Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika
2011-03-31
This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.
Laboratory Directed Research and Development Program FY98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, T.; Chartock, M.
1999-02-05
The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less
Environment, Safety and Health Self-Assessment Report Fiscal Year 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Scott
2011-03-23
The Lawrence Berkeley National Laboratory (LBNL) Environment, Safety, and Health (ES&H) Self-Assessment Program was established to ensure that Integrated Safety Management (ISM) is implemented institutionally and by all divisions. The ES&H Self-Assessment Program, managed by the Office of Contractor Assurance (OCA), provides for an internal evaluation of all ES&H programs and systems at LBNL. The primary objective of the program is to ensure that work is conducted safely and with minimal negative impact to workers, the public, and the environment. Self-assessment follows the five core functions and guiding principles of ISM. Self-assessment is the mechanism used to promote the continuousmore » improvement of the Laboratory's ES&H programs. The process is described in the Environment, Safety, and Health Assurance Plan (PUB-5344) and is composed of three types of self-assessments: Division ES&H Self-Assessment, ES&H Technical Assurance Program Assessment, and Division ES&H Peer Review. The Division ES&H Self-Assessment Manual (PUB-3105) provides the framework by which divisions conduct formal ES&H self-assessments to systematically identify program deficiencies. Issue-specific assessments are designed and implemented by the divisions and focus on areas of interest to division management. They may be conducted by teams and involve advance planning to ensure that appropriate resources are available. The ES&H Technical Assurance Program Manual (PUB-913E) provides the framework for systematic reviews of ES&H programs and processes. The ES&H Technical Assurance Program Assessment is designed to evaluate whether ES&H programs and processes are compliant with guiding regulations, are effective, and are properly implemented by LBNL divisions. The Division ES&H Peer Review Manual provides the framework by which division ISM systems are evaluated and improved. Peer Reviews are conducted by teams under the direction of senior division management and focus on higher-level management issues. Peer Review teams are selected on the basis of members knowledge and experience in the issues of interest to the division director. LBNL periodically requests in-depth independent assessments of selected ES&H programs. Such assessments augment LBNL's established assessment processes and provide an objective view of ES&H program effectiveness. Institutional Findings, Observations, and Noteworthy Practices identified during independent assessments are specifically intended to help LBNL identify opportunities for program improvement. This report includes the results of the Division ES&H Self-Assessment, ES&H Technical Assurance Program Assessment, and Division ES&H Peer Review, respectively.« less
Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Evan; Bourassa, Norm; Rainer, Leo
A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.
Home Energy Scoring Tools (website) and Application Programming Interfaces, APIs (aka HEScore)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, Evan; Bourassa, Norm; Rainer, Leo
2016-04-22
A web-based residential energy rating tool with APIs that runs the LBNL website: Provides customized estimates of residential energy use and energy bills based on building description information provided by the user. Energy use is estimated using engineering models developed at LBNL. Space heating and cooling use is based on the DOE-2. 1E building simulation model. Other end-users (water heating, appliances, lighting, and misc. equipment) are based on engineering models developed by LBNL.
Photocathodes for High Repetition Rate Light Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ben-Zvi, Ilan
2014-04-20
This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). Below details the Principal Investigators and contact information. Each PI submits separately for a budget through his corresponding institute. The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus ismore » on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes (BNL – LBNL) b) Development and testing of a diamond amplifier for photocathodes (SBU - BNL) c) Tests of both cathodes in superconducting RF photoguns (SBU) and copper RF photoguns (LBNL) Our work made extensive use of synchrotron radiation materials science techniques, such as powder- and single-crystal diffraction, x-ray fluorescence, EXAFS and variable energy XPS. BNL and LBNL have many complementary facilities at the two light sources associated with these laboratories (NSLS and ALS, respectively); use of these will be a major thrust of our program and bring our understanding of these complex materials to a new level. In addition, CHESS at Cornell will be used to continue seamlessly throughout the NSLS dark period and new diffraction facilities at ALS will be utilized. We also will continue to make use of the excellent analytical facilities at the CNF (BNL) and the Molecular Foundry (LBNL), where we have access to state of the art UHV XPS, SPM, SEM and scanning Auger microscopy.« less
Environment, Safety, and Health Self-Assessment Report, Fiscal Year 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernowski, John
2009-02-27
Lawrence Berkeley National Laboratory's Environment, Safety, and Health (ES&H) Self-Assessment Program ensures that Integrated Safety Management (ISM) is implemented institutionally and by all divisions. The Self-Assessment Program, managed by the Office of Contract Assurance (OCA), provides for an internal evaluation of all ES&H programs and systems at LBNL. The functions of the program are to ensure that work is conducted safely, and with minimal negative impact to workers, the public, and the environment. The Self-Assessment Program is also the mechanism used to institute continuous improvements to the Laboratory's ES&H programs. The program is described in LBNL/PUB 5344, Environment, Safety, andmore » Health Self-Assessment Program and is composed of four distinct assessments: the Division Self-Assessment, the Management of Environment, Safety, and Health (MESH) review, ES&H Technical Assurance, and the Appendix B Self-Assessment. The Division Self-Assessment uses the five core functions and seven guiding principles of ISM as the basis of evaluation. Metrics are created to measure performance in fulfilling ISM core functions and guiding principles, as well as promoting compliance with applicable regulations. The five core functions of ISM are as follows: (1) Define the Scope of Work; (2) Identify and Analyze Hazards; (3) Control the Hazards; (4) Perform the Work; and (5) Feedback and Improvement. The seven guiding principles of ISM are as follows: (1) Line Management Responsibility for ES&H; (2) Clear Roles and Responsibilities; (3) Competence Commensurate with Responsibilities; (4) Balanced Priorities; (5) Identification of ES&H Standards and Requirements; (6) Hazard Controls Tailored to the Work Performed; and (7) Operations Authorization. Performance indicators are developed by consensus with OCA, representatives from each division, and Environment, Health, and Safety (EH&S) Division program managers. Line management of each division performs the Division Self-Assessment annually. The primary focus of the review is workplace safety. The MESH review is an evaluation of division management of ES&H in its research and operations, focusing on implementation and effectiveness of the division's ISM plan. It is a peer review performed by members of the LBNL Safety Review Committee (SRC), with staff support from OCA. Each division receives a MESH review every two to four years, depending on the results of the previous review. The ES&H Technical Assurance Program (TAP) provides the framework for systematic reviews of ES&H programs and processes. The intent of ES&H Technical Assurance assessments is to provide assurance that ES&H programs and processes comply with their guiding regulations, are effective, and are properly implemented by LBNL divisions. The Appendix B Performance Evaluation and Measurement Plan (PEMP) requires that LBNL sustain and enhance the effectiveness of integrated safety, health, and environmental protection through a strong and well-deployed system. Information required for Appendix B is provided by EH&S Division functional managers. The annual Appendix B report is submitted at the close of the fiscal year. This assessment is the Department of Energy's (DOE) primary mechanism for evaluating LBNL's contract performance in ISM.« less
EnergyPlus Graphical User Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
2011-01-04
LBNL, Infosys Technologies and Digital Alchemy are developing a free, comprehensive graphical user interface (GUI) that will enable EnergyPlus to be used more easily and effectively by building designers and other professionals, facilitating its widespread adoption. User requirements have been defined through a series of practitioner workshops. A new schematic editor for HVAC systems will be combined with different building envelope geometry generation tools and IFC-based BIM import and export. LBNL and Digital Alchemy have generated a detailed function requirements specification, which is being implemented in software by Infosys, LBNL and and Digital Alchemy. LBNL and practitioner subcontractors will developmore » a comprehensive set of templates and libraries and will perform extensive testing of the GUI before it is released in Q3 2011. It is planned to use an Open Platfom approach, in which a comprehensive set of well documented Application Programming Interfaces (API's) would be provided to facilitate both the development of third party contributions to the official, standard GUI and the development of derivative works.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Bruce W.
2010-05-18
Work with or potential exposure to biological materials in the course of performing research or other work activities at Lawrence Berkeley National Laboratory (LBNL) must be conducted in a safe, ethical, environmentally sound, and compliant manner. Work must be conducted in accordance with established biosafety standards, the principles and functions of Integrated Safety Management (ISM), this Biosafety Manual, Chapter 26 (Biosafety) of the Health and Safety Manual (PUB-3000), and applicable standards and LBNL policies. The purpose of the Biosafety Program is to protect workers, the public, agriculture, and the environment from exposure to biological agents or materials that may causemore » disease or other detrimental effects in humans, animals, or plants. This manual provides workers; line management; Environment, Health, and Safety (EH&S) Division staff; Institutional Biosafety Committee (IBC) members; and others with a comprehensive overview of biosafety principles, requirements from biosafety standards, and measures needed to control biological risks in work activities and facilities at LBNL.« less
Organization Registration Program Working Groups Poster Session Venue Transportation Accommodations Social Events Visas Telluride Poster Sponsors Participants Co-Chairs: Marco Battaglia (LBNL, UC Santa Cruz
Prospects of A and Z identification experiments at LBNL
NASA Astrophysics Data System (ADS)
Gates, Jacklyn M.
2016-12-01
The identification of six new elements within the last 15 years and with proton numbers, Z = 113-118 has transformed the heavy element field. However, one key piece of information on these nuclei remains unmeasured: their proton and mass numbers, A. At Lawrence Berkeley National Laboratory, the heavy element group has undertaken a program to study these new elements to perform experiments aimed at measuring the Z and A.Here, an overview of recent experiments aimed towards identifying the Z of SHE, and the prospects for Z and A identification experiments at LBNL are presented.
FY2014 LBNL LDRD Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Darren
2015-06-01
Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Tengfang
2006-10-20
Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrialmore » Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.« less
Design of a superconducting 28 GHz ion source magnet for FRIB using a shell-based support structure
Felice, H.; Rochepault, E.; Hafalia, R.; ...
2014-12-05
The Superconducting Magnet Program at the Lawrence Berkeley National Laboratory (LBNL) is completing the design of a 28 GHz NbTi ion source magnet for the Facility for Rare Isotope Beams (FRIB). The design parameters are based on the parameters of the ECR ion source VENUS in operation at LBNL since 2002 featuring a sextupole-in-solenoids configuration. Whereas most of the magnet components (such as conductor, magnetic design, protection scheme) remain very similar to the VENUS magnet components, the support structure of the FRIB ion source uses a different concept. A shell-based support structure using bladders and keys is implemented in themore » design allowing fine tuning of the sextupole preload and reversibility of the magnet assembly process. As part of the design work, conductor insulation scheme, coil fabrication processes and assembly procedures are also explored to optimize performance. We present the main features of the design emphasizing the integrated design approach used at LBNL to achieve this result.« less
NASA Astrophysics Data System (ADS)
Simon, Horst
2009-07-01
By almost any measure, the SciDAC community has come a long way since DOE launched the SciDAC program back in 2001. At the time, we were grappling with how to efficiently run applications on terascale systems (the November 2001 TOP500 list was led by DOE's ASCI White IBM system at Lawrence Livermore achieving 7.2 teraflop/s). And the results stemming from the first round of SciDAC projects were summed up in two-page reports. The scientific results were presented at annual meetings, which were by invitation only and typically were attended by about 75 researchers. Fast forward to 2009 and we now have SciDAC Review, a quarterly magazine showcasing the scientific computing contributions of SciDAC projects and related programs, all focused on presenting a comprehensive look at Scientific Discovery through Advanced Computing. That is also the motivation behind the annual SciDAC conference that in 2009 was held from June 14-18 in San Diego. The annual conference, which can also be described as a celebration of all things SciDAC, grew out those meetings organized in the early days of the program. In 2005, the meeting was held in San Francisco and attendance was opened up to all members of the SciDAC community. The schedule was also expanded to include a keynote address, plenary speakers and other features found in a conference format. This year marks the fifth such SciDAC conference, which now comprises four days of computational science presentations, multiple poster sessions and, since last year, an evening event showcasing simulations and modeling runs resulting from SciDAC projects. The fifth annual SciDAC conference was remarkable on several levels. The primary purpose, of course, is to showcase the research accomplishments resulting from SciDAC programs in particular and computational science in general. It is these accomplishments, represented in 38 papers and 52 posters, that comprise this set of conference proceedings. These proceedings can stand alone as evidence of the success of DOE's innovative SciDAC efforts. But from the outset, a critical driver for the program was to foster increased collaboration among researchers across disciplines and organizations. In particular, SciDAC wanted to engage scientists at universities in the projects, both to expand the community and to develop the next generation of computational scientists. At the meeting in San Diego, the fruits of this emphasis were clearly visible, from the special poster session highlighting the work of the DOE Computational Science Graduate Fellows, to the informal discussions in hotel hallways, to focused side meetings apart from the main presentations. A highlight of the meeting was the keynote address by Dr Ray Orbach, until recently the DOE Under Secretary for Science and head of the Office of Science. It was during his tenure that the first round of projects matured and the second set of SciDAC projects were launched. And complementing these research projects was Dr Orbach's vision for INCITE, DOE's Innovative and Novel Computational Impact on Theory and Experiment program, inaugurated in 2003. This program allocated significant HPC resources to scientists tackling high-impact problems, including some of those addressed by SciDAC teams. Together, SciDAC and INCITE are dramatically accelerating the field of computational science. As has been noted before, the SciDAC conference celebrates progress in advancing science through large-scale modeling and simulation. Over 400 people registered to attend this year's talks, poster sessions and tutorials, all spanning the disciplines supported by DOE. While the principal focus was on SciDAC accomplishments, this year's conference also included invited presentations and posters from colleagues whose research is supported by other agencies. At the 2009 meeting we also formalized a developing synergy with the Department of Defense's HPC Users Group Meeting, which has occasionally met in parallel with the SciDAC meeting. But in San Diego, we took the additional steps of organizing a joint poster session and a joint plenary session, further advancing opportunities for broader networking. Throughout the four-day program, attendees at both meetings had the option of sitting in on sessions at either conference. We also included several of the NSF Petascale applications in the program, and have also extended invitations to our computational colleagues in other federal agencies, including the National Science Foundation, NASA, and the National Oceanographic and Atmospheric Administration, as well as international collaborators to join us in San Diego. In 2009 we also reprised one of the more popular sessions from Seattle in 2008, the Electronic Visualization and Poster Night, during which 29 scientific visualizations were presented on high-resolution large-format displays. The best entries were awarded one of the coveted 'OASCR Awards.' The conference also featured a session about breakthroughs in computational science, based on the 'Breakthrough Report' that was published in 2008, led by Tony Mezzacappa (ORNL). Tony was also the chair of the SciDAC 2005 conference. For the third consecutive year, the conference was followed by a day of tutorials organized by the SciDAC Outreach Center and aimed primarily at students interested in scientific computing. This year, nearly 100 participants attended the tutorials, hosted by the San Diego Supercomputer Center and General Atomics. This outreach to the broader community is really what SciDAC is all about - Scientific Discovery through Advanced Computing. Such discoveries are not confined by organizational lines, but rather are often the result of researchers reaching out and collaborating with others, using their combined expertise to push our boundaries of knowledge. I am happy to see that this vision is shared by so many researchers in computational science, who all decided to join SciDAC 2009. While credit for the excellent presentations and posters goes to the teams of researchers, the success of this year's conference is due to the strong efforts and support from members of the 2009 SciDAC Program Committee and Organizing Committee, and I would like to extend my heartfelt thanks to them for helping to make the 2009 meeting the largest and most successful to date. Program Committee members were: David Bader, LLNL; Pete Beckman, ANL; John Bell, LBNL; John Boisseau, University of Texas; Paul Bonoli, MIT; Hank Childs, LBNL; Bill Collins, LBNL; Jim Davenport, BNL; David Dean, ORNL; Thom Dunning, NCSA; Peg Folta, LLNL; Glenn Hammond, PNNL; Maciej Haranczyk, LBNL; Robert Harrison, ORNL; Paul Hovland, ANL; Paul Kent, ORNL; Aram Kevorkian, SPAWAR; David Keyes, Columbia University; Kwok Ko, SLAC; Felice Lightstone, LLNL; Bob Lucas, ISI/USC; Paul Mackenzie, Fermilab; Tony Mezzacappa, ORNL; John Negele, MIT; Jeff Nichols, ORNL; Mike Norman, UCSD; Joe Oefelein, SNL; Jeanie Osburn, NRL; Peter Ostroumov, ANL; Valerio Pascucci, University of Utah; Ruth Pordes, Fermilab; Rob Ross, ANL; Nagiza Samatova, ORNL; Martin Savage, University of Washington; Tim Scheibe, PNNL; Ed Seidel, NSF; Arie Shoshani, LBNL; Rick Stevens, ANL; Bob Sugar, UCSB; Bill Tang, PPPL; Bob Wilhelmson, NCSA; Kathy Yelick, NERSC/LBNL; Dave Zachmann, Vista Computational Technology LLC. Organizing Committee members were: Communications: Jon Bashor, LBNL. Contracts/Logistics: Mary Spada and Cheryl Zidel, ANL. Posters: David Bailey, LBNL. Proceedings: John Hules, LBNL. Proceedings Database Developer: Beth Cerny Patino, ANL. Program Committee Liaison/Conference Web Site: Yeen Mankin, LBNL. Tutorials: David Skinner, NERSC/LBNL. Visualization Night: Hank Childs, LBNL; Valerio Pascucci, Chems Touati, Nathan Galli, and Erik Jorgensen, University of Utah. Again, my thanks to all. Horst Simon San Diego, California June 18, 2009
LBNL Laboratory Directed Research and Development Program FY2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, D.
2017-03-01
The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.
Radiological control manual. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kloepping, R.
1996-05-01
This Lawrence Berkeley National Laboratory Radiological Control Manual (LBNL RCM) has been prepared to provide guidance for site-specific additions, supplements and interpretation of the DOE Radiological Control Manual. The guidance provided in this manual is one methodology to implement the requirements given in Title 10 Code of Federal Regulations Part 835 (10 CFR 835) and the DOE Radiological Control Manual. Information given in this manual is also intended to provide demonstration of compliance to specific requirements in 10 CFR 835. The LBNL RCM (Publication 3113) and LBNL Health and Safety Manual Publication-3000 form the technical basis for the LBNL RPPmore » and will be revised as necessary to ensure that current requirements from Rules and Orders are represented. The LBNL RCM will form the standard for excellence in the implementation of the LBNL RPP.« less
The LBNL High School Student Research Participation Program (HSSRPP)
NASA Astrophysics Data System (ADS)
McMahan, M. A.
2007-04-01
The HSSRPP, which has been in operation at LBNL since 2001, places 25-35 students each year in summer research internships at Lawrence Berkeley National Laboratory, a multi-purpose Department of Energy laboratory. The paid six-week internships, which are restricted to students who have completed their junior or senior year of high school, are highly sought over, with nearly 300 applications in 2006. With funding from Bechtel, the success of the program has been assessed through surveys and tracking of the student participants. In addition, as part of the application process, the students are asked the essay question, ``If you were in charge of the Science Department at your High School, what changes would you make to motivate more students to pursue careers in science and why?'' The responses of all applicants for 2004-2006 have been analyzed by gender and school district. The results will be discussed.
Development of a Hydrologic Characterization Technology for Fault Zones Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasaki, Kenzi; Onishi, Celia Tiemi; Doughty, Christine
2012-03-31
This is the final report for the five-year program of the NUMO-LBNL collaborative project (hereafter called the Project): Development of Hydrologic Characterization Technology for Fault Zones, under a NUMO-DOE/LBNL collaboration agreement. Detailed results from the past four years of study can be found in the each year’s year-end report (Karasaki et al., 2008, 2009, 2010, and 2011; Kiho et al., 2008, 2009, 2010, and 2011). In this report, we discuss the results of the studies conducted in FY2011. We also give a summary of the overall results and findings, as well as the lessons learned during the course of themore » Project.« less
Aircraft Cabin Environmental Quality Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gundel, Lara; Kirchstetter, Thomas; Spears, Michael
2010-05-06
The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Resultsmore » from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
EHS Staff
2003-04-01
To ensure efficient and effective management of LBNL facilities, LBNL shall assign line managers to perform appropriate work functions. LBNL divisions that are delegated responsibility for the management of buildings shall designate division personnel to serve as --''Building Managers.''
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth
End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of themore » LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new construction, commercial/industrial custom rebate programs). In this report, the focus is on gross energy savings and the costs borne by the program administrator—including administration, payments to implementation contractors, marketing, incentives to program participants (end users) and both midstream and upstream trade allies, and evaluation costs. We collected data on net savings and costs incurred by program participants. However, there were insufficient data on participant cost contributions, and uncertainty and variability in the ways in which net savings were reported and defined across states (and program administrators).« less
Methodology for National Water Savings Model and Spreadsheet Tool—Outdoor Water Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Alison, A; Chen, Yuting; Dunham, Camilla
This report describes the method Lawrence Berkeley National Laboratory (LBNL) developed to estimate national impacts of the U.S. Environmental Protection Agency’s (EPA’s) WaterSense labeling program for weather-based irrigation controllers (WBIC). Estimated impacts include the national water savings attributable to the program and the net present value of the lifetime water savings for consumers of irrigation controllers.
Detailed Investigations of Interactions between Ionizing Radiation and Neutral Gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landers, Allen L
We are investigating phenomena that stem from the many body dynamics associated with ionization of an atom or molecule by photon or charged particle. Our program is funded through the Department of Energy EPSCoR Laboratory Partnership Award in collaboration with Lawrence Berkeley National Laboratory. We are using variations on the well established COLTRIMS technique to measure ions and electrons ejected during these interactions. Photoionization measurements take place at the Advanced Light Source at LBNL as part of the ALS-COLTRIMS collaboration with the groups of Reinhard Dörner at Frankfurt and Ali Belkacem at LBNL. Additional experiments on charged particle impact aremore » conducted locally at Auburn University where we are studying the dissociative molecular dynamics following interactions with either ions or electrons over a velocity range of 1 to 12 atomic units.« less
The Next Linear Collider Program
Navbar Other Address Books: Laboratory Phone/Email Web Directory SLAC SLAC Phonebook Entire SLAC Web FNAL Telephone Directory Fermilab Search LLNL Phone Book LLNL Web Servers LBNL Directory Services Web Search: A-Z Index KEK E-mail Database Research Projects NLC Website Search: Entire SLAC Web | Help
Work Planning and Control - Activity-Based Work Authorization
Good Activity Description Training & Resources WPC Feedback or Help Request DOE and UC Seals DOE UC Home Training FAQ Contact Home Welcome! The purpose of this site is to keep everyone at LBNL connected in the(Training section). Work Planning and Control (WPC) is a program focused on implementing
User News. Volume 17, Number 1 -- Spring 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
This is a newsletter for users of the DOE-2, PowerDOE, SPARK, and BLAST building energy simulation programs. The topics for the Spring 1996 issue include the SPARK simulation environment, DOE-2 validation, listing of free fenestration software from LBNL, Web sites for building energy efficiency, the heat balance method of calculating building heating and cooling loads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Darghouth, Naïm; Millstein, Dev
Now in its ninth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and non-residential systems installed through year-end 2015, with preliminary trends for the first half of 2016. An accompanying LBNL report, Utility-Scale Solar, addresses trends in the utility-scale sector. This year’s report incorporates a number of important changes and enhancements from prior editions. Among those changes, LBNL has made available a public data file containing all non-confidential project-level data underlying themore » analysis in this report. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. Refer to the text box to the right for several key notes about these data. In total, data were collected and cleaned for more than 820,000 individual PV systems, representing 85% of U.S. residential and non-residential PV systems installed cumulatively through 2015 and 82% of systems installed in 2015. The analysis in this report is based on a subset of this sample, consisting of roughly 450,000 systems with available installed price data.« less
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR ROOM, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
39. Photocopy of engineering drawing (LBNL Archives and Records Collection). ...
39. Photocopy of engineering drawing (LBNL Archives and Records Collection). December 10, 1948. 2 BEVATRON EXTERIOR PRELIMINARY PERSPECTIVE - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. FLOOR AND CEILING OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-052). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-066). March 2005. LOCAL INJECTOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-107). March 2005. NORTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-106). March 2005. SOUTH FAN, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. GENERATOR MOTORS OPPOSITE SWITCHGEAR RACKS, MECHANIC SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
44. Photocopy of photograph (original print located in LBNL Photo ...
44. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. May 4, 1949. PERSPECTIVE DRAWING, BIRD'S-EYE VIEW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. SWITCHGEAR AND POWER GENERATOR MOTORS, MECHANICAL SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-087). March 2005. GENERATOR PIT AREA, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-054). March 2005. LOCAL INJECTOR ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-027). March 2005. MOUSE AT EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
38. Photocopy of engineering drawing (LBNL Archives and Records Collection). ...
38. Photocopy of engineering drawing (LBNL Archives and Records Collection). December 10, 1948. 1 BEVATRON EXTERIOR PRELIMINARY PERSPECTIVE-BIRD'S-EYE VIEW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Environmental Management System Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Robert; Thorson, Patrick; Horst, Blair
2009-03-24
Executive Order 13423, Strengthening Federal Environmental, Energy, and Transportation Management establishes the policy that Federal agencies conduct their environmental, transportation, and energy-related activities in a manner that is environmentally, economically and fiscally sound, integrated, continually improving, efficient, and sustainable. The Department of Energy (DOE) has approved DOE Order 450.1A, Environmental Protection Program and DOE Order 430.2B, Departmental Energy, Renewable Energy and Transportation Management as the means of achieving the provisions of this Executive Order. DOE Order 450.1A mandates the development of Environmental Management Systems (EMS) to implement sustainable environmental stewardship practices that: (1) Protect the air, water, land, and othermore » natural and cultural resources potentially impacted by facility operations; (2) Meet or exceed applicable environmental, public health, and resource protection laws and regulations; and (3) Implement cost-effective business practices. In addition, the DOE Order 450.1A mandates that the EMS must be integrated with a facility's Integrated Safety Management System (ISMS) established pursuant to DOE P 450.4, 'Safety Management System Policy'. DOE Order 430.2B mandates an energy management program that considers energy use and renewable energy, water, new and renovated buildings, and vehicle fleet activities. The Order incorporates the provisions of the Energy Policy Act of 2005 and Energy Independence and Security Act of 2007. The Order also includes the DOE's Transformational Energy Action Management initiative, which assures compliance is achieved through an Executable Plan that is prepared and updated annually by Lawrence Berkeley National Laboratory (LBNL, Berkeley Lab, or the Laboratory) and then approved by the DOE Berkeley Site Office. At the time of this revision to the EMS plan, the 'FY2009 LBNL Sustainability Executable Plan' represented the most current Executable Plan. These DOE Orders and associated policies establish goals and sustainable stewardship practices that are protective of environmental, natural, and cultural resources, and take a life cycle approach that considers aspects such as: (1) Acquisition and use of environmentally preferable products; (2) Electronics stewardship; (3) Energy conservation, energy efficiency, and renewable energy; (4) Pollution prevention, with emphasis on toxic and hazardous chemical and material reduction; (5) Procurement of efficient energy and water consuming materials and equipment; (6) Recycling and reuse; (7) Sustainable and high-performance building design; (8) Transportation and fleet management; and (9) Water conservation. LBNL's approach to sustainable environmental stewardship required under Order 450.1A poses the challenge of implementing its EMS in a compliance-based, performance-based, and cost-effective manner. In other words, the EMS must deliver real and tangible business value at a minimal cost. The purpose of this plan is to describe Berkeley Lab's approach for achieving such an EMS, including an overview of the roles and responsibilities of key Laboratory parties. This approach begins with a broad-based environmental policy consistent with that stated in Chapter 11 of the LBNL Health and Safety Manual (PUB-3000). This policy states that Berkeley Lab is committed to the following: (1) Complying with applicable environmental, public health, and resource conservation laws and regulations. (2) Preventing pollution, minimizing waste, and conserving natural resources. (3) Correcting environmental hazards and cleaning up existing environmental problems, and (4) Continually improving the Laboratory's environmental performance while maintaining operational capability and sustaining the overall mission of the Laboratory. A continual cycle of planning, implementing, evaluating, and improving processes will be performed to achieve goals, objectives, and targets that will help LBNL carry out this policy. Each year, environmental aspects will be identified and their impacts to the environment will be evaluated. Objectives and targets will be developed (or updated) for each aspect that is determined to have a significant impact. Environmental Management Programs (EMPs) will be prepared (or updated) to document actions necessary for reducing certain environmental impacts. Each EMP will identify responsible parties and associated target deadlines for each action. Quarterly, environmental programs will be reviewed for compliance issues and effectiveness. Annually, an internal assessment will be performed to evaluate the progress of the EMS, and LBNL senior management will review the results. In addition, at least once every 3 years a third-party audit will be performed to validate that the EMS is being implemented according to plan.« less
6. Photocopy of photograph (original print located in LBNL Photo ...
6. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 31, 1950. BEV-331. MAGNET ROOM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
18. Photocopy of photograph (original print located in LBNL Photo ...
18. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. January 12, 1950. BEV-195. ION GUN INJECTOR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CABLE RACEWAYS, CATWALK, AND WINDOWS OF OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-110). March 2005. SOUTH FAN FROM MEZZANINE, FAN ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-143). March 2005. BUILDING 51A, EXTERIOR WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
43. Photocopy of photograph (original print located in LBNL Photo ...
43. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March 28, 1950. BEV-226. BEVATRON BUILDING CONSTRUCTION. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
27. Photocopy of photograph (original print located in LBNL Photo ...
27. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 18, 1958. Bubble Chamber 605. BUBBLE CHAMBER ASSEMBLY - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
14. Photocopy of photograph (original print located in LBNL Photo ...
14. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3467. ACCELERATION DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
13. Photocopy of photograph (original print located in LBNL Photo ...
13. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 4, 1957. BEV-128. PROGRESS--MAGNET REPAIR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
56. Photocopy of photograph (original print located in LBNL Photo ...
56. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 4, 1953. BEV-627. OVERALL VIEW OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
40. Photocopy of photograph (original print located in LBNL Photo ...
40. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March, 1949. BEV 4903-00020. GRADING-SITE WORK FOR BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR TO SECOND FLOOR OF MECHANICAL WINE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
30. Photocopy of photograph (original print located in LBNL Photo ...
30. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-943. ANTI-PROTON EXPERIMENT. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
5. Photocopy of photograph (original print located in LBNL Photo ...
5. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 25, 1950. BEV-307. BEVATRON MAGNET FOUNDATION. B-51 - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. END OF BEAMLINE LEAVING SHIELDING, MAGNET COILS IN EPOXY, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
IAQ Scientific Findings Resource Bank
This effort is being conducted under an interagency agreement between the US EPA and the US Department of Energy- the Lawrence Berkeley National Laboratory (LBNL). Under this project, LBNL will conduct literature reviews and analyses which quantify the health and productivity be...
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. CENTRAL SUPPORT COLUMN EXTENDING THROUGH CRANES AND ROOF SUPPORT TRUSS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-006). March 2005. JACKBOLTS BETWEEN MAGNET AND MAGNET FOUNDATION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-047). March 2005. AREA OF MAGNET REMOVAL, NORTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-043). March 2005. MOUSE AT EAST TANGENT, PLUNGING MECHANISM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-077). March 2005. STUB OF SUPERHILAC BEAM, ENTERING SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-012). March 2005. PASSAGEWAY UNDER QUADRANT AND DIFFUSION PUMPS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-050). March 2005. DIFFUSION PUMPS UNDER WEST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
61. Photocopy of photograph (original print located in LBNL Photo ...
61. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 1994. CBB 944-3190. AERIAL VIEW OF B-51 BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
23. Photocopy of photograph (original print located in LBNL Photo ...
23. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. March 26, 1953. BEV-551. OVERALL VIEW OF ION GUN. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection XBD200503-00117-089). March 2005. GENERATOR PIT AREA, CONCRETE FOUNDATION FOR EQUIPMENT MOUNTS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
57. Photocopy of photograph (original print located in LBNL Photo ...
57. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 29, 1953. BEV-657. WEST TANK OPEN, CLOSE-UP. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF 51A TO SECOND FLOOR EXTERIOR EXIT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-082). June 2005. CEILING AND CRANE OF BUILDING 51A, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
58. Photocopy of photograph (original print located in LBNL Photo ...
58. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 11, 1956. BEV-1206. PUMP ROOM WITH W. CHUPP IN BACKGROUND - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
8. Photocopy of photograph (original print located in LBNL Photo ...
8. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. July 2, 1953. BEV-574. QUADRANT POLE TIP INSTALLATION. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
12. Photocopy of photograph (original print located in LBNL Photo ...
12. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. February 5, 1954. BEV-681. GENERATOR ROOM FOR BEVATRON MAGNET. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
17. Photocopy of photograph (original print located in LBNL Photo ...
17. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 20, 1958. BEV-1654. OVERALL VIEW WITH PROTON INJECTOR. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
51. Photocopy of photograph (original print located in LBNL Photo ...
51. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 22, 1950. BEV-248. INTERIOR OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. WALL AND WINDOW OVERLOOKING MAGNET ROOM, SECOND STORY OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
3. Photocopy of photograph (original print located in LBNL Photo ...
3. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3470 INTERNAL BEAM EXPERIMENT DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
16. Photocopy of photograph (original print located in LBNL Photo ...
16. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 29, 1953. BEV-654. INJECTOR, INJECTOR TANK-WIDE ANGLE; MARIO CAROTTA. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
55. Photocopy of photograph (original print located in LBNL Photo ...
55. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 29, 1950. BEV-359. GENERATOR ROOM, LOOKING SOUTH, B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
15. Photocopy of photograph (original print located in LBNL Photo ...
15. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. November 22, 1963. BEV-3468. INJECTION SYSTEM DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. ENTRANCE TO STAIRWAY TO TUNNEL UNDER MAIN FLOOR OF MAGNET ROOM, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
45. Photocopy of photograph (original print located in LBNL Photo ...
45. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 28, 1954. BEV-733. MAIN CONTROL ROOM; BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
54. Photocopy of photograph (original print located in LBNL Photo ...
54. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. September 29, 1950. BEV-328. NORTH SIDE OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
2. Photocopy of photograph (original print located in LBNL Photo ...
2. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 22, 1963. BEV-3469 EXTERNAL BEAM EXPERIMENT DIAGRAM. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-108). March 2005. FAN ROOM WITH STAIR TO FILTER BANKS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
9. Photocopy of engineering drawing (original drawing located in LBNL ...
9. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). July, 1960. 4BOOQ002. QUADRANT MAP - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
37. Photocopy of engineering drawing (original drawing located in LBNL ...
37. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). May, 1986. UNIVERSITY OF CALIFORNIA TOPOGRAPHIC MAP - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
41. Photocopy of photograph (original print located in LBNL Photo ...
41. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August 29, 1949. BEV-101. BEVATRON AREA LOOKING SOUTHEAST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-158). March 2005. CONNECTION OF MAGNET ROOM CRANE TO OUTER TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-015). March 2005. INTERIOR WALL OF MAGNET INSIDE CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-004). March 2005. ENTRY TO IGLOO, ILLUSTRATING THICKNESS OF IGLOO WALL, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-026). March 2005. MOUSE AT EAST TANGENT, LOOKING TOWARD EAST TANGENT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-005). March 2005. PASSAGEWAY UNDER SOUTHEAST QUADRANT, AIR DUCT OPENINGS, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leventis, Greg; Gopal, Anand; Rue du Can, Stephane de la
Numerous countries use taxpayer funds to subsidize residential electricity for a variety of socioeconomic objectives. These subsidies lower the value of energy efficiency to the consumer while raising it for the government. Further, while it would be especially helpful to have stringent Minimum Energy Performance Standards (MEPS) for appliances and buildings in this environment, they are hard to strengthen without imposing a cost on ratepayers. In this secondbest world, where the presence of subsidies limits the government’s ability to strengthen standards, we find that avoided subsidies are a readily available source of financing for energy efficiency incentive programs. Here, wemore » introduce the LBNL Energy Efficiency Revenue Analysis (LEERA) model to estimate the appliance efficiency improvements that can be achieved in Mexico by the revenue neutral financing of incentive programs from avoided subsidy payments. LEERA uses the detailed techno-economic analysis developed by LBNL for the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative to calculate the incremental costs of appliance efficiency improvements. We analyze Mexico’s tariff structures and the long-run marginal cost of supply to calculate the marginal savings for the government from appliance efficiency. We find that avoided subsidy payments alone can finance incentive programs that cover the full incremental cost of refrigerators that are 27% more efficient and TVs that are 32% more efficient than baseline models. We find less substantial market transformation potential for room ACs primarily because AC energy savings occur at less subsidized tariffs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Phillip N.
2014-11-01
Snohomish County Public Utilities District (the District or Snohomish PUD) provides electricity to about 325,000 customers in Snohomish County, Washington. The District has an incentive programs to encourage commercial customers to improve energy efficiency: the District partially reimburses the cost of approved retrofits if they provide a level of energy performance improvement that is specified by contract. In 2013 the District contracted with Lawrence Berkeley National Laboratory to provide a third-party review of the Monitoring and Verification (M&V) practices the District uses to evaluate whether companies are meeting their contractual obligations. This work helps LBNL understand the challenges faced bymore » real-world practitioners of M&V of energy savings, and builds on a body of related work such as Price et al. (2013). The District selected a typical project for which they had already performed an evaluation. The present report includes the District's original evaluation as well as LBNL's review of their approach. The review is based on the document itself; on investigation of the load data and outdoor air temperature data from the building evaluated in the document; and on phone discussions with Bill Harris of the Snohomish County Public Utilities District. We will call the building studied in the document the subject building, the original Snohomish PUD report will be referred to as the Evaluation, and this discussion by LBNL is called the Review.« less
19. Photocopy of photograph (original print located in LBNL Photo ...
19. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa/Don Bradley, Photographers. December 4, 1961. BEV-2548. LINAC II DRIFT TUBES. B-64. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
7. Photocopy of photograph (original print located in LBNL Photo ...
7. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 29, 1950. BEV-360. GENERAL VIEW, MAGNET ROOM, LOOKING SOUTHWEST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
42. Photocopy of photograph (original print located in LBNL Photo ...
42. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. September 29, 1949. BEV-132. LOOKING NORTHWEST AT INITIAL STAGES OF CONSTRUCTION. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
35. Photocopy of photograph (original print located in LBNL Photo ...
35. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 27, 1960. BEV-2050. CLYDE WIEGAND; ANTI-PROTON SET-UP. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
48. Photocopy of photograph (original print located in LBNL Photo ...
48. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. February 10, 1960. BEV-2003. COAXIAL, MAIN CONTROL ROOM CONSOLE MODIFICATIONS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
52. Photocopy of photograph (original print located in LBNL Photo ...
52. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. June 28, 1950. BEV-267. INTERIOR OF BEVATRON BUILDING LOOKING WEST. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
24. Photocopy of photograph (original print located in LBNL Photo ...
24. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. B-51. November 6, 1961. BEV-2497 ION GUN II, EMERY ZAJEC - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
32. Photocopy of photograph (original print located in LBNL Photo ...
32. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-937. ANTI-PROTON SET-UP, EXTERIOR VIEW. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
31. Photocopy of photograph (original print located in LBNL Photo ...
31. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-933. ANTI-PROTON SET-UP, INTERIOR VIEW. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
11. Photocopy of photograph (original print located in LBNL Photo ...
11. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. December 17, 1952. BEV-517. MOVING CURVE TANK INTO MAGNET FOR STORAGE. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
21. Photocopy of photograph (original print located in LBNL Photo ...
21. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Don Bradley, Photographer. January 31, 1963. BEV-3286 ALTERATIONS PROGRESS; OLLIE OLSON, PAT CALLAHAN. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image maintained in LBNL Photo Lab ...
Photocopy of photograph (digital image maintained in LBNL Photo Lab Collection, XBD200503-00117-176). March 2005. CENTRAL COLUMN SUPPORT TO ROOF SHOWING CRANES CENTER SUPPORT TRACK, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
53. Photocopy of photograph (original print located in LBNL Photo ...
53. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. June 28, 1950. BEV-268. EXTERIOR OF SOUTHWEST CORNER OF BEVATRON BUILDING. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
10. Photocopy of photograph (original print located in LBNL Photo ...
10. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. November 11, 1950. BEV-336. MAGNET CORE SHOWING FOUNDATION AND SUPPORTS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-046). March 2005. ROOF SHIELDING BLOCK AND I-BEAM SUPPORT CONSTRUCTION, CENTER OF BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-129). March 2005. ENTRY TO ROOM 24, MAIN FLOOR, OFFICE-AND-SHOPS SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-009). March 2005. OPENINGS OF AIR DUCTS INTO PASSAGEWAY UNDER SOUTHEAST QUADRANT, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
28. Photocopy of photograph (original print located in LBNL Photo ...
28. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 1, 1959. Bubble Chamber 722. BUBBLE CHAMBER, WIDE-ANGLE INTERIOR VIEW OF BUILDING 59 - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
33. Photocopy of photograph (original print located in LBNL Photo ...
33. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 10, 1958. BEV-1515. ANTI-PROTON SET-UP; BRUCE CORK, GLENN LAMBERTSON. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY BETWEEN MAIN FLOOR OF MAGNET ROOM AND SECOND FLOOR OF OFFICE-AND-SHOP SECTION, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. STAIRWAY FROM MAIN FLOOR OF MAGNET ROOM TO TOP OF OUTER LAYER OF CONCRETE SHIELDING, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (original negative located in LBNL Photo Lab ...
Photocopy of photograph (original negative located in LBNL Photo Lab Collection). March 2005. TOP OF BEVATRON, BUILDING 51 ROOF TRUSS, AND CENTRAL RING TRACK FOR MAGNET ROOM CRANE, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-035). March 2005. WEST TANGENT VIEWED FROM INTERIOR OF BEVATRON. EQUIPMENT ACCESS STAIRWAY ON LEFT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Triggered MEQ Events on LBNL Permanent Seismic Array, Brady's EGS, March 2016
Michelle Robertson
2016-06-01
List of triggered events recorded on LBNL's permanent EGS seismic array at Brady's geothermal field. This submission also includes links to the NCEDC EGS Earthquake Catalog Search page and to the metadata for the seismic array installed at Brady's Geothermal Field.
46. Photocopy of engineering drawing (original drawing located in LBNL ...
46. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). July 15, 1955. B51A0084. BEVATRON CONTROL ROOM - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
59. Photocopy of photograph (original print located in LBNL Photo ...
59. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. April 25, 1957. BEV-1311. VACUUM SNOUT IN NORTH TARGET AREA; BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-034). March 2005. MOUSE AT EAST TANGENT WITH COVER CLOSED, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-031). March 2005. MOUSE AT EAST TANGENT, WITH COVER OPEN, LOOKING TOWARD CENTER IGLOO, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Techno-Economic Analysis of Indian Draft Standard Levels for RoomAir Conditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, Michael A.; Iyer, Maithili
The Indian Bureau of Energy Efficiency (BEE) finalized its first set of efficiency standards and labels for room air conditioners in July of 2006. These regulations followed soon after the publication of levels for frost-free refrigerators in the same year. As in the case of refrigerators, the air conditioner program introduces Minimum Efficiency Performance Standards (MEPS) and comparative labels simultaneously, with levels for one to five stars. Also like the refrigerator program, BEE defined several successive program phases of increasing stringency. In support of BEE's refrigerator program, Lawrence Berkeley National Laboratory (LBNL) produced an analysis of national impacts of standardsmore » in collaboration with the Collaborative Labeling and Standards Program (CLASP). That analysis drew on LBNL's experience with standards programs in the United States, as well as many other countries. Subsequently, as part of the process for setting optimal levels for air conditioner regulations, CLASP commissioned LBNL to provide support to BEE in the form of a techno-economic evaluation of air conditioner efficiency technologies. This report describes the methodology and results of this techno-economic evaluation. The analysis consists of three components: (1) Cost effectiveness to consumers of efficiency technologies relative to current baseline. (2) Impacts on the current market from efficiency regulations. (3) National energy and financial impacts. The analysis relied on detailed and up-to-date technical data made available by BEE and industry representatives. Technical parameters were used in conjunction with knowledge about air conditioner use patterns in the residential and commercial sectors, and prevailing marginal electricity prices, in order to give an estimate of per-unit financial impacts. In addition, the overall impact of the program was evaluated by combining unit savings with market forecasts in order to yield national impacts. LBNL presented preliminary results of these analyses in May 2006, at a meeting of BEEs Technical Committee for Air Conditioners. This meeting was attended by a wide array of stakeholder, including industry representatives, engineers and consumer advocates. Comments made by stakeholders at this meeting are incorporated into the final analysis presented in this report. The current analysis begins with the Rating Plan drafted by BEE in 2006, along with an evaluation of the market baseline according to test data submitted by manufacturers. MEPS, label rating levels, and baseline efficiencies are presented in Section 2. First, we compare Indian MEPS with current standards in other countries, and assess their relative stringency. Baseline efficiencies are then used to estimate the fraction of models likely to remain on the market at each phase of the program, and the impact on market-weighted efficiency levels. Section 3 deals with cost-effectiveness of higher efficiency design options. The cost-benefit analysis is grounded in technical parameters provided by industry representatives in India. This data allows for an assessment of financial costs and benefits to consumers as a result of the standards and labeling program. A Life-Cycle Cost (LCC) calculation is used to evaluate the impacts of the program at the unit level, thus providing some insight into the appropriateness of the levels chosen, and additional opportunities for further ratcheting. In addition to LCC, we also calculate payback periods, cost of conserved energy (CCE), and return on investment (ROI). Finally, Section 4 covers national impacts. This is an extension of unit level estimates in the two previous sections. Extrapolation to the national level depends on a forecast of air conditioner purchases (shipments), which we describe here. Following the cost-benefit analysis, we construct several efficiency scenarios including the BEE plan, but also considering further potential for efficiency improvement. These are combined with shipments through a stock accounting model in order to forecast air conditioner energy consumption in each scenario, and associated electricity savings and carbon emission mitigation. Finally, financial costs and savings are scaled to the national level to evaluate net fiscal benefits.« less
22. Photocopy of engineering drawing (original drawing located in LBNL ...
22. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). September 29, 1964. 4B51K007 SECOND FLOOR PLAN. B51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
49. Photocopy of engineering drawing (original drawing located in LBNL ...
49. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). June 6, 1949. B51A0354. BEVATRON PLOT PLAN (MASTEN AND HURD) - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00218-12). June 2005. DEEP TUNNEL INTO FOUNDATION UNDER BEVATRON, VIEW OF CART ON RAILS FOR TRANSPORTING EQUIPMENT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-049). March 2005. TUNNEL ENTRY FROM MAIN FLOOR OF MAGNET ROOM INTO CENTER OF BEVATRON, BENEATH SOUTHWEST QUADRANT - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
20. Photocopy of photograph (original print located in LBNL Photo ...
20. Photocopy of photograph (original print located in LBNL Photo Lab Collection). George Kagawa, Photographer. November 15, 1962. BEV-3121. OVERALL VIEW OF LINAC II; GLEN WHITE, FOSS CROSBY, BOB RICHTER. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200503-00117-139). March 2005. TOP OF BEVATRON, INCLUDING WOOD STAIRWAY FROM OUTER EDGE OF SHIELDING TO TOP OF ROOF BLOCK SHIELDING - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
4. Photocopy of photograph (original print located in LBNL Photo ...
4. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. August, 1955. XBB 689-5508. BEVATRON MODEL (L. TO R.) WITH L. SMITH, McMILLAN, E.O. LAWRENCE, LOFGREN, BROBECK, AND SEWELL - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
29. Photocopy of photograph (original print located in LBNL Photo ...
29. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. July, 1959. Morgue 1959-46 (P-1). ALVAREZ BUBBLE CHAMBER GROUP (L. TO R.) HERNANDEZ, McMILLAN, ALVAREZ, GOW - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
50. Photocopy of engineering drawing (original drawing located in LBNL ...
50. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). June 6, 1949. 1/18'=1'. 5N51A002. BEVATRON SUB FLOOR PLAN - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
26. Photocopy of engineering drawing (original drawing located in LBNL ...
26. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). October 24, 1956. 3/8'=1' 4B51S011. BEVATRON SHIELDING FOUNDATION - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
1. Photocopy of engineering drawing (original drawing located in LBNL ...
1. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). January 1961. Dwg No. 6B 00D 005 CONTRACT 48 LEASE AND OCCUPANCY MAP - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
47. Photocopy of engineering drawing (original drawing located in LBNL ...
47. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). July 15, 1955. B51A0084. BEVATRON CONTROL ROOM CEILING TREATMENT AND RELOCATION OF LIGHTS - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
60. Photocopy of engineering drawing (original drawing located in LBNL ...
60. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). September 20, 1964. 4B51K001A. MAIN FLOOR PLAN B-51-51A - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-11). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, NORTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Photocopy of photograph (digital image located in LBNL Photo Lab ...
Photocopy of photograph (digital image located in LBNL Photo Lab Collection, XBD200506-00198-08). June 2005. DUCTWORK BETWEEN FAN ROOM AND PASSAGEWAY UNDER BEVATRON, SOUTH SIDE OF ROOM 10, MAIN FLOOR, BEVATRON - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Commercial Building Energy Saver, API
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon
2015-08-27
The CBES API provides Application Programming Interface to a suite of functions to improve energy efficiency of buildings, including building energy benchmarking, preliminary retrofit analysis using a pre-simulation database DEEP, and detailed retrofit analysis using energy modeling with the EnergyPlus simulation engine. The CBES API is used to power the LBNL CBES Web App. It can be adopted by third party developers and vendors into their software tools and platforms.
Experiences of Vulnerable Residential Customer Subpopulations with Critical Peak Pricing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappers, Peter; Spurlock, C. Anna; Todd, Annika
DOE decided to co-fund ten utilities to undertake eleven experimentally-designed Consumer Behavior Studies (CBS) that proposed to examine a wide range of the topics of interest to the electric utility industry. Each chosen utility was to design, implement and evaluate their own study in order to address questions of interest both to itself and to its applicable regulatory authority, whose approval was generally necessary for the study to proceed. The DOE Office of Energy Delivery and Electricity Reliability (OE), however, did set guidelines, both in the FOA and subsequently during the contracting period, for what would constitute an acceptable studymore » under the Grant. To assist in ensuring these guidelines were adhered to, OE requested that LBNL act as project manager for these Consumer Behavior Studies to achieve consistency of experimental design and adherence to data collection and reporting protocols across the ten utilities. As part of its role, LBNL formed technical advisory groups (TAG) to separately assist each of the utilities by providing technical assistance in all aspects of the design, implementation and evaluation of their studies. LBNL was also given a unique opportunity to perform a comprehensive, cross-study analysis that uses the customer-level interval meter and demographic data made available by these utilities due to SGIG-imposed reporting requirements, in order to analyze critical policy issues associated with AMI-enabled rates and control/information technology. LBNL will publish the results of these analyses in a series of research reports, of which this is one, that attempt to address critical policy issues relating to a variety of topics including customer acceptance, retention and load response to time-based rates and various forms of enabling control and information technologies. This report extends the existing empirical literature on the experiences of low-income customers exposed to critical peak pricing, and provides the first glimpses into the experiences of the elderly and those who reported being chronically ill. Specifically, we analyzed two of the time-based rate consumer behavior studies, which were co-funded by the Department of Energy as part of the Smart Grid Investment Grant program.« less
36. Photocopy of photograph (original print located in LBNL Photo ...
36. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. September 21, 1956. BEV-1154. DISCOVERERS OF ANTI-NEUTRON--(L. to R.) W. WENZEL, B. CORK, G. LAMBERTSON, AND O. PICCIONI, WITH FOCUS MAGNET. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
34. Photocopy of photograph (original print located in LBNL Photo ...
34. Photocopy of photograph (original print located in LBNL Photo Lab Collection). Photographer unknown. October 6, 1955. BEV-938. ANTI-PROTON SET-UP WITH WORK GROUP; E. SEGRE, C. WIEGAND, E. LOFGREN, O. CHAMBERLAIN, T. YPSILANTIS. B-51. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
25. Photocopy of engineering drawing (original drawing located in LBNL ...
25. Photocopy of engineering drawing (original drawing located in LBNL Building 90F Architecture and Engineering As-Built Collection). February 18, 1969. 4B51BK001. EXTERNAL PROTRON BEAM HALL. B51B FIRST FLOOR PLAN. - University of California Radiation Laboratory, Bevatron, 1 Cyclotron Road, Berkeley, Alameda County, CA
Regulations and Procedures Manual
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Lydia J.
The purpose of the Regulations and Procedures Manual (RPM) is to provide LBNL personnel with a reference to University and Lawrence Berkeley National Laboratory (LBNL or Laboratory) policies and regulations by outlining normal practices and answering most policy questions that arise in the day-to-day operations of Laboratory organizations. Much of the information in this manual has been condensed from detail provided in LBNL procedure manuals, Department of Energy (DOE) directives, and Contract DE-AC02-05CH11231. This manual is not intended, however, to replace any of those documents. RPM sections on personnel apply only to employees who are not represented by unions. Personnelmore » policies pertaining to employees represented by unions may be found in their labor agreements. Questions concerning policy interpretation should be directed to the LBNL organization responsible for the particular policy. A link to the Managers Responsible for RPM Sections is available on the RPM home page. If it is not clear which organization is responsible for a policy, please contact Requirements Manager Lydia Young or the RPM Editor.« less
Blasting Rocks and Blasting Cars: Applied Engineering (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Deborah
2004-06-30
Summer Lecture Series 2004: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.
Blasting Rocks and Blasting Cars: Applied Engineering (LBNL Summer Lecture Series)
Hopkins, Deborah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Engineering Division
2017-12-09
Summer Lecture Series 2004: Deb Hopkins works with industries like automobile, mining and paper to improve their evaluation and measuring techniques. For several years, she has coordinated a program at Berkeley Lab funded under the Partnership for a New Generation of Vehicles, a collaboration between the federal government and the U.S. Council for Automotive Research. Nondestructive evaluation techniques to test a car's structural integrity are being developed for auto assembly lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elbridge Gerry Puckett
All of the work conducted under the auspices of DE-FC02-01ER25473 was characterized by exceptionally close collaboration with researchers at the Lawrence Berkeley National Laboratory (LBNL). This included having one of my graduate students - Sarah Williams - spend the summer working with Dr. Ann Almgren a staff scientist in the Center for Computational Sciences and Engineering (CCSE) which is a part of the National Energy Research Supercomputer Center (NERSC) at LBNL. As a result of this visit Sarah decided to work on a problem suggested by Dr. John Bell the head of CCSE for her PhD thesis, which she finishedmore » in June 2007. Writing a PhD thesis while working at one of the University of California (UC) managed DOE laboratories is a long established tradition at the University of California and I have always encouraged my students to consider doing this. For example, in 2000 one of my graduate students - Matthew Williams - finished his PhD thesis while working with Dr. Douglas Kothe at the Los Alamos National Laboratory (LANL). Matt is now a staff scientist in the Diagnostic Applications Group in the Applied Physics Division at LANL. Another one of my graduate students - Christopher Algieri - who was partially supported with funds from DE-FC02-01ER25473 wrote am MS Thesis that analyzed and extended work published by Dr. Phil Colella and his colleagues in 1998. Dr. Colella is the head of the Applied Numerical Algorithms Group (ANAG) in the National Energy Research Supercomputer Center at LBNL and is the lead PI for the APDEC ISIC which was comprised of several National Laboratory research groups and at least five University PI's at five different universities. Chris Algieri is now employed as a staff member in Dr. Bill Collins' research group at LBNL developing computational models for climate change research. Bill Collins was recently hired at LBNL to start and be the Head of the Climate Science Department in the Earth Sciences Division at LBNL. Prior to this he had been a Deputy Section Head at the National Center for Atmospheric Research in Colorado. My understanding is that Chris Algieri is the first person that Bill hired after coming to LBNL. The plan is that Chris Algieri will finish his PhD thesis while employed as a staff scientist in Bill's group. Both Sarah and Chris were supported in part with funds from DE-FC02-01ER25473. In Sarah's case she received support both while at U.C. Davis (UCD) taking classes and writing an MS thesis and during some of the time she was living in Berkeley, working at LBNL and finishing her PhD thesis. In Chris' case he was at U.C. Davis during the entire time he received support from DE-FC02-01ER25473. More specific details of their work are included in the report below. Finally my own research conducted under the auspices of DE-FC02-01ER25473 either involved direct collaboration with researchers at LBNL - Phil Colella and Peter Schwartz who is a member of Phil's Applied Numerical Algorithms Group - or was on problems that are closely related to research that has been and continues to be conducted by researchers at LBNL. Specific details of this work can be found below. Finally, I would like to note that the work conducted by my students and me under the auspices of this contract is closely related to work that I have performed with funding from my DOE MICS contract DE-FC02-03ER25579 'Development of High-Order Accurate Interface Tracking Algorithms and Improved Constitutive Models for Problems in Continuum Mechanics with Applications to Jetting' and with my CoPI on that grant Professor Greg Miller of the Department of Applied Science at UCD. In theory I tried to use funds from the SciDAC grant DE-FC02-01ER25473 to support work that directly involved implementing algorithms developed by my research group at U.C. Davis in software that was developed and is maintained by my SciDAC CoPI's at LBNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Preston D.; Javandel, Iraj
This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow.more » Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.« less
Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs
NASA Astrophysics Data System (ADS)
Deyoreo, J.; Depaolo, D. J.
2009-12-01
It is becoming increasingly widely recognized that geologic sequestration of CO2, when combined with economical means of capture, may be one of the most effective approaches to reducing net CO2 emissions to the atmosphere over the next century. Injection of CO2 into saline geologic formations involves forcing a buoyant, low-viscosity fluid into a more dense, higher viscosity fluid. The difference in wetting properties of the two fluids, their partial miscibility, the fact that CO2 and H2O form an acid, and the heterogeneity of geologic formations combine to make the flow and transport details fascinating but difficult to fully characterize and predict. A major question is whether the flow of CO2 into subsurface formations, the efficiency of pore space filling, and the trapping efficiency can be not only predicted but controlled over the decades of injection that might be associated with the life of a power plant. The major technological gaps to controlling and ultimately sequestering subsurface CO2 can be traced to far-from-equilibrum processes that originate at the molecular and nanoscale, but are expressed as complex emergent behavior at larger scales. Essential knowledge gaps involve the effects of nanoscale confinement on material properties, flow and chemical reactions, the effects of nanoparticles, mineral surface dynamics, and microbiota on mineral dissolution/precipitation and fluid flow, and the dynamics of fluid-fluid and fluid-mineral interfaces. To address these scientific and technical challenges, the Energy Frontier Research Center recently established, involving collaboration between LBNL, ORNL, MIT, UC Berkeley, UC Davis and LLNL, will attempt to bring new approaches to the study of nanoscale phenomena in fluid-rock systems to bear on the problem of CO2 behavior in saline formations. The stated goal is to use molecular, nanoscale, and pore-network scale approaches to control flow, dissolution, and precipitation in deep subsurface rock formations to achieve the efficient filling of pore space while maximizing solubility and mineral trapping and reducing potential leakage. Advanced knowledge of these small-scale processes is an important step toward developing a next-generation predictive capability for reactive transport of CO2-brine systems. The Center involves scientists with expertise in hydrology, geochemistry, materials science, mineralogy, chemistry, microbiology, geophysics, and reactive transport modeling and simulation. This presentation will describe the initial stages of some of the research, which in total involves the use of synchrotron light sources, neutron scattering methods, NanoSIMS, molecular dynamics simulations, thermochemistry, molecular biology, nanotechnology, laboratory scale experiments, and advanced computation applied to flow and reactive transport in heterogeneous porous media. The Center for Nanoscale Control of Geologic CO2 key personnel: Director - D. DePaolo, Co-Director - J. DeYoreo; Research Area Leads - K. Knauss (LBNL), G. Waychunas (LBNL), J. Banfield (UCB/LBNL), A Navrotsky (UC Davis), F.J. Ryerson (LLNL); G. Sposito (UCB/LBNL), T. Tokunaga (LBNL), D. Cole (ORNL), C. Steefel (LBNL), D. Rothman (MIT), S. Pride (LBNL).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Alastair; Mathew, Paul A.; Regnier, Cynthia
This program manual contains detailed technical information for implementing an incentive program for task-ambient lighting and occupancy-based plug load control. This manual was developed by Lawrence Berkeley National Laboratory, in collaboration with the California Publicly-Owned Utilities (CA POUs) as a partner in the ‘Beyond Widgets’ program funded by the U.S. Department of Energy Building Technologies Office. The primary audience for this manual is the program staff of the various CA POUs. It may also be used by other utility incentive programs to help develop similar programs. It is anticipated that the content of this manual be utilized by the CAmore » POU staff for developing related documents such as the Technical Resource Manual and other filings pertaining to the rollout of an energy systems-based rebate incentive program.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garabedian, G.
This document details the decontamination and decommissioning (D&D) process of Rooms 248 and 250 of Building 62 at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL). The document describes the D&D efforts for the rooms, their contents, and adjacent areas containing ancillary equipment. The rooms and equipment, before being released, were required to meet the unrestricted release criteria and requirements set forth in DOE orders 5400.5 and 5480.11, LBNL`s internal release-criteria procedure (EH&S Procedure 708), and the LBNL Radiological Control Manual. The radioactive material and items not meeting the release criteria were either sent to the Hazardous Waste Handling Facilitymore » (HWHF) for disposal or transferred to other locations approved for radioactive material. The D&D was undertaken by the Radiation Protection Group of LBNL`s Environment, Health and Safety (EH&S) Division at the request of the Materials Sciences Division. Current and past use of radioactive material in both Rooms 248 and 250 necessitated the D&D in order to release both rooms for nonradioactive work. (1) Room 248 was designated a {open_quotes}controlled area.{close_quotes} There was contained radioactive material in some of the equipment. The previous occupants of Room 248 had worked with radioactive materials. (2) Room 250 was designated a {open_quotes}Radioactive Materials Management Area{close_quotes} (RMMA) because the current occupants used potentially dispersible radioisotopes. Both laboratories, during the occupancy of U.C. Berkeley Professor Leo Brewer and Ms. Karen Krushwitz, were kept in excellent condition. There was a detailed inventory of all radioactive materials and chemicals. All work and self surveys were documented. The labs were kept extremely orderly, clean, and in compliance. In October 1993 Ms. Krushwitz received an award in recognition of her efforts in Environmental Protection, Health, and Safety at LBNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, Cindy; Settlemyre, Kevin
The University of South Carolina (USC), a public university in Columbia, South Carolina, partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to build a new, low-energy educational building. The new Darla Moore School of Business (DMSB) will consume at least 50% less energy than requirements set by Energy Standard 90.1-2007 of the American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE), the American National Standards Institute (ANSI), and the Illuminating Engineering Society of North America (IESNA) as part of DOE's Commerical Building Partnerships (CBP) program. 4 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise inmore » support of this DOE program.« less
Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division
2018-05-07
Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.
Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)
Leemans, Wim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Accelerator and Fusion Research Division (AFRD) and Laser Optics and Accelerator Systems Integrated Studies (LOASIS)
2018-05-04
Summer Lecture Series 2008: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.
Accelerating Into the Future: From 0 to GeV in a Few Centimeters (LBNL Summer Lecture Series)
Leemans, Wim [LOASIS Program, AFRD
2017-12-09
July 8, 2008 Berkeley Lab lecture: By exciting electric fields in plasma-based waveguides, lasers accelerate electrons in a fraction of the distance conventional accelerators require. The Accelerator and Fusion Research Division's LOASIS program, headed by Wim Leemans, has used 40-trillion-watt laser pulses to deliver billion-electron-volt (1 GeV) electron beams within centimeters. Leemans looks ahead to BELLA, 10-GeV accelerating modules that could power a future linear collider.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-01-01
PETRO Project: LBNL is modifying tobacco to enable it to directly produce fuel molecules in its leaves for use as a biofuel. Tobacco is a good crop for biofuels production because it is an outstanding biomass crop, has a long history of cultivation, does not compete with the national food supply, and is highly responsive to genetic manipulation. LBNL will incorporate traits for hydrocarbon biosynthesis from cyanobacteria and algae, and enhance light utilization and carbon uptake in tobacco, improving the efficiency of photosynthesis so more fuel can be produced in the leaves. The tobacco-generated biofuels can be processed for gasoline,more » jet fuel or diesel alternatives. LBNL is also working to optimize methods for planting, cultivating and harvesting tobacco to increase biomass production several-fold over the level of traditional growing techniques.« less
Office of the Chief Financial Officer Strategic Plan2008-2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Various
2007-11-19
This is an update to the Office of the Chief Financial Officer's (OCFO's) multi-year strategy to continue to build a highly effective, efficient and compliant financial and business approach to support the scientific mission of Lawrence Berkeley National Laboratory (LBNL). The guiding principles of this strategy are to provide the greatest capability for the least cost while continually raising the standards of professional financial management in service to the LBNL science mission.
Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)
Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Ecology Dept.
2018-01-23
Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.
Bioremediation: Hope/Hype for Environmental Cleanup (LBNL Summer Lecture Series)
Hazen, Terry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Ecology Dept.
2018-05-04
Summer Lecture Series 2007: Terry Hazen, Senior Staff Scientists and Head of the LBNL Ecology Department, discusses when it's best to resort to engineered bioremediation of contaminated sites, and when it's best to rely on natural attenuation. Recent advances have greatly broadened the potential applications for bioremediation. At the same time, scientists' knowledge of biogeochemical processes has advanced and they can better gauge how quickly and completely contaminants can be degraded without human intervention.
Multi-Year Analysis Examines Costs, Benefits, and Impacts of Renewable Portfolio Standards
DOE Office of Scientific and Technical Information (OSTI.GOV)
As states consider revising renewable portfolio standard (RPS) programs or developing new ones, careful assessments of the costs, benefits, and other impacts of existing policies will be critical. RPS programs currently exist in 29 states and Washington, D.C. Many of these policies, which were enacted largely during the late 1990s and 2000s, will reach their terminal targets by the end of this decade. The National Renewable Energy Laboratory (NREL) and Lawrence Berkeley National Laboratory (LBNL) are engaged in a multi-year project to examine the costs, benefits, and other impacts of state RPS polices both retrospectively and prospectively. This fact sheetmore » overviews this work.« less
Design of Standards and Labeling programs in Chile: Techno-Economic Analysis for Refrigerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie E.; McNeil, Michael A.; Pavon, Mariana
2013-05-01
Lawrence Berkeley National Laboratory is a global leader in the study of energy efficiency and its effective implementation through government policy. The Energy Analysis and Environmental Impacts Department of LBNL’s Environmental Energy Technologies Division provides technical assistance to help federal, stat e and local government agencies in the United States, and throughout the world, develop long-term strategies, policy, and programs to encourage energy efficiency in all sectors and industries. In the past, LBNL has assisted staff of various countries government agencies and their con tractors in providing methodologies to analyze cost-effectiveness of regulations and asses s overall national impacts ofmore » efficiency programs. The paper presents the work done in collaboration with the Ministry of Energy (MoE) in Chile and the Collaborative Labeling Appliance Standards Programs (CLASP) on designing a Minimum Energy Performance Standards (MEPS) and ext ending the current labeling program for refrigerators.« less
Magnetic Measurements of the First Nb 3Sn Model Quadrupole (MQXFS) for the High-Luminosity LHC
DiMarco, J.; Ambrosio, G.; Chlachidze, G.; ...
2016-12-12
The US LHC Accelerator Research Program (LARP) and CERN are developing high-gradient Nb 3Sn magnets for the High Luminosity LHC interaction regions. Magnetic measurements of the first 1.5 m long, 150 mm aperture model quadrupole, MQXFS1, were performed during magnet assembly at LBNL, as well as during cryogenic testing at Fermilab’s Vertical Magnet Test Facility. This paper reports on the results of these magnetic characterization measurements, as well as on the performance of new probes developed for the tests.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
Chemical properties of the transactinide elements studied inliquid phase with SISAK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omtvedt, J.P.; Alstad, J.; Bjornstad, T.
2007-05-01
This article starts with a review of the current SISAKliquid-liquid extraction system, as used after the physical preseparatorBGS at LBNL for chemical studies of transactinide elements. Emphasis willbe on new additions and developments. Then the possibilities offered bythe new TASCA separator at GSI and the use of actinide targets at bothGSI and LBNL are discussed with respect to future SISAK transactinideexperiments. Finally, current and future liquid-liquid extraction systemsfor studying elements Rf up to Hs are discussed.
NASA Astrophysics Data System (ADS)
2008-04-01
Local Organising Committee Xiangzhou Cai (SINPA) Weiqin Chao (CCAST) Liewen Chen (SJTU) Jianping Cheng (Tsinghua University) Jinghua Fu (CCNU) Yuanning Gao (Tsinghua University) Xiaomei Li (CIAE) Zuotang Liang (Shandong University) Feng Liu (CCNU), Co-chair Yuxin Liu (PKU) Qing Wang (Tsinghua University) Qun Wang (USTC) Hushan Xu (IMP) Daicui Zhou (CCNU) Pengfei Zhuang (Tsinghua University), Co-chair Bingsong Zou (IHEP) International Advisory Committee Jörg Aichelin, Nantes Federico Antinori, Padova Tamás Biró, Budapest Peter Braun-Munzinger, GSI Jean Cleymans, Cape Town László Csernai, Bergen Timothy Hallman, BNL Huan Zhong Huang, UCLA Takeshi Kodama, Rio de Janeiro Carlos Lourenço, CERN Yu-Gang Ma, Shanghai Jes Masden, Aarhus Yasuo Miake, Tsukuba Berndt Müller, Duke Grazyna Odyniec, LBNL Helmut Oeschler, Darmstadt Johann Rafelski, Arizona Hans Georg Ritter, LBNL Karel Šafařík, CERN Jack Sandweiss, Yale George S F Stephans, MIT Horst Stöcker, Frankfurt Thomas Ullrich, BNL Nu Xu, LBNL William A Zajc, Columbia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenzel, Tom P.
The Department of Energy’s (DOE) Vehicle Technologies Office funds research on development of technologies to improve the fuel economy of both light- and heavy-duty vehicles, including advanced combustion systems, improved batteries and electric drive systems, and new lightweight materials. Of these approaches to increase fuel economy and reduce fuel consumption, reducing vehicle mass through more extensive use of strong lightweight materials is perhaps the easiest and least expensive method; however, there is a concern that reducing vehicle mass may lead to more fatalities. Lawrence Berkeley National Laboratory (LBNL) has conducted several analyses to better understand the relationship between vehicle mass,more » size and safety, in order to ameliorate concerns that down-weighting vehicles will inherently lead to more fatalities. These analyses include recreating the regression analyses conducted by the National Highway Traffic Safety Administration (NHTSA) that estimate the relationship between mass reduction and U.S. societal fatality risk per vehicle mile of travel (VMT), while holding vehicle size (i.e. footprint, wheelbase times track width) constant; these analyses are referred to as LBNL Phase 1 analysis. In addition, LBNL has conducted additional analysis of the relationship between mass and the two components of risk per VMT, crash frequency (crashes per VMT) and risk once a crash has occurred (risk per crash); these analyses are referred to as LBNL Phase 2 analysis.« less
Laboratory Directed Research and Development Program FY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen
2007-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less
Air Leakage of US Homes: Regression Analysis and Improvements from Retrofit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Wanyu R.; Joh, Jeffrey; Sherman, Max H.
2012-08-01
LBNL Residential Diagnostics Database (ResDB) contains blower door measurements and other diagnostic test results of homes in United States. Of these, approximately 134,000 single-family detached homes have sufficient information for the analysis of air leakage in relation to a number of housing characteristics. We performed regression analysis to consider the correlation between normalized leakage and a number of explanatory variables: IECC climate zone, floor area, height, year built, foundation type, duct location, and other characteristics. The regression model explains 68% of the observed variability in normalized leakage. ResDB also contains the before and after retrofit air leakage measurements of approximatelymore » 23,000 homes that participated in weatherization assistant programs (WAPs) or residential energy efficiency programs. The two types of programs achieve rather similar reductions in normalized leakage: 30% for WAPs and 20% for other energy programs.« less
Preface to the Special Issue on TOUGH Symposium 2015
NASA Astrophysics Data System (ADS)
Blanco-Martín, Laura
2017-11-01
The TOUGH Symposium 2015 was held in Berkeley, California, September 28-30, 2015. The TOUGH family of codes, developed at the Energy Geosciences Division of Lawrence Berkeley National Laboratory (LBNL), is a suite of computer programs for the simulation of multiphase and multicomponent fluid and heat flows in porous and fractured media with applications in many geosciences fields, such as geothermal reservoir engineering, nuclear waste disposal, geological carbon sequestration, oil and gas reservoirs, gas hydrate research, vadose zone hydrology and environmental remediation. Since the first release in the 1980s, many modifications and enhancements have been continuously made to TOUGH and its various descendants (iTOUGH2, TOUGH+, TOUGH-MP, TOUGHREACT, TOUGH+HYDRATE, TMVOC...), at LBNL and elsewhere. Today, these codes are used worldwide in academia, government organizations and private companies in problems involving coupled hydrological, thermal, biogeochemical and geomechanical processes. The Symposia, organized every 2-3 years, bring together developers and users for an open exchange on recent code enhancements and applications. In 2015, the Symposium was attended by one hundred participants, representing thirty-four nationalities. This Special Issue in Computers & Geosciences gathers extended versions of selected Symposium proceedings related to (i) recent enhancements to the TOUGH family of codes and (ii) coupled flow and geomechanics processes modeling.
Preliminary Ionization Efficiencies of {sup 11}C and {sup 14}O with the LBNL ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Z.Q.; Cerny, J.; Guo, F.Q.
1998-10-05
High charge states, up to fully stripped {sup 11}C and {sup 14}O ion, beams have been produced with the electron cyclotron resonance ion sources (LBNL, ECR and AECR-U) at Lawrence Berkeley National Laboratory. The radioactive atoms of {sup 11}C and {sup 14}O were collected in batch mode with an LN{sub 2} trap and then bled into the ECR ion sources. Ionization efficiency as high as 11% for {sup 11}C{sup 4+} was achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffman, Ian M.
With rising interest in lowering energy costs for low- and moderate-income households, the U.S. Department of Energy (DOE) asked Lawrence Berkeley National Laboratory (LBNL) to assess the implications of pursuing energy efficiency neighborhood-by-neighborhood where those households are most prevalent. DOE provided certain scenarios for qualifying geographic areas as “low- and moderate-income communities,” and LBNL used data on demographics, housing types and recent savings from low-income retrofits or weatherization to provide rough electricity savings estimates under those scenarios.
NASA Astrophysics Data System (ADS)
Goto, J.; Moriya, T.; Yoshimura, K.; Tsuchi, H.; Karasaki, K.; Onishi, T.; Ueta, K.; Tanaka, S.; Kiho, K.
2010-12-01
The Nuclear Waste Management Organization of Japan (NUMO), in collaboration with Lawrence Berkeley National Laboratory (LBNL), has carried out a project to develop an efficient and practical methodology to characterize hydrologic property of faults since 2007, exclusively for the early stage of siting a deep underground repository. A preliminary flowchart of the characterization program and a classification scheme of fault hydrology based on the geological feature have been proposed. These have been tested through the field characterization program on the Wildcat Fault in Berkeley, California. The Wildcat Fault is a relatively large non-active strike-slip fault which is believed to be a subsidiary of the active Hayward Fault. Our classification scheme assumes the contrasting hydrologic features between the linear northern part and the split/spread southern part of the Wildcat Fault. The field characterization program to date has been concentrated in and around the LBNL site on the southern part of the fault. Several lines of electrical and reflection seismic surveys, and subsequent trench investigations, have revealed the approximate distribution and near-surface features of the Wildcat Fault (see also Onishi, et al. and Ueta, et al.). Three 150m deep boreholes, WF-1 to WF-3, have been drilled on a line normal to the trace of the fault in the LBNL site. Two vertical holes were placed to characterize the undisturbed Miocene sedimentary formations at the eastern and western sides of the fault (WF-1 and WF-2 respectively). WF-2 on the western side intersected the rock formation, which was expected only in WF-1, and several of various intensities. Therefore, WF-3, originally planned as inclined to penetrate the fault, was replaced by the vertical hole further to the west. It again encountered unexpected rocks and faults. Preliminary results of in-situ hydraulic tests suggested that the transmissivity of WF-1 is ten to one hundred times higher than WF-2. The monitoring of hydraulic pressure displayed different head distribution patterns between WF-1 and WF-2 (see also Karasaki, et al.). Based on these results, three hypotheses on the distribution of the Wildcat Fault were proposed: (a) a vertical fault in between WF-1 and WF-2, (b) a more gently dipping fault intersected in WF-2 and WF-3, and (c) a wide zone of faults extending between WF-1 and WF-3. At present, WF-4, an inclined hole to penetrate the possible (eastern?) master fault, is ongoing to test these hypotheses. After the WF-4 investigation, hydrologic and geochemical analyses and modeling of the southern part of the fault will be carried out. A simpler field characterization program will also be carried out in the northern part of the fault. Finally, all the results will be synthesized to improve the comprehensive methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jiang; Li, Tienan; Li, Aizhen
With the popularization of household electrical appliances and the rapid development of office automation and networking, a huge number of consumer electronic devices, computers, copiers, and fax machines have been put into use in China over the last two decades. These products almost all use a certain amount of standby power--the power that is consumed when a device is connected but not performing its primary function. The rapid growth of standby energy consumption due to these products--and the consequent environmental problems--has attracted more and more attentions from researchers and from many government and international agencies. Numerous countries have developed policiesmore » and measures to restrict and reduce standby energy consumption (US EPA, 2004, IEA, 2001, and GEEA, 2004). However, standby energy consumption is still a new concept for Chinese consumers and the phenomenon of ''unconscious waste of energy'' is still very common in the people's daily life and work. With the goal of reducing China's standby energy consumption, China Certification Center for Energy Conservation Products (CECP) and the Lawrence Berkeley National Laboratory (LBNL) have, under the sponsorship of the Energy Foundation (EF), entered into a collaboration to develop technical requirements for CECP's labeling program for consumer electronics and office equipment. These technical requirements will be used to qualify products for CECP's energy efficiency endorsement label in China. In the phase I of this collaborative project, CECP and LBNL conducted technical and economic research on televisions and printers in China. Based on the results of this research, CECP developed specifications for, and carried out corresponding energy conservation certifications for these two products. CECP's standby power certification program has made impressive gains in China. Leading manufacturers, such as Haier, Hesons, TCL, Chuangwei, Lenovo, EPSON, Fujitsu, and Brother have participated in CECP's certification activities. Media events organized by CECP have greatly improved the country's awareness of standby power loss. Reducing standby power loss has been formally incorporated into China's energy efficiency policy portfolio and in China's collaboration with the international community on the subject of energy efficiency (IEA, 2001). In phase II of the program, CECP's main task was to assess the market for DVD/VCD (Digital Versatile/Video Disc and Video Compact Disc) players and copiers to analyze the economic and technical benefits of energy conservation potential, and to develop technical specifications for DVD/VCD players and copiers, with technical assistance from LBNL. Having built on the success of Phase I, CECP paid great attention to the appraisal of market conditions and the economic and environmental benefits of reducing standby power loss in DVD/VCD players and copiers, and solicited inputs from stakeholders before finalizing the product certification requirements. This paper summarizes the expected energy conservation and environmental benefits due to the implementation of certification programs for DVD/VCD players and copiers in China.« less
Cable testing for Fermilab's high field magnets using small racetrack coils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feher, S.; Ambrosio, G.; Andreev, N.
As part of the High Field Magnet program at Fermilab simple magnets have been designed utilizing small racetrack coils based on a sound mechanical structure and bladder technique developed by LBNL. Two of these magnets have been built in order to test Nb{sub 3}Sn cables used in cos-theta dipole models. The powder-in-tube strand based cable exhibited excellent performance. It reached its critical current limit within 14 quenches. Modified jelly roll strand based cable performance was limited by magnetic instabilities at low fields as previously tested dipole models which used similar cable.
Application of the Software as a Service Model to the Control of Complex Building Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Donadee, Jonathan; Marnay, Chris
2011-03-17
In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building.more » The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analysed.« less
Application of the Software as a Service Model to the Control of Complex Building Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stadler, Michael; Donadee, Jon; Marnay, Chris
2011-03-18
In an effort to create broad access to its optimization software, Lawrence Berkeley National Laboratory (LBNL), in collaboration with the University of California at Davis (UC Davis) and OSISoft, has recently developed a Software as a Service (SaaS) Model for reducing energy costs, cutting peak power demand, and reducing carbon emissions for multipurpose buildings. UC Davis currently collects and stores energy usage data from buildings on its campus. Researchers at LBNL sought to demonstrate that a SaaS application architecture could be built on top of this data system to optimize the scheduling of electricity and heat delivery in the building.more » The SaaS interface, known as WebOpt, consists of two major parts: a) the investment& planning and b) the operations module, which builds on the investment& planning module. The operational scheduling and load shifting optimization models within the operations module use data from load prediction and electrical grid emissions models to create an optimal operating schedule for the next week, reducing peak electricity consumption while maintaining quality of energy services. LBNL's application also provides facility managers with suggested energy infrastructure investments for achieving their energy cost and emission goals based on historical data collected with OSISoft's system. This paper describes these models as well as the SaaS architecture employed by LBNL researchers to provide asset scheduling services to UC Davis. The peak demand, emissions, and cost implications of the asset operation schedule and investments suggested by this optimization model are analyzed.« less
NASA Astrophysics Data System (ADS)
Bunker, K.; Casuccio, G.; Lersch, T.; Ogle, R.; Wahl, L.
2009-12-01
Nanotechnology and the use of unbound engineered nanoparticles (UNP) is a rapidly developing area of materials science. UNP are defined as engineered nanoparticles that are not contained within a matrix that would prevent the nanoparticles from being mobile and a potential source of exposure. At this time there are no regulatory environmental release limits or worker exposure limits for UNP. The Lawrence Berkeley National Laboratory (LBNL) has initiated a study to evaluate worker exposure and potential environmental release of UNP related to various research activities at LBNL. The study is being performed to help identify and manage potential health and safety hazards as well as environmental impacts related to UNP. A key component of the study is the characterization of starting (source) UNP materials to assist in the determination of worker exposure and environmental release. Analysis of the starting materials is being used to establish source signatures. The source signatures will then be used in the evaluation of worker exposure and environmental release. This presentation will provide an overview of the LBNL study with a focus on the methodologies being used to analyze the samples.
Laboratory directed research and development program FY 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Todd; Levy, Karin
2000-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less
quantifying and Predicting Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter C. Burns, Department of Civil Engineering and Geological Sciences, University of Notre Dame
2009-12-04
This project was led by Dr. Jiamin Wan at Lawrence Berkeley National Laboratory. Peter Burns provided expertise in uranium mineralogy and in identification of uranium minerals in test materials. Dr. Wan conducted column tests regarding uranium transport at LBNL, and samples of the resulting columns were sent to Dr. Burns for analysis. Samples were analyzed for uranium mineralogy by X-ray powder diffraction and by scanning electron microscopy, and results were provided to Dr. Wan for inclusion in the modeling effort. Full details of the project can be found in Dr. Wan's final reports for the associated effort at LBNL.
ARM Carbon Cycle Gases Flasks at SGP Site
Biraud, Sebastien
2013-03-26
Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.
NASA Astrophysics Data System (ADS)
2008-04-01
Local Organizing Committee Takeshi Kodama Chair, UFRJ Jun Takahashi Co-chair, UNICAMP Ignácio Bediaga e Hickman CBPF Eduardo Fraga UFRJ Frederique Grassi USP Yogiro Hama USP Gastão Krein IFT Erasmo Madureira Ferreira UFRJ Marcelo G. Munhoz USP Fernando Navarra USP Sandra Padula IFT Alejandro Szanto de Toledo USP César Augusto Zen Vasconcellos UFRGS International Advisory Committee Jörg Aichelin Nantes Federico Antinori Padova Tamás Biró Budapest Peter Braun-Munzinger GSI Jean Cleymans Cape Town Láaszló Csernai Bergen Timothy Hallman BNL Huan Zhong Huang UCLA Takeshi Kodama Rio de Janeiro Yu-Gang Ma Shanghai Jes Madsen Aarhus Ágnes Mócsy Pratt University Berndt Müller Duke University Grazyna Odyniec LBNL Helmut Oeschler Darmstadt Johann Rafelski Arizona Hans Georg Ritter LBNL Gunther Rolland MIT Karel Šafařík CERN Ladislav Sandor Kosice University Jack Sandweiss Yale University George S F Stephans MIT Horst Stöcker Frankfurt Larry McLerranBNL Helmut Satz Universitä Bielefeld Nu Xu LBNL Fuqiang Wang Purdue University William A. Zajc Columbia University Pengfei Zhuang Tsinghua University
NASA Astrophysics Data System (ADS)
Goto, J.; Miwa, T.; Tsuchi, H.; Karasaki, K.
2009-12-01
The Nuclear Waste Management Organization of Japan (NUMO), after volunteering municipalities arise, will start a three-staged program for selecting a HLW and TRU waste repository site. It is recognized from experiences from various site characterization programs in the world that the hydrologic property of faults is one of the most important parameters in the early stage of the program. It is expected that numerous faults of interest exist in an investigation area of several tens of square kilometers. It is, however, impossible to characterize all these faults in a limited time and budget. This raises problems in the repository designing and safety assessment that we may have to accept unrealistic or over conservative results by using a single model or parameters for all the faults in the area. We, therefore, seek to develop an efficient and practical methodology to characterize hydrologic property of faults. This project is a five year program started in 2007, and comprises the basic methodology development through literature study and its verification through field investigations. The literature study tries to classify faults by correlating their geological features with hydraulic property, to search for the most efficient technology for fault characterization, and to develop a work flow diagram. The field investigation starts from selection of a site and fault(s), followed by existing site data analyses, surface geophysics, geological mapping, trenching, water sampling, a series of borehole investigations and modeling/analyses. Based on the results of the field investigations, we plan to develop a systematic hydrologic characterization methodology of faults. A classification method that correlates combinations of geological features (rock type, fault displacement, fault type, position in a fault zone, fracture zone width, damage zone width) with widths of high permeability zones around a fault zone was proposed through a survey on available documents of the site characterization programs. The field investigation started in 2008, by selecting the Wildcat Fault that cut across the Laurence Berkeley National Laboratory (LBNL) site as the target. Analyses on site-specific data, surface geophysics, geological mapping and trenching have confirmed the approximate location and characteristics of the fault (see Session H48, Onishi, et al). The plan for the remaining years includes borehole investigations at LBNL, and another series of investigations in the northern part of the Wildcat Fault.
Performance of Charcoal Cookstoves for Haiti Part 1: Results from the Water Boiling Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booker, Kayje; Han, Tae Won; Granderson, Jessica
2011-06-01
In April 2010, a team of scientists and engineers from Lawrence Berkeley National Lab (LBNL) and UC Berkeley, with support from the Darfur Stoves Project (DSP), undertook a fact-finding mission to Haiti in order to assess needs and opportunities for cookstove intervention. Based on data collected from informal interviews with Haitians and NGOs, the team, Scott Sadlon, Robert Cheng, and Kayje Booker, identified and recommended stove testing and comparison as a high priority need that could be filled by LBNL. In response to that recommendation, five charcoal stoves were tested at the LBNL stove testing facility using a modified formmore » of version 3 of the Shell Foundation Household Energy Project Water Boiling Test (WBT). The original protocol is available online. Stoves were tested for time to boil, thermal efficiency, specific fuel consumption, and emissions of CO, CO{sub 2}, and the ratio of CO/CO{sub 2}. In addition, Haitian user feedback and field observations over a subset of the stoves were combined with the experiences of the laboratory testing technicians to evaluate the usability of the stoves and their appropriateness for Haitian cooking. The laboratory results from emissions and efficiency testing and conclusions regarding usability of the stoves are presented in this report.« less
Renewable Energy from Synthetic Biology (LBNL Science at the Theater)
Keasling, Jay [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-25
Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in work funded by the Bill & Melinda Gates Foundation.
Renewable Energy from Synthetic Biology (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keasling, Jay
2007-06-04
Jay Keasling, co-leader of Berkeley Lab's Helios Project, is a groundbreaking researcher in the new scientific field of synthetic biology. In Helios, he directs the biology program, incorporating a range of approaches to increasing the efficacy and economy of plants and cellulose-degrading microbes to make solar-based fuels. He is a UC Berkeley professor of Chemical and Bioengineering, and founder of Amyris Biotechnologies, a company that was honored as a Technology Pioneer for 2006 by the World Economic Forum. Keasling has succeeded in using synthetic biology to develop a yeast-based production scheme for precursors of the antimalarial drug artemisinin in workmore » funded by the Bill & Melinda Gates Foundation.« less
Saving Power at Peak Hours (LBNL Science at the Theater)
Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-23
California needs new, responsive, demand-side energy technologies to ensure that periods of tight electricity supply on the grid don't turn into power outages. Led by Berkeley Lab's Mary Ann Piette, the California Energy Commission (through its Public Interest Energy Research Program) has established a Demand Response Research Center that addresses two motivations for adopting demand responsiveness: reducing average electricity prices and preventing future electricity crises. The research seeks to understand factors that influence "what works" in Demand Response. Piette's team is investigating the two types of demand response, load response and price response, that may influence and reduce the use of peak electric power through automated controls, peak pricing, advanced communications, and other strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, Cindy; Harding, Ari; Robinson, Alastair
The University of Hawai’i at Mānoa (UHM) partnered with the US Department of Energy (DOE) and the Hawai`i Clean Energy Initiative to develop and implement solutions to retrofit exiting buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program1. Kuykendall Hall, located on the UHM campus in Honolulu, was the focus of a CBP analysis and design collaboration among the University of Hawai’i, their consultants, and Lawrence Berkeley National Laboratory (LBNL). Kuykendall Hall consists of two 1960s-era wings – a four-story wing containing classrooms, and a seven-story tower containing offices – withmore » a total floor area of approximately 76,000 square feet (ft²).« less
A New Campus Built on Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Ari; Mercado, Andrea; Regnier, Cindy
2015-08-01
The University of California (UC), Merced partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to reduce energy consumption by as part of DOE’s Commercial Buildings Partnerships (CBP) Program. Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. This case study reports on the process and outcome of this project including the achieved savings from design improvements for the campus. The intent of the project was to retrofit the Science & Engineering (S&E) building and the central plant at UC Merced to achieve up to 30% energy reduction. The anticipated savingsmore » from these retrofits represented about 17% of whole-campus energy use. If achieved, the savings contribution from the CBP project would have brought overall campus performance to 56% of the 1999 UC/CSU benchmark performance for their portfolio of buildings. However, the final design that moved forward as part of the CBP program only included the retrofit measures for the S&E building.« less
Site Environmental Report for 2006. Volume I, Environment, Health, and Safety Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2007-09-30
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2006 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2006. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters thatmore » contain an overview of the Laboratory, a discussion of the Laboratory’s environmental management system, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from surveillance and monitoring activities.« less
Site Environmental Report for 2011, Volumes 1& 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskin, David; Bauters, Tim; Borglin, Ned
2012-09-12
The Site Environmental Report for 2011 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2011. Throughout this report, “Berkeley Lab” or “LBNL” refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in the hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that includemore » an overview of LBNL, a discussion of its Environmental Management System (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluswar, Shashi
Shashi Buluswar, Executive Director at the LBNL Institute for Globally Transformative Technologies, answers a question from Ashley on why healthy food costs so much and is not available in low-income neighborhoods.
Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections 2015 Edition
Feldman, David; Barbose, Galen; Margolis, Robert; Bolinger, Mark; Chung, Donald; Fu, Ran; Seel, Joachim; Davidson, Carolyn; Wiser, Ryan
2016-05-13
This is the fourth edition in an annual briefing prepared jointly by LBNL and NREL intended to provide a high-level overview of historical, recent, and projected near-term PV system pricing trends in the United States. The briefing draws on several ongoing research activities at the two labs, including LBNL's annual Tracking the Sun report series, NREL's bottom-up PV cost modeling, and NREL's synthesis of PV market data and projections. The briefing examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and integrates different perspectives and methodologies for characterizing PV system pricing, in order to provide a broader perspective on underlying trends within the industry.
Northwest Open Automated Demand Response Technology Demonstration Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao
The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibilitymore » of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.« less
Characterization of the LBNL PEM Camera
NASA Astrophysics Data System (ADS)
Wang, G.-C.; Huber, J. S.; Moses, W. W.; Qi, J.; Choong, W.-S.
2006-06-01
We present the tomographic images and performance measurements of the LBNL positron emission mammography (PEM) camera, a specially designed positron emission tomography (PET) camera that utilizes PET detector modules with depth of interaction measurement capability to achieve both high sensitivity and high resolution for breast cancer detection. The camera currently consists of 24 detector modules positioned as four detector banks to cover a rectangular patient port that is 8.2/spl times/6 cm/sup 2/ with a 5 cm axial extent. Each LBNL PEM detector module consists of 64 3/spl times/3/spl times/30 mm/sup 3/ LSO crystals coupled to a single photomultiplier tube (PMT) and an 8/spl times/8 silicon photodiode array (PD). The PMT provides accurate timing, the PD identifies the crystal of interaction, the sum of the PD and PMT signals (PD+PMT) provides the total energy, and the PD/(PD+PMT) ratio determines the depth of interaction. The performance of the camera has been evaluated by imaging various phantoms. The full-width-at-half-maximum (FWHM) spatial resolution changes slightly from 1.9 mm to 2.1 mm when measured at the center and corner of the field of the view, respectively, using a 6 ns coincidence timing window and a 300-750 keV energy window. With the same setup, the peak sensitivity of the camera is 1.83 kcps//spl mu/Ci.
Common Ground - Kansas Climate and Energy Project Connects with the Heartland
None
2018-01-11
In 2010, Lawrence Berkeley National Laboratory (LBNL) electricity-market, policy and consumer behavior expert Merrian Fuller singled out a small environmental organization in Kansas-- the Climate and Energy Project (CEP)-- as an outstanding example of how you change behavior on energy efficiency and reduce carbon emissions through an apolitical emphasis on heartland values. In the summer of 2011, a team from LBNL, seeking to capture what Fuller had featured in her report Driving Demand for Home Energy Improvement, visited Kansas. Speaking with CEP's Nancy Jackson and Dorothy Barnett, as well as farmers, small business owners, politicians and others, the team produced this video, which shows how and why CEP has become an inspiration to other environmental organizations that are seeking to change behavior where climate-change skepticism abounds.
Summary of Information and Resources Related to Energy Use in Healthcare Facilities - Version 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Brett C.; Coughlin, Jennifer L.; Mathew, Paul A.
This document presents the results of a review of publicly available information on energy use in health care facilities. The information contained in this document and in the sources cited herein provides the background and context for efforts to reduce energy use and costs in health care. Recognizing the breadth and diversity of relevant information, the author acknowledges that the report is likely not comprehensive. It is intended only to present a broad picture of what is currently known about health care energy use. This review was conducted as part of a 'High Performance Health Care Buildings' research study fundedmore » by the California Energy Commission. The study was motivated by the recognition that health care facilities collectively account for a substantial fraction of total commercial building energy use, due in large part to the very high energy intensity of hospitals and other inpatient care facilities. The goal of the study was to develop a roadmap of research, development and deployment (RD&D) needs for the health care industry. In addition to this information review, the road map development process included interviews with industry experts and a full-day workshop at LBNL in March 2009. This report is described as 'Version 1' with the intent that it will be expanded and updated as part of an ongoing LBNL program in healthcare energy efficiency. The document is being released in this form with the hope that it can assist others in finding and accessing the resources described within.« less
Assessing Energy Efficiency Opportunities in US Industrial and Commercial Building Motor Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Prakash; Sheaffer, Paul; McKane, Aimee
2015-09-01
In 2002, the United States Department of Energy (USDOE) published an energy efficiency assessment of U.S. industrial sector motor systems titled United States Industrial Electric Motor Systems Market Opportunities Assessment. The assessment advanced motor system efficiency by providing a greater understanding of the energy consumption, use characteristics, and energy efficiency improvement potential of industrial sector motor systems in the U.S. Since 2002, regulations such as Minimum Energy Performance Standards, cost reductions for motor system components such as variable frequency drives, system-integrated motor-driven equipment, and awareness programs for motor system energy efficiency have changed the landscape of U.S. motor system energymore » consumption. To capture the new landscape, the USDOE has initiated a three-year Motor System Market Assessment (MSMA), led by Lawrence Berkeley National Laboratory (LBNL). The MSMA will assess the energy consumption, operational and maintenance characteristics, and efficiency improvement opportunity of U.S. industrial sector and commercial building motor systems. As part of the MSMA, a significant effort is currently underway to conduct field assessments of motor systems from a sample of facilities representative of U.S. commercial and industrial motor system energy consumption. The Field Assessment Plan used for these assessments builds on recent LBNL research presented at EEMODS 2011 and EEMODS 2013 using methods for characterizing and determining regional motor system energy efficiency opportunities. This paper provides an update on the development and progress of the MSMA, focusing on the Field Assessment Plan and the framework for assessing the global supply chain for emerging motors and drive technologies.« less
Particle-in-cell/accelerator code for space-charge dominated beam simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
2012-05-08
Warp is a multidimensional discrete-particle beam simulation program designed to be applicable where the beam space-charge is non-negligible or dominant. It is being developed in a collaboration among LLNL, LBNL and the University of Maryland. It was originally designed and optimized for heave ion fusion accelerator physics studies, but has received use in a broader range of applications, including for example laser wakefield accelerators, e-cloud studies in high enery accelerators, particle traps and other areas. At present it incorporates 3-D, axisymmetric (r,z) planar (x-z) and transverse slice (x,y) descriptions, with both electrostatic and electro-magnetic fields, and a beam envelope model.more » The code is guilt atop the Python interpreter language.« less
Press and Public Interest IceCube Acronym Dictionary Articles about IceCube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public Interest A New Window on the Universe Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Daniel W.; Ambrosio, Giorgio; Anderssen, Eric C.
Here, the LHC accelerator research program (LARP), in collaboration with CERN and under the scope of the high luminosity upgrade of the Large Hadron Collider, is in the prototyping stage in the development of a 150 mm aperture high-field Nb 3Sn quadrupole magnet called MQXF. This magnet is mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP, as well as in the more recent short (1.2 m magnetic length) MQXF model program. The MQXFA magnets are each 4.2 m magnetic length, and the first mechanical long model, MQXFA1M (using aluminum surrogatemore » coils), and MQXFAP1 prototype magnet (the first prototype with Nb 3Sn coils) have been assembled at the LBNL. In this paper, we summarize the tooling and the assembly processes, and discuss the mechanical performance of these first two assemblies, comparing strain gauge data with finite element model analysis, as well as the near-term plans for the long MQXF magnet program.« less
Cheng, Daniel W.; Ambrosio, Giorgio; Anderssen, Eric C.; ...
2018-01-30
Here, the LHC accelerator research program (LARP), in collaboration with CERN and under the scope of the high luminosity upgrade of the Large Hadron Collider, is in the prototyping stage in the development of a 150 mm aperture high-field Nb 3Sn quadrupole magnet called MQXF. This magnet is mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP, as well as in the more recent short (1.2 m magnetic length) MQXF model program. The MQXFA magnets are each 4.2 m magnetic length, and the first mechanical long model, MQXFA1M (using aluminum surrogatemore » coils), and MQXFAP1 prototype magnet (the first prototype with Nb 3Sn coils) have been assembled at the LBNL. In this paper, we summarize the tooling and the assembly processes, and discuss the mechanical performance of these first two assemblies, comparing strain gauge data with finite element model analysis, as well as the near-term plans for the long MQXF magnet program.« less
Summary of Utility Studies: Smart Grid Investment Grant Consumer Behavior Study Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappers, Peter; Todd, Annika; Goldamn, Charles A.
2013-05-01
The U.S. Department of Energy’s (DOE’s) Smart Grid Investment Grant (SGIG) program is working with a subset of the 99 SGIG projects to assess the response of mass market consumers (i.e., residential and small commercial customers) to time-varying electricity prices (referred to herein as time-based rate programs) in conjunction with the deployment of advanced metering infrastructure (AMI) and associated technologies. The effort provides an opportunity to advance the electric industry’s understanding of consumer behavior. In addition, DOE is attempting to apply a consistent study design and analysis framework for the SGIG Consumer Behavior Studies (CBS). The aim is to collectmore » information across the studies on variables and impacts that have been defined in a consistent manner. This will enable Lawrence Berkeley National Lab (LBNL), as DOE’s principal investigator for these Consumer Behavior Studies, to leverage the data from the individual studies and conduct comparative analysis of the impacts of AMI, time-based rate programs and enabling technologies that facilitate customer control, automation and information/feedback on customer energy usage.« less
#AskBerkeleyLab: Cost and Availability of Healthy Food
Buluswar, Shashi
2018-02-13
Shashi Buluswar, Executive Director at the LBNL Institute for Globally Transformative Technologies, answers a question from Ashley on why healthy food costs so much and is not available in low-income neighborhoods.
Nuclei and Fundamental Symmetries
NASA Astrophysics Data System (ADS)
Haxton, Wick
2016-09-01
Nuclei provide marvelous laboratories for testing fundamental interactions, often enhancing weak processes through accidental degeneracies among states, and providing selection rules that can be exploited to isolate selected interactions. I will give an overview of current work, including the use of parity violation to probe unknown aspects of the hadronic weak interaction; nuclear electric dipole moment searches that may shed light on new sources of CP violation; and tests of lepton number violation made possible by the fact that many nuclei can only decay by rare second-order weak interactions. I will point to opportunities in both theory and experiment to advance the field. Based upon work supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics and SciDAC under Awards DE-SC00046548 (Berkeley), DE-AC02-05CH11231 (LBNL), and KB0301052 (LBNL).
ARM-LBNL-NOAA Flask Sampler for Carbon Cycle Gases
Torn, Margaret
2008-01-15
Data from ccg-flasks are sampled at the ARM SGP site and analyzed by the NOAA Earth System Research Laboratory (ESRL) as part of the NOAA Cooperative Global Air Sampling Network. Surface samples are collected from a 60m tower at the SGP Central Facility, usually once per week on one afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. Samples are collected by the ARM/LBNL Carbon Project. CO2 flask data contains measurements of CO2 concentration and CO2 stable isotope ratios (13CO2 and C18OO) from flasks collected at the SGP site. The flask samples are collected at 2m, 4m, 25m, and 60m along the 60m tower.
NASA Astrophysics Data System (ADS)
Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John
2007-11-01
This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strohmeier, M.; University of Applied Sciences Karlsruhe, Moltkestr. 30, 76133 Karlsruhe; Benitez, J. Y.
2010-02-15
This paper describes the recent development and commissioning of a pepper-pot emittance meter at the Lawrence Berkeley National Laboratory (LBNL). It is based on a potassium bromide (KBr) scintillator screen in combination with a charged coupled device camera. Pepper-pot scanners record the full four-dimensional transverse phase space emittances which are particularly interesting for electron cyclotron resonance ion sources. The strengths and limitations of evaluating emittances using optical pepper-pot scanners are described and systematic errors induced by the optical data acquisition system will be presented. Light yield tests of KBr exposed to different ion species and first emittance measurement data usingmore » ion beams extracted from the 6.4 GHz LBNL electron cyclotron resonance ion source are presented and discussed.« less
The World as a Hologram (LBNL Summer Lecture Series)
Bousso, Raphael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-12-09
Summer Lecture Series 2006: UC Berkeley's Raphael Bousso presents a friendly introduction to the ideas behind the holographic principle, which may be very important in the hunt for a theory of quantum gravity.
Summary and Recommendations for Future Work. Chapter 12
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Shavers, Mark R.; Saganti, Premkumar B.; Miller, Jack
2003-01-01
The safety of astronauts is the primary concern of all space missions. Space radiation has been identified as a major concern for ISS, and minimizing radiation risks during EVA is a principle component of NASA s radiation protection program. The space suit plays a critical role in shielding astronauts from EVA radiation exposures. In cooperation with the JSC Extravehicular Activity Project Office, and the Space Radiation Health Project Office, the NASA EMU and RSA Orlan space suits were taken to the LLUPTF for a series of measurements with proton and electron beams to simulate exposures during EVA operations. Additional tests with material layouts of the EMU suit sleeve were made in collaboration with NASA LaRC at the LBNL 88-inch cyclotron and at the Brookhaven National Laboratory Alternating Gradient Synchrotron.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitsky, Christina; Gadgil, Ashok; Jacobs, Mark
Approximately 2.2 million internally displaced persons (''IDPs'') in Darfur are living in dense camps scattered in arid areas with low fuelwood productivity. Unsustainable harvesting of fuelwood by the IDPs has created ever increasing zones of denudation, that now (in November 2005) have reached several kilometers from the camp boundaries. Leaving the safety of the camps to fetch fuelwood from farther and farther away imposes great risk and hardship on the IDP women. Three different metal fuel efficient stove (''FES'') designs were tested in Darfur IDP camps for their suitability to substantially reduce the fuelwood needs of IDPs. The mud-and-dung ''ITDG''more » stoves being promoted under the current FES program were also examined and tested. A modified design of the ITDG mud-and-dung stove, ''Avi'', was developed, built and tested. Systematic informal surveys of IDP households were undertaken in North and South Darfur to understand the household parameters related to family size, food, fuel, cooking habits, cooking pots, expenditure on fuel, and preferences related to alternative ways to spend time/money if fuel could be saved. Surveys found that a significant fraction of families are missing meals for lack of fuel (50% in South Darfur, and 90% in the North Darfur camps visited by the mission). About 60% of women in South Darfur, and about 90% of women in North Darfur camps purchase fuelwood. Selling some of the food rations to purchase fuel to cook meals was significant (40%) in South Darfur and has become common (80%) in North Darfur. The LBNL mission found that two of the metal stoves and the mud-and-dung Avi can significantly reduce fuelwood consumption using the same fuel, pot, cooking methods, and food ingredients used by Darfur IDPs. The most suitable design for Darfur conditions would be a modified ''Tara'' stove. With training of the cooks in tending the fire, this stove can save 50% fuel for the IDPs. The stove costs less than $10 (US) to produce in Darfur, and saves fuelwood worth $160 annually at local market prices. For programmatic and administrative reasons, the LBNL mission do not recommend a mud-and-dung stove, for which control of quality and dimensional accuracy is expensive and cumbersome to administer, particularly in a rapid large rollout effort. A light metal stove, on the other hand, can be rapidly produced in large numbers locally in Darfur, with good quality control exercised on the material and dimensions of the stoves right at the workshop where it is produced. LBNL mission also recommends immediate trials of 50 Tara stoves in a pilot technical rollout, 500 Tara stoves in a pilot social rollout, in parallel with a technical effort to modify the Tara design to make it better suited for Darfur camp conditions. The mission also recommends a program for manufacturing, disseminating the metal stoves, and educating the IDPs in fuel-efficient cooking practices. Monitoring of the stove quality, dissemination effort and training should be an integral part of the program, with systematic summaries planned with 10,000, 50,000 and 100,000 stoves have been disseminated. In the above pilot rollouts as well as in the final implementation, it is important to continue to pay attention to training of the cooks in tending the cooking fire in the stoves, and offer continued social reinforcement to this training (e.g., through periodic competitions to cook normal meals with the least fuelwood use.)« less
Auto-DR and Pre-cooling of Buildings at Tri-City Corporate Center
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Rongxin; Xu, Peng; Kiliccote, Sila
2008-11-01
Over the several past years, Lawrence Berkeley National Laboratory (LBNL) has conducted field tests for different pre-cooling strategies in different commercial buildings within California. The test results indicated that pre-cooling strategies were effective in reducing electric demand in these buildings during peak periods. This project studied how to optimize pre-cooling strategies for eleven buildings in the Tri-City Corporate Center, San Bernardino, California with the assistance of a building energy simulation tool -- the Demand Response Quick Assessment Tool (DRQAT) developed by LBNL's Demand Response Research Center funded by the California Energy Commission's Public Interest Energy Research (PIER) Program. From themore » simulation results of these eleven buildings, optimal pre-cooling and temperature reset strategies were developed. The study shows that after refining and calibrating initial models with measured data, the accuracy of the models can be greatly improved and the models can be used to predict load reductions for automated demand response (Auto-DR) events. This study summarizes the optimization experience of the procedure to develop and calibrate building models in DRQAT. In order to confirm the actual effect of demand response strategies, the simulation results were compared to the field test data. The results indicated that the optimal demand response strategies worked well for all buildings in the Tri-City Corporate Center. This study also compares DRQAT with other building energy simulation tools (eQUEST and BEST). The comparison indicate that eQUEST and BEST underestimate the actual demand shed of the pre-cooling strategies due to a flaw in DOE2's simulation engine for treating wall thermal mass. DRQAT is a more accurate tool in predicting thermal mass effects of DR events.« less
Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)
Budinger, Thomas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Nuclear Medicine & Functional Imaging
2018-01-23
Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.
neutral-current interactions in the Sudbury Neutrino Observatory Phys. Rev. Lett., 89, 011301 (2002 ); arXiv:0204008 (2002) Q.R. Ahmad et al. Measurement of the νe+d>p+p+e- interactions produced by 8B
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, D.; Bowring, D.; DeMello, A.
2012-05-20
Recent progress on the design and fabrication of the RFCC (RF and superconducting Coupling Coil) module for the international MICE (Muon Ionization Cooling Experiment) are reported. The MICE ionization cooling channel has two RFCC modules, each having four 201- MHz normal conducting RF cavities surrounded by one superconducting coupling coil (solenoid) magnet. The magnet is designed to be cooled by three cryocoolers. Fabrication of the RF cavities is complete; preparation for the cavity electro-polishing, low power RF measurements, and tuning are in progress at Lawrence Berkeley National Laboratory (LBNL). Fabrication of the cold mass of the first coupling coil magnetmore » has been completed in China and the cold mass arrived at LBNL in late 2011. Preparations for testing the cold mass are currently under way at Fermilab. Plans for the RFCC module assembly and integration are being developed and are described.« less
NASA Astrophysics Data System (ADS)
Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D
2016-02-01
A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto
2011-06-01
Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrencemore » Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.« less
Electron Production and Collective Field Generation in Intense Particle Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molvik, A W; Vay, J; Cohen, R
Electron cloud effects (ECEs) are increasingly recognized as important, but incompletely understood, dynamical phenomena, which can severely limit the performance of present electron colliders, the next generation of high-intensity rings, such as PEP-II upgrade, LHC, and the SNS, the SIS 100/200, or future high-intensity heavy ion accelerators such as envisioned in Heavy Ion Inertial Fusion (HIF). Deleterious effects include ion-electron instabilities, emittance growth, particle loss, increase in vacuum pressure, added heat load at the vacuum chamber walls, and interference with certain beam diagnostics. Extrapolation of present experience to significantly higher beam intensities is uncertain given the present level of understanding.more » With coordinated LDRD projects at LLNL and LBNL, we undertook a comprehensive R&D program including experiments, theory and simulations to better understand the phenomena, establish the essential parameters, and develop mitigating mechanisms. This LDRD project laid the essential groundwork for such a program. We developed insights into the essential processes, modeled the relevant physics, and implemented these models in computational production tools that can be used for self-consistent study of the effect on ion beams. We validated the models and tools through comparison with experimental data, including data from new diagnostics that we developed as part of this work and validated on the High-Current Experiment (HCX) at LBNL. We applied these models to High-Energy Physics (HEP) and other advanced accelerators. This project was highly successful, as evidenced by the two paragraphs above, and six paragraphs following that are taken from our 2003 proposal with minor editing that mostly consisted of changing the tense. Further benchmarks of outstanding performance are: we had 13 publications with 8 of them in refereed journals, our work was recognized by the accelerator and plasma physics communities by 8 invited papers and we have 5 additional invitations for invited papers at upcoming conferences, we attracted collaborators who had SBIR funding, we are collaborating with scientists at CERN and GSI Darmstadt on gas desorption physics for submission to Physical Review Letters, and another PRL on absolute measurements of electron cloud density and Phys. Rev. ST-AB on electron emission physics are also being readied for submission.« less
Seventy Five Years of Particle Accelerators (LBNL Summer Lecture Series)
Sessler, Andy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-12-09
Summer Lecture Series 2006: Andy Sessler, Berkeley Lab director from 1973 to 1980, sheds light on the Lab's nearly eight-decade history of inventing and refining particle accelerators, which continue to illuminate the nature of the universe.
Tools & Resources | Efficient Windows Collaborative
Selection Tool Mobile App Window Selection Tool Mobile App Use the Window Selection Tool Mobile App for new Window Selection Tool Mobile App. LBNL's RESFEN RESFEN RESFEN is used for calculating the heating and
Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M. S.; University of Nevada Reno, Reno, NV 89557; Van Tilborg, J.
The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.
Research Networks and Technology Migration (RESNETSII)
2004-07-01
Laboratory (LBNL), The International Computer Science Institute (ICSI) Center for Internet Research (ICIR) DARWIN Developing protocols and...degradation in network loss, delay and throughput AT&T Center for Internet Research at ICSI (ACIRI), AT&T Labs-Research, University Of Massachusetts
Health benefits of particle filtration
This product was developed under an interagency agreement between the U.S. EPA and the U.S. Department of Energy - Lawrence Berkeley National Laboratory (LBNL). The evidence of health benefits of particle filtration in homes and commercial buildings is reviewed. Prior reviews o...
Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)
Majumdar, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Engineering and Dept. of Mechanical Engineering
2018-05-04
Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.
McMahon, Jim
2018-05-16
Summer Lecture Series 2006: Jim McMahon of Berkeley Lab's Environmental Energy Technologies Division (EETD) is head of the Energy Analysis Department in EETD, which provides technical analysis to the Department of Energy on things like energy efficiency appliance standards. McMahon and his colleagues helped the nation save tens of billions of dollars in energy costs since the standards program began. Now his Water-Energy Technology Team (WETT) is applying its expertise to the linked problem of energy and water. Each of us requires more than 500 gallons per person per day for food production, plus an additional 465 gallons to produce household electricity. WETT hopes to mine some of the numerous opportunities to save energy and water by applying new technologies.
GW Calculations of Materials on the Intel Xeon-Phi Architecture
NASA Astrophysics Data System (ADS)
Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Biller, Ariel; Chelikowsky, James R.; Louie, Steven G.
Intel Xeon-Phi processors are expected to power a large number of High-Performance Computing (HPC) systems around the United States and the world in the near future. We evaluate the ability of GW and pre-requisite Density Functional Theory (DFT) calculations for materials on utilizing the Xeon-Phi architecture. We describe the optimization process and performance improvements achieved. We find that the GW method, like other higher level Many-Body methods beyond standard local/semilocal approximations to Kohn-Sham DFT, is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-waves, band-pairs and frequencies. Support provided by the SCIDAC program, Department of Energy, Office of Science, Advanced Scientic Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-AC02-05CH11231 (LBNL).
Predictive design and interpretation of colliding pulse injected laser wakefield experiments
NASA Astrophysics Data System (ADS)
Cormier-Michel, Estelle; Ranjbar, Vahid H.; Cowan, Ben M.; Bruhwiler, David L.; Geddes, Cameron G. R.; Chen, Min; Ribera, Benjamin; Esarey, Eric; Schroeder, Carl B.; Leemans, Wim P.
2010-11-01
The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser plasma accelerator is a promising approach to obtaining stable, tunable electron bunches with reduced emittance and energy spread. Colliding Pulse Injection (CPI) experiments are being performed by groups around the world. We will present recent particle-in-cell simulations, using the parallel VORPAL framework, of CPI for physical parameters relevant to ongoing experiments of the LOASIS program at LBNL. We evaluate the effect of laser and plasma tuning, on the trapped electron bunch and perform parameter scans in order to optimize the quality of the bunch. Impact of non-ideal effects such as imperfect laser modes and laser self focusing are also evaluated. Simulation data are validated against current experimental results, and are used to design future experiments.
Site Environmental Report for 2004. Volume 1, Environment, Health, and Safety Division
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2005-09-30
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2004 summarizes Berkeley Lab’s environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2004. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as “Berkeley Lab,” “the Laboratory,” “Lawrence Berkeley National Laboratory,” and “LBNL.”) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. Volume II contains individual data results from these activities. This year, the Site Environmental Report was distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request.« less
Office of the Chief Financial Officer Annual Report 2010
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, Jeffrey
In March, a review team consisting of CFOs from other national laboratories, industry, and members of the University of California Office of the President (UCOP) convened for three days to conduct a comprehensive peer review of the OCFO. This was the first time in almost a decade that the financial operations of the Laboratory had been reviewed. The Committee relayed their observations on our strengths, and their very thoughtful recommendations for improvement, which we are actively pursuing. These improvements, when implemented, will benefit the entire Laboratory for many years to come. The complete report is available on the OCFO websitemore » (www.lbl.gov/Workplace/CFO). In August, the senior management team of the OCFO participated in a strategic planning retreat. The purpose of the two and a half day exercise was, of course, to update our strategic plan, but instead of spending days developing a written document, we enlisted the expertise of a seasoned journalist who also happens to be a very talented graphic artist. He listened carefully to our ideas and committed them to a visual roadmap. All members of the OCFO, Business Managers, and the Laboratory Leadership Team reviewed this draft roadmap. By having a completely visual strategic plan that is posted widely throughout the OCFO, all employees can easily see and identify with the goals that we are all working towards. FY2010 was an extraordinary year. The Laboratory welcomed its seventh Director, Dr. Paul Alivisatos, who wasted no time communicating his vision and priorities for Berkeley Lab. They include five very ambitious initiatives: Carbon Cycle 2.0, The Next Generation Light Source, a Safe and Efficient Lab, Building Community, and Space. In response, the Office of the Chief Financial Officer (OCFO) developed twelve specific initiatives that align completely with these five priorities. We will be very focused on these in the coming fiscal year, but for now, let's review what happened in FY2010. FY2010 was a pivotal year for the Procurement and Property Department. A provision of the management contract that was signed fives years ago required us to achieve cost savings of $30M. I am proud to announce that this last fiscal year we reached that goal, in large part due to the implementation of eBuy, and the negotiation of strategic sourcing contracts. Our last wall-to-wall inventory exceeded all the Department of Energy's (DOE) national targets and DOE approved the LBNL property system unconditionally. Of the total inventory, 92.3% or 25,601 assets were accounted for using barcode scanning that made the inventory process much more efficient. The effective management of the American Recovery and Reinvestment Act (ARRA) funds was strengthened by the continued successful partnership that LBNL shares with our DOE Site Office. They provided authority, support and clarity to this very complex task. The Laboratory's ARRA Stimulus Committee played a critical role in assuring internal controls, compliance with DOE regulations and quality financial management. The LBNL Budget Officer led a DOE complex-wide effort to identify and share how various DOE facilities track and report ARRA-funded projects, share best practices, evaluate issues and discuss solutions. LBNL has been recognized as a leader in this process and will continue to share knowledge and best practices with other DOE laboratories. Continuous education of our staff as well as the greater Laboratory population was still a major focus of the OCFO. With the help of many OCFO senior managers and staff that acted as subject-matter experts, the Core Financial Management Program was completely re-engineered and resulted in a revised classroom and web-based curriculum that will be formally rolled out Lab-wide in early FY2011. The Office of Sponsored Projects and Industry Partnerships (OSPIP) led the effort to select and purchase four Click Commerce software modules for the LBNL electronic Scientific Research Administration (eSRA) project. In early FY2010, the implementation of the Institutional Review Board (IRB) module, responsible for the human subjects review process, began and should be completed in early FY2011. OSPIP also began implementation of the grants and contracts module and we expect an early go-live of 'Grants Express' in mid-FY2011 with a full completion date in FY2012. The peer review's most substantial recommendation for improvement involved the Laboratory's central financial systems. To quote: 'financial reporting system is outdated and inadequate. There is an inability to easily extract data; the field has little confidence in data; people spend more time mining data than analyzing data; requires field users to create & rely upon shadow systems; causes proliferation of program administrators and resource analysts. These issues impact the quality & execution of research; and the data warehouse lacks understanding & ownership.'« less
Homepage P. Fischer, LBNL, Berkeley CA | UC Santa Cruz CA
mesoscale magnetic x-ray microscopy and spectroscopy (ultra-)fast spin dynamics soft x-ray tomography of condensed matter x-ray optics publications presentations invited talks conference contributions curriculum
Carbon Smackdown: Smart Windows (LBNL Summer Lecture Series)
Milliron, Delia; Selkowitz, Stephen
2017-12-09
August 3, 2010 Berkeley Lab talk: In the fourth of five Carbon Smackdown matches, Berkeley Lab researchers Delia Milliron of the Materials Sciences Division and Stephen Selkowitz of the Environmental Energy Technologies Division talk about their work on energy-saving smart windows.
The Universe Adventure - Credits
Basel), and George Smoot (LBNL) Content, Graphic/Web Design Artie Konrad (student, UC Berkeley) 2004 Berkeley) Laurie Kerrigan (teacher, Mercy High School) Graphic/Web Design Melissa McClure (student ) Graphic/Web Design Paul Higgins (student, Contra Costa College) Other Gordon Aubrecht (Ohio State
Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)
Meza, Juan [LBNL Computational Research Division
2017-12-09
The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.
Exploratory technology research program for electrochemical energy storage, annual report for 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinoshita, K.
The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Batterymore » R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.« less
High-spin states in the N=50 nucleus ^87Rb
NASA Astrophysics Data System (ADS)
Fotiades, N.; Cizewski, J. A.; Krücken, R.; Clark, R. M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.; Becker, J. A.; Bernstein, L. A.; McNabb, D. P.; Younes, W.
2001-10-01
High-spin states in ^87Rb have been studied following the fission of two compound nuclei (^199Tl and ^197Pb) formed in different fusion-evaporation reactions. The Gammasphere array at LBNL was used to detect γ-ray coincidences. The level scheme has been extended above the previously known 1578 keV, 9/2^+ isomer by observation of many states up to ~7.2 MeV excitation energy. Coupling of the odd g_9/2 proton to the yrast states in the ^86Kr core accounts for the first excited states observed above the 9/2^+ isomer. The level scheme of ^87Rb is also compared to excitations in ^85Kr and the ^89Y isotone. This work has been supported in part by the U.S. Department of Energy under Contracts No. W-7405-ENG-36 (LANL), FG02-91ER-40609 (Yale), W-7405-ENG-48 (LLNL) and AC03-76SF00098 (LBNL) and by the National Science Foundation (Rutgers).
Implementation of a new algorithm for Density Equalizing Map Projections (DEMP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Close, E.R.; Merrill, D.W.; Holmes, H.H.
The purpose of the PAREP (Populations at Risk to Environmental Pollution) Project at Lawrence Berkeley National Laboratory (LBNL), an ongoing Department of Energy (DOE) project since 1978, is to develop resources (data, computing techniques, and biostatistical methodology) applicable to DOE`s needs. Specifically, the PAREP project has developed techniques for statistically analyzing disease distributions in the vicinity of supposed environmental hazards. Such techniques can be applied to assess the health risks in populations residing near DOE installations, provided adequate small-area health data are available. The FY 1994 task descriptions for the PAREP project were determined in discussions at LBNL on 11/2/93.more » The FY94 PAREP Work Authorization specified three major tasks: a prototype small area study, a feasibility study for obtaining small-area data, and preservation of the PAREP data archive. The complete FY94 work plan, and the subtasks accomplished to date, were included in the Cumulative FY94 progress report.« less
Magnetic Moments of the 21+ and 41+ States in 110SN
NASA Astrophysics Data System (ADS)
Kumbartzki, Gerfried; Benczer-Koller, N.; Bernstein, L.; Torres, D. A.; Speidel, K.-H.; Allmond, J. M.; Fallon, P.; Abramovic, I.; Bevins, J. M.; Hurst, A.; Guevara, Z. E.; Gürdal, G.; Kirsch, L.; Laplace, T.; Lo, A.; Crawford, H. L.; Matthew, E.; Meyers, I.; Phair, L.; Ramirez, F.; Sharon, Y. Y.; Wiens, A.
2015-10-01
The structure of the Sn isotopes has been studied via measurements of B(E2;21+->01+) transition rates and g factors of 21+ states. Values of B(E2)'s in the lighter isotopes show an increase in collectivity below midshell, contrary to predictions from shell model calculations. In order to better establish the structure of these neutron-deficient isotopes, measurements of g factors in 110Sn, where the neutrons might occupy both the g7/2 and d5/2 orbitals, have been carried out. The states of interest were populated in the reaction 12C(106Cd, 2 α)110Sn, at the LBNL 88 inch cyclotron. The γ rays were detected in ORNL and LBNL clover detectors. The transient field technique was used to obtain magnetic moments. The details of the experiment and the results will be presented. The authors acknowledge support from the US NSF and DoE, the Colombia Colciencias and the German DFG.
Schlieren, Phase-Contrast, and Spectroscopy Diagnostics for the LBNL HIF Plasma Channel Experiment
NASA Astrophysics Data System (ADS)
Ponce, D. M.; Niemann, C.; Fessenden, T. J.; Leemans, W.; Vandersloot, K.; Dahlbacka, G.; Yu, S. S.; Sharp, W. M.; Tauschwitz, A.
1999-11-01
The LBNL Plasma Channel experiment has demonstrated stable 42-cm Z-pinch discharge plasma channels with peak currents in excess of 50 kA for a 7 torr nitrogen, 30 kV discharge. These channels offer the possibility of transporting heavy-ion beams for inertial fusion. We postulate that the stability of these channels resides in the existance of a neutral-gas density depresion created by a pre-pulse discharge before the main capacitor bank discharge is created. Here, we present the results and experimental diagnostics setup used for the study of the pre-pulse and main bank channels. Observation of both the plasma and neutral gas dynamics is achieved. Schlieren, Zernike's phase-contrast, and spectroscopic techniques are used. Preliminary Schlieren results show a gas shockwave moving radially at a rate of ≈ 10^6 mm/sec as a result of the fast and localized deposited energy during the evolution of the pre-pulse channel. This data will be used to validate simulation codes (BUCKY and CYCLOPS).
Research and Development of Natural Draft Ultra-Low Emissions Burners for Gas Appliances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Therkelsen, Peter; Cheng, Robert; Sholes, Darren
Combustion systems used in residential and commercial cooking appliances must be robust and easy to use while meeting air quality standards. Current air quality standards for cooking appliances are far greater than other stationary combustion equipment. By developing an advanced low emission combustion system for cooking appliances, the air quality impacts from these devices can be reduced. This project adapted the Lawrence Berkeley National Laboratory (LBNL) Ring-Stabilizer Burner combustion technology for residential and commercial natural gas fired cooking appliances (such as ovens, ranges, and cooktops). LBNL originally developed the Ring-Stabilizer Burner for a NASA funded microgravity experiment. This natural draftmore » combustion technology reduces NOx emissions significantly below current SCAQMD emissions standards without post combustion treatment. Additionally, the Ring-Stabilizer Burner technology does not require the assistance of a blower to achieve an ultra-low emission lean premix flame. The research team evaluated the Ring-Stabilizer Burner and fabricated the most promising designs based on their emissions and turndown.« less
Unlocking energy efficiency in small commercial buildings through mechanical contractors
Granderson, Jessica; Hult, Erin; Fernandes, Samuel; ...
2017-03-01
Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less
Unlocking energy efficiency in small commercial buildings through mechanical contractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granderson, Jessica; Hult, Erin; Fernandes, Samuel
Although buildings smaller than 4,645 m 2 account for nearly half of the energy used in U.S. commercial buildings, energy-efficiency programs to date have primarily focused on larger buildings. Stakeholder interviews conducted during a scoping study by Lawrence Berkeley National Laboratory (LBNL) indicated interest in energy efficiency from the small commercial building sector, provided solutions are simple and of low cost. To address this need, an energy management package (EMP) was developed to deliver energy management to small commercial buildings via HVAC contractors, because they already serve these clients and the transaction cost to market would be reduced. This energy-managementmore » approach is unique from, but often complementary to, conventional quality maintenance or retrofit-focused programs targeting the small commercial segment. Furthermore, this paper presents an overview of the EMP, the business model to deliver it, and preliminary demonstration findings from a pilot use of the EMP. Results from the pilot validated that contractors could deliver the EMP in 4–8 h per building per year and that energy savings of 3–5% are feasible through this approach.« less
Blue steps Blue steps Indoor Environment Department Advice for Safeguarding Buildings Against Chemical building operators. It contains our current advice for dealing with a biological or chemical release in a protecting buildings and occupants from chemical or biological attack. Click on the title bar, above, for
Brady Well Coordinates and Observation Sensor Depths
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Lim
Contains metadata associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. Included with the well coordinates are the depths to the pressure sensors used in observation and pumping wells. Read me files are included for each .csv file.
Comfort, Indoor Air Quality, and Energy Consumption in Low Energy Homes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Englemann, P.; Roth, K.; Tiefenbeck, V.
2013-01-01
This report documents the results of an in-depth evaluation of energy consumption and thermal comfort for two potential net zero-energy homes (NZEHs) in Massachusetts, as well as an indoor air quality (IAQ) evaluation performed in conjunction with Lawrence Berkeley National Laboratory (LBNL).
Next Generation Lighting Technologies (LBNL Summer Lecture Series)
Siminovittch, Micheal
2018-04-27
For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.
NASA Astrophysics Data System (ADS)
Mori, Ryo; Marshall, Patrick; Isaac, Brandon; Denlinger, Jonathan; Stemmer, Susanne; Lanzara, Alessandra
The confined electron system in the quantum well of the transition metal oxide, SrTiO3, embedded in the rare earth titanate, SmTiO3, shows unique properties, such as high carrier density, fermi liquid to non-fermi liquid transition, and pseudo-gap, which can be controlled by changing the shape of the quantum well. We will present a distinct difference in the electronic structures between the different quantum well structures obtained by angle-resolved photoemission spectroscopy (ARPES) measurements, suggesting the possibility to control the orbital character and the electron correlation near the interface as well as carrier density. The work was supported by the Quantum Materials Program at LBNL, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.
Updates from the AmeriFlux Management Project Tech Team
NASA Astrophysics Data System (ADS)
Biraud, S.; Chan, S.; Dengel, S.; Polonik, P.; Hanson, C. V.; Billesbach, D. P.; Torn, M. S.
2017-12-01
The goal of AmeriFlux is to develop a network of long-term flux sites for quantifying and understanding the role of the terrestrial biosphere in global climate and environmental change. The AmeriFlux Management Program (AMP) Tech Team at LBNL strengthens the AmeriFlux Network by (1) standardizing operational practices, (2) developing calibration and maintenance routines, and (3) setting clear data quality goals. In this poster we will present results and recent progress in three areas: IRGA intercomparison experiment in cooperation with UC Davis, and main manufacturers of sensors used in the AmeriFlux network (LI-COR, Picarro, and Campbell Scientific). Gill sonic anemometers characterization in collaboration with John Frank and Bill Massman (US Forest Service) following the discovery of a significant firmware problem in commonly used Gill Sonic anemometer, Unmanned aerial systems (UAS), and sensors systematically used at AmeriFlux sites to improve site characterization.
76 FR 9339 - State Energy Advisory Board (STEAB); Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... energy advancement and deployment, and update members of the STEAB on routine business matters affecting... Berkeley National Laboratory (LBNL) in order to receive updates on new and emerging technologies as well as... empowered to conduct the meeting in a fashion that will facilitate the orderly conduct of business. This...
Toward An Affordable Commercial Fuel Cell (LBNL Summer Lecture Series)
Visco, Steve [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division
2018-02-16
Steve Visco, a materials scientist, has come up with a solid oxide fuel cell that promises to generate electricity as cheaply as the most efficient gas turbine engine. But there's a lot more work to do before commercially viable fuel cells and pollution-free power generators become reality.
Brady Geothermal Field Well Pumping Data During Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt Feigl
Contains pumping data associated with the wells used in the 2016 Spring Campaign led partially by UW - Madison, LBNL, and LLNL scientists. The well coordinates and the depths to the pressure sensors used in the pumping wells can be found at the link "Coordinates and Sensor Depths" below.
The Majorana neutrinoless double beta-decay experiment The Majorana experiment will search for neutrinoless double-beta decay of 76Ge. The discovery of this process would imply that the neutrino is a neutrinoless double beta-decay by Klapdor-Kleingrothaus et al. (2006), to demonstrate a low enough background
Buildings That Think Green (LBNL Science at the Theater)
Majumdar, Arun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-23
Buildings are the SUVs of U.S. energy consumption, gobbling up 71 percent of the nation's electricity. In this Sept. 22, 2008 talk, Arun Majumdar, Director of Berkeley Lab's Environmental Energy Technologies Division, discusses how scientists are creating a new generation of net-zero energy, carbon-neutral buildings.
Physics Meets Biology (LBNL Summer Lecture Series)
Chu, Steven
2018-05-09
Summer Lecture Series 2006: If scientists could take advantage of the awesomely complex and beautiful functioning of biology's natural molecular machines, their potential for application in many disciplines would be incalculable. Nobel Laureate and Director of the Lawrence Berkeley National Laboratory Steve Chu explores Possible solutions to global warming and its consequences.
Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karasaki, Kenzi; Onishi, Tiemi; Black, Bill
2009-03-31
This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. Themore » Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as straight as possible. One interpretation suggests that the Wildcat Fault is westerly dipping. This could imply that the Wildcat Fault may merge with the Hayward Fault at depth. However, due to the complex geology of the Berkeley Hills, multiple interpretations of the geophysical surveys are possible. iv An effort to construct a 3D GIS model is under way. The model will be used not so much for visualization of the existing data because only surface data are available thus far, but to conduct investigation of possible abutment relations of the buried formations offset by the fault. A 3D model would be useful to conduct 'what if' scenario testing to aid the selection of borehole drilling locations and configurations. Based on the information available thus far, a preliminary plan for borehole drilling is outlined. The basic strategy is to first drill boreholes on both sides of the fault without penetrating it. Borehole tests will be conducted in these boreholes to estimate the property of the fault. Possibly a slanted borehole will be drilled later to intersect the fault to confirm the findings from the boreholes that do not intersect the fault. Finally, the lessons learned from conducting the trenching and geophysical surveys are listed. It is believed that these lessons will be invaluable information for NUMO when it conducts preliminary investigations at yet-to-be selected candidate sites in Japan.« less
Enhancing Price Response Programs through Auto-DR: California's 2007 Implementation Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiliccote, Sila; Wikler, Greg; Chiu, Albert
2007-12-18
This paper describes automated demand response (Auto-DR) activities, an innovative effort in California to ensure that DR programs produce effective and sustainable impacts. Through the application of automation and communication technologies coupled with well-designed incentives and DR programs such as Critical Peak Pricing (CPP) and Demand Bidding (DBP), Auto-DR is opening up the opportunity for many different types of buildings to effectively participate in DR programs. We present the results of Auto-DR implementation efforts by the three California investor-owned utilities for the Summer of 2007. The presentation emphasizes Pacific Gas and Electric Company's (PG&E) Auto-DR efforts, which represents the largestmore » in the state. PG&E's goal was to recruit, install, test and operate 15 megawatts of Auto-DR system capability. We describe the unique delivery approaches, including optimizing the utility incentive structures designed to foster an Auto-DR service provider community. We also show how PG&E's Critical Peak Pricing (CPP) and Demand Bidding (DBP) options were called and executed under the automation platform. Finally, we show the results of the Auto-DR systems installed and operational during 2007, which surpassed PG&E's Auto-DR goals. Auto-DR is being implemented by a multi-disciplinary team including the California Investor Owned Utilities (IOUs), energy consultants, energy management control system vendors, the Lawrence Berkeley National Laboratory (LBNL), and the California Energy Commission (CEC).« less
COMIS -- an international multizone air-flow and contaminant transport model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1998-08-01
A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puckett, Elbridge Gerry; Miller, Gregory Hale
Much of the work conducted under the auspices of DE-FG02-03ER25579 was characterized by an exceptionally close collaboration with researchers at the Lawrence Berkeley National Laboratory (LBNL). For example, Andy Nonaka, one of Professor Miller's graduate students in the Department of Applied Science at U. C. Davis (UCD) wrote his PhD thesis in an area of interest to researchers in the Applied Numerical Algorithms Group (ANAG), which is a part of the National Energy Research Supercomputer Center (NERSC) at LBNL. Dr. Nonaka collaborated closely with these researchers and subsequently published the results of this collaboration jointly with them, one article inmore » a peer reviewed journal article and one paper in the proceedings of a conference. Dr. Nonaka is now a research scientist in the Center for Computational Sciences and Engineering (CCSE), which is also part of the National Energy Research Supercomputer Center (NERSC) at LBNL. This collaboration with researchers at LBNL also included having one of Professor Puckett's graduate students in the Graduate Group in Applied Mathematics (GGAM) at UCD, Sarah Williams, spend the summer working with Dr. Ann Almgren, who is a staff scientist in CCSE. As a result of this visit Sarah decided work on a problem suggested by the head of CCSE, Dr. John Bell, for her PhD thesis. Having finished all of the coursework and examinations required for a PhD, Sarah stayed at LBNL to work on her thesis under the guidance of Dr. Bell. Sarah finished her PhD thesis in June of 2007. Writing a PhD thesis while working at one of the University of California (UC) managed DOE laboratories is long established tradition at UC and Professor Puckett has always encouraged his students to consider doing this. Another one of Professor Puckett's graduate students in the GGAM at UCD, Christopher Algieri, was partially supported with funds from DE-FG02-03ER25579 while he wrote his MS thesis in which he analyzed and extended work originally published by Dr. Phillip Colella, the head of ANAG, and some of his colleagues. Chris Algieri is now employed as a staff member in Dr. Bill Collins' Climate Science Department in the Earth Sciences Division at LBNL working with computational models of climate change. Finally, it should be noted that the work conducted by Professor Puckett and his students Sarah Williams and Chris Algieri and described in this final report for DOE grant # DE-FC02-03ER25579 is closely related to work performed by Professor Puckett and his students under the auspices of Professor Puckett's DOE SciDAC grant DE-FC02-01ER25473 An Algorithmic and Software Framework for Applied Partial Differential Equations: A DOE SciDAC Integrated Software Infrastructure Center (ISIC). Dr. Colella was the lead PI for this SciDAC grant, which was comprised of several research groups from DOE national laboratories and five university PI's from five different universities. In theory Professor Puckett tried to use funds from the SciDAC grant to support work directly involved in implementing algorithms developed by members of his research group at UCD as software that might be of use to Puckett's SciDAC CoPIs. (For example, see the work reported in Section 2.2.2 of this final report.) However, since there is considerable lead time spent developing such algorithms before they are ready to become `software' and research plans and goals change as the research progresses, Professor Puckett supported each member of his research group partially with funds from the SciDAC APDEC ISIC DE-FC02-01ER25473 and partially with funds from this DOE MICS grant DE-FC02-03ER25579. This has necessarily resulted in a significant overlap of project areas that were funded by both grants. In particular, both Sarah Williams and Chris Algieri were supported partially with funds from grant # DE-FG02-03ER25579, for which this is the final report, and in part with funds from Professor Puckett's DOE SciDAC grant # DE-FC02-01ER25473. For example, Sarah Williams received support from DE-FC02- 01ER25473 and DE-FC02-03ER25579, both while at UCD taking classes and writing her MS thesis and during the first year she was living in Berkeley and working at LBNL on her PhD thesis. In Chris Algieri's case he was at UCD during the entire time he received support from both grants. More specific details of their work are included in the report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael J. Bockelie
2002-01-04
This DOE SBIR Phase II final report summarizes research that has been performed to develop a parallel adaptive tool for modeling steady, two phase turbulent reacting flow. The target applications for the new tool are full scale, fossil-fuel fired boilers and furnaces such as those used in the electric utility industry, chemical process industry and mineral/metal process industry. The type of analyses to be performed on these systems are engineering calculations to evaluate the impact on overall furnace performance due to operational, process or equipment changes. To develop a Computational Fluid Dynamics (CFD) model of an industrial scale furnace requiresmore » a carefully designed grid that will capture all of the large and small scale features of the flowfield. Industrial systems are quite large, usually measured in tens of feet, but contain numerous burners, air injection ports, flames and localized behavior with dimensions that are measured in inches or fractions of inches. To create an accurate computational model of such systems requires capturing length scales within the flow field that span several orders of magnitude. In addition, to create an industrially useful model, the grid can not contain too many grid points - the model must be able to execute on an inexpensive desktop PC in a matter of days. An adaptive mesh provides a convenient means to create a grid that can capture both fine flow field detail within a very large domain with a ''reasonable'' number of grid points. However, the use of an adaptive mesh requires the development of a new flow solver. To create the new simulation tool, we have combined existing reacting CFD modeling software with new software based on emerging block structured Adaptive Mesh Refinement (AMR) technologies developed at Lawrence Berkeley National Laboratory (LBNL). Specifically, we combined: -physical models, modeling expertise, and software from existing combustion simulation codes used by Reaction Engineering International; -mesh adaption, data management, and parallelization software and technology being developed by users of the BoxLib library at LBNL; and -solution methods for problems formulated on block structured grids that were being developed in collaboration with technical staff members at the University of Utah Center for High Performance Computing (CHPC) and at LBNL. The combustion modeling software used by Reaction Engineering International represents an investment of over fifty man-years of development, conducted over a period of twenty years. Thus, it was impractical to achieve our objective by starting from scratch. The research program resulted in an adaptive grid, reacting CFD flow solver that can be used only on limited problems. In current form the code is appropriate for use on academic problems with simplified geometries. The new solver is not sufficiently robust or sufficiently general to be used in a ''production mode'' for industrial applications. The principle difficulty lies with the multi-level solver technology. The use of multi-level solvers on adaptive grids with embedded boundaries is not yet a mature field and there are many issues that remain to be resolved. From the lessons learned in this SBIR program, we have started work on a new flow solver with an AMR capability. The new code is based on a conventional cell-by-cell mesh refinement strategy used in unstructured grid solvers that employ hexahedral cells. The new solver employs several of the concepts and solution strategies developed within this research program. The formulation of the composite grid problem for the new solver has been designed to avoid the embedded boundary complications encountered in this SBIR project. This follow-on effort will result in a reacting flow CFD solver with localized mesh capability that can be used to perform engineering calculations on industrial problems in a production mode.« less
Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)
Rokhsar, Daniel [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States)
2018-05-24
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
Ernest O. Lawrence and the Cyclotron
Speed Protons Without the Use of High Voltages; Physical Review, Vol. 38, [Issue 4: 834, August 15, 1931 Report Download Adobe PDF Reader , August 27, 1952 Top Lawrence Honored: 1957 Enrico Fermi Award Science World to Think Big," Newsline, August 3, 2001. E. O. Lawrence Remembered, LBNL Conversation
Rosenfeld, Art [California Energy Commission, Sacramento, CA (United States)
2018-02-16
Summer Lecture Series 2006: Art Rosenfeld, an appointee to the California Energy Commission and one of the architects of energy efficiency research at Berkeley Lab in the 1970s, discusses what it takes to shepherd innovative energy efficiency research from the lab to the real world.
Edwin M. McMillan, Neptunium, Phase Stability, and the Synchrotron
Elements) * McMillan in LBNL History Edwin M. McMillan Courtesy of Lawrence Berkeley National Laboratory Elements: Early History (Nobel Lecture), DOE Technical Report Download Adobe PDF Reader , December 1951 1907 - 1991, National Academy of Sciences Oral History Transcript -- Dr. Edwin McMillan, American
Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Help Berkeley Lab Training Welcome Welcome to Berkeley Lab Training! Login to access your LBNL Training Profile. This provides quick access to all of the courses you need. Look below, to learn about different types of training available at
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClain, James S.; Dobson, Patrick; Glassley, William
Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.
LBNL, in consultation with the EPA, expanded upon a previous study by injecting directly into a 3D representation of a hypothetical fault zone located in the geologic units between the shale-gas reservoir and the drinking water aquifer.
Genomic Advances to Improve Biomass for Biofuels (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2008-02-11
Lawrence Berkeley National Lab bioscientist Daniel Rokhsar discusses genomic advances to improve biomass for biofuels. He presented his talk Feb. 11, 2008 in Berkeley, California as part of Berkeley Lab's community lecture series. Rokhsar works with the U.S. Department of Energy's Joint Genome Institute and Berkeley Lab's Genomics Division.
The KATRIN experiment The KATRIN experiment is designed to make a direct measurement of the mass experiment, scaled up by an order of magnitude in size, precision and tritium source intensity from previous experiments. Visit the experiment home page for more information. Gallery SimpleViewer requires JavaScript and
NASA Astrophysics Data System (ADS)
2008-04-01
Local Organising Committee Ivan Králik (IEP SAS, Košice) Vojtěch Petráček (Czechoslovakia Technical University, Prague) Ján Pišút (Comenius University, Bratislava) Emanuele Quercigh (CERN) Karel Šafařík (CERN), Co-chair Ladislav v Sándor (IEP SAS, Košice), Co-chair Boris Tomášik (Mateja Bela University, Banská Bystrica) Jozef Urbán (UPJŠ Košice) International Advisory Committee Jörg Aichelin, Nantes Federico Antinori, Padova Tamás Biró, Budapest Peter Braun-Munzinger, GSI Jean Cleymans, Cape Town László Csernai, Bergen Timothy Hallman, BNL Huan Zhong Huang, UCLA Sonja Kabana, Nantes Roy A Lacey, Stony Brook Carlos Lourenço, CERN Yu-Gang Ma, Shanghai Jes Masden, Aarhus Yasuo Miake, Tsukuba Berndt Müller, Duke Grazyna Odyniec, LBNL Helmut Oeschler, Darmstadt Jan Rafelski, Arizona Hans Georg Ritter, LBNL Jack Sandweiss, Yale George S F Stephans, MIT Horst Stöcker, Frankfurt Thomas Ullrich, BNL Orlando Villalobos-Baillie, Birmingham William A Zajc, Columbia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J. J.; Cohen, R. H.
The Heavy Ion Fusion Science Virtual National Laboratory(a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the"warm dense matter" regime at<~;; 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Test Accelerator at LLNL,more » NDCX-II will compress a ~;;500 ns pulse of Li+ ions to ~;;1 ns while accelerating it to 3-4 MeV over ~;;15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Cohen, R H
The Heavy Ion Fusion Science Virtual National Laboratory (a collaboration of LBNL, LLNL, and PPPL) is using intense ion beams to heat thin foils to the 'warm dense matter' regime at {approx}< 1 eV, and is developing capabilities for studying target physics relevant to ion-driven inertial fusion energy. The need for rapid target heating led to the development of plasma-neutralized pulse compression, with current amplification factors exceeding 50 now routine on the Neutralized Drift Compression Experiment (NDCX). Construction of an improved platform, NDCX-II, has begun at LBNL with planned completion in 2012. Using refurbished induction cells from the Advanced Testmore » Accelerator at LLNL, NDCX-II will compress a {approx}500 ns pulse of Li{sup +} ions to {approx} 1 ns while accelerating it to 3-4 MeV over {approx} 15 m. Strong space charge forces are incorporated into the machine design at a fundamental level. We are using analysis, an interactive 1D PIC code (ASP) with optimizing capabilities and centroid tracking, and multi-dimensional Warpcode PIC simulations, to develop the NDCX-II accelerator. This paper describes the computational models employed, and the resulting physics design for the accelerator.« less
Fabrication of First 4-m Coils for the LARP MQXFA Quadrupole and Assembly in Mirror Structure
Holik, Eddie Frank; Ambrosio, Giorgio; Anerella, Michael; ...
2017-01-23
The US LHC Accelerator Research Program is constructing prototype interaction region quadrupoles as part of the US in-kind contribution to the Hi-Lumi LHC project. The low-beta MQXFA Q1/Q3 coils have a 4-m length and a 150 mm bore. The design is first validated on short, one meter models (MQXFS) developed as part of the longstanding Nb3Sn quadrupole R&D by LARP in collaboration with CERN. In parallel, facilities and tooling are being developed and refined at BNL, LBNL, and FNAL to enable long coil production, assembly, and cold testing. Long length scale-up is based on the experience from the LARP 90more » mm aperture (TQ-LQ) and 120 mm aperture (HQ and Long HQ) programs. A 4-m long MQXF practice coil was fabricated, water jet cut and analyzed to verify procedures, parts, and tooling. In parallel, the first complete prototype coil (QXFP01a) was fabricated and assembled in a long magnetic mirror, MQXFPM1, to provide early feedback on coil design and fabrication following the successful experience of previous LARP mirror tests.« less
The Future of the Earth's Climate: Frontiers in Forecasting (LBNL Summer Lecture Series)
Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-12-09
Summer Lecture Series 2007: Berkeley Lab's Bill Collins discusses how observations show that the Earth is warming at a rate unprecedented in recent history, and that human-induced changes in atmospheric chemistry are probably the main culprits. He suggests a need for better observations and understanding of the carbon and hydrological cycles.
Study Shows India Can Integrate 175 GW of Renewable Energy into Its
Electricity Grid | News | News | NREL Study Shows India Can Integrate 175 GW of Renewable Energy into Its Electricity Grid News Release: Study Shows India Can Integrate 175 GW of Renewable Energy Corporation, Ltd. (POSOCO); and Lawrence Berkeley National Laboratory (LBNL) produced the study Greening the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashi Buluswar
The last installment of the Summer Series of Conversations took place Wednesday, August 1, with guest Shashi Buluswar, the executive director of the LBNL Institute for Globally Transformative Technologies (LIGTT). The Institute seeks to foster the discovery, development and deployment of a generation of low-carbon, affordable technologies that will advance sustainable methods to fight global poverty. The event, was hosted by Public Affairs Head Jeff Miller.
Site Environmental Report for 2002, Volume 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, Ron
2003-07-01
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less
Site Environmental Report for 2002, Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauer, Ron
2003-07-01
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1. The ''Site Environmental Report for 2002'' summarizes Berkeley Lab's compliance with environmental standards and requirements, characterizes environmental management efforts through surveillance and monitoring activities, and highlights significant programs and efforts for calendar year 2002. Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab,'' ''the Laboratory,'' ''Lawrence Berkeley National Laboratory,'' and ''LBNL.'' The report is separated into two volumes. Volume I contains a general overview of themore » Laboratory, the status of environmental programs, and summarized results from surveillance and monitoring activities. Volume II contains individual data results from the monitoring programs. This year, the ''Site Environmental Report'' was distributed on a CD in PDF format that includes Volume I, Volume II, and related documents. The report is also available on the Web at http://www.lbl.gov/ehs/esg/. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are additionally reported using the more conventional (non-SI) system of measurements because this system is referenced by some current regulatory standards and is more familiar to some readers. The tables included at the end of the Glossary are intended to help readers understand the various prefixes used with SI units of measurement and convert these units from one system to the other.« less
Coulomb Excitation of Exotic Nuclei
NASA Astrophysics Data System (ADS)
Macchiavelli, Augusto O.
2017-09-01
The structure of nuclei far from the stability line is a central theme of research in nuclear physics. Key to this program has been the worldwide development of radioactive beam facilities and novel detector systems, which provide the tools needed to produce and study these exotic nuclei. Coulomb Excitation provides a unique probe to characterize the interplay of collective and single-particle degrees of freedom of the atomic nucleus. In particular, the combination of state-of-the-art charged particle detectors and gamma-ray spectroscopy plays a vital and ubiquitous role in these studies. As an introduction to this Mini-Symposium, I will present a short overview of this powerful technique and selected examples of recent experiments. Future opportunities with a 4 π gamma-ray tracking array like GRETA will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).
Ultrafast Absorption Spectroscopy of Aluminum Plasmas Created by LCLS using Betatron X-Ray Radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Felicie
2016-10-12
This document summarizes the goals and accomplishments of a six month-long LDRD project, awarded through the LLNL director Early and Mid Career Recognition (EMCR) program. This project allowed us to support beamtime awarded at the Matter under Extreme Conditions (MEC) end station of the Linac Coherent Light Source (LCLS). The goal of the experiment was to heat metallic samples with the bright x-rays from the LCLS free electron laser. Then, we studied how they relaxed back to equilibrium by probing them with ultrafast x-ray absorption spectroscopy using laser-based betatron radiation. Our work enabled large collaborations between LLNL, SLAC, LBNL, andmore » institutions in France and in the UK, while providing training to undergraduate and graduate students during the experiment. Following this LDRD project, the PI was awarded a 5-year DOE early career research grant to further develop applications of laser-driven x-ray sources for high energy density science experiments and warm dense matter states.« less
The Oxford SWIFT Spectrograph: first commissioning and on-sky results
NASA Astrophysics Data System (ADS)
Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard
2010-07-01
The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235", 0.16", and 0.08" per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact.
Assessment of the Impacts of Standards and Labeling Programs inMexico (four products).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Itha; Pulido, Henry; McNeil, Michael A.
2007-06-12
This study analyzes impacts from energy efficiency standards and labeling in Mexico from 1994 through 2005 for four major products: household refrigerators, room air conditioners, three-phase (squirrel cage) induction motors, and clothes washers. It is a retrospective analysis, seeking to assess verified impacts on product efficiency in the Mexican market in the first ten years after standards were implemented. Such an analysis allows the Mexican government to compare actual to originally forecast program benefits. In addition, it provides an extremely valuable benchmark for other countries considering standards, and to the energy policy community as a whole. The methodology for evaluationmore » begins with historical test data taken for a large number of models of each product type between 1994 and 2005. The pre-standard efficiency of models in 1994 is taken as a baseline throughout the analysis. Model efficiency data were provided by an independent certification laboratory (ANCE), which tested products as part of the certification and enforcement mechanism defined by the standards program. Using this data, together with economic and market data provided by both government and private sector sources, the analysis considers several types of national level program impacts. These include: Energy savings; Environmental (emissions) impacts, and Net financial impacts to consumers, manufacturers and utilities. Energy savings impacts are calculated using the same methodology as the original projections, allowing a comparison. Other impacts are calculated using a robust and sophisticated methodology developed by the Instituto de Investigaciones Electricas (IIE) and Lawrence Berkeley National Laboratory (LBNL), in a collaboration supported by the Collaborative Labeling and Standards Program (CLASP).« less
500 x 1Byte x 136 images. So each 500 bytes from this dataset represents one scan line of the slice image. For example, using PBM: Get frame one: rawtopgm 256 256 < tomato.data > frame1 Get frames one to four into a single image: rawtopgm 256 1024 < tomato.data >frame1-4 Get frame two (skip
If Only We Could Account For Every Atom (LBNL Summer Lecture Series)
Kisielowski, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division
2018-02-16
Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.
WORK FUNCTION CHARACTERIZATION OF DIRECTIONALLY SOLIDIFIED LAB6VB2 EUTECTIC (POSTPRINT)
2017-05-10
Berkeley National Laboratory Marc Cahay University of Cincinnati Ali Sayir NASA Glenn Research Center 28 April 2017 Interim Report...Derkink, and Chen Gong - LBNL 4) Marc Cahay - University of Cincinnati 5) Ali Sayir - NASA Glenn Research Center 7. PERFORMING...Cincinnati, 2600 Clifton Ave. Cincinnati, Ohio, 45221-003 5) NASA Glenn Research Ctr, 21000 Brookpark Rd. Cleveland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Price, Lynn
Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Field-testing UV disinfection of drinking water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, A.; Drescher, A.; Greene, D.
A recently invented device, ``UV Waterworks,`` uses ultraviolet (UV) light to disinfect drinking water. Its novel features are: low cost, robust design, rapid disinfection, low electricity use, low maintenance, high flow rate and ability to work with unpressurized water sources. The device could service a community of 1,000 persons, at an annual total cost of less than 10 US cents per person. UV Waterworks has been successfully tested in the laboratory. Limited field trials of an early version of the device were conducted in India in 1994--95. Insights from these trials led to the present design. Extended field trials ofmore » UV Waterworks, initiated in South Africa in February 1997, will be coordinated by the South African Center for Essential Community Services (SACECS), with technical and organizational support from Lawrence Berkeley National Laboratory(LBNL) and the Natural Resources Defense Council (both US). The first of the eight planned sites of the year long trial is an AIDS hospice near Durban. Durban metro Water and LBNL lab-tested a UV Waterworks unit prior to installing it at the hospice in August, 1997. The authors describe the field test plans and preliminary results from Durban.« less
Juchno, M.; Ambrosio, G.; Anerella, M.; ...
2016-01-26
Within the scope of the High Luminosity LHC project, the collaboration between CERN and U.S. LARP is developing new low-β quadrupoles using the Nb 3Sn superconducting technology for the upgrade of the LHC interaction regions. The magnet support structure of the first short model was designed and two units were fabricated and tested at CERN and at LBNL. The structure provides the preload to the collars-coils subassembly by an arrangement of outer aluminum shells pre-tensioned with water-pressurized bladders. For the mechanical qualification of the structure and the assembly procedure, superconducting coils were replaced with solid aluminum “dummy coils”, the structuremore » was preloaded at room temperature, and then cooled-down to 77 K. Mechanical behavior of the magnet structure was monitored with the use of strain gauges installed on the aluminum shells, the dummy coils and the axial preload system. As a result, this paper reports on the outcome of the assembly and the cool-down tests with dummy coils, which were performed at CERN and at LBNL, and presents the strain gauge measurements compared to the 3D finite element model predictions.« less
Alternate Operating Scenarios for NDCX-II
NASA Astrophysics Data System (ADS)
Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.; Yeun, A.
2011-10-01
NDCX-II is an accelerator facility being built at LBNL to study ion-heated warm dense matter and aspects of ion-driven targets for inertial-fusion energy. The baseline design calls for using twelve induction cells to accelerate 40 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. For operational flexibility, the option of using a helium plasma source is also being investigated. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. Each of these options requires development of an alternate acceleration schedule and the associated transverse focusing. The schedules here are first worked out with a fast-running 1-D particle-in-cell code ASP, then 2-D and 3-D Warp simulations are used to verify the 1-D results and to design transverse focusing. Work performed under the auspices of U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344 and by LBNL under Contract DE-AC03-76SF00098.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluswar, Shashi; Gadgil, Ashok
At this November 26, 2012 Science at the Theater, scientists discussed the recently launched LBNL Institute for Globally Transformative Technologies (LIGTT) at Berkeley Lab. LIGTT is an ambitious mandate to discover and develop breakthrough technologies for combating global poverty. It was created with the belief that solutions will require more advanced R&D and a deep understanding of market needs in the developing world. Berkeley Lab's Ashok Gadgil, Shashi Buluswar and seven other LIGTT scientists discussed what it takes to develop technologies that will impact millions of people. These include: 1) Fuel efficient stoves for clean cooking: Our scientists are improvingmore » the Berkeley Darfur Stove, a high efficiency stove used by over 20,000 households in Darfur; 2) The ultra-low energy refrigerator: A lightweight, low-energy refrigerator that can be mounted on a bike so crops can survive the trip from the farm to the market; 3) The solar OB suitcase: A low-cost package of the five most critical biomedical devices for maternal and neonatal clinics; 4) UV Waterworks: A device for quickly, safely and inexpensively disinfecting water of harmful microorganisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaCommare, Kristina; Larsen, Peter; Eto, Joseph
Policymakers and regulatory agencies are expressing renewed interest in the reliability and resilience of the U.S. electric power system in large part due to growing recognition of the challenges posed by climate change, extreme weather events, and other emerging threats. Unfortunately, there has been little or no consolidated information in the public domain describing how public utility/service commission (PUC) staff evaluate the economics of proposed investments in the resilience of the power system. Having more consolidated information would give policymakers a better understanding of how different state regulatory entities across the U.S. make economic decisions pertaining to reliability/resiliency. To helpmore » address this, Lawrence Berkeley National Laboratory (LBNL) was tasked by the U.S. Department of Energy Office of Energy Policy and Systems Analysis (EPSA) to conduct an initial set of interviews with PUC staff to learn more about how proposed utility investments in reliability/resilience are being evaluated from an economics perspective. LBNL conducted structured interviews in late May-early June 2016 with staff from the following PUCs: Washington D.C. (DCPSC), Florida (FPSC), and California (CPUC).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leitner, M.; Bieniosek, F.; Kwan, J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration between Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and Princeton Plasma Physics Laboratory (PPPL), is currently constructing a new induction linear accelerator, called Neutralized Drift Compression eXperiment NDCX-II. The accelerator design makes effective use of existing components from LLNL's decommissioned Advanced Test Accelerator (ATA), especially induction cells and Blumlein voltage sources that have been transferred to LBNL. We have developed an aggressive acceleration 'schedule' that compresses the emitted ion pulse from 500 ns to 1 ns in just 15 meters. In the nominal design concept, 30more » nC of Li{sup +} are accelerated to 3.5 MeV and allowed to drift-compress to a peak current of about 30 A. That beam will be utilized for warm dense matter experiments investigating the interaction of ion beams with matter at high temperature and pressure. Construction of the accelerator will be complete within a period of approximately two and a half years and will provide a worldwide unique opportunity for ion-driven warm dense matter experiments as well as research related to novel beam manipulations for heavy ion fusion drivers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fawley, W.M.; Barletta, W.A.; Corlett, J.N.
Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separatedmore » by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Nan
2008-03-01
China first adopted minimum energy performance standards (MEPS) in 1989. Today, there are standards for a wide range of domestic, commercial and selected industrial equipment. In 1999, China launched a voluntary endorsement label, which has grown to cover over 40 products including water-saving products (See Figure 1). Further, in 2005, China started a mandatory energy information label (also referred to as the 'Energy Label'). Today, the Energy Label is applied to four products including: air conditioners; household refrigerators; clothes washers; and unitary air conditioners (See Figure 2). MEPS and the voluntary endorsement labeling specifications have been updated and revised inmore » order to reflect technology improvements to those products in the market. These programs have had an important impact in reducing energy consumption of appliances in China. Indeed, China has built up a strong infrastructure to develop and implement product standards. Historically, however, the government's primary focus has been on the technical requirements for efficiency performance. Less attention has been paid to monitoring and enforcement with a minimal commitment of resources and little expansion of administrative capacity in this area. Thus, market compliance with both mandatory standards and labeling programs has been questionable and actual energy savings may have been undermined as a result. The establishment of a regularized monitoring system for tracking compliance with the mandatory standard and energy information label in China is a major area for program improvement. Over the years, the Collaborative Labeling and Appliance Standards Program (CLASP) has partnered with several Chinese institutions to promote energy-efficient products in China. CLASP, together with its implementing partner Lawrence Berkeley National Laboratory (LBNL), has assisted China in developing and updating the above-mentioned standards and labeling programs. Because of the increasing need for the development of a monitoring system to track compliance with standards and labeling, CLASP, with support from Japan's Ministry of Economy, Trade and Industry (METI), has expanded its ongoing collaboration with the China National Institute of Standards (CNIS) to include enforcement and monitoring. CNIS has already begun working on the issue of compliance. CNIS has conducted modest sample testing in 2006 for refrigerators, freezers and room air-conditioners, and repeated the same task in 2007 with a similar sample size for three products (refrigerators, freezers, air-conditioners and clothes washers). And, CNIS, with technical support from LBNL, has analyzed the data collected through testing. At the same time, parallel effort has also been paid to look at the potential impact of the label to 2020. In conjunction with CNIS, CLASP technical experts reviewed the standards development timeline of the four products currently subject to the mandatory energy information label. CLASP, with the support of METI/IEEJ, collaborated with CNIS to develop the efficiency grades, providing: technical input to the process; comment and advice on particular technical issues; as well as evaluation of the results. In addition, in order to effectively evaluate the impact of the label on China's market, CLASP further provided assistance to CNIS to collect data on both the efficiency distribution and product volume distribution of refrigerators on the market. This short report summarizes the status of Standards and Labeling program, current enforcement and monitoring mechanism in China, and states the importance of international collaborations.« less
Nb3Sn superconducting magnets for electron cyclotron resonance ion sources.
Ferracin, P; Caspi, S; Felice, H; Leitner, D; Lyneis, C M; Prestemon, S; Sabbi, G L; Todd, D S
2010-02-01
Electron cyclotron resonance (ECR) ion sources are an essential component of heavy-ion accelerators. Over the past few decades advances in magnet technology and an improved understanding of the ECR ion source plasma physics have led to remarkable performance improvements of ECR ion sources. Currently third generation high field superconducting ECR ion sources operating at frequencies around 28 GHz are the state of the art ion injectors and several devices are either under commissioning or under design around the world. At the same time, the demand for increased intensities of highly charged heavy ions continues to grow, which makes the development of even higher performance ECR ion sources a necessity. To extend ECR ion sources to frequencies well above 28 GHz, new magnet technology will be needed in order to operate at higher field and force levels. The superconducting magnet program at LBNL has been developing high field superconducting magnets for particle accelerators based on Nb(3)Sn superconducting technology for several years. At the moment, Nb(3)Sn is the only practical conductor capable of operating at the 15 T field level in the relevant configurations. Recent design studies have been focused on the possibility of using Nb(3)Sn in the next generation of ECR ion sources. In the past, LBNL has worked on the VENUS ECR, a 28 GHz source with solenoids and a sextupole made with NbTi operating at fields of 6-7 T. VENUS has now been operating since 2004. We present in this paper the design of a Nb(3)Sn ECR ion source optimized to operate at an rf frequency of 56 GHz with conductor peak fields of 13-15 T. Because of the brittleness and strain sensitivity of Nb(3)Sn, particular care is required in the design of the magnet support structure, which must be capable of providing support to the coils without overstressing the conductor. In this paper, we present the main features of the support structure, featuring an external aluminum shell pretensioned with water-pressurized bladders, and we analyze the expected coil stresses with a two-dimensional finite element mechanical model.
Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)
Linder, Eric [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-24
The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.
Summer Series 2012 - Shashi Buluswar
Shashi Buluswar
2018-05-16
The last installment of the Summer Series of Conversations took place Wednesday, August 1, with guest Shashi Buluswar, the executive director of the LBNL Institute for Globally Transformative Technologies (LIGTT). The Institute seeks to foster the discovery, development and deployment of a generation of low-carbon, affordable technologies that will advance sustainable methods to fight global poverty. The event, was hosted by Public Affairs Head Jeff Miller.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, T.; Ke, J.; Sathaye, J.
2011-04-20
This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).
Dark Energy Rules the Universe (and why the dinosaurs do not!) (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, Eric
2008-11-28
The revolutionary discovery that the expansion of the universe is speeding up, not slowing down from gravity, means that 75 percent of our universe consists of mysterious dark energy. Berkeley Lab theoretical physicist Eric Linder delves into the mystery of dark energy as part of the Science in the Theatre lecture series on Nov. 24, 2008.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
Leauthaud, Alexie [Univ. of California, Berkeley, CA (United States). Berkeley Center for Cosmological Physics (BCCP); Nakajima, Reiko [Univ. of California, Berkeley, CA (United States). Berkeley Center for Cosmological Physics (BCCP)
2018-05-04
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
Bethel, E. Wes [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division and Scientific Visualization Group
2018-05-07
Summer Lecture Series 2008: Scientific visualization transforms abstract data into readily comprehensible images, provide a vehicle for "seeing the unseeable," and play a central role in both experimental and computational sciences. Wes Bethel, who heads the Scientific Visualization Group in the Computational Research Division, presents an overview of visualization and computer graphics, current research challenges, and future directions for the field.
What is Gravitational Lensing? (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leauthaud, Alexie; Nakajima, Reiko
2009-07-28
Summer Lecture Series 2009: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke
Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terrimore » URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository.« less
NASA Astrophysics Data System (ADS)
Lin, Lin
The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.
DOE Office of Scientific and Technical Information (OSTI.GOV)
New, Joshua Ryan; Levinson, Ronnen; Huang, Yu
The Roof Savings Calculator (RSC) was developed through collaborations among Oak Ridge National Laboratory (ORNL), White Box Technologies, Lawrence Berkeley National Laboratory (LBNL), and the Environmental Protection Agency in the context of a California Energy Commission Public Interest Energy Research project to make cool-color roofing materials a market reality. The RSC website and a simulation engine validated against demonstration homes were developed to replace the liberal DOE Cool Roof Calculator and the conservative EPA Energy Star Roofing Calculator, which reported different roof savings estimates. A preliminary analysis arrived at a tentative explanation for why RSC results differed from previous LBNLmore » studies and provided guidance for future analysis in the comparison of four simulation programs (doe2attic, DOE-2.1E, EnergyPlus, and MicroPas), including heat exchange between the attic surfaces (principally the roof and ceiling) and the resulting heat flows through the ceiling to the building below. The results were consolidated in an ORNL technical report, ORNL/TM-2013/501. This report is an in-depth inter-comparison of four programs with detailed measured data from an experimental facility operated by ORNL in South Carolina in which different segments of the attic had different roof and attic systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Kwan, J
Earlier this year, the U.S. Department of Energy Office of Fusion Energy Sciences approved the NDCX-II project, a second-generation Neutralized Drift Compression eXperiment. NDCX-II is a collaborative effort of scientists and engineers from Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), and the Princeton Plasma Physics Laboratory (PPPL), in a formal collaboration known as the Virtual National Laboratory for Heavy Ion Fusion Science (HIFS-VNL). Supported by $11 M of funding from the American Recovery and Reinvestment Act, construction at LBNL commenced in July of 2009, with completion anticipated in March of 2012. Applications of this facility will includemore » studies of: the basic physics of the poorly understood 'warm dense matter' regime of temperatures around 1 eV and densities near solid, using uniform, volumetric ion heating of thin foil targets; ion energy coupling into an ablating plasma (such as that which occurs in an inertial fusion target) using beams with time-varying kinetic energy; space-charge-dominated ion beam dynamics; and beam focusing and pulse compression in neutralizing plasma. The machine will complement facilities at GSI in Darmstadt, Germany, but will employ lower ion kinetic energies and commensurately shorter stopping ranges in matter. Much of this research will contribute directly toward the collaboration's ultimate goal of electric power production via heavy-ion beam-driven inertial confinement fusion ('Heavy-Ion Fusion', or HIF). In inertial fusion, a target containing fusion fuel is heated by energetic 'driver' beams, and undergoes a miniature thermonuclear explosion. Currently the largest U.S. research program in inertial confinement is at Livermore's National Ignition Facility (NIF), a multibillion-dollar, stadium-sized laser facility optimized for studying physics issues relevant to nuclear stockpile stewardship. Nonetheless, NIF is expected to establish the fundamental feasibility of fusion ignition on the laboratory scale, and thus advance this approach to fusion energy. Heavy ion accelerators have a number of attributes (such as efficiency, longevity, and use of magnetic fields for final focusing) that make them attractive candidates as Inertial Fusion energy (IFE) drivers As with LBNL's existing NDCX-I, the new machine will produce short ion pulses using the technique of neutralized drift compression. A head-to-tail velocity gradient is imparted to the beam, which then shortens as it drifts in neutralizing plasma that suppresses space-charge forces. NDCX-II will make extensive use of induction cells and other hardware from the decommissioned ATA facility at LLNL. Figure (1) shows the layout of the facility, to be sited in LBNL's Building 58 alongside the existing NDCX-I apparatus. This second-generation facility represents a significant upgrade from the existing NDCX-I. It will be extensible and reconfigurable; in the configuration that has received the most emphasis, each NDCX-II pulse will deliver 30 nC of ions at 3 MeV into a mm-scale spot onto a thin-foil target. Pulse compression to {approx} 1 ns occurs in the accelerator as well as in the drift compression line; the beam is manipulated using suitably tailored voltage waveforms in the accelerating gaps. NDCX-II employs novel beam dynamics. To use the 200 kV Blumlein power supplies from ATA (blue cylinders in the figure), the pulse duration must first be reduced to less than 70 ns. This shortening is accomplished in an initial stage of non-neutral drift compression, downstream of the injector and the first few induction cells. The compression is sufficiently rapid that fewer than ten long-pulse waveform generators are needed, with Blumleins powering the rest of the acceleration. Extensive simulation studies have enabled an attractive physics design; these employ both a new 1-D code (ASP) and the VNL's workhorse 2-D/3-D code Warp. Snapshots from a simulation movie (available online) appear in Fig. 2. Studies on a dedicated test stand are quantifying the performance of the ATA hardware and of pulsed solenoids that will provide transverse beam confinement (ions require much stronger fields than the electrons accelerated by ATA). For more information, see the recent article in the Berkeley Lab News and references therein. Joe Kwan is the NDCX-II project manager and Alex Friedman is the leader for the physics design.« less
Energy Demand in China (Carbon Cycle 2.0)
Price, Lynn
2018-02-14
Lynn Price, LBNL scientist, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Invention and History of the Bubble Chamber (LBNL Summer Lecture Series)
Glaser, Don [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-01-12
Summer Lecture Series 2006: Don Glaser won the 1960 Nobel Prize for Physics for his 1952 invention of the bubble chamber at Berkeley Lab, a type of particle detector that became the mainstay of high-energy physics research throughout the 1960s and 1970s. He discusses how, inspired by bubbles in a glass of beer, he invented the bubble chamber and detected cosmic-ray muons.
The Death of the Dinosaurs: 27 Years Later (LBNL Summer Lecture Series)
Muller, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Dept. of Physics
2017-12-15
Summer Lecture Series 2006: Rich Muller, a Berkeley Lab physicist, discusses Nobel laureate Luis Alvarez and colleagues' 1979 discovery that an asteroid impact killed the dinosaurs. He also discusses what scientists have learned in the subsequent 27 years. Alvarez's team detected unusual amounts of iridium in sedimentary layers. They attributed the excess iridium to an impact from a large asteroid. His talk was presented June 30, 2006.
What is Gravitational Lensing?(LBNL Summer Lecture Series)
Alexie, Leauthaud; Reiko, Nakajima [Berkeley Center for Cosmological Physics, Berkely, California, United States
2017-12-09
July 28, 2009 Berkeley Lab summer lecture: Gravitational lensing is explained by Einstein's general theory of relativity: galaxies and clusters of galaxies, which are very massive objects, act on spacetime by causing it to become curved. Alexie Leauthaud and Reiko Nakajima, astrophysicists with the Berkeley Center for Cosmological Physics, will discuss how scientists use gravitational lensing to investigate the nature of dark energy and dark matter in the universe.
Solar Energy for Transportation Fuel (LBNL Science at the Theater)
Lewis, Nate
2018-05-25
Nate Lewis' talk looks at the challenge of capturing solar energy and storing it as an affordable transportation fuel - all on a scale necessary to reduce global warming. Overcoming this challenge will require developing new materials that can use abundant and inexpensive elements rather than costly and rare materials. He discusses the promise of new materials in the development of carbon-free alternatives to fossil fuel.
Nanoscience at Work: Creating Energy from Sunlight (LBNL Science at the Theater)
Alivisatos, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-02-26
Paul Alivisatos, co-leader of Berkeley Lab's Helios Project, is the Associate Director for Physical Sciences and director of the Materials Sciences Division at Berkeley Lab. In the Helios Project, Alivisatos will use nanotechnology in the efficient capture of sunlight and its conversion to electricity to drive economical fuel production processes. He is an authority on artificial nanostructure synthesis and inventor of the quantum dot technology.
Climate Change: The Role of Particles and Gases (LBNL Summer Lecture Series)
Menon, Surabi
2017-12-15
Summer Lecture Series 2008: A member of the Atmospheric Sciences Department in the Environmental Energy Technologies Division (EETD), Surabi Menon's work focuses on the human contribution to increasing impacts of climate change. Her talk will focus on what humans can do about the effects of global warming by examining anthropogenic influences on climate and future anticipated impacts, using a climate model and her own observations.
The Death of the Dinosaurs: 27 Years Later (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Rich
2006-06-30
Summer Lecture Series 2006: Rich Muller, a Berkeley Lab physicist, discusses Nobel laureate Luis Alvarez and colleagues' 1979 discovery that an asteroid impact killed the dinosaurs. He also discusses what scientists have learned in the subsequent 27 years. Alvarez's team detected unusual amounts of iridium in sedimentary layers. They attributed the excess iridium to an impact from a large asteroid. His talk was presented June 30, 2006.
Multilayer deposition and EUV reflectance characterization of 131 ? flight mirrors for AIA at LLNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, R; Robinson, J C; Spiller, E
2006-02-22
Mo/Si multilayer coatings reflecting at 131 {angstrom} were deposited successfully on the AIA primary and secondary flight mirrors and on two coating witness Si wafers, on November 16, 2005, at LLNL. All coatings were characterized by means of EUV reflectance measurements at beamline 6.3.2 of the Advanced Light Source (ALS) synchrotron at LBNL, and were found to be well within specifications.
Automated Demand Response for Energy Sustainability Cost and Performance Report
2015-09-01
Install solar thermal system for pool heating in fitness Bldg 325 2022 $ 21,359 $ 7,199 3.6 yrs Renewable energy project p. 124- 126 Note: All data...and R. Bienert, 2011. Smart Grid Standards and Systems Interoperability: A Precedent with OpenADR, Lawrence Berkeley National Laboratory, LBNL...response (DR) system at Fort Irwin, CA. This demonstration employed industry-standard OpenADR (Open Automated Demand Response) technology to perform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit
The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report,more » we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.« less
Hydraulic Conductivity Measurements Barrow 2014
Katie McKnight; Tim Kneafsey; Craig Ulrich; Jil Geller
2015-02-22
Six individual ice cores were collected from Barrow Environmental Observatory in Barrow, Alaska, in May of 2013 as part of the Next Generation Ecosystem Experiment (NGEE). Each core was drilled from a different location at varying depths. A few days after drilling, the cores were stored in coolers packed with dry ice and flown to Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA. 3-dimensional images of the cores were constructed using a medical X-ray computed tomography (CT) scanner at 120kV. Hydraulic conductivity samples were extracted from these cores at LBNL Richmond Field Station in Richmond, CA, in February 2014 by cutting 5 to 8 inch segments using a chop saw. Samples were packed individually and stored at freezing temperatures to minimize any changes in structure or loss of ice content prior to analysis. Hydraulic conductivity was determined through falling head tests using a permeameter [ELE International, Model #: K-770B]. After approximately 12 hours of thaw, initial falling head tests were performed. Two to four measurements were collected on each sample and collection stopped when the applied head load exceeded 25% change from the original load. Analyses were performed between 2 to 3 times for each sample. The final hydraulic conductivity calculations were computed using methodology of Das et al., 1985.
Small-Chamber Measurements of Chemical-Specific Emission Factors for Drywall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy; Russell, Marion; Apte, Michael G.
2010-06-01
Imported drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. To support an investigation of those building materials by the Consumer Products Safety Commission (CPSC), Lawrence Berkeley National Laboratory (LBNL) measured chemical-specific emission factors for 30 samples of drywall materials. Emission factors are reported for 75 chemicals and 30 different drywall samples encompassing both domestic and imported stock and incorporating natural, synthetic, or mixed gypsum core material. CPSC supplied all drywall materials. First the drywall samples were isolated and conditioned in dedicated chambers, then they were transferred to small chambers wheremore » emission testing was performed. Four sampling and analysis methods were utilized to assess (1) volatile organic compounds, (2) low molecular weight carbonyls, (3) volatile sulfur compounds, and (4) reactive sulfur gases. LBNL developed a new method that combines the use of solid phase microextraction (SPME) with small emission chambers to measure the reactive sulfur gases, then extended that technique to measure the full suite of volatile sulfur compounds. The testing procedure and analysis methods are described in detail herein. Emission factors were measured under a single set of controlled environmental conditions. The results are compared graphically for each method and in detailed tables for use in estimating indoor exposure concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen L.; Darghouth, Naïm R.; Millstein, Dev
Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and nonresidential systems installed through year-end 2014, with preliminary trends for the first half of 2015. As noted in the text box below, this year’s report incorporates a number of important changes and enhancements. Among those changes, this year's report focuses solely on residential and nonresidential PV systems; data on utility-scale PV are reported in LBNL’s companion Utility-Scale Solar reportmore » series. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data were collected for roughly 400,000 individual PV systems, representing 81% of all U.S. residential and non-residential PV capacity installed through 2014 and 62% of capacity installed in 2014, though a smaller subset of this data were used in analysis.« less
Oxygen vacancy ordering in transition-metal-oxide LaCoO3 films
NASA Astrophysics Data System (ADS)
Biskup, Neven; Salafranca, Juan; Mehta, Virat; Suzuki, Yuri; Pennycook, Stephen; Pantelides, Sokrates; Varela, Maria
2013-03-01
Oxygen vacancies in complex oxides affect the structure and the electronic and magnetic properties. Here we use atomically-resolved Z-contrast imaging, electron-energy-loss spectroscopy and densityfunctional calculations to demonstrate that ordered oxygen vacancies may act as the controlling degree of freedom for the structural, electronic, and magnetic properties of LaCoO3 thin films. We find that epitaxial strain is released through the formation of O vacancy superlattices. The O vacancies donate excess electrons to the Co d-states, resulting in ferromagnetic ordering. The appearance of Peierls-like minigaps followed by strain relaxation triggers a nonlinear rupture of the energy bands, which explains the observed insulating behavior. We conclude that oxygen vacancy ordering constitutes a degree of freedom that can be used to engineer novel behavior in complex-oxide films. Research at ORNL supported by U.S. DOE-BES, Materials Sciences and Engineering Div. and by ORNL's ShaRE User Program (DOE-BES), at UCM by the ERC Starting Inv. Award, at UC Berkeley and LBNL by BES-DMSE, at Vanderbilt by U.S DOE and the McMinn Endowment.
BEARS: Radioactive ion beams at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Powell, J.; Guo, F.Q.; Haustein, P.E.
1998-07-01
BEARS (Berkeley Experiments with Accelerated Radioactive Species) is an initiative to develop a radioactive ion-beam capability at Lawrence Berkeley National Laboratory. The aim is to produce isotopes at an existing medical cyclotron and to accelerate them at the 88 inch Cyclotron. To overcome the 300-meter physical separation of these two accelerators, a carrier-gas transport system will be used. At the terminus of the capillary, the carrier gas will be separated and the isotopes will be injected into the 88 inch Cyclotron`s Electron Cyclotron Resonance (ECR) ion source. The first radioactive beams to be developed will include 20-min {sup 11}C andmore » 70-sec {sup 14}O, produced by (p,n) and (p,{alpha}) reactions on low-Z targets. A test program is currently being conducted at the 88 inch Cyclotron to develop the parts of the BEARS system. Preliminary results of these tests lead to projections of initial {sup 11}C beams of up to 2.5 {times} 10{sup 7} ions/sec and {sup 14}O beams of 3 {times} 10{sup 5} ions/sec.« less
Assembly Tests of the First Nb 3 Sn Low-Beta Quadrupole Short Model for the Hi-Lumi LHC
Pan, H.; Felice, H.; Cheng, D. W.; ...
2016-01-18
In preparation for the high-luminosity upgrade of the Large Hadron Collider (LHC), the LHC Accelerator Research Program (LARP) in collaboration with CERN is pursuing the development of MQXF: a 150-mm-aperture high-field Nb3Sn quadrupole magnet. Moreover, the development phase starts with the fabrication and test of several short models (1.2-m magnetic length) and will continue with the development of several long prototypes. All of them are mechanically supported using a shell-based support structure, which has been extensively demonstrated on several R&D models within LARP. The first short model MQXFS-AT has been assembled at LBNL with coils fabricated by LARP and CERN.more » In our paper, we summarize the assembly process and show how it relies strongly on experience acquired during the LARP 120-mm-aperture HQ magnet series. We also present comparison between strain gauges data and finite-element model analysis. Finally, we present the implication of the MQXFS-AT experience on the design of the long prototype support structure.« less
Progress in the Long $${\\rm Nb}_{3}{\\rm Sn}$$ Quadrupole R&D by LARP
Ambrosio, G.; Andreev, N.; Anerella, M.; ...
2011-11-14
After the successful test of the first long Nb 3Sn quadrupole (LQS01) the US LHC Accelerator Research Program (LARP, a collaboration of BNL, FNAL, LBNL and SLAC) is assessing training memory, reproducibility, and other accelerator quality features of long Nb 3Sn quadrupole magnets. LQS01b (a reassembly of LQS01 with more uniform and higher pre-stress) was subjected to a full thermal cycle and reached the previous plateau of 222 T/m at 4.5 K in two quenches. A new set of four coils, made of the same type of conductor used in LQS01 (RRP 54/61 by Oxford Superconducting Technology), was assembled inmore » the LQS01 structure and tested at 4.5 K and lower temperatures. The new magnet (LQS02) reached the target gradient (200 T/m) only at 2.6 K and lower temperatures, at intermediate ramp rates. The preliminary test analysis, here reported, showed a higher instability in the limiting coil than in the other coils of LQS01 and LQS02.« less
Performance of Charcoal Cookstoves for Haiti, Part 2: Results from the Controlled Cooking Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lask, Kathleen; Jones, Jennifer; Booker, Kayje
2011-11-30
Five charcoal cookstoves were tested using a Controlled Cooking Test (CCT) developed from cooking practices in Haiti. Cookstoves were tested for total burn time, specific fuel consumption, and emissions of carbon monoxide (CO), carbon dioxide (CO 2), and the ratio of carbon monoxide to carbon dioxide (CO/CO 2). These results are presented in this report along with LBNL testers’ observations regarding the usability of the stoves.
Sit Down with Sabin: Henrik Scheller: Customizing plants for biofuels. (LBNL Summer Lecture Series)
Sabin, Russell; Scheller, Henrik
2018-04-25
Henrik Scheller from the JBEI appeared on August 3rd, 2011 for this installment of "Sit Down with Sabin," a conversation in which former reporter Sabin Russell chats with Lab staff about innovative science. They will discuss "Customizing plants for biofuels." During this series of conversations, Russell and Lab staff will explore the ups and downs of pioneering science, all without the aid of PowerPoints.
How to Bring Solar Energy to Seven Billion People (LBNL Science at the Theater)
Wadia, Cyrus [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-24
By exploiting the powers of nanotechnology and taking advantage of non-toxic, Earth-abundant materials, Berkeley Lab's Cyrus Wadia has fabricated new solar cell devices that have the potential to be several orders of magnitude less expensive than conventional solar cells. And by mastering the chemistry of these materials-and the economics of solar energy-he envisions bringing electricity to the 1.2 billion people now living without it.
Sit Down with Sabin: Henrik Scheller: Customizing plants for biofuels. (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabin, Russell; Scheller, Henrik
2011-07-03
Henrik Scheller from the JBEI appeared on August 3rd, 2011 for this installment of "Sit Down with Sabin," a conversation in which former reporter Sabin Russell chats with Lab staff about innovative science. They will discuss "Customizing plants for biofuels." During this series of conversations, Russell and Lab staff will explore the ups and downs of pioneering science, all without the aid of PowerPoints.
Delta Doping High Purity CCDs and CMOS for LSST
NASA Technical Reports Server (NTRS)
Blacksberg, Jordana; Nikzad, Shouleh; Hoenk, Michael; Elliott, S. Tom; Bebek, Chris; Holland, Steve; Kolbe, Bill
2006-01-01
A viewgraph presentation describing delta doping high purity CCD's and CMOS for LSST is shown. The topics include: 1) Overview of JPL s versatile back-surface process for CCDs and CMOS; 2) Application to SNAP and ORION missions; 3) Delta doping as a back-surface electrode for fully depleted LBNL CCDs; 4) Delta doping high purity CCDs for SNAP and ORION; 5) JPL CMP thinning process development; and 6) Antireflection coating process development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Sabin; Torn, Margaret
2011-07-06
Lawrence Berkeley National Laboratory soil scientist Margaret Torn appears July 6, 2011 on "Sit Down with Sabin," a weekly conversation in which former reporter Sabin Russell chats with Berkeley Lab staff about innovative science. Torn discusses how she travels the world to learn more about soil's huge role in the global carbon cycle. Brought to you by Berkeley Lab Public Affairs.
Low Cost Solar Energy Conversion (Carbon Cycle 2.0)
Ramesh, Ramamoorthy
2018-04-27
Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)
Alivisatos, Paul
2018-05-08
Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
New Light on Dark Energy (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linder, Eric; Ho, Shirly; Aldering, Greg
2011-04-25
A panel of Lab scientists — including Eric Linder, Shirly Ho, and Greg Aldering — along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.
State-of-the-art software for window energy-efficiency rating and labeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arasteh, D.; Finlayson, E.; Huang, J.
1998-07-01
Measuring the thermal performance of windows in typical residential buildings is an expensive proposition. Not only is laboratory testing expensive, but each window manufacturer typically offers hundreds of individual products, each of which has different thermal performance properties. With over a thousand window manufacturers nationally, a testing-based rating system would be prohibitively expensive to the industry and to consumers. Beginning in the early 1990s, simulation software began to be used as part of a national program for rating window U-values. The rating program has since been expanded to include Solar Hear Gain Coefficients and is now being extended to annualmore » energy performance. This paper describes four software packages available to the public from Lawrence Berkeley National Laboratory (LBNL). These software packages are used to evaluate window thermal performance: RESFEN (for evaluating annual energy costs), WINDOW (for calculating a product`s thermal performance properties), THERM (a preprocessor for WINDOW that determines two-dimensional heat-transfer effects), and Optics (a preprocessor for WINDOW`s glass database). Software not only offers a less expensive means than testing to evaluate window performance, it can also be used during the design process to help manufacturers produce windows that will meet target specifications. In addition, software can show small improvements in window performance that might not be detected in actual testing because of large uncertainties in test procedures.« less
E=mc2 (LBNL Summer Lecture Series)
Murayama, Hitoshi
2018-01-12
Summer Lecture Series 2006: Go behind the famous equation with Hitoshi Murayama. This famous equation, part of the theory of relativity set forth by Einstein, changed our understanding of nature at the most fundamental level. The fascinating story of energy (E) and mass (m) is still evolving a century since Einstein as we understand more of where they come from, how they shape the universe, and the missing pieces of the universe: Dark Matter and Dark Energy.
ESnet: Large-Scale Science and Data Management ( (LBNL Summer Lecture Series)
Johnston, Bill
2017-12-09
Summer Lecture Series 2004: Bill Johnston of Berkeley Lab's Computing Sciences is a distinguished networking and computing researcher. He managed the Energy Sciences Network (ESnet), a leading-edge, high-bandwidth network funded by DOE's Office of Science. Used for everything from videoconferencing to climate modeling, and flexible enough to accommodate a wide variety of data-intensive applications and services, ESNet's traffic volume is doubling every year and currently surpasses 200 terabytes per month.
New Light on Dark Energy (LBNL Science at the Theater)
Linder, Eric; Ho, Shirly; Aldering, Greg; Fraiknoi, Andrew
2017-12-09
A panel of Lab scientists â including Eric Linder, Shirly Ho, and Greg Aldering â along with Andrew Fraiknoi, the Bay Area's most popular astronomy explainer, gathered at the Berkeley Repertory Theatre on Monday, April 25, 2011, for a discussion about "New Light on Dark Energy." Topics will include hunting down Type 1a supernovae, measuring the universe using baryon oscillation, and whether dark energy is the true driver of the universe.
Geologic Carbon Sequestration and Biosequestration (Carbon Cycle 2.0)
DePaolo, Don
2018-05-02
Don DePaolo, Director of LBNL's Earth Sciences Division, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)
Gray, Joe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division and Associate Lab. Director for Life and Environmental Sciences
2018-05-04
Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks â particularly with regard to breast cancer.
2016-04-01
phosphate use by these recombinant strains was evaluated because carbon use by these strains is still undergoing optimization by LBNL. The E . coli ...plasmids, had successful growth when transformed into a different E . coli background, which correlated with IMPA degradation. Ultimately, the...transformed E . coli strains, optimized at ECBC, were able to grow using IMPA as the phosphate source. 15. SUBJECT TERMS Acetylcholinesterase (AChE
Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier
NASA Technical Reports Server (NTRS)
Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward
2016-01-01
The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).
Secrets of the Soil (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brodie, Eoin; Northen, Trent; Jansson, Janet
2011-11-07
Four Berkeley Lab scientists unveil the "Secrets of the Soil"at this Nov. 7, 2011 Science at the Theater event. Eoin Brodie, Janet Jansson, Margaret Torn and Trent Northen talk about their research and how soil could hold the key to our climate and energy future.The discussion was moderated by John Harte, who holds a joint professorship in the Energy and Resources Group and the Ecosystem Sciences Division of UC Berkeley's College of Natural Resources
Sit Down With Sabin: Merrian Fuller: Efficiency for sale. Who's buying? (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuller, Merrian; Russell, Sabin
Merrian Fuller from the Environmental Energy Technologies Division appeared on July 26th, 2011 for this installment of "Sit Down with Sabin," a conversation in which former reporter Sabin Russell chats with Lab staff about innovative science. They will discuss "Efficiency for Sale. Who's Buying?" During this series of conversations, Russell and Lab staff will explore the ups and downs of pioneering science, all without the aid of PowerPoints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit
In this report, we present FY2014 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. LBNL’s work on the modeling of coupled THMC processes in salt was initiated in FY2012, focusing on exploring and demonstrating the capabilities of an existing LBNL modeling tool (TOUGH-FLAC) for simulating temperature-driven coupled flow and geomechanical processes in salt. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate andmore » transport of water. we provide more details on the FY2014 work, first presenting updated tools and improvements made to the TOUGH-FLAC simulator, and the use of this updated tool in a new model simulation of long-term THM behavior within a generic repository in a salt formation. This is followed by the description of current benchmarking and validations efforts, including the TSDE experiment. We then present the current status in the development of constitutive relationships and the dual-continuum model for brine migration. We conclude with an outlook for FY2015, which will be much focused on model validation against field experiments and on the use of the model for the design studies related to a proposed heater experiment.« less
Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobecky, Patricia A.
2015-04-06
In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Areamore » 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.« less
Theoretical studies of defect formation and target heating by intense pulsed ion beams
NASA Astrophysics Data System (ADS)
Barnard, J. J.; Schenkel, T.; Persaud, A.; Seidl, P. A.; Friedman, A.; Grote, D. P.; Davidson, R. C.; Gilson, E. P.; Kaganovich, I.
2015-11-01
We present results of three studies related to experiments on NDCX-II, the Neutralized Drift Compression Experiment, a short-pulse (~ 1ns), high-current (~ 70A) linear accelerator for 1.2 MeV ions at LBNL. These include: (a) Coupled transverse and longitudinal envelope calculations of the final non-neutral ion beam transport, followed by neutralized drift and final focus, for a number of focus and drift lengths and with a series of ion species (Z =1-19). Predicted target fluences were obtained and target temperatures in the 1 eV range estimated. (b) HYDRA simulations of the target response for Li and He ions and for Al and Au targets at various ion fluences (up to 1012 ions/pulse/mm2) and pulse durations, benchmarking temperature estimates from the envelope calculations. (c) Crystal-Trim simulations of ion channeling through single-crystal lattices, with comparisons to ion transmission data as a function of orientation angle of the crystal foil and for different ion intensities and ion species. This work was performed under the auspices of the U.S. DOE under contracts DE-AC52-07NA27344 (LLNL), DE-AC02-05CH11231 (LBNL) and DE-AC02-76CH0307 (PPPL) and was supported by the US DOE Office of Science, Fusion Energy Sciences. LLNL-ABS-67521.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Dean N.
2011-04-02
This report summarizes work carried out by the Earth System Grid Center for Enabling Technologies (ESG-CET) from October 1, 2010 through March 31, 2011. It discusses ESG-CET highlights for the reporting period, overall progress, period goals, and collaborations, and lists papers and presentations. To learn more about our project and to find previous reports, please visit the ESG-CET Web sites: http://esg-pcmdi.llnl.gov/ and/or https://wiki.ucar.edu/display/esgcet/Home. This report will be forwarded to managers in the Department of Energy (DOE) Scientific Discovery through Advanced Computing (SciDAC) program and the Office of Biological and Environmental Research (OBER), as well as national and international collaborators andmore » stakeholders (e.g., those involved in the Coupled Model Intercomparison Project, phase 5 (CMIP5) for the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment Report (AR5); the Community Earth System Model (CESM); the Climate Science Computational End Station (CCES); SciDAC II: A Scalable and Extensible Earth System Model for Climate Change Science; the North American Regional Climate Change Assessment Program (NARCCAP); the Atmospheric Radiation Measurement (ARM) program; the National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA)), and also to researchers working on a variety of other climate model and observation evaluation activities. The ESG-CET executive committee consists of Dean N. Williams, Lawrence Livermore National Laboratory (LLNL); Ian Foster, Argonne National Laboratory (ANL); and Don Middleton, National Center for Atmospheric Research (NCAR). The ESG-CET team is a group of researchers and scientists with diverse domain knowledge, whose home institutions include eight laboratories and two universities: ANL, Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), LLNL, NASA/Jet Propulsion Laboratory (JPL), NCAR, Oak Ridge National Laboratory (ORNL), Pacific Marine Environmental Laboratory (PMEL)/NOAA, Rensselaer Polytechnic Institute (RPI), and University of Southern California, Information Sciences Institute (USC/ISI). All ESG-CET work is accomplished under DOE open-source guidelines and in close collaboration with the project's stakeholders, domain researchers, and scientists. Through the ESG project, the ESG-CET team has developed and delivered a production environment for climate data from multiple climate model sources (e.g., CMIP (IPCC), CESM, ocean model data (e.g., Parallel Ocean Program), observation data (e.g., Atmospheric Infrared Sounder, Microwave Limb Sounder), and analysis and visualization tools) that serves a worldwide climate research community. Data holdings are distributed across multiple sites including LANL, LBNL, LLNL, NCAR, and ORNL as well as unfunded partners sites such as the Australian National University (ANU) National Computational Infrastructure (NCI), the British Atmospheric Data Center (BADC), the Geophysical Fluid Dynamics Laboratory/NOAA, the Max Planck Institute for Meteorology (MPI-M), the German Climate Computing Centre (DKRZ), and NASA/JPL. As we transition from development activities to production and operations, the ESG-CET team is tasked with making data available to all users who want to understand it, process it, extract value from it, visualize it, and/or communicate it to others. This ongoing effort is extremely large and complex, but it will be incredibly valuable for building 'science gateways' to critical climate resources (such as CESM, CMIP5, ARM, NARCCAP, Atmospheric Infrared Sounder (AIRS), etc.) for processing the next IPCC assessment report. Continued ESG progress will result in a production-scale system that will empower scientists to attempt new and exciting data exchanges, which could ultimately lead to breakthrough climate science discoveries.« less
Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muller, Rich
2008-10-13
Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.
Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rokhsar, Daniel
2003-06-18
UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.
Development of Cellulosic Biofuels (LBNL Summer Lecture Series)
Somerville, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division; Stanford Univ., CA (United States). Dept. of Biological Sciences
2018-05-18
Summer Lecture Series 2007: Chris Somerville, Director of the Energy Biosciences Institute and an award-winning plant biochemist with Berkeley Lab's Physical Biosciences Division, is a leading authority on the structure and function of plant cell walls. He discusses an overview of some of the technical challenges associated with the production of cellulosic biofuels, which will require an improved understanding of a diverse range of topics in fields such as agronomy, chemical engineering, microbiology, structural biology, genomics, environmental sciences, and socioeconomics.
A Future with (out) Carbon Cycle 2.0 (Carbon Cycle 2.0)
Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-21
Bill Collins, Head of LBNL's Climate Sciences Department, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 1, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Blanco-Martin, Laura; Molins, Sergi
In this report, we present FY2015 progress by Lawrence Berkeley National Laboratory (LBNL) related to modeling of coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This is a combined milestone report related to milestone Salt R&D Milestone “Modeling Coupled THM Processes and Brine Migration in Salt at High Temperatures” (M3FT-15LB0818012) and the Salt Field Testing Milestone (M3FT-15LB0819022) to support the overall objectives of the salt field test planning.
Haber, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-01-23
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)
Rokhsar, Daniel
2018-04-27
UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.
Space Radiation and Cataracts (LBNL Summer Lecture Series)
Blakely, Eleanor [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division
2018-01-23
Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab
Site Environmental Report for 2010, Volumes 1 & 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskin, David; Bauters, Tim; Borglin, Ned
2011-09-01
LBNL is a multiprogram scientific facility operated by the UC for the DOE. LBNL’s research is directed toward the physical, biological, environmental, and computational sciences, in order to deliver scientific knowledge and discoveries pertinent to DOE’s missions. This annual Site Environmental Report covers activities conducted in CY 2010. The format and content of this report satisfy the requirements of DOE Order 231.1A, Environment, Safety, and Health Reporting,1 and the operating contract between UC and DOE
Physics 101: What Our Next President Needs to Know (LBNL Science at the Theater)
Muller, Rich
2018-06-12
Rich Muller, author of Physics for Future Presidents, argues that the next president can't afford to be ignorant about the science behind terrorism, nuclear dangers, energy, space, and global warming. Muller, a MacArthur Fellow, Berkeley Lab physicist, and one of the most popular lecturers at UC Berkeley, discusses what it takes to survive in today's increasingly dangerous world -- information essential to the next commander-in-chief. He presented his talk Oct. 13, 2008.
Commissioning of BL 7.2, the new diagnostic beam line at the ALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sannibale, Fernando; Baum, Dennis; Biocca, Alan
2004-06-29
BL 7.2 is a new beamline at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory (LBNL) dedicated to electron beam diagnostics. The system, which is basically a hard x-ray pinhole camera, was installed in the storage ring in August 2003 and commissioning with the ALS electron beam followed immediately after. In this paper the commissioning results are presented together with the description of the relevant measurements performed for the beamline characterization.
Multicore: Fallout From a Computing Evolution (LBNL Summer Lecture Series)
Yelick, Kathy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
2018-05-07
Summer Lecture Series 2008: Parallel computing used to be reserved for big science and engineering projects, but in two years that's all changed. Even laptops and hand-helds use parallel processors. Unfortunately, the software hasn't kept pace. Kathy Yelick, Director of the National Energy Research Scientific Computing Center at Berkeley Lab, describes the resulting chaos and the computing community's efforts to develop exciting applications that take advantage of tens or hundreds of processors on a single chip.
Falcone, Roger [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Univ. of California, Berkeley, CA (United States). Dept. of Physics
2018-05-04
Summer Lecture Series 2008: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.
Mechanical Design of HD2, a 15 T Nb3Sn Dipole Magnet with a 35 mm Bore
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferracin, P.; Bartlett, S.E.; Caspi, S.
2006-06-01
After the fabrication and test of HD1, a 16 T Nb{sub 3}Sn dipole magnet based on flat racetrack coil configuration, the Superconducting Magnet Program at Lawrence Berkeley National Laboratory (LBNL) is developing the Nb{sub 3}Sn dipole HD2. With a dipole field above 15 T, a 35 mm clear bore, and nominal field harmonics within a fraction of one unit, HD2 represents a further step towards the application of block-type coils to high-field accelerator magnets. The design features tilted racetrack-type ends, to avoid obstructing the beam path, and a 4 mm thick stainless steel tube, to support the coil during themore » preloading operation. The mechanical structure, similar to the one used for HD1, is based on an external aluminum shell pretensioned with pressurized bladders. Axial rods and stainless steel plates provide longitudinal support to the coil ends during magnet excitation. A 3D finite element analysis has been performed to evaluate stresses and deformations from assembly to excitation, with particular emphasis on conductor displacements due to Lorentz forces. Numerical results are presented and discussed.« less
Small- and Medium-Sized Commercial Building Monitoring and Controls Needs: A Scoping Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katipamula, Srinivas; Underhill, Ronald M.; Goddard, James K.
2012-10-31
Buildings consume over 40% of the total energy consumption in the U.S. A significant portion of the energy consumed in buildings is wasted because of the lack of controls or the inability to use existing building automation systems (BASs) properly. Much of the waste occurs because of our inability to manage and controls buildings efficiently. Over 90% of the buildings are either small-size (<5,000 sf) or medium-size (between 5,000 sf and 50,000 sf); these buildings currently do not use BASs to monitor and control their building systems from a central location. According to Commercial Building Energy Consumption Survey (CBECS), aboutmore » 10% of the buildings in the U.S. use BASs or central controls to manage their building system operations. Buildings that use BASs are typically large (>100,000 sf). Lawrence Berkeley National Laboratory (LBNL), Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) were asked by the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP) to identify monitoring and control needs for small- and medium-sized commercial buildings and recommend possible solutions. This study documents the needs and solutions for small- and medium-sized buildings.« less
Quantifying the debonding of inclusions through tomography and computational homology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei-Yang; Johnson, George C.; Mota, Alejandro
2010-09-01
This report describes a Laboratory Directed Research and Development (LDRD) project to use of synchrotron-radiation computed tomography (SRCT) data to determine the conditions and mechanisms that lead to void nucleation in rolled alloys. The Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (LBNL) has provided SRCT data of a few specimens of 7075-T7351 aluminum plate (widely used for aerospace applications) stretched to failure, loaded in directions perpendicular and parallel to the rolling direction. The resolution of SRCT data is 900nm, which allows elucidation of the mechanisms governing void growth and coalescence. This resolution is not fine enough, however, formore » nucleation. We propose the use statistics and image processing techniques to obtain sub-resolution scale information from these data, and thus determine where in the specimen and when during the loading program nucleation occurs and the mechanisms that lead to it. Quantitative analysis of the tomography data, however, leads to the conclusion that the reconstruction process compromises the information obtained from the scans. Alternate, more powerful reconstruction algorithms are needed to address this problem, but those fall beyond the scope of this project.« less
Dynamics of hot random quantum spin chains: from anyons to Heisenberg spins
NASA Astrophysics Data System (ADS)
Parameswaran, Siddharth; Potter, Andrew; Vasseur, Romain
2015-03-01
We argue that the dynamics of the random-bond Heisenberg spin chain are ergodic at infinite temperature, in contrast to the many-body localized behavior seen in its random-field counterpart. First, we show that excited-state real-space renormalization group (RSRG-X) techniques suffer from a fatal breakdown of perturbation theory due to the proliferation of large effective spins that grow without bound. We repair this problem by deforming the SU (2) symmetry of the Heisenberg chain to its `anyonic' version, SU(2)k , where the growth of effective spins is truncated at spin S = k / 2 . This enables us to construct a self-consistent RSRG-X scheme that is particularly simple at infinite temperature. Solving the flow equations, we compute the excited-state entanglement and show that it crosses over from volume-law to logarithmic scaling at a length scale ξk ~eαk3 . This reveals that (a) anyon chains have random-singlet-like excited states for any finite k; and (b) ergodicity is restored in the Heisenberg limit k --> ∞ . We acknowledge support from the Quantum Materials program of LBNL (RV), the Gordon and Betty Moore Foundation (ACP), and UC Irvine startup funds (SAP).
Particle-hole symmetry, many-body localization, and topological edge modes
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Friedman, Aaron J.; Parameswaran, S. A.; Potter, Andrew C.
We study the excited states of interacting fermions in one dimension with particle-hole symmetric disorder (equivalently, random-bond XXZ chains) using a combination of renormalization group methods and exact diagonalization. Absent interactions, the entire many-body spectrum exhibits infinite-randomness quantum critical behavior with highly degenerate excited states. We show that though interactions are an irrelevant perturbation in the ground state, they drastically affect the structure of excited states: even arbitrarily weak interactions split the degeneracies in favor of thermalization (weak disorder) or spontaneously broken particle-hole symmetry, driving the system into a many-body localized spin glass phase (strong disorder). In both cases, the quantum critical properties of the non-interacting model are destroyed, either by thermal decoherence or spontaneous symmetry breaking. This system then has the interesting and counterintuitive property that edges of the many-body spectrum are less localized than the center of the spectrum. We argue that our results rule out the existence of certain excited state symmetry-protected topological orders. Supported by the Gordon and Betty Moore Foundation's EPiQS Initiative (Grant GBMF4307 (ACP), the Quantum Materials Program at LBNL (RV), NSF Grant DMR-1455366 and UCOP Research Catalyst Award No. CA-15-327861 (SAP).
Demand Response Availability Profiles for California in the Year 2020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Daniel; Sohn, Michael; Piette, Mary Ann
2014-11-01
Demand response (DR) is being considered as a valuable resource for keeping the electrical grid stable and efficient, and deferring upgrades to generation, transmission, and distribution systems. However, simulations to determine how much infrastructure upgrades can be deferred are necessary in order to plan optimally. Production cost modeling is a technique, which simulates the dispatch of generators to meet demand and reserves in each hour of the year, at minimal cost. By integrating demand response resources into a production cost model (PCM), their value to the grid can be estimated and used to inform operations and infrastructure planning. DR availabilitymore » profiles and constraints for 13 end-uses in California for the year 2020 were developed by Lawrence Berkeley National Laboratory (LBNL), and integrated into a production cost model by Lawrence Livermore National Laboratory (LLNL), for the California Energy Commission’s Value of Energy Storage and Demand Response for Renewable Integration in California Study. This report summarizes the process for developing the DR availability profiles for California, and their aggregate capabilities. While LBNL provided potential DR hourly profiles for regulation product in the ancillary services market and five-minute load following product in the energy market for LLNL’s study, additional results in contingency reserves and an assumed flexible product are also defined. These additional products are included in the analysis for managing high ramps associated with renewable generation and capacity products and they are also presented in this report.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aden, Nathaniel; Qin, Yining; Fridley, David
Buildings are at the locus of three trends driving China's increased energy use and emissions: urbanization, growing personal consumption, and surging heavy industrial production. Migration to cities and urban growth create demand for new building construction. Higher levels of per-capita income and consumption drive building operational energy use with demand for higher intensity lighting, thermal comfort, and plug-load power. Demand for new buildings, infrastructure, and electricity requires heavy industrial production. In order to quantify the implications of China's ongoing urbanization, rising personal consumption, and booming heavy industrial sector, this study presents a lifecycle assessment (LCA) of the energy use andmore » carbon emissions related to residential and commercial buildings. The purpose of the LCA model is to quantify the impact of a given building and identify policy linkages to mitigate energy demand and emissions growth related to China's new building construction. As efficiency has become a higher priority with growing energy demand, policy and academic attention to buildings has focused primarily on operational energy use. Existing studies estimate that building operational energy consumption accounts for approximately 25% of total primary energy use in China. However, buildings also require energy for mining, extracting, processing, manufacturing, and transporting materials, as well as energy for construction, maintenance, and decommissioning. Building and supporting infrastructure construction is a major driver of industry consumption--in 2008 industry accounted for 72% of total Chinese energy use. The magnitude of new building construction is large in China--in 2007, for example, total built floor area reached 58 billion square meters. During the construction boom in 2007 and 2008, more than two billion m{sup 2} of building space were added annually; China's recent construction is estimated to account for half of global construction. Lawrence Berkeley National Laboratory (LBNL) developed an integrated LCA model to capture the energy and emissions implications of all aspects of new buildings from material mining through construction, operations, and decommissioning. Over the following four sections, this report describes related existing research, the LBNL building LCA model structure and results, policy linkages of this lifecycle assessment, and conclusions and recommendations for follow-on work. The LBNL model is a first-order approach to gathering local data and applying lifecycle assessment to buildings in the Beijing area--it represents one effort among a range of established, predominantly American and European, LCA models. This report identifies the benefits, limitations, and policy applications of lifecycle assessment modeling for quantifying the energy and emissions impacts of specific residential and commercial buildings.« less
Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)
Keasling, Jay; Bristow, Jim; Tringe, Susannah Green
2017-12-09
Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the field of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Officer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the field of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.
Larp Nb3Sn Quadrupole Magnets for the Lhc Luminosity Upgrade
NASA Astrophysics Data System (ADS)
Ferracin, P.
2010-04-01
The US LHC Accelerator Research Program (LARP) is a collaboration between four US laboratories (BNL, FNAL, LBNL, and SLAC) aimed at contributing to the commissioning and operation of the LHC and conducting R&D on its luminosity upgrade. Within LARP, the Magnet Program's main goal is to demonstrate that Nb3Sn superconducting magnets are a viable option for a future upgrade of the LHC Interaction Regions. Over the past four years, LARP has successfully fabricated and tested several R&D magnets: 1) the subscale quadrupole magnet SQ, to perform technology studies with 300 mm long racetrack coils, 2) the technology quadrupole TQ, to investigate support structure behavior with 1 m long cos 2θ coils, and 3) the long racetrack magnet LR, to test 3.6 m long racetrack coils. The next milestone consists in the fabrication and test of the 3.7 m long quadrupole magnet LQ, with the goal of demonstrating that Nb3Sn technology is mature for use in high energy accelerators. After an overview of design features and test result of the LARP magnets fabricated so far, this paper focuses on the status of the fabrication of LQ: we describe the production of the 3.4 m long cos 2θ coils, and the of the qualification support structure. Finally, the status of the development of the next 1 m long model HQ, conceived to explore stress and field limits of Nb3Sn superconducting, magnets, is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel Lafond; Paul Ridgway; Ted Jackson
The early precursors of laser ultrasonics on paper were Prof. Y. Berthelot from the Georgia Institute of Technology/Mechanical Engineering department, and Prof. P. Brodeur from the Institute of Paper Science and Technology, both located in Atlanta, Georgia. The first Ph.D. thesis that shed quite some light on the topic, but also left some questions unanswered, was completed by Mont A. Johnson in 1996. Mont Johnson was Prof. Berthelot's student at Georgia Tech. In 1997 P. Brodeur proposed a project involving himself, Y. Berthelot, Dr. Ken Telschow and Mr. Vance Deason from INL, Honeywell-Measurex and Dr. Rick Russo from LBNL. Themore » first time the proposal was not accepted and P. Brodeur decided to re-propose it without the involvement from LBNL. Rick Russo proposed a separate project on the same topic on his side. Both proposals were finally accepted and work started in the fall of 1997 on the two projects. Early on, the biggest challenge was to find an optical detection method which could detect laser-induced displacements of the web surface that are of the order of .1 micron in the ultrasonic range. This was to be done while the web was having an out-of-plane amplitude of motion in the mm range due to web flutter; while moving at 10 m/s to 30 m/s in the plane of the web, on the paper machine. Both teams grappled with the same problems and tried similar methods in some cases, but came up with two similar but different solutions one year later. The IPST, GT, INL team found that an interferometer made by Lasson Technologies Inc. using the photo-induced electro-motive force in Gallium Arsenide was able to detect ultrasonic waves up to 12-15 m/s. It also developed in house an interferometer using the Two-Wave Mixing effect in photorefractive crystals that showed good promises for on-line applications, and experimented with a scanning mirror to reduce motion-induced texture noise from the web and improve signal to noise ratio. On its side, LBNL had the idea to combine a commercial Mach-Zehnder interferometer to a spinning mirror synchronized to the web speed, in order to make almost stationary measurements. The method was demonstrated at up to 10 m/s. Both teams developed their own version of a web simulator that was driving a web of paper at 10 m/s or higher. The Department of Energy and members of the Agenda 2020 started to make a push for merging the two projects. This made sense because their topics were really identical but this was not well received by Prof. Brodeur. Finally IPST decided to reassign the direction of the IPST-INL-GT project in the spring of 1999 to Prof. Chuck Habeger so that the two teams could work together. Also at this time, Honeywell-Measurex dropped as a member of the team. It was replaced by ABB Industrial Systems whose engineers had extensive previous experience of working with ultrasonic sensors on paperboard. INL also finished its work on the project as its competencies were partly redundant with LBNL. From the summer of 1999, the IPST-GT and LBNL teams were working together and helped each other often by collaborating and visiting either laboratory when was necessary. Around the beginning of 2000, began an effort at IPST to create an off-line laser-ultrasonics instrument that could perform automated measurements of paper and paperboard's bending stiffness. It was widely known that the mechanical bending tests of paper used for years by the paper industry were very inaccurate and exhibited poor reproducibility; therefore the team needed a new instrument of reference to validate its future on-line results. In 1999-2000, the focus of the on-line instrument was on a pre-industrial demonstration on a pilot coater while reducing the damage to the web caused by the generation laser, below the threshold where it could be visible by the naked eye. During the spring of 2000 Paul Ridgway traveled to IPST and brought with him a redesigned system still using the same Mach-Zehnder interferometer as before, but this time employing an electric motor-driven spinning mirror instead of the previously belt-driven mechanical spinning mirror. For testing we chose to use a 1 foot-wide paper loop running on IPST's large scale web handler which could reach a web speed of 2,000 feet/min (10.16 m/s). This was more representative of the conditions encountered of a pilot coater, than on a table-top scale web simulator.« less
Edge Simulation Laboratory Progress and Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohen, R
The Edge Simulation Laboratory (ESL) is a project to develop a gyrokinetic code for MFE edge plasmas based on continuum (Eulerian) techniques. ESL is a base-program activity of OFES, with an allied algorithm research activity funded by the OASCR base math program. ESL OFES funds directly support about 0.8 FTE of career staff at LLNL, a postdoc and a small fraction of an FTE at GA, and a graduate student at UCSD. In addition the allied OASCR program funds about 1/2 FTE each in the computations directorates at LBNL and LLNL. OFES ESL funding for LLNL and UCSD began inmore » fall 2005, while funding for GA and the math team began about a year ago. ESL's continuum approach is a complement to the PIC-based methods of the CPES Project, and was selected (1) because of concerns about noise issues associated with PIC in the high-density-contrast environment of the edge pedestal, (2) to be able to exploit advanced numerical methods developed for fluid codes, and (3) to build upon the successes of core continuum gyrokinetic codes such as GYRO, GS2 and GENE. The ESL project presently has three components: TEMPEST, a full-f, full-geometry (single-null divertor, or arbitrary-shape closed flux surfaces) code in E, {mu} (energy, magnetic-moment) coordinates; EGK, a simple-geometry rapid-prototype code, presently of; and the math component, which is developing and implementing algorithms for a next-generation code. Progress would be accelerated if we could find funding for a fourth, computer science, component, which would develop software infrastructure, provide user support, and address needs for data handing and analysis. We summarize the status and plans for the three funded activities.« less
Accelerator-based validation of shielding codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitlin, Cary; Heilbronn, Lawrence; Miller, Jack
2002-08-12
The space radiation environment poses risks to astronaut health from a diverse set of sources, ranging from low-energy protons and electrons to highly-charged, high-energy atomic nuclei and their associated fragmentation products, including neutrons. The low-energy protons and electrons are the source of most of the radiation dose to Shuttle and ISS crews, while the more energetic particles that comprise the Galactic Cosmic Radiation (protons, He, and heavier nuclei up to Fe) will be the dominant source for crews on long-duration missions outside the earth's magnetic field. Because of this diversity of sources, a broad ground-based experimental effort is required tomore » validate the transport and shielding calculations used to predict doses and dose-equivalents under various mission scenarios. The experimental program of the LBNL group, described here, focuses principally on measurements of charged particle and neutron production in high-energy heavy-ion fragmentation. Other aspects of the program include measurements of the shielding provided by candidate spacesuit materials against low-energy protons (particularly relevant to extra-vehicular activities in low-earth orbit), and the depth-dose relations in tissue for higher-energy protons. The heavy-ion experiments are performed at the Brookhaven National Laboratory's Alternating Gradient Synchrotron and the Heavy-Ion Medical Accelerator in Chiba in Japan. Proton experiments are performed at the Lawrence Berkeley National Laboratory's 88'' Cyclotron with a 55 MeV beam, and at the Loma Linda University Proton Facility with 100 to 250 MeV beam energies. The experimental results are an important component of the overall shielding program, as they allow for simple, well-controlled tests of the models developed to handle the more complex radiation environment in space.« less
2007-01-01
used. Other materials used in this study include: microscope slide glass for transistor substrates (Gold Seal), silicon nitride, Si3N4, sputtering...with the top in place. At LBNL the glass tubes were placed in a nitrogen filled glove bag attached to the XAS sample chamber where they were...valences such as vanadium(II) oxide (VO), vanadium(III) oxide (V2O3), vanadium(IV) oxide (VO2), and vanadium(IV) oxide ( V2O5 ). V2O3 in particular is an
Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)
Schoenlein, Robert [Deputy Director, Advanced Light Source
2017-12-09
Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.
Reconstruction of Mammary Gland Structure Using Three-Dimensional Computer-Based Microscopy
2001-08-01
Segmentation of Mammary Gland Ductal Structure Using Geometric Methods. P.l.’s Malladi R . and Ortiz de Solorzano C. Submitted to the LBNL Laboratory...mammary gland biology". Fernandez-Gonzalez, R ., Jones A., Garcia-Rodriguez E., Knowles D., Sudar D. Ortiz de Solorzano, C. Proceedings of Microscopy...the text. 25 3DRcn4rclr FieC4 eto m oosOtosMCUCP suto 5 2 3p4 eto 6 ’lw r 26o W ~Fl. Case Section Area Tools Opt~ons Micoscope
High Performance Building Mockup in FLEXLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeil, Andrew; Kohler, Christian; Lee, Eleanor S.
Genentech has ambitious energy and indoor environmental quality performance goals for Building 35 (B35) being constructed by Webcor at the South San Francisco campus. Genentech and Webcor contracted with the Lawrence Berkeley National Laboratory (LBNL) to test building systems including lighting, lighting controls, shade fabric, and automated shading controls in LBNL’s new FLEXLAB facility. The goal of the testing is to ensure that the systems installed in the new office building will function in a way that reduces energy consumption and provides a comfortable work environment for employees.
Hot Technology, Cool Science (LBNL Science at the Theater)
Fowler, John
2018-06-08
Great innovations start with bold ideas. Learn how Berkeley Lab scientists are devising practical solutions to everything from global warming to how you get to work. On May 11, 2009, five Berkeley Lab scientists participated in a roundtable dicussion moderated by KTVU's John Fowler on their leading-edge research. This "Science at the Theater" event, held at the Berkeley Repertory Theatre, featured technologies such as cool roofs, battery-driven transportation, a pocket-sized DNA probe, green supercomputing, and a noncontact method for restoring damaged and fragile mechanical recordings.
An efficient cooling loop for connecting cryocooler to a helium reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, C.E.; Abbott, C.S.R.; Leitner, D.
2003-09-21
The magnet system of the VENUS ECR Ion Source at LBNL has two 1.5-watt cryocoolers suspended in the cryostat vacuum. Helium vapor from the liquid reservoir is admitted to a finned condenser bolted to the cryocooler 2nd stage and returns as liquid via gravity. Small-diameter flexible tubes allow the cryocoolers to be located remotely from the reservoir. With 3.1 watts load, the helium reservoir is maintained at 4.35 K, 0.05K above the cryocooler temperature. Design, analysis, and performance are presented.
Piette, Mary Ann
2018-05-03
Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schoenlein, Robert
2009-07-07
Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piette, Mary Ann
Mary Ann Piette, Deputy of LBNL's Building Technologies Department and Director of the Demand Response Research Center, speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.
Using Lasers and X-rays to Reveal the Motion of Atoms and Electrons (LBNL Summer Lecture Series)
Schoenlein, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS), Materials Sciences Division and Chemical Sciences Division
2018-05-07
Summer Lecture Series 2009: The ultrafast motion of atoms and electrons lies at the heart of chemical reactions, advanced materials with exotic properties, and biological processes such as the first event in vision. Bob Schoenlein, Deputy Director for Science at the Advanced Light Source, will discuss how such processes are revealed by using laser pulses spanning a millionth of a billionth of a second, and how a new generation of light sources will bring the penetrating power of x-rays to the world of ultrafast science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Goldman, Charles; Hoffman, Ian
2012-09-11
We develop projections of future spending on, and savings from, energy efficiency programs funded by electric and gas utility customers in the United States, under three scenarios through 2025. Our analysis, which updates a previous LBNL study, relies on detailed bottom-up modeling of current state energy efficiency policies, regulatory decisions, and demand-side management and utility resource plans. The three scenarios are intended to represent a range of potential outcomes under the current policy environment (i.e., without considering possible major new policy developments). By 2025, spending on electric and gas efficiency programs (excluding load management programs) is projected to double frommore » 2010 levels to $9.5 billion in the medium case, compared to $15.6 billion in the high case and $6.5 billion in the low case. Compliance with statewide legislative or regulatory savings or spending targets is the primary driver for the increase in electric program spending through 2025, though a significant share of the increase is also driven by utility DSM planning activity and integrated resource planning. Our analysis suggests that electric efficiency program spending may approach a more even geographic distribution over time in terms of absolute dollars spent, with the Northeastern and Western states declining from over 70% of total U.S. spending in 2010 to slightly more than 50% in 2025, with the South and Midwest splitting the remainder roughly evenly. Under our medium case scenario, annual incremental savings from customer-funded electric energy efficiency programs increase from 18.4 TWh in 2010 in the U.S. (which is about 0.5% of electric utility retail sales) to 28.8 TWh in 2025 (0.8% of retail sales). These savings would offset the majority of load growth in the Energy Information Administration’s most recent reference case forecast, given specific assumptions about the extent to which future energy efficiency program savings are captured in that forecast. However, the pathway that customer-funded efficiency programs ultimately take will depend on a series of key challenges and uncertainties associated both with the broader market and policy context and with the implementation and regulatory oversight of the energy efficiency programs themselves.« less
Site Environmental Report for 2009, Volume I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lackner, Regina
2010-08-17
Each year, the University of California (UC), as the managing and operating contractor of the Ernest Orlando Lawrence Berkeley National Laboratory, prepares an integrated report regarding its environmental programs to satisfy the requirements of United States Department of Energy (DOE) Order 231.1A, Environment, Safety, and Health Reporting.1 The Site Environmental Report for 2009 summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year (CY) 2009. Throughout this report, 'Berkeley Lab' or 'LBNL' refers both to (1) the multiprogram scientific facility the UC manages and operates on the 202-acre university-owned site located in themore » hills above the UC Berkeley campus, and the site itself, and (2) the UC as managing and operating contractor for Ernest Orlando Lawrence Berkeley National Laboratory. The report is separated into two volumes. Volume I is organized into an executive summary followed by six chapters that contain an overview of LBNL, a discussion of its environmental management system (EMS), the status of environmental programs, summarized results from surveillance and monitoring activities, and quality assurance (QA) measures. Volume II contains individual data results from surveillance and monitoring activities. The Site Environmental Report is distributed by releasing it on the World Wide Web (Web) from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. Links to documents available on the Web are given with the citations in the References section. CD and printed copies of this Site Environmental Report are available upon request. The report follows Berkeley Lab's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: Table G-1 defines the prefixes used with SI units of measurement, and Table G-2 provides conversions to non-SI units. Years mentioned in this report refer to calendar years unless specified as fiscal year(s). Berkeley Lab's fiscal year (FY) is October 1 to September 30, and begins in the year previous to its name, i.e., FY 2009 was from October 1, 2008, to September 30, 2009. For ease of reference, a key to acronyms and abbreviations used in this report can be found directly after the text, at the end of Chapter 6. Following that is also a glossary for readers who may be unfamiliar with some of the terms used in this report. This report was prepared under the direction of Ron Pauer of ESG. Please address any questions regarding this report to him by telephone at 510-486-7614, or by e-mail at ropauer@lbl.gov. The primary contributors were David Baskin, Tim Bauters, Ned Borglin, Robert Fox, John Jelinski, Ginny Lackner, Patrick Thorson, Linnea Wahl, and Suying Xu (Volume II). Readers are encouraged to comment on this report by completing the survey form found at the ESG Web page where this report is available.« less
Whole-Home Dehumidifiers: Field-Monitoring Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Tom; Willem, Henry; Ni, Chun Chun
2014-09-23
Lawrence Berkeley National Laboratory (LBNL) initiated a WHD field-metering study to expand current knowledge of and obtain data on WHD operation and energy consumption in real-world applications. The field study collected real-time data on WHD energy consumption, along with information regarding housing characteristics, consumer behavior, and various outdoor conditions expected to affect WHD performance and efficiency. Although the metering study collected similar data regarding air conditioner operation, this report discusses only WHDs. The primary objectives of the LBNL field-metering study are to (1) expand knowledge of the configurations, energy consumption profiles, consumer patterns of use (e.g., relative humidity [RH] settings),more » and environmental parameters of whole-home dehumidification systems; and (2) develop distributions of hours of dehumidifier operation in four operating modes: off, standby, fan-only, and compressor (also called dehumidification mode). Profiling energy consumption entails documenting the power consumption, duration of power consumption in different modes, condensate generation, and properties of output air of an installed system under field conditions of varying inlet air temperature and RH, as well as system configuration. This profiling provides a more detailed and deeper understanding of WHD operation and its complexities. This report describes LBNL’s whole-home dehumidification field-metering study conducted at four homes in Wisconsin and Florida. The initial phase of the WHD field-metering study was conducted on one home in Madison, Wisconsin, from June to December of 2013. During a second phase, three Florida homes were metered from June to October of 2014. This report presents and examines data from the Wisconsin site and from the three Florida sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A.; Barnard, J.J.; Briggs, R.J.
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaborationof LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity"tilt" to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of Warm Dense Matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven Inertial Fusion Energy (IFE). Thesemore » goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned Advanced Test Accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates a ~;;30 nC pulse of Li+ ions to ~;;3 MeV, then compresses it to ~;;1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using analysis, an interactive one-dimensional kinetic simulation model, and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica
2008-06-16
It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the majormore » professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Alastair; Regnier, Cindy; Settlemyre, Kevin
Massachusetts Institute of Technology (MIT) partnered with the U.S. Department of Energy (DOE) to develop and implement solutions to retrofit existing buildings to reduce energy consumption by at least 30% as part of DOE’s Commercial Building Partnerships (CBP) Program.1 Lawrence Berkeley National Laboratory (LBNL) provided technical expertise in support of this DOE program. MIT is one of the U.S.’s foremost higher education institutions, occupying a campus that is nearly 100 years old, with a building floor area totaling more than 12 million square feet. The CBP project focused on improving the energy performance of two campus buildings, the Ray andmore » Maria Stata Center (RMSC) and the Building W91 (BW91) data center. A key goal of the project was to identify energy saving measures that could be applied to other buildings both within MIT’s portfolio and at other higher education institutions. The CBP retrofits at MIT are projected to reduce energy consumption by approximately 48%, including a reduction of around 72% in RMSC lighting energy and a reduction of approximately 55% in RMSC server room HVAC energy. The energy efficiency measure (EEM) package proposed for the BW91 data center is expected to reduce heating, ventilation, and air-conditioning (HVAC) energy use by 30% to 50%, depending on the final air intake temperature that is established for the server racks. The RMSC, an iconic building designed by Frank Gehry, houses the Computer Science and Artificial Intelligence Laboratory, the Laboratory for Information and Decision Systems, and the Department of Linguistics and Philosophy.« less
LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012
Yelick, Kathy
2018-01-24
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
2016 FACET-II Science Workshop Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Mark J.
The second in a series of FACET-II Science Workshops was held at SLAC National Accelerator Laboratory on October 17-19, 2016 [1]. The workshop drew thirty-five participants from eighteen different institutions including CERN, DESY, Ecole Polytechnique, FNAL, JAI, LBNL, LLNL, Radiabeam, Radiasoft, SLAC, Stony Brook, Strathclyde, Tech-X, Tsinghua, UC Boulder, UCLA and UT Austin. The 2015 workshop [2, 3] helped prioritize research directions for FACET-II. The 2016 workshop was focused on understanding what improvements are needed at the facility to support the next generation of experiments. All presentations are linked to the workshop website as a permanent record.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-02-02
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
Sugars Can Actually Be Good For Your Health (LBNL Science at the Theater)
Bertozzi, Carolyn
2018-05-25
Like peanut M&Ms, all cells are coated with sugars but the functions of these sugar coatings were a mystery until very recently. This presentation will highlight recent fascinating discoveries regarding why cells are coated with sugars, as well as new tools for cancer detection that take advantage of the cells sugar coating. Professor Bertozzis lab focuses on profiling changes in cell surface glycosylation associated with cancer, inflammation and bacterial infection, and exploiting this information for development of diagnostic and therapeutic approaches. In addition, her group develops nanoscience-based technologies for probing cell function and for medical diagnostics.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
Yelick, Kathy
2017-12-09
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
Insights from Smart Meters: The Potential for Peak-Hour Savings from Behavior-Based Programs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Annika; Perry, Michael; Smith, Brian
The rollout of smart meters in the last several years has opened up new forms of previously unavailable energy data. Many utilities are now able in real-time to capture granular, household level interval usage data at very high-frequency levels for a large proportion of their residential and small commercial customer population. This can be linked to other time and locationspecific information, providing vast, constantly growing streams of rich data (sometimes referred to by the recently popular buzz word, “big data”). Within the energy industry there is increasing interest in tapping into the opportunities that these data can provide. What canmore » we do with all of these data? The richness and granularity of these data enable many types of creative and cutting-edge analytics. Technically sophisticated and rigorous statistical techniques can be used to pull interesting insights out of this highfrequency, human-focused data. We at LBNL are calling this “behavior analytics”. This kind of analytics has the potential to provide tremendous value to a wide range of energy programs. For example, highly disaggregated and heterogeneous information about actual energy use would allow energy efficiency (EE) and/or demand response (DR) program implementers to target specific programs to specific households; would enable evaluation, measurement and verification (EM&V) of energy efficiency programs to be performed on a much shorter time horizon than was previously possible; and would provide better insights in to the energy and peak hour savings associated with specifics types of EE and DR programs (e.g., behavior-based (BB) programs). In this series, “Insights from Smart Meters”, we will present concrete, illustrative examples of the type of value that insights from behavior analytics of these data can provide (as well as pointing out its limitations). We will supply several types of key findings, including: • Novel results, which answer questions the industry previously was unable to answer; • Proof-of-concept analytics tools that can be adapted and used by others; and • Guidelines and protocols that summarize analytical best practices. This report focuses on one example of the kind of value that analysis of this data can provide: insights into whether behavior-based (BB) efficiency programs have the potential to provide peak-hour energy savings.« less
Universal entanglement crossover of coupled quantum wires
NASA Astrophysics Data System (ADS)
Vasseur, Romain; Jacobsen, Jesper; Saleur, Hubert
2014-03-01
We consider the entanglement between two one-dimensional quantum wires (Luttinger Liquids) coupled by tunneling through a quantum impurity. The physics of the system involves a crossover between weak and strong coupling regimes characterized by an energy scale TB, and methods of conformal field theory therefore cannot be applied. The evolution of the entanglement in this crossover has led to many numerical studies, but has remained little understood, analytically or even qualitatively. This is, in part, due to the fact that the entanglement in this case is non-perturbative in the tunneling amplitude. We argue that the correct universal scaling form of the entanglement entropy S (for an arbitrary interval containing the impurity) is ∂S / ∂lnL = f(LTB) . In the special case where the coupling to the impurity can be refermionized, we show how the universal function f(LTB) can be obtained analytically using recent results on form factors of twist fields and a defect massless-scattering formalism. Our results are carefully checked against numerical simulations. This work was supported by the the French ANR (ANR Projet 2010 Blanc SIMI 4 : DIME), the US DOE (grant number DE-FG03-01ER45908), the Quantum Materials program of LBNL (RV) and the Institut Universitaire de France (JLJ).
A commercial building energy standard for Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, J.; Warner, J.L.; Wiel, S.
1998-07-01
Beginning in 1992, the Comission Nacional de Ahorro de Energia (CONAE), or Mexican National Commission for Energy Conservation, developed a national energy standard for commercial buildings, with assistance from USAID and LBNL. The first complete draft of the standard was released for public review in mid-1995. To promote public acceptance of the standard, CONAE held advisory meetings with architects, engineers, and utility representatives, and organized pubic workshops presented by the authors, with support from USAID. In response to industry comments, the standard was revised in late 1997 and is currently under review by CONAE. It is anticipated that the revisedmore » draft will be released again for final public comments in the summer of 1998. The standard will become law one year after it is finalized by CONAE and published in the federal government record. Since Mexico consists of cooling-dominated climates, the standard emphasizes energy-efficient envelope design to control solar and conductive heat gains. The authors extended DOE-2 simulation results for four climates to all of Mexico through regression analysis. Based on these results, they developed a simplified custom budget calculation approach. To facilitate the method's use, a calculation template was devised in a spreadsheet program and distributed to the public. CONAE anticipates that local engineering associations will use this spreadsheet to administer code compliance.« less
Localization Protection and Symmetry Breaking in One-dimensional Potts Chains
NASA Astrophysics Data System (ADS)
Friedman, Aaron; Vasseur, Romain; Potter, Andrew; Parameswaran, Siddharth
Recent work on the 3-state Potts and Z3 clock models has demonstrated that their ordered phases are connected by duality to a phase that hosts topologically protected parafermionic zero modes at the system's boundary. The analogy with Kitaev's example of the one-dimensional Majorana chain (similarly related by duality to the Ising model) suggests that such zero modes may also be stabilized in highly excited states by many-body localization (MBL). However, the Potts model has a non-Abelian S3 symmetry believed to be incompatible with MBL; hence any MBL state must spontaneously break this symmetry, either completely or into one of its abelian subgroups (Z2 or Z3), with the topological phase corresponding to broken Z3 symmetry. We therefore study the excited state phase structure of random three-state Potts and clock models in one dimension using exact diagonalization and real-space renormalization group techniques. We also investigate the interesting possibility of a direct excited-state transition between MBL phases that break either Z3 or Z2 symmetry, forbidden within Landau theory. NSF DGE-1321846 (AJF), NSF DMR-1455366 and President's Research Catalyst Award No. CA-15-327861 from the University of California Office of the President (SAP), LDRD Program of LBNL (RV), NSF PHY11-25915 at the KITP (AJF, RV, SAP).
Very large hadron collider (VLHC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-09-01
A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future ofmore » US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.« less
Interactive client side data visualization with d3.js
NASA Astrophysics Data System (ADS)
Rodzianko, A.; Versteeg, R.; Johnson, D. V.; Soltanian, M. R.; Versteeg, O. J.; Girouard, M.
2015-12-01
Geoscience data associated with near surface research and operational sites is increasingly voluminous and heterogeneous (both in terms of providers and data types - e.g. geochemical, hydrological, geophysical, modeling data, of varying spatiotemporal characteristics). Such data allows scientists to investigate fundamental hydrological and geochemical processes relevant to agriculture, water resources and climate change. For scientists to easily share, model and interpret such data requires novel tools with capabilities for interactive data visualization. Under sponsorship of the US Department of Energy, Subsurface Insights is developing the Predictive Assimilative Framework (PAF): a cloud based subsurface monitoring platform which can manage, process and visualize large heterogeneous datasets. Over the last year we transitioned our visualization method from a server side approach (in which images and animations were generated using Jfreechart and Visit) to a client side one that utilizes the D3 Javascript library. Datasets are retrieved using web service calls to the server, returned as JSON objects and visualized within the browser. Users can interactively explore primary and secondary datasets from various field locations. Our current capabilities include interactive data contouring and heterogeneous time series data visualization. While this approach is very powerful and not necessarily unique, special attention needs to be paid to latency and responsiveness issues as well as to issues as cross browser code compatibility so that users have an identical, fluid and frustration-free experience across different computational platforms. We gratefully acknowledge support from the US Department of Energy under SBIR Award DOE DE-SC0009732, the use of data from the Lawrence Berkeley National Laboratory (LBNL) Sustainable Systems SFA Rifle field site and collaboration with LBNL SFA scientists.
The Berkeley Instrumental Neutron Generator (BINGE) for 40Ar/39Ar geochronology
NASA Astrophysics Data System (ADS)
Renne, P. R.; Becker, T. A.; Bernstein, L.; Firestone, R. B.; Kirsch, L.; Leung, K. N.; Rogers, A.; Van Bibber, K.; Waltz, C.
2014-12-01
The Berkeley Instrumental Neutron Generator (BINGE) facility is the product of a consortium involving the Berkeley Geochronology Center (BGC), the U.C. Berkeley Nuclear Engineering Dept. (UCB/NE), and Lawrence Berkeley (LBNL) and Lawrence Livermore (LLNL) National Labs. BINGE was initially designed (and funded by NSF) for 40Ar/39Ar geochronology. BINGE uses a plasma-based deuteron ion source and a self-loading Ti-surfaced target to induce deuteron-deuterium (DD) fusion via the reaction 2H(d,n)3He, producing 2.45 MeV neutrons. The limited neutron energy spectrum is aimed at reducing recoil effects, interfering nuclear reactions, and unwanted radioactive byproducts, all of which are undesirable consequences of conventional irradiation with 235U fission spectrum neutrons. Minimization of interfering reactions such as 40Ca(n,na)36Ar greatly reduces penalties for over-irradiation, enabling improved signal/background measurement of e.g. 39Ar. BINGE will also be used for a variety of nuclear physics and engineering experiments that require a high flux of monoenergetic neutrons. Neutron energies lower than 2.45 MeV can be obtained via irradiation ports within and external to polyethylene shielding. Initial commissioning produced a neutron flux of 108 n/sec/cm2 at 1 mA source current and 100 kV anode voltage, as expected. When scaled up to the 1 A source current as planned, this indicates that BINGE will achieve the design objective neutron flux of 1011 n/sec/cm2. Further progress towards this goal will be reported. Supported by NSF (grant #EAR-0960138), BGC, UCB/NE, University of California Office of the President, and DOE through LLNL under contract #DE-AC52-07NA27344 and LBNL under contract #DE-AC02-05CH11231.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, A; Barnard, J J; Briggs, R J
The Heavy Ion Fusion Science Virtual National Laboratory (HIFS-VNL), a collaboration of LBNL, LLNL, and PPPL, has achieved 60-fold pulse compression of ion beams on the Neutralized Drift Compression eXperiment (NDCX) at LBNL. In NDCX, a ramped voltage pulse from an induction cell imparts a velocity 'tilt' to the beam; the beam's tail then catches up with its head in a plasma environment that provides neutralization. The HIFS-VNL's mission is to carry out studies of warm dense matter (WDM) physics using ion beams as the energy source; an emerging thrust is basic target physics for heavy ion-driven inertial fusion energymore » (IFE). These goals require an improved platform, labeled NDCX-II. Development of NDCX-II at modest cost was recently enabled by the availability of induction cells and associated hardware from the decommissioned advanced test accelerator (ATA) facility at LLNL. Our initial physics design concept accelerates an {approx} 30 nC pulse of Li{sup +} ions to {approx} 3 MeV, then compresses it to {approx} 1 ns while focusing it onto a mm-scale spot. It uses the ATA cells themselves (with waveforms shaped by passive circuits) to impart the final velocity tilt; smart pulsers provide small corrections. The ATA accelerated electrons; acceleration of non-relativistic ions involves more complex beam dynamics both transversely and longitudinally. We are using an interactive one-dimensional kinetic simulation model and multidimensional Warp-code simulations to develop the NDCX-II accelerator section. Both LSP and Warp codes are being applied to the beam dynamics in the neutralized drift and final focus regions, and the plasma injection process. The status of this effort is described.« less
NASA Technical Reports Server (NTRS)
Lauenstein, J.-M.; Casey, M. C.; Campola, M. A.; Phan, A. M.; Wilcox, E. P.; Topper, A. D.; Ladbury, R. L.
2017-01-01
This study was being undertaken to determine the single event effect susceptibility of the commercial Vishay 60-V TrenchFET power MOSFET. Heavy-ion testing was conducted at the Texas AM University Cyclotron Single Event Effects Test Facility (TAMU) and the Lawrence Berkeley National Laboratory BASE Cyclotron Facility (LBNL). In addition, initial 200-MeV proton testing was conducted at Massachusetts General Hospital (MGH) Francis H. Burr Proton Beam Therapy Center. Testing was performed to evaluate this device for single-event effects from lower-LET, lighter ions relevant to higher risk tolerant space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asay-Davis, Xylar Storm
The project performed under this award, referred to from here on as CLARION (CoupLed simulations of Antarctic Ice-sheet/Ocean iNteractions), included important advances in two models of ice sheet and ocean interactions. Despite its short duration (one year), the project made significant progress on its three major foci. First, together with collaborator Daniel Martin at Lawrence Berkeley National Laboratory (LBNL), I developed the POPSICLES coupled ice sheet-ocean model to the point where it could perform a number of pan-Antarctic simulations under various forcing conditions. The results were presented at a number of major conferences and workshops worldwide, and are currently beingmore » incorporated into two manuscripts in preparation.« less
Compact electron beam focusing column
NASA Astrophysics Data System (ADS)
Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani
2001-12-01
A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.
What's Right with Kansas? (LBNL Science at the Theater)
Fuller, Merrian; Jackson, Nancy
2018-06-20
On Monday, Oct. 3 at 7 p.m. in Berkeley's Repertory Theater, the Lab presented "What's Right with Kansas," an evening of conversation with the Kansas-based Climate and Energy Project's founder and board chair, Nancy Jackson, and Berkeley Lab scientist Merrian Fuller, an electricity-market, policy and consumer behavior expert. Berkeley Lab will also debut its video "Common Ground," which showcases how CEP has become a Kansas mainstay and an inspiration to environmental organizations across the country. In a state rife with climate-change skepticism, CEP has changed behavior, and some minds, by employing rural values of thrift, independence, conservation, and friendly competition to promote energy efficiency.
Extreme Science (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajo-Franklin, Caroline; Klein, Spencer; Minor, Andrew
On Feb. 27, 2012 at the Berkeley Repertory Theatre, four Berkeley Lab scientists presented talks related to extreme science - and what it means to you. Topics include: Neutrino hunting in Antarctica. Learn why Spencer Klein goes to the ends of the Earth to search for these ghostly particles. From Chernobyl to Central Asia, Tamas Torok travels the globe to study microbial diversity in extreme environments. Andrew Minor uses the world's most advanced electron microscopes to explore materials at ultrahigh stresses and in harsh environments. And microbes that talk to computers? Caroline Ajo-Franklin is pioneering cellular-electrical connections that could helpmore » transform sunlight into fuel.« less
Study of Photon Emission with the Fission Event Generator FREYA
NASA Astrophysics Data System (ADS)
Vogt, Ramona; Randrup, Jorgen
2017-09-01
The event-by-event fission model FREYA is employed to study photon observables. The model has been expanded beyond the simple statistical photon emission reported previously to include the discrete RIPL-3 lines. We update these prior results and discuss the sensitivity of the results to the FREYA input parameters sensitive to photon observables. The work of R.V. was performed under the auspices of the U.S. DOE by LLNL Contract DE-AC52-07NA27344, that of J.R. by LBNL Contract DE-AC02-05CH11231. The authors thank NNSA Defense Nuclear Nonproliferation R&D for support.
Characterization of plasma wake excitation and particle trapping in the nonlinear bubble regime
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Schroeder, Carl; Esarey, Eric; Leemans, Wim
2010-11-01
We investigate the excitation of nonlinear wake (bubble) formation by an ultra-short (kpL ˜2), intense (e Alaser/mc^2 > 2) laser pulse interacting with an underdense plasma. A detailed analysis of particle orbits in the wakefield is performed by using reduced analytical models and numerical simulations performed with the 2D cylindrical, envelope, ponderomotive, hybrid PIC/fluid code INF&RNO, recently developed at LBNL. In particular we study the requirements for injection and/or trapping of background plasma electrons in the nonlinear wake. Characterization of the phase-space properties of the injected particle bunch will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zawislanski, P.T.; Mountford, H.S.Monitoring and Data Analysis; for the Vadose Zone Monitoring System
1998-06-18
This report contains information on field and laboratory work performed between February 20th, 1998 and May 20th, 1998, at site S-7 in IC 34, at McClellan AFB. At this location, a Vadose Zone Monitoring System (VZMS) (LBNL, 1996) is currently being used to collect subsurface data including hydraulic potential, soil gas pressure, moisture content, water chemistry, gas chemistry, and temperature. This report describes: moisture content changes, based on neutron logging; gas-phase VOC concentrations; aqueous-phase VOC concentrations; temperature profiles; and installation of new instrument cluster.
The Spallation Neutron Source (SNS) project accelerator systems
NASA Astrophysics Data System (ADS)
Holmes, Jeffrey A.; Alonso, Jose R.
1999-06-01
The SNS will be the world's leading accelerator-based neutron-scattering research facility when it begins operation in 2005. By delivering 1-MW of beam power to a heavy-metal target in short (<1 μs) bursts of 1-GeV protons, the SNS will provide intense neutron beams with flux levels at least a factor of five over present spallation sources. A multi-laboratory (LBNL, LANL, BNL, ANL and ORNL) collaboration, led by Oak Ridge National Laboratory, has developed a reference design that addresses the challenging technology issues associated with this project. This paper discusses the requirements, issues, and constraints that led to the present design choices.
Site Environmental Report for 2005 Volume I and Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggieri, Michael
2006-07-07
Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of United States Department of Energy Order 231.1A, ''Environment, Safety, and Health Reporting''. The ''Site Environmental Report for 2005'' summarizes Berkeley Lab's environmental management performance, presents environmental monitoring results, and describes significant programs for calendar year 2005. (Throughout this report, Ernest Orlando Lawrence Berkeley National Laboratory is referred to as ''Berkeley Lab'', ''the Laboratory'', ''Lawrence Berkeley National Laboratory'', and ''LBNL''.) The report is separated into two volumes. Volume I contains an overview of the Laboratory, the status of environmental programs,more » and summarized results from surveillance and monitoring activities. This year's Volume I text body is organized into an executive summary followed by six chapters. The report's structure has been reorganized this year, and it now includes a chapter devoted to environmental management system topics. Volume II contains individual data results from surveillance and monitoring activities. The ''Site Environmental Report'' is distributed by releasing it on the Web from the Berkeley Lab Environmental Services Group (ESG) home page, which is located at http://www.lbl.gov/ehs/esg/. Many of the documents cited in this report also are accessible from the ESG Web page. CD and printed copies of this Site Environmental Report are available upon request. The report follows the Laboratory's policy of using the International System of Units (SI), also known as the metric system of measurements. Whenever possible, results are also reported using the more conventional (non-SI) system of measurements, because the non-SI system is referenced by several current regulatory standards and is more familiar to some readers. Two tables are provided at the end of the Glossary to help readers: the first defines the prefixes used with SI units of measurement, and the second provides conversions to non-SI units.« less
MEMS based ion beams for fusion
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Schaffer, Z. A.; Lal, A.
2016-10-01
Micro-Electro-Mechanical Systems (MEMS) fabrication provides an exciting opportunity to shrink existing accelerator concepts to smaller sizes and to reduce cost by orders of magnitude. We revisit the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and show how, with current technologies, the concept can be downsized from gap distances of several cm to distances in the sub-mm regime. The basic concept implements acceleration gaps using radio frequency (RF) fields and electrostatic quadrupoles (ESQ) on silicon wafers. First results from proof-of-concept experiments using printed circuit boards to realize the MEQALAC structures are presented. We show results from accelerating structures that were used in an array of nine (3x3) parallel beamlets with He ions at 15 keV. We will also present results from an ESQ focusing lattice using the same beamlet layout showing beam transport and matching. We also will discuss our progress in fabricating MEMS devices in silicon wafers for both the RF and ESQ structures and integration of necessary RF-circuits on-chip. The concept can be scaled up to thousands of beamlets providing high power beams at low cost and can be used to form and compress a plasma for the development of magnetized target fusion approaches. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC0205CH11231 (LBNL).
Maestro and Castro: Simulation Codes for Astrophysical Flows
NASA Astrophysics Data System (ADS)
Zingale, Michael; Almgren, Ann; Beckner, Vince; Bell, John; Friesen, Brian; Jacobs, Adam; Katz, Maximilian P.; Malone, Christopher; Nonaka, Andrew; Zhang, Weiqun
2017-01-01
Stellar explosions are multiphysics problems—modeling them requires the coordinated input of gravity solvers, reaction networks, radiation transport, and hydrodynamics together with microphysics recipes to describe the physics of matter under extreme conditions. Furthermore, these models involve following a wide range of spatial and temporal scales, which puts tough demands on simulation codes. We developed the codes Maestro and Castro to meet the computational challenges of these problems. Maestro uses a low Mach number formulation of the hydrodynamics to efficiently model convection. Castro solves the fully compressible radiation hydrodynamics equations to capture the explosive phases of stellar phenomena. Both codes are built upon the BoxLib adaptive mesh refinement library, which prepares them for next-generation exascale computers. Common microphysics shared between the codes allows us to transfer a problem from the low Mach number regime in Maestro to the explosive regime in Castro. Importantly, both codes are freely available (https://github.com/BoxLib-Codes). We will describe the design of the codes and some of their science applications, as well as future development directions.Support for development was provided by NSF award AST-1211563 and DOE/Office of Nuclear Physics grant DE-FG02-87ER40317 to Stony Brook and by the Applied Mathematics Program of the DOE Office of Advance Scientific Computing Research under US DOE contract DE-AC02-05CH11231 to LBNL.
Diagnostics for a 1.2 kA, 1 MeV, electron induction injector
NASA Astrophysics Data System (ADS)
Houck, T. L.; Anderson, D. E.; Eylon, S.; Henestroza, E.; Lidia, S. M.; Vanecek, D. L.; Westenskow, G. A.; Yu, S. S.
1998-12-01
We are constructing a 1.2 kA, 1 MeV, electron induction injector as part of the RTA program, a collaborative effort between LLNL and LBNL to develop relativistic klystrons for Two-Beam Accelerator applications. The RTA injector will also be used in the development of a high-gradient, low-emittance, electron source and beam diagnostics for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility. The electron source will be a 3.5″-diameter, thermionic, flat-surface, m-type cathode with a maximum shroud field stress of approximately 165 kV/cm. Additional design parameters for the injector include a pulse length of over 150 ns flat top (1% energy variation), and a normalized edge emittance of less than 200 π-mm-mr. Precise measurement of the beam parameters is required so that performance of the RTA injector can be confidently scaled to the 4 kA, 3 MeV, and 2-microsecond pulse parameters of the DARHT injector. Planned diagnostics include an isolated cathode with resistive divider for direct measurement of current emission, resistive wall and magnetic probe current monitors for measuring beam current and centroid position, capacitive probes for measuring A-K gap voltage, an energy spectrometer, and a pepperpot emittance diagnostic. Details of the injector, beam line, and diagnostics are presented.
LARP Long Quadrupole: A "Long" Step Toward an LHC
Giorgio Ambrosio
2017-12-09
The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960âs. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are âProof-of-Principleâ magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht-Schmitt, Thomas Edward
The past three years of support by the Heavy Elements Chemistry Program have been highly productive in terms of advanced degrees awarded, currently supported graduate students, peer-reviewed publications, and presentations made at universities, national laboratories, and at international conferences. Ph.D. degrees were granted to Shuao Wang and Juan Diwu, who both went on to post-doctoral appointments at the Glenn T. Seaborg Center at Lawrence Berkeley National Laboratory with Jeff Long and Ken Raymond, respectively. Pius Adelani completed his Ph.D. with me and is now a post-doc with Peter C. Burns. Andrea Alsobrook finished her Ph.D. and is now a post-docmore » at Savannah River with Dave Hobbs. Anna Nelson completed her Ph.D. and is now a post-doc with Rod Ewing at the University of Michigan. As can be gleaned from this list, students supported by the Heavy Elements Chemistry grant have remained interested in actinide science after leaving my program. This follows in line with previous graduates in this program such as Richard E. Sykora, who did his post-doctoral work at Oak Ridge National Laboratory with R. G. Haire, and Amanda C. Bean, who is a staff scientist at Los Alamos National Laboratory, and Philip M. Almond and Thomas C. Shehee, who are both staff scientists at Savannah River National Laboratory, Gengbang Jin who is a staff scientist at Argonne National Lab, and Travis Bray who has been a post-doc at both LBNL and ANL. Clearly this program is serving as a pipe-line for students to enter into careers in the national laboratories. About half of my students depart the DOE complex for academia or industry. My undergraduate researchers also remain active in actinide chemistry after leaving my group. Dan Wells was a productive undergraduate of mine, and went on to pursue a Ph.D. on uranium and neptunium chalcogenides with Jim Ibers at Northwestern. After earning his Ph.D., he went directly into the nuclear industry.« less
Targeted Delivery of Drugs to Brain Tumors (LBNL Summer Lecture Series)
Forte, Trudy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division; ChildrenâÂÂs Hospital Oakland Research Inst. (CHORI), Oakland, CA (United States)
2017-12-15
Summer Lecture Series 2007: Trudy Forte of Berkeley Lab's Life Sciences Division will discuss her work developing nano-sized low-density lipoprotein (LDL) particles that can be used as a safe and effective means of delivering anticancer drugs to brain tumors, particularly glioblastoma multiforme. This is the most common malignant brain tumor in adults and one of the deadliest forms of cancer. Her research team found that the synthetic LDL particles can target and kill such tumors cells in vitro. The nanoparticles are composed of a lipid core surrounded by a peptide. The peptide contains an amino acid sequence that recognizes the LDL receptor, and the lipid core has the ability to accumulate anti-cancer drugs.
Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)
Gadgil, Ashok; Booker, Kayje; Rausch, Adam
2018-06-08
Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.
Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)
Bissell, Mina; Canaria, Christie; Celnicker, Susan; Karpen, Gary
2018-06-20
In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Gary Karpen explores how environmental factors shape genome function and disease through epigenetics.
Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)
Collins, Bill [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-06-07
Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Intergovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives
Pulling of 3 mm diameter AlSb rods by micro-pulling down method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourret-Courchesne Ph.D., Edith; Perrodin, Didier
2009-05-14
We designed and supplied special crucibles for AlSb material. Thermal insulation and limitation of Sb losses were our first work. The protection of the growth environment was also one of our priority to avoid any pollution of the Fibercryst {mu}PD facility. When this work was achieved, the next step was the calibration of the heating power for these new crucibles. Then, it was the definition of single crystal growth conditions that oriented our research. Following our proposal, many growths attempts were performed. We started from Al & Sb pure powder or from LBNL AlSb crystal as expected. We used differentmore » crucibles and different seeds.« less
Office of the Chief Financial Officer 2012 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Kim
2013-01-31
Fiscal Year 2012 was a year of progress and change in the Office of the Chief Financial Officer (OCFO) organization. The notable accomplishments outlined below strengthened the quality of the OCFO’s stewardship and services in support of the scientific mission of Lawrence Berkeley National Laboratory (LBNL). Three strategies were key to this progress: organizational transformation aligned with our goals; process redesign and effective use of technology to improve efficiency, and innovative solutions to meet new challenges. Over the next year we will continue to apply these strategies to further enhance our contributions to the Lab’s scientific mission. What follows ismore » the budget, funding and costs for the office for FY 2012.« less
Issues Identified During September 2016 IBM OpenMP 4.5 Hackathon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, David F.
In September, 2016 IBM hosted an OpenMP 4.5 Hackathon at the TJ Watson Research Center. Teams from LLNL, ORNL, SNL, LANL, and LBNL attended the event. As with the 2015 hackathon, IBM produced an extremely useful and successful event with unmatched support from compiler team, applications staff, and facilities. Approximately 24 IBM staff supported 4-day hackathon and spent significant time 4-6 weeks out to prepare environment and become familiar with apps. This hackathon was also the first event to feature LLVM & XL C/C++ and Fortran compilers. This report records many of the issues encountered by the LLNL teams duringmore » the hackathon.« less
Recent development of plasma optical systems (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goncharov, A. A., E-mail: gonchar@iop.kiev.ua
2016-02-15
The article devotes a brief description of the recent development and current status of an ongoing research of plasma optical systems based on the fundamental plasma optical idea magnetic electron isolation, equipotentialization magnetic field lines, and the axi-symmetric cylindrical electrostatic plasma lens (PL) configuration. The experimental, theoretical, and simulation investigations have been carried out over recent years collaboratively between IP NASU (Kiev), LBNL (Berkeley, USA), and HCEI RAS (Tomsk). The crossed electric and magnetic fields inherent the PL configuration that provides the attractive method for establishing a stable plasma discharge at low pressure. Using PL configuration, several high reliability plasmamore » devices were developed. These devices are attractive for many high-tech applications.« less
The Urban Heat Island Pilot Project (UHIPP)
NASA Technical Reports Server (NTRS)
Luvall, Jeff; Morris, Lynn; Stewart, Fran; Thretheway, Ray; Gartland, Lisa; Russell, Camille; Reddish, Merrill; Arnold, James E. (Technical Monitor)
2001-01-01
Urban heat islands increase the demand for cooling energy and accelerate the formation of smog. They are created when natural vegetation is replaced by heat-absorbing surfaces such as building roofs and walls, parking lots, and streets. Through the implementation of measures designed to mitigate the urban heat island, communities can decrease their demand for energy and effectively "cool" the metropolitan landscape. Measures to reverse the urban heat island include afforestation and the widespread use of highly reflective surfaces. To demonstrate the potential benefits of implementing these measures, EPA has teamed up with NASA and LBNL to initiate a pilot project with three U.S. cities. As part of the pilot, NASA is using remotely-sensed data to quantify surface temperature, albedo, the thermal response number and NDVI vegetation of each city. To pursue these efforts, more information is needed about specific characteristics of several different cities. NASA used the Advanced Thermal and Land Applications Sensor (ATLAS) to obtain high spatial resolution (10 m pixel resolution) over each of the three pilot cities (Baton Rouge, Sacramento, and Salt Lake City). The goal of the UHIPP is to use the results from the NASA/LBNL analysis, combined with knowledge gained through working with various organizations within each pilot city to identify the most effective means of implementing strategies designed to mitigate the urban heat island, These "lessons learned" will be made available and used by cities across the U.S. to assist policy makers and others within various communities to analyze their own urban heat islands and determine which, if any, measures can be taken to help save energy and money, and to prevent pollution. The object of this session is for representatives from each of the pilot cities to present their results of the study and share the experience of working with these data in managing their urban landscape.
Development of a Low-Cost Particulate Matter Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Richard M.; Apte, Michael G.; Gundel, Lara A.
2008-08-01
We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, andmore » determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic collection efficiency using an increased temperature gradient, and shielding the resonator electronics from deposition of ultrafine particles.« less
Comparative Analysis of Modeling Studies on China's Future Energy and Emissions Outlook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Nina; Zhou, Nan; Fridley, David
The past decade has seen the development of various scenarios describing long-term patterns of future Greenhouse Gas (GHG) emissions, with each new approach adding insights to our understanding of the changing dynamics of energy consumption and aggregate future energy trends. With the recent growing focus on China's energy use and emission mitigation potential, a range of Chinese outlook models have been developed across different institutions including in China's Energy Research Institute's 2050 China Energy and CO2 Emissions Report, McKinsey & Co's China's Green Revolution report, the UK Sussex Energy Group and Tyndall Centre's China's Energy Transition report, and the China-specificmore » section of the IEA World Energy Outlook 2009. At the same time, the China Energy Group at Lawrence Berkeley National Laboratory (LBNL) has developed a bottom-up, end-use energy model for China with scenario analysis of energy and emission pathways out to 2050. A robust and credible energy and emission model will play a key role in informing policymakers by assessing efficiency policy impacts and understanding the dynamics of future energy consumption and energy saving and emission reduction potential. This is especially true for developing countries such as China, where uncertainties are greater while the economy continues to undergo rapid growth and industrialization. A slightly different assumption or storyline could result in significant discrepancies among different model results. Therefore, it is necessary to understand the key models in terms of their scope, methodologies, key driver assumptions and the associated findings. A comparative analysis of LBNL's energy end-use model scenarios with the five above studies was thus conducted to examine similarities and divergences in methodologies, scenario storylines, macroeconomic drivers and assumptions as well as aggregate energy and emission scenario results. Besides directly tracing different energy and CO{sub 2} savings potential back to the underlying strategies and combination of efficiency and abatement policy instruments represented by each scenario, this analysis also had other important but often overlooked findings.« less
Using Field-Metered Data to Quantify Annual Energy Use of Portable Air Conditioners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Thomas; Willem, Henry; Ni, Chun Chun
2014-12-12
As many regions of the United States experience rising temperatures, consumers have come to rely increasingly on cooling appliances (including portable air conditioners) to provide a comfortable indoor temperature. Home occupants sometimes use a portable air conditioner (PAC) to maintain a desired indoor temperature in a single room or enclosed space. Although PACs in residential use are few compared to centrally installed and room air conditioning (AC) units, the past few years have witnessed an increase of PACs use throughout the United States. There is, however, little information and few research projects focused on the energy consumption and performance ofmore » PACs, particularly studies that collect information from field applications of PACs. The operation and energy consumption of PACs may differ among geographic locations and households, because of variations in cooling load, frequency, duration of use, and other user-selected settings. In addition, the performance of building envelope (thermal mass and air leakage) as well as inter-zonal mixing within the building would substantially influence the ability to control and maintain desirable indoor thermal conditions. Lawrence Berkeley National Laboratory (LBNL) conducted an initial field-metering study aimed at increasing the knowledge and data related to PAC operation and energy consumption in the United States. LBNL performed its field-metering study from mid-April to late October 2014. The study, which monitored 19 sites in the Northeastern United States (4 in upstate New York and 15 near Philadelphia), collected real-time data on PAC energy consumption along with information regarding housing characteristics, consumer behavior, and environmental conditions that were expected to affect PAC performance. Given the limited number of test sites, this study was not intended to be statistically representative of PAC users in the United States but rather to understand the system response to the cooling demand and to some extent, the operating hours of the studied units. Specifically, the primary objectives of the field-metering study were to (1) expand knowledge of the installation, energy consumption profiles, consumer patterns of use, and environmental parameters related to PAC use; (2) develop distributions of hours of PAC operation for three operating modes: standby, 1 fan-only, and cooling; and (3) describe how individual consumers’ selection of PAC capacity, the area of the space to be cooled, the temperature set point, and environmental conditions affect energy use. Beginning to understand the energy consumption of PACs operating in American homes and commercial settings will help develop a more accurate energy use profile that characterizes relevant variables. This report on LBNL’s field-metering study of PAC energy use describes: a general definition of a PAC and how it operates (section 2); current practices and sources of data for estimating PAC energy use (section 3); the process LBNL used to select field-metering sites, along with characteristics of the sites and the PACs studied (section 4); data collection methods and instrumentation (section 5); analysis methods (section 6); results and discussion (section 7); and conclusions (section 8).« less
Effect of Environmental Factors on Sulfur Gas Emissions from Drywall
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddalena, Randy
2011-08-20
Problem drywall installed in U.S. homes is suspected of being a source of odorous and potentially corrosive indoor pollutants. The U.S. Consumer Product Safety Commission's (CPSC) investigation of problem drywall incorporates three parallel tracks: (1) evaluating the relationship between the drywall and reported health symptoms; (2) evaluating the relationship between the drywall and electrical and fire safety issues in affected homes; and (3) tracing the origin and the distribution of the drywall. To assess the potential impact on human health and to support testing for electrical and fire safety, the CPSC has initiated a series of laboratory tests that providemore » elemental characterization of drywall, characterization of chemical emissions, and in-home air sampling. The chemical emission testing was conducted at Lawrence Berkeley National Laboratory (LBNL). The LBNL study consisted of two phases. In Phase 1 of this study, LBNL tested thirty drywall samples provided by CPSC and reported standard emission factors for volatile organic compounds (VOCs), aldehydes, reactive sulfur gases (RSGs) and volatile sulfur compounds (VSCs). The standard emission factors were determined using small (10.75 liter) dynamic test chambers housed in a constant temperature environmental chamber. The tests were all run at 25 C, 50% relative humidity (RH) and with an area-specific ventilation rate of {approx}1.5 cubic meters per square meter of emitting surface per hour [m{sup 3}/m{sup 2}/h]. The thirty samples that were tested in Phase 1 included seventeen that were manufactured in China in 2005, 2006 and 2009, and thirteen that were manufactured in North America in 2009. The measured emission factors for VOCs and aldehydes were generally low and did not differ significantly between the Chinese and North American drywall. Eight of the samples tested had elevated emissions of volatile sulfur-containing compounds with total RSG emission factors between 32 and 258 micrograms per square meter per hour [{micro}g/m{sup 2}/h]. The dominant sulfur containing compounds in the RSG emission stream were hydrogen sulfide with emission factors between 17-201 {micro}g/m{sup 2}/h, and sulfur dioxide with emission factors between 8-64 {micro}g/m{sup 2}/h. The four highest emitting samples also had a unique signature of VSC emissions including > 40 higher molecular weight sulfur-containing compounds although the emission rate for the VSCs was several orders of magnitude lower than that of the RSGs. All of the high emitting drywall samples were manufactured in China in 2005-2006. Results from Phase 1 provided baseline emission factors for drywall samples manufactured in China and in North America but the results exclude variations in environmental conditions that may exist in homes or other built structures, including various combinations of temperature, RH, ventilation rate and the influence of coatings such as texture and paints. The objective of Phase 2 was to quantify the effect of temperature and RH on the RSG emission factors for uncoated drywall, and to measure the effect of plaster and paint coatings on RSG emission factors from drywall. Additional experiments were also performed to assess the influence of ventilation rate on measured emission factors for drywall.« less
Laboratory Directed Research and Development Program FY 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
editor, Todd C Hansen
2009-02-23
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less
Diamond, Rick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-14
How well can we assess and improve building energy performance in California homes? How much energy-and carbon-do homes use in other parts of the world? Rick Diamond, deputy group leader of the Berkeley Lab Energy Performance of Buildings Group, discusses change, global solutions, and the stories of three houses in Berkeley, Kabul (Afghanistan), and Washington, D.C. Diamond, who is also a senior advisor at the California Institute for Energy and Environment, investigates user interactions with the built environment for improved building energy performance. The group has studied a wide range of issues related to energy use in housing, including duct system efficiency, user behavior, and infiltration and ventilation measurements.
Reducing Our Carbon Footprint: Converting Plants to Fuel (LBNL Science at the Theater)
Somerville, Chris [Univ. of California, Berkeley, CA (United States)
2018-05-23
Berkeley Lab's Chris Somerville is a leading authority on the structure and function of plant cell walls, which comprise most of the body mass of higher plants. He views the knowledge of cell wall structure and function as furthering the development of plants with improved usefulness: these plants are strong potential sources of renewable materials and biofuel feedstocks. His scientific expertise defines an ideal match of his interest - in the development of cellulosic and other solar-to-fuel science - with his recent appointment as Director of the Energy Biosciences Institute (EBI). With colleagues in biology, physical sciences, engineering, and environmental and the social sciences, he now leads the EBI multidisciplinary teams' research efforts to develop next-generation, carbon-neutral transportation fuels.
NASA Astrophysics Data System (ADS)
2004-10-01
Fritz Caspers (CERN, Switzerland), Michel Chanel (CERN, Switzerland), Håkan Danared (MSL, Sweden), Bernhard Franzke (GSI, Germany), Manfred Grieser (MPI für Kernphysik, Germany), Dieter Habs (LMU München, Germany), Jeffrey Hangst (University of Aarhus, Denmark), Takeshi Katayama (RIKEN/Univ. Tokyo, Japan), H.-Jürgen Kluge (GSI, Germany), Shyh-Yuan Lee (Indiana University, USA), Rudolf Maier (FZ Jülich, Germany), John Marriner (FNAL, USA), Igor Meshkov (JINR, Russia), Dieter Möhl (CERN, Switzerland), Vasily Parkhomchuk (BINP, Russia), Robert Pollock (Indiana University), Dieter Prasuhn (FZ Jülich, Germany), Dag Reistad (TSL, Sweden), John Schiffer (ANL, USA), Andrew Sessler (LBNL, USA), Alexander Skrinsky (BINP, Russia), Markus Steck (GSI, Germany), Jie Wei (BNL, USA), Andreas Wolf (MPI für Kernphysik, Germany), Hongwei Zhao (IMP, People's Rep. of China).
Health Detectives: Uncovering the Mysteries of Disease (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bissell, Mina; Canaria, Christie; Celnicker, Susan
In this April 23, 2012 Science at the Theater event, Berkeley Lab scientists discuss how they uncover the mysteries of disease in unlikely places. Speakers and topics include: World-renowned cancer researcher Mina Bissell's pioneering research on the role of the cellular microenvironment in breast cancer has changed the conversation about the disease. How does DNA instability cause disease? To find out, Christie Canaria images neural networks to study disorders such as Huntington's disease. Fruit flies can tell us a lot about ourselves. Susan Celniker explores the fruit fly genome to learn how our genome works. DNA is not destiny. Garymore » Karpen explores how environmental factors shape genome function and disease through epigenetics.« less
Development status of a next generation ECRIS: MARS-D at LBNL
Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.; ...
2015-09-29
To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less
Development status of a next generation ECRIS: MARS-D at LBNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, D. Z.; Benitez, J. Y.; Hodgkinson, A.
To demonstrate a Mixed Axial and Radial field System (MARS) as the best magnet scheme for future ECRISs, MARS-D, a demonstrative ECRIS using a NbTi MARS magnet is progressing at Lawrence Berkeley National Laboratory. An optimized MARS design can use either NbTi or Nb 3Sn coils with reduced engineering complexities to construct the needed high-field magnets. The optimized magnet design could enhance MARS-D to a next generation ECRIS by producing minimum-B field maxima of 5.6 T axially and 3.2 T radially for operating frequencies up to 45 GHz. Lastly, in-progress test winding has achieved a milestone demonstrating the fabrication feasibilitymore » of a MARS closed-loop coil.« less
Twenty years of space radiation physics at the BNL AGS and NASA Space Radiation Laboratory.
Miller, J; Zeitlin, C
2016-06-01
Highly ionizing atomic nuclei HZE in the GCR will be a significant source of radiation exposure for humans on extended missions outside low Earth orbit. Accelerators such as the LBNL Bevalac and the BNL AGS, designed decades ago for fundamental nuclear and particle physics research, subsequently found use as sources of GCR-like particles for ground-based physics and biology research relevant to space flight. The NASA Space Radiation Laboratory at BNL was constructed specifically for space radiation research. Here we review some of the space-related physics results obtained over the first 20 years of NASA-sponsored research at Brookhaven. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Characterisation of the PXIE Allison-type emittance scanner
D'Arcy, R.; Alvarez, M.; Gaynier, J.; ...
2016-01-26
An Allison-type emittance scanner has been designed for PXIE at FNAL with the goal of providing fast and accurate phase space reconstruction. The device has been modified from previous LBNL/SNS designs to operate in both pulsed and DC modes with the addition of water-cooled front slits. Extensive calibration techniques and error analysis allowed confinement of uncertainty to the <5% level (with known caveats). With a 16-bit, 1 MHz electronics scheme the device is able to analyse a pulse with a resolution of 1 μs, allowing for analysis of neutralisation effects. As a result, this paper describes a detailed breakdown ofmore » the R&D, as well as post-run analysis techniques.« less
TiN Coating of Accelerator Beamline Chambers
NASA Astrophysics Data System (ADS)
Leung, K. N.; Gough, R. A.; Mashaw, A.; Lee, Y.; Wutte, D.
1997-05-01
One of the problems encountered in many high-power rf systems is multipactoring inside vacuum cavities. The potential for multipactoring occurs whenever the secondary electron emission (SEM) coefficient of the surface exceeds unity. The secondary electtron emission coefficient of titanium-nitride is always less than unity. Therefore, a TiN coating can reduce multipactoring and also reduce photoemission electron from beam-pipe surfaces. The TiN film is very stable. A new technique is being explored at LBNL that will allow an efficient way to coat differently shaped surfaces. In this technique, rf-induction discharge with an exposed Ti induction antenna is used. Tests are being performed using argon, nitrogen, and a mixture of argon/nitrogen gases. Results of this testing will be presented.
Planning Electric Transmission Lines: A Review of Recent Regional Transmission Plans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eto, Joseph H.
The first Quadrennial Energy Review (QER) recommends that the U.S. Department of Energy (DOE) conduct a national review of transmission plans and assess the barriers and incentives to their implementation. DOE tasked Lawrence Berkeley National Laboratory (LBNL) to prepare two reports to support the agency’s response to this recommendation. This report reviews regional transmission plans and regional transmission planning processes that have been directed by Federal Energy Regulatory Commission (FERC) Order Nos. 890 and 1000. We focus on the most recent regional transmission plans (those issued in 2015 and through approximately mid-year 2016) and current regional transmission planning processes. Amore » companion report focuses on non-plan-related factors that affect transmission projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letschert, Virginie E.; Bojda, Nicholas; Ke, Jing
2012-07-01
This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programsmore » while still saving consumers money?« less
Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)
DOE R&D Accomplishments Database
Budinger, T. F. (ed.)
1987-01-01
This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.
Quench Protection of SC Quadrupole Magnets
NASA Astrophysics Data System (ADS)
Feher, S.; Bossert, R.; Dimarco, J.; Mitchell, D.; Lamm, M. J.; Limon, P. J.; Mazur, P.; Nobrega, F.; Orris, D.; Ozelis, J. P.; Strait, J. B.; Tompkins, J. C.; Zlobin, A. V.; McInturff, A. D.
1997-05-01
The energy stored in a superconducting accelerator magnet is dissipated after a quench in the coil normal zones, heating the coil and generating a turn to turn and coil to ground voltage drop. Quench heaters are used to protect the superconducting magnet by greatly increasing the coil normal zone thus allowing the energy to be dissipated over a larger conductor volume. Such heaters will be required for the Fermilab/LBNL design of the high gradient quads (HGQ) designed for the LHC interaction regions. As a first step, heaters were installed and tested in several Tevatron low-β superconducting quadrupoles. Experimental studies in normal and superfluid helium are presented which show the heater-induced quench response as a function of magnet excitation current, magnet temperature and peak heater energy density.
Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadgil, Ashok; Booker, Kayje; Rausch, Adam
2010-09-20
Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmentalmore » engineering. He helps to design and test stove designs in Ethiopia and elsewhere.« less
Accelerating Energy Efficiency in Indian Data Centers. Final Report for Phase I Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Suprotim; Raje, Sanyukta; Kumar, Satish
This report documents Phase 1 of the “Accelerating Energy Efficiency in Indian Data Centers” initiative to support the development of an energy efficiency policy framework for Indian data centers. The initiative is being led by the Confederation of Indian Industry (CII), in collaboration with Lawrence Berkeley National Laboratory (LBNL)-U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy, and under the guidance of Bureau of Energy Efficiency (BEE). It is also part of the larger Power and Energy Efficiency Working Group of the US-India Bilateral Energy Dialogue. The initiative consists of two phases: Phase 1 (November 2014 – Septembermore » 2015) and Phase 2 (October 2015 – September 2016).« less
Just Say No to Carbon Emissions (LBNL Science at the Theater)
Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt
2018-06-15
Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency in China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.
Just Say No to Carbon Emissions (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramesh, Ramamoorthy; Zhou, Nan; Oldenburg, Curt
2010-04-26
Learn about three efforts our grandchildren may thank us for: cheap solar energy, bringing energy efficiency to China, and learning how to store carbon deep underground. Can solar energy be dirt cheap? We're all potentially billionaires when it comes to solar energy. The trick is learning how to convert sunlight to electricity using cheap and plentiful materials. Ramamoorthy Ramesh, an innovative materials scientist at Berkeley Lab, will discuss how he and other researchers are working to make photovoltaic cells using the most abundant elements in the Earth's crust -- materials that are literally as common as dirt. Energy efficiency inmore » China: Nan Zhou is a researcher with Berkeley Labs China Energy Group. She will speak about Chinas energy use and the policies that have been implemented to increase energy efficiency and reduce CO2 emission growth. Her work focuses on building China's capacity to evaluate, adopt and implement low-carbon development strategies. Zhou has an architecture degree from China, and a Master and Ph.D. in Engineering from Japan. Understanding geologic carbon sequestration: Even with continued growth of renewable energy sources such as wind and solar, fossil fuels will likely remain cheap and plentiful for decades to come. Geologist Curt Oldenburg, who heads Berkeley Lab's Geologic Carbon Sequestration Program, will discuss a strategy to reduce carbon emissions from coal and natural gas. It involves pumping compressed CO2 captured from large stationary sources into underground rock formations that can store it for geological time scales.« less
Estimating customer electricity savings from projects installed by the U.S. ESCO industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvallo, Juan Pablo; Larsen, Peter H.; Goldman, Charles A.
The U.S. energy service company (ESCO) industry has a well-established track record of delivering substantial energy and dollar savings in the public and institutional facilities sector, typically through the use of energy savings performance contracts (ESPC) (Larsen et al. 2012; Goldman et al. 2005; Hopper et al. 2005, Stuart et al. 2013). This ~$6.4 billion industry, which is expected to grow significantly over the next five years, may play an important role in achieving demand-side energy efficiency under local/state/federal environmental policy goals. To date, there has been little or no research in the public domain to estimate electricity savings formore » the entire U.S. ESCO industry. Estimating these savings levels is a foundational step in order to determine total avoided greenhouse gas (GHG) emissions from demand-side energy efficiency measures installed by U.S. ESCOs. We introduce a method to estimate the total amount of electricity saved by projects implemented by the U.S. ESCO industry using the Lawrence Berkeley National Laboratory (LBNL) /National Association of Energy Service Companies (NAESCO) database of projects and LBNL’s biennial industry survey. We report two metrics: incremental electricity savings and savings from ESCO projects that are active in a given year (e.g., 2012). Overall, we estimate that in 2012 active U.S. ESCO industry projects generated about 34 TWh of electricity savings—15 TWh of these electricity savings were for MUSH market customers who did not rely on utility customer-funded energy efficiency programs (see Figure 1). This analysis shows that almost two-thirds of 2012 electricity savings in municipal, local and state government facilities, universities/colleges, K-12 schools, and healthcare facilities (i.e., the so-called “MUSH” market) were not supported by a utility customer-funded energy efficiency program.« less
The ATLAS Experiment: Mapping the Secrets of the Universe (LBNL Summer Lecture Series)
Barnett, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division
2018-01-12
Summer Lecture Series 2007: Michael Barnett of Berkeley Lab's Physics Division discusses the ATLAS Experiment at the European Laboratory for Particle Physics' (CERN) Large Hadron Collider. The collider will explore the aftermath of collisions at the highest energy ever produced in the lab, and will recreate the conditions of the universe a billionth of a second after the Big Bang. The ATLAS detector is half the size of the Notre Dame Cathedral and required 2000 physicists and engineers from 35 countries for its construction. Its goals are to examine mini-black holes, identify dark matter, understand antimatter, search for extra dimensions of space, and learn about the fundamental forces that have shaped the universe since the beginning of time and will determine its fate.
Cool Cities, Cool Planet (LBNL Science at the Theater)
Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen
2018-06-14
Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutqvist, Jonny; Majer, Ernie; Oldenburg, Curt
2006-06-07
In this paper, we present progress made in a study aimed atincreasing the understanding of the relative contributions of differentmechanisms that may be causing the seismicity occurring at The Geysersgeothermal field, California. The approach we take is to integrate: (1)coupled reservoir geomechanical numerical modeling, (2) data fromrecently upgraded and expanded NCPA/Calpine/LBNL seismic arrays, and (3)tens of years of archival InSAR data from monthly satellite passes. Wehave conducted a coupled reservoir geomechanical analysis to studypotential mechanisms induced by steam production. Our simulation resultscorroborate co-locations of hypocenter field observations of inducedseismicity and their correlation with steam production as reported in theliterature. Seismicmore » and InSAR data are being collected and processed foruse in constraining the coupled reservoir geomechanicalmodel.« less
Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange
As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents themore » distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.« less
NASA Astrophysics Data System (ADS)
Stevens, Rick
2008-07-01
The fourth annual Scientific Discovery through Advanced Computing (SciDAC) Conference was held June 13-18, 2008, in Seattle, Washington. The SciDAC conference series is the premier communitywide venue for presentation of results from the DOE Office of Science's interdisciplinary computational science program. Started in 2001 and renewed in 2006, the DOE SciDAC program is the country's - and arguably the world's - most significant interdisciplinary research program supporting the development of advanced scientific computing methods and their application to fundamental and applied areas of science. SciDAC supports computational science across many disciplines, including astrophysics, biology, chemistry, fusion sciences, and nuclear physics. Moreover, the program actively encourages the creation of long-term partnerships among scientists focused on challenging problems and computer scientists and applied mathematicians developing the technology and tools needed to address those problems. The SciDAC program has played an increasingly important role in scientific research by allowing scientists to create more accurate models of complex processes, simulate problems once thought to be impossible, and analyze the growing amount of data generated by experiments. To help further the research community's ability to tap into the capabilities of current and future supercomputers, Under Secretary for Science, Raymond Orbach, launched the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program in 2003. The INCITE program was conceived specifically to seek out computationally intensive, large-scale research projects with the potential to significantly advance key areas in science and engineering. The program encourages proposals from universities, other research institutions, and industry. During the first two years of the INCITE program, 10 percent of the resources at NERSC were allocated to INCITE awardees. However, demand for supercomputing resources far exceeded available systems; and in 2003, the Office of Science identified increasing computing capability by a factor of 100 as the second priority on its Facilities of the Future list. The goal was to establish leadership-class computing resources to support open science. As a result of a peer reviewed competition, the first leadership computing facility was established at Oak Ridge National Laboratory in 2004. A second leadership computing facility was established at Argonne National Laboratory in 2006. This expansion of computational resources led to a corresponding expansion of the INCITE program. In 2008, Argonne, Lawrence Berkeley, Oak Ridge, and Pacific Northwest national laboratories all provided resources for INCITE. By awarding large blocks of computer time on the DOE leadership computing facilities, the INCITE program enables the largest-scale computations to be pursued. In 2009, INCITE will award over half a billion node-hours of time. The SciDAC conference celebrates progress in advancing science through large-scale modeling and simulation. Over 350 participants attended this year's talks, poster sessions, and tutorials, spanning the disciplines supported by DOE. While the principal focus was on SciDAC accomplishments, this year's conference also included invited presentations and posters from DOE INCITE awardees. Another new feature in the SciDAC conference series was an electronic theater and video poster session, which provided an opportunity for the community to see over 50 scientific visualizations in a venue equipped with many high-resolution large-format displays. To highlight the growing international interest in petascale computing, this year's SciDAC conference included a keynote presentation by Herman Lederer from the Max Planck Institut, one of the leaders of DEISA (Distributed European Infrastructure for Supercomputing Applications) project and a member of the PRACE consortium, Europe's main petascale project. We also heard excellent talks from several European groups, including Laurent Gicquel of CERFACS, who spoke on `Large-Eddy Simulations of Turbulent Reacting Flows of Real Burners: Status and Challenges', and Jean-Francois Hamelin from EDF, who presented a talk on `Getting Ready for Petaflop Capacities and Beyond: A Utility Perspective'. Two other compelling addresses gave attendees a glimpse into the future. Tomas Diaz de la Rubia of Lawrence Livermore National Laboratory spoke on a vision for a fusion/fission hybrid reactor known as the `LIFE Engine' and discussed some of the materials and modeling challenges that need to be overcome to realize the vision for a 1000-year greenhouse-gas-free power source. Dan Reed from Microsoft gave a capstone talk on the convergence of technology, architecture, and infrastructure for cloud computing, data-intensive computing, and exascale computing (1018 flops/sec). High-performance computing is making rapid strides. The SciDAC community's computational resources are expanding dramatically. In the summer of 2008 the first general purpose petascale system (IBM Cell-based RoadRunner at Los Alamos National Laboratory) was recognized in the top 500 list of fastest machines heralding in the dawning of the petascale era. The DOE's leadership computing facility at Argonne reached number three on the Top 500 and is at the moment the most capable open science machine based on an IBM BG/P system with a peak performance of over 550 teraflops/sec. Later this year Oak Ridge is expected to deploy a 1 petaflops/sec Cray XT system. And even before the scientific community has had an opportunity to make significant use of petascale systems, the computer science research community is forging ahead with ideas and strategies for development of systems that may by the end of the next decade sustain exascale performance. Several talks addressed barriers to, and strategies for, achieving exascale capabilities. The last day of the conference was devoted to tutorials hosted by Microsoft Research at a new conference facility in Redmond, Washington. Over 90 people attended the tutorials, which covered topics ranging from an introduction to BG/P programming to advanced numerical libraries. The SciDAC and INCITE programs and the DOE Office of Advanced Scientific Computing Research core program investments in applied mathematics, computer science, and computational and networking facilities provide a nearly optimum framework for advancing computational science for DOE's Office of Science. At a broader level this framework also is benefiting the entire American scientific enterprise. As we look forward, it is clear that computational approaches will play an increasingly significant role in addressing challenging problems in basic science, energy, and environmental research. It takes many people to organize and support the SciDAC conference, and I would like to thank as many of them as possible. The backbone of the conference is the technical program; and the task of selecting, vetting, and recruiting speakers is the job of the organizing committee. I thank the members of this committee for all the hard work and the many tens of conference calls that enabled a wonderful program to be assembled. This year the following people served on the organizing committee: Jim Ahrens, LANL; David Bader, LLNL; Bryan Barnett, Microsoft; Peter Beckman, ANL; Vincent Chan, GA; Jackie Chen, SNL; Lori Diachin, LLNL; Dan Fay, Microsoft; Ian Foster, ANL; Mark Gordon, Ames; Mohammad Khaleel, PNNL; David Keyes, Columbia University; Bob Lucas, University of Southern California; Tony Mezzacappa, ORNL; Jeff Nichols, ORNL; David Nowak, ANL; Michael Papka, ANL; Thomas Schultess, ORNL; Horst Simon, LBNL; David Skinner, LBNL; Panagiotis Spentzouris, Fermilab; Bob Sugar, UCSB; and Kathy Yelick, LBNL. I owe a special thanks to Mike Papka and Jim Ahrens for handling the electronic theater. I also thank all those who submitted videos. It was a highly successful experiment. Behind the scenes an enormous amount of work is required to make a large conference go smoothly. First I thank Cheryl Zidel for her tireless efforts as organizing committee liaison and posters chair and, in general, handling all of my end of the program and keeping me calm. I also thank Gail Pieper for her work in editing the proceedings, Beth Cerny Patino for her work on the Organizing Committee website and electronic theater, and Ken Raffenetti for his work in keeping that website working. Jon Bashor and John Hules did an excellent job in handling conference communications. I thank Caitlin Youngquist for the striking graphic design; Dan Fay for tutorials arrangements; and Lynn Dory, Suzanne Stevenson, Sarah Pebelske and Sarah Zidel for on-site registration and conference support. We all owe Yeen Mankin an extra-special thanks for choosing the hotel, handling contracts, arranging menus, securing venues, and reassuring the chair that everything was under control. We are pleased to have obtained corporate sponsorship from Cray, IBM, Intel, HP, and SiCortex. I thank all the speakers and panel presenters. I also thank the former conference chairs Tony Metzzacappa, Bill Tang, and David Keyes, who were never far away for advice and encouragement. Finally, I offer my thanks to Michael Strayer, without whose leadership, vision, and persistence the SciDAC program would not have come into being and flourished. I am honored to be part of his program and his friend. Rick Stevens Seattle, Washington July 18, 2008
A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.
2015-12-01
Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolinger, Mark
Reducing the performance risk surrounding a wind project can potentially lead to a lower weighted-average cost of capital (WACC), and hence a lower levelized cost of energy (LCOE), through an advantageous shift in capital structure, and possibly also a reduction in the cost of capital. Specifically, a reduction in performance risk will move the 1-year P99 annual energy production (AEP) estimate closer to the P50 AEP estimate, which in turn reduces the minimum debt service coverage ratio (DSCR) required by lenders, thereby allowing the project to be financed with a greater proportion of low-cost debt. In addition, a reduction inmore » performance risk might also reduce the cost of one or more of the three sources of capital that are commonly used to finance wind projects: sponsor or cash equity, tax equity, and/or debt. Preliminary internal LBNL analysis of the maximum possible LCOE reduction attainable from reducing the performance risk of a wind project found a potentially significant opportunity for LCOE reduction of ~$10/MWh, by reducing the P50 DSCR to its theoretical minimum value of 1.0 (Bolinger 2015b, 2014) and by reducing the cost of sponsor equity and debt by one-third to one-half each (Bolinger 2015a, 2015b). However, with FY17 funding from the U.S. Department of Energy’s Atmosphere to Electrons (A2e) Performance Risk, Uncertainty, and Finance (PRUF) initiative, LBNL has been revisiting this “bookending” exercise in more depth, and now believes that its earlier preliminary assessment of the LCOE reduction opportunity was overstated. This reassessment is based on two new-found understandings: (1) Due to ever-present and largely irreducible inter-annual variability (IAV) in the wind resource, the minimum required DSCR cannot possibly fall to 1.0 (on a P50 basis), and (2) A reduction in AEP uncertainty will not necessarily lead to a reduction in the cost of capital, meaning that a shift in capital structure is perhaps the best that can be expected (perhaps along with a modest decline in the cost of cash equity as new investors enter the market).« less
High-Flux Neutron Generator Facility for Geochronology and Nuclear Physics Research
NASA Astrophysics Data System (ADS)
Waltz, Cory; HFNG Collaboration
2015-04-01
A facility based on a next-generation, high-flux D-D neutron generator (HFNG) is being commissioned at UC Berkeley. The generator is designed to produce monoenergetic 2.45 MeV neutrons at outputs exceeding 1011 n/s. The HFNG is designed around two RF-driven multi-cusp ion sources that straddle a titanium-coated copper target. D + ions, accelerated up to 150 keV from the ion sources, self-load the target and drive neutron generation through the d(d,n)3 He fusion reaction. A well-integrated cooling system is capable of handling beam power reaching 120 kW impinging on the target. The unique design of the HFNG target permits experimental samples to be placed inside the target volume, allowing the samples to receive the highest neutron flux (1011 cm-2 s-1) possible from the generator. In addition, external beams of neutrons will be available simultaneously, ranging from thermal to 2.45 MeV. Achieving the highest neutron yields required carefully designed schemes to mitigate back-streaming of high energy electrons liberated from the cathode target by deuteron bombardment. The proposed science program is focused on pioneering advances in the 40 Ar/39 Ar dating technique for geochronology, new nuclear data measurements, basic nuclear science, and education. An end goal is to become a user facility for researchers. This work is supported by NSF Grant No. EAR-0960138, U.S. DOE LBNL Contract No. DE-AC02-05CH11231, U.S. DOE LLNL Contract No. DE-AC52-07NA27344, and UC Office of the President Award 12-LR-238745.
NASA Astrophysics Data System (ADS)
Didkovsky, L. V.; Wieman, S. R.; Chao, W.; Woods, T. N.; Jones, A. R.; Thiemann, E.; Mason, J. P.
2016-12-01
We discuss science and technology advantages of the Imaging Grating Spectrometer (I-GRASP) based on a novel transmission diffracting grating (TDG) made possible by technology for fabricating Fresnel zone plates (ZPs) developed at the Lawrence Berkeley National Laboratory (LBNL). Older version TDGs with 200 nm period available in the 1990s became a proven technology for providing 21 years of regular measurements of solar EUV irradiance. I-GRASP incorporates an advanced TDG with a grating period of 50 nm providing four times better diffraction dispersion than the 200 nm period gratings used in the SOHO/CELIAS/SEM, the SDO/EVE/ESP flight spectrophotometers, and the EVE/SAM sounding rocket channel. Such new technology for the TDG combined with a back-illuminated 2000 x 1504 CMOS image sensor with 7 micron pixels, will provide spatially-and-spectrally resolved images and spectra from individual Active Regions (ARs) and solar flares with high (0.15 nm) spectral resolution. Such measurements are not available in the spectral band from about 2 to 6 nm from existing or planned spectrographs and will be significantly important to study ARs and solar flare temperatures and dynamics, to improve existing spectral models, e.g. CHIANTI, and to better understand processes in the Earth's atmosphere processes. To test this novel technology, we have proposed to the NASA LCAS program an I-GRASP version for a sounding rocket flight to increase the TDG TRL to a level appropriate for future CubeSat projects.
Earth System Grid II (ESG): Turning Climate Model Datasets Into Community Resources
NASA Astrophysics Data System (ADS)
Williams, D.; Middleton, D.; Foster, I.; Nevedova, V.; Kesselman, C.; Chervenak, A.; Bharathi, S.; Drach, B.; Cinquni, L.; Brown, D.; Strand, G.; Fox, P.; Garcia, J.; Bernholdte, D.; Chanchio, K.; Pouchard, L.; Chen, M.; Shoshani, A.; Sim, A.
2003-12-01
High-resolution, long-duration simulations performed with advanced DOE SciDAC/NCAR climate models will produce tens of petabytes of output. To be useful, this output must be made available to global change impacts researchers nationwide, both at national laboratories and at universities, other research laboratories, and other institutions. To this end, we propose to create a new Earth System Grid, ESG-II - a virtual collaborative environment that links distributed centers, users, models, and data. ESG-II will provide scientists with virtual proximity to the distributed data and resources that they require to perform their research. The creation of this environment will significantly increase the scientific productivity of U.S. climate researchers by turning climate datasets into community resources. In creating ESG-II, we will integrate and extend a range of Grid and collaboratory technologies, including the DODS remote access protocols for environmental data, Globus Toolkit technologies for authentication, resource discovery, and resource access, and Data Grid technologies developed in other projects. We will develop new technologies for (1) creating and operating "filtering servers" capable of performing sophisticated analyses, and (2) delivering results to users. In so doing, we will simultaneously contribute to climate science and advance the state of the art in collaboratory technology. We expect our results to be useful to numerous other DOE projects. The three-year R&D program will be undertaken by a talented and experienced team of computer scientists at five laboratories (ANL, LBNL, LLNL, NCAR, ORNL) and one university (ISI), working in close collaboration with climate scientists at several sites.
ISO 50001 for Commercial Buildings: Lessons Learned From U.S. DOE Pilot Project: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deru, M.; Field, K.; Punjabi, S.
In the U.S., the ISO 50001 Standard, which establishes energy management systems (EnMSs) and processes, has shown uptake primarily in the industrial sector. The U.S. Department of Energy (DOE) undertook a pilot program to explore ISO 50001 implementation in commercial buildings. Eight organizations participated as pilots, with technical assistance provided by DOE, the National Renewable Energy Laboratory (NREL), the Lawrence Berkeley National Laboratory (LBNL), and the Georgia Institute of Technology (Georgia Tech). This paper shares important lessons learned from the pilot. Staff time was the most critical resource required to establish effective EnMSs in commercial buildings. The pilot also revealedmore » that technical support and template/example materials were essential inputs. Crucial activities included evaluating performance, identifying goals, making connections, communicating operational controls, and tracking/reviewing progress. Benefits realized included enhanced intra-organizational connections, greater energy awareness, increased process efficiencies, and improved ability to make business cases. Incremental benefits for ISO 50001 certification were greater accountability, assurance of best practices, public relations opportunities, and potential to unlock verified savings credits or incentive money. Incremental certification costs included more staff/consultant time, money for certification, and a tendency to limit EnMS scope in order to ensure favorable audit results. Five best practices were identified - utilizing expert technical assistance, training, and other resources; focusing on implementation over documentation; keeping top management involved; considering organizational structure when selecting EnMS scope; and matching the implementation level to an EnMS's scope and scale. The last two practices are particularly relevant to the commercial buildings sector.« less
The QuarkNet Collaboration: How "Doing Science" is Changing Science Education
NASA Astrophysics Data System (ADS)
Whelan, K.
2004-12-01
QuarkNet is a national initiative to involve high-school teachers and their students in real scientific research. Students and teachers assist in seeking to resolve some of the mysteries about the structure of matter and the fundamental forces of nature It is supported by the Department and Energy and the National Science Foundation. This long-term project, beginning its sixth year of implementation, has provided a successful framework that might be adapted to similar endeavors. It is an international collaboration of universities, high schools and research centers including CERN in Switzerland, and Fermilab, LBNL, and SLAC in the United States. The goals of this program include the involvement of students and teachers in authentic scientific research projects. By actually "doing science", they gain first hand knowledge of the research procedure and the inquiry method of learning. Teachers increase their content knowledge and enhance their teaching skills by solving scientific research problems through the inquiry method of learning. Students involved in this program learn fundamental physics and research-based skills through the analysis of real data. Particle physicists also benefit by being exposed to some of the current issues in science education. Through an understanding of National Science Education Standards, physicist-mentors are made aware of the needs of local science education and gain a better grasp of age appropriate content. The QuarkNet program was developed while consulting with research physicists throughout the United States. There are three main program areas that have been established-teacher research experiences, teacher development programs, and an online resource that makes available numerous inquiry-based activities. Select teachers are given eight-week appointments allowing them to gain first hand experience as a part of a scientific research team. Those teachers become lead teachers during the following summer and, along with physicist mentors, work with other teachers on a short research scenario or activity over a period of several weeks. The scenarios can then be adapted for classroom use at virtually any level. The QuarkNet website provides a wide variety of resources for teacher and student use including- samples of experimental data for use in inquiry based activities, venues for communication and collaboration between students, teachers and physicists, student publication areas where ideas can be exchanged, and numerous other resources, activities, and simulations. Currently, the QuarkNet program involves over 50 research institutions and hundreds of teachers. This year, we have also added a student research component at several of the centers. This component will be expanded in the coming years so that many more students will have the opportunity to become an active part and contributing member of a scientific research team.
Heavy-Ion Injector for the High Current Experiment
NASA Astrophysics Data System (ADS)
Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.
2001-10-01
We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.
Commercial Building Energy Saver, Web App
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Piette, Mary; Lee, Sang Hoon
The CBES App is a web-based toolkit for use by small businesses and building owners and operators of small and medium size commercial buildings to perform energy benchmarking and retrofit analysis for buildings. The CBES App analyzes the energy performance of user's building for pre-and posto-retrofit, in conjunction with user's input data, to identify recommended retrofit measures, energy savings and economic analysis for the selected measures. The CBES App provides energy benchmarking, including getting an EnergyStar score using EnergyStar API and benchmarking against California peer buildings using the EnergyIQ API. The retrofit analysis includes a preliminary analysis by looking upmore » retrofit measures from a pre-simulated database DEEP, and a detailed analysis creating and running EnergyPlus models to calculate energy savings of retrofit measures. The CBES App builds upon the LBNL CBES API.« less
Flash Updates of GSC projects (GSC8 Meeting)
Glockner, Frank Oliver; Markowitz, Victor; Kyrpides, Nikos; Meyer, Folker; Amaral-Zettler, Linda; Cole, James
2018-01-25
The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding Research Coordination Network from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. In quick succession Frank Oliver Glockner (MPI-Bremen), Victor Markowitz (LBNL), Nikos Kyripides (JGI), Folker Meyer (ANL), Linda Amaral-Zettler (Marine Biology Lab), and James Cole (Michigan State University) provide updates on a number of topics related to GSC projects at the Genomic Standards Consortium 8th meeting at the DOE JGI in Walnut Creek, CA on Sept. 9, 2009.
New Computational Approach to Electron Transport in Irregular Graphene Nanostructures
NASA Astrophysics Data System (ADS)
Mason, Douglas; Heller, Eric; Prendergast, David; Neaton, Jeffrey
2009-03-01
For novel graphene devices of nanoscale-to-macroscopic scale, many aspects of their transport properties are not easily understood due to difficulties in fabricating devices with regular edges. Here we develop a framework to efficiently calculate and potentially screen electronic transport properties of arbitrary nanoscale graphene device structures. A generalization of the established recursive Green's function method is presented, providing access to arbitrary device and lead geometries with substantial computer-time savings. Using single-orbital nearest-neighbor tight-binding models and the Green's function-Landauer scattering formalism, we will explore the transmission function of irregular two-dimensional graphene-based nanostructures with arbitrary lead orientation. Prepared by LBNL under contract DE-AC02-05CH11231 and supported by the U.S. Dept. of Energy Computer Science Graduate Fellowship under grant DE-FG02-97ER25308.
Roll-to-Roll Advanced Materials Manufacturing DOE Lab Consortium - FY16 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Claus; Wood, III, David L.; Krumdick, Gregory
2016-12-01
A DOE laboratory consortium comprised of ORNL, ANL, NREL and LBNL, coordinating with Kodak’s Eastman Business Park (Kodak) and other selected industry partners, was formed to address enhancing battery electrode performance and R2R manufacturing challenges. The objective of the FY 2016 seed project was to develop a materials genome synthesis process amenable to R2R manufacturing and to provide modeling, simulation, processing, and manufacturing techniques that demonstrate the feasibility of process controls and scale-up potential for improved battery electrodes. The research efforts were to predict and measure changes and results in electrode morphology and performance based on process condition changes; tomore » evaluate mixed, active, particle size deposition and drying for novel electrode materials; and to model various process condition changes and the resulting morphology and electrode performance.« less
Alternate operating scenarios for NDCX-II
NASA Astrophysics Data System (ADS)
Sharp, W. M.; Friedman, A.; Grote, D. P.; Cohen, R. H.; Lund, S. M.; Vay, J.-L.; Waldron, W. L.
2014-01-01
NDCX-II is a newly completed accelerator facility at LBNL, built to study ion-heated warm dense matter, as well as aspects of ion-driven targets and intense-beam dynamics for inertial-fusion energy. The baseline design calls for using 12 induction cells to accelerate 30-50 nC of Li+ ions to 1.2 MeV. During commissioning, though, we plan to extend the source lifetime by extracting less total charge. Over time, we expect that NDCX-II will be upgraded to substantially higher energies, necessitating the use of heavier ions to keep a suitable deposition range in targets. For operational flexibility, the option of using a helium plasma source is also being investigated. Each of these options requires development of an alternate acceleration schedule. The schedules here are worked out with a fast-running 1-D particle-in-cell code ASP.
Flash Updates of GSC projects (GSC8 Meeting)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glockner, Frank Oliver; Markowitz, Victor; Kyrpides, Nikos
2009-09-09
The Genomic Standards Consortium was formed in September 2005. It is an international, open-membership working body which promotes standardization in the description of genomes and the exchange and integration of genomic data. The 2009 meeting was an activity of a five-year funding Research Coordination Network from the National Science Foundation and was organized held at the DOE Joint Genome Institute with organizational support provided by the JGI and by the University of California - San Diego. In quick succession Frank Oliver Glockner (MPI-Bremen), Victor Markowitz (LBNL), Nikos Kyripides (JGI), Folker Meyer (ANL), Linda Amaral-Zettler (Marine Biology Lab), and James Colemore » (Michigan State University) provide updates on a number of topics related to GSC projects at the Genomic Standards Consortium 8th meeting at the DOE JGI in Walnut Creek, CA on Sept. 9, 2009.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M. S.; Lawrence Berkeley National Laboratory, Berkeley, California 94720; Tilborg, J. van
We present the design and calibration of a microchannel plate based extreme ultraviolet spectrometer. Calibration was performed at the Advance Light Source (ALS) at the Lawrence Berkeley National Laboratory (LBNL). This spectrometer will be used to record the single shot spectrum of radiation emitted by the tapered hybrid undulator (THUNDER) undulator installed at the LOASIS GeV-class laser-plasma-accelerator. The spectrometer uses an aberration-corrected concave grating with 1200 lines/mm covering 11-62 nm and a microchannel plate detector with a CsI coated photocathode for increased quantum efficiency in the extreme ultraviolet. A touch screen interface controls the grating angle, aperture size, and placementmore » of the detector in vacuum, allowing for high-resolution measurements over the entire spectral range.« less
UNDULATOR-BASED LASER WAKEFIELD ACCELERATOR ELECTRON BEAM DIAGNOSTIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakeman, M.S.; Fawley, W.M.; Leemans, W. P.
to couple the THUNDER undulator to the LOASIS Lawrence Berkeley National Laboratory (LBNL) laser wakefield accelerator (LWFA). Currently the LWFA has achieved quasi-monoenergetic electron beams with energies up to 1 GeV. These ultra-short, high-peak-current, electron beams are ideal for driving a compact XUV free electron laser (FEL). Understanding the electron beam properties such as the energy spread and emittance is critical for achieving high quality light sources with high brightness. By using an insertion device such as an undulator and observing changes in the spontaneous emission spectrum, the electron beam energy spread and emittance can be measured with high precision.more » The initial experiments will use spontaneous emission from 1.5 m of undulator. Later experiments will use up to 5 m of undulator with a goal of a high gain, XUV FEL.« less
Resonant soft X-ray scattering for polymer materials
Liu, Feng; Brady, Michael A.; Wang, Cheng
2016-04-16
Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less
Edge-relevant plasma simulations with the continuum code COGENT
NASA Astrophysics Data System (ADS)
Dorf, M.; Dorr, M.; Ghosh, D.; Hittinger, J.; Rognlien, T.; Cohen, R.; Lee, W.; Schwartz, P.
2016-10-01
We describe recent advances in cross-separatrix and other edge-relevant plasma simulations with COGENT, a continuum gyro-kinetic code being developed by the Edge Simulation Laboratory (ESL) collaboration. The distinguishing feature of the COGENT code is its high-order finite-volume discretization methods, which employ arbitrary mapped multiblock grid technology (nearly field-aligned on blocks) to handle the complexity of tokamak divertor geometry with high accuracy. This paper discusses the 4D (axisymmetric) electrostatic version of the code, and the presented topics include: (a) initial simulations with kinetic electrons and development of reduced fluid models; (b) development and application of implicit-explicit (IMEX) time integration schemes; and (c) conservative modeling of drift-waves and the universal instability. Work performed for USDOE, at LLNL under contract DE-AC52-07NA27344 and at LBNL under contract DE-AC02-05CH11231.
Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils
NASA Astrophysics Data System (ADS)
Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.
2014-01-01
Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.
The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)
Smoot, George [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-05-23
Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theory of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.
Sensitivity of Nb$$_3$$Sn Rutherford-Type Cables to Transverse Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barzi, E.; Wokas, T.; Zlobin, A. V.
Fermilab is developing high field superconducting magnets for future accelerators based on Nb/sub 3/Sn strands. Testing the critical current of superconducting cables under compression is a means to appraise the performance of the produced magnet. However, these cable tests are expensive and labor-intensive. A fixture to assess the superconducting performance of a Nb/sub 3/Sn strand within a reacted and impregnated cable under pressure was designed and built at Fermilab. Several Rutherford-type cables were fabricated at Fermilab and at LBNL using multifilamentary Nb/sub 3/Sn strands. The sensitivity of Nb/sub 3/Sn to transverse pressure was measured for a number of Nb/sub 3/Snmore » technologies (Modified Jelly Roll, Powder-in-Tube, Internal Tin, and Restack Rod Process). Results on the effect of a stainless steel core in the cable are also shown.« less
Kerman's Problem in the Continuum
NASA Astrophysics Data System (ADS)
Macchiavelli, A. O.; Casten, R. F.; Clark, R. M.; Campbell, C. M.; Crawford, H. L.; Cromaz, M.; Fallon, P.; Jones, M. D.; Salathe, M.
2017-09-01
In 1956 Kerman published a seminal paper on rotational perturbations in nuclei. Since then, Coriolis and rotational alignment effects have been extensively studied and are rather well understood. With the development of exotic beam facilities and advanced instrumentation it is becoming possible to access regions of deformation in the nuclear chart, near the neutron drip-line. Here, the effects of weak binding are expected to play an important role, affecting the dynamics of the nuclear motion. In this work we study Kerman's problem when the single-particle levels involved are resonant states. We will present results showing the behavior of the kinematic and dynamic moments of inertia as a function of the state widths. Connection to possible experiments will be discussed. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).
Genes and the Microenvironment: Two Faces of Breast Cancer (LBNL Science at the Theater)
Gray, Joe; Love, Susan M.; Bissell, Min; Barcellos-Hoff, Mary Helen
2018-05-24
In this April 21, 2008 Berkeley Lab event, a dynamic panel of Berkeley Lab scientists highlight breast cancer research advances related to susceptibility, early detection, prevention, and therapy - a biological systems approach to tackling the disease from the molecular and cellular levels, to tissues and organs, and ultimately the whole individual. Joe Gray, Berkeley Lab Life Sciences Division Director, explores how chromosomal abnormalities contribute to cancer and respond to gene-targeted therapies. Mina Bissell, former Life Sciences Division Director, approaches the challenge of breast cancer from the breast's three dimensional tissue microenvironment and how the intracellular ''conversation'' triggers malignancies. Mary Helen Barcellos-Hoff, Deputy Director, Life Sciences Division, identifies what exposure to ionizing radiation can tell us about how normal tissues suppress carcinogenesis. The panel is moderated by Susan M. Love, breast cancer research pioneer, author, President and Medical Director of the Dr. Susan Love Research Foundation.
Analysis, tuning and comparison of two general sparse solvers for distributed memory computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amestoy, P.R.; Duff, I.S.; L'Excellent, J.-Y.
2000-06-30
We describe the work performed in the context of a Franco-Berkeley funded project between NERSC-LBNL located in Berkeley (USA) and CERFACS-ENSEEIHT located in Toulouse (France). We discuss both the tuning and performance analysis of two distributed memory sparse solvers (superlu from Berkeley and mumps from Toulouse) on the 512 processor Cray T3E from NERSC (Lawrence Berkeley National Laboratory). This project gave us the opportunity to improve the algorithms and add new features to the codes. We then quite extensively analyze and compare the two approaches on a set of large problems from real applications. We further explain the main differencesmore » in the behavior of the approaches on artificial regular grid problems. As a conclusion to this activity report, we mention a set of parallel sparse solvers on which this type of study should be extended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghatikar, Girish; Cheung, Iris; Lanzisera, Steven
This report documents the technical evaluation of a collaborative research, development, and demonstration (RD&D) project that aims to address energy efficiency of Miscellaneous and Electronic Loads (MELs) (referred to as plug loads interchangeably in this report) using load monitoring and control devices. The goal s of this project are to identify and provide energy efficiency and building technologies to exemplary information technology (IT) office buildings, and to assist in transforming markets via technical assistance and engagement of Indian and U.S. stakeholders. This report describes the results of technology evaluation and United States – India collaboration between the Lawrence Berkeley Nationalmore » Laboratory (LBNL), Infosys Technologies Limited (India), and Smartenit, Inc. (U.S.) to address plug - load efficiency. The conclusions and recommendations focus on the larger benefits of such technologies and their impacts on both U.S. and Indian stakeholders.« less
Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy
Bluhm, Hendrik; Crumlin, Ethan J.
2016-05-03
The Second International Workshop on Ambient Pressure X-ray Photoelectron Spectroscopy (APXPS) was held at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, CA, from December 7-9, 2015. It brought together more than 100 participants from 17 countries. The workshop followed the inaugural meeting at the French synchrotron SOLEIL in December 2014, which was organized by François Rochet. The strong interest in these workshops reflects the growth of the APXPS community over the last decade, with instruments now operational at more than 12 synchrotrons around the world (see SRN, Vol. 27, No. 2, pp. 14–23 (2014)), and a steady increase in themore » number of laboratory instruments. Finally, APXPS has established itself as an important method for the investigation of surfaces and interfaces under in situ and operando conditions, including liquid/vapor and liquid/solid interfaces.« less
Genes and the Microenvironment: Two Faces of Breast Cancer (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, Joe; Love, Susan M.; Bissell, Min
In this April 21, 2008 Berkeley Lab event, a dynamic panel of Berkeley Lab scientists highlight breast cancer research advances related to susceptibility, early detection, prevention, and therapy - a biological systems approach to tackling the disease from the molecular and cellular levels, to tissues and organs, and ultimately the whole individual. Joe Gray, Berkeley Lab Life Sciences Division Director, explores how chromosomal abnormalities contribute to cancer and respond to gene-targeted therapies. Mina Bissell, former Life Sciences Division Director, approaches the challenge of breast cancer from the breast's three dimensional tissue microenvironment and how the intracellular ''conversation'' triggers malignancies. Marymore » Helen Barcellos-Hoff, Deputy Director, Life Sciences Division, identifies what exposure to ionizing radiation can tell us about how normal tissues suppress carcinogenesis. The panel is moderated by Susan M. Love, breast cancer research pioneer, author, President and Medical Director of the Dr. Susan Love Research Foundation.« less
Modeling multi-GeV class laser-plasma accelerators with INF&RNO
NASA Astrophysics Data System (ADS)
Benedetti, Carlo; Schroeder, Carl; Bulanov, Stepan; Geddes, Cameron; Esarey, Eric; Leemans, Wim
2016-10-01
Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. Understanding and optimizing the performance of LPAs requires detailed numerical modeling of the nonlinear laser-plasma interaction. We present simulation results, obtained with the computationally efficient, PIC/fluid code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde), concerning present (multi-GeV stages) and future (10 GeV stages) LPA experiments performed with the BELLA PW laser system at LBNL. In particular, we will illustrate the issues related to the guiding of a high-intensity, short-pulse, laser when a realistic description for both the laser driver and the background plasma is adopted. Work Supported by the U.S. Department of Energy under contract No. DE-AC02-05CH11231.
Indirect double photoionization of water
NASA Astrophysics Data System (ADS)
Resccigno, T. N.; Sann, H.; Orel, A. E.; Dörner, R.
2011-05-01
The vertical double ionization thresholds of small molecules generally lie above the dissociation limits corresponding to formation of two singly charged fragments. This gives the possibility of populating singly charged molecular ions by photoionization in the Franck-Condon region at energies below the lowest dication state, but above the dissociation limit into two singly charged fragment ions. This process can produce a superexcited neutral fragment that autoionizes at large internuclear separation. We study this process in water, where absorption of a photon produces an inner-shell excited state of H2O+ that fragments to H++OH*. The angular distribution of secondary electrons produced by OH* when it autoionizes produces a characteristic asymmetric pattern that reveals the distance, and therefore the time, at which the decay takes place. LBNL, Berkeley, CA, J. W. Goethe Universität, Frankfurt, Germany. Work performed under auspices of US DOE and supported by OBES, Div. of Chemical Sciences.
Final Report - Advanced High Energy Li-Ion Cell for PHEV and EV Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Jagat
2017-03-22
Lithium Ion Battery (LIB) technology’s potential to enable a commercially viable high energy density is the key to a lower $/Wh, thereby a low cost battery. The design of a LIB with high energy, high power, safety and long life is a challenge that requires cell design from the ground up and synergy between all components. 3M Company (3M), the Recipient, led by its Principal Investigator, Jagat Singh, pursued this challenging task of a LIB by ‘teaming’ key commercial businesses [General Motors (GM), Umicore and Iontensity] and labs [Army Research Laboratory (ARL) and Lawrence Berkley National Laboratory (LBNL)]. The technologymore » from each team member was complimentary and a close working relationship spanning the value chain drove productivity.The completion of this project is a significant step towards more energy efficient and environmentally friendly vehicles, making America less dependent on imported oil.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schell, Daniel J
The goal of this work is to use the large fermentation vessels in the National Renewable Energy Laboratory's (NREL) Integrated Biorefinery Research Facility (IBRF) to scale-up Lygos' biological-based process for producing malonic acid and to generate performance data. Initially, work at the 1 L scale validated successful transfer of Lygos' fermentation protocols to NREL using a glucose substrate. Outside of the scope of the CRADA with NREL, Lygos tested their process on lignocellulosic sugars produced by NREL at Lawrence Berkeley National Laboratory's (LBNL) Advanced Biofuels Process Development Unit (ABPDU). NREL produced these cellulosic sugar solutions from corn stover using amore » separate cellulose/hemicellulose process configuration. Finally, NREL performed fermentations using glucose in large fermentors (1,500- and 9,000-L vessels) to intermediate product and to demonstrate successful performance of Lygos' technology at larger scales.« less
The Big Bang, COBE, and the Relic Radiation of Creation (LBNL Science at the Theater)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smoot, George
Berkeley Lab's George Smoot won the 2006 Physics Nobel Prize, together with John Mather of NASA Goddard Space Flight Center, for "the discovery of the blackbody form and anisotropy of the cosmic microwave background radiation." The anisotropy showed as small variations in the map of the early universe. This research looks back into the infant universe and provides a better understanding of the origin of galaxies and stars. The cosmic background radiation is a tool to understand the structure and history of the universe and the structure of space-time. These observations have provided increased support for the big bang theorymore » of the universe's origin. The Cosmic Background Explorer (COBE) NASA satellite, launched in 1989, carries instruments that measured various aspects of cosmic microwave background radiation, and produced the data for these compelling scientific results, which opened up a field that continues very actively today.« less
Updated Estimates of the Remaining Market Potential of the U.S. ESCO Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter H.; Carvallo Bodelon, Juan Pablo; Goldman, Charles A.
The energy service company (ESCO) industry has a well-established track record of delivering energy and economic savings in the public and institutional buildings sector, primarily through the use of performance-based contracts. The ESCO industry often provides (or helps arrange) private sector financing to complete public infrastructure projects with little or no up-front cost to taxpayers. In 2014, total U.S. ESCO industry revenue was estimated at $5.3 billion. ESCOs expect total industry revenue to grow to $7.6 billion in 2017—a 13% annual growth rate from 2015-2017. Researchers at Lawrence Berkeley National Laboratory (LBNL) were asked by the U.S. Department of Energymore » Federal Energy Management Program (FEMP) to update and expand our estimates of the remaining market potential of the U.S. ESCO industry. We define remaining market potential as the aggregate amount of project investment by ESCOs that is technically possible based on the types of projects that ESCOS have historically implemented in the institutional, commercial, and industrial sectors using ESCO estimates of current market penetration in those sectors. In this analysis, we report U.S. ESCO industry remaining market potential under two scenarios: (1) a base case and (2) a case “unfettered” by market, bureaucratic, and regulatory barriers. We find that there is significant remaining market potential for the U.S. ESCO industry under both the base and unfettered cases. For the base case, we estimate a remaining market potential of $92-$201 billion ($2016). We estimate a remaining market potential of $190-$333 billion for the unfettered case. It is important to note, however, that there is considerable uncertainty surrounding the estimates for both the base and unfettered cases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karl; Vossos, Vagelis; Kloss, Margarita
2016-09-01
Cost effective zero net energy (ZNE) schemes exist for many types of residential and commercial buildings. Yet, today’s alternating current (AC) based ZNE designs may be as much as 10% to 20% less efficient, more costly, and more complicated than a design based on direct current (DC) technologies. An increasing number of research organizations and manufacturers are just starting the process of developing products and conducting research and development (R&D) efforts. These early R&D efforts indicate that the use of DC technologies may deliver many energy and non-energy benefits relative to AC-based typologies. DC ZNE schemes may provide for anmore » ideal integrating platform for natively DC-based onsite generation, storage, electric vehicle (EV) charging and end-use loads. Emerging empirical data suggest that DC end-use appliances are more efficient, simpler, more durable, and lower cost. DC technologies appear to provide ratepayers a lower cost pathway to achieve resilient ZNE buildings, and simultaneously yield a plethora of benefits. This paper draws from the current research effort entitled "Direct Current as an Integrating and Enabling Platform," co-led by the Lawrence Berkeley National Laboratory (LBNL), the California Institute for Energy and the Environment (CIEE), the Electric Power Research Institute (EPRI) and funded under the California Energy Commission’s Energy Program Investment Charge (CEC EPIC). The first phase of this EPIC research is focused on assembling and summarizing known global performance information on DC and DC-AC hybrid end-use appliances and power systems. This paper summarizes the information and insights gained from this research effort.« less
6th Institute for Systems Biology International Symposium: Systems Biology and the Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galitski, Timothy P.
2007-04-23
Systems biology recognizes the complex multi-scale organization of biological systems, from molecules to ecosystems. The International Symposium on Systems Biology is an annual two-day event gathering the most influential researchers transforming biology into an integrative discipline investigating complex systems. In recognition of the fundamental similarity between the scientific problems addressed in environmental science and systems biology studies at the molecular, cellular, and organismal levels, the 2007 Symposium featured global leaders in “Systems Biology and the Environment.” The objective of the 2007 “Systems Biology and the Environment” International Symposium was to stimulate interdisciplinary thinking and research that spans systems biology andmore » environmental science. This Symposium was well aligned with the DOE’s Genomics: GTL program efforts to achieve scientific objectives for each of the three DOE missions: Develop biofuels as a major secure energy source for this century; Develop biological solutions for intractable environmental problems; Understand biosystems’ climate impacts and assess sequestration strategies. Our scientific program highlighted world-class research exemplifying these priorities. The Symposium featured 45 minute lectures from 12 researchers including: Penny/Sallie Chisholm of MIT gave the keynote address “Tiny Cells, Global Impact: What Prochlorococcus Can Teach Us About Systems Biology”, plus Jim Fredrickson of PNNL, Nitin Baliga of ISB, Steve Briggs of UCSD, David Cox of Perlegen Sciences, Antoine Danchin of Institut Pasteur, John Delaney of the U of Washington, John Groopman of Johns Hopkins, Ben Kerr of the U of Washington, Steve Koonin of BP, Elliott Meyerowitz of Caltech, and Ed Rubin of LBNL. The 2007 Symposium promoted DOE’s three mission areas among scientists from multiple disciplines representing academia, non-profit research institutions, and the private sector. As in all previous Symposia, we had excellent attendance of participants representing 20-30 academic or research-oriented facilities along with 25-30 private corporations from 5-10 countries. To broaden the audience for the Symposium and ensure the continued accessibility of the presentations, we made the presentation videos available afterward on the ISB’s website.« less
Characterization of a fully depleted CCD on high-resistivity silicon
NASA Astrophysics Data System (ADS)
Stover, Richard J.; Wei, Mingzhi; Lee, Y.; Gilmore, David K.; Holland, S. E.; Groom, D. E.; Moses, William W.; Perlmutter, Saul; Goldhaber, G.; Pennypacker, C.; Wang, N. W.; Palaio, N.
1997-04-01
Most scientific CCD imagers are fabricated on 30-50 (Omega) - cm epitaxial silicon. When illuminated form the front side of the device they generally have low quantum efficiency in the blue region of the visible spectrum because of strong absorption in the polycrystalline silicon gates as well as poor quantum efficiency in the far red and near infrared region of the spectrum because of the shallow depletion depth of the low-resistivity silicon. To enhance the blue response of scientific CCDs they are often thinned and illuminated from the back side. While blue response is greatly enhanced by this process, it is expensive and it introduces additional problems for the red end of the spectrum. A typical thinned CCD is 15 to 25 micrometers thick, and at wavelengths beyond about 800 nm the absorption depth becomes comparable to the thickness of the device, leading to interference fringes from reflected light. Because these interference fringes are of high order, the spatial pattern of the fringes is extremely sensitive to small changes in the optical illumination of the detector. Calibration and removal of the effects of the fringes is one of the primary limitations on the performance of astronomical images taken at wavelengths of 800 nm or more. In this paper we present results from the characterization of a CCD which promises to address many of the problems of typical thinned CCDs. The CCD reported on here was fabricated at Lawrence Berkeley National Laboratory (LBNL) on a 10-12 K$OMega-cm n-type silicon substrate.THe CCD is a 200 by 200 15-micrometers square pixel array, and due to the very high resistivity of the starting material, the entire 300 micrometers substrate is depleted. Full depletion works because of the gettering technology developed at LBNL which keeps leakage current down. Both front-side illuminated and backside illuminated devices have been tested. We have measured quantum efficiency, read-noise, full-well, charge-transfer efficiency, and leakage current. We have also observed the effects of clocking waveform shapes on spurious charge generation. While these new CCDs promise to be a major advance in CD technology, they too have limitations such as charge spreading and cosmic-ray effects. These limitations have been characterized and are presented. Examples of astronomical observations obtained with the backside CCD on the 1-meter reflector at Lick Observatory are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MILLS, EVAN; MATTHE, PAUL; STOUFER, MARTIN
2016-10-06
EnergyIQ-the first "action-oriented" benchmarking tool for non-residential buildings-provides a standardized opportunity assessment based on benchmarking results. along with decision-support information to help refine action plans. EnergyIQ offers a wide array of benchmark metrics, with visuall as well as tabular display. These include energy, costs, greenhouse-gas emissions, and a large array of characteristics (e.g. building components or operational strategies). The tool supports cross-sectional benchmarking for comparing the user's building to it's peers at one point in time, as well as longitudinal benchmarking for tracking the performance of an individual building or enterprise portfolio over time. Based on user inputs, the toolmore » generates a list of opportunities and recommended actions. Users can then explore the "Decision Support" module for helpful information on how to refine action plans, create design-intent documentation, and implement improvements. This includes information on best practices, links to other energy analysis tools and more. The variety of databases are available within EnergyIQ from which users can specify peer groups for comparison. Using the tool, this data can be visually browsed and used as a backdrop against which to view a variety of energy benchmarking metrics for the user's own building. User can save their project information and return at a later date to continue their exploration. The initial database is the CA Commercial End-Use Survey (CEUS), which provides details on energy use and characteristics for about 2800 buildings (and 62 building types). CEUS is likely the most thorough survey of its kind every conducted. The tool is built as a web service. The EnergyIQ web application is written in JSP with pervasive us of JavaScript and CSS2. EnergyIQ also supports a SOAP based web service to allow the flow of queries and data to occur with non-browser implementations. Data are stored in an Oracle 10g database. References: Mills, Mathew, Brook and Piette. 2008. "Action Oriented Benchmarking: Concepts and Tools." Energy Engineering, Vol.105, No. 4, pp 21-40. LBNL-358E; Mathew, Mills, Bourassa, Brook. 2008. "Action-Oriented Benchmarking: Using the CEUS Database to Benchmark Commercial Buildings in California." Energy Engineering, Vol 105, No. 5, pp 6-18. LBNL-502E.« less
A compact ion source for intense neutron generation
NASA Astrophysics Data System (ADS)
Perkins, Luke Torrilhon
Today, numerous applications for neutrons, beyond those of the nuclear power industry, are beginning to emerge and become viable. From neutron radiography which, not unlike conventional X-rays, can provide an in-depth image through various materials, to neutron radiotherapy, for the treatment of certain forms of cancer, all these applications promise to improve our quality of life. To meet the growing need for neutrons, greater demands are being made on the neutron 'generator' technology, demands for improved neutron output and reliability at reduced physical sizes and costs. One such example in the field of borehole neutron generators, where, through neutron activation analysis, the elemental composition, concentration and location in the surrounding borehole media can be ascertained. These generators, which commonly rely on the fusion of deuterium (D) and tritium (T) at energies of the order of one hundred thousand Volts, seem to defy their physical limitations to provide neutron outputs approaching a billion per second in packages no greater than two inches in diameter. In an attempt to answer this demand, we, at Lawrence Berkeley National Laboratory (LBNL), have begun developing a new generation of neutron generators making use of recent developments in ion source technology. The specific application which motivates this development is in the environmental monitoring field, where pollutants and their concentrations in the subsurface must be assessed. To achieve the desired direction of low-level concentrations and obtain a better directional sensitivity, a neutron output of 109 to 1010 D-T neutrons per second was targeted for generator package which can fit inside a ~5 cm diameter borehole. To accomplish this performance, a radio-frequency (RF)- driven ion source developed at LBNL was adapted to the requirements of this application. The advantages of this type of ion source are its intrinsic ability to tailor the delivery of RF power to the ion source and therefore control the neutron output (pulse width, repetition rate and magnitude) while operating at low pressures (~5 mTorr). In the experimental testing presented herein, a prototype, 5 cm-diameter, inductively driven ion source has produced unsaturated hydrogen beam current densities in excess of 1 A/cm2 and monatomic species fractions in excess of 90%. This satisfactory performance, with respect to the targeted neutron output, was achieved with a 2 MHz, 60 kW pulse of RF to produce a ~20μs plasma pulse at <100 Hz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, John
2014-11-29
This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO 2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO 2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interactingmore » parameters in the development and operation of anthropogenic CO 2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO 2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to determine the limitations of both the commercial simulator and the Lawrence Berkeley National Laboratory (LBNL) R&D simulator, TOUGHREACT available to the project. A simplified layer cake model approximating the volume of the RMOTC targeted reservoirs was defined with 1-3 minerals eventually modeled with limited success. Modeling reactive transport in porous media requires significant computational power. In this project, up to 24 processors were used to model a limited mineral set of 1-3 minerals. In addition, geomechanical aspects of injecting CO 2 into closed, semi-open, and open systems in various well completion methods was simulated. Enhanced Oil Recovery (EOR) as a storage method was not modeled. A robust and stable simulation dataset or base case was developed and used to create a master dataset with embedded instructions for input to the ED/RSM software. Little success was achieved toward the objective of the project using the commercial simulator or the LBNL simulator versions available during the time of this project. Several hundred realizations were run with the commercial simulator and ED/RSM software, most having convergence problems and terminating prematurely. A proxy model for full field CO 2 injection sequestration utilization and storage was not capable of being developed with software available for this project. Though the chemistry is reasonably known and understood, based on the amount of effort and huge computational time required, predicting CO 2 sequestration storage capacity in geologic formations to within the program goals of ±30% proved unsuccessful.« less
High Performance Building Facade Solutions - PIER Final Project Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Eleanor; Selkowitz, Stephen
2009-12-31
Building facades directly influence heating and cooling loads and indirectly influence lighting loads when daylighting is considered, and are therefore a major determinant of annual energy use and peak electric demand. Facades also significantly influence occupant comfort and satisfaction, making the design optimization challenge more complex than many other building systems.This work focused on addressing significant near-term opportunities to reduce energy use in California commercial building stock by a) targeting voluntary, design-based opportunities derived from the use of better design guidelines and tools, and b) developing and deploying more efficient glazings, shading systems, daylighting systems, facade systems and integrated controls.more » This two-year project, supported by the California Energy Commission PIER program and the US Department of Energy, initiated a collaborative effort between The Lawrence Berkeley National Laboratory (LBNL) and major stakeholders in the facades industry to develop, evaluate, and accelerate market deployment of emerging, high-performance, integrated facade solutions. The LBNL Windows Testbed Facility acted as the primary catalyst and mediator on both sides of the building industry supply-user business transaction by a) aiding component suppliers to create and optimize cost effective, integrated systems that work, and b) demonstrating and verifying to the owner, designer, and specifier community that these integrated systems reliably deliver required energy performance. An industry consortium was initiated amongst approximately seventy disparate stakeholders, who unlike the HVAC or lighting industry, has no single representative, multi-disciplinary body or organized means of communicating and collaborating. The consortium provided guidance on the project and more importantly, began to mutually work out and agree on the goals, criteria, and pathways needed to attain the ambitious net zero energy goals defined by California and the US.A collaborative test, monitoring, and reporting protocol was also formulated via the Windows Testbed Facility in collaboration with industry partners, transitioning industry to focus on the importance of expecting measured performance to consistently achieve design performance expectations. The facility enables accurate quantification of energy use, peak demand, and occupant comfort impacts of synergistic facade-lighting-HVAC systems on an apples-to-apples comparative basis and its data can be used to verify results from simulations. Emerging interior and exterior shading technologies were investigated as potential near-term, low-cost solutions with potential broad applicability in both new and retrofit construction. Commercially-available and prototype technologies were developed, tested, and evaluated. Full-scale, monitored field tests were conducted over solstice-to-solstice periods to thoroughly evaluate the technologies, uncover potential risks associated with an unknown, and quantify performance benefits. Exterior shading systems were found to yield net zero energy levels of performance in a sunny climate and significant reductions in summer peak demand. Automated interior shading systems were found to yield significant daylighting and comfort-related benefits.In support of an integrated design process, a PC-based commercial fenestration (COMFEN) software package, based on EnergyPlus, was developed that enables architects and engineers to quickly assess and compare the performance of innovative facade technologies in the early sketch or schematic design phase. This tool is publicly available for free and will continue to improve in terms of features and accuracy. Other work was conducted to develop simulation tools to model the performance of any arbitrary complex fenestration system such as common Venetian blinds, fabric roller shades as well as more exotic innovative facade systems such as optical louver systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
N /A
2003-03-07
Lawrence Berkeley National Laboratory (LBNL) proposes to build a six-story, approximately 86,500 gross square foot (gsf) Molecular Foundry building; and an adjacent 8,000 gsf, partly below-grade Central Utility Plant building (for a combined 94,500 gsf), to be funded and operated by the U.S. Department of Energy's Office of Basic Energy Sciences. The buildings would be located on an approximately 2 1/2-acre site in the southeastern portion of the LBNL facility in the Oakland-Berkeley hills. The site is on mostly undeveloped slopes between Building 72, which is the National Center for Electron Microscopy (NCEM), and Building 66, which is the Surfacemore » Science and Catalysis Laboratory (SSCL). The Molecular Foundry building would include laboratories, offices, and conference and seminar rooms; the Central Utility Plant would also serve as the foundation for 16 surface parking spaces. A new plaza and pedestrian bridges would connect or provide ready access between the proposed Molecular Foundry building and adjacent scientific buildings. The Proposed Action would extend Lee Road approximately 350 feet, and widen a portion of the road to accommodate two-way traffic. The Molecular Foundry would be staffed and/or used by an estimated 137 persons, of whom an estimated 59 would be staff persons, 36 would be students, and 42 would be visitors (i.e., visiting scientists) to the Center. The Proposed Action would require removal of an existing paved 18-space parking lot and retaining walls, as well as excavation into an undeveloped hillside. Approximately two-dozen mature trees would be removed along with approximately one-dozen saplings. The Proposed Action would replant or replace trees, generally in-kind and in or around the site. LBNL anticipates it would reuse all soil excavated for the Molecular Foundry to construct the new Lee Road extension and widen the existing roadway. This Proposed Action would be a resource for the Department of Energy's participation in the National Nanotechnology Initiative (NNI). Nanotechnology is the design, fabrication, characterization, and use of materials, devices, and systems through the control of matter at the nanometer-length scale. Nanoscience will develop the understanding of building blocks at the nanometer-length scale and the methods by which they are assembled into multi-component devices. Alternatives to the Proposed Action include a reduced size building configuration, location of the building on a different on-site location, and a No Action alternative. Several off-site alternatives were considered but were not found to reasonably meet the purpose and need for the Proposed Action. Of the reasonable alternatives analyzed, the Proposed Action is found to best meet DOE's purpose and need for action. Although the Proposed Action would take place on a partially developed site that is generally surrounded by existing buildings and roads, the site is near to designated Critical Habitat of the Federally-listed Alameda Whipsnake. To minimize any potential but unexpected impact to the Alameda whipsnake, several mitigation measures are proposed. In addition, the Proposed Action would result in minor increases in stormwater runoff, air pollutant emissions, visual quality impacts, noise impacts, and the potential to disturb unanticipated archaeological resources. It would produce marginal increases in traffic and parking demand, as well as incremental demand increases for water, energy, wastewater treatment, waste disposal, and public services. The following impact is found to be potentially significant without mitigation in this Environmental Assessment: Although the site is not located in USFWS-designated critical habitat, due to the potential for Alameda whipsnake movement into the project area, mitigation measures would be implemented to ensure that whipsnakes are protected to the greatest extent possible during project construction.« less
Test of Magnetic Rotation near the band head in ^197,198Pb
NASA Astrophysics Data System (ADS)
Krücken, R.; Clark, R. M.; Deleplanque, M. A.; Diamond, R. M.; Fallon, P.; Macchiavelli, A. O.; Lee, I. Y.; Schmid, G. J.; Stephens, F. S.; Vetter, K.; Dewald, A.; Peusquens, R.; von Brentano, P.; Baldsiefen, G.; Chmel, S.; Hübel, H.; Becker, J. A.; Bernstein, L. A.; Hauschild, K.
1998-04-01
The concept of magnetic rotation is tested near the band head of shears-bands in ^197,198Pb by means of a lifetime experiment with the recoil distance method (RDM). The experiment was performed using the Gammasphere array in conjunction with the Cologne Plunger. The B(M1) values extracted from the measured lifetimes can prove the applicability of the concept of magnetic rotation for the states near the band head of these shears bands. The RDM results are compared with tilted axis cranking and shell model calculations. Furthermore the results will be used to test earlier DSAM lifetime measurements for states at higher spins. Preliminary results of this topic will be presented. This work is supported by DOE grant numbers DE-AC03-76SF00098 (LBNL), DE-FG02-91ER40609 (Yale), W-7405-ENG-48 (LLNL) and by the German BMBF for Cologne (No. 06 OK 668) and Bonn.
Proton-Decay Spectroscopic Studies of the Exotic Nuclides 23Al, 23Si, 22Al and 77Rb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Michael William
Aluminum-23 was produced by 40 MeV 3He 2+ bombardments of Mg targets in four experiments at the LBNL 88” Cyclotron. Reaction products were transported via helium-jet to a detection chamber where they were counted using two low-energy particle -identif ication (PI) telescopes. New proton groups were observed with laboratory energies (and intensities relative to the known peak at 838±5 keV) of 246±20 (33±3%) and 556±5 keV (68±5%), respectively. Several possible decay assignments are discussed for the former group. The possibility that it originates from the decay through the isobaric analog state (IAS) and corresponding implications for isospin mixing and themore » proton-capture resonance strength are discussed. The Gamow-TelIer strength function has been deduced from these and several weaker proton transitions; the results are compared with theoretical predictions.« less
On the Suitability of Lanthanides as Actinide Analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szigethy, Geza; Raymond, Kenneth N.
2008-04-11
With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond groupmore » at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries.« less