode and the beam-dump disk. During simulation, a high power microwave of the TM01 mode is generated with the peak RF-power of 6 GW and the power conversion efficiency of 19.2%, at the operating voltage of ˜600 kV and at the current of 52 kA. For better impedance matching or maximum power transfer, four stubs have been placed at the λg/4 distance from the extractor cavity, which results in the stable RF power output. In this work, an improved L-band MILO along with a new type beam-dump disk is selected for performance improvement with typical design parameters and beam parameters. The total peak power of improved MILO is 7 GW, and the maximum power conversion efficiency is 22.4%. This improvement is achieved due to the formation of the virtual cathode at the load side, which helps in modulating the energy of electrons owing to maximum reflection of electrons from the mesh or foil.

  17. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don

    2003-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.

  18. Validation of Forested Inundation Extent Revealed by L-Band Polarimetric and Interferometric SAR Data

    NASA Technical Reports Server (NTRS)

    Chapman, Bruce; Celi, Jorge; Hamilton, Steve; McDonald, Kyle

    2013-01-01

    UAVSAR, NASA's airborne Synthetic Aperture Radar (SAR), conducted an extended observational campaign in Central and South America in March 2013, primarily related to volcanic deformations along the Andean Mountain Range but also including a large number of flights studying other scientific phenomena. During this campaign, the L-Band SAR collected data over the Napo River in Ecuador. The objectives of this experiment were to acquire polarimetric and interferometric L-Band SAR data over an inundated tropical forest in Ecuador simultaneously with on-the-ground field work ascertaining the extent of inundation, and to then derive from this data a quantitative estimate for the error in the SAR-derived inundation extent. In this paper, we will first describe the processing and preliminary analysis of the SAR data. The polarimetric SAR data will be classified by land cover and inundation state. The interferometric SAR data will be used to identify those areas where change in inundation extent occurred, and to measure the change in water level between two observations separated by a week. Second, we will describe the collection of the field estimates of inundation, and have preliminary comparisons of inundation extent measured in the field field versus that estimated from the SAR data.

  19. An L-band SAR for repeat pass deformation measurements on a UAV platform

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Lou, Yunling; Rosen, Paul; Wheeler, Kevin; Zebker, Howard; Madsen, Soren; Miller, Tim; Hoffman, Jim; Farra, Don

    2003-01-01

    We are proposing to develop a miniaturized polarimetric L-band synthetic aperture radar (SAR) for repeat-pass differential interferometric measurements of deformation for rapidly deforming surfaces of geophysical interest such as volcanoes or earthquakes that is to be flown on a unmanned aerial vehicle (UAV) or minimally piloted vehicle (MPV). Upon surveying the capabilities and availabilities of such aircraft, the Proteus aircraft and the ALTAIR UAV appear to meet our criteria in terms of payload capabilities, flying altitude, and endurance. To support the repeat pass deformation capability it is necessary to control flight track capability of the aircraft to be within a specified 10 m tube with a goal of 1 m. This requires real-time GPS control of the autopilot to achieve these objectives that has not been demonstrated on these aircraft. Based on the Proteus and ALTAIR's altitude of 13.7 km (45,000 ft), we are designing a fully polarimetric L-band radar with 80 MHz bandwidth and a 16 km range swath. The radar will have an active electronic beam steering antenna to achieve a Doppler centroid stability that is necessary for repeat-pass interferometry. This paper presents some of the trade studies for the platform, instrument and the expected science.

  20. An L-band transit-time oscillator with mechanical frequency tunability

    NASA Astrophysics Data System (ADS)

    Song, Lili; He, Juntao; Ling, Junpu; Cao, Yibing

    2017-02-01

    An L-band coaxial Transit-time Oscillator (TTO) with mechanical frequency tunability is introduced in this paper. Particle-in-cell simulations have been done. The output power efficiency has been improved at least 20% under a 10.2 GW input power and with a tunable range from 1.57 GHz to 1.90 GHz by modulating the outer conductor. It is worth to note that the efficiency can reach as high as 41% at 1.75 GHz. The mechanical engineering method is also detailed in this work. The frequency tuning range of the coaxial TTO is 22.6% of the central frequency. On the other hand, the frequency can be tuned from 1.6 GHz to 1.85 GHz by modulating the inner conductor. The author highlights a hollow structure of the L-band coaxial TTO which can work from 1.03 GHz to 1.31 GHz via modulating the outer conductor in the rest of the article. The frequency tuning range of the hollow TTO is 21.4% of the central frequency. More importantly, the hollow TTO can be easily achieved after the inner conductor is removed from the coaxial TTO. The electric field distributions of the coaxial and hollow TTOs are analyzed, resulting in that the longitudinal and transverse working modes are TM01 and π mode, respectively. The same working mode from these two structures implies the stability of the TTOs mentioned above.

  1. Fade measurements at L-band and UHF in mountainous terrain for land mobile satellite systems

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Goldhirsh, Julius

    1988-01-01

    Fading results related to land mobile satellite communications at L-band (1502 MHz) and UHF (870 MHz) are described. These results were derived from an experiment performed in a series of canyon passes in the Boulder, Colorado region of the US. The experimental configuration involved a helicopter as the source platform, which maintained a relatively fixed geometry with a mobile van containing the receiver and data-acquisition system. An unobstructed line of sight between the radiating sources and the receiving van was, for the most part, also maintained. In this configuration, the dominant mechanism causing signal fading (or enhancement) is a result of multipath. The resulting fade distributions demonstrated that at the 1 percent and 5 percent levels, 5.5- and 2.6-dB fades were on the average exceeded at L-band and 4.8- and 2.4-dB at UHF, respectively, for a path elevation angle of 45 deg. The canyon results as compared with previous roadside-tree-shadowing results demonstrate that the deciding factor dictating fade margin for future land mobile satellite systems is tree shadowing rather than fades caused by multipath.

  2. RapidEye constellation relative radiometric accuracy measurement using lunar images

    NASA Astrophysics Data System (ADS)

    Steyn, Joe; Tyc, George; Beckett, Keith; Hashida, Yoshi

    2009-09-01

    The RapidEye constellation includes five identical satellites in Low Earth Orbit (LEO). Each satellite has a 5-band (blue, green, red, red-edge and near infrared (NIR)) multispectral imager at 6.5m GSD. A three-axes attitude control system allows pointing the imager of each satellite at the Moon during lunations. It is therefore possible to image the Moon from near identical viewing geometry within a span of 80 minutes with each one of the imagers. Comparing the radiometrically corrected images obtained from each band and each satellite allows a near instantaneous relative radiometric accuracy measurement and determination of relative gain changes between the five imagers. A more traditional terrestrial vicarious radiometric calibration program has also been completed by MDA on RapidEye. The two components of this program provide for spatial radiometric calibration ensuring that detector-to-detector response remains flat, while a temporal radiometric calibration approach has accumulated images of specific dry dessert calibration sites. These images are used to measure the constellation relative radiometric response and make on-ground gain and offset adjustments in order to maintain the relative accuracy of the constellation within +/-2.5%. A quantitative comparison between the gain changes measured by the lunar method and the terrestrial temporal radiometric calibration method is performed and will be presented.

  3. Radiometric Normalization of Large Airborne Image Data Sets Acquired by Different Sensor Types

    NASA Astrophysics Data System (ADS)

    Gehrke, S.; Beshah, B. T.

    2016-06-01

    Generating seamless mosaics of aerial images is a particularly challenging task when the mosaic comprises a large number of im-ages, collected over longer periods of time and with different sensors under varying imaging conditions. Such large mosaics typically consist of very heterogeneous image data, both spatially (different terrain types and atmosphere) and temporally (unstable atmo-spheric properties and even changes in land coverage). We present a new radiometric normalization or, respectively, radiometric aerial triangulation approach that takes advantage of our knowledge about each sensor's properties. The current implementation supports medium and large format airborne imaging sensors of the Leica Geosystems family, namely the ADS line-scanner as well as DMC and RCD frame sensors. A hierarchical modelling - with parameters for the overall mosaic, the sensor type, different flight sessions, strips and individual images - allows for adaptation to each sensor's geometric and radiometric properties. Additional parameters at different hierarchy levels can compensate radiome-tric differences of various origins to compensate for shortcomings of the preceding radiometric sensor calibration as well as BRDF and atmospheric corrections. The final, relative normalization is based on radiometric tie points in overlapping images, absolute radiometric control points and image statistics. It is computed in a global least squares adjustment for the entire mosaic by altering each image's histogram using a location-dependent mathematical model. This model involves contrast and brightness corrections at radiometric fix points with bilinear interpolation for corrections in-between. The distribution of the radiometry fixes is adaptive to each image and generally increases with image size, hence enabling optimal local adaptation even for very long image strips as typi-cally captured by a line-scanner sensor. The normalization approach is implemented in HxMap software. It has been

  4. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  5. Improved Radiometric Based Method for Suppressing Impulse Noise from Corrupted Images

    NASA Astrophysics Data System (ADS)

    Wu, Changcheng; Zhao, Chunyu; Chen, Dayue

    A novel filter is introduced in this paper to improve the ability of radiometric based method on suppressing impulse noise. Firstly, a new method is introduced to design the impulsive weight by measuring how impulsive a pixel is. Then, the impulsive weight is combined with the radiometric weight to obtain the evaluated values on each pixel in the whole corrupted image. The impulsive weight is mainly designed to suppress the impulse noise, while the radiometric weight is mainly designed to protect the noise-free pixel. Extensive experiments demonstrate that the proposed algorithm can perform much better than other filters in terms of the quantitative and qualitative aspects.

  6. Radiometric Characterization of the IKONOS, QuickBird, and OrbView-3 Sensors

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  7. The Sun as a Source of Error for Sea Surface Salinity Retrieval by Means of Passive Microwave Remote Sensing at L-band

    NASA Astrophysics Data System (ADS)

    Dinnat, E. P.; de Matthaeis, P.; Le Vine, D. M.

    2006-12-01

    The Aquarius/SAC-D mission is dedicated to the remote sensing of Sea Surface Salinity(SSS) and is to be launched in 2009 by NASA. A three-beam L-band (1.41 GHz) radiometer is the core instrument for retrieving SSS. The required accuracy on the radiometric measurements for retrieving SSS within 0.2 psu is 0.1 Kelvin (K), with an ocean brightness temperature being of the order of 100 K. One potential source of noise is the Sun, because of its very large brightness temperature at this frequency, on the order of 150,000 K. Its radiation affects the measurements directly through the antenna sidelobes, and after reflection at the ocean surface. The latter influence is being minimized by adopting an orbit with 6 AM/PM equator passing times and by orienting the three antenna beams across the satellite track towards the dark side of the Earth surface. However, as the 98 degrees polar orbit is not always aligned with the day/night terminator, the satellite ground track will be on the illuminated side of the Earth for half of the time. Since the satellite altitude is relatively low (~660 km), beams pointing at the angles selected for Aquarius, between 26 and 40 degrees, will not always be in the dark side due to their limited distance from the satellite ground track. In fact, because the sea surface roughness causes scattering even from non-specular directions, radiation from the Sun will enter the antenna beams approximately one fourth of the time. The different contributions of the Sun to the antenna temperature and their potential influence on the SSS retrieval as a function of time of the year and latitude are investigated. Aquarius orbit simulations are used to calculate the Sun position with respect to the antenna during one year. In addition, the Sun specular image position is identified on the Earth surface, and the bistatic angles of the illuminated part of the antenna field of view are computed. A two-scale and a Kirchhoff electromagnetic model for the scattering

  8. Relationship Between Sea Surface Salinity from L-Band Radiometer and Optical Features in the East China Sea

    DTIC Science & Technology

    2014-01-01

    band Radiometer and Optical Features in the East China Sea 6. AUTHOR(S) Bumjun Kil , Derek Burrage, Joel Wesson and Stephan Howden 7. PERFORMING...between sea surface salinity from L-band radiometer and optical features in the East China Sea Bumjun Kil *^ Derek Burrage’’, Joel Wesson’’ and Stephan

  9. L-band Spectroscopy with Magellan-AO/Clio2: First Results on Young Low-mass Companions

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.; Eisner, Josh; Skemer, Andy; Morzinski, Katie M.; Close, Laird; Males, Jared; Rodigas, Timothy J.; Hinz, Phil; Puglisi, Alfio

    2016-09-01

    L-band spectroscopy is a powerful probe of cool low-gravity atmospheres: the P, Q, and R branch fundamental transitions of methane near 3.3 μm provide a sensitive probe of carbon chemistry; cloud thickness modifies the spectral slope across the band; and {{{H}}}3+ opacity can be used to detect aurorae. Many directly imaged gas-giant companions to nearby young stars exhibit L-band fluxes distinct from the field population of brown dwarfs at the same effective temperature. Here we describe commissioning the L-band spectroscopic mode of Clio2, the 1-5 μm instrument behind the Magellan adaptive-optics system. We use this system to measure L-band spectra of directly imaged companions. Our spectra are generally consistent with the parameters derived from previous near-infrared spectra for these late M to early L type objects. Therefore, deviations from the field sequence are constrained to occur below 1500 K. This range includes the L-T transition for field objects and suggests that observed discrepancies are due to differences in cloud structure and CO/CH4 chemistry.

  10. In-harbor and at-sea electromagnetic compatibility survey for maritime satellite L-band shipboard terminal

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Geostationary maritime satellites, one over the Pacific and one over the Atlantic Ocean, are planned to make available high-speed communications and navigation (position determination) services to ships at sea. A shipboard satellite terminal, operating within the authorized maritime L-band, 1636.5 to 1645.0 MHz, will allow ships to pass voice, teletype, facsimile, and data messages to shore communication facilities with a high degree of reliability. The shore-to-ship link will also operate in the maritime L-band from 1535.0 to 1543.5 MHz. A significant number or maritime/commercial ships are expected to be equipped with an L-band satellite terminal by the year 1980, and so consequently, there is an interest in determining electromagnetic compatibility between the proposed L-band shipboard terminal and existing, on-board, shipboard communications/electronics and electrical systems, as well as determining the influence of shore-based interference sources. The shipboard electromagnetic interference survey described was conducted on-board the United States Line's American Leader class (15,690 tons) commercial container ship, the "American Alliance" from June 16 to 20, 1974. Details of the test plan and measurements are given.

  11. 21-nm-range wavelength-tunable L-band Er-doped fiber linear-cavity laser

    NASA Astrophysics Data System (ADS)

    Yang, Shiquan; Zhao, Chunliu; Li, Zhaohui; Ding, Lei; Yuan, Shuzhong; Dong, Xiaoyi

    2001-10-01

    A novel method, which utilizes amplified spontaneous emission (ASE) as a secondary pump source, is presented for implanting a linear cavity erbium-doped fiber laser operating in L-Band. The output wavelength tuned from 1566 nm to 1587 nm, about 21 nm tuning range, was obtained in the experiment and the stability of the laser is very good.

  12. Soil Moisture Retrieval Using a Two-Dimenional L-Band Synthetic Aperture Radiometer in a Semi-Arid Environment

    USDA-ARS?s Scientific Manuscript database

    Surface soil moisture was retrieved from L-band radiometer data collected in semi-arid regions during the Soil Moisture Experiment in 2004 (SMEX04). The two-dimensional synthetic aperture radiometer (2D-STAR) was flown over regional-scale study sites located in Arizona, USA and Sonora, Mexico. The s...

  13. Precisely determined the surface displacement by the ionospheric mitigation using the L-band SAR Interferometry over Mt.Baekdu

    NASA Astrophysics Data System (ADS)

    Lee, Won-Jin; Jung, Hyung-Sup; Park, Sun-Cheon; Lee, Duk Kee

    2016-04-01

    Mt. Baekdu (Changbaishan in Chinese) is located on the border between China and North Korea. It has recently attracted the attention of volcanic unrest during 2002-2005. Many researchers have applied geophysical approaches to detect magma system of beneath Mt.Baekdu such as leveling, Global Positioning System (GPS), gases analysis, seismic analysis, etc. Among them, deformation measuring instruments are important tool to evaluate for volcanism. In contrast to GPS or other deformation measuring instruments, Synthetic Aperture Radar Interferometry (InSAR) has provided high resolution of 2-D surface displacement from remote sensed data. However, Mt. Baekdu area has disturbed by decorrelation on interferogram because of wide vegetation coverage. To overcome this limitation, L-band system of long wavelength is more effective to detect surface deformation. In spite of this advantage, L-band can surfer from more severe ionospheric phase distortions than X- or C- band system because ionospheric phase distortions are inverse proportion to the radar frequency. Recently, Multiple Aperture Interferometry (MAI) based ionospheric phase distortions mitigation method have proposed and investigated. We have applied this technique to the Mt.Baekdu area to measure surface deformation precisely using L-band Advanced Land Observing Satellite-1(ALOS-1) Phased Array type L-band Synthetic Aperture Radar(PALSAR) data acquiring from 2006 to 2011.

  14. A time-series approach to estimating soil moisture from vegetated surfaces using L-band radar backscatter

    USDA-ARS?s Scientific Manuscript database

    Many previous studies have shown the sensitivity of radar backscatter to surface soil moisture content, particularly at L-band. Moreover, the estimation of soil moisture from radar for bare soil surfaces is well-documented, but estimation underneath a vegetation canopy remains unsolved. Vegetation s...

  15. Passive Microwave Measurements Over Conifer Forests at L-Band and C-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Lang, R.; Chauhan, N.; Kim, E.; Bidwell, S.; Goodberlet, M.; Haken, M.; deMatthaeis, P.

    2000-01-01

    Measurements have been made at L-band and C-band over conifer forests in Virginia to study the response of passive microwave instruments to biomass and soil moisture. A series of aircraft measurements were made in July, August and November, 1999 over relatively homogenous conifer forests of varying biomass. Three radiometers participated in these measurements. These were: 1) the L-band radiometer ESTAR, a horizontally polarized synthetic aperture radiometer which has been used extensively in past measurements of soil moisture; 2) the L-band radiometer SLFMR, a vertically polarized cross-track scanner which has been used successfully in the past for mapping sea surface salinity; and 3) The ACMR, a new C-band radiometer which operates at V- and H-polarization and in the configuration for these experiments did not scan. All three radiometers were flown on the NASA P-3 aircraft based at the Goddard Space Flight Center's Wallops Flight Facility. The ESTAR and SLFMR were mounted in the bomb bay of the P-3 and imaged across track whereas the ACMR was mounted to look aft at 54 degrees up from nadir. Data was collected at altitudes of 915 meters and 457 meters. The forests consisted of relatively homogeneous "managed" stands of conifer located near Waverly, Virginia. This is a relatively flat area about 30 miles southeast of Richmond, VA with numerous stands of trees being grown for the forestry industry. The stands selected for study consisted of areas of regrowth and mature stands of pine. In addition, a small stand of very large trees was observed. Soil moisture sampling was done in each stand during the aircraft over flights. Data was collected on July 7, August 27, November 15 and November 30, 1999. Measurements were made with ESTAR on all days. The ACMR flew on the summer missions and the SLFMR was present only on the August 27 flight. Soil moisture varied from quite dry on July 7 to quite moist on November 30 (which was shortly after a period of rain). The microwave

  16. False-color L-band image of Manaus region of Brazil

    NASA Image and Video Library

    1994-04-13

    STS059-S-068 (13 April 1994) --- This false-color L-Band image of the Manaus region of Brazil was acquired by the Spaceborne Imaging Radar-C and X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour on orbit 46 of the mission. The area shown is approximately 8 kilometers by 40 kilometers (5 by 25 miles). At the top of the image are the Solimoes and Rio Negro Rivers just before they combine at Manaus to form the Amazon River. The image is centered at about 3 degrees south latitude, and 61 degrees west longitude. The false colors are created by displaying three L-Band polarization channels; red areas correspond to high backscatter at HH polarization, while green areas exhibit high backscatter at HV polarization. Blue areas show low returns at VV polarization; hence the bright blue colors of the smooth river surfaces. Using this color scheme, green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest. Between Rio Solimoes and Rio Negro a road can be seen running from some cleared areas (visible as blue rectangles north of Rio Solimoes) north towards a tributary of Rio Negro. SIR-C/X-SAR is part of NASA's Mission to Planet Earth (MTPE). SIR-C/X-SAR radars illuminate Earth with microwaves allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: L-Band (24 cm), C-Band (6 cm), and X-Band (3 cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes which are caused by nature and those changes which are induced by human activity. SIR-C was developed by NASA's Jet Propulsion Laboratory (JPL). X-SAR was developed by the Dornire and Alenia Spazio Companies

  17. Modelling of the L-band brightness temperatures measured with ELBARA III radiometer on Bubnow wetland

    NASA Astrophysics Data System (ADS)

    Gluba, Lukasz; Sagan, Joanna; Lukowski, Mateusz; Szlazak, Radoslaw; Usowicz, Boguslaw

    2017-04-01

    Microwave radiometry has become the main tool for investigating soil moisture (SM) with remote sensing methods. ESA - SMOS (Soil Moisture and Ocean Salinity) satellite operating at L-band provides global distribution of soil moisture. An integral part of SMOS mission are calibration and validation activities involving measurements with ELBARA III which is an L-band microwave passive radiometer. It is done in order to improve soil moisture retrievals - make them more time-effective and accurate. The instrument is located at Bubnow test-site, on the border of cultivated field, fallow, meadow and natural wetland being a part of Polesie National Park (Poland). We obtain both temporal and spatial dependences of brightness temperatures for varied types of land covers with the ELBARA III directed at different azimuths. Soil moisture is retrieved from brightness temperature using L-band Microwave Emission of the Biosphere (L-MEB) model, the same as currently used radiative transfer model for SMOS. Parametrization of L-MEB, as well as input values are still under debate. We discuss the results of SM retrievals basing on data obtained during first year of the radiometer's operation. We analyze temporal dependences of retrieved SM for one-parameter (SM), two-parameter (SM, τ - optical depth) and three-parameter (SM, τ, Hr - roughness parameter) retrievals, as well as spatial dependences for specific dates. Special case of Simplified Roughness Parametrization, combining the roughness parameter and optical depth, is considered. L-MEB processing is supported by the continuous measurements of soil moisture and temperature obtained from nearby agrometeorological station, as well as studies on the soil granulometric composition of the Bubnow test-site area. Furthermore, for better estimation of optical depth, the satellite-derived Normalized Difference Vegetation Index (NDVI) was employed, supported by measured in situ vegetation parameters (such as Leaf Area Index and Vegetation

  18. The Landsat Data Continuity Mission Operational Land Imager: Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Markham, Brian; Dabney, Philip; Pedelty, Jeffrey

    2011-01-01

    The Operational Land Imager (OLI) is one of two instruments to fly on the Landsat Data Continuity Mission (LDCM), which is scheduled to launch in December 2012 to become the 8th in the series of Landsat satellites. The OLI images in the solar reflective part of the spectrum, with bands similar to bands 1-5, 7 and the panchromatic band on the Landsat-7 ETM+ instrument. In addition, it has a 20 nm bandpass spectral band at 443 nm for coastal and aerosol studies and a 30 nm band at 1375 nm to aid in cirrus cloud detection. Like ETM+, spatial resolution is 30 m in the all but the panchromatic band, which is 15 meters. OLI is a pushbroom radiometer with approximately 6000 detectors per 30 meter band as opposed to the 16 detectors per band on the whiskbroom ETM+. Data are quantized to 12 bits on OLI as opposed to 8 bits on ETM+ to take advantage of the improved signal to noise ratio provided by the pushbroom design. The saturation radiances are higher on OLI than ETM+ to effectively eliminate saturation issues over bright Earth targets. OLI includes dual solar diffusers for on-orbit absolute and relative (detector to detector) radiometric calibration. Additionally, OLI has 3 sets of on-board lamps that illuminate the OLI focal plane through the full optical system, providing additional checks on the OLI's response[l]. OLI has been designed and built by Ball Aerospace & Technology Corp. (BATC) and is currently undergoing testing and calibration in preparation for delivery in Spring 2011. Final pre-launch performance results should be available in time for presentation at the conference. Preliminary results will be presented below. These results are based on the performance of the Engineering Development Unit (EDU) that was radiometrically tested at the integrated instrument level in 2010 and assembly level measurements made on the flight unit. Signal-to-Noise (SNR) performance: One of the advantages of a pushbroom system is the increased dwell time of the detectors

  19. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, P.; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  20. The emission and scattering of L-band microwave radiation from rough ocean surfaces and wind speed measurements from the Aquarius sensor

    NASA Astrophysics Data System (ADS)

    Meissner, Thomas; Wentz, Frank J.; Ricciardulli, Lucrezia

    2014-09-01

    In order to achieve the required accuracy in sea surface salinity (SSS) measurements from L-band radiometers such as the Aquarius/SAC-D or SMOS (Soil Moisture and Ocean Salinity) mission, it is crucial to accurately correct the radiation that is emitted from the ocean surface for roughness effects. We derive a geophysical model function (GMF) for the emission and backscatter of L-band microwave radiation from rough ocean surfaces. The analysis is based on radiometer brightness temperature and scatterometer backscatter observations both taken on board Aquarius. The data are temporally and spatially collocated with wind speeds from WindSat and F17 SSMIS (Special Sensor Microwave Imager Sounder) and wind directions from NCEP (National Center for Environmental Prediction) GDAS (Global Data Assimilation System). This GMF is the basis for retrieval of ocean surface wind speed combining L-band H-pol radiometer and HH-pol scatterometer observations. The accuracy of theses combined passive/active L-band wind speeds matches those of many other satellite microwave sensors. The L-band GMF together with the combined passive/active L-band wind speeds is utilized in the Aquarius SSS retrieval algorithm for the surface roughness correction. We demonstrate that using these L-band wind speeds instead of NCEP wind speeds leads to a significant improvement in the SSS accuracy. Further improvements in the roughness correction algorithm can be obtained by adding VV-pol scatterometer measurements and wave height (WH) data into the GMF.

  1. Development of intermediate-scale structure at different altitudes within an equatorial plasma bubble: Implications for L-band scintillations

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Kakad, B.; Gurram, P.; Sripathi, S.; Sunda, S.

    2017-01-01

    An important aspect of the development of intermediate-scale length (approximately hundred meters to few kilometers) irregularities in an equatorial plasma bubble (EPB) that has not been considered in the schemes to predict the occurrence pattern of L-band scintillations in low-latitude regions is how these structures develop at different heights within an EPB as it rises in the postsunset equatorial ionosphere due to the growth of the Rayleigh-Taylor instability. Irregularities at different heights over the dip equator map to different latitudes, and their spectrum as well as the background electron density determine the strength of L-band scintillations at different latitudes. In this paper, VHF and L-band scintillations recorded at different latitudes together with theoretical modeling of the scintillations are used to study the implications of this structuring of EPBs on the occurrence and strength of L-band scintillations at different latitudes. Theoretical modeling shows that while S4 index for scintillations on a VHF signal recorded at an equatorial station may be >1, S4 index for scintillations on a VHF signal recorded near the crest of the equatorial ionization anomaly (EIA) generally does not exceed the value of 1 because the intermediate-scale irregularity spectrum at F layer peak near the EIA crest is shallower than that found in the equatorial F layer peak. This also explains the latitudinal distribution of L-band scintillations. Thus, it is concluded that there is greater structuring of an EPB on the topside of the equatorial F region than near the equatorial F layer peak.

  2. Radiometric absolute noise-temperature measurement system features improved accuracy and calibration ease

    NASA Technical Reports Server (NTRS)

    Brown, W.; Ewen, H.; Haroules, G.

    1970-01-01

    Radiometric receiver system, which measures noise temperatures in degrees Kelvin, does not require cryogenic noise sources for routine operation. It eliminates radiometer calibration errors associated with RF attenuation measurements. Calibrated noise source is required only for laboratory adjustment and calibration.

  3. Simultaneous Inflight Spectral and Radiometric Calibration Validation of AVRIS and HYDICE Over Lunar Lake, Nevada

    NASA Technical Reports Server (NTRS)

    Chrien, Thomas; Green, Robert; Chovit, Chris; Faust, Jessica; Johnson, Howell; Basedow, Robert; Zalewski, Edward; Colwell, John

    1995-01-01

    An experiment to check the spectral and radiometric calibration of two sensors--the airborne visible/infrared imaging spectromenter (AVRIS) and the Hyperspectral digital image collection experiment (HYDICE)--is described.

  4. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  5. Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Groeneveld, D.P.

    2009-01-01

    Multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone of the extensive archive of moderate‐resolution Earth imagery. Even after more than 24 years of service, the L5 TM is still operational. Given the longevity of the satellite, the detectors have aged and the sensor's radiometric characteristics have changed since launch. The calibration procedures and parameters in the National Land Archive Production System (NLAPS) have also changed with time. Revised radiometric calibrations in 2003 and 2007 have improved the radiometric accuracy of recently processed data. This letter uses the Normalized Difference Vegetation Index (NDVI) as a metric to evaluate the radiometric calibration. The calibration change has improved absolute calibration accuracy, consistency over time, and consistency with Landsat 7 (L7) Enhanced Thematic radiometry and will provide the basis for continued long‐term studies of the Earth's land surfaces.

  6. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  7. L-Band Radiometer Experiment in the SMOS Test Site Upper Danube

    NASA Astrophysics Data System (ADS)

    Schlenz, Florian; Gebhardt, Timo; Loew, Alexander; Marzahn, Philip; Mauser, Wolfram

    2010-12-01

    In the frame of calibration and validation activities for ESA's soil moisture and ocean salinity mission, SMOS, the University of Munich operates a ground based L-band radiometer (ELBARA II) at 1.4 GHz to test and validate the radiative transfer model L-MEB also used in the SMOS Level 2 processor. The radiometer is situated on a test site near Puch, about 30 km west of Munich in the Upper Danube watershed in southern Germany in a temperate agricultural area. It is mounted on a scaffolding that allows to rotate the antenna which enables it to look at 2 different fields with grass and winter rape as land use respectively. In addition to the radiometer, a variety of complementary sensors are installed measuring all important meteorological and hydrological parameters. First datasets of the radiometer experiment are presented.

  8. The correlation of Skylab L-band brightness temperatures with antecedent precipitation

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    The S194 L-band radiometer flown on the Skylab mission measured terrestrial radiation at the microwave wavelength of 21.4 cm. The terrain emissivity at this wavelength is strongly dependent on the soil moisture content, which can be inferred from antecedent precipitation. For the Skylab data acquisition pass from the Oklahoma panhandle to southeastern Texas on 11 June 1973, the S194 brightness temperatures are highly correlated with antecedent precipitation from the preceding eleven day period, but very little correlation was apparent for the preceding five day period. The correlation coefficient between the averaged antecedent precipitation index values and the corresponding S194 brightness temperatures between 230 K and 270 K, the region of apparent response to soil moisture in the data, was -0.97. The equation of the linear least squares line is given.

  9. A composite L-band HH radar backscattering model for coniferous forest stands

    NASA Technical Reports Server (NTRS)

    Sun, Guoquing; Simonett, David S.

    1988-01-01

    The radar backscattering model developed by Richards et al. (1987), has been improved and further tested in this research. The trunk term may now be calculated from the exact solution to the electromagnetic wave equations instead of the corner reflector equation. Rough surface models have been introduced into the radar model, so that the forward reflectance and the backscattering from the ground surface are now calculated from the same model and, thus, are consistent. The number of trees in an individual pixel is assumed to be Poisson distributed, with tree height in a stand log-normally distributed. The simulated results show that the match of backscattering coefficients for eight forest stands between SIR-B image data and the simulated results are satisfying, and that the trunk term now seems to be convincingly established as the dominant term in the L-band HH radar return from coniferous forest stands.

  10. Systems implications of L-band fade data statistics for LEO mobile systems

    NASA Technical Reports Server (NTRS)

    Devieux, Carrie L.

    1993-01-01

    This paper examines and analyzes research data on the role of foliage attenuation in signal fading between a satellite transmitter and a terrestrial vehicle-mounted receiver. The frequency band of measurement, called L-Band, includes the region 1610.0 to 1626.5 MHz. Data from tests involving various combinations of foliage and vehicle movement conditions clearly show evidence of fast fading (in excess of 0.5 dB per millisecond) and fade depths as great or greater than 16 dB. As a result, the design of a communications link power control that provides the level of accuracy necessary for power sensitive systems could be significantly impacted. Specific examples of this include the communications links that employ Code Division Multiple Access (CDMA) as a modulation technique.

  11. Soil Moisture ActivePassive (SMAP) L-Band Microwave Radiometer Post-Launch Calibration

    NASA Technical Reports Server (NTRS)

    Peng, Jinzheng; Piepmeier, Jeffrey R.; Misra, Sidharth; Dinnat, Emmanuel P.; Hudson, Derek; Le Vine, David M.; De Amici, Giovanni; Mohammed, Priscilla N.; Yueh, Simon H.; Meissner, Thomas

    2016-01-01

    The SMAP microwave radiometer is a fully-polarimetric L-band radiometer flown on the SMAP satellite in a 6 AM/ 6 PM sun-synchronous orbit at 685 km altitude. Since April, 2015, the radiometer is under calibration and validation to assess the quality of the radiometer L1B data product. Calibration methods including the SMAP L1B TA2TB (from Antenna Temperature (TA) to the Earth’s surface Brightness Temperature (TB)) algorithm and TA forward models are outlined, and validation approaches to calibration stability/quality are described in this paper including future work. Results show that the current radiometer L1B data satisfies its requirements.

  12. An in vitro L-band electron paramagnetic resonance study of highly irradiated whole teeth.

    PubMed

    Zdravkova, M; Wieser, A; El-Faramawy, N; Gallez, B; Debuyst, R

    2002-01-01

    Regarding in vivo L-band dosimetry with human teeth, a number of preliminary experiments were carried out that were linked to the resonators response and the relative contribution of enamel to the EPR signal intensity of irradiated whole teeth. The sensitivity of the extended loop resonator varies in the antenna plane, but this variation tends to vanish when the sample is moved away from this plane. When the loop antenna is placed just above the highly irradiated molar, around 88% of the dosimetric signal is due to the crown enamel. The sensitivity inside a birdcage cavity is approximately equal over the volume of a molar; only 30% of the molar's total dosimetric signal results from enamel. Some decrease in the intensity of the dosimetric signal from enamel is observed after irradiation. At room temperature, the signal is reduced by about 20% within 90 days and approaches a plateau with a time constant of about 35 days.

  13. Tunable multiwavelength L-band Brillouin-Erbium fiber laser utilizing passive EDF absorber section

    NASA Astrophysics Data System (ADS)

    Al-Mashhadani, T. F.; Al-Mansoori, M. H.; Jamaludin, M. Z.; Abdullah, F.; Abass, A. K.; Rawi, N. I. M.

    2013-12-01

    We demonstrate a simple tunable L-band multiwavelength Brillouin-Erbium fiber laser that utilizes a short passive erbium doped fiber (PEDF) as an absorber section. The impact of including the PEDF absorber section on the laser tunability is investigated. The proposed laser structure exhibits a wide tuning range of 24.4 nm (from 1583.5 nm to 1607.9 nm) at 1480 nm pump and Brillouin pump powers of 100 and 4 mW, respectively. This tuning range represents a 31% increase compared with a laser without a PEDF absorber section. The average number of stable output channels produced within this wavelength range is 16 channels with a spacing of 0.089 nm.

  14. The Planned Soil Moisture Active Passive (SMAP) Mission L-Band Radar/Radiometer Instrument

    NASA Technical Reports Server (NTRS)

    Spencer, Michael; Wheeler, Kevin; Chan, Samuel; Piepmeier, Jeffrey; Hudson, Derek; Medeiros, James

    2011-01-01

    The Soil Moisture Active/Passive (SMAP) mission is a NASA mission identified by the NRC 'decadal survey' to measure both soil moisture and freeze/thaw state from space. The mission will use both active radar and passive radiometer instruments at L-Band. In order to achieve a wide swath at sufficiently high resolution for both active and passive channels, an instrument architecture that uses a large rotating reflector is employed. The instrument system has completed the preliminary design review (PDR) stage, and detailed instrument design has begun. In addition to providing an overview of the instrument design, two recent design modifications are discussed: 1) The addition of active thermal control to the instrument spun side to provide a more stable, settable thermal environment for the radiometer electronics, and 2) A 'sequential transmit' strategy for the two radar polarization channels which allows a single high-power amplifier to be used.

  15. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  16. Simple and efficient L-band erbium-doped fiber amplifiers for WDM networks

    NASA Astrophysics Data System (ADS)

    Choi, H. B.; Oh, J. M.; Lee, D.; Ahn, S. J.; Park, B. S.; Lee, S. B.

    2002-11-01

    The performance of L-band erbium-doped fiber amplifier (EDFA) of a simple structure with a fiber Bragg grating (FBG) was investigated. The injected C-band ASE by the FBG offers low-cost amplification and greatly improves the efficiency of the EDFA. There are 9 and 4 dB improvements with the FBG at 1587 nm, at low and high input, respectively. The flat gain of 18 dB, up to a total input of -5 dBm at 150 mW of 980 nm pump, is obtained over 30 nm with less than ±0.5 dB gain variations without any gain equalizer. The proposed EDFA provides a cost-effective solution for wavelength division multiplexing systems.

  17. High power L-band mode-locked fiber laser based on topological insulator saturable absorber.

    PubMed

    Meng, Yichang; Semaan, Georges; Salhi, Mohamed; Niang, Alioune; Guesmi, Khmaies; Luo, Zhi-Chao; Sanchez, Francois

    2015-09-07

    We demonstrate a passive mode-locked Er:Yb doped double-clad fiber laser using a microfiber-based topological insulator (Bi(2)Se(3)) saturable absorber (TISA). By optimizing the cavity loss and output coupling ratio, the mode-locked fiber laser can operate in L-band with high average output power. With the highest pump power of 5 W, 91st harmonic mode locking of soliton bunches with average output power of 308 mW was obtained. This is the first report that the TISA based erbium-doped fiber laser operating above 1.6 μm and is also the highest output power yet reported in TISA based passive mode-locked fiber laser.

  18. Color composite C-band and L-band image of Kilauea volcanoe on Hawaii

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This color composite C-band and L-band image of the Kilauea volcano on the Big Island of Hawaii was acuired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour. The city of Hilo can be seen at the top. The image shows the different types of lava flows around the crater Pu'u O'o. Ash deposits which erupted in 1790 from the summit of Kilauea volcano show up as dark in this image, and fine details associated with lava flows which erupted in 1919 and 1974 can be seen to the south of the summit in an area called the Ka'u Desert. Other historic lava flows can also be seen. Highway 11 is the linear feature running from Hilo to the Kilauea volcano. The Jet Propulsion Laboratory alternative photo number is P-43918.

  19. Transfer-matrices for series-type microwave antenna circuits. [L-band radiometer

    NASA Technical Reports Server (NTRS)

    Schmidt, R. F.

    1981-01-01

    Transfer matrices are developed which permit analysis and computer evaluation of certain series type microwave antenna circuits associated with an L-Band microwave radiometer (LBMR) under investigation at Goddard Space Flight Center. This radiometer is one of several diverse instrument designs to be used for the determination of soil moisture, sea state, salinity, and temperature data. Four port matrix notation is used throughout for the evaluation of LBMR circuits with mismatched couplers and lossy transmission lines. Matrix parameters in examples are predicted on an impedance analysis and an assumption of an array aperture distribution. The notation presented is easily adapted to longer and more varied chains of matrices, and to matrices of larger dimension.

  20. Monitoring Everglades freshwater marsh water level using L-band synthetic aperture radar backscatter

    USGS Publications Warehouse

    Kim, Jin-Woo; Lu, Zhong; Jones, John W.; Shum, C.K.; Lee, Hyongki; Jia, Yuanyuan

    2014-01-01

    The Florida Everglades plays a significant role in controlling floods, improving water quality, supporting ecosystems, and maintaining biodiversity in south Florida. Adaptive restoration and management of the Everglades requires the best information possible regarding wetland hydrology. We developed a new and innovative approach to quantify spatial and temporal variations in wetland water levels within the Everglades, Florida. We observed high correlations between water level measured at in situ gages and L-band SAR backscatter coefficients in the freshwater marsh, though C-band SAR backscatter has no close relationship with water level. Here we illustrate the complementarity of SAR backscatter coefficient differencing and interferometry (InSAR) for improved estimation of high spatial resolution water level variations in the Everglades. This technique has a certain limitation in applying to swamp forests with dense vegetation cover, but we conclude that this new method is promising in future applications to wetland hydrology research.

  1. Estimation of Soil Moisture with L-band Multi-polarization Radar

    NASA Technical Reports Server (NTRS)

    Shi, J.; Chen, K. S.; Kim, Chung-Li Y.; Van Zyl, J. J.; Njoku, E.; Sun, G.; O'Neill, P.; Jackson, T.; Entekhabi, D.

    2004-01-01

    Through analyses of the model simulated data-base, we developed a technique to estimate surface soil moisture under HYDROS radar sensor (L-band multi-polarizations and 40deg incidence) configuration. This technique includes two steps. First, it decomposes the total backscattering signals into two components - the surface scattering components (the bare surface backscattering signals attenuated by the overlaying vegetation layer) and the sum of the direct volume scattering components and surface-volume interaction components at different polarizations. From the model simulated data-base, our decomposition technique works quit well in estimation of the surface scattering components with RMSEs of 0.12,0.25, and 0.55 dB for VV, HH, and VH polarizations, respectively. Then, we use the decomposed surface backscattering signals to estimate the soil moisture and the combined surface roughness and vegetation attenuation correction factors with all three polarizations.

  2. A composite L-band HH radar backscattering model for coniferous forest stands

    NASA Technical Reports Server (NTRS)

    Sun, Guoquing; Simonett, David S.

    1988-01-01

    The radar backscattering model developed by Richards et al. (1987), has been improved and further tested in this research. The trunk term may now be calculated from the exact solution to the electromagnetic wave equations instead of the corner reflector equation. Rough surface models have been introduced into the radar model, so that the forward reflectance and the backscattering from the ground surface are now calculated from the same model and, thus, are consistent. The number of trees in an individual pixel is assumed to be Poisson distributed, with tree height in a stand log-normally distributed. The simulated results show that the match of backscattering coefficients for eight forest stands between SIR-B image data and the simulated results are satisfying, and that the trunk term now seems to be convincingly established as the dominant term in the L-band HH radar return from coniferous forest stands.

  3. Simulated Biomass Retrieval from the Spaceborne Tomographic SAOCOM-CS Mission at L-Band

    NASA Astrophysics Data System (ADS)

    Blomberg, Erik; Soja, Maciej J.; Ferro-Famil, Laurent; Ulander, Lars M. H.; Tebaldini, Stefano

    2016-08-01

    This paper presents an evaluation of above-ground biomass (ABG) retrieval in boreal forests using simulated tomographic synthetic-aperture radar (SAR) data corresponding to the future SAOCOM-CS (L-band 1.275 GHz) mission. Using forest and radar data from the BioSAR 2008 campaign at the Krycklan test site in northern Sweden the expected performance of SAOCOM-CS is evaluated and compared with the E-SAR airborne L- band SAR (1.300 GHz). It is found that SAOCOM-CS data produce retrievals on par with those obtained with E-SAR, with retrievals having a relative RMSE of 30% or less. This holds true even if the acquisitions are limited to a single polarization, with HH results shown as an example.

  4. Polarimetric Decomposition Analysis of the Deepwater Horizon Oil Slick Using L-Band UAVSAR Data

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen; Minchew, Brent; Holt, Benjamin

    2011-01-01

    We report here an analysis of the polarization dependence of L-band radar backscatter from the main slick of the Deepwater Horizon oil spill, with specific attention to the utility of polarimetric decomposition analysis for discrimination of oil from clean water and identification of variations in the oil characteristics. For this study we used data collected with the UAVSAR instrument from opposing look directions directly over the main oil slick. We find that both the Cloude-Pottier and Shannon entropy polarimetric decomposition methods offer promise for oil discrimination, with the Shannon entropy method yielding the same information as contained in the Cloude-Pottier entropy and averaged in tensity parameters, but with significantly less computational complexity

  5. Structural Biomass Estimation from L-band Interferometric SAR and Lidar

    NASA Astrophysics Data System (ADS)

    Treuhaft, R. N.; Chapman, B. D.; Goncalves, F.; Hensley, S.; dos Santos, J. R.; Graca, P. A.; Dutra, L.

    2011-12-01

    After a review of biomass estimation from interferometric SAR (InSAR) at all bands over the last 15 years, and a brief review of lidar biomass estimation, this paper discusses structure and biomass estimation from simultaneously acquired (not repeat-track) InSAR at L-band. We will briefly discuss the history of regression of biomass to InSAR raw observations (coherence and phase) and structural parameters (height, standard deviation, Fourier component). Lidar biomass estimation from functions of the waveform will be discussed. We review our structural and biomass estimation results for C-band InSAR at vertical polarization for 12-14 baselines in La Selva Biological Station, Costa Rica. C-band vertical scales were between 12 and 100 m for structure estimation, but only between 50 and 100 m for biomass estimation, due to phase calibration problems at the shorter vertical wavelengths (larger baselines). Most of the talk will be spent on L-band, simultaneously acquired multibaseline InSAR, also at La Selva, acquired at vertical polarization. Because the vertical interferometric scale is proportional to the radar altitude times the wavelength over the baseline length, the AirSAR aircraft had to be flown very low (1.2 km) to realize vertical scales at L-band of 60 m and higher. Our lidar biomass estimation suggests that vertical scales of 14 m-100 m are optimal for biomass estimation. We will try three different approaches to biomass estimation with the limited high vertical scales we have available: 1) We will regress biomass to Fourier transforms as in the C-band and lidar study, but with 60 m - 100+ m vertical scales we do not expect accuracies to be as high as for the lidar demonstration (58 Mg/ha RMS scatter of estimated about field biomass for biomasses up to 450 Mg/ha), which used Fourier vertical wavelengths of 15 m-20 m. In addition to using Fourier components, 2) we will report the use of the derivative of the InSAR complex coherence with respect to Fourier

  6. Multiwavelength L-band fiber laser with bismuth-oxide EDF and photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Ramzia Salem, A. M.; Al-Mansoori, M. H.; Hizam, H.; Mohd Noor, S. B.; Abu Bakar, M. H.; Mahdi, M. A.

    2011-05-01

    A multiwavelength laser comb using a bismuth-based erbium-doped fiber and 50 m photonic crystal fiber is demonstrated in a ring cavity configuration. The fiber laser is solely pumped by a single 1455 nm Raman pump laser to exploit its higher power delivery compared to that of a single-mode laser diode pump. At 264 mW Raman pump power and 1 mW Brillouin pump power, 38 output channels in the L-band have been realized with an optical signal-to-noise ratio above 15 dB and a Stokes line spacing of 0.08 nm. The laser exhibits a tuning range of 12 nm and produces stable Stokes lines across the tuning range between Brillouin pump wavelengths of 1603 nm and 1615 nm.

  7. Polarimetric Decomposition Analysis of the Deepwater Horizon Oil Slick Using L-Band UAVSAR Data

    NASA Technical Reports Server (NTRS)

    Jones, Cathleen; Minchew, Brent; Holt, Benjamin

    2011-01-01

    We report here an analysis of the polarization dependence of L-band radar backscatter from the main slick of the Deepwater Horizon oil spill, with specific attention to the utility of polarimetric decomposition analysis for discrimination of oil from clean water and identification of variations in the oil characteristics. For this study we used data collected with the UAVSAR instrument from opposing look directions directly over the main oil slick. We find that both the Cloude-Pottier and Shannon entropy polarimetric decomposition methods offer promise for oil discrimination, with the Shannon entropy method yielding the same information as contained in the Cloude-Pottier entropy and averaged in tensity parameters, but with significantly less computational complexity

  8. The Aquarius Ocean Salinity Mission High Stability L-band Radiometer

    NASA Technical Reports Server (NTRS)

    Pellerano, Fernando A.; Piepmeier, Jeffrey; Triesky, Michael; Horgan, Kevin; Forgione, Joshua; Caldwell, James; Wilson, William J.; Yueh, Simon; Spencer, Michael; McWatters, Dalia; Freedman, Adam

    2006-01-01

    The NASA Earth Science System Pathfinder (ESSP) mission Aquarius, will measure global ocean surface salinity with approx.120 km spatial resolution every 7-days with an average monthly salinity accuracy of 0.2 psu (parts per thousand). This requires an L-band low-noise radiometer with the long-term calibration stability of less than or equal to 0.15 K over 7 days. The instrument utilizes a push-broom configuration which makes it impractical to use a traditional warm load and cold plate in front of the feedhorns. Therefore, to achieve the necessary performance Aquarius utilizes a Dicke radiometer with noise injection to perform a warm - hot calibration. The radiometer sequence between antenna, Dicke load, and noise diode has been optimized to maximize antenna observations and therefore minimize NEDT. This is possible due the ability to thermally control the radiometer electronics and front-end components to 0.1 Crms over 7 days.

  9. Analysis on the Potential of L-Band PolSAR Data for Crop Monitoring

    NASA Astrophysics Data System (ADS)

    Ballester-Berman, J. David; Lopez-Sanchez, Juan M.

    2011-03-01

    In this work we have made use of quad-pol measurements at L-band acquired by DLRs E-SAR system during the AgriSAR06 campaign for analyzing time series of different polarimetric indicators over winter wheat, maize and winter rape fields on the basis of the phenological development. Also, the sensitivity to crop fields of parameters derived from hybrid-polarity SAR architecture as proposed by Raney in 2007 has been investigated. In both quad-pol and hybrid-pol cases a correlation study along the whole phenological development among observables and ground-truth measurements has been performed. We have focused the potential of some of these observables for the detection of particular crop conditions along certain periods within the whole growth season.

  10. L-band double Brillouin frequency spaced tunable multiwavelength Brillouin fiber laser

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Wang, Tianshu; Jia, Qingsong; Dong, Keyan

    2014-12-01

    A tunable multi-wavelength Brillouin fiber laser with double Brillouin frequency spacing based on a four-port circulator is experimentally demonstrated. The fiber laser configuration formed by four-port circulator isolates the odd-order Brillouin stokes signal to circulate within the cavity only. In addition, it also allows propagation of the incoming Brillouin pump and even-order Stokes signals from four-port circulator to output coupler .A L-band erbiumdoped fiber (EDF) with 1480nm pump is used to amplify Stokes signals and to get more output channels. At the Brillouin pump power of 8dBm and the 1480 nm pump power of 200mw, 5 output channels with double Brillouin frequency spacing and tuning range of 20 nm from 1568nm to 1588nm are achieved.

  11. Comparisons of Aquarius Measurements over Oceans with Radiative Transfer Models at L-Band

    NASA Technical Reports Server (NTRS)

    Dinnat, E.; LeVine, D.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    The Aquarius/SAC-D spacecraft includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. It was launched in June 2011 by NASA and CONAE (Argentine space agency). We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons are used as part of the initial assessment of Aquarius data and to estimate the radiometer calibration bias and stability. Comparisons are also being performed to assess the performance of models used in the retrieval algorithm for correcting the effect of various sources of geophysical "noise" (e.g. Faraday rotation, surface roughness). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit on monthly global maps at 150 km by 150 km resolution.

  12. Wetlands Maps of Central Canada based on L-band SAR Imagery

    NASA Astrophysics Data System (ADS)

    Whitcomb, J.; Moghaddam, M.; Clewley, D.; McDonald, K. C.; Podest, E.; Chapman, B. D.

    2013-12-01

    Many boreal wetlands appear to be evolving into significant sources of greenhouse gases. The ability to accurately quantify the locations, types, and extents of northern wetlands is important to understanding their role in the global carbon cycle and responses to changes in climate. However, due to the extent of boreal wetlands and their inaccessibility, there have been few maps produced of this important ecosystem. To address this need, we have been constructing high-resolution (100 m) thematic maps of North American boreal wetlands. The maps are developed using space-based synthetic aperture radar (SAR), which is capable of efficiently providing high-resolution imagery of vast and often inaccessible regions. Unlike optical imagery, space-based SAR imagery is unaffected by cloud cover. Additionally, L-band SAR is able to sense vegetation structure and moisture content, as well as ground and surface water characteristics (even under vegetation canopies), thereby providing information unobtainable from optical sensors. Space-based L-band SAR thus constitutes an excellent tool for mapping boreal wetlands. One wetlands map is based on HH-polarized L-band SAR imagery from the Japanese Earth Resources Satellite (JERS-1), collected for both summer and winter in the late 1990s. A second map is based on dual-polarized (HH and HV) imagery from the Phased Array L-band SAR (PALSAR) sensor, collected in the summer of 2007. Prior to classification, a sequence of preprocessing steps are executed, including filtering, mosaicking, resampling, reprojection, co-registration, and the formation of supplementary data layers such as image texture, topographic slope, and proximity to water. This preprocessing is implemented by a semi-automated software suite specifically designed to handle the large volumes of data involved in the project. Training/testing data needed in the classification process are formed by merging national wetland inventory and land cover databases. Finally, a

  13. Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Metzler, M. D. (Principal Investigator)

    1985-01-01

    An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation.

  14. Phoretic and Radiometric Force Measurements on Microparticles in Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Davis, E. James

    1996-01-01

    Thermophoretic, diffusiophoretic and radiometric forces on microparticles are being measured over a wide range of gas phase and particle conditions using electrodynamic levitation of single particles to simulate microgravity conditions. The thermophoretic force, which arises when a particle exists in a gas having a temperature gradient, is measured by levitating an electrically charged particle between heated and cooled plates mounted in a vacuum chamber. The diffusiophoretic force arising from a concentration gradient in the gas phase is measured in a similar manner except that the heat exchangers are coated with liquids to establish a vapor concentration gradient. These phoretic forces and the radiation pressure force acting on a particle are measured directly in terms of the change in the dc field required to levitate the particle with and without the force applied. The apparatus developed for the research and the experimental techniques are discussed, and results obtained by thermophoresis experiments are presented. The determination of the momentum and energy accommodation coefficients associated with molecular collisions between gases molecules and particles and the measurement of the interaction between electromagnetic radiation and small particles are of particular interest.

  15. JPSS-1 VIIRS Pre-Launch Radiometric Performance

    NASA Technical Reports Server (NTRS)

    Oudrari, Hassan; Mcintire, Jeffrey; Xiong, Xiaoxiong; Butler, James; Ji, Qiang; Schwarting, Tom; Zeng, Jinan

    2015-01-01

    The first Joint Polar Satellite System (JPSS-1 or J1) mission is scheduled to launch in January 2017, and will be very similar to the Suomi-National Polar-orbiting Partnership (SNPP) mission. The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the J1 spacecraft completed its sensor level performance testing in December 2014. VIIRS instrument is expected to provide valuable information about the Earth environment and properties on a daily basis, using a wide-swath (3,040 km) cross-track scanning radiometer. The design covers the wavelength spectrum from reflective to long-wave infrared through 22 spectral bands, from 0.412 m to 12.01 m, and has spatial resolutions of 370 m and 740 m at nadir for imaging and moderate bands, respectively. This paper will provide an overview of pre-launch J1 VIIRS performance testing and methodologies, describing the at-launch baseline radiometric performance as well as the metrics needed to calibrate the instrument once on orbit. Key sensor performance metrics include the sensor signal to noise ratios (SNRs), dynamic range, reflective and emissive bands calibration performance, polarization sensitivity, bands spectral performance, response-vs-scan (RVS), near field response, and stray light rejection. A set of performance metrics generated during the pre-launch testing program will be compared to the sensor requirements and to SNPP VIIRS pre-launch performance.

  16. Design, manufacture, and calibration of infrared radiometric blackbody sources

    SciTech Connect

    Byrd, D.A.; Michaud, F.D.; Bender, S.C.

    1996-04-01

    A Radiometric Calibration Station (RCS) is being assembled at the Los Alamos National Laboratories (LANL) which will allow for calibration of sensors with detector arrays having spectral capability from about 0.4-15 {mu}m. The configuration of the LANL RCS. Two blackbody sources have been designed to cover the spectral range from about 3-15 {mu}m, operating at temperatures ranging from about 180-350 K within a vacuum environment. The sources are designed to present a uniform spectral radiance over a large area to the sensor unit under test. The thermal uniformity requirement of the blackbody cavities has been one of the key factors of the design, requiring less than 50 mK variation over the entire blackbody surface to attain effective emissivity values of about 0.999. Once the two units are built and verified to the level of about 100 mK at LANL, they will be sent to the National Institute of Standards and Technology (NIST), where at least a factor of two improvement will be calibrated into the blackbody control system. The physical size of these assemblies will require modifications of the existing NIST Low Background Infrared (LBIR) Facility. LANL has constructed a bolt-on addition to the LBIR facility that will allow calibration of our large aperture sources. Methodology for attaining the two blackbody sources at calibrated levels of performance equivalent to present state of the art will be explained in the following.

  17. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Technical Reports Server (NTRS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-01-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  18. Estimation of Radiometric Calibration Coefficients of EGYPTSAT-1 Sensor

    NASA Astrophysics Data System (ADS)

    Nasr, A. H.; El Leithy, B. M.; Badr, H. S.; Centeno, J.

    2012-07-01

    Sensors usually must be calibrated as part of a measurement system. Calibration may include the procedure of correcting the transfer of the sensor, using the reference measurements, in such a way that a specific input-output relation can be guaranteed with a certain accuracy and under certain conditions. It is necessary to perform a calibration to relate the output signal precisely to the physical input signal (e.g., the output Digital Numbers (DNs) to the absolute units of at-sensor spectral radiance). Generic calibration data associated with Egyptsat-1 sensor are not provided by the manufacturer. Therefore, this study was conducted to estimate Egyptsat-1 sensor specific calibration data and tabulates the necessary constants for its different multispectral bands. We focused our attention on the relative calibration between Egyptsat-1 and Spot-4 sensors for their great spectral similarity. The key idea is to use concurrent correlation of signals received at both sensors in the same day (i.e., sensors are observing the same phenomenon). Calibration formula constructed from Spot-4 sensor is used to derive the calibration coefficients for Egyptsat-1. A brief overview of the radiometric calibration coefficients retrieval procedures is presented. A reasonable estimate of the overall calibration coefficient is obtained. They have been used to calibrate reflectances of Egyptsat-1 sensor. Further updates to evaluate and improve the retrieved calibration data are being investigated.

  19. Radiometric STFT Analysis of PDV recordings and detectivity limit

    NASA Astrophysics Data System (ADS)

    Bozier, Olivier; Prudhomme, Gabriel; Mercier, Patrick; Berthe, Laurent

    2015-06-01

    Photonic Doppler Velocimetry is a plug-and-play and versatile diagnostic used in dynamic physic experiments to measure velocities. When signals are analyzed using a Short-Time Fourier Transform, multiple velocities can be distinguished: by example, the velocities of moving particle-cloud appear on spectrograms. In order to estimate the back-scattering fluxes of target, we propose an original approach ``PDV Radiometric analysis'' resulting in an expression of time-velocity spectrograms coded in power units. Experiments involving micron-sized particles raise the issue of detection limit; particle-size limit is very difficult to evaluate. From the quantification of noise sources, we derivate an estimation of the spectrogram noise leading to a detectivity limit. It may be compared to back-scattering and collected power from a particle, which is increasing with its size. At least, some results from laser-shock accelerated particles using two different PDV systems are compared: it may show the improvement of sensitivity.

  20. Automatic Ship Recognition Using A Passive Radiometric Sensor

    NASA Astrophysics Data System (ADS)

    Keng, Janmin

    1982-03-01

    Automatic ship recognition is of interest in such problems as over-the-horizon surface surveillance and targeting, long range air targeting, and satellite ocean surveillance. Our approach is model-driven. It uses the fact that the wake caused by a cruising ship has a higher temperature profile than the surrounding water background. In addition, we distinguish between the active wake and the turbulent water surrounding the ship. Furthermore, the temperature of the ship itself is usually lower than that of the ocean. Finally, we make use of the knowledge of ship sizes, convoy patterns and other information concerning ships traveling in formation. An image from a radiometric sensor forms the basis of the analysis. Edge detection and region association techniques are used to locate a "zone of activity", a region of the image that contains the ship. Grey level histogram analysis of the zone is then used to categorize pixels into "ship", "wake", and "water". Results of experiments using this technique are presented.

  1. Advanced radiometric and interferometric milimeter-wave scene simulations

    NASA Astrophysics Data System (ADS)

    Hauss, B. I.; Moffa, P. J.; Steele, W. G.; Agravante, H.; Davidheiser, R.; Samec, T.; Young, S. K.

    1993-12-01

    Smart munitions and weapons utilize various imaging sensors (including passive IR, active and passive millimeter-wave, and visible wavebands) to detect/identify targets at short standoff ranges and in varied terrain backgrounds. In order to design and evaluate these sensors under a variety of conditions, a high-fidelity scene simulation capability is necessary. Such a capability for passive millimeter-wave scene simulation exists at TRW. TRW's Advanced Radiometric Millimeter-Wave Scene Simulation (ARMSS) code is a rigorous, benchmarked, end-to-end passive millimeter-wave scene simulation code for interpreting millimeter-wave data, establishing scene signatures and evaluating sensor performance. In passive millimeter-wave imaging, resolution is limited due to wavelength and aperture size. Where high resolution is required, the utility of passive millimeter-wave imaging is confined to short ranges. Recent developments in interferometry have made possible high resolution applications on military platforms. Interferometry or synthetic aperture radiometry allows the creation of a high resolution image with a sparsely filled aperture. Borrowing from research work in radio astronomy, we have developed and tested at TRW scene reconstruction algorithms that allow the recovery of the scene from a relatively small number of spatial frequency components. In this paper, the TRW modeling capability is described and numerical results are presented.

  2. Effects on Spacecraft Radiometric Data at Superior Solar Conjunction

    NASA Technical Reports Server (NTRS)

    Morley, Trevor; Budnik, Frank

    2007-01-01

    During 2006, three ESA interplanetary spacecraft, Rosetta, Mars Express (MEX) and Venus Express (VEX), passed through superior solar conjunction. For all three spacecraft, the noise in the post-fit range-rate residuals from the orbit determination was analysed. At small Sun-Earth-Probe (SEP) angles the level was almost two orders of magnitude higher than normal. The main objective was to characterize the Doppler (rangerate) noise as a function of SEP angle. At least then the range-rate data can be appropriately weighted within the orbit determination so that the solution uncertainties are realistic. For VEX, some intervals of particularly noisy Doppler data could be correlated with unusual solar activity. For Rosetta, the biases in the range data residuals were analysed with the aim of improving the model used for calibrating the signal delay due to the solar plasma. The model, which originally had fixed coefficients, was adjusted to achieve better fits to the data. Even the relatively small Doppler biases were well represented. Using the improved model, the electron density at 20 solar radii was compared with earlier results obtained by radio science studies using Voyager 2 and Ulysses radiometric data. There is some evidence for a dependency of the density on the phase within the 11 years solar cycle.

  3. Investigation of Aerodynamic and Aerodynamic and Radiometric Land Surface Temperatures

    NASA Technical Reports Server (NTRS)

    Crago, Richard D.; Friedl, Mark; Kustas, William; Wang, Ye-Qiao

    2003-01-01

    The overall goal of the project was to reconcile the difference between T(sub s,r) and T(sub aero), while maintaining consistency within models and with theory and data. The project involved collaboration between researchers at Bucknell University, Boston University, University of mode Island, and the USDNARS Hydrology Laboratory. This report focuses on the work done at Bucknell, which used an analytical continuous-source flux model developed by Crago (1998), based on work by Brutsaert and Sugita (1996) to generate fluxes at all levels of the canopy. Named ALARM [Analytical Land- Atmosphere-Radiometer Model] by Suleiman and Crago (2002), the model assumes the foliage has an exponential vertical temperature profile. The same profile is felt by the within-canopy turbulence and 'seen" by a radiometer viewing the surface from any zenith view angle. ALARM converts radiometric surface temperatures taken from any view angle into a clearly-defined version of Taero called the equivalent isothermal surface temperature T(sub s,j), and then calculates the sensible heat flux H using Monin-Obukhov similarity theory. This allows remotely sensed Ts,r measurements to be used to produce high quality sensible and latent heat flux estimates, or to validate or update the surface temperature produced by SVATs in climate or mesoscale models.

  4. Optimized mapping of radiometric quantities into OpenGL

    NASA Astrophysics Data System (ADS)

    Lorenzo, Maximo; Jacobs, Eddie L.; Moulton, J. R., Jr.; Liu, Jesse

    1999-07-01

    Physically realistic synthesis of FLIR imagery requires intensive phenomenology calculations of the spectral band thermal emission and reflection from scene elements in the database. These calculations predict the heat conduction, convection, and radiation exchange between scene elements and the environment. Balancing this requirement is the need for imagery to be presented to a display in a timely fashion, often in real time. In order to support these conflicting requirements, some means of overcoming the gap between real time and high fidelity must be achieved. Over the past several years, the US Army Night Vision and Electronic Sensors Directorate (NVESD) has been developing a real-time forward looking infrared sensor simulation known as Paint the Night (PTN). As part of this development, NVESD has explored schemes for optimizing signature models and for mapping model radiometric output into parameters compatible with OpenGL, real-time rendering architectures. Relevant signature and mapping optimization issues are discussed, and a current NVESD PTN real-time implementation scheme is presented.

  5. History of Solar Radiometry and the World Radiometric Reference

    NASA Astrophysics Data System (ADS)

    Fröhlich, C.

    1991-01-01

    The history of solar radiometry since the first pyrheliometer of Pouillet is presented. After the invention of the Ångström and the Smithsonian pyrheliometers around the turn of this century two different "scales" were in use. Comparisons with absolute cavity radiometers developed in America and Europe have been performed since about 1910 which show remarkably accurate measurements in terms of the SI units. However, these results have never been accepted and several rules have been established to reference radiation measurements in the meteorological community and to remedy the unsatisfactory fact of having different "scales". Unfortunately none of these rules led to a reference close to the SI units of irradiance, confusing the issue even more. With the advent of modern absolute radiometers in the late 1960s the situation improved and led to the definition of the World Radiometric Reference in use by the meteorological community since 1981. This reference has an estimated accuracy of 0,3% and guarantees the worldwide homogeneity of radiation measurements within 0,1% precision.

  6. NERO: General concept of a NEO radiometric observatory

    NASA Astrophysics Data System (ADS)

    Cellino, A.; Somma, R.; Tommasi, L.; Paolinetti, R.; Muinonen, K.; Virtanen, J.; Tedesco, E. F.

    NERO (Near-Earth Objects Radiometric Observatory) is one of the six studies for possible missions dedicated to near-Earth objects, that were funded by the ESA in 2002-2003. NERO is a further development of previous studies already submitted to ESA (Sysiphos,Spaceguard-1). The general concept is that a small satellite equipped with both a CCD for visible wavelengths and an array for thermal IR measurements around 10 microns would be an ideal platform for simultaneously obtaining two of the major objectives of current NEO science, namely the physical characterization of the objects and the discovery of NEOs which are difficult to detect because they have orbits entirely or partly interior to the Earth's orbit. The NERO study included a comprehensive analysis of the advantages and drawbacks of different orbital options for the satellite (including L2 of Earth and L2 of Venus) and a preliminary simulation of the effectiveness in deriving reliable orbits of the newly detected objects. The main results of this study, including also a preliminary design of the payload (optics, detectors, cooling system, etc.) are briefly summarized.

  7. Radiometric sensor performance model including atmospheric and IR clutter effects

    NASA Astrophysics Data System (ADS)

    Richter, Rudolf; Davis, Joel S.; Duggin, Michael J.

    1997-06-01

    The computer code SENSAT developed for radiometric investigations in remote sensing was extended to include two statistical clutter models of infrared background and the prediction of the target detection probability. The first one is based on the standard deviation of scene clutter estimated from scene data, the second one is based on the power spectral density of different classes of IR background as a function of temporal or spatial frequency. The overall code consists of modules describing the optoelectronic sensor (optics, detector, signal processor), a radiative transfer code (MODTRAN) to include the atmospheric effects, and the scene module consisting of target and background. The scene is evaluated for a certain pixel at a time. However, a sequence of pixels can be simulated by varying the range, view angle, atmospheric condition, or the clutter level. The target consists of one or two subpixel surface elements, the remaining part of the pixels represents background. Multiple paths, e.g. sun-ground-target-sensor, can also be selected. An expert system, based upon the IDL language, provides user-friendly input menus, performs consistency checks, and submits the required MODTRAN and SENSAT runs. A sample case of the detection probability of a sub-pixel target in a marine cluttered background is discussed.

  8. L-band radiometer experiment in the SMOS test site Upper Danube

    NASA Astrophysics Data System (ADS)

    Schlenz, Florian; Gebhardt, Timo; Loew, Alexander; Marzahn, Philip; Mauser, Wolfram

    2010-05-01

    In the frame of calibration and validation activities for ESA's soil moisture and ocean salinity mission, SMOS, the University of Munich operates a ground based L-band radiometer (ELBARA II) on an experimental farm in Southern Germany since September 2009. It is being used to validate the radiative transfer model, L-MEB, used in the SMOS Level 2 processor. The radiometer measures the natural emission of two fields in the microwave domain with a wavelength of 1.4 GHz. Its working principle is similar to that of SMOS, for which reason it can be used for validation of the radiative transfer model on the field scale. To support the validation, extensive environmental measurements are being made at the test site. The radiometer is situated on an experimental farm near Puch, about 30 km west of Munich in the Upper Danube watershed in southern Germany in a temperate agricultural area. It is mounted on a 4 m high scaffolding that allows to turn the radiometer to look at 2 different fields with grass and winter rape as land use respectively. In addition to the L-band measurements, thermal infrared (IR) measurements are performed. For this purpose, one thermal IR radiometer is attached to the ELBARA antenna to look into the same direction and two IR radiometers are constantly pointed at the two fields. Next to the radiometer is a meteorological station providing soil and air temperature profiles, precipitation, global radiation, wind speed and relative humidity measurements with an hourly resolution. In addition to that, soil moisture is measured with TDR probes in 2 profiles under each of the two fields with several probes installed at depths between 5 and 50cm. Vegetation and snow parameters are also recorded on a regularly basis. Soil roughness is measured with a photogrammetric approach. An overview about the infrastructure and existing datasets is presented.

  9. Development of a Two Dimensional Synthetic Aperture Radiometer at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Carver, K.; Goodberlet, M.; Popstefanija, I.; Mead, J.

    2000-01-01

    A radiometer that uses aperture synthesis in two dimensions is being built as part of research under NASA's Instrument Incubator Program. The instrument development team consists of engineers at the Goddard Space Flight Center, the University of Massachusetts and Quadrant Engineering. This will be an aircraft instrument operating at L-band which builds on the heritage of ESTAR. The choice of L-band was made because the problem of achieving adequate resolution in space is most critical at this wavelength and because a polarimetric, conical scanning airborne radiometer for future experiments to validate soil moisture and ocean salinity retrieval algorithms is not currently available. The instrument will be designed to fly on the NASA P-3 aircraft in a nadir pointing mode, although other options are possible. The antenna will consist of an array of modules arranged in a rectangular grid. Each module will be comprised of a printed circuit dual-polarized patch and integrated receiver. The distribution of modules within the rectangular array will be adjustable so that several different imaging configurations (e.g. "+","Y", "T") can be employed. The integrated receiver will provide amplification and conversion to IF. The IF signal will be routed to a processor where the required correlations performed. The I and Q channels will be created digitally and the correlations will be done digitally in this processor. The digitization will be done with sufficient bits to study the effects of quantization on radiometer performance. A computer/controller will store the data for conversion to an image and will also perform temperature control and other data interfacing and housekeeping tasks. The instrument is currently in the bread boarding phase of development. A design of the critical components has been completed and hardware is being assembled to test the individual elements. It is expected that a complete 2-channel correlator will be tested by the summer of 2000 and that the

  10. A new technique to characterize foliage attenuation using passive radar in the L-band

    NASA Astrophysics Data System (ADS)

    Lesturgie, Marc; Thirion-Lefèvre, Laetitia; Saillant, Stéphane; Dorey, Philippe

    2016-11-01

    The goal of the experiment proposed in this paper is to give rapidly and with a limited equipment the attenuation level in the L-band for various elevation angles, between 20 and 70 degrees. The original principle is to use the L-band signal transmitted from an airport radar. The signal backscattered by a plane flying over the forest next to the airport is received on many antennas: some are over the canopy; others are on the ground under the foliage. The direct path signal transmitted by the airport radar is received by the antennas located above the forest. This signal is used to synchronize the temporal signals by detecting the waveform of the transmitting pulses. The signal backscattered by the plane is received by two H and V polar antennas located over the forest and by two other antennas placed under the foliage. The signals received by these antennas are digitized and processed to extract the plots of the opportunistic targets that approach the airport. The magnitudes of each plane echo are measured on each channel, and a comparison of the level of signal is made between the antenna above and under the forest. The ratio of magnitude between the two measurements on each polarization component gives the absorption factor of the foliage at the place of experiment. The position of the plane is given by an ADS-B receiver. For each elevation position of the antennas, the pattern of the chosen target will describe all the angles of arrival. This experiment has been deployed on two forested sites near an airport in South-East Asia. xml:lang="fr"

  11. EPR Methods for Biological Cu(II): L-Band CW and NARS

    PubMed Central

    Bennett, Brian; Kowalski, Jason

    2016-01-01

    Copper has many roles in biology that involve the change of coordination sphere and/or oxidation state of the copper ion. Consequently, the study of copper in heterogeneous environments is an important area in biophysics. EPR is a primary technique for the investigation of paramagnetic copper, which is usually the isolated Cu(II) ion, but sometimes as Cu(II) in different oxidation states of multi-transition ion clusters. The gross geometry of the coordination environment of Cu(II) can often be determined from a simple inspection of the EPR spectrum, recorded in the traditional X-band frequency range (9 – 10 GHz). Identification and quantitation of the coordinating ligand atoms, however, is not so straightforward. In particular, analysis of the superhyperfine structure on the EPR spectrum, to determine the number of coordinated nitrogen atoms, is fraught with difficulty at X-band, despite the observation that the overwhelming number of EPR studies of Cu(II) in the literature have been carried out at X-band. Greater reliability has been demonstrated at S-band (3 – 4 GHz), using the low-field parallel (gz) features. However, analysis relies on clear identification of the outermost superhyperfine line, which has the lowest intensity of all the spectral features. Computer simulations have subsequently indicated that the much more intense perpendicular region of the spectrum can be reliably interpreted at L-band (2 GHz). The present work describes the development of L-band EPR of Cu(II) into a routine method, that is applicable to biological samples. PMID:26478491

  12. Peatland Subsurface Water Flow Monitoring Using Polarimetric L-Band PALSAR

    NASA Astrophysics Data System (ADS)

    Touzi, R.; Gosselin, G.; Li, J.; Brook, R.

    2011-03-01

    The potential of L-band PALSAR for monitoring water flow beneath the peat surface is demonstrated on a bog near Lac Saint Pierre (Canada). Two polarimetric ALOS acquisitions collected at spring and fall under different water conditions are used. The Touzi decomposition [1], which was shown to be very promising for peatland characterization using the C-band Convair 580 SAR [2], is applied. Like in [2], the information provided by the multi-polarization (HH, HV, and VV), the scattering type magnitude (the Cloude α or the Touzi αs), the single scattering eigenvalues and the entropy, cannot detect the presence of water underneath the peat surface. The Touzi scattering phase ϕ αs is shown to be the only target scattering decomposition parameter that can detect water flow variations beneath the peat surface. The fall acquisition that took place after two days rain permits demonstrating that the wave can penetrate deep into the acrotelm layer to detect the rain water that has sinked rapidly into the peat layer of high hydraulic conductivity. The spring acquisition at dry conditions permits better discrimination of poor fen from bog. Similar performance have been observed in a subarctic peatland in the Wapusk National Park using PALSAR data collected between June and September 2010. While the multi-polarization information could not detect any hydraulic changes in a sedge bulrush fen, ϕ αs can detect the peatland subsurface water level variations between the June starting permafrost melting season (13 cm active layer) and the more advanced July melting seasons (27 cm active layer). However, the scattering type phase could not detect the water level change between July and August of more advanced melting conditions (active layer thickness of 60 cm). The L-band wave does not go so deep into the fen to detect the presence of the subsurface (deeper than 27 cm) water.

  13. Forest and Forest Change Mapping with C- and L-band SAR in Liwale, Tanzania

    NASA Astrophysics Data System (ADS)

    Haarpaintner, J.; Davids, C.; Hindberg, H.; Zahabu, E.; Malimbwi, R. E.

    2015-04-01

    As part of a Tanzanian-Norwegian cooperation project on Monitoring Reporting and Verification (MRV) for REDD+, 2007-2011 Cand L-band synthetic aperture radar (SAR) backscatter data from Envisat ASAR and ALOS Palsar, respectively, have been processed, analysed and used for forest and forest change mapping over a study side in Liwale District in Lindi Region, Tanzania. Land cover observations from forest inventory plots of the National Forestry Resources Monitoring and Assessment (NAFORMA) project have been used for training Gaussian Mixture Models and k-means classifier that have been combined in order to map the study region into forest, woodland and non-forest areas. Maximum forest and woodland extension masks have been extracted by classifying maximum backscatter mosaics in HH and HV polarizations from the 2007-2011 ALOS Palsar coverage and could be used to map efficiently inter-annual forest change by filtering out changes in non-forest areas. Envisat ASAR APS (alternate polarization mode) have also been analysed with the aim to improve the forest/woodland/non-forest classification based on ALOS Palsar. Clearly, the combination of C-band SAR and L-band SAR provides useful information in order to smooth the classification and especially increase the woodland class, but an overall improvement for the wall-to-wall land type classification has yet to be confirmed. The quality assessment and validation of the results is done with very high resolution optical data from WorldView, Ikonos and RapidEye, and NAFORMA field observations.

  14. Soil moisture estimation by assimilating L-band microwave brightness temperature with geostatistics and observation localization.

    PubMed

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects.

  15. Optimizing the subwavelength grating of L-band annular groove phase masks for high coronagraphic performance

    NASA Astrophysics Data System (ADS)

    Vargas Catalán, E.; Huby, E.; Forsberg, P.; Jolivet, A.; Baudoz, P.; Carlomagno, B.; Delacroix, C.; Habraken, S.; Mawet, D.; Surdej, J.; Absil, O.; Karlsson, M.

    2016-11-01

    Context. The annular groove phase mask (AGPM) is one possible implementation of the vector vortex coronagraph, where the helical phase ramp is produced by a concentric subwavelength grating. For several years, we have been manufacturing AGPMs by etching gratings into synthetic diamond substrates using inductively coupled plasma etching. Aims: We aim to design, fabricate, optimize, and evaluate new L-band AGPMs that reach the highest possible coronagraphic performance, for applications in current and forthcoming infrared high-contrast imagers. Methods: Rigorous coupled wave analysis (RCWA) is used for designing the subwavelength grating of the phase mask. Coronagraphic performance evaluation is performed on a dedicated optical test bench. The experimental results of the performance evaluation are then used to accurately determine the actual profile of the fabricated gratings, based on RCWA modeling. Results: The AGPM coronagraphic performance is very sensitive to small errors in etch depth and grating profile. Most of the fabricated components therefore show moderate performance in terms of starlight rejection (a few 100:1 in the best cases). Here we present new processes for re-etching the fabricated components in order to optimize the parameters of the grating and hence significantly increase their coronagraphic performance. Starlight rejection up to 1000:1 is demonstrated in a broadband L filter on the coronagraphic test bench, which corresponds to a raw contrast of about 10-5 at two resolution elements from the star for a perfect input wave front on a circular, unobstructed aperture. Conclusions: Thanks to their exquisite performance, our latest L-band AGPMs are good candidates for installation in state of the art and future high-contrast thermal infrared imagers, such as METIS for the E-ELT.

  16. L-band InSAR Penetration Depth Experiment, North Slope Alaska

    NASA Astrophysics Data System (ADS)

    Muskett, Reginald

    2017-04-01

    Since the first spacecraft-based synthetic aperture radar (SAR) mission NASA's SEASAT in 1978 radars have been flown in Low Earth Orbit (LEO) by other national space agencies including the Canadian Space Agency, European Space Agency, India Space Research Organization and the Japanese Aerospace Exploration Agency. Improvements in electronics, miniaturization and production have allowed for the deployment of SAR systems on aircraft for usage in agriculture, hazards assessment, land-use management and planning, meteorology, oceanography and surveillance. LEO SAR systems still provide a range of needful and timely information on large and small-scale weather conditions like those found across the Arctic where ground-base weather radars currently provide limited coverage. For investigators of solid-earth deformation attention must be given to the atmosphere on Interferometric SAR (InSAR) by aircraft and spacecraft multi-pass operations. Because radar has the capability to penetrate earth materials at frequencies from the P- to X-band attention must be given to the frequency dependent penetration depth and volume scattering. This is the focus of our new research project: to test the penetration depth of L-band SAR/InSAR by aircraft and spacecraft systems at a test site in Arctic Alaska using multi-frequency analysis and progressive burial of radar mesh-reflectors at measured depths below tundra while monitoring environmental conditions. Knowledge of the L-band penetration depth on lowland Arctic tundra is necessary to constrain analysis of carbon mass balance and hazardous conditions arising form permafrost degradation and thaw, surface heave and subsidence and thermokarst formation at local and regional scales.

  17. Impact of surface roughness on L-band emissivity of the sea ice

    NASA Astrophysics Data System (ADS)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  18. Evaluating SAR polarization modes at L-band for forest classification purposes in Eastern Amazon, Brazil

    NASA Astrophysics Data System (ADS)

    Liesenberg, Veraldo; Gloaguen, Richard

    2013-04-01

    Single, interferometric dual, and quad-polarization mode data were evaluated for the characterization and classification of seven land use classes in an area with shifting cultivation practices located in the Eastern Amazon (Brazil). The Advanced Land-Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar (PALSAR) data were acquired during a six month interval. A clear-sky Landsat-5/TM image acquired at the same period was used as additional ground reference and as ancillary input data in the classification scheme. We evaluated backscattering intensity, polarimetric features, interferometric coherence and texture parameters for classification purposes using support vector machines (SVM) and feature selection. Results showed that the forest classes were characterized by low temporal backscattering intensity variability, low coherence and high entropy. Quad polarization mode performed better than dual and single polarizations but overall accuracies remain low and were affected by precipitation events on the date and prior SAR date acquisition. Misclassifications were reduced by integrating Landsat data and an overall accuracy of 85% was attained. The integration of Landsat to both quad and dual polarization modes showed similarity at the 5% significance level. SVM was not affected by SAR dimensionality and feature selection technique reveals that co-polarized channels as well as SAR derived parameters such as Alpha-Entropy decomposition were important ranked features after Landsat' near-infrared and green bands. We show that in absence of Landsat data, polarimetric features extracted from quad-polarization L-band increase classification accuracies when compared to single and dual polarization alone. We argue that the joint analysis of SAR and their derived parameters with optical data performs even better and thus encourage the further development of joint techniques under the Reducing Emissions from Deforestation and Degradation (REDD) mechanism.

  19. Development of a Two Dimensional Synthetic Aperture Radiometer at L-Band

    NASA Technical Reports Server (NTRS)

    LeVine, D. M.; Carver, K.; Goodberlet, M.; Popstefanija, I.; Mead, J.

    2000-01-01

    A radiometer that uses aperture synthesis in two dimensions is being built as part of research under NASA's Instrument Incubator Program. The instrument development team consists of engineers at the Goddard Space Flight Center, the University of Massachusetts and Quadrant Engineering. This will be an aircraft instrument operating at L-band which builds on the heritage of ESTAR. The choice of L-band was made because the problem of achieving adequate resolution in space is most critical at this wavelength and because a polarimetric, conical scanning airborne radiometer for future experiments to validate soil moisture and ocean salinity retrieval algorithms is not currently available. The instrument will be designed to fly on the NASA P-3 aircraft in a nadir pointing mode, although other options are possible. The antenna will consist of an array of modules arranged in a rectangular grid. Each module will be comprised of a printed circuit dual-polarized patch and integrated receiver. The distribution of modules within the rectangular array will be adjustable so that several different imaging configurations (e.g. "+","Y", "T") can be employed. The integrated receiver will provide amplification and conversion to IF. The IF signal will be routed to a processor where the required correlations performed. The I and Q channels will be created digitally and the correlations will be done digitally in this processor. The digitization will be done with sufficient bits to study the effects of quantization on radiometer performance. A computer/controller will store the data for conversion to an image and will also perform temperature control and other data interfacing and housekeeping tasks. The instrument is currently in the bread boarding phase of development. A design of the critical components has been completed and hardware is being assembled to test the individual elements. It is expected that a complete 2-channel correlator will be tested by the summer of 2000 and that the

  20. Soil Moisture Estimation by Assimilating L-Band Microwave Brightness Temperature with Geostatistics and Observation Localization

    PubMed Central

    Han, Xujun; Li, Xin; Rigon, Riccardo; Jin, Rui; Endrizzi, Stefano

    2015-01-01

    The observation could be used to reduce the model uncertainties with data assimilation. If the observation cannot cover the whole model area due to spatial availability or instrument ability, how to do data assimilation at locations not covered by observation? Two commonly used strategies were firstly described: One is covariance localization (CL); the other is observation localization (OL). Compared with CL, OL is easy to parallelize and more efficient for large-scale analysis. This paper evaluated OL in soil moisture profile characterizations, in which the geostatistical semivariogram was used to fit the spatial correlated characteristics of synthetic L-Band microwave brightness temperature measurement. The fitted semivariogram model and the local ensemble transform Kalman filter algorithm are combined together to weight and assimilate the observations within a local region surrounding the grid cell of land surface model to be analyzed. Six scenarios were compared: 1_Obs with one nearest observation assimilated, 5_Obs with no more than five nearest local observations assimilated, and 9_Obs with no more than nine nearest local observations assimilated. The scenarios with no more than 16, 25, and 36 local observations were also compared. From the results we can conclude that more local observations involved in assimilation will improve estimations with an upper bound of 9 observations in this case. This study demonstrates the potentials of geostatistical correlation representation in OL to improve data assimilation of catchment scale soil moisture using synthetic L-band microwave brightness temperature, which cannot cover the study area fully in space due to vegetation effects. PMID:25635771

  1. Selection of chemotherapy for patient treatment utilizing a radiometric versus a cloning system

    SciTech Connect

    Von Hoff, D.D.; Forseth, B.J.; Turner, J.N.; Clark, G.M.; Warfel, L.E.

    1986-01-01

    From the 1950s to the 1970s, a number of in vitro systems that measured inhibition of glucose metabolism were used to predict the responsiveness of patients' tumors to chemotherapy. In vitro-in vivo correlations were excellent, with true positive predictions ranging from 68% to 96% and true negative predictions of 95% to 100%. The radiometric system is a new in vitro technique that measures the conversion of 14C-glucose to 14CO2. The system already has been utilized to screen prospective new antineoplastic agents for cytotoxicity. The present study was undertaken to determine if the radiometric system might be used to predict correctly the responsiveness of an individual patient's tumor to single-agent or combination-agent chemotherapy. Fifty-six tumor specimens were divided and tested for drug sensitivity in the radiometric system and a conventional human tumor clonning system. Overall, there was a significant correlation between in vitro and in vivo results for the conventional cloning system (P = 0.03). However, there was no significant relationship between in vitro and in vivo results for the radiometric system. The radiometric system consistently failed to predict the tumor's clinical sensitivity to single agents. A radiometric system is not useful in predicting the responsiveness of a patient's tumor to single agent chemotherapy and is not a replacement for the more biologically attractive human tumor cloning system.

  2. A multi-channel radiometric profiler of temperature, humidity and cloud liquid.

    SciTech Connect

    Ware, R.; Carpenter, R.; Guldner, J.; Liljegren, J.; Nehrkorn, T.; Solheim, F.; Vandenberghe, F.; Environmental Research; Radiometrics Corp.; Univ. Corp. for Atmospheric Research; Weather Decision Technologies Inc.; Atmospheric and Environmental Research Inc.; National Center for Atmospheric Research

    2003-07-31

    A microwave radiometer is described that provides continuous thermodynamic (temperature, water vapor, and moisture) soundings during clear and cloudy conditions. The radiometric profiler observes radiation intensity at 12 microwave frequencies, along with zenith infrared and surface meteorological measurements. Historical radiosonde and neural network or regression methods are used for profile retrieval. We compare radiometric, radiosonde, and forecast soundings and evaluate the accuracy of radiometric temperature and water vapor soundings on the basis of statistical comparison with radiosonde soundings. We find that radiometric soundings are equivalent in accuracy to radiosonde soundings when used in numerical weather forecasting. A case study is described that demonstrates improved fog forecasting on the basis of variational assimilation of radiometric soundings. The accuracy of radiometric cloud liquid soundings is evaluated by comparison with cloud liquid sensors carried by radiosondes. Accurate high-resolution three-dimensional water vapor and wind analysis is described on the basis of assimilation of simulated thermodynamic and wind soundings along with GPS slant delays. Examples of mobile thermodynamic and wind profilers are shown. Thermodynamic profiling, particularly when combined with wind profiling and slant GPS, provides continuous atmospheric soundings for improved weather and dispersion forecasting.

  3. Evaluation of relative radiometric correction techniques on Landsat 8 OLI sensor data

    NASA Astrophysics Data System (ADS)

    Novelli, Antonio; Caradonna, Grazia; Tarantino, Eufemia

    2016-08-01

    The quality of information derived from processed remotely sensed data may depend upon many factors, mostly related to the extent data acquisition is influenced by atmospheric conditions, topographic effects, sun angle and so on. The goal of radiometric corrections is to reduce such effects in order enhance the performance of change detection analysis. There are two approaches to radiometric correction: absolute and relative calibrations. Due to the large amount of free data products available, absolute radiometric calibration techniques may be time consuming and financially expensive because of the necessary inputs for absolute calibration models (often these data are not available and can be difficult to obtain). The relative approach to radiometric correction, known as relative radiometric normalization, is preferred with some research topics because no in situ ancillary data, at the time of satellite overpasses, are required. In this study we evaluated three well known relative radiometric correction techniques using two Landsat 8 - OLI scenes over a subset area of the Apulia Region (southern Italy): the IR-MAD (Iteratively Reweighted Multivariate Alteration Detection), the HM (Histogram Matching) and the DOS (Dark Object Subtraction). IR-MAD results were statistically assessed within a territory with an extremely heterogeneous landscape and all computations performed in a Matlab environment. The panchromatic and thermal bands were excluded from the comparisons.

  4. Developing an Error Model for Ionospheric Phase Distortions in L-Band SAR and InSAR Data

    NASA Astrophysics Data System (ADS)

    Meyer, F. J.; Agram, P. S.

    2014-12-01

    Many of the recent and upcoming spaceborne SAR systems are operating in the L-band frequency range. The choice of L-band has a number of advantages especially for InSAR applications. These include deeper penetration into vegetation, higher coherence, and higher sensitivity to soil moisture. While L-band SARs are undoubtedly beneficial for a number of earth science disciplines, their signals are susceptive to path delay effects in the ionosphere. Many recent publications indicate that the ionosphere can have detrimental effects on InSAR coherence and phase. It has also been shown that the magnitude of these effects strongly depends on the time of day and geographic location of the image acquisition as well as on the coincident solar activity. Hence, in order to provide realistic error estimates for geodetic measurements derived from L-band InSAR, an error model needs to be developed that is capable of describing ionospheric noise. With this paper, we present a global ionospheric error model that is currently being developed in support of NASA's future L-band SAR mission NISAR. The system is based on a combination of empirical data analysis and modeling input from the ionospheric model WBMOD, and is capable of predicting ionosphere-induced phase noise as a function of space and time. The error model parameterizes ionospheric noise using a power spectrum model and provides the parameters of this model in a global 1x1 degree raster. From the power law model, ionospheric errors in deformation estimates can be calculated. In Polar Regions, our error model relies on a statistical analysis of ionospheric-phase noise in a large number of SAR data from previous L-band SAR missions such as ALOS PALSAR and JERS-1. The focus on empirical analyses is due to limitations of WBMOD in high latitude areas. Outside of the Polar Regions, the ionospheric model WBMOD is used to derive ionospheric structure parameters for as a function of solar activity. The structure parameters are

  5. The absolute radiometric calibration of the Landsat 8 Operational Land Imager using the reflectance-based approach and the Radiometric Calibration Test Site (RadCaTS)

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, Jeffrey; Anderson, Nikolaus; Thome, Kurtis; Biggar, Stuart

    2014-10-01

    Landsat 8 was launched on 11 February 2013 as the newest platform in the Landsat program. It contains two Earthobserving instruments, one of which is the Operational Land Imager (OLI). OLI includes an onboard radiometric calibration system that is used to monitor changes in its responsivity throughout the mission lifetime, and it consists of Spectralon solar diffuser panels as well as tungsten lamp assemblies. External techniques are used to monitor both OLI and its calibration system, and they include lunar views, side slither maneuvers of the satellite, and ground-based vicarious calibration. This work presents the absolute radiometric calibration results for Landsat 8 OLI that were obtained using two ground-based measurement techniques. The first is the reflectance-based approach, where measurements of atmospheric and surface properties are made during a Landsat 8 overpass, and it requires personnel to be on site during the time of measurement. The second uses the Radiometric Calibration Test Site (RadCaTS), which was developed by the Remote Sensing Group in the College of Optical Sciences at the University of Arizona so that radiometric calibration data can be collected without the requirement of on-site personnel. It allows more data to be collected annually, which increases the temporal sampling of trending results.

  6. Radiometric method for determining solubility of organic solvents in water

    SciTech Connect

    Lo, J.M.; Tseng, C.L.; Yang, J.Y.

    1986-06-01

    Cobalt-60 labeled cobalt(III) pyrrolidinecarbodithioate (/sup 60/Co(PDC)/sub 3/) has a peculiar stability during storage in organic solvent and when its organic solution is shaken with an aqueous solution containing different acids or ions. Using these characteristics, the authors have attempted to use /sup 60/Co(PDC)/sub 3/ as a radioagent for determining solubilities of various organic solvents in water. The radioagent was first dissolved in the organic solvent under investigation before pure water was added. The solution mixture was shaken vigorously in order to let the organic phase contact with water sufficiently. Some of the organic solvent would dissolve in water after shaking, resulting in volume reduction of the organic phase. However, the radioagent was found not to accompany the organic solvent molecules going into water; i.e., all the radioactivity of /sup 60/Co(PDC)/sub 3/ would be retained in the organic phase. Solubility of the organic solvent in water therefore can be calculated from the value of the volume change of the organic phase divided by the water volume. Direct measurement of a small change in volume of organic phase with high accuracy is generally very difficult; alternatively, the authors have measured the specific activities of /sup 60/Co(PDC)/sub 3/ (cpm/mL) in the original and the final organic solutions, and the counting results were used to estimate the decrease in volume of the organic phase. Several commonly used organic solvents were selected to test the applicability of the proposed radiometric method. The solubilities of the organic solvents selected for this study range from very small values (10/sup -4/) to relatively large values (10/sup -2/), 6 references, 1 table.

  7. Wafer-level radiometric performance testing of uncooled microbolometer arrays

    NASA Astrophysics Data System (ADS)

    Dufour, Denis G.; Topart, Patrice; Tremblay, Bruno; Julien, Christian; Martin, Louis; Vachon, Carl

    2014-03-01

    A turn-key semi-automated test system was constructed to perform on-wafer testing of microbolometer arrays. The system allows for testing of several performance characteristics of ROIC-fabricated microbolometer arrays including NETD, SiTF, ROIC functionality, noise and matrix operability, both before and after microbolometer fabrication. The system accepts wafers up to 8 inches in diameter and performs automated wafer die mapping using a microscope camera. Once wafer mapping is completed, a custom-designed quick insertion 8-12 μm AR-coated Germanium viewport is placed and the chamber is pumped down to below 10-5 Torr, allowing for the evaluation of package-level focal plane array (FPA) performance. The probe card is electrically connected to an INO IRXCAM camera core, a versatile system that can be adapted to many types of ROICs using custom-built interface printed circuit boards (PCBs). We currently have the capability for testing 384x288, 35 μm pixel size and 160x120, 52 μm pixel size FPAs. For accurate NETD measurements, the system is designed to provide an F/1 view of two rail-mounted blackbodies seen through the Germanium window by the die under test. A master control computer automates the alignment of the probe card to the dies, the positioning of the blackbodies, FPA image frame acquisition using IRXCAM, as well as data analysis and storage. Radiometric measurement precision has been validated by packaging dies measured by the automated probing system and re-measuring the SiTF and Noise using INO's pre-existing benchtop system.

  8. Radiometric Calibration of the Earth Observing System's Imaging Sensors

    NASA Technical Reports Server (NTRS)

    Slater, Philip N. (Principal Investigator)

    1997-01-01

    The work on the grant was mainly directed towards developing new, accurate, redundant methods for the in-flight, absolute radiometric calibration of satellite multispectral imaging systems and refining the accuracy of methods already in use. Initially the work was in preparation for the calibration of MODIS and HIRIS (before the development of that sensor was canceled), with the realization it would be applicable to most imaging multi- or hyper-spectral sensors provided their spatial or spectral resolutions were not too coarse. The work on the grant involved three different ground-based, in-flight calibration methods reflectance-based radiance-based and diffuse-to-global irradiance ratio used with the reflectance-based method. This continuing research had the dual advantage of: (1) developing several independent methods to create the redundancy that is essential for the identification and hopefully the elimination of systematic errors; and (2) refining the measurement techniques and algorithms that can be used not only for improving calibration accuracy but also for the reverse process of retrieving ground reflectances from calibrated remote-sensing data. The grant also provided the support necessary for us to embark on other projects such as the ratioing radiometer approach to on-board calibration (this has been further developed by SBRS as the 'solar diffuser stability monitor' and is incorporated into the most important on-board calibration system for MODIS)- another example of the work, which was a spin-off from the grant funding, was a study of solar diffuser materials. Journal citations, titles and abstracts of publications authored by faculty, staff, and students are also attached.

  9. Precise quantitation of PAIgG: A new radiometric microtechnique

    SciTech Connect

    Schwartz, K.A.; Gauger, J.A.; Davis, J.M. )

    1990-03-01

    We report the development of a radiometric assay for platelet-bound IgG that is both sensitive and quantitative. The assay utilized 96-well millititer plates incorporating a 0.2 microns filter membrane in the bottom. A 125I-labeled monoclonal antihuman IgG, as a secondary antibody, detected the platelet-bound human IgG. Since 5 x 10(6) platelets were used for each assay, tests for platelet-bound IgG can be performed on persons with severe thrombocytopenia. For the detection of circulating antiplatelet alloantibodies, as little as 10 microliters of platelet-free plasma per assay is required. Antiplatelet IgG was quantitated by using anti-PIA1 antibody that was purified with affinity and elution and DEAE chromatography. This purified antiplatelet antibody was labeled with 125I and was used to determine the binding ratio of secondary antibody to primary antibody. Under our standard conditions, this ratio was found to be stable at approximately 0.35 over the sensitivity range of the assay. The assay can detect approximately 200 molecules of human IgG per platelet (0.1 ng of secondary antibody bound per 5 x 10(6) platelets). It has a linear range from 0 to 7,000 molecules per platelet. Quantitation of anti-PIA1 binding for platelets stored for up to 6 months under refrigeration showed no change in number of PIA1 binding sites. Clinical studies showed that 18 of 19 ITP patients had an increased number of IgG molecules per platelet as did patients with malignancy and drug-induced immune thrombocytopenia. Patients who had received multiple platelet transfusions had antiplatelet antibody in their plasma. Normal amounts of PAIgG were observed in platelets and plasma of patients with nonimmune thrombocytopenia.

  10. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    NASA Astrophysics Data System (ADS)

    Mallick, Kaniska; Boegh, Eva; Trebs, Ivonne; Alfieri, Joseph G.; Kustas, William P.; Prueger, John H.; Niyogi, Dev; Das, Narendra; Drewry, Darren T.; Hoffmann, Lucien; Jarvis, Andrew J.

    2015-08-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combines TR data with standard energy balance closure models for deriving a hybrid scheme that does not require parameterization of the surface (or stomatal) and aerodynamic conductances (gS and gB). STIC is formed by the simultaneous solution of four state equations and it uses TR as an additional data source for retrieving the "near surface" moisture availability (M) and the Priestley-Taylor coefficient (α). The performance of STIC is tested using high-temporal resolution TR observations collected from different international surface energy flux experiments in conjunction with corresponding net radiation (RN), ground heat flux (G), air temperature (TA), and relative humidity (RH) measurements. A comparison of the STIC outputs with the eddy covariance measurements of λE and H revealed RMSDs of 7-16% and 40-74% in half-hourly λE and H estimates. These statistics were 5-13% and 10-44% in daily λE and H. The errors and uncertainties in both surface fluxes are comparable to the models that typically use land surface parameterizations for determining the unobserved components (gS and gB) of the surface energy balance models. However, the scheme is simpler, has the capabilities for generating spatially explicit surface energy fluxes and independent of submodels for boundary layer developments. This article was corrected on 27 AUG 2015. See the end of the full text for details.

  11. Landsat-7 EMT+ On-Orbit Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    1999-01-01

    Landsat-7 was launched on April 15, 1999 and completed its on orbit initialization and verification period on June 28, 1999. The ETM+ payload is similar to the TM sensors on previous Landsat satellites and incorporates two new devices to improve its absolute radiometric calibration. The Full Aperture Solar Calibrator (FASC) is a deployable diffuser panel. This device has been deployed 9 times to date, with a normal deployment schedule of once per month. The initial analysis of the FASC data has given absolute calibration results within 5% of the prelaunch integrating sphere calibrations and a range of variation of 2% between dates. The Partial Aperture Solar Calibrator (PASC), is a set of auxiliary optics that allows the ETM+ to view the sun through a reduced aperture. Data have normally been acquired on a daily basis with the PASC. Initial results with the PASC were encouraging, despite some unexpected saturation in the shortest wavelength band. The response of the ETM+ short wavelength (silicon) bands to the PASC increased initially and has begun to decrease in some of these bands. The longer wavelength (InSb) bands have shown up to 30% oscillations that vary between detectors within the band. Studies are ongoing to better characterize the response to the PASC. The ETM+ also incorporates an internal calibrator (IC), a shutter that oscillates in front of the focal plane that directs light from the internal calibrator lamps to the focal plane. The responses to this device are also varying, though differently than the PASC results. Both the IC and PASC results are attributable to the calibration devices as opposed to the ETM+ itself.

  12. Experimental methods of indoor millimeter-wave radiometric imaging for personnel concealed contraband detection

    NASA Astrophysics Data System (ADS)

    Hu, Taiyang; Xiao, Zelong; Li, Hao; Lv, Rongchuan; Lu, Xuan

    2014-11-01

    The increasingly emerging terrorism attacks and violence crimes around the world have posed severe threats to public security, so carrying out relevant research on advanced experimental methods of personnel concealed contraband detection is crucial and meaningful. All of the advantages of imaging covertly, avoidance of interference with other systems, intrinsic property of being safe to persons under screening , and the superior ability of imaging through natural or manmade obscurants, have significantly combined to enable millimeter-wave (MMW) radiometric imaging to offer great potential in personnel concealed contraband detection. Based upon the current research status of MMW radiometric imaging and urgent demands of personnel security screening, this paper mainly focuses on the experimental methods of indoor MMW radiometric imaging. The reverse radiation noise resulting from super-heterodyne receivers seriously affects the image experiments carried out at short range, so both the generation mechanism and reducing methods of this noise are investigated. Then, the benefit of sky illumination no longer exists for the indoor radiometric imaging, and this leads to the decrease in radiometric temperature contrast between target and background. In order to enhance the radiometric temperature contrast for improving indoor imaging performance, the noise illumination technique is adopted in the indoor imaging scenario. In addition, the speed and accuracy of concealed contraband detection from acquired MMW radiometric images are usually restricted to the deficiencies in traditional artificial interpretation by security inspectors, thus an automatic recognition and location algorithm by integrating improved Fuzzy C-means clustering with moment invariants is put forward. A series of original results are also presented to demonstrate the significance and validity of these methods.

  13. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System)

    PubMed Central

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed. PMID:22389590

  14. MAPSAR Image Simulation Based on L-band Polarimetric Data from the SAR-R99B Airborne Sensor (SIVAM System).

    PubMed

    Mura, José Claudio; Paradella, Waldir Renato; Dutra, Luciano Vieira; Dos Santos, João Roberto; Rudorff, Bernardo Friedrich Theodor; de Miranda, Fernando Pellon; da Silva, Mario Marcos Quintino; da Silva, Wagner Fernando

    2009-01-01

    This paper describes the methodology applied to generate simulated multipolarized L-band SAR images of the MAPSAR (Multi-Application Purpose SAR) satellite from the airborne SAR R99B sensor (SIVAM System). MAPSAR is a feasibility study conducted by INPE (National Institute for Space Research) and DLR (German Aerospace Center) targeting a satellite L-band SAR innovative mission for assessment, management and monitoring of natural resources. Examples of simulated products and their applications are briefly discussed.

  15. Toward High-Resolution Monitoring of Snow and Ice in Remote Environments - Estimating the dielectric properties and SWE of snow using Duke University's L-band Snow Sensor Mote

    NASA Astrophysics Data System (ADS)

    Barros, A. P.; Kang, D.

    2008-12-01

    Measurements of snow properties at high spatial and temporal resolution are necessary to investigate and characterize the space-time scaling behavior of the hydrological and radiometric properties of surface snow and ice. Work toward the development of affordable, adaptive wireless networks of L-band snow sensor motes has been going on at Duke University for the last three years. The vision is to investigate, adapt and test existing MEMS (Micro-Electro-Mechanical Systems) and IC (Integrated Circuit) RF (radiofrequency) technology for developing low-cost (under 50 USD), low maintenance, environmentally neutral snow sensors to operate as high-spatial resolution (hundreds to thousands of sensors) wireless networks over large areas, and in remote regions (distributed from low-flying aircraft); and to develop and evaluate retrieval and snow characterization algorithms to quantify the spatial and temporal variability of water equivalent from the snow sensor measurements. The basic measurements consist of amplitude attenuation and relative phase change (snowpack/air) of electromagnetic waves in 39 channels between 1 and 1.76 GHz. Here, we present sensor and the retrieval algorithm to estimate the dielectric properties of the snowpack and snow water content from the amplitude attenuation and phase change measurements using selected channels between 1 and 1.34 GHZ. The algorithm is tested and evaluated for controlled laboratory conditions under which all state variables were measured independently. In the laboratory a synthetic snowpack was created using various types of foam with different structural characteristics and water content for which all dielectric properties were measured independently. The objective of this work is to demonstrate the skill and range of observations from the snow sensor motes to characterize the space-time heterogeneity of snow at high resolution.

  16. Improved Thermal-Vacuum Compatible Flat Plate Radiometric Souce for System-Level Testing of Optical Sensors

    NASA Technical Reports Server (NTRS)

    Schwarz, Mark A.; Kent, Craig J.; Bousquet, Robert; Brown, Steven W.

    2015-01-01

    This work describes the development of an improved vacuum compatible flat plate radiometric source used for characterizing and calibrating remote optical sensors, in situ, throughout their testing period. The original flat plate radiometric source was developed for use by the VIIRS instrument during the NPOESS Preparatory Project (NPP). Following this effort, the FPI has had significant upgrades in order to improve both the radiometric throughput and uniformity. Results of the VIIRS testing with the reconfigured FPI are reported and discussed.

  17. L-band all-optical gain-clamped EDFA by utilizing C-band backward ASE

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Jin, Yanli; Dou, Qingying; Liu, Yange; Yuan, Shuzhong; Dong, Xiaoyi

    2006-04-01

    By using an optical circulator and C/L-band wavelength division multiplexer to recycle the C-band backward ASE, an L-band gain-clamped erbium-doped fiber amplifier is presented. We have experimentally studied the static gain clamping property of this amplifier. As the ASE feedback attenuation is set to 0, the gain at 1585 nm can be clamped at 18.84 ± 0.26 dB within dynamic range of 25 dB and the critical power reaches about -15.09 dBm. The gain variation and saturated output power at 1585 nm for 0 dB attenuation are 1 dB lower and 2.17 dB higher than those for 30 dB attenuation, which indicates that the L-band EDFA gain can be effectively clamped via the ASE injection technique.

  18. Mobile satellite system fade statistics for shadowing and multipath from roadside trees at UHF and L-band

    NASA Technical Reports Server (NTRS)

    Goldhirsh, Julius; Vogel, Wolfhard J.

    1989-01-01

    Field tests related to planned mobile satellite systems were performed, and results that add to the existing database of propagation measurements at L-band (1.5 GHz) are described. They are considered particularly useful in that propagation effects were studied systematically, with repeated and controlled runs pertaining to different path elevation angles, road types, and path geometries defining shadowing and line-of-sight modes. In addition, simultaneous L-band and UHF measurements were performed for the purpose of establishing scaling factors applicable to previous UHF (870 MHz) results. The control of the experimental parameters was made possible by using a helicopter as the source platform and a mobile van to house the receiver.

  19. An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses.

    PubMed

    Lu, Z G; Liu, J R; Poole, P J; Raymond, S; Barrios, P J; Poitras, D; Pakulski, G; Grant, P; Roy-Guay, D

    2009-08-03

    We have developed an InAs/InP quantum dot (QD) gain material using a double cap growth procedure and GaP sublayer to tune QDs into the L-band. By using it, a passive L-band mode-locked laser with pulse duration of 445 fs at the repetition rate of 46 GHz was demonstrated. The 3-dB linewidth of the RF spectrum is less than 100 KHz. The lasing threshold injection current is 24 mA with an external differential quantum efficiency of 22% and an average output power of 27 mW. The relationship between pulse duration and 3-dB spectral bandwidth as a function of injection current was investigated.

  20. Simulation of L-band and HH microwave backscattering from coniferous forest stands - A comparison with SIR-B data

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Simonett, David S.

    1988-01-01

    SIR-B images of the Mt. Shasta region of northern California are used to evaluate a composite L-band HH backscattering model of coniferous forest stands. It is found that both SIR-B and simulated backscattering coefficients for eight stands studied have similar trends and relations to average tree height and average number of trees per pixel. Also, the dispersion and distribution of simulated backscattering coefficients from each stand broadly match SIR-B data from the same stand. Although the limited quality and quantity of experimental data makes it difficult to draw any strong conclusions, the comparisons indicate that a stand-based L-band HH composite model seems promising for explaining backscattering features.

  1. Widely tunable L-band erbium-doped fiber laser with fiber Bragg gratings based on optical bistability

    NASA Astrophysics Data System (ADS)

    Mao, Qinghe; Lit, John W. Y.

    2003-03-01

    We propose and demonstrate a mechanism to widely tune L-band erbium-doped fiber lasers with ordinary commercial tunable fiber Bragg gratings. The function is based on the dual-wavelength bistability in linear overlapping laser cavities. The laser may be switched between two wavelengths located, respectively, in the short- and long-wavelength regions of the L-band by triggering the pump with a typical switching time of about 11 ms. The two wavelengths can be independently tuned to give the laser a total tuning range of 33 nm and an output dynamic range of 7 dB. Nearly constant output powers with high optical signal-to-noise ratios are achieved across the whole tuning range.

  2. Simulation of L-band and HH microwave backscattering from coniferous forest stands - A comparison with SIR-B data

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Simonett, David S.

    1988-01-01

    SIR-B images of the Mt. Shasta region of northern California are used to evaluate a composite L-band HH backscattering model of coniferous forest stands. It is found that both SIR-B and simulated backscattering coefficients for eight stands studied have similar trends and relations to average tree height and average number of trees per pixel. Also, the dispersion and distribution of simulated backscattering coefficients from each stand broadly match SIR-B data from the same stand. Although the limited quality and quantity of experimental data makes it difficult to draw any strong conclusions, the comparisons indicate that a stand-based L-band HH composite model seems promising for explaining backscattering features.

  3. The design of a GaAs MMIC L-band voltage controlled oscillator in a surface mount package

    NASA Astrophysics Data System (ADS)

    Olsen, Alan; Ravid, Shmuel

    1991-09-01

    The design, fabrication, and performance characteristics of an L-band voltage controlled oscillator (VCO) in a surface-mount package utilizing two GaAs MMIC chips are described. The VCO generates a +15 dBm minimum output signal that is voltage tunable over an 8-10-percent bandwidth centered anywhere in the lower L-band (1-1.5 GHz). The design approach provides a frequency stability of better than + or - 4 MHz over the temperature range -54 to +85 C, a tuning sensitivity linearity of better than + or - 1 MHz, and a phase noise performance of less than -120 dBc/Hz at 100 kHz from the carrier frequency.

  4. Research of L-band disk-loaded waveguides travelling wave accelerating structures for a high power Linac

    NASA Astrophysics Data System (ADS)

    Zhang, Y. M.; Pei, Y. J.; Sheng, L. S.; Song, Y. F.

    2017-07-01

    L-band Electron Accelerator has been widely utilized for industrial irradiation. In this paper, we designed a constant-impedance, disk-loaded structure which operates on 2π/3 mode. CST and SUPERFISH code were used for the design of bunching and accelerating cavities respectively. The geometrical parameters of the cavities were studied, and optimized RF parameters were obtained. We calculated the beam dynamics which presented that the electrons can be accelerated to 50 MeV. The model cavities have been fabricated and tested. Some valuable experimental results were obtained, which can provide a beneficial datum for the design and manufacture of L-band travelling-wave accelerating structures of 50 MeV LINAC.

  5. Microwave and Millimeter Wave Forward Modeling Results from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment

    SciTech Connect

    Westwater, E.R.; Cimini, D.; Klein, M.; Leuski, V.; Mattioli, V.; Gasiewski, A.J.; Dowlatshahi, S.; Liljegren, J.S.; Lesht, B.M.; Shaw, J.A.

    2005-03-18

    The 2004 Arctic Winter Radiometric Experiment was conducted at the North Slope of Alaska (NSA) Atmospheric Radiation Measurement (ARM) Program field site near Barrow, Alaska from March 9 to April 9, 2004. The goals of the experiment were: to study the microwave and millimeter wave radiometric response to water vapor and clouds during cold and dry conditions; to obtain data for forward model studies at frequencies ranging from 22.235 to 400 GHz, to demonstrate new Environmental Technology Laboratory's (ETL) radiometric receiver and calibration technology and to compare both radiometric and in situ measurements of water vapor.

  6. Operation of an ungated diamond field-emission array cathode in a L-band radiofrequency electron source

    SciTech Connect

    Piot, P.; Brau, C. A.; Gabella, W. E.; Ivanov, B.; Mendenhall, M. H.; Choi, B. K.; Blomberg, B.; Mihalcea, D.; Panuganti, H.; Jarvis, J.; Prieto, P.; Reid, J.

    2014-06-30

    We report on the operation of a field-emitter-array cathode in a conventional L-band radio-frequency electron source. The cathode consisted of an array of ∼10{sup 6} diamond tips on pyramids. Maximum current on the order of 15 mA was reached and the cathode did not show appreciable signs of fatigue after weeks of operation. The measured Fowler-Nordheim characteristics, transverse beam density, and current stability are discussed.

  7. Sea ice concentration and sea ice drift for the Arctic summer using C- and L-band SAR

    NASA Astrophysics Data System (ADS)

    Johansson, Malin; Berg, Anders; Eriksson, Leif

    2014-05-01

    The decreasing amount of sea ice and changes from multi-year ice to first year ice within the Arctic Ocean opens up for increased maritime activities. These activities include transportation, fishing and tourism. One of the major threats for the shipping is the presence of sea ice. Should an oil spill occur, the search and rescue is heavily dependent on constant updates of sea ice movements, both to enable a safer working environment and to potentially prevent the oil from reaching the sea ice. It is therefore necessary to have accurate and updated sea ice charts for the Arctic Ocean during the entire year. During the melt season that ice is subject to melting conditions making satellite observations of sea ice more difficult. This period coincides with the peak in marine shipping activities and therefore requires highly accurate sea ice concentration estimates. Synthetic Aperture Radar (SAR) are not hindered by clouds and do not require daylight. The continuous record and high temporal resolution makes C-band data preferable as input data for operational sea ice mapping. However, with C-band SAR it is sometimes difficult to distinguish between a wet sea ice surface and surrounding open water. L-band SAR has a larger penetration depth and has been shown to be less sensitive to less sensitive than C-band to the melt season. Inclusion of L-band data into sea chart estimates during the melt season in particular could therefore improve sea ice monitoring. We compare sea ice concentration melt season observations using Advanced Land Observing Satellite (ALOS) L-band images with Envisat ASAR C-band images. We evaluate if L-band images can be used to improve separation of wet surface ice from open water and compare with results for C-band.

  8. Coherence Effects in L-Band Active and Passive Remote Sensing of Quasi-Periodic Corn Canopies

    NASA Technical Reports Server (NTRS)

    Utku, Cuneyt; Lang, Roger H.

    2011-01-01

    Due to their highly random nature, vegetation canopies can be modeled using the incoherent transport theory for active and passive remote sensing applications. Agricultural vegetation canopies however are generally more structured than natural vegetation. The inherent row structure in agricultural canopies induces coherence effects disregarded by the transport theory. The objective of this study is to demonstrate, via Monte-Carlo simulations, these coherence effects on L-band scattering and thermal emission from corn canopies consisting of only stalks.

  9. A Dual Polarization, Active, Microstrip Antenna for an Orbital Imaging Radar System Operating at L-Band

    NASA Technical Reports Server (NTRS)

    Kelly, Kenneth C.; Huang, John

    1999-01-01

    A highly successful Earth orbiting synthetic antenna aperture radar (SAR) system, known as the SIR-C mission, was carried into orbit in 1994 on a U.S. Shuttle (Space Transportation System) mission. The radar system was mounted in the cargo bay with no need to fold, or in any other way reduce the size of the antennas for launch. Weight and size were not limited for the L-Band, C-Band, and X-Band radar systems of the SIR-C radar imaging mission; the set of antennas weighed 10,500 kg, the L-Band antenna having the major share of the weight. This paper treats designing an L-Band antenna functionally similar to that used for SIR-C, but at a fraction of the cost and at a weight in the order of 250 kg. Further, the antenna must be folded to fit into the small payload shroud of low cost booster rocket systems. Over 31 square meters of antenna area is required. This low weight, foldable, electronic scanning antenna is for the proposed LightSAR radar system which is to be placed in Earth orbit on a small, dedicated space craft at the lowest possible cost for an efficient L-Band radar imaging system. This LightSAR spacecraft radar is to be continuously available for at least five operational years, and have the ability to map or repeat-map any area on earth within a few days of any request. A microstrip patch array, with microstrip transmission lines heavily employed in the aperture and in the corporate feed network, was chosen as the low cost approach for this active dual-polarization, 80 MHz (6.4%) bandwidth antenna design.

  10. Analysis of soil moisture retrieval from airborne passive/active L-band sensor measurements in SMAPVEX 2012

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Song, Hongting; Tan, Lei; Li, Yinan; Li, Hao

    2014-11-01

    Soil moisture is a key component in the hydrologic cycle and climate system. It is an important input parameter for many hydrologic and meteorological models. NASA'S upcoming Soil Moisture Active Passive (SMAP) mission, to be launched in October 2014, will address this need by utilizing passive and active microwave measurements at L-band, which will penetrate moderately dense canopies. In preparation for the SMAP mission, the Soil Moisture Validation Experiment 2012 (SMAPVEX12) was conducted from 6 June to 17 July 2012 in the Carment-Elm Creek area in Manitoba, Canada. Over a period of six weeks diverse land cover types ranging from agriculture over pasture and grassland to forested sites were re-visited several times a week. The Passive/Active L-band Sensor (PALS) provides radiometer products, vertically and horizontally polarized brightness temperatures, and radar products. Over the past two decades, successful estimation of soil moisture has been accomplished using passive and active L-band data. However, remaining uncertainties related to surface roughness and the absorption, scattering, and emission by vegetation must be resolved before soil moisture retrieval algorithms can be applied with known and acceptable accuracy using satellite observations. This work focuses on analyzing the Passive/Active L-band Sensor observations of sites covered during SMAPVEX12, investigating the observed data, parameterizing vegetation covered surface model, modeling inversion algorithm and analyzing observed soil moisture changes over the time period of six weeks. The data and analysis results from this study are aimed at increasing the accuracy and range of validity of SMAP soil moisture retrievals via enhancing the accuracy for soil moisture retrieval.

  11. Quantifying Landslide Movement at the Boulder Creek Earthflow Using L-band InSAR

    NASA Astrophysics Data System (ADS)

    Stimely, L. L.; Mackey, B. H.; Roering, J. J.; Schmidt, D. A.

    2008-12-01

    Images from satellite interferometric synthetic aperture radar (InSAR) reveal spatial and temporal patterns of movement on the Boulder Creek earthflow, Eel River, northern California. Recently InSAR has shown promise as a method to quantify ground movements associated with deep-seated slope failures. While conventional C-band InSAR has proven an effective technique at remotely measuring a variety of surface processes, it has limitations when imaging landslides in steep or vegetated terrain. L-band data from the recently launched ALOS satellite uses a longer wavelength capable of penetrating vegetation, thus returning coherent interferograms. We use L-band InSAR to image the Boulder Creek earthflow, a large active flow along the Eel River, with a spatial resolution of 10m. Persistently unstable hillslopes in northern California are ideally suited to the study of the dynamics and morphological signature of earthflows, as the deeply sheared mélange lithology, high seasonal rainfall, and fast uplift rates promote widespread deep-seated landsliding. We analyze three ALOS interferograms from 2007. These data show an average line-of-sight (LOS) deformation rate between the late spring months of May and July of ~0.44 m/yr which slows to ~0.16 m/yr between the summer months of June and September. Decorrelation in the winter scene (Nov 2006-Jan 2007) suggests earthflow displacements are too large to resolve with this method. Because the satellite can only resolve deformation along its LOS, these observations constrain the minimum estimates of ground displacement. Our interferograms show variations in deformation rate within the boundaries of the flow, which can be attributed to changes in flow direction, velocity, slope angle, and slope orientation. Forty- year horizontal displacement vectors derived from orthorectified aerial photographs are consistent with our velocity estimates. These InSAR observations will allow us to correlate the displacement field with slide

  12. Wetland Maps of Central Canada based on L-band SAR Imagery

    NASA Astrophysics Data System (ADS)

    Whitcomb, J.; Clewley, D.; Moghaddam, M.; McDonald, K. C.

    2014-12-01

    Northern wetlands have the potential to become major sources of greenhouse gases. Detailed and accurate maps of the locations, types, and extents of these wetlands are therefore essential to the development of accurate carbon budgets. However, due to their vast extent and inaccessibility, most northern wetlands remain unmapped. We have been constructing high-resolution (100 m) thematic maps of boreal wetlands, with current focus on Canadian wetlands. The maps are developed using spaceborne synthetic aperture radar (SAR), which efficiently collects high-resolution imagery over extensive regions and, unlike optical sensors, is unimpaired by clouds or lack of sunlight. Spaceborne L-band (~1.3 GHz) SAR, in particular, records scene characteristics imperceptible to optical sensors such as vegetation structure and moisture content, soil moisture and roughness, and canopy-obscured surface waters. These attributes make it the best single tool for mapping boreal wetlands. Two L-band SAR-based wetland maps are being assembled: one using HH-polarized imagery from the JERS-1 satellite collected in the winter and summer of 1997-1998, and a second using dual-polarized (HH and HV) imagery from the PALSAR sensor of the ALOS satellite collected in the summer of 2008. Ancillary data layers such as image texture, topographic slope, and proximity to water are also generated, and a training/testing data layer is formed by merging polygons from the Canadian Wetland Inventory (CWI) with other land cover databases. A Random Forests decision tree classifier takes as input the SAR, ancillary, and training/testing data layers and uses them to produce thematic wetland maps. The accuracy of each map is quantified via producer and user error statistics. Finally, the SAR-based wetland maps are compared to form a 1998-2008 wetlands change map. Recent advances include a powerful new software suite developed to handle huge volumes of data and much-improved JERS-1 registration. Challenges, including

  13. Properties of L-band interferograms derived from ALOS/PALSAR radar observations

    NASA Astrophysics Data System (ADS)

    Zebker, H. A.; Rosen, P. A.; Hager, B.

    2007-12-01

    We present here L-band radar interferograms derived from ALOS/PALSAR satellite observations over several different Earth surface terrains. These InSAR images are representative of data that would be collected by the proposed DESDynI radar mission. We have examined interferograms over Hawaii, Greenland, Egypt, and California, which present surfaces covered by light vegetation, dense tropical forests, vegetation-free desert, and many ice facies. The interferograms exhibit very high correlation when compared to the C-band radar data commonly available from other existing satellites, yielding improved spatial coverage and reliable temporal sampling. In many cases the acquisitions are fully polarimetric, so that we can compare how the polarization state affects the statistics of the interferometric echoes. Specific results to date show that the use of L-band data rather than C-band permits much more comprehensive deformation modeling of rift events in Hawaii and of creep along faults, with little difference between interferograms formed from co- and cross-polarized returns. Ice from the wet snow, percolation, and dry snow zones in Greenland often correlates well (>50%) even with the PALSAR six-week repeat interval. Observable fringe patterns are seen in the Hawaiian rain forest in many locations over this same orbit interval. Interferograms derived from HH and VV data over ice and vegetation are very similar, and HV InSAR data are similarly correlated when allowance is made for the lower signal to noise ratio, even though considerable volume scatter occurs. Cross-interferograms show that the HH return is rather uncorrelated with the VV return, but that a small shift in the mean phase is present in HH-HV difference interferograms. This could be due to a real several cm shift in the phase center of the echo, but we are currently considering whether this apparent phase shift results from cross-polarized contamination of the radar return. With more frequent repeat

  14. L-Band Polarimetric InSAR Observations of Greenland Ice Sheets using ALOS

    NASA Astrophysics Data System (ADS)

    Chen, A.; Zebker, H.

    2008-12-01

    The ALOS PALSAR instrument has acquired L-band (23.6 cm wavelength) fully polarimetric synthetic aperture radar (SAR) observations of Greenland with 10 meter single-look resolution. We examine images from a strip in northern Greenland extending from latitudes of 75 degrees N to 80 degrees N, which covers the dry snow, percolation, and wet snow zones of the Greenland ice sheet, as well as the rocky coastal area. Images for repeat-pass interferometry with a 350 meter baseline were acquired at a 46 day interval in March and April 2007. The images from the two dates are coregistered by cross-correlating the HH observations, and we observe fringes in all polarizations in the dry snow, percolation, and wet snow zones, and also in the stable parts of the rocky coastal area. In the dry snow zone of inner Greenland, we observe significantly higher coherence in the HH-HH interferograms (around 0.7) compared to the HV-HV interferograms (around 0.4), and similarly higher coherence in the VV-VV interferogram compared to the VH-VH interferogram. These differences between co-polarized and cross-polarized signals result from volume scattering and lower SNR in the cross-polarized channels. They indicate that scalar models do not fully describe L-band microwave scattering from firn. On each observation date, the phase difference between the HH and the HV returns is almost constant over the dry snow zone of the interior of Greenland. However, there is significant variability in the phase difference between HH and HV returns closer to the coast. The phase difference between the VV and VH returns shows similar behavior, again indicating a difference between co-polarized and cross-polarized scattering mechanisms. We derive polarization signatures for the various scattering regions in the Greenland ice sheets to better understand the scattering mechanisms involved. We model the firn in the dry snow zone as a layered medium with rough interfaces between the layers, and we use the

  15. Spatial and temporal variability of biophysical variables in southwestern France from airborne L-band radiometry

    NASA Astrophysics Data System (ADS)

    Zakharova, E.; Calvet, J.-C.; Lafont, S.; Albergel, C.; Wigneron, J.-P.; Pardé, M.; Kerr, Y.; Zribi, M.

    2012-06-01

    In 2009 and 2010 the L-band microwave Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS) campaign was performed in southwestern France to support the calibration and validation of the new Soil Moisture and Ocean Salinity (SMOS) satellite mission. The L-band Microwave Emission of the Biosphere (L-MEB) model was used to retrieve surface soil moisture (SSM) and the vegetation optical depth (VOD) from the CAROLS brightness temperature measurements. The CAROLS SSM was compared with in situ observations at 11 sites of the SMOSMANIA (Soil Moisture Observing System-Meteorological Automatic Network Integrated Application) network of Météo-France. For eight of them, significant correlations were observed (0.51 ≤ r ≤ 0.82), with standard deviation of differences ranging from 0.039 m3 m-3 to 0.141 m3 m-3. Also, the CAROLS SSM was compared with SSM values simulated by the A-gs version of the Interactions between Soil, Biosphere and Atmosphere (ISBA-A-gs) model along 20 flight lines, at a resolution of 8 km × 8 km. A significant spatial correlation between these two datasets was observed for all the flights (0.36 ≤ r ≤ 0.85). The CAROLS VOD presented significant spatial correlations with the vegetation water content (VWC) derived from the spatial distribution of vegetation types used in ISBA-A-gs and from the Leaf Area Index (LAI) simulated for low vegetation. On the other hand, the CAROLS VOD presented little temporal changes, and no temporal correlation was observed with the simulated LAI. For low vegetation, the ratio of VOD to VWC tended to decrease, from springtime to summertime. The ISBA-A-gs grid cells (8 km × 8 km) were sampled every 5 m by CAROLS observations, at a spatial resolution of about 2 km. For 83% of the grid cells, the standard deviation of the sub-grid CAROLS SSM was lower than 0.05 m3 m-3. The presence of small water bodies within the ISBA-A-gs grid cells tended to increase the CAROLS SSM spatial variability, up to 0.10 m3 m-3

  16. Spatial and temporal variability of biophysical variables in Southwestern France from airborne L-band radiometry

    NASA Astrophysics Data System (ADS)

    Zakharova, E.; Calvet, J.-C.; Lafont, S.; Albergel, C.; Wigneron, J.-P.; Pardé, M.; Kerr, Y.; Zribi, M.

    2012-01-01

    In 2009 and 2010 the L-band microwave Cooperative Airborne Radiometer for Ocean and Land Studies (CAROLS) campaign was performed in Southwestern France to support the calibration and validation of the new Soil Moisture and Ocean Salinity (SMOS) satellite mission. The L-band Microwave Emission of the Biosphere (L-MEB) model was used to retrieve Surface Soil Moisture (SSM) and the Vegetation Optical Depth (VOD) from the CAROLS brightness temperature measurements. The CAROLS SSM was compared with in situ observations at 11 sites of the SMOSMANIA (Soil Moisture Observing System-Meteorological Automatic Network Integrated Application) network of Météo-France. For eight of them, significant correlations were observed (0.51 ≤ r ≤ 0.82), with standard deviation of differences ranging from 0.039 m3 m-3 to 0.141 m3 m-3. Also, the CAROLS SSM was compared with SSM values simulated by the A-gs version of the Interactions between Soil, Biosphere and Atmosphere (ISBA-A-gs) model along twenty flight lines, at a resolution of 8 km × 8 km. A significant spatial correlation between these two datasets was observed for all the flights (0.36 ≤ r ≤ 0.85). The CAROLS VOD presented significant spatial correlations with the vegetation water content (VWC) derived from the spatial distribution of vegetation types used in ISBA-A-gs and from the Leaf Area Index (LAI) simulated for low vegetation. On the other hand, the CAROLS VOD presented little temporal changes, and no temporal correlation was observed with the simulated LAI. For low vegetation, the ratio of VOD to VWC tended to decrease, from springtime to summertime. For 83% of ISBA-A-gs grid cells (8 km × 8 km), sampled every 5 m by CAROLS observations at a spatial resolution of about 2 km, the standard deviation of the sub-grid CAROLS SSM was lower than 0.05 m3 m-3. The presence of small water bodies within the ISBA-A-gs grid cells tended to increase the CAROLS SSM spatial variability, up to 0.10 m3 m-3. Also, the grid cells

  17. L-Band Transmit/Receive Module for Phase-Stable Array Antennas

    NASA Technical Reports Server (NTRS)

    Andricos, Constantine; Edelstein, Wendy; Krimskiy, Vladimir

    2008-01-01

    Interferometric synthetic aperture radar (InSAR) has been shown to provide very sensitive measurements of surface deformation and displacement on the order of 1 cm. Future systematic measurements of surface deformation will require this capability over very large areas (300 km) from space. To achieve these required accuracies, these spaceborne sensors must exhibit low temporal decorrelation and be temporally stable systems. An L-band (24-cmwavelength) InSAR instrument using an electronically steerable radar antenna is suited to meet these needs. In order to achieve the 1-cm displacement accuracy, the phased array antenna requires phase-stable transmit/receive (T/R) modules. The T/R module operates at L-band (1.24 GHz) and has less than 1- deg absolute phase stability and less than 0.1-dB absolute amplitude stability over temperature. The T/R module is also high power (30 W) and power efficient (60-percent overall efficiency). The design is currently implemented using discrete components and surface mount technology. The basic T/R module architecture is augmented with a calibration loop to compensate for temperature variations, component variations, and path loss variations as a function of beam settings. The calibration circuit consists of an amplitude and phase detector, and other control circuitry, to compare the measured gain and phase to a reference signal and uses this signal to control a precision analog phase shifter and analog attenuator. An architecture was developed to allow for the module to be bidirectional, to operate in both transmit and receive mode. The architecture also includes a power detector used to maintain a transmitter power output constant within 0.1 dB. The use of a simple, stable, low-cost, and high-accuracy gain and phase detector made by Analog Devices (AD8302), combined with a very-high efficiency T/R module, is novel. While a self-calibrating T/R module capability has been sought for years, a practical and cost-effective solution has

  18. A Model for Backscattering from Quasi Periodic Corn Canopies at L-Band

    NASA Technical Reports Server (NTRS)

    Lang, R.; Utku, C.; Zhao, Q.; O'Neill, P.

    2010-01-01

    In this study, a model for backscattering at L-band from a corn canopy is proposed. The canopy consists of a quasi-periodic distribution of stalks and a random distribution of leaves. The Distorted Born Approximation (DBA) is employed to calculate the single scattered return from the corn field. The new feature of the method is that the coherence of the stalks in the row direction is incorporated in the model in a systematic fashion. Since the wavelength is on the order of the distance between corn stalks in a row, grating lobe behavior is observed at certain azimuth angles of incidence. The results are compared with experimental values measured in Huntsville, Alabama in 1998. The mean field and the effective dielectric constant of the canopy are obtained by using the Foldy approximation. The stalks are placed in the effective medium in a two dimensional lattice to simulate the row structure of a corn field. In order to mimic a real corn field, a quasi-periodic stalk distribution is assumed where the stalks are given small random perturbations about their lattice locations. Corn leaves are also embedded in the effective medium and the backscattered field from the stalks and the leaves is computed. The backscattering coefficient is calculated and averaged over successive stalk position perturbations. It is assumed that soil erosion has smoothed the soil sufficiently so that it can be assumed flat. Corn field backscatter data was collected from cornfields during the Huntsville 98 experimental campaign held at Alabama A&M University Research Station, Huntsville, Alabama in 1998 using the NASA/GW truck mounted radar. Extensive ground truth data was collected. This included soil moisture measurements and corn plant architectural data to be used in the model. In particular, the distances between the stalks in a single row have been measured. The L-band radar backscatter data was collected for both H and V polarizations and for look angles of 15o and 45o over a two week

  19. Passive L-Band H Polarized Microwave Emission During the Corn Growth Cycle

    NASA Astrophysics Data System (ADS)

    Joseph, A. T.; van der Velde, R.; O'Neill, P. E.; Kim, E. J.; Lang, R. H.; Gish, T. J.

    2012-12-01

    Hourly L-band (1.4 GHz) horizontally (H) polarized brightness temperatures (TB's) measured during five episodes (more than two days of continuous measurements) of the 2002 corn growth cycle are analyzed. These TB measurements were acquired as a part of a combined active/passive microwave field campaign, and were obtained at five incidence and three azimuth angles relative to the row direction. In support of this microwave data collection, intensive ground sampling took place once a week. Moreover, the interpretation of the hourly TB's could also rely on the data obtained using the various automated instruments installed in the same field. In this paper, the soil moisture and temperature measured at fixed time intervals have been employed as input for the tau-omega model to reproduce the hourly TB. Through the calibration of the vegetation and surface roughness parameterizations, the impact of the vegetation morphological changes on the microwave emission and the dependence of the soil surface roughness parameter, hr, on soil moisture are investigated. This analysis demonstrates that the b parameter, appearing in the representation of the canopy opacity, has an angular dependence that varies throughout the growing period and also that the parameter hr increases as the soil dries in a portion of the dry-down cycle. The angular dependence of the b parameter imposes the largest uncertainty on TB simulations near senescence as the response of b to the incidence is also affected by the crop row orientation. On the other hand, the incorporation of a soil moisture dependent hr parameterization was responsible for the largest error reduction of TB simulations in the early growth cycle. A.T. Joseph, R. Van der Velde, P.E. O'Neill, R.H. Lang, and T. Gish, "Soil moisture retrieval during a corn growth cycle using L-band (1.6 GHz) radar observations", IEEE Transactions on Geoscience and Remote Sensing, vol. 46, DOI:10.1109/TGRS.2008.917214, Aug. 2008. M.C. Dobson, F.T. Ulaby, M

  20. Validation of Aquarius Measurements Using Radiative Transfer Models at L-Band

    NASA Technical Reports Server (NTRS)

    Dinnat, E.; LeVine, David M.; Abraham, S.; DeMattheis, P.; Utku, C.

    2012-01-01

    Aquarius/SAC-D was launched in June 2011 by NASA and CONAE (Argentine space agency). Aquarius includes three L-band (1.4 GHz) radiometers dedicated to measuring sea surface salinity. We report detailed comparisons of Aquarius measurements with radiative transfer model predictions. These comparisons were used as part ofthe initial assessment of Aquarius data. In particular, they were used successfully to estimate the radiometer calibration bias and stability. Further comparisons are being performed to assess the performance of models in the retrieval algorithm for correcting the effect of sources of geophysical "noise" (e.g. the galactic background, atmospheric attenuation and reflected signal from the Sun). Such corrections are critical in bringing the error in retrieved salinity down to the required 0.2 practical salinity unit (psu) on monthly global maps at 150 km by 150 km resolution. The forward models making up the Aquarius simulator have been very useful for preparatory studies in the years leading to Aquarius' launch. The simulator includes various components to compute effects ofthe following processes on the measured signal: 1) emission from Earth surfaces (ocean, land, ice), 2) atmospheric emission and absorption, 3) emission from the Sun, Moon and celestial Sky (directly through the antenna sidelobes or after reflection/scattering at the Earth surface), 4) Faraday rotation, and 5) convolution of the scene by the antenna gain patterns. Since the Aquarius radiometers tum-on in late July 2011, the simulator has been used to perform a first order validation of the data. This included checking the order of magnitude ofthe signal over ocean, land and ice surfaces, checking the relative amplitude of signal at different polarizations, and checking the variation with incidence angle. The comparisons were also used to assess calibration bias and monitor instruments calibration drift. The simulator is also being used in the salinity retrieval. For example, initial

  1. Use of IRI to Model the Effect of Ionosphere Emission on Earth Remote Sensing at L-Band

    NASA Technical Reports Server (NTRS)

    Abraham, Saji; LeVine, David M.

    2004-01-01

    Microwave remote sensing in the window at 1.413 GHz (L-band) set aside for passive use only is important for monitoring sea surface salinity and soil moisture. These parameters are important for understanding ocean dynamics and energy exchange between the surface and atmosphere, and both NASA and ESA plan to launch satellite sensors to monitor these parameters at L-band (Aquarius, Hydros and SMOS). The ionosphere is an important source of error for passive remote sensing at this frequency. In addition to Faraday rotation, emission from the ionosphere is also a potential source of error at L-band. As an aid for correcting for emission, a regression model is presented that relates ionosphere emission to the integrated electron density (TEC). The goal is to use TEC from sources such as TOPEX, JASON or GPS to obtain estimates of emission over the oceans where the electron density profiles needed to compute emission are not available. In addition, data will also be presented to evaluate the use of the IRI for computing emission over the ocean.

  2. Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

    NASA Astrophysics Data System (ADS)

    Mattia, F.; Satalino, G.; Pauwels, V. R. N.; Loew, A.

    2009-03-01

    The objective of the study is to investigate the potential of retrieving superficial soil moisture content (mv) from multi-temporal L-band synthetic aperture radar (SAR) data and hydrologic modelling. The study focuses on assessing the performances of an L-band SAR retrieval algorithm intended for agricultural areas and for watershed spatial scales (e.g. from 100 to 10 000 km2). The algorithm transforms temporal series of L-band SAR data into soil moisture contents by using a constrained minimization technique integrating a priori information on soil parameters. The rationale of the approach consists of exploiting soil moisture predictions, obtained at coarse spatial resolution (e.g. 15-30 km2) by point scale hydrologic models (or by simplified estimators), as a priori information for the SAR retrieval algorithm that provides soil moisture maps at high spatial resolution (e.g. 0.01 km2). In the present form, the retrieval algorithm applies to cereal fields and has been assessed on simulated and experimental data. The latter were acquired by the airborne E-SAR system during the AgriSAR campaign carried out over the Demmin site (Northern Germany) in 2006. Results indicate that the retrieval algorithm always improves the a priori information on soil moisture content though the improvement may be marginal when the accuracy of prior mv estimates is better than 5%.

  3. Soil moisture retrieval through a merging of multi-temporal L-band SAR data and hydrologic modelling

    NASA Astrophysics Data System (ADS)

    Mattia, F.; Satalino, G.; Pauwels, V. R. N.; Loew, A.

    2008-12-01

    The objective of the study is to investigate the potential of retrieving superficial soil moisture content (mv) from multi-temporal L-band synthetic aperture radar (SAR) data and hydrologic modelling. The study focuses on assessing the performances of an L-band SAR retrieval algorithm intended for agricultural areas and for watershed spatial scales (e.g. from 100 to 10 000 km2). The algorithm transforms temporal series of L-band SAR data into soil moisture contents by using a constrained minimization technique integrating a priori information on soil parameters. The rationale of the approach consists of exploiting soil moisture predictions, obtained at coarse spatial resolution (e.g. 15-30 km2) by point scale hydrologic models (or by simplified estimators), as a priori information for the SAR retrieval algorithm that provides soil moisture maps at high spatial resolution (e.g. 0.01 km2). In the present form, the retrieval algorithm applies to cereal fields and has been assessed on simulated and experimental data. The latter were acquired by the airborne E-SAR system during the AgriSAR campaign carried out over the Demmin site (Northern Germany) in 2006. Results indicate that the retrieval algorithm always improves the a priori information on soil moisture content though the improvement may be marginal when the accuracy of prior mv estimates is better than 5%.

  4. The ground-based H-, K-, and L-band absolute emission spectra of HD 209458b

    SciTech Connect

    Zellem, Robert T.; Griffith, Caitlin A.; Deroo, Pieter; Swain, Mark R.; Waldmann, Ingo P.

    2014-11-20

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH{sub 4} ν{sub 3} fluorescence. We do not detect a similar bright 3.3 μm feature to ∼3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  5. Assessing Ionospheric effects on L-band SAR data: Implications to co-seismic deformation measurements on the Sichuan Eartquake.

    NASA Astrophysics Data System (ADS)

    Raucoules, D.; de Michele, M.

    2009-04-01

    SAR data from the Alos L-band sensor (PALSAR) is an efficient tool for ground surface deformation measurements using both radar interferometry (INSAR) and sub-pixel image correlation. On the recent Sichuan earthquake, these methods were successfully used by several Research teams in order to estimate the deformation field and to detect the surface rupture. The main interest of L-band InSAR is due to the fact that results are less affected by temporal decorrelation than C-band InSAR data, especially in highly vegetated areas. However, the L-band deformation maps are severely hampered by ionospheric contributions to the radar signal. In particular, the azimuth offsets (pixel displacement along the orbit) are affected by "stripes" with amplitudes that could be higher than the deformation signal. In this paper, we propose a methodology for estimating the ionospheric contribution to the InSAR signal based on the azimuth pixel offset. The retrieved ionospheric contribution is then used to compute a correction that can we apply both to the correlogram and interferogram. We therefore propose a joint correction of the azimuth offsets and interferometric phases based on features observed on the correlation image. The proposed method is used to improve our deformation maps on the Sichuan Eartquake.

  6. The Ground-based H-, K-, and L-band Absolute Emission Spectra of HD 209458b

    NASA Astrophysics Data System (ADS)

    Zellem, Robert T.; Griffith, Caitlin A.; Deroo, Pieter; Swain, Mark R.; Waldmann, Ingo P.

    2014-11-01

    Here we explore the capabilities of NASA's 3.0 m Infrared Telescope Facility (IRTF) and SpeX spectrometer and the 5.08 m Hale telescope with the TripleSpec spectrometer with near-infrared H-, K-, and L-band measurements of HD 209458b's secondary eclipse. Our IRTF/SpeX data are the first absolute L-band spectroscopic emission measurements of any exoplanet other than the hot Jupiter HD 189733b. Previous measurements of HD 189733b's L band indicate bright emission hypothesized to result from non-LTE CH4 ν3 fluorescence. We do not detect a similar bright 3.3 μm feature to ~3σ, suggesting that fluorescence does not need to be invoked to explain HD 209458b's L-band measurements. The validity of our observation and reduction techniques, which decrease the flux variance by up to 2.8 orders of magnitude, is reinforced by 1σ agreement with existent Hubble/NICMOS and Spitzer/IRAC1 observations that overlap the H, K, and L bands, suggesting that both IRTF/SpeX and Palomar/TripleSpec can measure an exoplanet's emission with high precision.

  7. L-band electron paramagnetic resonance spectrometer for use in vivo and in studies of aqueous biological samples

    NASA Astrophysics Data System (ADS)

    Walczak, T.; Leśniewski, P.; Salikhov, I.; Sucheta, A.; Szybiński, K.; Swartz, H. M.

    2005-01-01

    The development of L-band (˜1.2GHz) frequency EPR spectrometers has made feasible many in vivo studies in laboratory animals and, recently, in human volunteers. The lower dielectric and eddy current losses that occur at L-band balance the lower Zeeman splitting so useful measurements can be made in conductive aqueous samples. We describe typical resonators used in such studies and provide details on the construction of the spectrometer, including the bridge, the automatic frequency control subsystem, the low-noise high-stability tunable L-band frequency source, as well as the low-frequency components—the signal receiver and the modulation unit. The application of EPR spectroscopy to larger subjects requires special care in the design of an appropriate magnet with sufficient homogeneity and stability, yet with dimensions that allow operation with a wide range of subject sizes. We describe our solution, which involves a permanent magnet, air-core scan coils to provide the field sweep and offset, and field stabilization by means of a field-frequency lock. We also describe the magnetic field modulation system, which operates at 25 kHz to avoid distortion in spectra from materials with narrow lines (such as lithium phthalocyanine). We refer to recent reviews to illustrate the range of in vivo studies and the clinical applications of the type of spectrometer described here.

  8. Radiometric Characterization Results for the IKONOS, Quickbird, and OrbView-3 Sensor

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities better understand commercial imaging satellite properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, the NASA Applied Sciences Directorate (ASD) at Stennis Space Center established a commercial satellite imaging radiometric calibration team consisting of three independent groups: NASA ASD, the University of Arizona Remote Sensing Group, and South Dakota State University. Each group independently determined the absolute radiometric calibration coefficients of available high-spatial-resolution commercial 4-band multispectral products, in the visible though near-infrared spectrum, from GeoEye(tradeMark) (formerly SpaceImaging(Registered TradeMark)) IKONOS, DigitalGlobe(Regitered TradeMark) QuickBird, and GeoEye (formerly ORBIMAGE(Registered TradeMark) OrbView. Each team member employed some variant of reflectance-based vicarious calibration approach, requiring ground-based measurements coincident with image acquisitions and radiative transfer calculations. Several study sites throughout the United States that covered a significant portion of the sensor's dynamic range were employed. Satellite at-sensor radiance values were compared to those estimated by each independent team member to evaluate the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these sensors' absolute calibration values.

  9. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    NASA Astrophysics Data System (ADS)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  10. (abstract) Deep Space Network Radiometric Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  11. (abstract) Deep Space Network Radiometric Remote Sensing Program

    NASA Technical Reports Server (NTRS)

    Walter, Steven J.

    1994-01-01

    Planetary spacecraft are viewed through a troposphere that absorbs and delays radio signals propagating through it. Tropospheric water, in the form of vapor, cloud liquid,and precipitation , emits radio noise which limits satellite telemetry communication link performance. Even at X-band, rain storms have severely affected several satellite experiments including a planetary encounter. The problem will worsen with DSN implementation of Ka-band becausecommunication link budgets will be dominated by tropospheric conditions. Troposphere-induced propagation delays currently limit VLBI accuracy and are significant sources of error for Doppler tracking. Additionally, the success of radio science programs such as satellite gravity wave experiments and atmospheric occultation experiments depends on minimizing the effect of watervapor-induced prop agation delays. In order to overcome limitations imposed by the troposphere, the Deep Space Network has supported a program of radiometric remote sensing. Currently, water vapor radiometers (WVRs) and microwave temperature profilers (MTPs) support many aspects of the Deep Space Network operations and research and development programs. Their capability to sense atmospheric water, microwave sky brightness, and atmospheric temperature is critical to development of Ka-band telemetry systems, communication link models, VLBI, satellite gravity waveexperiments, and r adio science missions. During 1993, WVRs provided data for propagation mode development, supp orted planetary missions, and demonstrated advanced tracking capability. Collection of atmospheric statistics is necessary to model and predict performance of Ka-band telemetry links, antenna arrays, and radio science experiments. Since the spectrum of weather variations has power at very long time scales, atmospheric measurements have been requested for periods ranging from one year to a decade at each DSN site. The resulting database would provide reliable statistics on daily

  12. L-Band Digital Aeronautical Communications System Engineering - Concepts of Use, Systems Performance, Requirements, and Architectures

    NASA Technical Reports Server (NTRS)

    Zelkin, Natalie; Henriksen, Stephen

    2010-01-01

    This NASA Contractor Report summarizes and documents the work performed to develop concepts of use (ConUse) and high-level system requirements and architecture for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. This work was completed as a follow-on to the technology assessment conducted by NASA Glenn Research Center and ITT for the Future Communications Study (FCS). ITT assessed air-to-ground (A/G) communications concepts of use and operations presented in relevant NAS-level, international, and NAS-system-level documents to derive the appropriate ConUse relevant to potential A/G communications applications and services for domestic continental airspace. ITT also leveraged prior concepts of use developed during the earlier phases of the FCS. A middle-out functional architecture was adopted by merging the functional system requirements identified in the bottom-up assessment of existing requirements with those derived as a result of the top-down analysis of ConUse and higher level functional requirements. Initial end-to-end system performance requirements were derived to define system capabilities based on the functional requirements and on NAS-SR-1000 and the Operational Performance Assessment conducted as part of the COCR. A high-level notional architecture of the L-DACS supporting A/G communication was derived from the functional architecture and requirements.

  13. UAVSAR - A New Airborne L-Band Radar for Repeat Pass Interferometry

    NASA Technical Reports Server (NTRS)

    Mace, Thomas H.; Lou, Yunling

    2009-01-01

    NASA/JPL has developed a new airborne Synthetic Aperture Radar (SAR) which has become available for use by the scientific community in January, 2009. Pod mounted, the UAVSAR was designed to be portable among a variety of aircraft, including unmanned aerial systems (UAS). The instrument operates in the L-Band, has a resolution under 2m from a GPS altitude of 12Km and a swath width of approximately 20Km. UAVSAR currently flies on a modified Gulfstream-III aircraft, operated by NASA s Dryden Flight Research Center at Edwards, California. The G-III platform enables repeat-pass interferometric measurements, by using a modified autopilot and precise kinematic differential GPS to repeatedly fly the aircraft within a specified 10m tube. The antenna is electronically steered along track to assure that the antenna beam can be directed independently, regardless of speed and wind direction. The instrument can be controlled remotely, AS AN OPTION, using the Research Environment for Vehicle Embedded Analysis on Linux (REVEAL). This allows simulation of the telepresence environment necessary for flight on UAS. Potential earth science research and applications include surface deformation, volcano studies, ice sheet dynamics, and vegetation structure.

  14. The correlation of Skylab L-band brightness temperatures with antecedent precipitation

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    The S194 L-band radiometer flown on the Skylab mission measured terrestrial radiation at the microwave wavelength of 21.4 cm. The terrain emissivity at this wavelength is strongly dependent on the soil moisture content, which can be inferred from antecedent precipitation. For the Skylab data acquisition pass from the Oklahoma panhandle to southeastern Texas on 11 June 1973, the S194 brightness temperatures are highly correlated with antecedent precipitation from the preceding eleven day period, but very little correlation was apparent for the preceding five day period. The correlation coefficient between the averaged antecedent precipitation index values and the corresponding S194 brightness temperatures between 230 K and 270 K, the region of apparent response to soil moisture in the data, was -0.97. The equation of the linear least squares line fitted to the data was: API (cm) = 31.99 -0.114 TB (K), where API is the antecedent precipitation index and TB is the S194 brightness temperature.

  15. An L-band multi-wavelength Brillouin-erbium fiber laser with switchable frequency spacing

    NASA Astrophysics Data System (ADS)

    Zhou, Xuefang; Hu, Kongwen; Wei, Yizhen; Bi, Meihua; Yang, Guowei

    2017-01-01

    In this paper, a novel L-band multi-wavelength Brillouin-erbium fiber laser consisting of two ring cavities is proposed and demonstrated. The frequency spacing can be switched, corresponding to the single and double Brillouin frequency shifts, by toggling the optical switch. Under a 980 nm pump power of 600 mw, and a Brillouin pump power of 4 mW and wavelength of 1599.4 nm, up to 16 Stokes signals with a frequency spacing of 0.089 nm and 5 Stokes signals with double spacing of 0.178 nm are generated. A wavelength tunability of 15 nm (1593 nm  -  1608 nm) is realized for both frequency spacings. The fluctuation of Stokes signals for both single and double Brillouin spacing regimes in the proposed setup is less than 1.5 dB throughout a 30 min time span.

  16. False-color L-band image of Manaus region of Brazil

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This false-color L-band image of the Manaus region of Brazil was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperature Radar (SIR-C/X-SAR) flying on the Space Shuttle Endeavour on its 46th orbit. The area shown is approximately 8 kilometers by 40 kilometers (5 by 25 miles). At the top of the image are the Solimoes and Rio Negro River. The image is centered at about 3 degrees south latitude, and 61 degrees west longitude. Blue areas show low returns at VV poloarization; hence the bright blue colors of the smooth river surfaces. Green areas in the image are heavily forested, while blue areas are either cleared forest or open water. The yellow and red areas are flooded forest. Between Rio Solimoes and Rio Negro, a road can be seen running from some cleared areas (visible as blue rectangles north of Rio Solimoes) north toward a tributary or Rio Negro. The Jet Propulsion Laboratory alternative photo number is P-43895.

  17. Repetitive operation of an L-band magnetically insulated transmission line oscillator with metal array cathode.

    PubMed

    Qin, Fen; Wang, Dong; Xu, Sha; Zhang, Yong; Fan, Zhi-Kai

    2016-04-01

    We present the repetitive operation research results of an L-band magnetically insulated transmission line oscillator with metal array cathode (MAC-MILO) in this paper. To ensure a more uniform emission of electrons emitted from the cathode, metal plates with different outer radii and thicknesses are periodically arranged in longitudinal direction on the cathode substrate to act as emitters. The higher order mode depressed MILO (HDMILO) structure is applied to ensure stability of the tube. Comparison experiments are carried out between velvet cathode and MAC MILO driven by a 20 GW/40 Ω/40 ns/20 Hz pulse power system. Experimental results reveal that the MAC has much lower outgassing rate, much longer life time, and higher repetitive stability. The MAC-MILO could work stably with a rep-rate up to 20 Hz at a power level of 550 MW when employing a 350 kV/35 kA electric pulse. The TE11 mode radiation pattern in the farfield region reveals the tube works steadily on the dominant mode. More than 2000 shots have been tested in repetitive mode without any obvious degradation of the detected microwave parameters.

  18. Repetitive operation of an L-band magnetically insulated transmission line oscillator with metal array cathode

    NASA Astrophysics Data System (ADS)

    Qin, Fen; Wang, Dong; Xu, Sha; Zhang, Yong; Fan, Zhi-kai

    2016-04-01

    We present the repetitive operation research results of an L-band magnetically insulated transmission line oscillator with metal array cathode (MAC-MILO) in this paper. To ensure a more uniform emission of electrons emitted from the cathode, metal plates with different outer radii and thicknesses are periodically arranged in longitudinal direction on the cathode substrate to act as emitters. The higher order mode depressed MILO (HDMILO) structure is applied to ensure stability of the tube. Comparison experiments are carried out between velvet cathode and MAC MILO driven by a 20 GW/40 Ω/40 ns/20 Hz pulse power system. Experimental results reveal that the MAC has much lower outgassing rate, much longer life time, and higher repetitive stability. The MAC-MILO could work stably with a rep-rate up to 20 Hz at a power level of 550 MW when employing a 350 kV/35 kA electric pulse. The TE11 mode radiation pattern in the farfield region reveals the tube works steadily on the dominant mode. More than 2000 shots have been tested in repetitive mode without any obvious degradation of the detected microwave parameters.

  19. The correlation of Skylab L-band brightness temperatures with antecedent precipitation

    NASA Technical Reports Server (NTRS)

    Mcfarland, M. J.

    1975-01-01

    The S194 L-band radiometer flown on the Skylab mission measured terrestrial radiation at the microwave wavelength of 21.4 cm. The terrain emissivity at this wavelength is strongly dependent on the soil moisture content, which can be inferred from antecedent precipitation. For the Skylab data acquisition pass from the Oklahoma panhandle to southeastern Texas on 11 June 1973, the S194 brightness temperatures are highly correlated with antecedent precipitation from the preceding eleven day period, but very little correlation was apparent for the preceding five day period. The correlation coefficient between the averaged antecedent precipitation index values and the corresponding S194 brightness temperatures between 230 K and 270 K, the region of apparent response to soil moisture in the data, was -0.97. The equation of the linear least squares line fitted to the data was: API (cm) = 31.99 -0.114 TB (K), where API is the antecedent precipitation index and TB is the S194 brightness temperature.

  20. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    PubMed Central

    Zribi, Mehrez; Pardé, Mickael; Boutin, Jacquline; Fanise, Pascal; Hauser, Daniele; Dechambre, Monique; Kerr, Yann; Leduc-Leballeur, Marion; Reverdin, Gilles; Skou, Niels; Søbjærg, Sten; Albergel, Clement; Calvet, Jean Christophe; Wigneron, Jean Pierre; Lopez-Baeza, Ernesto; Rius, Antonio; Tenerelli, Joseph

    2011-01-01

    The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS) L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera). Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean) in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS) satellite validation as well as for specific studies on surface soil moisture or ocean salinity. PMID:22346599