Science.gov

Sample records for lcls x-ray fel

  1. Availability Performance and Considerations for LCLS X-Ray FEL at SLAC

    SciTech Connect

    Allen, W.B.; Brachmann, A.; Colocho, W.; Stanek, M.; Warren, J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) is an X-ray Free Electron Laser (FEL) facility located at the SLAC National Accelerator Laboratory. LCLS has been in operation since spring 2009, and it has completed its 3rd user run. LCLS is the first in its class of X-ray FEL user facilities, and presents different availability challenges compared to storage ring light sources. This paper presents recent availability performance of the FEL as well as factors to consider when defining the operational availability figure of merit for user runs. During LCLS [1] user runs, an availability of 95% has been set as a goal. In run III, LCLS photon and electron beam systems achieved availabilities of 94.8% and 96.7%, respectively. The total availability goal can be distributed among subsystems to track performance and identify areas that need attention in order to maintain and improve hardware reliability and operational availability. Careful beam time accounting is needed to understand the distribution of down time. The LCLS complex includes multiple experimental hutches for X-ray science, and each user program has different requirements of a set of parameters that the FEL can be configured to deliver. Since each user may have different criteria for what is considered 'acceptable beam', the quality of the beam must be considered to determine the X-ray beam availability.

  2. Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam

    SciTech Connect

    Wang, L.; Ding, Y.; Huang, Z.; /SLAC

    2011-12-14

    The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be <10 fs. In this paper we report our numerical optimization and simulations to produce even shorter x-ray pulses by optimizing the machine and undulator setup at 20 pC charge. In the soft x-ray regime, with combination of slotted-foil or undulator taper, a single spike x-ray pulse is achievable with peak FEL power of a few 10s GW. Linac Coherent Light Source (LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full

  3. X-ray diffraction experiments on the Materials in Extreme Conditions (MEC) LCLS x-ray FEL beamline

    NASA Astrophysics Data System (ADS)

    Smith, Raymond; Fratanduono, Dayne; Wicks, June; Duffy, Tom; Lee, Hae Ja; Granados, Eduardo; Heimann, Philip; Gleason, Arianna; Bolme, Cynthia; Swift, Damian; Coppari, Federica; Eggert, Jon; Collins, Rip

    2015-06-01

    The experiments described here were conducted on the MEC beamline hutch at the SLAC Linac Coherent Light Source. A 10 ns 527 nm laser pulse was used to shock compress 60-100 μm thick NaCl and Graphite samples. LCLS x-rays (40 fs, 8 keV), scattered off the shocked sample, were recorded on several pixel array detectors positioned downstream. The diffracted x-ray pattern allows us to determine changes in crystal structure at Mbar pressures and over nanosecond timescales. In this talk we detail the experimental setup, the current capabilities of the MEC laser and the considerations for optimizing the target design. We will describe the wave interactions within the shock-compressed target and the use of a 1D hydrocode to describe the pressure, temperature and density conditions within the target assembly as a function of time and Lagrangian position. We present observations of the B1-B2 phase transition in NaCl and subsequent back transformation during release to ambient pressure, and compare these findings to gas gun and static data. We also present results from a preliminary study of the shock-induced graphite to diamond transformation.

  4. Bendable Focusing X-Ray Optics for the ALS and the LCLS/FEL: Design, Metrology, and Performance

    SciTech Connect

    Yashchuk, V. V.; Yuan, S.; Baker, S.; Bozek, J.; Celestre, R.; Church, M.; Goldberg, K. A.; Fernandez-Perea, M.; Kelez, N.; Kunz, M.; McKinney, W. R.; Morrison, G.; Padmore, H. A.; Soufli, R.; Tamura, N.; Warwick, T.

    2010-06-02

    We review the recent development of bendable x-ray optics used for focusing of beams of soft and hard x-rays at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory and at the Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory. For simultaneous focusing in the tangential and sagittal directions, two elliptically cylindrical reflecting elements, a Kirkpatrick-Baez (KB) pair, are used. Because fabrication of elliptical surfaces is complicated, the cost of directly fabricated tangential elliptical cylinders is often prohibitive. Moreover, such optics cannot be easily readjusted for use in multiple, different experimental arrangements, e.g. at different focal distances. This is in contrast to flat optics that are simpler to manufacture and easier to measure by conventional interferometry. The tangential figure of a flat substrate is changed by placing torques (couples) at each end. Depending on the applied couples, one can tune the shape close to a desired tangential cylinder, ellipse or parabola. We review the nature of the bending, requirements and approaches to the mechanical design, describe original optical and at-wavelength techniques for optimal tuning of bendable optics and alignment on the beamline, and provide beamline performance of the bendable optics used for sub-micro and nano focusing of soft x-rays.

  5. Design and Start-to-End Simulation of an X-Band RF Driven Hard X-Ray FEL with LCLS Injector

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-08-20

    In this note, it is briefly discussed the accelerator design and start-to-end 3D macro particles simulation (using ELEGANT and GENESIS) of an X-band RF driven hard X-ray FEL with LCLS injector. A preliminary design and LiTrack 1D simulation studies were presented before in an older publication [1]. In numerical simulations this X-band RF driven hard X-ray FEL achieves/exceeds LCLS-like performance in a much shorter overall length of 350 m, compared with 1200 m in the LCLS case. One key feature of this design is that it may achieve a higher final beam current of 5 kA plus a uniform energy profile, mainly due to the employment of stronger longitudinal wake fields in the last X-band RF linac [2].

  6. Optimization of the LCLS X-Ray FEL Output Performance in the Presence of Strong Undulator Wakefields

    SciTech Connect

    Reiche, S.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.D.; Stupakov, G.V.; Fawley, W.M.; /LBL, Berkeley

    2006-03-17

    The Linac Coherent Light Source (LCLS) Free-Electron Laser will operate in the wavelength range of 1.5 to 15 Angstroms. Energy loss due to wakefields within the long undulator can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive component is the most critical and depends upon the chamber material (e.g. Cu) and its radius. To study the expected performance in the presence of these wakefields, we make a series of start-to-end simulations with tracking codes PARMELA and ELEGANT and time-dependent FEL simulation codes Genesis 1.3 and Ginger. We discuss the impact of the wakefield on output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation obtained with a slight z dependent taper in the undulator field. We compare these results to those obtained by decreasing the bunch charge or increasing the vacuum chamber radius. We also compare our results to those predicted in concurrent analytical work.

  7. LCLS X-Ray FEL Output Performance in the Presence of HighlyTime-Dependent Undulator Wakefields

    SciTech Connect

    Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov,Gennady; Fawley, William M.; Reiche, Sven

    2005-08-25

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 0fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  8. LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields

    SciTech Connect

    Fawley, W.M.; Bane, K.L.F.; Emma, P.; Huang, Z.; Nuhn, H.-D.; Stupakov, G.; Reiche, S.; /UCLA

    2005-09-30

    Energy loss due to wakefields within a long undulator, if not compensated by an appropriate tapering of the magnetic field strength, can degrade the FEL process by detuning the resonant FEL frequency. The wakefields arise from the vacuum chamber wall resistivity, its surface roughness, and abrupt changes in its aperture. For LCLS parameters, the resistive-wall component is the most critical and depends upon the chamber material (e.g., Cu) and its radius. Of recent interest[1] is the so-called ''AC'' component of the resistive-wall wake which can lead to strong variations on very short timescales (e.g., {approx} 20 fs). To study the expected performance of the LCLS in the presence of these wakefields, we have made an extensive series of start-to-end SASE simulations with tracking codes PARMELA and ELEGANT, and time-dependent FEL simulation codes GENESIS1.3 and GINGER. We discuss the impact of the wakefield losses upon output energy, spectral bandwidth, and temporal envelope of the output FEL pulse, as well as the benefits of a partial compensation of the time-dependent wake losses obtained with a slight z-dependent taper in the undulator field. We compare the taper results to those predicted analytically[2].

  9. Optical Klystron Enhancement to SASE X-ray FELs

    SciTech Connect

    Ding, Yuantao; Emma, Paul; Huang, Zhirong; Kumar, Vinit

    2006-04-07

    The optical klystron enhancement to self-amplified spontaneous emission (SASE) free electron lasers (FELs) is studied in theory and in simulations. In contrast to a seeded FEL, the optical klystron gain in a SASE FEL is not sensitive to any phase mismatch between the radiation and the microbunched electron beam. The FEL performance with the addition of four optical klystrons located at the undulator long breaks in the Linac Coherent Light Source (LCLS) shows significant improvement if the uncorrelated energy spread at the undulator entrance can be controlled to a very small level. In addition, FEL saturation at shorter x-ray wavelengths (around 1.0 A) within the LCLS undulator length becomes possible. We also discuss the application of the optical klystron in a compact x-ray FEL design that employs relatively low electron beam energy together with a shorter-period undulator.

  10. Transverse Coherence of the LCLS X-Ray Beam

    SciTech Connect

    Not Available

    2010-12-01

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  11. Transverse Coherence Properties of the LCLS X-Ray Beam

    SciTech Connect

    Reiche, S.; /UCLA

    2007-04-16

    Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.

  12. Transverse-coherence properties of the FEL at the LCLS

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.

    2010-09-02

    The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.

  13. Numerical study of X-ray FELS including quantum fluctuation

    NASA Astrophysics Data System (ADS)

    Reiche, S.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-06-01

    One of the fundamental limitations towards achieving very short wavelength in a self amplified spontaneous emission free electron laser (SASE FEL) is connected with the energy diffusion in the electron beam due to quantum fluctuations of undulator radiation. Parameters of the LCLS and TESLA X-ray FEL projects are very close to this limit and there exists necessity in upgrading FEL simulation codes for optimization of SASE FEL for operation at a shortest possible wavelength. In this report we describe a one-dimensional FEL simulation code taking into account the effects of incoherent undulator radiation. Using similarity techniques we have calculated universal functions describing degradation of the FEL process due to quantum fluctuations of undulator radiation.

  14. Time-dependent simulation of the gas attenuator for the LCLS-II X-ray FEL's under high beam power operations

    NASA Astrophysics Data System (ADS)

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2015-09-01

    Time-dependent simulation was carried out to study the dynamic response of a gas-based attenuator system designed for the LCLS-II high repetition rate X-ray Free-electron Laser's, and to further elucidate the impact of the fluctuating energies of proceeding pulses on the actual attenuation factor achieved for the trailing pulses. The filamentation effect in the gas density revealed from an earlier steady-state calculation under a constant Continuous-Wave input power was reproduced with additional ramping behavior and oscillations arising from the onset and the pulsed structure of the beam. More importantly, the actual achieved attenuation for a given pulse was found to vary randomly in response to the fluctuations in the input power.

  15. THz Pump and X-Ray Probe Development at LCLS

    SciTech Connect

    Fisher, Alan S; Durr, Hermann; Lindenberg, Aaron; Stanford U., Materials Sci.Dept.; Reis, David; Frisch, Josef; Loos, Henrik; Petree, Mark; Daranciang, Dan; Fuchs, Matthias; Ghimire, Shambhu; Goodfellow, John; /Stanford U., Materials Sci. Dept.

    2011-11-08

    We report on measurements of broadband, intense, coherent transition radiation at terahertz frequencies, generated as the highly compressed electron bunches in Linear Coherent Light Source (LCLS) pass through a thin metal foil. The foil is inserted at 45{sup o} to the electron beam, 31 m downstream of the undulator. The THz emission passes downward through a diamond window to an optical table below the beamline. A fully compressed 350-pC bunch produces up to 0.5 mJ in a nearly half-cycle pulse of 50 fs FWHM with a spectrum peaking at 10 THz. We estimate a peak field at the focus of over 2.5 GV/m. A 20-fs Ti:sapphire laser oscillator has recently been installed for electro-optic measurements. We are developing plans to add an x-ray probe to this THz pump, by diffracting FEL x rays onto the table with a thin silicon crystal. The x rays would arrive with an adjustable time delay after the THz. This will provide a rapid start to user studies of materials excited by intense single-cycle pulses and will serve as a step toward a THz transport line for LCLS-II.

  16. Morphology, microstructure, stress and damage properties of thin film coatings for the LCLS x-ray mirrors

    SciTech Connect

    Soufli, R; Baker, S L; Robinson, J C; Gullikson, E M; McCarville, T J; Pivovaroff, M J; Stefan, P; Hau-Riege, S P; Bionta, R

    2009-04-23

    The development and properties of reflective coatings for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS) free-electron laser (FEL) are discussed in this manuscript. The uniquely high instantaneous dose of the LCLS FEL beam translates to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Coherent wavefront preservation requirements for these mirrors result in stringent surface figure and finish specifications. DC-magnetron sputtered B{sub 4}C and SiC thin film coatings with optimized stress, roughness and figure properties for the LCLS x-ray mirrors are presented. The evolution of microstructure, morphology, and stress of these thin films versus deposition conditions is discussed. Experimental results on the performance of these coatings with respect to FEL damage are also presented.

  17. Design and operation of a hard x-ray transmissive single-shot spectrometer at LCLS

    NASA Astrophysics Data System (ADS)

    Zhu, D.; Cammarata, M.; Feldkamp, J.; Fritz, D. M.; Hastings, J.; Lee, S.; Lemke, H. T.; Robert, A.; Turner, J.; Feng, Y.

    2013-03-01

    We describe the design and operation of a transmissive single-shot spectrometer for the measurement of hard x-ray free electron laser (FEL) source spectrum at the Linac Coherent Light Source (LCLS). The spectrometer was built around a 10 μm thick near-perfect silicon single crystal that was cylindrically bent. Its energy range covered the full FEL bandwidth while its resolution was sufficient for resolving single spectral spikes characteristics of the FELs. Its application will not only greatly facilitate the understanding and optimization of the x-ray FEL sources, but can also serve as an invaluable inline diagnostic tool for experiments where the spectral content of the source plays an important role in data interpretation.

  18. LCLS - The X-ray Laser Has Turned On

    SciTech Connect

    Bergmann, Uwe

    2010-11-03

    On April 10, 2009 the Linac Coherent Light Source (LCLS), the world's first hard x-ray free electron laser, was brought to lasing. Producing an x-ray beam with over a billion times higher peak brightness that then most powerful existing syncrotron sources, it marked the beginning of a new era of science. The LCLS pulses arrive at a rate of 60 - 120 Hz in an energy range from 480 eV to 10 keV, with pulse lengths as short as a few fs to about 300 fs. Since October 2009, users have been performing experiments at the LCLS, and currently three of the six planned instruments are available. Although we stand only at the beginning of LCLS science, there is no doubt about the strong sense of early excitement.

  19. Start-to-End Simulations of the LCLS Accelerator and FEL Performance at Very Low Charge

    SciTech Connect

    Ding, Y; Brachmann, A.; Decker, F.-J.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; Wu, J.; Pellegrini, C.; /UCLA

    2009-05-26

    The Linac Coherent Light Source (LCLS) is an x-ray Free-electron Laser (FEL) being commissioned at Stanford Linear Accelerator Center (SLAC). Recent beam measurements have shown that, using the LCLS injector-linac-compressors, the beam emittance is very small at 20 pC. In this paper we perform start-to-end simulations of the entire accelerator including the FEL undulator and study the FEL performance versus the bunch charge. At 20 pC charge, these calculations associated with the measured beam parameters suggest the possibility of generating a longitudinally coherent single x-ray spike with 2-femtosecond (fs) duration at a wavelength of 1.5 nm. At 100 pC charge level, our simulations show an x-ray pulse with 10 femtosecond duration and up to 10{sup 12} photons at a wavelength of 1.5 {angstrom}. These results open exciting possibilities for ultrafast science and single shot molecular imaging.

  20. Development, characterization and experimental performance of x-ray optics for the LCLS free-electron laser

    SciTech Connect

    Soufli, R; Pivovaroff, M J; Baker, S L; Robinson, J C; Gullikson, E M; Mc Carville, T J; Stefan, P M; Aquila, A L; Ayers, J; McKernan, M A; Bionta, R M

    2008-09-10

    This manuscript discusses the development of reflective optics for the x-ray offset mirror systems of the Linac Coherent Light Source (LCLS), a 0.15-1.5 nm free-electron laser (FEL) at the Stanford Linear Accelerator Center (SLAC). The unique properties (such as the high peak brightness) of the LCLS FEL beam translate to strict limits in terms of materials choice, thus leading to an x-ray mirror design consisting of a reflective coating deposited on a silicon substrate. Furthermore, the physics requirements for these mirrors result in stringent surface figure and finish specifications that challenge the state-of-the-art in x-ray substrate manufacturing, thin film deposition, and metrology capabilities. Recent experimental results on the development, optimization, and characterization of the LCLS soft x-ray mirrors are presented in this manuscript, including: precision surface metrology on the silicon substrates, and the development of boron carbide reflective coatings with reduced stress and thickness variation < 0.14 nm rms across the 175-mm clear aperture area of the LCLS soft x-ray mirrors.

  1. The LCLS variable-energy hard X-ray single-shot spectrometer.

    PubMed

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10(-5) or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  2. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  3. The LCLS variable-energy hard X-ray single-shot spectrometer

    SciTech Connect

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10-5or better. Those performance goals have all been achieved during the commissioning of the HXSSS.

  4. The LCLS variable-energy hard X-ray single-shot spectrometer.

    PubMed

    Rich, David; Zhu, Diling; Turner, James; Zhang, Dehong; Hill, Bruce; Feng, Yiping

    2016-01-01

    The engineering design, implementation, operation and performance of the new variable-energy hard X-ray single-shot spectrometer (HXSSS) for the LCLS free-electron laser (FEL) are reported. The HXSSS system is based on a cylindrically bent Si thin crystal for dispersing the incident polychromatic FEL beam. A spatially resolved detector system consisting of a Ce:YAG X-ray scintillator screen, an optical imaging system and a low-noise pixelated optical camera is used to record the spectrograph. The HXSSS provides single-shot spectrum measurements for users whose experiments depend critically on the knowledge of the self-amplified spontaneous emission FEL spectrum. It also helps accelerator physicists for the continuing studies and optimization of self-seeding, various improved mechanisms for lasing mechanisms, and FEL performance improvements. The designed operating energy range of the HXSSS is from 4 to 20 keV, with the spectral range of order larger than 2% and a spectral resolution of 2 × 10(-5) or better. Those performance goals have all been achieved during the commissioning of the HXSSS. PMID:26698039

  5. Optics-free x-ray FEL oscillator

    SciTech Connect

    Litvinenko, V.N.; Hao, Y.; Kayran, D.; Trbojevic, D.

    2011-03-28

    There is a need for an Optics-Free FEL Oscillators (OFFELO) to further the advantages of free-electron lasers and turning them in fully coherent light sources. While SASE (Self-Amplified Spontaneous Emission) FELs demonstrated the capability of providing very high gain and short pulses of radiation and scalability to the X-ray range, the spectra of SASE FELs remains rather wide ({approx}0.5%-1%) compared with typical short wavelengths FEL-oscillators (0.01%-0.0003% in OK-4 FEL). Absence of good optics in VUV and X-ray ranges makes traditional oscillator schemes with very high average and peak spectral brightness either very complex or, strictly speaking, impossible. In this paper, we discuss lattice of the X-ray optics-free FEL oscillator and present results of initial computer simulations of the feedback process and the evolution of FEL spectrum in X-ray OFFELO. We also discuss main limiting factors and feasibility of X-ray OFFELO.

  6. Toward TW-Level, Hard X-Ray Pulses at LCLS

    SciTech Connect

    Fawley, W.M.; Frisch, J.; Huang, Z.; Jiao, Y.; Nuhn, H.-D.; Pellegrini, C.; Reiche, S.; Wu, J,; /SLAC

    2011-12-13

    Coherent diffraction imaging of complex molecules such as proteins requires a large number (e.g., {approx} 10{sup 13}/pulse) of hard X-ray photons within a time scale of {approx} 10 fs or less. This corresponds to a peak power of {approx} 1 TW, much larger than that currently generated by LCLS or other proposed X-ray free electron lasers (FELs). We study the feasibility of producing such pulses using a LCLS-like, low charge electron beam, as will be possible in the LCLS-II upgrade project, employing a configuration beginning with a SASE amplifier, followed by a 'self-seeding' crystal monochromator, and finishing with a long tapered undulator. Our results suggest that TW-level output power at 8.3 keV is possible from a total undulator system length around 200 m. In addition power levels larger than 100 GW are generated at the third harmonic. We present a tapering strategy that extends the original 'resonant particle' formalism by optimizing the transport lattice to maximize optical guiding and enhance net energy extraction. We discuss the transverse and longitudinal coherence properties of the output radiation pulse and the expected output pulse energy sensitivity, both to taper errors and to power fluctuations on the monochromatized SASE seed.

  7. X-ray FEL induced multiphton ionization and molecular dissociation

    NASA Astrophysics Data System (ADS)

    Fang, Li

    2014-05-01

    X-ray Free electron lasers (FELs) enable multiphoton absorption at the core levels which is not possible with conventional light sources. Multiphoton ionization and the subsequent core-hole states relaxation lead to dramatic dynamics of the molecules. We present our experimental as well as theoretical results on multiphoton ionization and molecular fragmentation dynamics with the Linac Coherent Light Source (LCLS) at SLAC National Laboratory. We investigated simple diatomic system, N2 molecules, where we used multiphoton ionization as an internal clock for imaging the dynamics in time and the internuclear separation domain. We observed the modification of the ionization dynamic by varying the x-ray beam parameters and the effect of the spatial distribution on the ionization. We also investigated a complex system, C60, where we developed a full model to simulate the multiphoton ionization that results in various molecular ions and atomic carbon ions up to charge 6+. The calculation agrees well with our experimental results in ion kinetic energy distribution and charge state distribution. Moreover, our model provides further insights into the photoionization and dissociation dynamics as a function of time and molecular size. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Thank T. Osipov, B. Murphy, Z. Jurek, S.-K. Son, R. Santra, and N. Berrah, M. Hoener, O. Gessner, F. Tarantelli, S.T. Pratt, O. Kornilov, C. Buth, M. Güehr, E. Kanter, C. Bostedt, J. D. Bozek, P. H. Bucksbaum, M. Chen, R. Coffee, J. Cryan, L. DiMauro, M. Glownia, E. Kukk, S.R. Leone, L. Avaldi, P. Bolognesi, J. Eland, J. Farrell, R. Feifel, L. Frasinski, D.T. Ha, K. Hoffmann, B. McFarland, C. Miron, M. Mucke, R. Squibb, K. Ueda for their contributions to this work.

  8. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed in [1] and named two-stage SASE FEL. The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator could be realized using Bragg reflections from crystals. Proposed scheme of monochromator is illustrated for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is defined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are by three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  9. X-ray FEL with a meV bandwidth

    NASA Astrophysics Data System (ADS)

    Saldin, E. L.; Schneidmiller, E. A.; Shvyd'ko, Yu. V.; Yurkov, M. V.

    2001-12-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL was proposed by Feldhaus et al. (Opt. Commun. 140 (1997) 341) and named "two-stage SASE FEL". The scheme consists of two undulators and an X-ray monochromator located between them. For the Angström wavelength range the monochromator can be realized using Bragg reflections from crystals. We propose a scheme of monochromator with a bandwidth of 20 meV for the 14.4 keV X-ray SASE FEL being developed in the framework of the TESLA linear collider project. The spectral bandwidth of the radiation from the two-stage SASE FEL (20 meV) is determined by the finite duration of the electron pulse. The shot-to-shot fluctuations of energy spectral density are dramatically reduced in comparison with the 100% fluctuations in a SASE FEL. The peak and average brilliance are three orders of magnitude higher than the values which could be reached by a conventional X-ray SASE FEL.

  10. Spontaneous emission effects in optically pumped x-ray FEL

    SciTech Connect

    Smetanin, I.V.; Grigor`ev, S.V.

    1995-12-31

    An effect of spontaneous emission in both quantum and classical regimes of the optically pumped X-ray free electron laser (FEL) in investigated. The quantum properties of an FEL are determined by the ratio of the separation {h_bar} between the absorption and emission lines (i.e. the quanta emitted) and their effective width {Delta}{epsilon} {eta}={h_bar}/{Delta}{epsilon}. In the conventional classical regime {eta} {much_lt} 1 an electron emits and absorbes a great number of shortwavelength photons over the interaction region, the gain in FEL being the result of these competitive processes. In the quantum limit {eta} {much_gt} 1 the emission and absorption lines are completely separated and thus the FEL becomes a two-level quantum oscillator with a completely inverted active medium. Spontaneous emission causes the electron to leave the range of energies where resonant interaction with the laser field occurs, thus effectively reducing the number of particles that take part in generating the induced X-ray signal. This effect is found to be crucial for lasing in optically pumped X-ray FEL. The characteristic relaxation times are calculated for both classical and quantum FEL regimes. It is shown that spontaneous emission results in FEL electron beam threshold current, which is of rather high value. An optimal range of pumping laser intensities is determined.

  11. Thermal Acoustic Sensor for High Pulse Energy X-ray FEL Beams

    SciTech Connect

    Smith, T.J.; Frisch, J.C.; Kraft, E.M.; Loos, J.; Bentsen, G.S.; /Rochester U.

    2011-12-13

    The pulse energy density of X-ray FELs will saturate or destroy conventional X-ray diagnostics, and the use of large beam attenuation will result in a beam that is dominated by harmonics. We present preliminary results at the LCLS from a pulse energy detector based on the thermal acoustic effect. In this type of detector an X-ray resistant material (boron carbide in this system) intercepts the beam. The pulse heating of the target material produces an acoustic pulse that can be detected with high frequency microphones to produce a signal that is linear in the absorbed energy. The thermal acoustic detector is designed to provide first- and second-order calorimetric measurement of X-ray FEL pulse energy. The first-order calorimetry is a direct temperature measurement of a target designed to absorb all or most of the FEL pulse power with minimal heat leak. The second-order measurement detects the vibration caused by the rapid thermoelastic expansion of the target material each time it absorbs a photon pulse. Both the temperature change and the amplitude of the acoustic signal are directly related to the photon pulse energy.

  12. Timepix detector at the X-ray Correlation Spectroscopy instrument at LCLS

    NASA Astrophysics Data System (ADS)

    van Bakel, N. A.; Robert, A.; Sikorski, M.; Ford, C.; van Beveren, V.; van der Heijden, B.; van Beuzekom, M.

    2013-03-01

    The Timepix detector can be operated in Time-over-Threshold mode to allow for charge integration measurements as required by short (< 50 fs) x-ray pulses of the Linac Coherent Light Source (LCLS). Initial commissioning activities have started at the X-ray Correlation Spectroscopy (XCS) instrument at LCLS, where speckle patterns have been measured.

  13. X-ray FEL Simulation with the MPP version of the GINGER Code

    NASA Astrophysics Data System (ADS)

    Fawley, William

    2001-06-01

    GINGER is a polychromatic, 2D (r-z) PIC code originally developed in the 1980's to examine sideband growth in FEL amplifiers. In the last decade, GINGER simulations have examined various aspects of x-ray and XUV FEL's based upon initiation by self-amplified spontaneous emission (SASE). Recently, GINGER's source code has been substantially updated to exploit many modern features of the Fortran90 language and extended to exploit multiprocessor hardware with the result that the code now runs effectively on platforms ranging from single processor workstations in serial mode to MPP hardware at NERSC such as the Cray-T3E and IBM-SP in full parallel mode. This poster discusses some of the numerical algorithms and structural details of GINGER which permitted relatively painless porting to parallel architectures. Examples of some recent SASE FEL modeling with GINGER will be given including both existing experiments such as the LEUTL UV FEL at Argonne and proposed projects such as the LCLS x-ray FEL at SLAC.

  14. Towards attosecond X-ray pulses from the FEL

    SciTech Connect

    Zholents, Alexander A.; Fawley, William M.

    2004-07-01

    The ability to study ultrafast phenomena has been recently advanced by the demonstrated production and measurement of a single, 650-attosecond (10{sup 18} sec), VUV x-ray pulse[1] and, latter, a 250-attosecond pulse[2]. The next frontier is a production of the x-ray pulses with shorter wavelengths and in a broader spectral range. Several techniques for a generation of an isolated, attosecond duration, short-wavelength x-ray pulse based upon the ponderomotive laser acceleration [3], SASE and harmonic cascade FELs ([4] - [6]) had been already proposed. In this paper we briefly review a technique proposed in [5] and present some new results.

  15. The PixFEL project: development of advanced X-ray pixel detectors for application at future FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Dalla Betta, G.-F.; Pancheri, L.; Verzellesi, G.; Xu, H.; Mendicino, R.; Benkechkache, M. A.

    2015-02-01

    The PixFEL project aims to develop an advanced X-ray camera for imaging suited for the demanding requirements of next generation free electron laser (FEL) facilities. New technologies can be deployed to boost the performance of imaging detectors as well as future pixel devices for tracking. In the first phase of the PixFEL project, approved by the INFN, the focus will be on the development of the microelectronic building blocks, carried out with a 65 nm CMOS technology, implementing a low noise analog front-end channel with high dynamic range and compression features, a low power ADC and high density memory. At the same time PixFEL will investigate and implement some of the enabling technologies to assembly a seamless large area X-ray camera composed by a matrix of multilayer four-side buttable tiles. A pixel matrix with active edge will be developed to minimize the dead area of the sensor layer. Vertical interconnection of two CMOS tiers will be explored to build a four-side buttable readout chip with small pixel pitch and all the on-board required functionalities. The ambitious target requirements of the new pixel device are: single photon resolution, 1 to 104 photons @ 1 keV to 10 keV input dynamic range, 10-bit analog to digital conversion up to 5 MHz, 1 kevent in-pixel memory and 100 μm pixel pitch. The long term goal of PixFEL will be the development of a versatile X-ray camera to be operated either in burst mode (European XFEL), or in continuous mode to cope with the high frame rates foreseen for the upgrade phase of the LCLS-II at SLAC.

  16. Numerical simulations of x-ray generation in miltisectional FELs

    SciTech Connect

    Pitatelev, M.M.

    1995-12-31

    The process of x-ray generation in milticomponent FELs with alternate undulator and dispersion sections is investigate. The coptuter simulation was fulfilled for the ultrarelativistic electron beams. It was shown that the use of much number of dispersion sections allows to increase the gain considerably and to use more short magnetic systems.

  17. LCLS X-ray mirror measurements using a large aperture visible light interferometer

    SciTech Connect

    McCarville, T; Soufli, R; Pivovaroff, M

    2011-03-02

    Synchrotron or FEL X-ray mirrors are required to deliver an X-ray beam from its source to an experiment location, without contributing significantly to wave front distortion. Accurate mirror figure measurements are required prior to installation to meet this intent. This paper describes how a 300 mm aperture phasing interferometer was calibrated to <1 nm absolute accuracy and used to mount and measure 450 mm long flats for the Linear Coherent Light Source (LCLS) at Stanford Linear Accelerator Center. Measuring focus mirrors with an interferometer requires additional calibration, because high fringe density introduces systematic errors from the interferometer's imaging optics. This paper describes how these errors can be measured and corrected. The calibration approaches described here apply equally well to interferometers larger than 300 mm aperture, which are becoming more common in optics laboratories. The objective of this effort was to install LCLS flats with < 10 nm of spherical curvature, and < 2 nm rms a-sphere. The objective was met by measuring the mirrors after fabrication, coating and mounting, using a 300 mm aperture phasing interferometer calibrated to an accuracy < 1 nm. The key to calibrating the interferometer accurately was to sample the error using independent geometries that are available. The results of those measurements helped identify and reduce calibration error sources. The approach used to measure flats applies equally well to focus mirrors, provided an additional calibration is performed to measure the error introduced by fringe density. This calibration has been performed on the 300 mm aperture interferometer, and the measurement correction was evaluated for a typical focus mirror. The 300 mm aperture limitation requires stitching figure measurements together for many X-ray mirrors of interest, introducing another possible error source. Stitching is eliminated by applying the calibrations described above to larger aperture instruments

  18. X-ray split and delay device for ultrafast x-ray science at the AMO instrument at LCLS

    NASA Astrophysics Data System (ADS)

    Bozek, J. D.; Castagna, J. C.; Fang, L.; Hui, Z.; Kukk, E.; Murphy, B. F.; Berrah, N.

    2015-09-01

    Ultrafast molecular dynamics can be studied using x-rays from both synchrotrons sources and x-ray free electron lasers. Synchrotron studies are limited by the 10-100 ps duration pulses to processes where the Auger lifetime can be used to probe dynamics initiated by excitation of an inner-shell electron to an antibonding orbital. The short pulses produced by x-ray free electron lasers offer the opportunity to study molecular dynamics directly with pump-probe techniques. A two-mirror x-ray split and delay device has been developed for x- ray pump - x-ray probe experiments at the soft x-ray AMO instrument at the LCLS. The device operates over a photon energy range of 250-1800 eV with a variable delay of up to 200 femtoseconds with 0.1 fs resolution.

  19. Synchrotron Radiation and X-ray FEL Projects in Korea

    NASA Astrophysics Data System (ADS)

    Cho, M. H.

    2012-03-01

    There are two on-going major projects in Pohang Accelerator Laboratory (PAL), the PLS-II light source upgrade and the construction of PAL-XFEL facility. PLS-II is a new light source upgraded from PLS(Pohang Light Source) which had been operated for 16 years from 1995 and shut down in Dec. 2010. The performance will be improved from ``18.9 nm-rad, 2.5 GeV, and 200 mA'' to ``5.8 nm-rad, 3 GeV, and 400 mA'' using three superconducting RF cavities. The old storage ring has been completely dismantled and new DBA ring has been re-installed in the same tunnel within 6 months, and is under commissioning now. The unique feature of PLS-II is the compact employment of 20 insertion-devices including 14 in-vacuum undulators. The PALXFEL is a 0.1-nm hard X-ray FEL construction project started in 2011 and to compete in 2014 with a total budget of 400 M. The PAL-XFEL is designed to have hard X-ray undulator lines at the end of 10-GeV linac, and a dog-leg branch line at 2.65 GeV point for a soft X-ray undulator line simultaneously and independently from hard X-ray FEL undulator line. The overview of two projects with current status is presented.

  20. Parametric x-ray FEL operating with external Bragg reflectors

    SciTech Connect

    Baryshevsky, V.G.; Batrakov, K.G.; Dubovskaya, I.Ya.

    1995-12-31

    In the crystal X-ray FELs using channeling and parametric quasi-Cherenkov mechanisms of spontaneous radiation were considered as versions of FEL allowing, in principle, to obtain coherent X-ray source. In this case a crystal is both radiator and resonator for X-rays emitted by a particle beam passing through crystal. However, it is well-known that a beam current density required for lasing is extremely high in X-ray spectral range for any radiation mechanisms and it is very important to find a way to lower its magnitude. The application of three-dimensional distributed feedback formed by dynamical diffraction of emitted photons permitted to reduce starting beam current density 10{sup 2}-10{sup 4} times up to 10{sup 9}. One of ways to lower the starting current is the formation of multi-wave distributed feedback the another one is the application of external reflectors. The thing is that lasing regime was shown to be produced at frequencies in the vicinity of degeneration point for roots of dispersion equation describing radiation modes excited in an active medium (crystal plus particle beam). Unfortunately, in case of parametric quasi-Cherenkov FEL this region coincides with the region of strong self-absorption of radiation inside a crystal. That fact, obviously, increases the starting beam current. In this report we have shown that the application of external Bragg reflectors gives the possibility to lower radiation self-absorption inside a crystal by modifying radiation modes excited in the active medium under consideration. The corresponding dispersion equation and the expression for excited modes are derived. The generation equation determining starting conditions for lasing is obtained. Using these expressions we have shown that the application of external Bragg reflectors permits to reduce starting beam current density more than 10 times.

  1. Single shot speckle and coherence analysis of the hard X-ray free electron laser LCLS.

    PubMed

    Lee, Sooheyong; Roseker, W; Gutt, C; Fischer, B; Conrad, H; Lehmkühler, F; Steinke, I; Zhu, D; Lemke, H; Cammarata, M; Fritz, D M; Wochner, P; Castro-Colin, M; Hruszkewycz, S O; Fuoss, P H; Stephenson, G B; Grübel, G; Robert, A

    2013-10-21

    The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode 〈Ms〉 = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.

  2. X-ray optics design studies for the SLAC 1.5-15 Å Linac Coherent Light Source (LCLS)

    NASA Astrophysics Data System (ADS)

    Tatchyn, R.; Arthur, J.; Boyce, R.; Fasso, A.; Montgomery, J.; Vylet, V.; Walz, D.; Yotam, R.; Freund, A. K.; Howells, M.

    1999-06-01

    In recent years, a number of systematic studies have been carried out on the design and R&D aspects of X-ray free-electron laser (XRFEL) schemes based on driving highly compressed electron bunches from a multi-GeV linac through long (30 m - 100+ m) undulators. These sources, when operated in the self-amplified spontaneous emission (SASE) mode, feature singularly high peak output power densities and frequently unprecedented combinations of phase-space and output-parameter values. This has led to correspondingly pivotal design challenges and opportunities for the optical materials, systems, components, and experimental configurations for transporting and utilizing this radiation. In this paper we summarize the design and R&D status of the X-ray optics section of the SLAC Linac Coherent Light Source (LCLS), a 1.5 Angstrom SASE FEL driven by the last kilometer of the SLAC 3-kilometer S-band linac.

  3. A Compact X-Band Linac for an X-Ray FEL

    SciTech Connect

    Adolphsen, Chris; Huang, Zhirong; Bane, Karl L.F.; Li, Zenghai; Zhou, Feng; Wang, Faya; Nantista, Christopher D.; /SLAC

    2011-09-12

    With the growing demand for FEL light sources, cost issues are being reevaluated. To make the machines more compact, higher frequency room temperature linacs are being considered, specifically ones using C-band (5.7 GHz) rf technology, for which 40 MV/m gradients are achievable. In this paper, we show that an X-band (11.4 GHz) linac using the technology developed for NLC/GLC can provide an even lower cost solution. In particular, stable operation is possible at gradients of 100 MV/m for single bunch operation and 70 MV/m for multibunch operation. The concern, of course, is whether the stronger wakefields will lead to unacceptable emittance dilution. However, we show that the small emittances produced in a 250 MeV, low bunch charge, LCLS-like S-band injector and bunch compressor can be preserved in a multi-GeV X-band linac with reasonable alignment tolerances. The successful lasing and operation of the LCLS [1] has generated world-wide interest in X-ray FELs. The demand for access to such a light source by researchers eager to harness the capabilities of this new tool far exceeds the numbers that can be accommodated, spurring plans for additional facilities. Along with cost, spatial considerations become increasingly important for a hard X-ray machine driven by a multi-GeV linac. The consequent need for high acceleration gradient focuses attention on higher frequency normal conducting accelerator technology, rather than the superconducting technology of a soft X-ray facility like FLASH. C-band technology, such as used by Spring-8, is a popular option, capable of providing 40 MV/m. However, more than a decade of R&D toward an X-band linear collider, centered at SLAC and KEK, has demonstrated that this frequency option can extend the gradient reach to the 70-100 MV/m range. The following design and beam dynamics calculations show an X-band linac to be an attractive choice on which to base an X-ray FEL.

  4. Milestone experiments for single pass UV/X-ray FELs

    NASA Astrophysics Data System (ADS)

    Ben-Zvi, Ilan

    1995-04-01

    In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical UV and X-ray FELs and has prompted proposals to the DOE for the construction of such facilities. There are several important experiments to be performed before committing to the construction of dedicated user facilities. Two experiments are under construction in the IR, the UCLA self-amplified spontaneous emission experiment and the BNL laser seeded harmonic generation experiment. A multi-institution collaboration is being organized about a 210 MeV electron linac available at BNL and the 10 m long NISUS wiggler. This experiment will be done in the UV and will test various experimental aspects of electron beam dynamics, FEL exponential regime with gain guiding, start-up from noise, seeding and harmonic generation. These experiments will advance the state of FEL research and lead towards future dedicated users' facilities.

  5. Some issues and subtleties in numerical simulation of X-ray FELs

    NASA Astrophysics Data System (ADS)

    Fawley, W. M.

    2003-07-01

    Part of the overall design effort for X-ray FELs such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent (i.e. polychromatic) codes such as GINGER (LBNL Report No. LBNL-49625, 2002), GENESIS (Nucl. Instr. and Meth. A 429 (1999) 243), and FAST3D (Nucl. Instr. and Meth. A 429 (1999) 233), including the effects of temporal discretization and the resultant limited spectral bandpass, and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).

  6. Some issues and subtleties in numerical simulation of X-ray FEL's

    SciTech Connect

    Fawley, William M.

    2002-09-30

    Part of the overall design effort for x-ray FEL's such as the LCLS and TESLA projects has involved extensive use of particle simulation codes to predict their output performance and underlying sensitivity to various input parameters (e.g. electron beam emittance). This paper discusses some of the numerical issues that must be addressed by simulation codes in this regime. We first give a brief overview of the standard approximations and simulation methods adopted by time-dependent(i.e. polychromatic) codes such as GINGER, GENESIS, and FAST3D, including the effects of temporal discretization and the resultant limited spectral bandpass,and then discuss the accuracies and inaccuracies of these codes in predicting incoherent spontaneous emission (i.e. the extremely low gain regime).

  7. Soft X-ray betatron radiation characterization for warm-dense matter studies at LCLS-MEC

    NASA Astrophysics Data System (ADS)

    Schumaker, W.; Cordamine, F.; Fry, A.; Galtier, E.; Granados, E.; Heimann, P.; Kotick, J.; Lee, Hae Ja; Glenzer, S. H.; Barbrel, B.; Sanders, A.; Falcone, R.; Ravarsio, A.; Gaudin, J.; Pollock, B. B.; Albert, F.

    2015-11-01

    Laser wakefield acceleration (LWFA) can produce high-energy (>100 MeV) electron beams with ultra-short durations (<100 fs) in a compact, mm-scale plasma. Transverse motion of the electrons in the wakefield leads to the emission of synchrotron-like X-ray beams, called betatron radiation, with peak photon energies >10 keV and source sizes of a few microns. These X-ray beams are presumed to retain the short-pulse characteristic of the electrons, resulting in high peak brightness and peak energy, making the source an excellent candidate for ultrafast temporally resolved pump-probe applications, especially for free-electron laser (FEL) and high-energy density (HED) experiments. Presented here are some of first experimental measurements of betatron in the soft X-ray regime (<1 keV) using X-ray mirrors and a grating spectrometer to collect, transport, and focus betatron X-rays for pump-probe experiments at the LCLS Matter-in-Extreme Conditions (MEC) facility.

  8. The Coherent X-ray Imaging (CXI) Instrument at the Linac Coherent Light Source (LCLS)

    SciTech Connect

    Boutet, Sebastien; Williams, Garth J.; /SLAC

    2011-08-16

    The Linac Coherent Light Source (LCLS) has become the first ever operational hard X-ray Free Electron Laser in 2009. It will operate as a user facility capable of delivering unique research opportunities in multiple fields of science. The LCLS and the LCLS Ultrafast Science Instruments (LUSI) construction projects are developing instruments designed to make full use of the capabilities afforded by the LCLS beam. One such instrument is being designed to utilize the LCLS coherent beam to image with high resolution any sub-micron object. This instrument is called the Coherent X-ray Imaging (CXI) instrument. This instrument will provide a flexible optical system capable of tailoring key beam parameters for the users. A suite of shot-to-shot diagnostics will also be provided to characterize the beam on every pulse. The provided instrumentation will include multi-purpose sample environments, sample delivery and a custom detector capable of collecting 2D data at 120 Hz. In this article, the LCLS will be briefly introduced along with the technique of Coherent X-ray Diffractive Imaging (CXDI). A few examples of scientific opportunities using the CXI instrument will be described. Finally, the conceptual layout of the instrument will be presented along with a description of the key requirements for the overall system and specific devices required.

  9. Impact of a Vertically Polarized Undulator on LCLS Hard X-ray Experiments

    SciTech Connect

    Fritz, David

    2014-11-14

    The LCLS-II project will install two variable gap, horizontally polarized undulators into the LCLS undulator hall. One undulator is designed to produce soft x-rays spanning an energy range of 200-1250 eV (SXU) while the other is designed for the hard spectral range of 1-25 keV (HXU). The hard x-ray LCLS instruments (X-ray Pump- Probe [XPP], X-ray correlation Spectroscopy [XCS], Coherent X-ray Imaging [CXI], Matter in Extreme Conditions [MEC]) will be repurposed to operate on the HXU line while two new soft x-ray beamlines will be created for the SXU line. An alternate HXU undulator design is being considered that could provide advantages over the present design choice. In particular, the project team is collaborating with Argonne National Laboratory to develop a vertically polarized undulator (VPU). A 1-m prototype VPU device was successfully constructed this year and a full size prototype is in process. A decision to alter the project baseline, which is the construction of a horizontally polarized device, must be made in the coming weeks to not impact the present project schedule. Please note that a change to the soft x-ray undulator is not under discussion at the moment.

  10. Beam Dynamics Study of X-Band Linac Driven X-Ray FELS

    SciTech Connect

    Adolphsen, C.; Limborg-Deprey, C.; Raubenheimer, T.O.; Wu, J.; Sun, Y.; /SLAC

    2011-12-13

    Several linac driven X-ray Free Electron Lasers (XFELs) are being developed to provide high brightness photon beams with very short, tunable wavelengths. In this paper, three XFEL configurations are proposed that achieve LCLS-like performance using X-band linac drivers. These linacs are more versatile, efficient and compact than ones using S-band or C-band rf technology. For each of the designs, the overall accelerator layout and the shaping of the bunch longitudinal phase space are described briefly. During the last 40 years, the photon wavelengths from linac driven FELs have been pushed shorter by increasing the electron beam energy and adopting shorter period undulators. Recently, the wavelengths have reached the X-ray range, with FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source) successfully providing users with soft and hard X-rays, respectively. FLASH uses a 1.2 GeV L-band (1.3 GHz) superconducting linac driver and can deliver 10-70 fs FWHM long photon pulses in a wavelength range of 44 nm to 4.1 nm. LCLS uses the last third of the SLAC 3 km S-band (2.856 GHz) normal-conducting linac to produce 3.5 GeV to 15 GeV bunches to generate soft and hard X-rays with good spatial coherence at wavelengths from 2.2 nm to 0.12 nm. Newer XFELs (at Spring8 and PSI) use C-band (5.7 GHz) normal-conducting linac drivers, which can sustain higher acceleration gradients, and hence shorten the linac length, and are more efficient at converting rf energy to bunch energy. The X-band (11.4 GHz) rf technology developed for NLC/GLC offers even higher gradients and efficiencies, and the shorter rf wavelength allows more versatility in longitudinal bunch phase space compression and manipulation. In the following sections, three different configurations of X-band linac driven XFELs are described that operate from 6 to 14 GeV. The first (LOW CHARGE DESIGN) has an electron bunch charge of only 10 pC; the second (OPTICS LINEARIZATION DESIGN) is based on optics

  11. Using the X-FEL to photo-pump X-ray laser transitions in He-like Ne

    SciTech Connect

    Nilsen, J; Rohringer, N

    2011-08-30

    Nearly four decades ago H-like and He-like resonantly photo-pumped laser schemes were proposed for producing X-ray lasers. However, demonstrating these schemes in the laboratory has proved to be elusive because of the difficulty of finding a strong resonant pump line. With the advent of the X-ray free electron laser (X-FEL) at the SLAC Linac Coherent Light Source (LCLS) we now have a tunable X-ray laser source that can be used to replace the pump line in previously proposed laser schemes and allow researchers to study the physics and feasibility of resonantly photo-pumped laser schemes. In this paper we use the X-FEL at 1174 eV to photo-pump the singly excited 1s2p state of He-like Ne to the doubly excited 2p3p state and model gain on the 2p3p-2p2s transition at 175 eV and the 2p3p-1s3p transition at 1017 eV. One motivation for studying this scheme is to explore possible quenching of the gain due to strong non-linear coupling effects from the intense X-FEL beam We compare this scheme with photo-pumping the He-like Ne ground state to the 1s3p singly excited state followed by lasing on the 3p-2s and 3d-2p transitions at 158 and 151 eV. Experiments are being planned at LCLS to study these laser processes and coherent quantum effects.

  12. Optics Design for a Soft X-ray FEL at the SLAC A-Line

    SciTech Connect

    Geng, H; Ding, Y.; Emma, P.; Huang, Z.; Nosochkov, Y.; Woodley, M.; /SLAC

    2009-05-15

    LCLS capabilities can be significantly extended with a second undulator aiming at the soft x-ray spectrum (1-5 nm). To allow for simultaneous hard and soft x-ray operations, 14 GeV beams at the end of the LCLS accelerator can be intermittently switched into the SLAC A-line (the beam transport line to End Station A) where the second undulator may be located. In this paper, we discuss the A-line optics design for transporting the high-brightness LCLS beams using the existing tunnel. To preserve the high brightness of the LCLS beams, special attention is paid to effects of incoherent and coherent synchrotron radiation. Start-to-end simulations using realistic LCLS beam distributions are carried out.

  13. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser.

    PubMed

    Barty, Anton; Soufli, Regina; McCarville, Tom; Baker, Sherry L; Pivovaroff, Michael J; Stefan, Peter; Bionta, Richard

    2009-08-31

    The first X-ray free electron laser (XFEL) at keV energies will be the Linac Coherent Light Source (LCLS), located at the SLAC National Accelerator Laboratory. Scheduled to begin operation in 2009, this first-of-a-kind X-ray source will produce ultra-short X-ray pulses of unprecedented brightness in the 0.8 to 8 keV first harmonic photon energy regime. Much effort has been invested in predicting and modeling the XFEL photon source properties at the undulator exit; however, as most LCLS experiments are ultimately dependent on the beam focal spot properties it is equally as important to understand the XFEL beam at the endstations where the experiments are performed. Here, we use newly available precision surface metrology data from actual LCLS mirrors combined with a scalar diffraction model to predict the LCLS beam properties in the experiment chambers.

  14. Predicting the coherent X-ray wavefront focal properties at the Linac Coherent Light Source (LCLS) X-ray free electron laser.

    PubMed

    Barty, Anton; Soufli, Regina; McCarville, Tom; Baker, Sherry L; Pivovaroff, Michael J; Stefan, Peter; Bionta, Richard

    2009-08-31

    The first X-ray free electron laser (XFEL) at keV energies will be the Linac Coherent Light Source (LCLS), located at the SLAC National Accelerator Laboratory. Scheduled to begin operation in 2009, this first-of-a-kind X-ray source will produce ultra-short X-ray pulses of unprecedented brightness in the 0.8 to 8 keV first harmonic photon energy regime. Much effort has been invested in predicting and modeling the XFEL photon source properties at the undulator exit; however, as most LCLS experiments are ultimately dependent on the beam focal spot properties it is equally as important to understand the XFEL beam at the endstations where the experiments are performed. Here, we use newly available precision surface metrology data from actual LCLS mirrors combined with a scalar diffraction model to predict the LCLS beam properties in the experiment chambers. PMID:19724548

  15. Next Generation Instrumentation: LAMP -- LCLS - ASG - Michigan - Project for Novel Science with the LCLS FEL

    NASA Astrophysics Data System (ADS)

    Osipov, T.; Rolles, D.; Bostedt, C.; Castagna, J.-C.; Hartmann, R.; Bozek, J. D.; Schlichting, I.; Strüder, L.; Ullrich, J.; Berrah, N.

    2011-05-01

    We are designing and building the next generation multi-purpose instrumentation especially adapted to accommodate unique large-area, single-photon counting pnCCD detectors together with advanced many-particle ion and electron imaging spectrometers (reaction microscope, REMI; velocity map imaging, VMI; magnetic bottle) for simultaneous detection of scattered and fluorescent photons and charged particles in experiments at the LCLS FEL. The new end-station presents improvements to the existing CAMP instrument, such as extended range and flexibility of detector positioning and control, better vacuum level, more convenient sample changing procedure, better temperature control, more versatility with pump-probe laser in- and out-coupling, etc. The instrument will be available to any scientist and is planned to be commissioned in the second half of 2012. This work is funded by the DoE, Sc, BES, LCLS and Max Planck Society.

  16. A photocathode RF gun for x-ray FEL

    SciTech Connect

    Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-12-31

    A 1.6 cell photocathode RF gun was developed by a BNL/SLAC/UCLA collaboration for X-ray FEL and other applications. The objective of the collaboration is to develop a cost effective and more reliable photocathode RF gun based on the operational experience of the original BNL gun. The new photocathode RF gun is cable of producing 1 mm-mrad normalized rms emittance photocurrent with a peak current of 100 A. The half-cell length of the new RF gun was lengthened to reduce the peak field on the cavity surface, the side-coupled scheme for cavity and waveguide coupling was replaced by a symmetrized coupling to the full-cell. The cavity aperture was increased to improve the coupling between two cells and for flat beam application. The experimental results of cold testing the RF gun will be presented. We will also present an injector design based on the new photocathode RF gun and emittance compensation technique.

  17. Possible application of X-ray optical elements for reducing the spectral bandwidth of an X-ray SASE FEL

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Saldin, E. L.; Schneider, J. R.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-08-01

    A new design for a single pass X-ray Self-Amplified Spontaneous Emission (SASE) FEL is proposed. The scheme consists of two undulators and an X-ray monochromator located between them. The first stage of the FEL amplifier operates in the SASE linear regime. After the exit of the first undulator the electron bunch is guided through a non-isochronous bypass and the X-ray beam enters the monochromator. The main function of the bypass is to suppress the modulation of the electron beam induced in the first undulator. This is possible because of the finite value of the natural energy spread in the beam. At the entrance to the second undulator the radiation power from the monochromator dominates significantly over the shot noise and the residual electron bunching. As a result the second stage of the FEL amplifier operates in the steady-state regime when the input signal bandwidth is small with respect to that of the FEL amplifier. Integral losses of the radiation power in the monochromator are relatively small because grazing incidence optics can be used. The proposed scheme is illustrated for the example of the 6 nm option SASE FEL at the TESLA Test Facility under construction at DESY. As shown in this paper the spectral bandwidth of such a two-stage SASE FEL (Δλ/λ⋍ 5 × 10-5) is close to the limit defined by the finite duration of the radiation pulse. The average brilliance is equal to 7 × 1024photons/(s × mrad2 × mm2 × 0.1% bandw.) which is by two orders of magnitude higher than the value which could be reached by the conventional SASE FEL. The monochromatization of the radiation is performed at a low level of radiation power (about 500 times less than the saturation level) which allows one to use conventional X-ray optical elements (grazing incidence grating and mirrors) for the monochromator design.

  18. Engineering Specification Document (ESD) of X-ray Vacuum Transport System (XVTS) for LCLS XTOD

    SciTech Connect

    Shen, S

    2006-01-25

    The vacuum system of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. The preliminary system layout, detailed analyses and suggested selection of the vacuum components for the XTOD tunnel section are presented in the preliminary design report [1]. This document briefly reviews the preliminary design and provides engineering specifications for the system, which can be used as 'design to' specifications for the final design. Also included are the requirements of plans for procurement, mechanical integration, schedule and the cost estimates.

  19. Probing Ice Nucleation in "No Man's Land" with Ultrafast X-ray Laser at LCLS

    NASA Astrophysics Data System (ADS)

    Laksmono, H.; Sellberg, J.; McQueen, T.; Huang, C.; Loh, D.; Sierra, R.; Hampton, C.; Starodub, D.; Nordlund, D.; Beye, M.; Deponte, D.; Martin, A.; Barty, A.; Feldkamp, J.; Boutet, S.; Williams, G.; Bogan, M. J.; Nilsson, A.

    2012-12-01

    Aside from being one of the most fascinating substances due to many anomalous physical properties in liquid phase, and many forms of amorphous and crystalline solid phases, water is one of the most important substance for life, environment, and industry. Despite tremendous effort to understand water, there is a region known as "no man's land" where water is not well understood due to rapid crystallization complicating experimental studies. Understanding phase transition of supercooled water near and within this region is important to predict cloud properties in atmosphere, as well as the phases of water in the interstellar space. To date, there are only a few experiments performed that study phase transitions near and within "no man's land", and thus our understanding is still limited. Recent development of an ultrafast, ultrabright X-ray laser at the Linac Coherent Light Source (LCLS) enables researchers to probe matter in high resolution by taking snapshots with femtosecond long x-ray pulses. Here we present our ongoing effort to understand phase transition within "no man's land" from our recent wide angle X-ray scattering experiment using a specialized setup to take advantage the ultrafast X-ray laser at LCLS.

  20. Design and Implementation of an Acoustic X-ray Detector to Measure the LCLS Beam Energy

    SciTech Connect

    Loos, Jennifer L.; /San Jose State U. /SLAC

    2010-08-25

    On April 11, 2009, first light was seen from LCLS. The present apparatus being used to measure the x-ray beam energy is the Total Energy Sensor which uses a suite of thermal sensors. Another device is needed to cross-check the energy measurements. This new diagnostic tool utilizes radiation acoustic phenomena to determine the x-ray beam energy. A target is hit by the x-rays from the beam, and a voltage is generated in two piezoelectric sensors attached to the target in response to the consequent deformation. Once the voltage is known, the power can be obtained. Thermal sensors will also be attached to the target for calibration purposes. Material selection and design were based on: durability, ultra-high vacuum compatibility, safety and thermal properties. The target material was also chosen for its acoustic properties which were determined from tests using a frequency generator and laser. Initial tests suggest the device will function as anticipated.

  1. A Low-Charge, Hard X-Ray FEL Driven with an X-band Injector and Accelerator

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-02-17

    After the successful operation of FLASH (Free-Electron Laser in Hamburg) and LCLS (Linac Coherent Light Source), soft and hard X-ray Free Electron Lasers (FELs) are being built, designed or proposed at many accelerator laboratories. Acceleration employing lower frequency RF cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic RF system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency RF acceleration process. In this paper, a hard X-ray FEL design using an all X-band accelerator at 11.424 GHz (from photo-cathode RF gun to linac end) is presented, without the assistance of any harmonic RF linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (RMS), low charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macro-particle 3-D simulation employing several computer codes is presented in this paper, where space charge, wakefields, incoherent and coherent synchrotron radiation (ISR and CSR) effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  2. Absorbed XFEL Dose in the Components of the LCLS X-Ray Optics

    SciTech Connect

    Hau-Riege, Stefan

    2010-12-03

    There is great concern that the short, intense XFEL pulse of the LCLS will damage the optics that will be placed into the beam. We have analyzed the extent of the problem by considering the anticipated materials and position of the optical components in the beam path, calculated the absorbed dose as a function of photon energy, and compared these doses with the expected doses required (i) to observe rapid degradation due to thermal fatigue, (ii) to reach the melting temperature, or (iii) to actually melt the material. We list the materials that are anticipated to be placed into the Linac Coherent Light Source (LCLS) x-ray free electron laser (XFEL) beam line, their positions, and the absorbed dose, and compare this dose with anticipated damage thresholds.

  3. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    NASA Astrophysics Data System (ADS)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono–chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  4. Numerical modeling of thermal loading of diamond crystal in X-ray FEL oscillators

    NASA Astrophysics Data System (ADS)

    Song, Mei-Qi; Zhang, Qing-Min; Guo, Yu-Hang; Li, Kai; Deng, Hai-Xiao

    2016-04-01

    Due to high reflectivity and high resolution of X-ray pulses, diamond is one of the most popular Bragg crystals serving as the reflecting mirror and mono-chromator in the next generation of free electron lasers (FELs). The energy deposition of X-rays will result in thermal heating, and thus lattice expansion of the diamond crystal, which may degrade the performance of X-ray FELs. In this paper, the thermal loading effect of diamond crystal for X-ray FEL oscillators has been systematically studied by combined simulation with Geant4 and ANSYS, and its dependence on the environmental temperature, crystal size, X-ray pulse repetition rate and pulse energy are presented. Our results show that taking the thermal loading effects into account, X-ray FEL oscillators are still robust and promising with an optimized design. Supported by National Natural Science Foundation of China (11175240, 11205234, 11322550) and Program for Changjiang Scholars and Innovative Research Team in University (IRT1280)

  5. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    ScienceCinema

    None

    2016-07-12

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  6. X-ray Vision for Aerosol Scientists: LCLS Snapshots of Soot (Narrated)

    SciTech Connect

    2012-10-22

    This short conceptual animation depicts how scientists can now simultaneously capture fractal morphology (structure), chemical composition and nanoscale imagery of individual aerosol particles in flight. These particles, known as "PM2.5" because they are smaller than 2.5 microns in diameter, affect climate by interacting with sunlight and impact human health by entering the lungs. The single LCLS laser pulses travel to the Atomic, Molecular and Optical Sciences (AMO) laboratory in the Near Experimental Hall. As we zoom in, we see deep inside a simplified aerosol inlet, where the complex fractal structure of the soot particles, each one completely unique, is shown. Individual soot particles are then delivered into the pulses of the LCLS beam, which destroys them. X-rays are scattered to the detector before the particle is destroyed, giving information about the morphology of the particle. Ion fragments released in the explosion are sent into a mass spectrometer, which measures their mass-to-charge ratio -- giving scientists information about the chemical composition of the particle. Many different particles are analyzed in this manner, allowing scientists to probe variations in the particles due to changes in their environment before being sent through the aerosol inlet. The final visual of aerosols emitted from a factory is representative of the goal that such LCLS aerosol dynamics experiments can provide critical feedback into modeling and understanding combustion, aerosol processes in manufacturing or aerosol effects on climate change.

  7. Nanoscale Images of Airborne PM2.5: Aerosol Dynamics with the LCLS X-ray Laser

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.

    2012-12-01

    It is now possible to capture images of individual airborne PM2.5 particles - including soot, NaCl particles and engineered nanoparticles - with 20-40 nm resolution (Loh et al Nature 2012). Ions released during the imaging process provide information on the chemical content of the isolated particles. The scattering signal used to compose the image also provides the fractal dimension of individual particles. This new paradigm of aerosol dynamics is enabled by the incredible brightness and ultrashort pulses available at X-ray free electron laser (FEL) facilities, such as the Linac Coherent Light Source (LCLS) and the FLASH FEL facility in Hamburg. Femtosecond long x-ray pulses deliver sufficient photons (10^12 per pulse) to detect scattered X-rays off individual particles injected at >100 m/s into vacuum through an aerodynamic lens stack. The intensity of the scattered X-rays measured by an area detector is fed into lensless imaging algorithms to reconstruct an image of the particle that caused the scattering. X-ray FELs can peer inside the individual airborne particles and are a sensitive probe of particle crystallinity. The development of this method and applications to imaging micron-sized soot, water droplets and biological aerosols will be discussed. A primary long-term goal of the research is to take snapshots of airborne particles as they change their size, shape and chemical make-up in response to their environment. "Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight" ND Loh, C Hampton, A Martin, D Starodub, R Sierra, A Barty, A Aquila, J Schulz, L Lomb, J Steinbrener, R Shoeman, S Kassemeyer, C Bostedt, J. Bozek, S Epp, B. Erk, R Hartmann, D Rolles, A Rudenko, B Rudek, L Foucar, N Kimmel, G Weidenspointner, G Hauser, P Holl, E. Pedersoli, M Liang, M Hunter, L Gumprecht, N Coppola, C Wunderer, H Graafsma, F Maia, T Ekeberg, M Hantke, H Fleckenstein, H. Hirsemann, K Nass, T White, H Tobias, G Farquar, W Benner, S Hau

  8. Molecular dynamics induced by short and intense x-ray pulses from the LCLS

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2016-12-01

    The past six years have led to a wealth of experimental and theoretical data revealing the nature of the interaction between gas-phase molecules and short and intense x-ray pulses, from the Linac coherent light source free electron laser (FEL). We present here a few highlights that describe some of the first photoabsorption measurements of gas-phase molecules. In particular, we report on a three decades long prediction of single-site double core holes (ss-DCH) and two-site double core holes (ts-DCH) in diatomic and triatomic molecules. We also describe recent measurements that validate a simple theory regarding femtosecond intense x-ray induced fragmentation dynamics of C60 as well as photoabsorption measurements of encapsulated fullerenes, Ho3N@C80. The latter investigation opens the way for even more complex molecular studies with FELs. In all of the described highlights, working in close collaboration with theorists enabled the interpretation of, or predicted our measurements, and in some cases our experiments guided the modeling. We conclude this article by describing the potential of new instrumentation for chemical and biological sciences especially in light of new or improved FELs.

  9. Polarization control in X-ray FELs by reverse undulator tapering

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Baseline design of a typical X-ray FEL undulator assumes a planar configuration which results in a linear polarization of the FEL radiation. However, many experiments at X-ray FEL user facilities would profit from using a circularly polarized radiation. As a cheap upgrade one can consider an installation of a short helical (or cross-planar) afterburner, but then one should have an efficient method to suppress powerful linearly polarized background from the main undulator. In this paper we propose a new method for such a suppression: an application of the reverse taper in the main undulator. We discover that in a certain range of the taper strength, the density modulation (bunching) at saturation is practically the same as in the case of non-tapered undulator while the power of linearly polarized radiation is suppressed by orders of magnitude. Then strongly modulated electron beam radiates at full power in the afterburner. Considering SASE3 undulator of the European XFEL as a practical example, we demonstrate that soft X-ray radiation pulses with peak power in excess of 100 GW and an ultimately high degree of circular polarization can be produced. The proposed method is rather universal, i.e. it can be used at SASE FELs and seeded (self-seeded) FELs, with any wavelength of interest, in a wide range of electron beam parameters, and with any repetition rate.

  10. A HIGH REPETITION RATE VUV-SOFT X-RAY FEL CONCEPT

    SciTech Connect

    Corlett, J.; Byrd, J.; Fawley, W.M.; Gullans, M.; Li, D.; Lidia,S.M.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Robin, D.; Sannibale, F.; Staples, J.W.; Steier, C.; Venturini, M.; Virostek, S.; Wan, W.; Wells, R.; Wilcox, R.; Wurtele, J.; Zholents, A.

    2007-06-24

    We report on design studies for a seeded FEL light source that is responsive to the scientific needs of the future. The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, reduced gain length in the FEL, utilization of harmonics to attain shorter wavelengths, and precise synchronization of the x-ray pulse with seed laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FEL's, each producing high average brightness, tunable over the VUV-soft x-ray range, and each with individual performance characteristics determined by the configuration of the FEL. SASE, enhanced-SASE (ESASE), seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands.

  11. Zone Plates for Hard X-Ray FEL Radiation

    SciTech Connect

    Nilsson, D.; Holmberg, A.; Vogt, U.; Sinn, H.

    2011-09-09

    We investigated theoretically the use of zone plates for the focusing of the European X-ray Free Electron Laser (XFEL). In a finite-element simulation the heat load on zone plates placed in the high intensity x-ray beam was simulated for four different zone plate materials: gold, iridium, tungsten, and CVD diamond. The main result of the calculations is that all zone plates remain below the melting temperature throughout a full XFEL pulse train of 3000 pulses. However, if the zone plate is placed in the direct beam it will experience large and rapid temperature fluctuations on the order of 300 K. The situation is relaxed if the optic is placed behind a monochromator and the fluctuations are reduced to around 20 K. Besides heat load, the maximization of the total efficiency of the complete optical system is an important issue. We calculated the efficiency of different zone plates and monochromator systems and found that the final beam size of the XFEL in combination with its monochromaticity will be important parameters.

  12. Fragmentation Dynamics of Endohedral Fullerene Ho3N@C80 Ionized with Intense and Short X-Ray FEL Pulses

    NASA Astrophysics Data System (ADS)

    Murphy, Brendan; Xiong, Hui; Fang, Li; Osipov, Timur; Kukk, Edwin; Petrovic, Vladmir; Li, Heng; Sistrunk, Emily; Squibb, Richard; Feifel, Raimund; Ferguson, Kenneth; Krzywinski, Jacek; Sebastian, Sebastian; Guehr, Markus; Bostedt, Christoph; Bucksbaum, Philip; Berrah, Nora

    2015-05-01

    The photoionization and fragmentation dynamics of gas phase endohedral fullerenes Ho3N@C80 with intense femtosecond X-ray pulses from the Linac Coherent Light Source (LCLS) free electron laser (FEL) have been investigated. The central photon energy of the x-ray pulses was set at 1530 eV, targeting the absorption of the 3d electron on Ho. Multiphoton ionization led to the highest charge state observed on the parent molecule to be Ho3N@C805+ , suggesting a stable structure even with 5 charges on the parent molecule. We will present the different atomic and molecular fragments dynamics observed. This work is funded by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under grant N. DE-FG02-92ER14299.A002 and in part by National Science Foundation under Grant No. 1404109.

  13. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    NASA Astrophysics Data System (ADS)

    Rizzo, G.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 104 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  14. SOFT X-RAY FEL BY CASCADING STAGES OF HIGH GAIN HARMONIC GENERATION.

    SciTech Connect

    YU,L.H.

    2003-04-17

    Short wavelength Free-Electron Lasers are perceived as the next generation of synchrotron light sources. In the past decade, significant advances have been made in the theory and technology of high brightness electron beams and single pass FELs. These developments facilitate the construction of practical VUV FELs and make x-ray FELs possible. Self-Amplified Spontaneous Emission (SASE) and High Gain Harmonic Generation (HGHG)[17-19] are the two leading candidates for x-ray FELs. The first lasing of HGHG proof-of-principle experiment succeeded in August, 1999 in Brookhaven National Laboratory. The experimental results agree with the theory prediction. Compared with SASE FEL, the following advantages of HGHG FEL were confirmed; (1) Better longitudinal coherence, and hence, much narrower bandwidth than SASE. (2) More stable central wavelength, (3) More stable output energy. In this introduction, we will first briefly describe the principle of HGHG in Section A. Then in Section B, we give a general description about how to produce soft x-ray by cascading HGHG scheme. In section 2, we give a detailed description of the system design. Then, in section 3, we give a description of an analytical estimate for the HGHG process, and the calculation of the parameters of different parts of the system. The estimate is found to agree with simulation within about a factor 2 for most cases we studied. The stability issue, the sensitivity to parameter variation, the harmonic contents of the final output, and the noise degradation issue of such HGHG scheme are discussed in Section 4. The results are presented in Section 4. Finally, in Section 5, we will give some discussion of the challenges in development of the system. The conclusion is given in Section 6.

  15. Studies of a Linac Driver for a High Repetition Rate X-Ray FEL

    SciTech Connect

    Venturini, M.; Corlett, J.; Doolittle, L.; Filippetto, D.; Papadopoulos, C.; Penn, G.; Prosnitz, D.; Qiang, J.; Reinsch, M.; Ryne, R.; Sannibale, F.; Staples, J.; Wells, R.; Wurtele, J.; Zolotorev, M.; Zholents, A.

    2011-06-01

    We report on on-going studies of a superconducting CW linac driver intended to support a high repetition rate FEL operating in the soft x-rays spectrum. We present a pointdesign for a 1.8 GeV machine tuned for 300 pC bunches and delivering low-emittance, low-energy spread beams as needed for the SASE and seeded beamlines.

  16. Spatially-resolved X-ray Scattering off shock-compressed carbon at the LCLS

    NASA Astrophysics Data System (ADS)

    Zastrau, Ulf

    2015-06-01

    The diversity of the electronic properties of carbon makes it of key interest to the material science community; nowhere is this more evident than in the myriad potential applications of structured allotropes like grapheme and nano tubes. By contrast, at the high pressures typical of planetary and stellar interiors, the behavior of carbon is poorly understood with large uncertainties in the conductivity and even the material phase. There is growing evidence of the abundance of diamond in the interiors of the ice giant planets Uranus and Neptune; the conductivity of which could potentially influence models for the origin of the unusual magnetic fields of these planets. In laboratory experiments, practical issues with gradients in the temperature and density of shock compressed matter have hindered accurate measurement and further from distinguishing theoretical models. Here, we present spatially resolved x-ray scattering experiments using LCLS free electron laser to examine and understand the gradients of thermal properties under dynamic shock loading. We employed curved mosaic and perfect imaging crystals. Compared with hydro-dynamic simulations, we present time-resolved data on plasmon dispersion, axial compression gradients and finally carbon melting at shock coalescence.

  17. Efficient frequency doubler for the soft X-ray SASE FEL at the TESLA Test Facility

    NASA Astrophysics Data System (ADS)

    Feldhaus, J.; Körfer, M.; Möller, T.; Pflüger, J.; Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    2004-08-01

    This paper describes an effective frequency doubler scheme for SASE free electron lasers (FEL). It consists of an undulator tuned to the first harmonic, a dispersion section, and a tapered undulator tuned to the second harmonic. The first stage is a conventional soft X-ray SASE FEL. Its gain is controlled in such a way that the maximum energy modulation of the electron beam at the exit is about equal to the local energy spread, but still far away from saturation. When the electron bunch passes through the dispersion section this energy modulation leads to effective compression of the particles. Then the bunched electron beam enters the tapered undulator and produces strong radiation in the process of coherent deceleration. We demonstrate a frequency doubler scheme that can be integrated into the SASE FEL at the TESLA Test Facility at DESY, and will allow to reach 3 nm wavelength with GW-level of output peak power. This would extend the operating range of the FEL into the so-called water window and significantly expand the capabilities of the TTF FEL user facility.

  18. Accelerating K-Alpha Resonance Fluorescence Via Monochromatic X-Ray Beams And Comparison With LCLS-XFEL

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil; Nahar, Sultana; Lim, Sara

    2015-05-01

    The presence of K-alpha resonances below the K-edge has been studied theoretically for high-Z (Fe, Pt, Au) and low-Z (Al, Ti, Cu) atoms, and recently observed experimentally at the LCLS x-ray free-electron laser facility in ``warm dense matter''. We present a mechanism for possible enhancement of the ``Auger cycle'' by employing a twin-beam monochromatic x-ray beams setup. We extend the theoretical formulation to construct a detailed radiative-cascade model using atomic rates computed using atomic structure and R-matrix codes. We also report preliminary results on K-alpha resonance fluorescence from experiments at the European Synchrotron Research Facility using a tungsten target. In addition, we describe a simple Broadband-to-Monchromatic (B2M) x-ray conversion device for potential use in monochromatic K-alpha imaging and other applications.

  19. Next Generation Endstation for Concurrent Measurements of Charged Products and Photons in LCLS FEL Experiments

    NASA Astrophysics Data System (ADS)

    Osipov, T.; Rolles, D.; Bostedt, C.; Castagna, J.-C.; Hartmann, R.; Bozek, J. D.; Schlichting, I.; Strüder, L.; Ullrich, J.; Berrah, N.

    2012-11-01

    We are designing and building the next generation multi-purpose instrumentation especially adapted to accommodate unique large-area, single-photon counting pnCCD detectors together with advanced many-particle ion and electron imaging spectrometers (reaction microscope, REMI; velocity map imaging, VMI; magnetic bottle) for simultaneous detection of scattered and fluorescent photons and charged particles in experiments at the LCLS FEL.

  20. Fabrication of Cryogenic Manganite Bolometers to Measure the Total Energy at the LCLS Free Electron X-ray Laser

    SciTech Connect

    Drury, O B; Yong, G J; Kolagani, R M; Liang, Y; Gardner, C; Ables, E; Fong, K W; Bionta, R M; Friedrich, S

    2008-06-14

    We are developing cryogenic bolometers to measure the total energy of the Linac Coherent Light Source (LCLS) free electron X-ray laser that is currently being built at the Stanford Linear Accelerator Center. LCLS will produce ultrashort {approx}200 fs X-ray laser pulses with {approx}10{sup 13} photons at 0.8 keV up to {approx}10{sup 12} photons at 8 keV per pulse at a repeat interval as short as 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. Our bolometer consists of a 375 {micro}m thick Si absorber and a Nd{sub 0.67}Sr{sub 0.33}MnO{sub 3} sensor operated at its metal-insulator transition. It will measure the total energy of each pulse with a precision of <1%, and is designed to meet the conflicting requirements of radiation hardness, sensitivity, linearity over a dynamic range of three orders of magnitude, and readout speed compatible with the LCLS pulse rate. Here we discuss bolometer design and fabrication, and the photoresponse of prototype devices to pulsed optical lasers.

  1. LCLS-II Undulator Tolerance Analysis

    SciTech Connect

    Nuhn, H.-D.; Marks, S.; Wu, J.; /SLAC

    2012-06-06

    The SLAC National Accelerator Laboratory is building a new FEL user facility, LCLS-II, as a major upgrade to the Linear Coherent Light Source (LCLS). The upgrade will include two new Free Electron Lasers (FELs), to generate soft (SXR) and hard x-ray (HXR) SASE FEL radiation, based on planar, variable gap hybrid undulators with two different undulator periods (SXU: 55 mm, HXU: 32 mm). An algebraic FEL tolerance analysis for the undulator lines, including tuning, alignment, and phase correction tolerances has been performed. The methods and results are presented in this paper.

  2. First Results on Ultrafast and Ultraintense X-Ray Studies of Molecular Photoabsorption using the LCLS Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Berrah, Nora

    2010-03-01

    The study of atomic and molecular inner-shell photoionization with conventional x-ray sources is dominated by processes involving the production of single core holes. However, the unprecedented short pulses and peak power at x-ray wavelengths of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory provides new research opportunities and opens the door to study ultra fast, nonlinear x-ray physics. We have used the LCLS to investigate fundamental questions concerning laser pulse duration dependent ionization as well as examine the creation and decay of multiple core-holes. In particular, we focused on double core-holes ionization in N2. We measured the photoelectron, Auger and secondary electron relaxation pathways subsequent to multiple core vacancies in molecules as well as the fragmentation patterns and the charge-state distributions of the resulting ions as a function of wavelength, pulse duration and intensity. The new light source allows the characterization of the molecular ionization and dissociation dynamics and provides new insight into the interaction of matter with intense short pulses. In addition we expect our results to contribute to the foundation for future imaging experiments on molecules. The LCLS photon beam was focused to about 2μm^2 area producing an intense x-ray laser beam of up to 10^18 W/cm^2. We have used x-ray pulses with duration from about 7fs to 280 fs and a photon energy of 1.1 keV to investigate the production of multiple core holes. We have observed the multiple ionization of N2 resulting in fragment ions of up to bare N^7+ [1]. Furthermore, evidence for double core hole has been observed. The experiment was performed at the LCLS AMO beamline which is equipped with an ion time-of-flight spectrometer to determine the ion charge state distribution as well five angle and energy resolving electron time-of-flight spectrometers to detect the emitted photoelectrons and Auger electrons. [4pt] [1] Work done in

  3. Innovative uses of X-ray FEL and the pulsed magnets: High magnetic field X-ray scattering studies on quantum materials

    NASA Astrophysics Data System (ADS)

    Jang, H.; Nojiri, H.; Gerber, S.; Lee, W.-S.; Zhu, D.; Lee, J.-S.; Kao, C.-C.

    X-ray scattering under high magnetic fields provides unique opportunities for solving many scientific puzzles in quantum materials, such as strongly correlated electron systems. Incorporating high magnetic field capability presents serious challenges at an x-ray facility, including the limitation on the maximum magnetic field even with a DC magnet (up to ~20 Tesla), expensive cost in development, radiation damage, and limited flexibility in the experimental configuration. These challenges are especially important when studying the symmetry broken state induced by the high magnetic field are necessary, for example, exploring intertwined orders between charge density wave (CDW) and high Tc superconductivity. Moreover, a gap in magnetic field strengths has led to many discrepancies and puzzling issues for understanding strongly correlated systems - is a CDW competing or more intimately intertwined with high-temperature superconductivity. To bridge this gap and resolve these experimental discrepancies, one needs an innovative experimental approach. Here, we will present a new approach to x-ray scattering under high magnetic field up to 28 Teals by taking advantage of brilliant x-ray free electron laser (FEL). The FEL generates sufficiently high photon flux for single shot x-ray scattering experiment. In this talk, we will also present the first demonstration about the field induced CDW order in YBCO Ortho-VIII with 28 Tesla, which show the totally unexpected three-dimensional behavior.

  4. FERMI @ Elettra -- A Seeded Harmonic Cascade FEL for EUV and SoftX-rays

    SciTech Connect

    Bocchetta, C.; Bulfone, D.; Craievich, P.; Danailov, M.B.; D'Auria,G.; DeNinno, G.; Di Mitri, S.; Diviacco, B.; Ferianis, M.; Gomezel, A.; Iazzourene, F.; Karantzoulis, E.; Parmigiani, F.; Penco, G.; Trovo, M.; Corlett, J.; Fawley, W.; Lidia, S.; Penn, G.; Ratti, A.; Staples, J.; Wilcox, R.; Zholents, A.; Graves, W.; Ilday, F.O.; Kaertner,F.; Wang, D.; Zwart, T.; Cornacchia, M.; Emma, P.; Huang, Z.; Wu, J.

    2005-09-01

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy, within the next five years. The project will be the first user facility based on seeded harmonic cascade FELs, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from {approx}100 nm to {approx}10nm, with pulse duration from 40 fs to {approx} 1 ps, peak power GW, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate >40 nm, and a two stage cascade operating from {approx}40 nm to {approx}10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.

  5. FERMI@Elettra: A Seeded Harmonic Cascade FEL for EUV and Soft X-Rays

    SciTech Connect

    Bocchetta, C.J.; Bulfone, D.; Craievich, P.; Danailov, M.B.; D'Auria, G.; De Ninno, G.; Di Mitri, S.; Diviacco, B.; Ferianis, M.; Gomezel, A.; Iazzourene, F.; Karantzoulis, E.; Parmigiani, F.; Penco, G.; Trovo, M.; Corlett, J.; Fawley, W.; Lidia, S.; Penn, G.; Ratti, A.; Staples, J.; /LBL, Berkeley /MIT /SLAC

    2005-12-14

    We describe the machine layout and major performance parameters for the FERMI FEL project funded for construction at Sincrotrone Trieste, Italy, within the next five years. The project will be the first user facility based on seeded harmonic cascade FEL's, providing controlled, high peak-power pulses. With a high-brightness rf photocathode gun, and using the existing 1.2 GeV S-band linac, the facility will provide tunable output over a range from {approx}100 nm to {approx}10 nm, with pulse duration from 40 fs to {approx} 1ps, peak power {approx}GW, and with fully variable output polarization. Initially, two FEL cascades are planned; a single-stage harmonic generation to operate > 40 nm, and a two-stage cascade operating from {approx}40 nm to {approx}10 nm or shorter wavelength. The output is spatially and temporally coherent, with peak power in the GW range. Lasers provide modulation to the electron beam, as well as driving the photocathode and other systems, and the facility will integrate laser systems with the accelerator infrastructure, including a state-of-the-art optical timing system providing synchronization of rf signals, lasers, and x-ray pulses. Major systems and overall facility layout are described, and key performance parameters summarized.

  6. Ultra-precise characterization of LCLS hard X-ray focusing mirrors by high resolution slope measuring deflectometry.

    PubMed

    Siewert, Frank; Buchheim, Jana; Boutet, Sébastien; Williams, Garth J; Montanez, Paul A; Krzywinski, Jacek; Signorato, Riccardo

    2012-02-13

    We present recent results on the inspection of a first diffraction-limited hard X-ray Kirkpatrick-Baez (KB) mirror pair for the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). The full KB system - mirrors and holders - was under inspection by use of high resolution slope measuring deflectometry. The tests confirmed that KB mirrors of 350mm aperture length characterized by an outstanding residual figure error of <1 nm rms has been realized. This corresponds to the residual figure slope error of about 0.05µrad rms, unprecedented on such long elliptical mirrors. Additional measurements show the clamping of the mirrors to be a critical step for the final - shape preserving installation of such outstanding optics.

  7. Tailoring the amplification of attosecond pulse through detuned X-ray FEL undulator.

    PubMed

    Kumar, Sandeep; Kang, Heung-Sik; Kim, Dong Eon

    2015-02-01

    We demonstrate that the amplification of attosecond pulse in X-ray free electron laser (FEL) undulator can be tailored. The characteristic of the amplification of an isolated attosecond pulse in the FEL undulator is investigated. An isolated 180 attoseconds full width half maximum (FWHM) pulse at 1.25 nm with a spectral bandwidth of 1% is injected into an undulator. The simulation results show that for a direct seeding of 3MW, the seed is amplified to the peak power of 106 GW (40 μJ, an output pulse-width of 383 attoseconds) in the presence of a detuning at FEL resonance condition in 100-m long undulator. We note that the introduction of detuning leads to the better performance compared to the case without detuning: shorter by 15.5% in a pulse-width and higher by 76.6% in an output power. Tapering yields a higher power (116% increases in the output power compared to the case without detuning) but a longer pulse (15.4% longer in the pulse-width). It was observed that ± Δλ(r)/8 (Δλ(r)/λ(r) ~1%) is the maximum degree of detuning, beyond which the amplification becomes poor: lower in the output power and longer in the pulse duration. The minimum power for a seed pulse needs to be higher than 1 MW for the successful amplification of an attosecond pulse at 1.25 nm. Also, the electron beam energy-spread must be less than 0.1% for a suitable propagation of attosecond pulse along the FEL undulator under this study. PMID:25836141

  8. In-pixel conversion with a 10 bit SAR ADC for next generation X-ray FELs

    NASA Astrophysics Data System (ADS)

    Lodola, L.; Batignani, G.; Benkechkache, M. A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G. F.; Fabris, L.; Forti, F.; Grassi, M.; Latreche, S.; Malcovati, P.; Manghisoni, M.; Mendicino, R.; Morsani, F.; Paladino, A.; Pancheri, L.; Paoloni, E.; Ratti, L.; Re, V.; Rizzo, G.; Traversi, G.; Vacchi, C.; Verzellesi, G.; Xu, H.

    2016-07-01

    This work presents the design of an interleaved Successive Approximation Register (SAR) ADC, part of the readout channel for the PixFEL detector. The PixFEL project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging for applications at the next generation Free Electron Laser (FEL) facilities. For this purpose, the collaboration is developing the fundamental microelectronic building blocks for the readout channel. This work focuses on the design of the ADC carried out in a 65 nm CMOS technology. To obtain a good tradeoff between power consumption, conversion speed and area occupation, an interleaved SAR ADC architecture was adopted.

  9. Melting and band gap-dynamics of shock-compressed graphite diagnosed by x-ray scattering at the LCLS

    NASA Astrophysics Data System (ADS)

    Zastrau, Ulf; Lee, Hae Ja

    2015-11-01

    The diversity of the electronic properties of carbon makes it of key interest to the material science community; By contrast, at the high pressures typical of planetary and stellar interiors, the behavior of carbon is poorly understood with large uncertainties in the conductivity and even the material phase. Tremendous efforts have been made to measure properties of warm dense matter (WDM) in extreme conditions, e.g. temperatures in excess of 1000 K of temperature and pressures in the Mbar regime. In laboratory experiments, practical issues with gradients in the temperature and density of shock compressed matter have hindered accurate measurement and further from distinguishing theoretical models. Here, we present measurements of melting of graphite upon coalescence of two counter-propagating shocks using combinations of spatially and spectrally resolved x-ray scattering methods at the LCLS free electron laser. The MEC nanosecond lasers launch counter-propagating shock waves into graphite. At shock coalescence, pressures in excess of 1 Mbar are reached. At given time delay, we measure scattering from the sample using 5070 eV x-ray pulses. We employed curved mosaic and perfect imaging crystals for spatially resolved x-ray scattering. Compared with hydrodynamics simulations, we present data on plasmon dispersion, axial compression gradients and finally carbon melting at shock coalescence. We have indication for a widening of the band gap during compression of the solid, while the band gab fully closes in the melt. UZ was supported by the German Volkswagen Foundation.

  10. Scientist Take First X-Ray Portraits of Living Cyanobacteria at the LCLS

    SciTech Connect

    2015-02-11

    Researchers from Uppsala University working at the Department of Energy's SLAC National Accelerator Laboratory have captured the first X-ray portraits of living bacteria, detecting signals from features as small as 4 nanometers, or 4 billionths of a meter.

  11. Research and Development for X-Ray Optics and Diagnostics on the Linac Coherent Light Source (LCLS)

    SciTech Connect

    Wootton, A; Arthur, J; Barbee, T; Bionta, R; Jankowski, A; London, R; Ryutov, D; Shepherd, R; Shlyaptse, V; Tatchyn, R; Toor, A

    2001-08-14

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration <300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We first discuss the specific requirements for the initial scientific experiments, and our proposed solutions. We then describe the supporting research and development program that includes: experimental and theoretical material damage studies; high resolution multilayer design, fabrication, and testing; replicated closed-form optics design and manufacturing; BeB manufacturing; and low-z Fresnel lens design, fabrication and testing. Finally some novel concepts for optical components are presented.

  12. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema

    Drell, Persis [SLAC Director

    2016-07-12

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  13. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect

    Drell, Persis

    2011-03-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  14. Resonant soft x-ray scattering endstation for time-resolved pump-probe measurements at LCLS

    NASA Astrophysics Data System (ADS)

    Chuang, Yi-De; Doering, Dionisio; Cruz, Alejandro G.; Tahir, Nadeem; Andresen, Nord C.; Chow, Ken P.; Contarato, Devis; Cummings, Curtis L.; Domning, Edward E.; Joseph, John; Pepper, John S.; Smith, Brian V.; Zizka, G.; Ford, Christopher; Lee, Wei-Sheng; Weaver, Matt; Patthey, Luc; Weizeowick, John; Denes, Peter; Hussain, Zahid

    2012-10-01

    Localized charge, spin and orbital degrees of freedom can compete with electronic itinerancy and such competition lies at the heart of emergent material properties. To study these electronic orderings, resonant soft X-ray scattering (RSXS) spectroscopy has been demonstrated as one of the most powerful direct probes, and its time-resolved capability can be implemented through pump-probe technique. The ultrafast/ultra-intense X-ray pulses from LCLS can be used as the probe in the time-resolved RSXS experiments, but the inherent fluctuations in intensity and timing between pulses can degrade the superior temporal resolution. To overcome such fluctuations, a compact fast CCD (cFCCD) was developed to enable shot-by-shot data acquisitions and a dedicated RSXS endstation, constructed to house this cFCCD and other single-channel photon detectors, has been extensively used at both ALS and LCLS. Time-resolved RSXS experiments on La1.75Sr0.25 NiO4 nickelate have revealed an unexpected transient behavior of charge and spin ordering (CO/SO) states. After 800nm laser excitation, the CO can be fully suppressed at higher pump fluence while SO remains detectable, creating a transient state that is not accessible by tuning thermodynamic variables. Furthermore, two distinct time scales are identified in the recovery of CO and can be attributed to the amplitude (fast) and phase (slow) dynamics of order parameter. A new version of cFCCD, with eight times the detection area and the readout electronics moved into vacuum side to minimize the pickup noise, has been developed and will be incorporated into the RSXS endstation.

  15. Operational Performance of LCLS Beam Instrumentation

    SciTech Connect

    Loos, Henrik; Akre, R.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Messerschmidt, M.; Miahnahri, A.; Moeller, S.; Nuhn, H.-D.; Ratner, D.; /SLAC /LLNL, Livermore

    2010-06-15

    The Linac Coherent Light Source (LCLS) X-ray FEL utilizing the last km of the SLAC linac has been operational since April 2009 and finished its first successful user run last December. The various diagnostics for electron beam properties including beam position monitors, wire scanners, beam profile monitors, and bunch length diagnostics are presented as well as diagnostics for the X-ray beam. The low emittance and ultra-short electron beam required for X-ray FEL operation has implications on the transverse and longitudinal diagnostics. The coherence effects of the beam profile monitors and the challenges of measuring fs long bunches are discussed.

  16. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    NASA Astrophysics Data System (ADS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M. A.; Dalla Betta, G.-F.; Mendicino, R.; Pancheri, L.; Verzellesi, G.; Xu, H.

    2015-10-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run.

  17. Microbunching phenomena in LCLS-II

    SciTech Connect

    Venturini, M.; Qiang, J.; Papadopoulos, C.; Ding, Y.; Emma, P.; Huang, Z.; Marcus, G.; Marinelli, A.; Nosochkov, Y.; Raubenheimer, T.; Wang, L.; Woodley, M.

    2015-07-14

    The microbunching instability has long been recognized as a potential limiting factor to the performance of X-ray FELs. It is of particular relevance in LCLS-II due, in part, to a layout that includes a long bypass beamline between the Linac and the undulators. Here we focus on two aspects of the instability that highlight the importance of 3D effects.

  18. AMO Instrumentation for the LCLS

    NASA Astrophysics Data System (ADS)

    Bozek, John

    2008-05-01

    The Linac Coherent Light Source (LCLS) x-ray free electron laser (FEL) facility at the Stanford Linear Accelerator Center (SLAC) is quickly nearing completion. When finished in summer 2009, the LCLS will produce ultrafast pulses of x-rays with photon energies of 800 -- 8000 eV, intensities >= 10^13 ph/s and pulse durations of 150 fs, at a repetition rate of 120Hz. A suite of four instruments, including one dedicated to AMO science, are currently being designed for first experiments with the LCLS source. The design of the AMO instrument is in the final stages with construction to begin later this year. Included in the AMO instrumentation are optics to focus the LCLS beam to a waist of ˜2μm, an experimental chamber with a supersonic pulsed gas jet, a set of five time-of-flight electron energy spectrometers, one of three ion spectrometers, and two x-ray fluorescence spectrometers, and a synchronized laser for pump-probe experiments. A downstream diagnostics chamber with instruments to measure the relevant parameters of each FEL pulse is also included. Plans for first experiments along with designs of the instrumentation will be presented. Guidance for experimental proposals for the LCLS will also be provided for prospective users.

  19. The History of X-ray Free-Electron Lasers

    SciTech Connect

    Pellegrini, C.; /UCLA /SLAC

    2012-06-28

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 {angstrom}, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 10{sup 13} to 10{sup 11}, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  20. The history of X-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.

    2012-10-01

    The successful lasing at the SLAC National Accelerator Laboratory of the Linear Coherent Light Source (LCLS), the first X-ray free-electron laser (X-ray FEL), in the wavelength range 1.5 to 15 Å, pulse duration of 60 to few femtoseconds, number of coherent photons per pulse from 1013 to 1011, is a landmark event in the development of coherent electromagnetic radiation sources. Until now electrons traversing an undulator magnet in a synchrotron radiation storage ring provided the best X-ray sources. The LCLS has set a new standard, with a peak X-ray brightness higher by ten orders of magnitudes and pulse duration shorter by three orders of magnitudes. LCLS opens a new window in the exploration of matter at the atomic and molecular scales of length and time. Taking a motion picture of chemical processes in a few femtoseconds or less, unraveling the structure and dynamics of complex molecular systems, like proteins, are some of the exciting experiments made possible by LCLS and the other X-ray FELs now being built in Europe and Asia. In this paper, we describe the history of the many theoretical, experimental and technological discoveries and innovations, starting from the 1960s and 1970s, leading to the development of LCLS.

  1. X-ray Transport Optics and Diagnostics Commissioning Report

    SciTech Connect

    Bionta, R M

    2004-10-24

    We discuss commissioning work funded through LCLS WBS element 1.5: X-ray Transport Optics and Diagnostics (XTOD.) A short description of the XTOD commissioning diagnostics hardware is followed by a brief discussion of FEL induced damage considerations. The remainder discusses simulation work on the response of the Direct Imager camera to a mix of spontaneous and FEL radiation and a Monte Carlo Calculation of the reflections of the spontaneous radiation in the undulator vacuum tube.

  2. Tapered undulator for SASE FELs

    SciTech Connect

    Fawley, William M.; Huang, Zhirong; Kim, Kwang-Je; Vinokurov, Nikolai A.

    2001-09-14

    We discuss the use of tapered undulators to enhance the performance of free-electron lasers (FELs) based upon self-amplified spontaneous emission (SASE), where the radiation tends to have a relatively broad bandwidth, limited temporal phase coherence, and large amplitude fluctuations. Using the polychromatic FEL simulation code GINGER, we numerically demonstrate the effectiveness of a tapered undulator for parameters corresponding to the existing Argonne low-energy undulator test line (LEUTL) FEL. We also study possible tapering options for proposed x-ray FELs such as the Linac Coherent Light Source (LCLS).

  3. Intense attosecond radiation from an X-ray FEL - extended version

    SciTech Connect

    Zholents, Alexander A.; Fawley, William M.

    2003-12-01

    We propose the use of a ultra-relativistic electron beam interacting with a few-cycle, intense laser pulse and an intense pulse of the coherent x-rays to produce a multi-MW intensity, x-ray pulses {approx}100 attoseconds in duration. Due to a naturally-occurring frequency chirp, these pulses can be further temporally compressed.

  4. Compound refractive lenses as prefocusing optics for X-ray FEL radiation.

    PubMed

    Heimann, Philip; MacDonald, Michael; Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou

    2016-03-01

    The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3-10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. The X-ray focus was also determined by the ablation imprint method. PMID:26917128

  5. Compound refractive lenses as prefocusing optics for X-ray FEL radiation

    DOE PAGES

    Heimann, Philip; MacDonald, Michael; Nagler, Bob; Lee, Hae Ja; Galtier, Eric; Arnold, Brice; Xing, Zhou

    2016-01-27

    The performance of X-ray free-electron laser beamlines may be limited by the angular aperture. Compound refractive lenses (CRLs) can be employed to prefocus the X-ray beam, thereby increasing the beamline transmission. A prefocusing CRL was implemented in the X-ray transport of the Matter under Extreme Conditions Instrument at the Linac Coherent Light Source. A significant improvement in the beamline transmission was calculated over the 3–10 keV photon energy range. At 5 keV, the relative X-ray intensity was measured and a factor of four increase was seen in the beamline transmission. As a result, the X-ray focus was also determined bymore » the ablation imprint method.« less

  6. Scientific opportunities for FEL amplifier based VUV and X-ray research

    SciTech Connect

    Johnson, E.D.

    1994-12-31

    It has become increasingly clear to a wide cross section of the synchrotron radiation research community that FELs will be the cornerstone of Fourth Generation Radiation Sources. Through the coherent generation of radiation, they provide as much as 12 orders of magnitude increase in peak power over the third generation storage ring machines of today. Facilities have been proposed which will extend the operating wavelength of these devices well beyond the reach of existing solid state laser technology. In addition, it appears possible to generate pulses of unprecedented brevity, down to a few femtoseconds, with mJ pulse energies. The combination of these attributes has stimulated considerable interest in short wavelength FELs for experiments in chemical, surface, and solid state physics, biology and materials science. This paper provides a brief overview of how the features of these FEL`s relate to the experimental opportunities.

  7. Simulation studies of a XUV/soft X-ray harmonic-cascade FEL for the proposed LBNL recirculating linac*

    SciTech Connect

    Fawley, W.M.; Barletta, W.A.; Corlett, J.N.; Zholents, A.

    2003-06-02

    Presently there is significant interest at LBNL in designing and building a facility for ultrafast (i.e. femtosecond time scale) x-ray science based upon a superconducting, recirculating RF linac (see Corlett et al. for more details). In addition to producing synchrotron radiation pulses in the 1-15 keV energy range, we are also considering adding one or more free-electron laser (FEL) beamlines using a harmonic cascade approach to produce coherent XUV soft X-ray emission beginning with a strong input seed at {approx}200 nm wavelength obtained from a ''conventional'' laser. Each cascade is composed of a radiator together with a modulator section, separated by a magnetic chicane. The chicane temporally delays the electron beam pulse in order that a ''virgin'' pulse region (with undegraded energy spread) be brought into synchronism with the radiation pulse, which together then undergo FEL action in the modulator. We present various results obtained with the GINGER simulation code examining final output sensitivity to initial electron beam parameters. We also discuss the effects of spontaneous emission and shot noise upon this particular cascade approach which can limit the final output coherence.

  8. A concept for Z-dependent microbunching measurements with coherent X-ray transition radiation in a sase FEL

    SciTech Connect

    Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.

    2004-09-10

    We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with opening angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.

  9. Running Shanghai Soft x-ray FEL with the EEHG scheme

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    With the nominal beam parameters (beam energy: 0.84 GeV, slice energy spread: 168 keV, peak current: 600 A, normalized emittance: 2 mm mrad) of the Shanghai soft X-ray Free Electron Laser (SXFEL) project, we show that using the echo-enabled harmonic generation (EEHG) scheme, 9 nm coherent soft x-ray with peak power exceeding 400 MW can be generated directly from the 270 nm seeding laser.

  10. The SPARX Project: R & D Activity Towards X-Rays FEL Sources

    SciTech Connect

    Alesini, D.; Bellaveglia, M.; Bertolucci, S.; Biagini, M.E.; Boni, R.; Boscolo, M.; Castellano, M.; Clozza, A.; Di Pirro, G.; Drago, A.; Esposito, A.; Ferrario, M.; Filippetto, D.; Fusco, V.; Gallo, A.; Ghigo, A.; Guiducci, S.; Incurvati, M.; Ligi, C.; Marcellini, F.; Migliorati, M.; /Frascati /ENEA, Frascati /INFN, Milan /INFN, Rome /INFN, Rome2 /Milan Polytechnic /UCLA /SLAC

    2005-08-05

    SPARX is an evolutionary project proposed by a collaboration among ENEA-INFN-CNR-Universita di Roma Tor Vergata aiming at the construction of a FELSASE X-ray source in the Tor Vergata Campus. The first phase of the SPARX project, funded by Government Agencies, will be focused on R&D activity on critical components and techniques for future X-ray facilities as described in this paper.

  11. Interaction of short x-ray pulses with low-Z x-ray optics materials at the LCLS free-electron laser.

    PubMed

    Hau-Riege, S P; London, R A; Graf, A; Baker, S L; Soufli, R; Sobierajski, R; Burian, T; Chalupsky, J; Juha, L; Gaudin, J; Krzywinski, J; Moeller, S; Messerschmidt, M; Bozek, J; Bostedt, C

    2010-11-01

    Materials used for hard x-ray-free-electron laser (XFEL) optics must withstand high-intensity x-ray pulses. The advent of the Linac Coherent Light Source has enabled us to expose candidate optical materials, such as bulk B4C and SiC films, to 0.83 keV XFEL pulses with pulse energies between 1 μJ and 2 mJ to determine short-pulse hard x-ray damage thresholds. The fluence required for the onset of damage for single pulses is around the melt fluence and slightly lower for multiple pulses. We observed strong mechanical cracking in the materials, which may be due to the larger penetration depths of the hard x-rays.

  12. Operation and Upgrades of the LCLS*

    SciTech Connect

    Frisch, J.; Akre, R.; Arthur, J.; Bionta, R.; Bostedt, C.; Bozek, J.; Brachmann, A.; Bucksbaum, P.; Coffee, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Emma, P.; Fisher, A.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; /SLAC /Argonne /SLAC

    2010-10-27

    The LCLS FEL began user operations in September 2009 with photon energies from 800eV to 2 KeV and pulse energies above 2 mJ. Both long pulse (50-200 femtosecond FWHM) and short pulse (<10 femtosecond FWHM at 150 uJ) pulses were delivered at user request. In addition the FEL was operated at fundamental photon energies up to 10 KeV in preparation for hard X-ray experiments. FEL operating parameters, performance and reliability results will be presented, in addition to plans for upgrades to the facility.

  13. Harmonic generation in VUV/x-ray range at the Duke storage ring FEL using electron beam outcoupling

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.; Madey, J.M.J.

    1995-12-31

    We suggest using the OK-4 FEL operating in giant pulse mode to generate intracavity optical power at a level of hundreds of megawatts. These levels of power are sufficient to generate harmonics in the electron beam density. The prebunched electron beam then radiates coherently in an additional wiggler which is tuned on a harmonic of the OK-4 wavelength. The electron beam is turned by an achromatic bend into this wiggler, and harmonic radiation propagates with a small angle with respect to the OK-4 optical axis. This radiation will pass around the mirror of the OK-4 optical cavity and can then be utilized. This electron outcoupling scheme was suggested by N.A. Vinokurov as a method of optics independent outcoupling for high power FELs where electron beam bunching is provided in the master oscillator. This scheme is perfectly suited for optics independent harmonic generation. We suggest to operate the OK-4 FEL as a master oscillator in the UV range of 100 to 250 nm where conventional optics are available. This harmonic generation scheme would allow us to cover the VUV and soft X-Ray range with tunable coherent radiation. In this paper we present the possible layout of this system at the Duke storage ring and its expected operating parameters.

  14. Observation of Coherent Optical Transition Radiation in the LCLS Linac

    SciTech Connect

    Loosy, H.; Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Miahnahri, A.; Molloy, S.; Nuhn, H.-D.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC /Stanford

    2008-09-18

    The beam diagnostics in the linac for the Linac Coherent Light Source (LCLS) X-ray FEL project at SLAC includes optical transition radiation (OTR) screens for measurements of transverse and longitudinal beam properties. We report on observations of coherent light emission from the OTR screens (COTR) at visible wavelengths from the uncompressed and compressed electron beam at various stages in the accelerator.

  15. Pulse Length Control in an X-Ray FEL by Using Wakefields

    SciTech Connect

    Reiche, S.; Pellegrini, Claudio; Emma, P.; /UCLA /SLAC

    2008-03-18

    For the users of the high-brightness radiation sources of free-electron lasers it is desirable to reduce the FEL pulse length to 10 fs and below for time-resolved pump and probe experiments. Although it can be achieved by conventional compression methods for the electron beam or the chirped FEL pulse, the technical realization is demanding. In this presentation we study the impact of longitudinal wakefields in the undulator and how their properties can be used to reduced the amplifying part of the bunch to the desired length. Methods of actively controlling the wakefields are presented.

  16. Design Concept for a Compact ERL to Drive a VUV/Soft X-Ray FEL

    SciTech Connect

    Christopher Tennant ,David Douglas

    2011-03-01

    We explore possible upgrades of the existing Jefferson Laboratory IR/UV FEL driver to higher electron beam energy and shorter wavelength through use of multipass recirculation to drive an amplifier FEL. The system would require beam energy at the wiggler of 600 MeV with 1 mA of average current. The system must generate a high brightness beam, configure it appropriately, and preserve beam quality through the acceleration cycle ? including multiple recirculations ? and appropriately manage the phase space during energy recovery. The paper will discuss preliminary design analysis of the longitudinal match, space charge effects in the linac, and recirculator design issues, including the potential for the microbunching instability. A design concept for the low energy recirculator and an emittance preserving lattice solution will be presented.

  17. Tests of photocathodes for high repetition rate x-ray FELs at the APEX facility at LBNL

    NASA Astrophysics Data System (ADS)

    Sannibale, Fernando; Filippetto, Daniele; Qian, Houjun; Papadopoulos, Christos F.; Wells, Russell; Kramasz, Toby; Padmore, Howard; Feng, Jun; Nasiatka, James; Huang, Ruixuan; Zolotorev, Max; Staples, John W.

    2015-05-01

    After the formidable results of X-ray 4th generation light sources based on free electron lasers around the world, a new revolutionary step is undergoing to extend the FEL performance from the present few hundred Hz to MHz-class repetition rates. In such facilities, temporally equi-spaced pulses will allow for a wide range of previously non-accessible experiments. The Advanced Photo-injector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL), is devoted to test the capability of a novel scheme electron source, the VHF-Gun, to generate the required electron beam brightness at MHz repetition rates. In linac-based FELs, the ultimate performance in terms of brightness is defined at the injector, and in particular, cathodes play a major role in the game. Part of the APEX program consists in testing high quantum efficiency photocathodes capable to operate at the conditions required by such challenging machines. Results and status of these tests at LBNL are presented.

  18. A table-top x-ray FEL based on a laser wakefield accelerator-undulator system

    SciTech Connect

    Nakajima, K.; Kawakubo, T.; Nakanishi, H.

    1995-12-31

    Ultrahigh-gradient electron acceleration has been confirmed owing to the laser wakefield acceleration mechanism driven by an intense short laser wakefield acceleration mechanism driven by an intense short laser pulse in an underdense plasma. The laser wakefield acceleration makes it possible to build a compact electron linac capable of producing an ultra-short bunched electron beam. While the accelerator is attributed to longitudinal wakefields, transverse wakefields simultaneously generated by a short laser pulse can serve as a plasma undulator with a very short wavelength equal to a half of the plasma wavelength. We propose a new FEL concept for X-rays based on a laser wakefield accelerator-undulator system driven by intense short laser pulses delivered from table-top terawatt lasers. The system is composed of the accelerator stage and the undulator stage in a table-top size. A low energy electron beam is accelerated an bunched into microbunches due to laser wakefields in the accelerator stage. A micro-bunched beam travelling to the opposite direction of driving laser pulses produces coherent X-ray radiation in the undulator stage. A practical configuration and its analyses are presented.

  19. Commissioning the LCLS Injector

    SciTech Connect

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC

    2007-11-28

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam was completed in August 2007, with the goal of a 1.2-micron emittance in a 1-nC bunch clearly demonstrated. The second phase of commissioning, including second bunch compressor and full linac, is planned for 2008, with FEL commissioning in 2009. We report experimental results and experience gained in the first phase of commissioning, including the photo-cathode drive laser, RF gun, photocathode, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics.

  20. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs.

    PubMed

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated. PMID:26698041

  1. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    SciTech Connect

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  2. X-ray FEL based on harmonics generation and electron beam outcoupling

    SciTech Connect

    Litvinenko, V.N.; Burnham, B.

    1995-12-31

    Electron beam outcoupling was suggested by N. A. Vinokurov as a method of optics independent outcoupling for high power FELs. The bunching of the electron beam is provided in a master oscillator. The prebunched electron beam then radiates coherently into an additional wiggler called the radiator. The electron beam is turned by an achromatic bend into this wiggler and its radiation propagates with a small angle with respect to the OK-4 optical axis. Thus, the radiation will pass around the mirror of the master oscillator optical cavity and can then be utilized. This scheme is perfectly suited for harmonic generation if the radiator wiggler is tuned on one of the master oscillator wavelength harmonics. This system is reminiscent of a klystron operating on a harmonic of the reference frequency. In this paper we present the theory of this device, its spectral and spatial characteristics of radiation, the optimization of the master oscillator, the achromatic bend and bunching for harmonic generation, and influence of beam parameters (energy spread, emittance, etc.) on generated power. Examples of possible storage ring and linac driven systems are discussed.

  3. Filamentation effect in a gas attenuator for high-repetition-rate X-ray FELs

    SciTech Connect

    Feng, Yiping; Krzywinski, Jacek; Schafer, Donald W.; Ortiz, Eliazar; Rowen, Michael; Raubenheimer, Tor O.

    2016-01-01

    A sustained filamentation or density depression phenomenon in an argon gas attenuator servicing a high-repetition femtosecond X-ray free-electron laser has been studied using a finite-difference method applied to the thermal diffusion equation for an ideal gas. A steady-state solution was obtained by assuming continuous-wave input of an equivalent time-averaged beam power and that the pressure of the entire gas volume has reached equilibrium. Both radial and axial temperature/density gradients were found and describable as filamentation or density depression previously reported for a femtosecond optical laser of similar attributes. The effect exhibits complex dependence on the input power, the desired attenuation, and the geometries of the beam and the attenuator. Time-dependent simulations were carried out to further elucidate the evolution of the temperature/density gradients in between pulses, from which the actual attenuation received by any given pulse can be properly calculated.

  4. Photon Beamlines and Diagnostics at LCLS

    SciTech Connect

    Moeller, S.; Arthur, J.; Brachmann, A.; Coffee, R.; Decker, F.-J.; Edstrom, S.; Emma, P.; Feng, Y.; Fisher, S.; Fritsch, J.; Galayda, J.; Gilevich, S.; Hastings, J.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; Krzywinski, J.; Lewis, S.; Loos, H.; Messerschmidt, M.; /SLAC /LLNL, Livermore /Argonne

    2011-02-07

    The Linac Coherent Light Source (LCLS) is the first hard-x-ray free electron laser in operation. The turn-on of LCLS was rapid and operation has been reliable. Performance has exceeded the design parameters in several areas. The photon energy output covers a range from 480 eV to over 9 keV; the pulse energy is typically 2-3 mJ, with a maximum of 4 mJ at 2 keV. Electron pulse lengths can be varied from 500 fs to shorter than 10 fs. A low-charge option at 20 pC is being explored, which delivers pulses shorter than 10 fs with a reduced pulse energy, typically around 0.2 mJ. On-demand, single-shot and multi-shot modes up to 60 Hz (planned is 120 Hz) can be made available. The photon diagnostics built for LCLS have been commissioned and provide measurements of various properties of the FEL beam, such as pulse energy, beam size and position, wavelength, and allows for intensity attenuation over the entire wavelength range. The two soft x-ray instruments, the Atomic Molecular and Optics (AMO) and Soft X-ray Material Science (SXR) stations, are fully operational and completed their second user run in mid September 2010. The third user run is scheduled from October to December 2010, and will include the first hard x-ray instrument X-ray Pump-and-Probe (XPP). Three additional hard x-ray stations will follow: CXI (Coherent X-ray Imaging) is planned to start commissioning in December 2010, the XCS (X-ray correlation spectroscopy) instrument will start in June 2011, and the station for Matter in Extreme Conditions (MEC) in 2012. A list of past and future milestones for LCLS commission and operations is shown in table 1. The LCLS hard x-ray Free Electron Laser at SLAC reported first lasing in April of 2009. Since then two successful user runs have been completed at the two soft x-ray stations. The first hard x-ray station has started commissioning in July of 2010. Beam diagnostics play an essential role for tuning the machine and delivering the requested beam properties to the

  5. Explosions of xenon clusters in ultraintense femtosecond x-ray pulses from the LCLS free electron laser.

    PubMed

    Thomas, H; Helal, A; Hoffmann, K; Kandadai, N; Keto, J; Andreasson, J; Iwan, B; Seibert, M; Timneanu, N; Hajdu, J; Adolph, M; Gorkhover, T; Rupp, D; Schorb, S; Möller, T; Doumy, G; DiMauro, L F; Hoener, M; Murphy, B; Berrah, N; Messerschmidt, M; Bozek, J; Bostedt, C; Ditmire, T

    2012-03-30

    Explosions of large Xe clusters ( ~ 11,000) irradiated by femtosecond pulses of 850 eV x-ray photons focused to an intensity of up to 10(17) W/cm(2) from the Linac Coherent Light Source were investigated experimentally. Measurements of ion charge-state distributions and energy spectra exhibit strong evidence for the formation of a Xe nanoplasma in the intense x-ray pulse. This x-ray produced Xe nanoplasma is accompanied by a three-body recombination and hydrodynamic expansion. These experimental results appear to be consistent with a model in which a spherically exploding nanoplasma is formed inside the Xe cluster and where the plasma temperature is determined by photoionization heating.

  6. Enhancing FEL Power with Phase Shifters

    SciTech Connect

    Ratner, Daniel; Chao, Alex; Huang, Zhirong; /SLAC

    2010-07-30

    Tapering the undulator parameter is a well-known method for maintaining the resonant condition past saturation, and increasing Free Electron Laser (FEL) efficiency. In this paper, we demonstrate that shifting the electron bunch phase relative to the radiation is equivalent to tapering the undulator parameter. Using discrete phase changes derived from optimized undulator tapers for the Linac Coherent Light Source (LCLS) x-ray FEL, we show that appropriate phase shifts between undulator sections can reproduce the power enhancement of undulator tapers. Phase shifters are relatively easy to implement and operate, and could be used to aid or replace undulator tapers in optimizing FEL performance.

  7. LCLS Ultrafast Science Instruments:Conceptual Design Report

    SciTech Connect

    Arthur, J.; Boutet, S.; Castagna, J-C.; Chapman, H.; Feng, Y.; Foyt, W.; Fritz, D.M.; Gaffney, K.J.; Gr|bel, G.; Hajdu, J.; Hastings, J.B.; Kurita, N.; Larsson, J.; Ludwig, K.; Messerschmidt, M.; Miao, J.; Reis, D.A.; Robert, A.; Stephenson, G.B.; Tschentscher, Th.; van Bakel, N.; /SLAC /LLNL, Livermore /DESY /Lund Inst. Tech. /Boston U. /UCLA /Michigan U. /Argonne

    2007-10-16

    The Stanford Linear Accelerator Center (SLAC), along with Argonne National Laboratory (ANL), Lawrence Livermore National Laboratory (LLNL), and the University of California at Los Angeles (UCLA), is constructing a Free-Electron Laser (FEL) facility, which will operate in the wavelength range 1.5 nm - 0.15 nm. This FEL, the Linac Coherent Light Source (LCLS), utilizes the SLAC linac and will produce sub-picosecond pulses of short wavelength X-rays with very high peak brightness and almost complete transverse coherence. The final one-third of the SLAC linac will be used as the source of electrons for the LCLS. The high energy electrons will be transported across the SLAC Research Yard, into a tunnel which will house a long undulator. In passing through the undulator, the electrons will be bunched by the force of their own synchrotron radiation and produce an intense, monochromatic, spatially coherent beam of X-rays. By varying the electron energy, the FEL X-ray wavelength will be tunable from 1.5 nm to 0.15 nm. The LCLS will include two experimental halls as well as X-ray optics and infrastructure necessary to create a facility that can be developed for research in a variety of disciplines such as atomic physics, materials science, plasma physics and biosciences. This Conceptual Design Report, the authors believe, confirms the feasibility of designing and constructing three X-ray instruments in order to exploit the unique scientific capability of this new LCLS facility. The technical objective of the LCLS Ultrafast Science Instruments (LUSI) project is to design, build, and install at the LCLS three hard X-ray instruments that will complement the initial instrument included in the LCLS construction. As the science programs advance and new technological challenges appear, instrumentation needs to be developed and ready to conquer these new opportunities. The LCLS instrument concepts have been developed in close consultation with the scientific community through a

  8. Prospects for a soft x-ray FEL powered by a relativistic-klystron high-gradient accelerator (RK-HGA)

    SciTech Connect

    Shay, H.D.; Barletta, W.A.; Yu, S.S.; Schlueter, R.; Deis, G.A.

    1989-09-28

    We present here the concept of x-ray FELs using high gain, single-pass amplifiers with electron beams accelerated in high gradient structures powered by relativistic klystrons. Other authors have also considered x-ray FELs; the unique aspect of this paper is the use of high gradient acceleration. One of the authors has previously presented preliminary studies on this concept. The intent in this paper is to display the results of a top level design study on a high gain FEL, to present its sensitivity to a variety of fabrication and tuning errors, to discuss several mechanisms for increasing gain yet more, and to present explicitly the output characteristics of such an FEL. The philosophy of the design study is to find a plausible operating point which employs existing or nearly existing state-of-the-art technologies while minimizing the accelerator and wiggler lengths. The notion is to distribute the technical risk as evenly as possible over the several technologies so that each must advance only slightly in order to make this design feasible. This study entailed no systematic investigation of possible costs so that, for example, the sole criterion for balancing the trade-off between beam energy and wiggler length is that the two components have comparable lengths. 20 refs., 10 figs., 1 tab.

  9. An X-Ray Free-Electron Laser Oscillator for Record High Spectral Purity and Average Brightness (Progress and Prospects for X-ray Free Electron Lasers)

    SciTech Connect

    Kim, Kwang-Je

    2009-06-24

    With the success of the LCLS at SLAC, synchrotron radiation community is entering the era of x-ray free-electron lasers (FELs) with an enormous jump in brightness and coherence over that possible with third-generation x-ray sources. The LCLS is a single-pass, high-gain device producing quasi-coherent x-rays known as self-amplified spontaneous emission. Hard x-ray FELs are also feasible in an oscillator (XFELO) configuration, in which an x-ray pulse is trapped a low-loss optical cavity consisting of diamond crystals, permitting build-up in the intensity and coherence over several hundred passes. An XFELO produces ultrahigh spectral purity and brightness-average brightness several orders of magnitude higher than, and peak brightness comparable to, self-amplified spontaneous emission devices; opening up new scientific opportunities as well as drastically improving and complementing experimental techniques developed at third-generation x-ray facilities. We discuss unique R&D issues in accelerator and x-ray optics and encouraging progress to date.

  10. Potential applications of a dual-sweep streak camera system for characterizing particle and photon beams of VUV, XUV, and x-ray FELS

    SciTech Connect

    Lumpkin, A.

    1995-12-31

    The success of time-resolved imaging techniques in the Characterization of particle beams and photon beams of the recent generation of L-band linac-driven or storage ring FELs in the infrared, visible, and ultraviolet wavelength regions can be extended to the VUV, XUV, and x-ray FELs. Tests and initial data have been obtained with the Hamamatsu C5680 dual-sweep streak camera system which includes a demountable photocathode (thin Au) assembly and a flange that allows windowless operation with the transport vacuum system. This system can be employed at wavelengths shorter than 100 nm and down to 1 {Angstrom}. First tests on such a system at 248-nm wavelengths have been performed oil the Argonne Wakefield Accelerator (AWA) drive laser source. A quartz window was used at the tube entrance aperture. A preliminary test using a Be window mounted on a different front flange of the streak tube to look at an x-ray bremsstrahlung source at the AWA was limited by photon statistics. This system`s limiting resolution of {sigma}{approximately}1.1 ps observed at 248 nm would increase with higher incoming photon energies to the photocathode. This effect is related to the fundamental spread in energies of the photoelectrons released from the photocathodes. Possible uses of the synchrotron radiation sources at the Advanced Photon Source and emerging short wavelength FELs to test the system will be presented.

  11. Soft x-ray scattering using FEL radiation for probing near-solid density plasmas at few electronvolt temperatures

    SciTech Connect

    Toleikis, S; Faustlin, R R; Cao, L; Doppner, T; Dusterer, S; Forster, E; Fortmann, C; Glenzer, S H; Gode, S; Gregori, G; Irsig, R; Laarmann, T; Lee, H J; Li, B; Meiwes-Broer, K; Przystawik, A; Radcliffe, P; Redmer, R; Tavella, F; Thiele, R; Tiggesbaumker, J; Truong, N X; Uschmann, I; Zastrau, U; Tschentscher, T

    2009-03-03

    We report on soft x-ray scattering experiments on cryogenic hydrogen and simple metal targets. As a source of intense and ultrashort soft x-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 100 {micro}J and durations below 50 fs provide interaction with the target leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft x-ray inelastic scattering from near-solid density hydrogen plasmas at few electronvolt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft x-ray excitation of few electronvolt solid-density plasmas in simple metals could be studied by recording soft x-ray line and continuum emission integrated over emission times from fs to ns.

  12. Ultra-Short Electron Bunch and X-Ray Temporal Diagnostics with an X-Band Transverse Deflector

    SciTech Connect

    Ding, Y.; Emma, P.; Frisch, J.; Huang, Z.; Loos, H.; Krejcik, P.; Wang, M-H.; Behrens, C.; /DESY

    2011-12-13

    The measurement of ultra-short electron bunches on the femtosecond time scale constitutes a very challenging problem. In X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS), generation of sub-ten femtosecond X-ray pulses is possible, and some efforts have been put into both ultra-short electron and X-ray beam diagnostics. Here we propose a single-shot method using a transverse rf deflector (X-band) after the undulator to reconstruct both the electron bunch and X-ray temporal profiles. Simulation studies show that about 1 fs (rms) time resolution may be achievable in the LCLS and is applicable to a wide range of FEL wavelengths and pulse lengths. The jitter, resolution and other related issues will be discussed. The successful operation of the Linac Coherent Light Source (LCLS), with its capability of generating free-electron laser (FEL) X-ray pulses from a few femtoseconds (fs) up to a few hundred fs, opens up vast opportunities for studying atoms and molecules on this unprecedented ultrashort time scale. However, tremendous challenges remain in the measurement and control of these ultrashort pulses with femtosecond precision, for both the electron beam (e-beam) and the X-ray pulses. For ultrashort e-beam bunch length measurements, a standard method has been established at LCLS using an S-band radio-frequency (rf) deflector, which works like a streak camera for electrons and is capable of resolving bunch lengths as short as {approx} 10 fs rms. However, the e-beam with low charges of 20 pC at LCLS, which is expected to be less than 10 fs in duration, is too short to be measured using this transverse deflector. The measurement of the electron bunch length is helpful in estimating the FEL X-ray pulse duration. However, for a realistic beam, such as that with a Gaussian shape or even a spiky profile, the FEL amplification varies along the bunch due to peak current or emittance variation. This will cause differences between the temporal

  13. X-ray-optical cross-correlator for gas-phase experiments at the Linac Coherent Light Source free-electron laser

    SciTech Connect

    Schorb, S.; Cryan, J. P.; Glownia, J. M.; Bionta, M. R.; Coffee, R. N.; Swiggers, M.; Carron, S.; Castagna, J.-C.; Bozek, J. D.; Messerschmidt, M.; Schlotter, W. F.; Bostedt, C.; Gorkhover, T.; Erk, B.; Boll, R.; Schmidt, C.; Rudenko, A.; Rolles, D.; Rouzee, A.

    2012-03-19

    X-ray-optical pump-probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump-probe experiments with x-ray pulses from LCLS and other FEL sources.

  14. X-ray detectors at the Linac Coherent Light Source

    SciTech Connect

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced.

  15. X-ray detectors at the Linac Coherent Light Source

    PubMed Central

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; Herrmann, Sven; Kenney, Chris; Markovic, Bojan; Nishimura, Kurtis; Osier, Shawn; Pines, Jack; Reese, Benjamin; Segal, Julie; Tomada, Astrid; Weaver, Matt

    2015-01-01

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a new generation of cameras under development at SLAC, is introduced. PMID:25931071

  16. X-ray detectors at the Linac Coherent Light Source

    DOE PAGES

    Blaj, Gabriel; Caragiulo, Pietro; Carini, Gabriella; Carron, Sebastian; Dragone, Angelo; Freytag, Dietrich; Haller, Gunther; Hart, Philip; Hasi, Jasmine; Herbst, Ryan; et al

    2015-04-21

    Free-electron lasers (FELs) present new challenges for camera development compared with conventional light sources. At SLAC a variety of technologies are being used to match the demands of the Linac Coherent Light Source (LCLS) and to support a wide range of scientific applications. In this paper an overview of X-ray detector design requirements at FELs is presented and the various cameras in use at SLAC are described for the benefit of users planning experiments or analysts looking at data. Features and operation of the CSPAD camera, which is currently deployed at LCLS, are discussed, and the ePix family, a newmore » generation of cameras under development at SLAC, is introduced.« less

  17. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers

    NASA Astrophysics Data System (ADS)

    Ding, Yuantao

    2015-05-01

    Generation of high power, femtosecond to sub-femtosecond x-ray pulses is attracting much attention within the x-ray free-electron laser (FEL) user community. At the existing FEL facilities, such as the Linac Coherent Light Source at SLAC, several methods have been developed to produce such short x-rays. Low-charge operation mode and emittance-spoiling scheme have successfully delivered short pulses for user experiments with duration less than 10 fs. A nonlinear compression mode has been recently developed and the pulse duration could be about 200 as. We will review the recent experimental progress at the LCLS for achieving few-femtosecond x-rays, and also discuss other short pulse schemes for reaching sub-femtosecond regime.

  18. First Results of the LCLS Laser-Heater System

    SciTech Connect

    Emma, P; Boyce, R.F.; Brachmann, A.; Carr, R.; Decker, F.-J.; Ding, Y.; Dowell, D.; Edstrom, S.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Levashov, Y.; Loos, H.; Miahnahri, A.; Nuhn, H.-D.; Poling, B.; Ratner, D.; Spampinati, S.; /SLAC

    2011-12-16

    The Linac Coherent Light Source (LCLS) is an x-ray Free-Electron Laser (FEL) project that has just achieved its first lasing at 1.5 {angstrom} radiation wavelength. The very bright electron beam required to drive this FEL is susceptible to a microbunching instability in the magnetic bunch compressors that may increase the slice energy spread beyond the FEL tolerance. To control the slice energy spread and to suppress the microbunching instability, a laser heater (LH) system is installed in the LCLS injector area at 135 MeV, right before the RF deflector that is used for the time-resolved electron diagnostics. This unique component is used to add a small level of intrinsic energy spread to the electron beam in order to Landau damp the microbunching instability before it potentially breaks up the high brightness electron beam. The system was fully installed and tested in the fall of 2008, and effects of heating on the electron beam and the x-ray FEL were studied during the 2009 commissioning period. The laser heater system is composed of a 4-dipole chicane; a 9-period, planar, permanent-magnet, adjustable-gap undulator at the center of the chicane; one OTR screen on each side of the undulator for electron/laser spatial alignment; and an IR laser (up to 15-MW power) which co-propagates with the electron beam inside the undulator generating a 758-nm energy modulation along the bunch. The final two dipoles of the 4-dipole chicane time-smear this modulation leaving only a thermal-like intrinsic energy spread within the bunch. Table 1 lists the main parameters for this system. The very bright electron beam required for an x-ray free-electron laser (FEL), such as the LCLS, is susceptible to a microbunching instability in the magnetic bunch compressors, prior to the FEL undulator. The uncorrelated electron energy spread in the LCLS can be increased by an order of magnitude to provide strong Landau damping against the instability without degrading the FEL performance. To

  19. Feasibility Study for a Seeded Hard X-ray Source Based on a Two-Stage Echo-Enabled Harmonic Generation FEL

    SciTech Connect

    Xiang, Dao; Huang, Z.; Ratner, D.; Stupakov, G.; /SLAC

    2009-12-11

    We propose and analyze a scheme to achieve a seeded hard x-ray source based on a two-stage echo-enabled harmonic generation (EEHG) FEL. In the scheme an 180 nm seed laser covering the whole bunch is first used to modulate the beam when beam energy is 2 GeV. After passing through a strong chicane complicated fine structures are introduced into the phase space. The beam is again modulated by a short 180 nm laser that only interacts with the rear part of the beam and accelerated to 6 GeV. A chicane is then used to convert the energy modulation imparted to the rear part of the beam into density modulation. The density-modulated beam is sent through a radiator to generate intense 6 nm radiation which will be used to interact with the front fresh part of the bunch. Finally we generate in the front part of the beam density modulation at the 1199th harmonic of the seed laser. We will discuss the issues related to the realization of the seeded hard x-ray FEL.

  20. The Linac Cooherent Light Source (LCLS) Accelerator

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. Such an FEL requires a high energy, high brightness electron beam to drive the FEL instability to saturation. When fed by an RF-photocathode gun, and modified to include two bunch compressor chicanes, the SLAC linac will provide such a high quality beam at 14 GeV and 1-{micro}m normalized emittance. In this paper, we report on recent linac studies, including beam stability and tolerances, longitudinal and transverse feedback systems, conventional and time-resolved diagnostics, and beam collimation systems. Construction and installation of the injector through first bunch compressor will be completed by December 2006, and electron commissioning is scheduled to begin in January of 2007.

  1. Coherent Radiation Effects in the LCLS Undulator

    SciTech Connect

    Reiche, S.; Huang, Z.; /SLAC

    2010-12-14

    For X-ray Free-Electron Lasers such as LCLS and TESLA FEL, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is the emission of incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for frequencies comparable to or longer than the bunch dimension. If the emitted coherent energy becomes comparable to that of the incoherent emission, it has to be included in the taper as well. However, the coherent loss depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the practical operation of Free-Electron Lasers, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator radiation and transition undulator radiation for LCLS, and estimate whether the resulting energy losses are significant for the operation of LCLS.

  2. On spectral and temporal coherence of x-ray free-electron laser beams.

    PubMed

    Ahad, Lutful; Vartiainen, Ismo; Setälä, Tero; Friberg, Ari T; David, Christian; Makita, Mikako; Turunen, Jari

    2016-06-13

    A model for the coherence properties of free-electron lasers (FELs) in time and frequency domains is introduced within the framework of classical second-order coherence theory of nonstationary light. An iterative phase-retrieval algorithm is applied to construct an ensemble of field realizations in both domains, based on single-pulse spectra measured at the Linac Coherent Light Source (LCLS) in self-amplified spontaneous emission mode. Such an ensemble describes the specific FEL pulse train in a statistically averaged sense. Two-time and two-frequency correlation functions are constructed, demonstrating that the hard X-ray free-electron laser at LCLS in this case behaves as a quasistationary source with low spectral and temporal coherence. We also show that the Gaussian Schell model provides a good description of this FEL. PMID:27410327

  3. THE SECOND STAGE OF FERMI@ELETTRA: A SEEDED FEL IN THE SOFT X-RAY SPECTRAL RANGE

    SciTech Connect

    Allaria, E.; DeNinno, G.; Fawley, W. M.

    2009-08-14

    The second stage of the FERMI FEL, named FEL-2, is based on the principle of high-gain harmonic generation and relies on a double-seeded cascade. Recent developments stimulated a revision of the original setup, which was designed to cover the spectral range between 40 and 10 nm. The numerical simulations we present here show that the nominal (expected) electron-beam performance allows extension of the FEL spectral range down to 4 nm. A significant amount of third harmonic power can be also expected. We also show that the proposed setup is flexible enough for exploiting future developments of new seed sources, e.g., high harmonic generation in gases.

  4. Linac Coherent Light Source II (LCLS-II) Conceptual Design Report

    SciTech Connect

    Stohr, J

    2011-11-16

    The LCLS-II Project is designed to support the DOE Office of Science mission, as described in the 22 April 2010 Mission Need Statement. The scope of the Project was chosen to provide an increase in capabilities and capacity for the facility both at project completion in 2017 and in the subsequent decade. The Project is designed to address all points of the Mission Need Statement (MNS): (1) Expanded spectral reach; (2) Capability to provide x-ray beams with controllable polarization; (3) Capability to provide 'pump' pulses over a vastly extended range of photon energies to a sample, synchronized to LCLS-II x-ray probe pulses with controllable inter-pulse time delay; and (4) Increase of user access through parallel rather than serial x-ray beam use within the constraint of a $300M-$400M Total Project Cost (TPC) range. The LCLS-II Project will construct: (1) A hard x-ray undulator source (2-13 keV); (2) A soft x-ray undulator source (250-2,000 eV); (3) A dedicated, independent electron source for these new undulators, using sectors 10-20 of the SLAC linac; (4) Modifications to existing SLAC facilities for the injector and new shielded enclosures for the undulator sources, beam dumps and x-ray front ends; (5) A new experiment hall capable of accommodating four experiment stations; and (6) Relocation of the two soft x-ray instruments in the existing Near Experiment Hall (NEH) to the new experiment hall (Experiment Hall-II). A key objective of LCLS-II is to maintain near-term international leadership in the study of matter on the fundamental atomic length scale and the associated ultrafast time scales of atomic motion and electronic transformation. Clearly, such studies promise scientific breakthroughs in key areas of societal needs like energy, environment, health and technology, and they are uniquely enabled by forefront X-ray Free Electron Laser (X-FEL) facilities. While the implementation of LCLS-II extends to about 2017, it is important to realize that LCLS-II only

  5. Optical tailoring of xFEL beams

    SciTech Connect

    West, Gavin; Coffee, R.

    2015-08-20

    There is an inherent exibility unique to free electron lasers (FELs) that lends well to experimental approaches normally too difficult for other light sources to accomplish. This includes the ability to optically shape the electron bunch prior to final its acceleration for the final FEL process. Optical pulse shaping of the electron bunch can enable both femtosecond and attosecond level FEL pulse control. Pulse shaping is currently implemented, not optically but mechanically, in LCLS-I with an adjustable foil slit that physically spoils the momentum phase of the electron bunch. This selectively suppresses the downstream FEL process ofspoiled electrons. Such a mechanical spoiling method fails for both the soft x-ray regime as well as the high repetition rates that are planned in LCLS-II. Our proposed optical spoiling method circumvents this limitation by making use of the existing ultrafast laser beam that is typically used for adjusting the energy spread for the initial electron bunch. Using Fourier domain shaping we can nearly arbitrarily shape the laser pulses to affect the electron bunch. This can selectively spoil electrons within each bunch. Here we demonstrate the viability of this approach with a programmable acousto-optic dispersive filter. This method is not only well suited for LCLS-II but also has several advantages over mechanical spoiling, including lack of radiation concerns, experiment specific FEL pulse shapes, and real-time adjustment for applications that require high duty-cycle variation such as lock-in amplification of small signals.

  6. Locking Lasers to RF in an Ultra Fast FEL

    SciTech Connect

    Wilcox, R.; Huang, G.; Doolittle, L.; White, W.; Frisch, J.; Coffee, R.

    2010-01-02

    Using a novel, phase-stabilized RF-over-fiber scheme, they transmit 3GHz over 300m with 27fs RMS error in 250kHz bandwidth over 12 hours, and phase lock a laser to enable ultrafast pump-probe experiments. Free-electron lasers (FELs) are capable of producing short-duration (< 10fs), high-energy X-ray pulses for a range of scientific applications. The recently activated Linac Coherent Light Source (LCLS) FEL facility at SLAC will support experiments which require synchronized light pulses for pump-probe schemes. They developed and operated a fiber optic RF transmission system to synchronize lasers to the emitted X-ray pulses, which was used to enable the first pump-probe experiments at the LCLS.

  7. Computer simulation of the CSPAD, ePix10k, and RayonixMX170HS X-ray detectors

    SciTech Connect

    Tina, Adrienne

    2015-08-21

    The invention of free-electron lasers (FELs) has opened a door to an entirely new level of scientific research. The Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory is an X-ray FEL that houses several instruments, each with its own unique X-ray applications. This light source is revolutionary in that while its properties allow for a whole new range of scientific opportunities, it also poses numerous challenges. For example, the intensity of a focused X-ray beam is enough to damage a sample in one mere pulse; however, the pulse speed and extreme brightness of the source together are enough to obtain enough information about that sample, so that no further measurements are necessary. An important device in the radiation detection process, particularly for X-ray imaging, is the detector. The power of the LCLS X-rays has instigated a need for better performing detectors. The research conducted for this project consisted of the study of X-ray detectors to imitate their behaviors in a computer program. The analysis of the Rayonix MX170-HS, CSPAD, and ePix10k in particular helped to understand their properties. This program simulated the interaction of X-ray photons with these detectors to discern the patterns of their responses. A scientist’s selection process of a detector for a specific experiment is simplified from the characterization of the detectors in the program.

  8. X-ray scattering measurements of the structure of strongly coupled plasmas at x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Neumayer, Paul; Döppner, Tilo; Fletcher, Luke; Galtier, Eric; Gericke, Dirk; Glenzer, Siegfried; Gregori, Gianluca; Hartley, Nicholas; Khaghani, Dimitri; Lee, Hae Ja; Ma, Tammy; Nagler, Bob; Pak, Art; Redmer, Ronald; Zastrau, Ulf

    2013-10-01

    Laser-plasma x-ray sources have been an indispensable probe to diagnose and characterize plasmas in the warm-dense matter regime. The latest generation of bright x-ray free-electron lasers now enables such diagnostic techniques to be implemented at FEL facilities. Even more, FEL parameters, such as collimation, pulse duration, focusability, bandwidth, or repetition rate, are far superior compared to laser-driven sources, enabling measurements of unprecedented resolution and accuracy. As an example, we present measurements of the static structure factor in high energy density matter. Angle-resolved x-ray scattering was performed at the Matter at Extreme Conditions (MEC) instrument at the Linac Coherent Light Source (LCLS). Strongly coupled warm-dense aluminium was produced by laser shock compression. Covering a wide range of scattering angles with unprecedented angular resolution the correlation peak of the ion-ion structure factor could be well resolved. The exceptional collimation of the LCLS beam enabled measurements at small scattering angles, thus approaching the long wavelength limit.

  9. Girder Support Scheme for the LCLS Undulator System

    SciTech Connect

    Welch, J.

    2005-01-31

    Differential settlement of the foundation of the LCLS Undulator Hall will cause quadrupoles to move and the electron beam trajectory to distort. The resulting phase errors will decrease the FEL power and require time consuming beam-based alignment sessions to correct. By supporting quadrupoles on girders, with three quadrupoles to a girder, the foundation motion induced phase error between the beam and the X Ray radiation can be reduced by a factor of 5 compared with supporting each quadrupole with a separate column. This comes about because the motions of three quadrupoles on a girder are linearly correlated so their effect on the beam is largely canceled out. Thus a girder support scheme can significantly help to extend the time between required beam based alignments and contribute to a more stable operation of the LCLS FEL beam.

  10. Overview of Warm Dense Matter Experiments at LCLS

    NASA Astrophysics Data System (ADS)

    Galtier, Eric; Levy, Anna; Williams, Gareth; Fletcher, Luke; Dorchies, Fabien; Gaudin, Jérôme; Sperling, Philipp

    Warm Dense Matter (WDM) is found in numerous astrophysical systems, from giant planets to brown dwarves or cool dense stars. Being this intermediate regime where condensed matter or plasma theories do not apply, it can be produced in all laser-induced plasma experiments on Earth. As a consequence, understanding its properties is fundamental and the whole community is investigating this extreme state of matter. With the advent of the 4th generation of light sources, namely the Free Electron Lasers (FELs), a new way of producing and diagnosing WDM becomes available. In 2009, the Linac Coherent Light Source (LCLS) at SLAC was the first FEL to produce X-ray photons to be used by the user community. Since then, various experiments took place at LCLS to produce and measure specific physical properties of WDM. In this talk, we will present an overview of key experiments performed at LCLS to study WDM. The LCLS has been used in a variety of configuration: as the main heating mechanism, as a probe or both at the same time. When used as a probe, high power lasers have been used to shock matter and excite it into the WDM regime. Finally, we will describe exciting perspectives on the WDM research, as the LCLS-II will become available in about 5 years.

  11. Advanced Instrumentation for Ultrafast Science at the LCLS

    SciTech Connect

    Berrah, Nora

    2015-10-13

    This grant supported a Single Investigator and Small Group Research (SISGR) application to enable multi-user research in Ultrafast Science using the Linac Coherent Light Source (LCLS), the world’s first hard x-ray free electron laser (FEL) which lased for the first time at 1.5 Å on April 20, 2009. The goal of our proposal was to enable a New Era of Science by requesting funds to purchase and build Advanced Instrumentation for Ultrafast Science (AIUS), to utilize the intense, short x-ray pulses produced by the LCLS. The proposed instrumentation will allow peer review selected users to probe the ultrasmall and capture the ultrafast. These tools will expand on the investment already made in the construction of the light source and its instrumentation in both the LCLS and LUSI projects. The AIUS will provide researchers in the AMO, Chemical, Biological and Condensed Matter communities with greater flexibility in defining their scientific agenda at the LCLS. The proposed instrumentation will complement and significantly augment the present AMO instrument (funded through the LCLS project) through detectors and capabilities not included in the initial suite of instrumentation at the facility. We have built all of the instrumentations and they have been utilized by scientists. Please see report attached.

  12. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  13. Linac Coherent Light Source (LCLS) Bunch-Length Monitor using Coherent Radiation

    SciTech Connect

    Wu, Juhao; Emma, P.; /SLAC

    2007-03-21

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) based on the final kilometer of the Stanford Linear Accelerator. One of the most critical diagnostic devices is the bunch length monitor (BLM), which is to be installed right after each compressor utilizing coherent radiation from the last bending magnet. We describe the components and the optical layout of such a BLM. Based on the setup geometry, we discuss some issues about the coherent radiation signal.

  14. Coherence Properties of the LCLS

    SciTech Connect

    Ocko, Samuel

    2010-08-25

    The LINAC Coherent Light Source (LCLS), an X-Ray free-electron laser(FEL) based on the self amplified spontaneous emission principle, has recently come on-line. For many users it is desirable to have an idea of the level of transverse coherence of the X-Ray beam produced. In this paper, we analyze the output of GENESIS simulations of electrons traveling through the FEL. We first test the validity of an approach that ignores the details of how the beam was produced, and instead, by assuming a Gaussian-Schell model of transverse coherence, predicts the level of transverse coherence simply through looking at the beam radius at several longitudinal slices. We then develop a Markov chain Monte Carlo approach to calculating the degree of transverse coherence, which offers a {approx}100-fold speedup compared to the brute-force algorithm previously in use. We find the beam highly coherent. Using a similar Markov chain Monte Carlo approach, we estimate the reasonability of assuming the beam to have a Gaussian-Schell model of transverse coherence, with inconclusive results.

  15. LCLS Undulator Commissioning, Alignment, and Performance

    SciTech Connect

    Nuhn, Heinz-Dieter

    2009-10-30

    The LCLS x-ray FEL has recently achieved its 1.5-Angstrom lasing and saturation goals upon first trial. This was achieved as a result of a thorough pre-beam checkout, both traditional and beam-based component alignment techniques, and high electron beam brightness. The x-ray FEL process demands very tight tolerances on the straightness of the electron beam trajectory (<5 {micro}m) through the LCLS undulator system. Tight, but less stringent tolerances of {approx}100 {micro}m rms were met for the transverse placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through a beam-based alignment (BBA) method, which is implemented using large electron energy variations and sub-micron resolution cavity beam position monitors (BPM), with precise conventional alignment used to set the starting conditions. Precision-fiducialization of components mounted on remotely adjustable girders, and special beam-finder wires (BFW) at each girder have been used to meet these challenging alignment tolerances. Longer-term girder movement due to ground motion and temperature changes are being monitored, continuously, by a unique stretched wire and hydrostatic level Alignment Diagnostics System (ADS).

  16. Femtosecond X-ray-induced fragmentation of fullerenes

    NASA Astrophysics Data System (ADS)

    Berrah, N.; Murphy, B.; Xiong, H.; Fang, L.; Osipov, T.; Kukk, E.; Guehr, M.; Feifel, R.; Petrovic, V. S.; Ferguson, K. R.; Bozek, J. D.; Bostedt, C.; Frasinski, L. J.; Bucksbaum, P. H.; Castagna, J. C.

    2016-02-01

    A new class of femtosecond, intense, short - wavelength lasers - the free-electron laser - has opened up new opportunities to investigate the structure and dynamics in many scientific areas. These new lasers, whose performance keeps increasing, enable the understanding of physical and chemical changes at an atomic spatial scale and on the time scale of atomic motion which is essential for a broad range of scientific fields. We describe here the interaction of fullerenes in the multiphoton regime with the Linac Coherent Light Source (LCLS) X-ray free-electron laser at SLAC National Laboratory. In particular, we report on new data regarding the ionization of Ho3N@C80 molecules and compare the results with our prior C60 investigation of radiation damage induced by the LCLS pulses. We also discuss briefly the potential impact of newly available instrumentation to physical and chemical sciences when they are coupled with FELs as well as theoretical calculations and modeling.

  17. A Test of Superradiance in an FEL Experiment

    SciTech Connect

    Boyce, R

    2004-12-14

    We describe the design of an FEL Amplifier Test Experiment (FATE)1 to demonstrate the superradiant short bunch regime of a Free Electron Laser in the 1-3 {micro}m wavelength range starting from noise. The relevance to the LCLS X-ray FEL [1] proposal is discussed and numerical simulations are shown. It is numerically demonstrated for the first time with the 2-D code GINGER, that clean-up of noise in the superradiant regime occurs even at low power levels.

  18. Design optimization and transverse coherence analysis for an x-ray free electron laser driven by SLAC LINAC

    SciTech Connect

    Xie, M.

    1995-12-31

    I present a design study for an X-ray Free Electron Laser driven by the SLAC linac, the Linac Coherent Light Source (LCLS). The study assumes the LCLS is based on Self-Amplified Spontaneous Emission (SASE). Following a brief review of the fundamentals of SASE, I will provide without derivation a collection of formulas relating SASE performance to the system parameters. These formulas allow quick evaluation of FEL designs and provide powerful tools for optimization in multi-dimensional parameter space. Optimization is carried out for the LCLS over all independent system parameters modeled, subjected to a number of practical constraints. In addition to the optimizations concerning gain and power, another important consideration for a single pass FEL starting from noise is the transverse coherence property of the amplified radiation, especially at short wavelength. A widely used emittance criteria for FELs requires that the emittance is smaller than the radiation wavelength divided by 4{pi}. For the LCLS the criteria is violated by a factor of 5, at a normalized emittance of 1.5 mm-mrad, wavelength of 1.5 {angstrom}, and beam energy of 15 GeV. Thus it is important to check quantitatively the emittance effect on the transverse coherence. I will examine the emittance effect on transverse coherence by analyzing different transverse modes and show that full transverse coherence can be obtained even at the LCLS parameter regime.

  19. FEL Design Studies at LBNL: Activities and Plans

    SciTech Connect

    Corlett, John N.; Fawley, W.; Lidia, S.; Padmore, H.; Penn, G.; Pogorelov, I.; Qiang, J.; Sannibale, F.; Staples, J.; Steier, C.; Venturini, M.; Wan, W.; Wilcox, R.; Zholents, A.

    2007-03-01

    LBNL staff are currently pursuing R&D for future x-ray FELs, and participate in two FEL construction projects. Our strategy is to address the most fundamental challenges, which are the cost-drivers and performance limitations of FEL facilities. An internally funded R&D program is aimed at investigating accelerator physics and technologies in three key areas: (1) Theoretical study, modeling, and experimental development of low emittance, high quantum efficiency cathodes; (2) Design studies of electron beam delivery systems, including emittance manipulations, high-resolution modeling of 6-D phase space, and low-emittance beam transport; and (3) Design studies of optical manipulations of electron beams for seeded and SASE FELs, providing short x-ray pulses of variable duration, synchronous with the seed and pump laser sources, and also long transform-limited pulses with a narrow bandwidth. Design studies of means for production of attosecond x-ray pulses at various wavelengths. We are collaborators in the FERMI{at}Elettra seeded FEL facility under construction at Sincrotrone Trieste, Italy, participating in accelerator design and FEL physics studies, and mechanical and electrical engineering. We are participating in the LCLS project at SLAC, implementing our design of stabilized timing and synchronization systems. Here we outline our long-term objectives, and current activities.

  20. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    NASA Astrophysics Data System (ADS)

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; Marcus, Gabriel

    2016-08-01

    We propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained. This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.

  1. Two mirror X-ray pulse split and delay instrument for femtosecond time resolved investigations at the LCLS free electron laser facility.

    PubMed

    Berrah, Nora; Fang, Li; Murphy, Brendan F; Kukk, Edwin; Osipov, Timur Y; Coffee, Ryan; Ferguson, Ken R; Xiong, Hui; Castagna, Jean-Charles; Petrovic, Vlad S; Montero, Sebastian Carron; Bozek, John D

    2016-05-30

    We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. We observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by the XRSD instrument. PMID:27410102

  2. Two mirror X-ray pulse split and delay instrument for femtosecond time resolved investigations at the LCLS free electron laser facility.

    PubMed

    Berrah, Nora; Fang, Li; Murphy, Brendan F; Kukk, Edwin; Osipov, Timur Y; Coffee, Ryan; Ferguson, Ken R; Xiong, Hui; Castagna, Jean-Charles; Petrovic, Vlad S; Montero, Sebastian Carron; Bozek, John D

    2016-05-30

    We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. We observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by the XRSD instrument.

  3. Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS

    NASA Astrophysics Data System (ADS)

    MacDonald, M. J.; Gorkhover, T.; Bachmann, B.; Bucher, M.; Carron, S.; Coffee, R. N.; Drake, R. P.; Ferguson, K. R.; Fletcher, L. B.; Gamboa, E. J.; Glenzer, S. H.; Göde, S.; Hau-Riege, S. P.; Kraus, D.; Krzywinski, J.; Levitan, A. L.; Meiwes-Broer, K.-H.; O'Grady, C. P.; Osipov, T.; Pardini, T.; Peltz, C.; Skruszewicz, S.; Swiggers, M.; Bostedt, C.; Fennel, T.; Döppner, T.

    2016-11-01

    Atomic clusters can serve as ideal model systems for exploring ultrafast (˜100 fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Resonant absorption of optical laser pulses enables heating to temperatures on the order of 1 keV at near solid density conditions. To date, direct probing of transient states of such nano-plasmas was limited to coherent x-ray imaging. Here we present the first measurement of spectrally resolved incoherent x-ray scattering from clusters, enabling measurements of transient temperature, densities, and ionization. Single shot x-ray Thomson scattering signals were recorded at 120 Hz using a crystal spectrometer in combination with a single-photon counting and energy-dispersive pnCCD. A precise pump laser collimation scheme enabled recording near background-free scattering spectra from Ar clusters with an unprecedented dynamic range of more than 3 orders of magnitude. Such measurements are important for understanding collective effects in laser-matter interactions on femtosecond time scales, opening new routes for the development of schemes for their ultrafast control.

  4. Pair production from vacuum at the focus of an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Ringwald, A.

    2001-06-01

    There are definite plans for the construction of X-ray free electron lasers (FEL), both at DESY, where the so-called XFEL is part of the design of the electron-positron linear collider TESLA, as well as at SLAC, where the so-called Linac Coherent Light Source (LCLS) has been proposed. Such an X-ray laser would allow for high-field science applications: one could make use of not only the high energy and transverse coherence of the X-ray beam, but also of the possibility of focusing it to a spot with a small radius, hopefully in the range of the laser wavelength. Along this route one obtains very large electric fields, much larger than those obtainable with any optical laser of the same power. In this Letter we discuss the possibility of obtaining an electric field so high that electron-positron pairs are spontaneously produced in vacuum (Schwinger pair production). We find that if X-ray optics can be improved to approach the diffraction limit of focusing, and if the power of the planned X-ray FELs can be increased to the terawatt region, then there is ample room for an investigation of the Schwinger pair production mechanism.

  5. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Robert, A.; Curtis, R.; Flath, D.; Gray, A.; Sikorski, M.; Song, S.; Srinivasan, V.; Stefanescu, D.

    2013-03-01

    The X-ray Correlation Spectroscopy instrument (XCS) at the Linac Coherent Light Source (LCLS) is a dedicated instrument using coherent x-ray scattering techniques to investigate dynamics in condensed matter systems. XCS can probe both slow and ultrafast dynamics on lengthscales of interest. It employs an extensive suite of X-ray instrumentation to tailor the LCLS X-ray beam properties to experimental requirements. Results demonstrating the full transverse coherence of the LCLS beam are presented.

  6. Characterization of Second Harmonic Afterburner Radiation at the LCLS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2010-09-14

    During commissioning of the Linac Coherent Light Source (LCLS) x-ray Free Electron Laser (FEL) at the SLAC National Accelerator Laboratory it was shown that saturation lengths much shorter than the installed length of the undulator line can routinely be achieved. This frees undulator segments that can be used to provide enhanced spectral properties and at the same time, test the concept of FEL Afterburners. In December 2009 a project was initiated to convert undulator segments at the down-beam end of the undulator line into Second Harmonic Afterburners (SHAB) to enhance LCLS radiation levels in the 10-20 keV energy range. This is being accomplished by replacement of gap-shims increasing the fixed gaps from 6.8 mm to 9.9 mm, which reduces their K values from 3.50 to 2.25 and makes the segments resonant at the second harmonic of the upstream unmodified undulators. This paper reports experimental results of the commissioning of the SHAB extension to LCLS.

  7. Experience with the CSPAD during dedicated detector runs at LCLS

    NASA Astrophysics Data System (ADS)

    Carini, G. A.; Boutet, S.; Chollet, M.; Dragone, A.; Haller, G.; Hart, P. A.; Herrmann, S. C.; Kenney, C. J.; Koglin, J.; Messerschmidt, M.; Nelson, S.; Pines, J.; Robert, A.; Song, S.; Thayer, J. B.; Williams, G. J.; Zhu, D.

    2014-03-01

    In-house developed cameras and other commercial detectors are typically tested with x-ray tubes and at synchrotron beamlines before being deployed and used for science experiments. In a prototyping phase, this is needed to understand and characterize the behavior of the detector. In a more advanced development phase, measurements with x-rays are required to characterize and calibrate the camera. Tests at synchrotron beamlines in actual experimental conditions are indeed a valuable source for detector developers. However, when all photons arrive at once, as for FELs, the response of the detector can be very different from that obtained with a synchrotron beam which behaves more like a CW (continuous) source. This behavior was already observed during users runs at LCLS and recently investigated during dedicated detector beamtime. The linearity of the response of the Cornell-SLAC Pixel Array Detector (CSPAD) was investigated. Results are presented and discussed.

  8. Multiphoton Ionization of Atoms and Molecules with Soft and Hard X-rays

    NASA Astrophysics Data System (ADS)

    Rolles, Daniel

    2015-05-01

    We have recently extended our previous investigations of the multiphoton ionization of heavy atoms, such as Kr and Xe, and of high-Z atom containing molecules from the soft into the hard X-ray range as well as into the XUV regime. Using the 100-nm focus environment at LCLS, we were able to reach peak intensities up to 1019W/cm2 at photon energies between 5 to 9 keV. This allows studying atomic and molecular ionization processes under unprecedented X-ray intensities and, in particular, under the identical conditions where typical coherent diffractive imaging experiments are performed. Our results are thus important benchmarks for calculating radiation damage effects in FEL-based X-ray imaging experiments. Using new micro-focusing capabilities at FLASH, we also extended our studies into the XUV range between 70 and 200 eV photon energy and observed significantly higher charge states than previously reported. I will present the results from our recent measurements at LCLS and FLASH and discuss the different multiphoton ionization mechanisms that play a role in the XUV, soft, and hard X-ray range.

  9. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    DOE PAGES

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on allmore » SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.« less

  10. Development and calibration of mirrors and gratings for the soft x-ray materials science beamline at the Linac Coherent Light Source free-electron laser.

    PubMed

    Soufli, Regina; Fernández-Perea, Mónica; Baker, Sherry L; Robinson, Jeff C; Gullikson, Eric M; Heimann, Philip; Yashchuk, Valeriy V; McKinney, Wayne R; Schlotter, William F; Rowen, Michael

    2012-04-20

    This work discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 to 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.

  11. Development and calibration of mirrors and gratings for the Soft X-ray materials science beamline at the Linac Coherent Light Source free-electron laser

    SciTech Connect

    Soufli, Regina; Fernandez-Perea, Monica; Baker, Sherry L.; Robinson, Jeff C.; Gullikson, Eric M.; Heimann, Philip; Yashchuk, Valerie V.; McKinney, Wayne R.; Schlotter, William F.; Rowen, Michael

    2012-04-18

    This article discusses the development and calibration of the x-ray reflective and diffractive elements for the Soft X-ray Materials Science (SXR) beamline of the Linac Coherent Light Source (LCLS) free-electron laser (FEL), designed for operation in the 500 – 2000 eV region. The surface topography of three Si mirror substrates and two Si diffraction grating substrates was examined by atomic force microscopy (AFM) and optical profilometry. The figure of the mirror substrates was also verified via surface slope measurements with a long trace profiler. A boron carbide (B4C) coating especially optimized for the LCLS FEL conditions was deposited on all SXR mirrors and gratings. Coating thickness uniformity of 0.14 nm root mean square (rms) across clear apertures extending to 205 mm length was demonstrated for all elements, as required to preserve the coherent wavefront of the LCLS source. The reflective performance of the mirrors and the diffraction efficiency of the gratings were calibrated at beamline 6.3.2 at the Advanced Light Source synchrotron. To verify the integrity of the nanometer-scale grating structure, the grating topography was examined by AFM before and after coating. This is to our knowledge the first time B4C-coated diffraction gratings are demonstrated for operation in the soft x-ray region.

  12. Automated identification and classification of single particle serial femtosecond X-ray diffraction data.

    PubMed

    Andreasson, Jakob; Martin, Andrew V; Liang, Meng; Timneanu, Nicusor; Aquila, Andrew; Wang, Fenglin; Iwan, Bianca; Svenda, Martin; Ekeberg, Tomas; Hantke, Max; Bielecki, Johan; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Hartmann, Robert; Erk, Benjamin; Rudek, Benedikt; Chapman, Henry N; Hajdu, Janos; Barty, Anton

    2014-02-10

    The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour.

  13. Automated identification and classification of single particle serial femtosecond X-ray diffraction data.

    PubMed

    Andreasson, Jakob; Martin, Andrew V; Liang, Meng; Timneanu, Nicusor; Aquila, Andrew; Wang, Fenglin; Iwan, Bianca; Svenda, Martin; Ekeberg, Tomas; Hantke, Max; Bielecki, Johan; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Hartmann, Robert; Erk, Benjamin; Rudek, Benedikt; Chapman, Henry N; Hajdu, Janos; Barty, Anton

    2014-02-10

    The first hard X-ray laser, the Linac Coherent Light Source (LCLS), produces 120 shots per second. Particles injected into the X-ray beam are hit randomly and in unknown orientations by the extremely intense X-ray pulses, where the femtosecond-duration X-ray pulses diffract from the sample before the particle structure is significantly changed even though the sample is ultimately destroyed by the deposited X-ray energy. Single particle X-ray diffraction experiments generate data at the FEL repetition rate, resulting in more than 400,000 detector readouts in an hour, the data stream during an experiment contains blank frames mixed with hits on single particles, clusters and contaminants. The diffraction signal is generally weak and it is superimposed on a low but continually fluctuating background signal, originating from photon noise in the beam line and electronic noise from the detector. Meanwhile, explosion of the sample creates fragments with a characteristic signature. Here, we describe methods based on rapid image analysis combined with ion Time-of-Flight (ToF) spectroscopy of the fragments to achieve an efficient, automated and unsupervised sorting of diffraction data. The studies described here form a basis for the development of real-time frame rejection methods, e.g. for the European XFEL, which is expected to produce 100 million pulses per hour. PMID:24663542

  14. Experimental Measurements of Ultra-Thin Bragg Crystals for LCLS Beam-Sharing Operation

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Zhu, D.; Lemke, H.; Chollet, M.; Fritz, D. M.; Robert, A.; Hastings, J. B.; Feldkamp, J. M.; Cammarata, M.; Moeller, S.; Yabashi, M.; Tono, K.; Huang, X.

    2013-03-01

    The successful lasing and operation of the LCLS hard X-ray FEL has brought tremendous interest to the user community spanning a wide range of scientific disciplines including physics, chemistry, structural biology, and material science. It created demand on beam time that is often left unfulfilled. Here we report experimental measurements of ultra-thin silicon single-crystal membranes for potentially beam-sharing the LCLS beam. The samples included the (111), (220), and (400) orientations with thicknesses ranging from 5 to 20 μm. Both high-resolution rocking curves and topographic data were first obtained using synchrotron X-rays, demonstrating near ideal diffraction qualities. Subsequent tests using the full LCLS beam revealed lattice distortions from beam-induced membrane vibrations, which were shown to be effectively reduced by ambient air and smaller membrane dimensions. High diffraction quality thin-diamonds in the (111) orientation are also being pursued as a parallel effort. Both approaches are paving a way for a practical beam-sharing implementation at LCLS in the near future.

  15. Two-Bunch Self-Seeding for Narrow-Bandwidth Hard X-Ray Free-Electron Lasers

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; Ruth, Ronald D.; /SLAC

    2010-06-04

    It is well-known that seeding can be used to produce narrow-bandwidth and fully-coherent x- ray free-electron lasers. Self-seeding, which uses an extra undulator to generate the seed pulse, is perhaps one of the most promising methods to accomplish this. In the hard x-ray regime with high- energy electrons, this method requires a large magnetic chicane to match the path length delay of the x-ray monochromator that selects a narrow bandwidth of radiation. Such a chicane not only takes large footprint to build, but also may degrade the electron beam qualities through incoherent and coherent synchrotron radiation. In this paper, we present an alternative two-bunch self-seeding scheme. The two bunches are precisely separated to match the x-ray delay of the monochromator and eliminate the need for a long, complex magnetic chicane. The spectrally filtered SASE x-ray pulse produced by the first bunch is combined with the second electron bunch at the entrance of the second undulator and then amplified to the saturation level. We present start-to-end simulation results based on the LCLS hard x-ray FEL and show that this method can produce a nearly fully coherent x-ray pulse at a few GW power level.

  16. Short period, high field cryogenic undulator for extreme performance x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    O'Shea, F. H.; Marcus, G.; Rosenzweig, J. B.; Scheer, M.; Bahrdt, J.; Weingartner, R.; Gaupp, A.; Grüner, F.

    2010-07-01

    Short period, high field undulators can enable short wavelength free electron lasers (FELs) at low beam energy, with decreased gain length, thus allowing much more compact and less costly FEL systems. We describe an ongoing initiative to develop such an undulator based on an approach that utilizes novel cryogenic materials. While this effort was begun in the context of extending the photon energy regime of a laser-plasma accelerator based electron source, we consider here implications of its application to sub-fs scenarios in which more conventional injectors are employed. The use of such low-charge, ultrashort beams, which has recently been proposed as a method of obtaining single-spike performance in x-ray FELs, is seen in simulation to give unprecedented beam brightness. This brightness, when considered in tandem with short wavelength, high field undulators, enables extremely high performance FELs. Two examples discussed in this paper illustrate this point well. The first is the use of the SPARX injector at 2.1 GeV with 1 pC of charge to give 8 GW peak power in a single spike at 6.5 Å with a photon beam peak brightness greater than 1035photons/(smm2mrad20.1%BW), which will also reach LCLS wavelengths on the 5th harmonic. The second is the exploitation of the LCLS injector with 0.25 pC, 150 as pulses to lase at 1.5 Å using only 4.5 GeV energy; beyond this possibility, we present start-to-end simulations of lasing at unprecedented short wavelength, 0.15 Å, using 13.65 GeV LCLS design energy.

  17. LCLS Heavy Met Outgassing Tests

    SciTech Connect

    Kishiyama, K. I.

    2010-12-01

    A Heavy Met that is 95% tungsten, 3% nickel and 2% iron and sintered to 100% density and is Ultra High Vacuum (UHV) compatible is proposed for use as the X-ray slit in the Front End Enclosure and the Fixed Mask for the Linac Coherent Light Source (LCLS). The Heavy Met was tested in the LLNL Vacuum Sciences and Engineering Lab (VSEL) to determine its outgassing rate and its overall compatibility with the vacuum requirements for LCLS.

  18. Commissioning of the Delta Polarizing Undulator at LCLS

    SciTech Connect

    Nuhn, Heinz-Dieter

    2015-09-25

    The Linac Coherent Light Source (LCLS) generates linearly polarized, intense, high-brightness x-ray pulses from planar fixed-gap undulators. While the fixed-gap design supports a very successful and tightly controlled alignment concept, it provides only limited taper capability (up to 1% through canted pole and horizontal position adjustability) and lacks polarization control. The latter is of great importance for soft x-ray experiments. A new 3.2-m-long compact undulator (based on the Cornell University Delta design) has been developed and installed in place of the last LCLS undulator segment (U33) in October 2014. This undulator provides full control of the polarization degree and K value. Used on its own, it produces fully polarized radiation in the selected state (linear, circular or elliptical) but at low intensity. To increase the output power by orders of magnitude, the electron beam is micro-bunched by several (~10) of the upstream LCLS undulator segments operated in the linear FEL regime. As unavoidable by-product, this microbunching process produces moderate amounts of horizontally linear polarized radiation which mixes with the radiation produced by the Delta undulator. This unwanted radiation component has been greatly reduced by the reverse taper configuration, as suggested by E. Schneidmiller and M. Yurkov. Full elimination of the linear polarized component was achieved through spatial separation combined with transverse collimation. The paper describes these and other methods tested during commissioning. It also presents results of polarization measurements showing high degrees of circular polarization in the soft x-ray wavelength range (500 eV - 1500 eV).

  19. A Stability of LCLS Linac Modulators

    SciTech Connect

    Decker, F.-J.; Krasnykh, A.; Morris, B.; Nguyen, M.; /SLAC

    2012-06-13

    Information concerning to a stability of LCLS RF linac modulators is allocated in this paper. In general a 'pulse-to-pulse' modulator stability (and RF phase as well) is acceptable for the LCLS commission and FEL programs. Further modulator stability improvements are possible and approaches are discussed based on our experimental results.

  20. Soft x-ray self-seeding simulation methods and their application for the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Serkez, Svitozar; Krzywinski, Jacek; Ding, Yuantao; Huang, Zhirong

    2015-03-01

    Self-seeding is a promising approach to significantly narrow the self-amplified spontaneous emission bandwidth of X-ray free-electron lasers (FELs) and hence to produce nearly transform-limited pulses. We study the radiation propagation through a grating monochromator installed at the Linac Coherent Light Source (LCLS). The monochromator design is based on a toroidal VLS grating working at a fixed incidence angle mounting without an entrance slit. It covers the spectral range from 500 eV to 1000 eV. The optical system was studied using a wave optics method to evaluate the performance of the self-seeding scheme. Our wave optics analysis takes into account the finite size of the coherent source, third-order aberrations and height error of the optical elements. Two propagation approaches are studied with time-dependent FEL simulations. In addition, the pulse-front tilt phenomenon effect is illustrated.

  1. Commissioning of the LCLS Linac and Bunch Compressors

    SciTech Connect

    Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma#, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Molloy, S.; Miahnahri, A.; Nuhn, H.-D.; Ratner, D.; Turner, J.; Welch, J.; White, W.; /SLAC

    2008-08-20

    The Linac Coherent Light Source (LCLS) is a SASE x-ray Free-Electron Laser (FEL) project under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through the first bunch compressor, was commissioned in the spring and summer of 2007. The second phase of commissioning, including the second bunch compressor and various main linac modifications, was completed in January through August of 2008. We report here on experience gained during this second phase of machine commissioning, including the injector, the first and second bunch compressor stages, the linac up to 14 GeV, and beam stability measurements. The final commissioning phase, including the undulator and the long transport line from the linac, is set to begin in December 2008, with first light expected in July 2009.

  2. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    SciTech Connect

    Shavorskiy, Andrey; Hertlein, Marcus; Guo Jinghua; Tyliszczak, Tolek; Cordones, Amy; Vura-Weis, Josh; Siefermann, Katrin; Slaughter, Daniel; Sturm, Felix; Weise, Fabian; Khurmi, Champak; Belkacem, Ali; Weber, Thorsten; Gessner, Oliver; Bluhm, Hendrik; Strader, Matthew; Cho, Hana; Coslovich, Giacomo; Kaindl, Robert A.; Lin, Ming-Fu; and others

    2013-04-19

    X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.

  3. Calculating the Loss factor of the LCLS Beam Line Elements for Ultra-Shrot Bunches

    SciTech Connect

    Novokhatski, A.; /SLAC

    2009-10-17

    The Linac Coherent Light Source (LCLS) is a SASE 1.5-15 {angstrom} x-ray Free-Electron Laser (FEL) facility. Since an ultra-short intense bunch is used in the LCLS operation one might suggest that wake fields, generated in the vacuum chamber, may have an effect on the x-ray production because these fields can change the beam particle energies thereby increasing the energy spread in a bunch. At LCLS a feedback system precisely controls the bunch energy before it enters a beam transport line after the linac. However, in the transport line and later in the undulator section the bunch energy and energy spread are not under feedback control and may change due to wake field radiation, which depends upon the bunch current or on a bunch length. The linear part of the energy spread can be compensated in the upstream linac; the energy loss in the undulator section can be compensated by varying the K-parameter of the undulators, however we need a precise knowledge of the wake fields in this part of the machine. Resistive wake fields are known and well calculated. We discuss an additional part of the wake fields, which comes from the different vacuum elements like bellows, BPMs, transitions, vacuum ports, vacuum valves and others. We use the code 'NOVO' together with analytical estimations for the wake potential calculations.

  4. Dual crystal x-ray spectrometer at 1.8 keV for high repetition-rate single-photon counting spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Gamboa, E. J.; Bachmann, B.; Kraus, D.; MacDonald, M. J.; Bucher, M.; Carron, S.; Coffee, R. N.; Drake, R. P.; Emig, J.; Ferguson, K. R.; Fletcher, L. B.; Glenzer, S. H.; Gorkhover, T.; Hau-Riege, S. P.; Krzywinski, J.; Levitan, A. L.; Meiwes-Broer, K.-H.; Osipov, T.; Pardini, T.; Peltz, C.; Skruszewicz, S.; Bostedt, C.; Fennel, T.; Döppner, T.

    2016-08-01

    With the recent development of high-repetition rate x-ray free electron lasers (FEL), it is now possible to perform x-ray scattering and emission spectroscopy measurements from thin foils or gasses heated to high-energy density conditions by integrating over many experimental shots. Since the expected signal may be weaker than the typical CCD readout noise over the region-of-interest, it is critical to the success of this approach to use a detector with high-energy resolution so that single x-ray photons may be isolated. Here we describe a dual channel x-ray spectrometer developed for the Atomic and Molecular Optics endstation at the Linac Coherent Light Source (LCLS) for x-ray spectroscopy near the K-edge of aluminum. The spectrometer is based on a pair of curved PET (002) crystals coupled to a single pnCCD detector which simultaneously measures x-ray scattering and emission in the forward and backward directions. The signals from single x-ray photons are accumulated permitting continuous single-shot acquisition at 120 Hz.

  5. Accelerator-driven X-ray Sources

    SciTech Connect

    Nguyen, Dinh Cong

    2015-11-09

    After an introduction which mentions x-ray tubes and storage rings and gives a brief review of special relativity, the subject is treated under the following topics and subtopics: synchrotron radiation (bending magnet radiation, wiggler radiation, undulator radiation, brightness and brilliance definition, synchrotron radiation facilities), x-ray free-electron lasers (linac-driven X-ray FEL, FEL interactions, self-amplified spontaneous emission (SASE), SASE self-seeding, fourth-generation light source facilities), and other X-ray sources (energy recovery linacs, Inverse Compton scattering, laser wakefield accelerator driven X-ray sources. In summary, accelerator-based light sources cover the entire electromagnetic spectrum. Synchrotron radiation (bending magnet, wiggler and undulator radiation) has unique properties that can be tailored to the users’ needs: bending magnet and wiggler radiation is broadband, undulator radiation has narrow spectral lines. X-ray FELs are the brightest coherent X-ray sources with high photon flux, femtosecond pulses, full transverse coherence, partial temporal coherence (SASE), and narrow spectral lines with seeding techniques. New developments in electron accelerators and radiation production can potentially lead to more compact sources of coherent X-rays.

  6. Measurement and Instrumentation Challenges at X-ray Free Electron Lasers

    NASA Astrophysics Data System (ADS)

    Feng, Yiping

    2015-03-01

    X-ray Free Electron Laser sources based on the Self Amplified Spontaneous Emission process are intrinsically chaotic, giving rise to pulse-to-pulse fluctuations in all physical properties, including intensity, position and pointing, spatial and temporal profiles, spectral content, timing, and coherence. These fluctuations represents special challenges to users whose experiments are designed to reveal small changes in the underlying physical quantities, which would otherwise be completely washed out without using the proper diagnostics tools. Due to the X-ray FEL's unique characteristics such as the unprecedented peak power and nearly full spatial coherence, there are many technical challenges in conceiving and implementing these devices that are highly transmissive, provide sufficient signal-to-noise ratio, and most importantly work in the single-shot mode. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford Univ.

  7. Ultrafast X-Ray Coherent Control

    SciTech Connect

    Reis, David

    2009-05-01

    This main purpose of this grant was to develop the nascent eld of ultrafast x-ray science using accelerator-based sources, and originally developed from an idea that a laser could modulate the di racting properties of a x-ray di racting crystal on a fast enough time scale to switch out in time a shorter slice from the already short x-ray pulses from a synchrotron. The research was carried out primarily at the Advanced Photon Source (APS) sector 7 at Argonne National Laboratory and the Sub-Picosecond Pulse Source (SPPS) at SLAC; in anticipation of the Linac Coherent Light Source (LCLS) x-ray free electron laser that became operational in 2009 at SLAC (all National User Facilities operated by BES). The research centered on the generation, control and measurement of atomic-scale dynamics in atomic, molecular optical and condensed matter systems with temporal and spatial resolution . It helped develop the ultrafast physics, techniques and scienti c case for using the unprecedented characteristics of the LCLS. The project has been very successful with results have been disseminated widely and in top journals, have been well cited in the eld, and have laid the foundation for many experiments being performed on the LCLS, the world's rst hard x-ray free electron laser.

  8. A Study of Resonant Excitation of Longitudinal HOMs in the Cryomodules of LCLS-II

    SciTech Connect

    Bane, Karl

    2015-09-23

    The Linac Coherent Light Source (LCLS) at SLAC, the world’s first hard X-ray FEL, is being upgraded to the LCLS-II. The major new feature will be the installation of 35 cryomodules (CMs) of TESLA-type, superconducting accelerating structures, to allow for high rep-rate operation. It is envisioned that eventually the LCLS-II will be able to deliver 300 pC, 1 kA pulses of beam at a rate of 1 MHz. At a cavity temperature of 2 K, any heat generated (even on the level of a few watts) is expensive to remove. In the last linac of LCLS-II, L3—where the peak current is highest—the power radiated by the bunches in the CMs is estimated at 13.8 W (charge 300 pC option, rep rate 1 MHz). But this calculation ignores resonances that can be excited between the bunch frequency and higher order mode (HOM) frequencies in the CMs, which in principle can greatly increase this number. In the present work we calculate the multi-bunch wakefields excited in a CM of LCLS-II, in order to estimate the probability of the beam losing a given amount of power. Along theway, we find some interesting properties of the resonant interaction. In detail, we begin this report by finding the wakes experienced by bunches far back in the bunch train. Then we present a complementary approach that calculates the field amplitude excited in steady-state by a train of bunches, and show that the two approaches agree. Next we obtain the properties of the 450 longitudinal HOMs that cover the range 3–5 GHz in the CMs of LCLS-II, where we include the effects of the inter-CM ceramic dampers. At the end we apply our method using these modes.

  9. X-Ray Detector Simulations - Oral Presentation

    SciTech Connect

    Tina, Adrienne

    2015-08-20

    The free-electron laser at LCLS produces X-Rays that are used in several facilities. This light source is so bright and quick that we are capable of producing movies of objects like proteins. But making these movies would not be possible without a device that can detect the X-Rays and produce images. We need X-Ray cameras. The challenges LCLS faces include the X-Rays’ high repetition rate of 120 Hz, short pulses that can reach 200 femto-seconds, and extreme peak brightness. We need detectors that are compatible with this light source, but before they can be used in the facilities, they must first be characterized. My project was to do just that, by making a computer simulation program. My presentation discusses the individual detectors I simulated, the details of my program, and how my project will help determine which detector is most useful for a specific experiment.

  10. 7 Å Resolution in Protein 2-Dimentional-Crystal X-Ray Diffraction at Linac Coherent Light Source

    SciTech Connect

    Pedrini, Bill; Tsai, Ching-Ju; Capitani, Guido; Padeste, Celestino; Hunter, Mark; Zatsepin, Nadia A.; Barty, Anton; Benner, Henry; Boutet, Sebastien; Feld, Geoffrey K.; Hau-Riege, Stefan; Kirian, Rick; Kupitz, Christopher; Messerschmidt, Marc; Ogren, John I.; Pardini, Tommaso; Segelke, Brent; Williams, Garth J.; Spence , John C.; Abela, Rafael; Coleman, Matthew A.; Evans, James E.; Schertler, Gebhard; Frank, Matthias; Li, Xiao-Dan

    2014-06-09

    Membrane proteins arranged as two-dimensional (2D) crystals in the lipid en- vironment provide close-to-physiological structural information, which is essential for understanding the molecular mechanisms of protein function. X-ray diffraction from individual 2D crystals did not represent a suitable investigation tool because of radiation damage. The recent availability of ultrashort pulses from X-ray Free Electron Lasers (X-FELs) has now provided a mean to outrun the damage. Here we report on measurements performed at the LCLS X-FEL on bacteriorhodopsin 2D crystals mounted on a solid support and kept at room temperature. By merg- ing data from about a dozen of single crystal diffraction images, we unambiguously identified the diffraction peaks to a resolution of 7 °A, thus improving the observable resolution with respect to that achievable from a single pattern alone. This indicates that a larger dataset will allow for reliable quantification of peak intensities, and in turn a corresponding increase of resolution. The presented results pave the way to further X-FEL studies on 2D crystals, which may include pump-probe experiments at subpicosecond time resolution.

  11. Searching for plasmas with anomalous dispersion in the soft X-ray regime

    SciTech Connect

    Nilsen, J; Johnson, W R; Cheng, K T

    2007-08-24

    Over the last decade the electron density of plasmas has been measured using X-ray laser interferometers in the 14 to 47 nm wavelength regime. With the same formula used in decades of experiments with optical interferometers, the data analysis assumes the index of refraction is due only to the free electrons, which makes the index less than one. Over the last several years, interferometer experiments in C, Al, Ag, and Sn plasmas have observed plasmas with index of refraction greater than one at 14 or 47 nm and demonstrated unequivocally that the usual formula for calculating the index of refraction is not always valid as the contribution from bound electrons can dominate the free electrons in certain cases. In this paper we search for other materials with strong anomalous dispersion that could be used in X-ray laser interferometer experiments to help understand this phenomena. An average atom code is used to calculate the plasma properties. This paper discusses the calculations of anomalous dispersion in Ne and Na plasmas near 47 nm and Xe plasmas near 14 nm. With the advent of the FLASH X-ray free electron laser in Germany and the LCLS X-FEL coming online at Stanford in 2 years the average atom code will be an invaluable tool to explore plasmas at higher X-ray energy to identify potential experiments for the future. During the next decade X-ray free electron lasers and other X-ray sources will be used to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential.

  12. X-ray Free-electron Lasers

    SciTech Connect

    Feldhaus, J.; Arthur, J.; Hastings, J.B.; /SLAC

    2007-02-23

    In a free-electron laser (FEL) the lasing medium is a high-energy beam of electrons flying with relativistic speed through a periodic magnetic field. The interaction between the synchrotron radiation that is produced and the electrons in the beam induces a periodic bunching of the electrons, greatly increasing the intensity of radiation produced at a particular wavelength. Depending only on a phase match between the electron energy and the magnetic period, the wavelength of the FEL radiation can be continuously tuned within a wide spectral range. The FEL concept can be adapted to produce radiation wavelengths from millimeters to Angstroms, and can in principle produce hard x-ray beams with unprecedented peak brightness, exceeding that of the brightest synchrotron source by ten orders of magnitude or more. This paper focuses on short-wavelength FELs. It reviews the physics and characteristic properties of single-pass FELs, as well as current technical developments aiming for fully coherent x-ray radiation pulses with pulse durations in the 100 fs to 100 as range. First experimental results at wavelengths around 100 nm and examples of scientific applications planned on the new, emerging x-ray FEL facilities are presented.

  13. Soft X-ray Mirrors for the Linac Coherent Light Source

    SciTech Connect

    Pivovaroff, M J; Bionta, R M; Mccarville, T J; Soufli, R; Stefan, P M

    2007-08-13

    The Linac Coherent Light Source (LCLS) is a 0.15-1.5 nm wavelength free-electron laser (FEL) being constructed at the Stanford Linear Accelerator Center (SLAC) by a multi-institution consortium, including Lawrence Livermore National Laboratory (LLNL). One of LLNL's responsibilities involves the design and construction of two grazing-incidence mirror systems whose primary intent is to reduce radiation levels in the experimental halls by separating the FEL beam from unwanted high-energy photons. This paper discusses one of these systems, the Soft X-ray Offset Mirror System (SOMS) that will operate in the wavelength range 0.62-1.5 nm (0.827-2.00 keV). The unusual properties of the FEL beam translate to stringent specifications in terms of stability, material choice and mirror properties. It also precludes using approaches previously developed for synchrotron light sources. This situation has led us to a unique mirror design, consisting of a reflective boron carbide layer deposited on a silicon substrate. In the first part of this paper, we discuss the basic system requirements for the SOMS and motivate the need for these novel reflective elements. In the second part of this paper, we discuss the development work we have performed, including simulation and experimental verification of the boron carbide coating properties, and the expected performance of the final system.

  14. Low-Charge, Hard X-Ray Free Electron Laser Driven with an X-Band Injector and Accelerator

    SciTech Connect

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-04-17

    After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam's longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  15. Low-charge, hard x-ray free electron laser driven with an X-band injector and accelerator

    NASA Astrophysics Data System (ADS)

    Sun, Yipeng; Adolphsen, Chris; Limborg-Deprey, Cecile; Raubenheimer, Tor; Wu, Juhao

    2012-03-01

    After the successful operation of the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS), soft and hard x-ray free electron lasers (FELs) are being built, designed, or proposed at many accelerator laboratories. Acceleration employing lower frequency rf cavities, ranging from L-band to C-band, is usually adopted in these designs. In the first stage bunch compression, higher-frequency harmonic rf system is employed to linearize the beam’s longitudinal phase space, which is nonlinearly chirped during the lower frequency rf acceleration process. In this paper, a hard x-ray FEL design using an all X-band accelerator at 11.424 GHz (from photocathode rf gun to linac end) is presented, without the assistance of any harmonic rf linearization. It achieves LCLS-like performance at low charge using X-band linac drivers, which is more versatile, efficient, and compact than ones using S-band or C-band rf technology. It employs initially 42 microns long (rms), low-charge (10 pC) electron bunches from an X-band photoinjector. An overall bunch compression ratio of roughly 100 times is proposed in a two stage bunch compressor system. The start-to-end macroparticle 3D simulation employing several computer codes is presented in this paper, where space charge, wakefields, and incoherent and coherent synchrotron radiation effects are included. Employing an undulator with a short period of 1.5 cm, a Genesis FEL simulation shows successful lasing at a wavelength of 0.15 nm with a pulse length of 2 fs and a power saturation length as short as 20 meters, which is equivalent to LCLS low-charge mode. Its overall length of both accelerators and undulators is 180 meters (much shorter than the effective LCLS overall length of 1230 meters, including an accelerator length of 1100 meters and an undulator length of 130 meters), which makes it possible to be built in places where only limited space is available.

  16. LCLS XTOD Tunnel Vacuum System (XVTS)

    SciTech Connect

    Beale, R; Duffy, P; Kishiyama, K; Mckernan, M; McMahon, D; Lewis, S; Trent, J; Tung, L; Shen, S

    2005-11-04

    The vacuum system of the XVTS (X-Ray Vacuum Transport System) for the LCLS (Linac Coherent Light Source) XTOD (X-ray Transport, Optics and Diagnostics) system has been analyzed and configured by the Lawrence Livermore National Laboratory's NTED (New Technologies Engineering Division) as requested by the SLAC/LCLS program. The system layout, detailed analyses and selection of the vacuum components for the XTOD tunnel section are presented in this preliminary design report. The vacuum system was analyzed and optimized using a coupled gas load balance model of sub-volumes of the components to be evacuated. Also included are the plans for procurement, mechanical integration, and the cost estimates.

  17. X-ray holography in-flight

    NASA Astrophysics Data System (ADS)

    Gorkhover, Tais; Ulmer, Anatoli; Ferguson, Ken; Bucher, Max; Ekeberg, Tomas; Hantke, Max; Daurer, Benedikt; Nettelblad, Carl; Bielecki, Johan; Faigel, Guila; Hasse, Dirk; Morgan, Andrew; Mühlig, Kerstin; Seibert, Marvin; Chapman, Henry; Hajdu, Janos; Maia, Filipe; Moeller, Thomas; Bostedt, Christoph

    2016-05-01

    The advent of X-ray free-electron lasers, delivering ultra intense femtosecond X-ray flashes, opens the door for structure determination of single nanoparticles and biosamples with single shots. The first X-ray diffraction imaging experiments at LCLS delivered promising results on samples in the gas phase. However, the reconstruction of non-periodic structures is still challenging due to the loss of phase information. Meanwhile, X-ray holographic approaches allow for recording the phase directly into the diffraction image. In my talk, I will present the first successful proof-of-principle experiment for ``in-flight''-holography with free viruses. Our experiments pave the way for unique studies on levitating nanospecimen that are of central interest in several scientific communities including atmosphere research, chemistry, material sciences, and studies on matter under extreme conditions.

  18. Using the XFEL to drive the gain of inner-shell x-ray lasers using photo-ionization and photo-excitation processes

    NASA Astrophysics Data System (ADS)

    Nilsen, Joseph

    2015-09-01

    Four years ago an inner-shell X-ray laser was demonstrated at 849 eV in singly ionized neon gas using the LCLS X-FEL at 960 eV to photo-ionize the 1s electron in neutral neon followed by lasing on the 2p - 1s transition in singly-ionized neon. It took many decades to demonstrate this scheme because it required a very strong X-ray source that could photo-ionize the 1s (K shell) electrons in neon on a time scale comparable to the intrinsic auger lifetime in the neon, which is typically 2 fsec. In this work we model the neon inner shell X-ray laser under similar conditions to those used at LCLS and investigate how we can improve the efficiency of the neon laser and reduce the drive requirements by tuning the XFEL to the 1s-3p transition in neutral neon in order to create gain on the 2p-1s line in neutral neon. We also explore using the XFEL to drive gain on 3-2 transitions in singly-ionized Ar and Cu plasmas.

  19. Echo-seeding options for LCLS-II

    SciTech Connect

    Xiang, D.; Stupakov, G.; /SLAC

    2010-09-14

    The success of LCLS has opened up a new era of x-ray sciences. An upgrade to LCLS is currently being planned to enhance its capabilities. In this paper we study the feasibility of using the echo-enabled harmonic generation (EEHG) technique to generate narrow bandwidth soft x-ray radiation in the proposed LCLS-II soft x-ray beam line. We focus on the conceptual design, the technical implementation and the expected performances of the echo-seeding scheme. We will also show how the echo-seeding scheme allows one to generate two color x-ray pulses with the higher energy photons leading the lower energy ones as is favored in the x-ray pump-probe experiments.

  20. X-Ray Diffraction of Shock Compressed H2O

    NASA Astrophysics Data System (ADS)

    Gleason, A. E.

    2014-12-01

    H2O, critical for life and ubiquitous in biology, is one of the most abundant molecules in the solar system and is relevant to many fields, including fundamental physics and chemistry. Phase transformation information of H2O is also important to applied areas like planetary science where it is a constituent of giant planets Neptune and Uranus, icy satellites (e.g., Europa, Ganymede), and extrasolar planets (icy "super-Earths"). Using the MEC (Matter in Extreme Conditions) hutch at LCLS, we reach simultaneous high pressure (P) and temperature (T) with laser-driven shock waves and the capability of taking snapshots during a dynamic process with the X-ray Free Electron Laser (xFEL). We report the only shock-driven diffraction data on H2O ever collected to date, and examine time-resolved diffraction from ice Ih to high pressure ice VII. At 2 Mbar we find evidence of ice X - this has significant implications for planetary interiors and providing a bound for the onset of the superionic phase.

  1. Joint x-ray

    MedlinePlus

    X-ray - joint; Arthrography; Arthrogram ... x-ray technologist will help you position the joint to be x-rayed on the table. Once in place, pictures are taken. The joint may be moved into other positions for more ...

  2. Chest X-Ray

    MedlinePlus

    ... by: Image/Video Gallery Your radiologist explains chest x-ray. Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  3. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1991-01-01

    The annual progress report on Cosmic X Ray Physics for the period 1 Jan. to 31 Dec. 1990 is presented. Topics studied include: soft x ray background, new sounding rocket payload: x ray calorimeter, and theoretical studies.

  4. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1990-01-01

    The annual progress report on Cosmic X Ray Physics is presented. Topics studied include: the soft x ray background, proportional counter and filter calibrations, the new sounding rocket payload: X Ray Calorimeter, and theoretical studies.

  5. Editorial: Focus on X-ray Beams with High Coherence

    NASA Astrophysics Data System (ADS)

    Robinson, Ian; Gruebel, Gerhard; Mochrie, Simon

    2010-03-01

    This editorial serves as the preface to a special issue of New Journal of Physics, which collects together solicited papers on a common subject, x-ray beams with high coherence. We summarize the issue's content, and explain why there is so much current interest both in the sources themselves and in the applications to the study of the structure of matter and its fluctuations (both spontaneous and driven). As this collection demonstrates, the field brings together accelerator physics in the design of new sources, particle physics in the design of detectors, and chemical and materials scientists who make use of the coherent beams produced. Focus on X-ray Beams with High Coherence Contents Femtosecond pulse x-ray imaging with a large field of view B Pfau, C M Günther, S Schaffert, R Mitzner, B Siemer, S Roling, H Zacharias, O Kutz, I Rudolph, R Treusch and S Eisebitt The FERMI@Elettra free-electron-laser source for coherent x-ray physics: photon properties, beam transport system and applications E Allaria, C Callegari, D Cocco, W M Fawley, M Kiskinova, C Masciovecchio and F Parmigiani Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy Anders Madsen, Robert L Leheny, Hongyu Guo, Michael Sprung and Orsolya Czakkel The Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS) Sébastien Boutet and Garth J Williams Dynamics and rheology under continuous shear flow studied by x-ray photon correlation spectroscopy Andrei Fluerasu, Pawel Kwasniewski, Chiara Caronna, Fanny Destremaut, Jean-Baptiste Salmon and Anders Madsen Exploration of crystal strains using coherent x-ray diffraction Wonsuk Cha, Sanghoon Song, Nak Cheon Jeong, Ross Harder, Kyung Byung Yoon, Ian K Robinson and Hyunjung Kim Coherence properties of the European XFEL G Geloni, E Saldin, L Samoylova, E Schneidmiller, H Sinn, Th Tschentscher and M Yurkov Fresnel coherent diffractive imaging: treatment and analysis of data G J

  6. The LCLS-II Project at SLAC

    NASA Astrophysics Data System (ADS)

    Schultz, David

    2015-04-01

    The Linac Coherent Light Source-II (LCLS-II) Project will add capability and capacity to the LCLS facility. The design of the Project presents interesting challenges. The Project will construct a 4 GeV CW superconducting (SC) linac in the first kilometer of the existing SLAC linac tunnel and a substantial cryogenics plant to supply it. Two new variable gap undulators will be placed in the existing LCLS undulator hall, one optimized as a soft x-ray (200-1,300 eV) source will receive electrons from the new SC linac, the other replacing the existing LCLS undulator will receive electrons either simultaneously from the new SC linac (providing 1-5 keV photons) or the 120 Hz copper linac presently used by LCLS (providing 1-25 keV x-rays). The bright x-ray beams are conditioned before they are delivered to experimental stations. First light from the new facility is expected late in 2019. Work supported by US DOE Contract DE-AC02-766SF00515.

  7. Chest x-ray

    MedlinePlus

    Chest radiography; Serial chest x-ray; X-ray - chest ... You stand in front of the x-ray machine. You will be told to hold your breath when the x-ray is taken. Two images are usually taken. You will ...

  8. Circular dichroism measurements at an x-ray free-electron laser with polarization control.

    PubMed

    Hartmann, G; Lindahl, A O; Knie, A; Hartmann, N; Lutman, A A; MacArthur, J P; Shevchuk, I; Buck, J; Galler, A; Glownia, J M; Helml, W; Huang, Z; Kabachnik, N M; Kazansky, A K; Liu, J; Marinelli, A; Mazza, T; Nuhn, H-D; Walter, P; Viefhaus, J; Meyer, M; Moeller, S; Coffee, R N; Ilchen, M

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source. PMID:27587106

  9. Circular dichroism measurements at an x-ray free-electron laser with polarization control

    NASA Astrophysics Data System (ADS)

    Hartmann, G.; Lindahl, A. O.; Knie, A.; Hartmann, N.; Lutman, A. A.; MacArthur, J. P.; Shevchuk, I.; Buck, J.; Galler, A.; Glownia, J. M.; Helml, W.; Huang, Z.; Kabachnik, N. M.; Kazansky, A. K.; Liu, J.; Marinelli, A.; Mazza, T.; Nuhn, H.-D.; Walter, P.; Viefhaus, J.; Meyer, M.; Moeller, S.; Coffee, R. N.; Ilchen, M.

    2016-08-01

    A non-destructive diagnostic method for the characterization of circularly polarized, ultraintense, short wavelength free-electron laser (FEL) light is presented. The recently installed Delta undulator at the LCLS (Linac Coherent Light Source) at SLAC National Accelerator Laboratory (USA) was used as showcase for this diagnostic scheme. By applying a combined two-color, multi-photon experiment with polarization control, the degree of circular polarization of the Delta undulator has been determined. Towards this goal, an oriented electronic state in the continuum was created by non-resonant ionization of the O2 1s core shell with circularly polarized FEL pulses at hν ≃ 700 eV. An also circularly polarized, highly intense UV laser pulse with hν ≃ 3.1 eV was temporally and spatially overlapped, causing the photoelectrons to redistribute into so-called sidebands that are energetically separated by the photon energy of the UV laser. By determining the circular dichroism of these redistributed electrons using angle resolving electron spectroscopy and modeling the results with the strong-field approximation, this scheme allows to unambiguously determine the absolute degree of circular polarization of any pulsed, ultraintense XUV or X-ray laser source.

  10. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments

    NASA Astrophysics Data System (ADS)

    Harmand, M.; Ravasio, A.; Mazevet, S.; Bouchet, J.; Denoeud, A.; Dorchies, F.; Feng, Y.; Fourment, C.; Galtier, E.; Gaudin, J.; Guyot, F.; Kodama, R.; Koenig, M.; Lee, H. J.; Miyanishi, K.; Morard, G.; Musella, R.; Nagler, B.; Nakatsutsumi, M.; Ozaki, N.; Recoules, V.; Toleikis, S.; Vinci, T.; Zastrau, U.; Zhu, D.; Benuzzi-Mounaix, A.

    2015-07-01

    Taking advantage of the new opportunities provided by x-ray free electron laser (FEL) sources when coupled to a long laser pulse as available at the Linear Coherent Light Source (LCLS), we have performed x-ray absorption near-edge spectroscopy (XANES) of laser shock compressed iron up to 420 GPa (±50 ) and 10 800 K (±1390 ). Visible diagnostics coupled with hydrodynamic simulations were used to infer the thermodynamical conditions along the Hugoniot and the release adiabat. A modification of the pre-edge feature at 7.12 keV in the XANES spectra is observed above pressures of 260 GPa along the Hugoniot. Comparing with ab initio calculations and with previous laser-heated diamond cell data, we propose that such changes in the XANES pre-edge could be a signature of molten iron. This interpretation then suggests that iron is molten at pressures and temperatures higher than 260 GPa (±29 ) and 5680 K (±700 ) along the principal Fe Hugoniot.

  11. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  12. Probing Complexity using the LCLS and the ALS

    SciTech Connect

    Berrah, Nora

    2015-02-19

    The goal of our research program is to investigate fundamental interactions between photons and molecular/nano-systems to advance our quantitative understanding of electron correlations, charge transfer and many body phenomena. Our research projects focus on probing, on a femtosecond time-scale, multi-electron interactions and tracing nuclear motion in order to understand, and ultimately control energy flow and charge transfer processes from electromagnetic radiation to matter. The experiments will be carried out with state of the art instrumentation built by the P.I. team with funds from a DoE "Single Investigator and Small Group Research" (SISGR) grant. The research projects carried out the past three years consisted of first experiments using the linac coherent light source (LCLS) x-ray free electron laser (FEL) facility at the SLAC National Laboratory, as well as the study of correlated processes in select anions using the ALS. A report for the past cycle is described in section II. These studies have paved the way for our renewal application for the next three years. Our research interests for the next three years extend our past and present research by carrying out time-resolved measurements described in section III. They will consist of: a) The study of molecular dynamics that happen on ultrafast time scales, using pump-probe schemes and the study of non-linear physics in the x-ray regime via multi-photon absorption from the LCLS. This will be achieved by measuring and examining both electronic and nuclear dynamics subsequent to the interaction of molecules and nano-systems with LCLS pulses of various wavelength, intensity and pulse duration as described in section III.A. b) The study of molecular dynamics and correlated processes via absorption of vuv-soft x-rays from the Advanced Light Source (ALS) at Lawrence Berkeley Laboratory to provide single-photon ionization baseline results for LCLS studies. In addition, we will study the photodetachment of anions

  13. The Quest for Ultra-Short X-Ray Pulses

    SciTech Connect

    Zholents, Alexander

    2011-03-09

    Chemical bonds form, change, or break on a femtosecond timescale. Recording a 'molecular movie' with an atomic-scale spatial resolution at the timescale set by atomic motion is a critical step in understanding these processes that can be accomplished by using ultra-short x-ray pulses. In the first part of this talk I will discuss several ideas for a generation of femtosecond x-ray pulses using spontaneous emission of electrons. Some of them, like the laser 'slicing' technique, are now routinely used at several storage-ring-based synchrotron light sources; others, like an rf orbit deflection technique, is under construction at the Advanced Photon Source. Nowadays, the femtosecond x-ray pulses are also routinely produced by x-ray free electron lasers (FELs). In the second part of this talk I will discuss how one can use FELs to obtain even shorter x-ray pulses down to attosecond timescale.

  14. Dental x-rays

    MedlinePlus

    X-ray - teeth; Radiograph - dental; Bitewings; Periapical film; Panoramic film; Digital image ... dentist's office. There are many types of dental x-rays. Some of them are: Bitewing. Shows the crown ...

  15. X-ray (image)

    MedlinePlus

    X-rays are a form of ionizing radiation that can penetrate the body to form an image on ... will be shades of gray depending on density. X-rays can provide information about obstructions, tumors, and other ...

  16. X-Ray Lasers

    ERIC Educational Resources Information Center

    Chapline, George; Wood, Lowell

    1975-01-01

    Outlines the prospects of generating coherent x rays using high-power lasers and indentifies problem areas in their development. Indicates possible applications for coherent x rays in the fields of chemistry, biology, and crystallography. (GS)

  17. X Ray Topography

    ERIC Educational Resources Information Center

    Balchin, A. A.

    1974-01-01

    Discusses some aspects in X-ray topography, including formation of dislocations, characteristics of stacking faults, x-ray contrast in defect inspection, Berg-Barrett technique, and Lang traversing crystal and Borrmann's methods. (CC)

  18. X-Ray Imaging

    MedlinePlus

    ... Brain Surgery Imaging Clinical Trials Basics Patient Information X-Ray Imaging Print This Page X-ray imaging is perhaps the most familiar type of imaging. Images produced by X-rays are due to the different absorption rates of ...

  19. X-Rays

    MedlinePlus

    X-rays are a type of radiation called electromagnetic waves. X-ray imaging creates pictures of the inside of your ... different amounts of radiation. Calcium in bones absorbs x-rays the most, so bones look white. Fat and ...

  20. Hand x-ray

    MedlinePlus

    X-ray - hand ... A hand x-ray is taken in a hospital radiology department or your health care provider's office by an ... technician. You will be asked to place your hand on the x-ray table, and keep it ...

  1. Optical Shaping of X-Ray Free-Electron Lasers.

    PubMed

    Marinelli, A; Coffee, R; Vetter, S; Hering, P; West, G N; Gilevich, S; Lutman, A A; Li, S; Maxwell, T; Galayda, J; Fry, A; Huang, Z

    2016-06-24

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes. PMID:27391728

  2. Optical Shaping of X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Marinelli, A.; Coffee, R.; Vetter, S.; Hering, P.; West, G. N.; Gilevich, S.; Lutman, A. A.; Li, S.; Maxwell, T.; Galayda, J.; Fry, A.; Huang, Z.

    2016-06-01

    In this Letter we report the experimental demonstration of a new temporal shaping technique for x-ray free-electron lasers (FELs). This technique is based on the use of a spectrally shaped infrared (IR) laser and allows optical control of the x-ray generation process. By accurately manipulating the spectral amplitude and phase of the IR laser, we can selectively modify the electron bunch longitudinal emittance thus controlling the duration of the resulting x-ray pulse down to the femtosecond time scale. Unlike other methods currently in use, optical shaping is directly applicable to the next generation of high-average power x-ray FELs such as the Linac Coherent Light Source-II or the European X-FEL, and it enables pulse shaping of FELs at the highest repetition rates. Furthermore, this laser-shaping technique paves the way for flexible tailoring of complex multicolor FEL pulse patterns required for nonlinear multidimensional x-ray spectroscopy as well as novel multicolor diffraction imaging schemes.

  3. Undulator beamline optimization with integrated chicanes for X-ray free-electron-laser facilities.

    PubMed

    Prat, Eduard; Calvi, Marco; Ganter, Romain; Reiche, Sven; Schietinger, Thomas; Schmidt, Thomas

    2016-07-01

    An optimization of the undulator layout of X-ray free-electron-laser (FEL) facilities based on placing small chicanes between the undulator modules is presented. The installation of magnetic chicanes offers the following benefits with respect to state-of-the-art FEL facilities: reduction of the required undulator length to achieve FEL saturation, improvement of the longitudinal coherence of the FEL pulses, and the ability to produce shorter FEL pulses with higher power levels. Numerical simulations performed for the soft X-ray beamline of the SwissFEL facility show that optimizing the advantages of the layout requires shorter undulator modules than the standard ones. This proposal allows a very compact undulator beamline that produces fully coherent FEL pulses and it makes possible new kinds of experiments that require very short and high-power FEL pulses. PMID:27359133

  4. Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources

    NASA Astrophysics Data System (ADS)

    Rohringer, Nina

    2015-05-01

    X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.

  5. Panoramic Dental X-Ray

    MedlinePlus

    ... X-ray? What is Panoramic X-ray? Panoramic radiography , also called panoramic x-ray , is a two- ... Exams Dental Cone Beam CT X-ray, Interventional Radiology and Nuclear Medicine Radiation Safety About this Site ...

  6. Electron Beam Alignment Strategy in the LCLS Undulators

    SciTech Connect

    Nuhn, H.-D.; Emma, P.J.; Gassner, G.L.; LeCocq, C.M.; Peters, E.; Ruland, R.E.; /SLAC

    2007-01-03

    The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 {micro}m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 {micro}m rms vertical and 140 {micro}m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning.

  7. Identifying Longitudinal Jitter Sources in the LCLS Linac

    SciTech Connect

    Decker, Franz-Josef; Akre, Ron; Brachmann, Axel; Craft, Jim; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Huang, Zhirong; Iverson, Richard; Krasnykh, Anatoly; Loos, Henrik; Nuhn, Heinz-Dieter; Ratner, Daniel; Smith, Tonee; Turner, James; Welch, James; White, William; Wu, Juhao; /SLAC

    2012-07-06

    The Linac Coherent Light Source (LCLS) at SLAC is an x-ray Free Electron Laser (FEL) with wavelengths of 0.15 nm to 1.5 nm. The electron beam stability is important for good lasing. While the transverse jitter of the beam is about 10-20% of the rms beam sizes, the jitter in the longitudinal phase space is a multiple of the energy spread and bunch length. At the lower energy of 4.3 GeV (corresponding to the longest wavelength of 1.5 nm) the relative energy jitter can be 0.125%, while the rms energy spread is with 0.025% five times smaller. An even bigger ratio exists for the arrival time jitter of 50 fs and the bunch duration of about 5 fs (rms) in the low charge (20 pC) operating mode. Although the impact to the experiments is reduced by providing pulse-by-pulse data of the measured energy and arrival time, it would be nice to understand and mitigate the root causes of this jitter. The thyratron of the high power supply of the RF klystrons is one of the main contributors. Another suspect is the multi-pacting in the RF loads. Phase measurements down to 0.01 degree (equals 10 fs) along the RF pulse were achieved, giving hints to the impact of the different sources.

  8. X-ray binaries

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Satellite X-ray experiments and ground-based programs aimed at observation of X-ray binaries are discussed. Experiments aboard OAO-3, OSO-8, Ariel 5, Uhuru, and Skylab are included along with rocket and ground-based observations. Major topics covered are: Her X-1, Cyg X-3, Cen X-3, Cyg X-1, the transient source A0620-00, other possible X-ray binaries, and plans and prospects for future observational programs.

  9. Near Edge X-Ray Absorption Fine Structure Spectroscopy with X-Ray Free-Electron Lasers

    SciTech Connect

    Bernstein, D.P.; Acremann, Y.; Scherz, A.; Burkhardt, M.; Stohr, J.; Beye, M.; Schlotter, W.F.; Beeck, T.; Sorgenfrei, F.; Pietzsch, A.; Wurth, W.; Fohlisch, A.; /Hamburg U.

    2009-12-11

    We demonstrate the feasibility of Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy on solids by means of femtosecond soft x-ray pulses from a free-electron laser (FEL). Our experiments, carried out at the Free-Electron Laser at Hamburg (FLASH), used a special sample geometry, spectrographic energy dispersion, single shot position-sensitive detection and a data normalization procedure that eliminates the severe fluctuations of the incident intensity in space and photon energy. As an example we recorded the {sup 3}D{sub 1} N{sub 4,5}-edge absorption resonance of La{sup 3+}-ions in LaMnO{sub 3}. Our study opens the door for x-ray absorption measurements on future x-ray FEL facilities.

  10. Surface Characterization of the LCLS RF Gun Cathode

    SciTech Connect

    Brachmann, Axel; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Frisch, Josef; Gilevich, Sasha; Hays, Gregory; Hering, Philippe; Huang, Zhirong; Iverson, Richard; Loos, Henrik; Miahnahri, Alan; Nordlund, Dennis; Nuhn, Heinz-Dieter; Pianetta, Piero; Turner, James; Welch, James; White, William; Wu, Juhao; Xiang, Dao; /SLAC

    2012-06-25

    The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (> 500 pC), the cathode showed a decline of quantum efficiency within the area of drive laser illumination. They report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition they report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

  11. Femtosecond Operation of the LCLS for User Experiments

    SciTech Connect

    Frisch, Josef; Bostedt, Christoph; Bozek, John; Brachmann, Axel; Coffee, Ryan; Decker, Franz-Josef; Ding, Yuantao; Dowell, David; Emma, Paul; Gilevich, Sasha; Haller, Gunther; Hays, Gregory; Hering, Philippe; Hill, Bruce; Huang, Zhirong; Iverson, Richard Kanter, Elliot; Kraessig, Bertold; Loos, Henrik; Miahnahri, Alan; Nuhn, Heinz-Dieter; /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /SLAC /LBL, Berkeley

    2010-09-02

    In addition to its normal operation at 250pC, the LCLS has operated with 20pC bunches delivering X-ray beams to users with energies between 800eV and 2 keV and with bunch lengths below 10 fs FWHM. A bunch arrival time monitor and timing transmission system provide users with sub 50 fs synchronization between a laser and the X-rays for pump/probe experiments. We describe the performance and operational experience of the LCLS for short bunch experiments.

  12. Femtosecond Synchronization of Laser Systems for the LCLS

    SciTech Connect

    Byrd, John; Doolittle, Lawrence; Huang, Gang; Staples, John; Wilcox, Russell; Arthur, John; Frisch, Josef; White, William; /SLAC

    2012-08-24

    The scientific potential of femtosecond x-ray pulses at linac-driven free-electron lasers such as the Linac Coherent Light Source is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. An optical timing system based on stabilized fiber links has been developed for the LCLS to provide this synchronization. Preliminary results show synchronization of the installed stabilized links at the sub-20-femtosecond level. We present details of the implementation at LCLS and potential for future development.

  13. Overview of the RF Systems for LCLS

    SciTech Connect

    McIntosh, P.; Akre, R.; Boyce, R.; Emma, P.; Hill, A.; Rago, C.; /SLAC

    2005-06-15

    The Linac Coherent Light Source (LCLS) at SLAC, when it becomes operational in 2009, will provide its user community with an X-ray source many orders of magnitude brighter than anything available in the world at that time [1]. The electron beam acceleration will be provided by existing and new RF systems capable of maintaining the amplitude and phase stability of each bunch to extremely tight tolerances. RF feedback control of the various RF systems will be fundamental in ensuring the beam arrives at the LCLS undulator at precisely the required energy and peak current phase. This paper details the requirements for RF stability for the various LCLS RF systems and also highlights proposals for how these injector and Linac RF systems can meet these tight constraints.

  14. X-ray beamsplitter

    DOEpatents

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  15. X-ray beamsplitter

    DOEpatents

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  16. X-ray Spectrometry.

    ERIC Educational Resources Information Center

    Markowicz, Andrzej A.; Van Grieken, Rene E.

    1984-01-01

    Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…

  17. X-ray

    MedlinePlus

    ... is very low. Most experts feel that the benefits of appropriate x-ray imaging greatly outweigh any risks. Young children and babies in the womb are more sensitive to the risks of x-rays. Tell your health care provider if you think you might be pregnant.

  18. X-ray generator

    DOEpatents

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  19. Tunable Soft X-Ray Oscillators

    SciTech Connect

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  20. Two electron response to an intense x-ray free electron laser pulse

    NASA Astrophysics Data System (ADS)

    Moore, L. R.; Parker, J. S.; Meharg, K. J.; Armstrong, G. S. J.; Taylor, K. T.

    2009-11-01

    New x-ray free electron lasers (FELs) promise an ultra-fast ultra-intense regime in which new physical phenomena, such as double core hole formation in at atom, should become directly observable. Ahead of x-ray FEL experiments, an initial key task is to theoretically explore such fundamental laser-atom interactions and processes. To study the response of a two-electron positive ion to an intense x-ray FEL pulse, our theoretical approach is a direct numerical integration, incorporating non-dipole Hamiltonian terms, of the full six-dimensional time-dependent Schroedinger equation. We present probabilities of double K-shell ionization in the two-electron positive ions Ne8+ and Ar16+ exposed to x-ray FEL pulses with frequencies in the range 50 au to 300 au and intensities in the range 1017 to 1022 W/cm2.

  1. X-ray crystallography

    NASA Technical Reports Server (NTRS)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  2. Laboratory x ray lasers

    NASA Astrophysics Data System (ADS)

    Matthews, D. L.

    1989-08-01

    One of the most innovative spinoffs of ICF technology and physics was the development of the x ray wavelength laser. The first incontrovertible demonstration of this type of laser came from LLNL in 1984 using the Novette laser to pump a selenium foil target. The power and energy of Novette were then needed to produce a column of plasma of sufficient length to achieve a sufficient gainlength product (approximately 5.5, this corresponds to an amplification of approximately 250X) that could unquestionably illustrate the lasing effect. LLNL ICF expertise was also required to develop time-resolved spectrometers used to view the lasing transitions at approximately 20 nm, a region of the XUV spectrum normally dominated by high backgrounds. The design of the x ray laser amplifier, which required maintaining nonequilibrium level populations in a tailored plasma having the proper conditions for gain and x ray laser beam propagation, was accomplished with modified versions of ICF kinetics and hydrodynamics codes. Since the first demonstration, progress in the development of the x ray laser was rapid. New achievements include production of megawatt power levels at 20 nm, amplified spontaneous emission levels approaching saturation intensity GL of approximately 17 at 20 nm, efficiency (x ray laser energy/pump energy) approximately 10(exp 6), the demonstration of double and triple pass amplification (hinting at the possibility of producing x ray wavelength resonators), the focusing of x ray lasers to pump other types of lasers and the first demonstration of an x ray hologram produced by an x ray laser. The generation of amplification at ever shorter wavelength is possible using various types of inversion schemes. We depict below this progress benchmarked against production of gain in the water window (2.2 to 4.4 nm,), where applications to biological imaging may be facilitated.

  3. Lumbosacral spine x-ray

    MedlinePlus

    X-ray - lumbosacral spine; X-ray - lower spine ... The test is done in a hospital x-ray department or your health care provider's office by an x-ray technician. You will be asked to lie on the x-ray table ...

  4. X-ray laser

    DOEpatents

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  5. Performance of the x-ray free-electron laser oscillator with crystal cavity

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Kim, K.-J.; Shvyd'Ko, Yu.; Fawley, W. M.

    2011-01-01

    Simulations of the x-ray free-electron laser (FEL) oscillator are presented that include the frequency-dependent Bragg crystal reflectivity and the transverse diffraction and focusing using the two-dimensional FEL code GINGER. A review of the physics of Bragg crystal reflectors and the x-ray FEL oscillator is made, followed by a discussion of its numerical implementation in GINGER. The simulation results for a two-crystal cavity and realistic FEL parameters indicate ˜109 photons in a nearly Fourier-limited, ps pulse. Compressing the electron beam to 100 A and 100 fs results in comparable x-ray characteristics for relaxed beam emittance, energy spread, and/or undulator parameters, albeit in a larger radiation bandwidth. Finally, preliminary simulation results indicate that the four-crystal FEL cavity can be tuned in energy over a range of a few percent.

  6. Hard X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project is to study the hard x-ray emission from x-ray bursters. One target of opportunity observation was made for this investigation during 1997. We obtained 38ks of data on the source 4UI705-44. The project is closely related to "Monitoring x-ray emission from x-ray bursters", and "Long-Term Hard X-Ray Monitoring of X-Ray Bursters."

  7. Ultrafast absorption of intense x rays by nitrogen molecules

    SciTech Connect

    Buth, Christian; Liu Jicai; Chen, Mau Hsiung; Cryan, James P.; Fang Li; Hoener, Matthias; Berrah, Nora; Glownia, James M.; Coffee, Ryan N.

    2012-06-07

    We devise a theoretical description for the response of nitrogen molecules (N{sub 2}) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations ({Delta}SCF method). To describe the interaction with N{sub 2}, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N{sub 2}: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N{sub 2}{sup 2+}, and molecular fragmentation are explained.

  8. X-ray Laser Animated Fly-Through

    SciTech Connect

    2011-02-25

    Take a tour with an electron's-eye-view through SLAC's revolutionary new X-ray laser facility with this 5 1/2 minute animation. See how the X-ray pulses are generated using the world's longest linear accelerator along with unique arrays of machinery specially designed for this one-of-a-kind tool. For more than 40 years, SLAC's two-mile-long linear accelerator (or linac) linac has produced high-energy electrons for cutting-edge physics experiments. Now, SLAC's linac has entered a new phase of its career with the creation of the Linac Coherent Light Source (LCLS).

  9. X-ray (image)

    MedlinePlus

    ... a form of electromagnetic radiation, just like visible light. Structures that are dense (such as bone) will block most of the x-ray particles, and will appear white. Metal and contrast media (special dye used to highlight ...

  10. Pelvis x-ray

    MedlinePlus

    X-ray - pelvis ... Tumors Degenerative conditions of bones in the hips, pelvis, and upper legs ... hip joint Tumors of the bones of the pelvis Sacroiliitis (inflammation of the area where the sacrum ...

  11. Medical X-Rays

    MedlinePlus

    ... Diagnostic X-Ray Equipment Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ... and Exporting Electronic Products Compliance Program Guidance Manual CP 7386.003 Field Compliance Testing of Diagnostic (Medical) ...

  12. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  13. X-ray - skeleton

    MedlinePlus

    ... is used to look for: Fractures or broken bone Cancer that has spread to other areas of the ... 2014:chap 8. Read More Bone tumor Broken bone Cancer Metastasis Osteomyelitis X-ray Update Date 5/9/ ...

  14. The physics of x-ray free-electron lasers

    NASA Astrophysics Data System (ADS)

    Pellegrini, C.; Marinelli, A.; Reiche, S.

    2016-01-01

    X-ray free-electron lasers (x-ray FELs) give us for the first time the possibility to explore structures and dynamical processes of atomic and molecular systems at the angstrom-femtosecond space and time scales. They generate coherent photon pulses with time duration of a few to 100 fs, peak power of 10 to 100 GW, over a wavelength range extending from about 100 nm to less than 1 Å. Using these novel and unique capabilities new scientific results are being obtained in atomic and molecular sciences, in areas of physics, chemistry, and biology. This paper reviews the physical principles, the theoretical models, and the numerical codes on which x-ray FELs are based, starting from a single electron spontaneous undulator radiation to the FEL collective instability of a high density electron beam, strongly enhancing the electromagnetic radiation field intensity and its coherence properties. A short review is presented of the main experimental properties of x-ray FELs, and the results are discussed of the most recent research to improve their longitudinal coherence properties, increase the peak power, and generate multicolor spectra.

  15. Cosmic x ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, Dan; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1992-01-01

    This final report covers the period 1 January 1985 - 31 March 1992. It is divided into the following sections: the soft x-ray background; proportional counter and filter calibrations; sounding rocket flight preparations; new sounding rocket payload: x-ray calorimeter; and theoretical studies. Staff, publications, conference proceedings, invited talks, contributed talks, colloquia and seminars, public service lectures, and Ph. D. theses are listed.

  16. Multiphoton ionization and fragmentation of iodine-containing molecules by femtosecond ultraintense hard X-rays

    NASA Astrophysics Data System (ADS)

    Robatjazi, S. J.; Li, X.; Rolles, D.; Rudenko, A.; Erk, B.; Boll, R.; Bomme, C.; Savelyev, E.; Rudek, B.; Foucar, L.; Bostedt, Ch.; Southworth, S.; Lehmann, C. S.; Kraessig, B.; Young, L.; Marchenko, T.; Simon, M.; Ueda, K.; Ferguson, K. R.; Bucher, M.; Gorkhover, T.; Carron, S.; Alonso-Mori, R.; Williams, G.; Boutet, S.

    2016-05-01

    We present ion charge state distributions and kinetic energy spectra resulting from the breakup of CH3 I and C6 H5 I molecules induced by femtosecond X-ray pulses from the Linac Coherent Light Source (LCLS) at 8.3 keV photon energy. Using a few-hundred nm focus of the LCLS CXI beamline, we reach peak intensities of up to 1020 W/ cm2, resulting in stripping of more than 50 electrons per molecule within few tens of fs. We find that in this regime the interplay between multiphoton absorption and subsequent charge rearrangement considerably differs from earlier observations for soft X-rays or for weaker hard X-rays. We discuss the pulse duration dependence of the data, and compare the results for seeded and unseeded LCLS pulses. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U. S. DOE.

  17. Recent developments in CrystFEL 1

    PubMed Central

    White, Thomas A.; Mariani, Valerio; Brehm, Wolfgang; Yefanov, Oleksandr; Barty, Anton; Beyerlein, Kenneth R.; Chervinskii, Fedor; Galli, Lorenzo; Gati, Cornelius; Nakane, Takanori; Tolstikova, Alexandra; Yamashita, Keitaro; Yoon, Chun Hong; Diederichs, Kay; Chapman, Henry N.

    2016-01-01

    CrystFEL is a suite of programs for processing data from ‘serial crystallography’ experiments, which are usually performed using X-ray free-electron lasers (FELs) but also increasingly with other X-ray sources. The CrystFEL software suite has been under development since 2009, just before the first hard FEL experiments were performed, and has been significantly updated and improved since then. This article describes the most important improvements which have been made to CrystFEL since the first release version. These changes include the addition of new programs to the suite, the ability to resolve ‘indexing ambiguities’ and several ways to improve the quality of the integrated data by more accurately modelling the underlying diffraction physics. PMID:27047311

  18. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  19. Three-Dimensional Analysis of Frequency-Chirped FELs

    SciTech Connect

    Huang, Z.; Ding, Y.; Wu, J.; /SLAC

    2010-09-14

    Frequency-chirped free-electron lasers (FELs) are useful to generate a large photon bandwidth or a shorter x-ray pulse duration. In this paper, we present a three-dimensional analysis of a high-gain FEL driven by the energy-chirped electron beam. We show that the FEL eigenmode equation is the same for a frequency-chirped FEL as for an undulator-tapered FEL. We study the transverse effects of such FELs including mode properties and transverse coherence.

  20. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    SciTech Connect

    Ginn, Helen Mary; Brewster, Aaron S.; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M.; Sauter, Nicholas K.; Sutton, Geoff; Stuart, David Ian

    2015-05-23

    Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating theRsplitvalue) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.

  1. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    DOE PAGES

    Ginn, Helen Mary; Brewster, Aaron S.; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M.; Sauter, Nicholas K.; Sutton, Geoff; Stuart, David Ian

    2015-05-23

    Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definitionmore » of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating theRsplitvalue) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will generally increase the utility of the method for difficult cases.« less

  2. Time-resolved x-ray imaging of x-ray induced dynamics in Xe clusters

    NASA Astrophysics Data System (ADS)

    Bucher, M.; Ferguson, K.; Gorkhover, T.; Carron, S.; Cryan, J.; Krzywinski, J.; Lutman, A.; Marinelli, A.; Bacellar, C.; Chatterley, A.; Ziemkiewicz, M.; Bernando, C.; Gomez, L.; Jones, C.; Kwok, J.; Tanyag, R. M. P.; Mueller, M.; Rupp, D.; Möller, T.; Gessner, O.; Vilesov, A.; Bostedt, C.

    2016-05-01

    Nanoparticles irradiated by intense x-ray pulses from the LCLS free-electron laser are immediately transformed into a highly excited nanoplasma. Within the first few femtoseconds of the x-ray pulse the particles are ionized and on longer time scales they disintegrate due to Coulomb forces. We performed an x-ray pump / x-ray probe experiment to investigate how the nanoplasma creation and disintegration changes the particle's diffraction response. As samples we used pristine Xe clusters as well as Xe clusters embedded in He droplets. The data show that for pristine clusters the higher diffraction orders diminish first and vanish completely as the nanoplasma expansion progresses. This effect is less prominent in the embedded clusters. We compare our results to previous studies on optically pumped clusters (T. Gorkhover et al., Nat. Photonics, 2016). This work is funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences, under Contract No. DE-AC02-06CH11357.

  3. Commissioning of the LCLS LINAC

    SciTech Connect

    Loos, H.; Akre, R.; Brachmann, A.; Decker, F.-J.; Ding, Y.; Dowell, D.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Miahnahri, A.; Molloy, S.; Nuhn, H.-D.; Turner, J.; Welch, J.; White, W.; Wu, J.; /SLAC /Stanford U., Appl. Phys. Dept.

    2010-06-11

    The Linac Coherent Light Source (LCLS) X-ray free electron laser project is currently under construction at the Stanford Linear Accelerator Center (SLAC). A new injector and upgrades to the existing accelerator were installed in two phases in 2006 and 2007. We report on the commissioning of the injector, the two new bunch compressors at 250MeV and 4.3 GeV, and transverse and longitudinal beam diagnostics up to the end of the existing linac at 13.6 GeV. The commissioning of the new transfer line from the end of the linac to the undulator is scheduled to start in November 2008 and for the undulator in March 2009 with first light to be expected in July 2009.

  4. Radiological Studies for the LCLS Beam Abort System

    SciTech Connect

    Santana Leitner, M.; Vollaire, J.; Mao, X.S.

    2008-03-25

    The Linac Coherent Light Source (LCLS), a pioneer hard x-ray free electron laser is currently under construction at the Stanford Linear Accelerator Center. It is expected that by 2009 LCLS will deliver laser pulses of unprecedented brightness and short length, which will be used in several forefront research applications. This ambitious project encompasses major design challenges to the radiation protection like the numerous sources and the number of surveyed objects. In order to sort those, the showers from various loss sources have been tracked along a detailed model covering 1/2 mile of LCLS accelerator by means of the Monte Carlo intra nuclear cascade codes FLUKA and MARS15. This article covers the FLUKA studies of heat load; prompt and residual dose and environmental impact for the LCLS beam abort system.

  5. A 2D imager for X-ray FELs with a 65 nm CMOS readout based on per-pixel signal compression and 10 bit A/D conversion

    NASA Astrophysics Data System (ADS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Rizzo, G.; Batignani, G.; Bettarini, S.; Casarosa, G.; Forti, F.; Giorgi, M.; Morsani, F.; Paladino, A.; Paoloni, E.; Pancheri, L.; Dalla Betta, G.-F.; Mendicino, R.; Verzellesi, G.; Xu, H.; Benkechkache, M. A.

    2016-09-01

    A readout channel for applications to X-ray diffraction imaging at free electron lasers has been developed in a 65 nm CMOS technology. The analog front-end circuit can achieve an input dynamic range of 100 dB by leveraging a novel signal compression technique based on the non-linear features of MOS capacitors. Trapezoidal shaping is accomplished through a transconductor and a switched capacitor circuit, performing gated integration and correlated double sampling. A small area, low power 10 bit successive approximation register (SAR) ADC, operated in a time-interleaved fashion, is used for numerical conversion of the amplitude measurement. Operation at 5 MHz of the analog channel including the shaper was demonstrated. Also, the channel was found to be compliant with single 1 keV photon resolution at 1.25 MHz. The ADC provides a signal-to-noise ratio (SNR) of 56 dB, corresponding to an equivalent number of bits (ENOB) of 9 bits, and a differential non linearity DNL < 1 LSB at a sampling rate slightly larger than 1.8 MHz.

  6. A review of x-ray free-electron laser theory.

    SciTech Connect

    Huang, Z.; Kim, K.-J.; Accelerator Systems Division; Stanford Linear Accelerator Center

    2007-03-01

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the start-up, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission. The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  7. A Review of X-ray Free-Electron Laser Theory

    SciTech Connect

    Huang, Zhirong; Kim, Kwang-Je; /ANL, APS

    2006-12-18

    High-gain free-electron lasers (FELs) are being developed as extremely bright sources for a next-generation x-ray facility. In this paper, we review the basic theory of the startup, the exponential growth, and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). The radiation characteristics of an x-ray FEL, including its transverse coherence, temporal characteristics, and harmonic content, are discussed. FEL performance in the presence of machine errors and undulator wakefields is examined. Various enhancement schemes through seeding and beam manipulations are summarized.

  8. XAMPS Detectors Readout ASIC for LCLS

    SciTech Connect

    Dragone, A; Pratte, J.F.; Rehak, P.; Carini, G.A.; Herbst, R.; O'Connor, P.; Siddons, D.P.; /BNL, NSLS

    2008-12-18

    An ASIC for the readout of signals from X-ray Active Matrix Pixel Sensor (XAMPS) detectors to be used at the Linac Coherent Light Source (LCLS) is presented. The X-ray Pump Probe (XPP) instrument, for which the ASIC has been designed, requires a large input dynamic range on the order of 104 photons at 8 keV with a resolution of half a photon FWHM. Due to the size of the pixel and the length of the readout line, large input capacitance is expected, leading to stringent requirement on the noise optimization. Furthermore, the large number of pixels needed for a good position resolution and the fixed LCLS beam period impose limitations on the time available for the single pixel readout. Considering the periodic nature of the LCLS beam, the ASIC developed for this application is a time-variant system providing low-noise charge integration, filtering and correlated double sampling. In order to cope with the large input dynamic range a charge pump scheme implementing a zero-balance measurement method has been introduced. It provides an on chip 3-bit coarse digital conversion of the integrated charge. The residual charge is sampled using correlated double sampling into analog memory and measured with the required resolution. The first 64 channel prototype of the ASIC has been fabricated in TSMC CMOS 0.25 {micro}m technology. In this paper, the ASIC architecture and performances are presented.

  9. A proposal for femtosecond x-ray generation in the SLC collider arcs

    SciTech Connect

    Frisch, J.C.

    1999-12-15

    The high-energy electron beam from the SLAC linac, in conjunction with the bunch compression of the existing SLC collider arcs, provides the opportunity for an extremely short pulse spontaneous emission x-ray source with high brightness. Experiments at the SLC have already demonstrated peak currents of 10 kA at 46 GeV. The addition of a relatively simple undulator in the reverse-bend section of the north arc can generate x-ray radiation of wavelength < 1 {angstrom} with peak brightness higher than any existing source. This could be used for testing x-ray diagnostics and to gain experience with short pulse x-ray experiments as a precursor to high brightness experiments with the Linac Coherent Light Source (LCLS). In addition, experiments with a short electron bunch, relevant to the LCLS and the Next Linear Collider (NLC) projects, might be carried out.

  10. X-ray beam finder

    DOEpatents

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  11. Ultraintense X-Ray Induced Ionization, Dissociation, and Frustrated Absorption in Molecular Nitrogen

    SciTech Connect

    Hoener, M.; Fang, L.; Murphy, B.; Berrah, N.; Kornilov, O.; Gessner, O.; Pratt, S. T.; Kanter, E. P.; Guehr, M.; Bucksbaum, P. H.; Cryan, J.; Glownia, M.; McFarland, B.; Petrovic, V.; Blaga, C.; DiMauro, L.; Bostedt, C.; Bozek, J. D.; Coffee, R.; Messerschmidt, M.

    2010-06-25

    Sequential multiple photoionization of the prototypical molecule N{sub 2} is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

  12. Ultraintense x-ray induced ionization, dissociation and frustrated absorption in molecular nitrogen.

    SciTech Connect

    Hoener, M.; Fang, L.; Kornilov, O.; Gessner, O.; Pratt, S. T.; Guhr, M.; Kanter, E. P.; Blaga, C.; Bostedt, C.; Bozek, J. D.; Bucksbaum, P. H.; Buth, C.; Chen, M.; Coffee, R.; Cryan, J.; DiMauro, L.; Glownia, M.; Hosler, E.; Kukk, E.; Leone, S. R.; McFarland, B.; Messerschmidt, M.; Murphy, B.; Petrovic, V.; Rolles, D.; Berrah, N.; Chemical Sciences and Engineering Division; Western Michigan Univ.; LBNL; Ohio State Univ.; Louisiana State Univ.; LLNL; Univ. of Turku; Univ. of California at Berkeley; Max Planck Advanced Study Group, CFEL; LCLS

    2010-06-23

    Sequential multiple photoionization of the prototypical molecule N2 is studied with femtosecond time resolution using the Linac Coherent Light Source (LCLS). A detailed picture of intense x-ray induced ionization and dissociation dynamics is revealed, including a molecular mechanism of frustrated absorption that suppresses the formation of high charge states at short pulse durations. The inverse scaling of the average target charge state with x-ray peak brightness has possible implications for single-pulse imaging applications.

  13. A setup for resonant inelastic soft x-ray scattering on liquids at free electron laser light sources

    SciTech Connect

    Kunnus, Kristjan; Schreck, Simon; Foehlisch, Alexander; Eckert, Sebastian; Beye, Martin; Suljoti, Edlira; Weniger, Christian; Wernet, Philippe; Kalus, Christian; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; and others

    2012-12-15

    We present a flexible and compact experimental setup that combines an in vacuum liquid jet with an x-ray emission spectrometer to enable static and femtosecond time-resolved resonant inelastic soft x-ray scattering (RIXS) measurements from liquids at free electron laser (FEL) light sources. We demonstrate the feasibility of this type of experiments with the measurements performed at the Linac Coherent Light Source FEL facility. At the FEL we observed changes in the RIXS spectra at high peak fluences which currently sets a limit to maximum attainable count rate at FELs. The setup presented here opens up new possibilities to study the structure and dynamics in liquids.

  14. Multilayer-Based Optics for High-Brightness X-ray Sources

    SciTech Connect

    Bajt, S.; Barthelmess, M.; Chapman, H. N.; Aquila, A.; Krzywinski, J.; Nelson, A. J.

    2011-09-09

    High-brightness x-ray sources, such as next-generation synchrotrons and free-electron lasers (FELs), pose unique challenges for the development of x-ray optics. The peak intensities of FEL pulses can be high enough to convert any material placed in a focused beam into plasma. X-ray optics, which are used close to the focal spot, are likely to be partially or completely damaged in a single shot. Such optics would need to be replenished after each shot. Optics that are used in the unfocused or indirect beam may survive much longer, perhaps indefinitely, if care is used to limit the energy absorbed in the optics. Here we present different types of multilayer-based optics, which were used successfully in FEL experiments for reflecting, focusing, and filtering high-intensity, pulsed x-rays in a variety of novel science applications.

  15. Molecular imaging using X-ray free-electron lasers.

    PubMed

    Barty, Anton; Küpper, Jochen; Chapman, Henry N

    2013-01-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  16. Molecular Imaging Using X-Ray Free-Electron Lasers

    NASA Astrophysics Data System (ADS)

    Barty, Anton; Küpper, Jochen; Chapman, Henry N.

    2013-04-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 1013 transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 1018 to 1021 W cm-2 or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available.

  17. Molecular imaging using X-ray free-electron lasers.

    PubMed

    Barty, Anton; Küpper, Jochen; Chapman, Henry N

    2013-01-01

    The opening of hard X-ray free-electron laser facilities, such as the Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory in the United States, has ushered in a new era in structural determination. With X-ray pulse durations down to 10 fs or shorter, and up to 10(13) transversely coherent photons per pulse in a narrow spectral bandwidth, focused irradiances of 10(18) to 10(21) W cm(-2) or higher can be produced at X-ray energies ranging from 500 eV to 10 keV. New techniques for determining the structure of systems that cannot be crystallized and for studying the time-resolved behavior of irreversible reactions at femtosecond timescales are now available. PMID:23331310

  18. The LAMP instrument at the LCLS

    NASA Astrophysics Data System (ADS)

    Osipov, Timur; Castagna, Jean-Charles; Bostedt, Christoph; Xiong, Hui; Ferguson, Ken; Bucher, Maximilian; Berrah, Nora

    2015-05-01

    We have commissioned and used a new instrument at the Linac Coherent Light (LCLS) Source at SLAC National Laboratory called LAMP. It consists of several detectors housed in a double chambered vacuum system. One detection scheme offered relies on the use of a double velocity map imaging (VMI) spectrometer which enables research in the gas phase such as molecular dynamics experiments. The latter are monitored via the detection of electron and ionic fragments resulting from x-ray photo-absorption of x-ray photons. With this new tool, we can record the different fragmentation pathways by measuring multi-particles ion-ion coincidences/multi-particle correlations. We can also simultaneously image the electrons momenta to capture the most detailed x-ray induced reaction in molecules and nano-systems. The other detection scheme offered consists of two imaging detectors of the pnCCD type for diffraction experiments of clusters and bio-specimens. This instrument, available to any users, has the possibility to uncover new mechanisms in physics, chemistry and biology. This work is funded in part by the Department of Energy, Office of Science, Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under a SISGR grant and funds from the LCLS, funded by DOE-BES.

  19. Nanometer-scale characterization of laser-driven plasmas, compression, shocks and phase transitions, by coherent small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Kluge, Thomas

    2015-11-01

    Combining ultra-intense short-pulse and high-energy long-pulse lasers, with brilliant coherent hard X-ray FELs, such as the Helmholtz International Beamline for Extreme Fields (HIBEF) under construction at the HED Instrument of European XFEL, or MEC at LCLS, holds the promise to revolutionize our understanding of many High Energy Density Physics phenomena. Examples include the relativistic electron generation, transport, and bulk plasma response, and ionization dynamics and heating in relativistic laser-matter interactions, or the dynamics of laser-driven shocks, quasi-isentropic compression, and the kinetics of phase transitions at high pressure. A particularly promising new technique is the use of coherent X-ray diffraction to characterize electron density correlations, and by resonant scattering to characterize the distribution of specific charge-state ions, either on the ultrafast time scale of the laser interaction, or associated with hydrodynamic motion. As well one can image slight density changes arising from phase transitions inside of shock-compressed high pressure matter. The feasibility of coherent diffraction techniques in laser-driven matter will be discussed. including recent results from demonstration experiments at MEC. Among other things, very sharp density changes from laser-driven compression are observed, having an effective step width of 10 nm or smaller. This compares to a resolution of several hundred nm achievedpreviously with phase contrast imaging. and on behalf of HIBEF User Consortium, for the Helmholtz International Beamline for Extreme Fields at the European XFEL.

  20. X-ray lithography masking

    NASA Technical Reports Server (NTRS)

    Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)

    1998-01-01

    X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.

  1. X-ray Spectrometer

    NASA Technical Reports Server (NTRS)

    Porter, F. Scott

    2004-01-01

    The X-ray Spectrometer (XRS) instrument is a revolutionary non-dispersive spectrometer that will form the basis for the Astro-E2 observatory to be launched in 2005. We have recently installed a flight spare X R S microcalorimeter spectrometer at the EBIT-I facility at LLNL replacing the XRS from the earlier Astro-E mission and providing twice the resolution. The X R S microcalorimeter is an x-ray detector that senses the heat deposited by the incident photon. It achieves a high energy resolution by operating at 0.06K and by carefully controlling the heat capacity and thermal conductance. The XRS/EBIT instrument has 32 pixels in a square geometry and achieves an energy resolution of 6 eV at 6 keV, with a bandpass from 0.1 to 12 keV (or more at higher operating temperature). The instrument allows detailed studies of the x-ray line emission of laboratory plasmas. The XRS/EBIT also provides an extensive calibration "library" for the Astro-E2 observatory.

  2. X-Ray Astronomy

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    2000-01-01

    Dr. S. N. Zhang has lead a seven member group (Dr. Yuxin Feng, Mr. XuejunSun, Mr. Yongzhong Chen, Mr. Jun Lin, Mr. Yangsen Yao, and Ms. Xiaoling Zhang). This group has carried out the following activities: continued data analysis from space astrophysical missions CGRO, RXTE, ASCA and Chandra. Significant scientific results have been produced as results of their work. They discovered the three-layered accretion disk structure around black holes in X-ray binaries; their paper on this discovery is to appear in the prestigious Science magazine. They have also developed a new method for energy spectral analysis of black hole X-ray binaries; four papers on this topics were presented at the most recent Atlanta AAS meeting. They have also carried Monte-Carlo simulations of X-ray detectors, in support to the hardware development efforts at Marshall Space Flight Center (MSFC). These computation-intensive simulations have been carried out entirely on the computers at UAH. They have also carried out extensive simulations for astrophysical applications, taking advantage of the Monte-Carlo simulation codes developed previously at MSFC and further improved at UAH for detector simulations. One refereed paper and one contribution to conference proceedings have been resulted from this effort.

  3. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1998-01-01

    The goal of this investigation was to use the All-Sky Monitor on the Rossi X-Ray Timing Explorer (RXTE) in combination with the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory to simultaneously measure the x-ray (2-12 keV) and hard x-ray (20-100 keV) emission from x-ray bursters. The investigation was successful. We made the first simultaneous measurement of hard and soft x-ray emission and found a strong anticorrelation of hard and soft x-ray emission from the X-Ray Burster 4U 0614+091. The monitoring performed under this investigation was also important in triggering target of opportunity observations of x-ray bursters made under the investigation hard x-ray emission of x-ray bursters approved for RXTE cycles 1 and 2. These observations lead to a number of papers on high-frequency quasi-periodic oscillations and on hard x-ray emission from the x-ray bursters 4U 0614+091 and 4U 1705-44.

  4. Fluctuation X-Ray Scattering

    SciTech Connect

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  5. Dual X-ray absorptiometry

    NASA Astrophysics Data System (ADS)

    Altman, Albert; Aaron, Ronald

    2012-07-01

    Dual X-ray absorptiometry is widely used in analyzing body composition and imaging. Both the method and its limitations are related to the Compton and photoelectric contributions to the X-ray attenuation coefficients of materials.

  6. LCLS optics: Selected technological issues and scientific opportunities

    SciTech Connect

    Tatchyn, R.

    1993-03-01

    The Stanford Linac Coherent Light Source (LCLS) promises to generate photon pulses of unprecedented brevity and peak brightness in the soft x-ray range. In this presentation selected limitations and novel opportunities for technology and science associated with the availability of such pulses will be briefly assessed. Special emphasis will be placed on possible techniques for extending the peak power density and the temporal and spectral regimes of the LCLS output radiation by orders of magnitude beyond their nominal (calculated) values, and to the associated instrumentation for processing this radiation.

  7. Users program for storage-ring based FEL and synchrotron sources of the Duke FEL Laboratory

    SciTech Connect

    Straub, K.D.; Barnett, G.; Burnham, B.

    1995-12-31

    The storage ring at the Duke FEL Laboratory was first operated with a stored e-beam in November, 1994. It has now achieved operation energies in excess 1 GeV with more than 100 mA current at 280 MeV. The ring has several ports for FEL and synchrotron light source research. The circulating ring current can be synchronized with the seperate Mark III FEL operating in the 2-9.5 {mu}m IR region. This allows low optical jitter (10-20 ps) between the two sources and thus pump-probe operation. The ring has been configured to drive a number of light sources including the OK-4 FEL system capable of FEL operation between 400 and 65 nm, an inverse Compton scattering source using this undulator which will yield 4-200 MeV gammas, an undulator source at approximately 40 {angstrom} (not an FEL), a mm FEL with inverse compton scattering providing 1-100 keV x-rays and two synchrotron ports from the bend magnets for which the {lambda}{sub c} = 11-12 {angstrom} for 1 GeV. The broadly tunable FEL sources and their associated inverse compton scattering are extremely bright. The initial research proposals, submitted to the Laboratory emphasizes photoelectron spectroscopy, PEEM, high resolution vacuum UV of gases, solid spectroscopy and photochemistry in the UV, X-ray microprobe studies, X-ray microscopy, X-ray holography, X-ray crystallography, Mossbauer spectroscopy, nuclear spectroscopy, neutron production, photon activation therapy and broadband synchrotron as a probe of fast reaction in the IR and near IR.

  8. Tunable X-ray source

    DOEpatents

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  9. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Edward Snell, a National Research Council research fellow at NASA's Marshall Space Flight Center (MSFC), prepares a protein crystal for analysis by x-ray crystallography as part of NASA's structural biology program. The small, individual crystals are bombarded with x-rays to produce diffraction patterns, a map of the intensity of the x-rays as they reflect through the crystal.

  10. X-ray satellite

    NASA Technical Reports Server (NTRS)

    1985-01-01

    An overview of the second quarter 1985 development of the X-ray satellite project is presented. It is shown that the project is proceeding according to plan and that the projected launch date of September 9, 1987 is on schedule. An overview of the work completed and underway on the systems, subsystems, payload, assembly, ground equipment and interfaces is presented. Problem areas shown include cost increases in the area of focal instrumentation, the star sensor light scattering requirements, and postponements in the data transmission subsystems.

  11. SMM x ray polychromator

    NASA Technical Reports Server (NTRS)

    Saba, J. L. R.

    1993-01-01

    The objective of the X-ray Polychromator (XRP) experiment was to study the physical properties of solar flare plasma and its relation to the parent active region to understand better the flare mechanism and related solar activity. Observations were made to determine the temperature, density, and dynamic structure of the pre-flare and flare plasma as a function of wavelength, space and time, the extent to which the flare plasma departs from thermal equilibrium, and the variation of this departure with time. The experiment also determines the temperature and density structure of active regions and flare-induced changes in the regions.

  12. Time Resolved X-ray Magnetic Circular Dichroism at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Schlotter, W.; Higley, D.; Jal, E.; Dakovski, G.; Yuan, E.; MacArthur, J.; Lutman, A.; Hirsch, K.; Granitzka, P.; Chen, Z.; Coslovich, G.; Hoffman, M.; Mitra, A.; Reid, A.; Hart, P.; Nuhn, H.-D.; Duerr, H.; Arenholz, E.; Shafer, P.; Dennes, P.; Joseph, J.; Guyader, L.; Tsukamoto, A.

    We demonstrate ultrafast time resolved X-ray Magnetic Circular Dichroism on optically switchable GdFeCo thin film samples. This method extends the element specificity of time resolved x-ray absorption spectroscopy to characterize the evolution of electron spin and orbital angular momenta. These measurements were enabled by a recent upgrade at the Linac Coherent Light Source (LCLS) to generate circularly polarized x-rays. Additionally these measurements were enhanced by new detection systems that benefit all x-ray absorption spectroscopy experiments performed in transmission. Consequently static XMCD data are in excellent agreement with similar measurements at synchrotron light sources. The LCLS is an x-ray free electron laser user facility accessible via a peer-reviewed proposal process. Acknowledgement: The Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515.

  13. Femtosecond electronic response of atoms to ultra-intense x-rays.

    SciTech Connect

    Young, L.; Kanter, E .P.; Li, Y.; March, A.-M.; Pratt, S. T.; Santra, R.; Southworth, S. H.; Rohringer, N.; DiMauro, L. F.; Doumy, G.; Roedig, C. A.; Berrah, N.; Fang, L.; Hoener, M.; Bucksbaum, P. H.; Cryan, J. P .; Ghimire, S.; Glownia, J. M.; Reis, D. A.; Bozek, J. D.; Bostedt, C.; Messerschmidt, M.; Western Michigan Univ.; SLAC National Accelerator Lab.; The Ohio State Univ.; LLNL; Univ. of Chicago

    2010-07-01

    An era of exploring the interactions of high-intensity, hard X-rays with matter has begun with the start-up of a hard-X-ray free-electron laser, the Linac Coherent Light Source (LCLS). Understanding how electrons in matter respond to ultra-intense X-ray radiation is essential for all applications. Here we reveal the nature of the electronic response in a free atom to unprecedented high-intensity, short-wavelength, high-fluence radiation (respectively 10{sup 18} W cm{sup -2}, 1.5-0.6 nm, {approx}10{sup 5} X-ray photons per {angstrom}{sup 2}). At this fluence, the neon target inevitably changes during the course of a single femtosecond-duration X-ray pulse - by sequentially ejecting electrons - to produce fully-stripped neon through absorption of six photons. Rapid photoejection of inner-shell electrons produces 'hollow' atoms and an intensity-induced X-ray transparency. Such transparency, due to the presence of inner-shell vacancies, can be induced in all atomic, molecular and condensed matter systems at high intensity. Quantitative comparison with theory allows us to extract LCLS fluence and pulse duration. Our successful modelling of X-ray/atom interactions using a straightforward rate equation approach augurs favourably for extension to complex systems.

  14. Dynamic x-ray imaging of laser-driven nanoplasmas

    NASA Astrophysics Data System (ADS)

    Fennel, Thomas

    2016-05-01

    A major promise of current x-ray science at free electron lasers is the realization of unprecedented imaging capabilities for resolving the structure and ultrafast dynamics of matter with nanometer spatial and femtosecond temporal resolution or even below via single-shot x-ray diffraction. Laser-driven atomic clusters and nanoparticles provide an ideal platform for developing and demonstrating the required technology to extract the ultrafast transient spatiotemporal dynamics from the diffraction images. In this talk, the perspectives and challenges of dynamic x-ray imaging will be discussed using complete self-consistent microscopic electromagnetic simulations of IR pump x-ray probe imaging for the example of clusters. The results of the microscopic particle-in-cell simulations (MicPIC) enable the simulation-assisted reconstruction of corresponding experimental data. This capability is demonstrated by converting recently measured LCLS data into a ultrahigh resolution movie of laser-induced plasma expansion. Finally, routes towards reaching attosecond time resolution in the visualization of complex dynamical processes in matter by x-ray diffraction will be discussed.

  15. Soft x-ray lasers

    SciTech Connect

    Matthews, D.L.; Rosen, M.D.

    1988-12-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs.

  16. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  17. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  18. Monitoring X-Ray Emission from X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Kaaret, Philip

    1999-01-01

    The scientific goal of this project was to monitor a selected sample of x-ray bursters using data from the All-Sky Monitor (ASM) on the Rossi X-Ray Timing Explorer together with data from the Burst and Transient Source Experiment (BATSE) on the Compton Gamma-Ray Observatory to study the long-term temporal evolution of these sources in the x-ray and hard x-ray bands. The project was closely related to "Long-Term Hard X-Ray Monitoring of X-Ray Bursters", NASA project NAG5-3891, and and "Hard x-ray emission of x-ray bursters", NASA project NAG5-4633, and shares publications in common with both of these. The project involved preparation of software for use in monitoring and then the actual monitoring itself. These efforts have lead to results directly from the ASM data and also from Target of Opportunity Observations (TOO) made with the Rossi X-Ray Timing Explorer based on detection of transient hard x-ray outbursts with the ASM and BATSE.

  19. A revised partiality model and post-refinement algorithm for X-ray free-electron laser data

    SciTech Connect

    Ginn, Helen Mary; Brewster, Aaron S.; Hattne, Johan; Evans, Gwyndaf; Wagner, Armin; Grimes, Jonathan M.; Sauter, Nicholas K.; Sutton, Geoff; Stuart, David Ian

    2015-05-23

    An updated partiality model and post-refinement algorithm for XFEL snapshot diffraction data is presented and confirmed by observing anomalous density for S atoms at an X-ray wavelength of 1.3 Å. Research towards using X-ray free-electron laser (XFEL) data to solve structures using experimental phasing methods such as sulfur single-wavelength anomalous dispersion (SAD) has been hampered by shortcomings in the diffraction models for X-ray diffraction from FELs. Owing to errors in the orientation matrix and overly simple partiality models, researchers have required large numbers of images to converge to reliable estimates for the structure-factor amplitudes, which may not be feasible for all biological systems. Here, data for cytoplasmic polyhedrosis virus type 17 (CPV17) collected at 1.3 Å wavelength at the Linac Coherent Light Source (LCLS) are revisited. A previously published definition of a partiality model for reflections illuminated by self-amplified spontaneous emission (SASE) pulses is built upon, which defines a fraction between 0 and 1 based on the intersection of a reflection with a spread of Ewald spheres modelled by a super-Gaussian wavelength distribution in the X-ray beam. A method of post-refinement to refine the parameters of this model is suggested. This has generated a merged data set with an overall discrepancy (by calculating the R{sub split} value) of 3.15% to 1.46 Å resolution from a 7225-image data set. The atomic numbers of C, N and O atoms in the structure are distinguishable in the electron-density map. There are 13 S atoms within the 237 residues of CPV17, excluding the initial disordered methionine. These only possess 0.42 anomalous scattering electrons each at 1.3 Å wavelength, but the 12 that have single predominant positions are easily detectable in the anomalous difference Fourier map. It is hoped that these improvements will lead towards XFEL experimental phase determination and structure determination by sulfur SAD and will

  20. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, P.

    1999-01-01

    The primary goal of this proposal was to perform an accurate measurement of the broadband x-ray spectrum of a neutron-star low-mass x-ray binary found in a hard x-ray state. This goal was accomplished using data obtained under another proposal, which has provided exciting new information on the hard x-ray emission of neutron-star low-mass x-ray binaries. In "BeppoSAX Observations of the Atoll X-Ray Binary 4U0614+091", we present our analysis of the spectrum of 4U0614+091 over the energy band from 0.3-150 keV. Our data confirm the presence of a hard x-ray tail that can be modeled as thermal Comptonization of low-energy photons on electrons having a very high temperature, greater than 220 keV, or as a non-thermal powerlaw. Such a very hard x-ray spectrum has not been previously seen from neutron-star low-mass x-ray binaries. We also detected a spectral feature that can be interpreted as reprocessing, via Compton reflection, of the direct emission by an optically-thick disk and found a correlation between the photon index of the power-law tail and the fraction of radiation reflected which is similar to the correlation found for black hole candidate x-ray binaries and Seyfert galaxies. A secondary goal was to measure the timing properties of the x-ray emission from neutronstar low-mass x-ray binaries in their low/hard states.

  1. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-01-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 [times] 10[sup 14]/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-[mu]m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 [times] 10[sup 7] photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 [times]0.5-mm[sup 2] pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  2. Compton-backscattering x-ray source for coronary angiography

    SciTech Connect

    Blumberg, L.N.

    1992-12-01

    An X-ray source utilizing Compton-backscattered (CB) photons in a 75-MeV electron storage ring containing an infrared FEL is proposed for producing 33.17-keV X-rays (Iodine K-edge) for coronary angiography. The X-ray intensity into a 4-mrad cone is computed as 7.21 {times} 10{sup 14}/sec for a 500-mA electron beam colliding with 0.2-J/bunch, 3.22-{mu}m photons from an in-ring IR-FEL at the 353.21-MHz rate of a SLAC-PEP 500-kW RF system. The resultant average flux at the patient is 6.4 {times} 10{sup 7} photons/pixel/4-msec aver a 12-cm diameter circle at 3-m from the interaction point for the 0.5 {times}0.5-mm{sup 2} pixel size of the present Si(Li) array of the BNL-SMERF Angiography Facility. This flux is 2.1 times larger than obtains at SMERF at a comparable source-to-patient distance and over an area sufficient to encompass the entire coronary region. However, the X-Ray energy spread due to kinematics alone is 2.63-keV, a factor of 35 larger then SMERF, and presents the major difficulty for the digital subtraction angiography method (DSA) envisioned.

  3. Ultrafast XRD of Heterogeneous Solid Hydrogen at LCLS

    NASA Astrophysics Data System (ADS)

    Levitan, Abraham; Fletcher, Luke; MacDonald, Michael; Glenzer, Siegfried

    2015-11-01

    The high intensity and short pulse duration of the Linac Coherent Light Source (LCLS) at SLAC allows for single shot x-ray scattering studies from a jet of frozen hydrogen. The high repetition rate of LCLS allows us to build a detailed understanding of the cold structure of this jet. This provides a strong foundation for analysis of time resolved scattering data from the laser heated hydrogen jet. Angularly resolved x-ray diffraction at 5 . 5keV is used to establish the structure of the cold 5 μm diameter solid hydrogen jet. The jet was composed of approximately 65 % +/- 5 % HCP and 35 % +/- 5 % FCC by volume with an average crystallite size on the order of hundreds of nanometers. Broadening in the angularly resolved spectrum provided strong evidence for anisotropic strain up to approximately 3 % in the HCP lattice. Finally, we found no evidence for orientational ordering of the crystal domains. Funding through the DOE SULI program.

  4. Linac design for the LCLS project at SLAC

    SciTech Connect

    Bharadwaj, V.K.; Bane, K.; Clendenin, J.

    1997-05-01

    The Linac Coherent Light Source (LCLS) at SLAC is being designed to produce intense, coherent 0.15-nm x-rays. These x-rays will be produced by a single pass of a 15 GeV bunched electron beam through a long undulator. Nominally, the bunches have a charge of 1 nC, normalized transverse emittances of less than 1.5{pi} mm-mr and an rms bunch length of 20 {mu}m. The electron beam will be produced using the last third of the SLAC 3-km linac in a manner compatible with simultaneous operation of the remainder of the linac for PEP-II. The linac design necessary to produce an electron beam with the required brightness for LCLS is discussed, and the specific linac modifications are described.

  5. Undulator Radiation Damage Experience at LCLS

    SciTech Connect

    Nuhn, H. D.; Field, C.; Mao, S.; Levashov, Y.; Santana, M.; Welch, J. N.; Wolf, Z.

    2015-01-06

    The SLAC National Accelerator Laboratory has been running the Linac Coherent Light Source (LCLS), the first x-ray Free Electron Laser since 2009. Undulator magnet damage from radiation, produced by the electron beam traveling through the 133-m long straight vacuum tube, has been and is a concern. A damage measurement experiment has been performed in 2007 in order to obtain dose versus damage calibrations. Radiation reduction and detection devices have been integrated into the LCLS undulator system. The accumulated radiation dose rate was continuously monitored and recorded. In addition, undulator segments have been routinely removed from the beamline to be checked for magnetic (50 ppm, rms) and mechanic (about 0.25 µm, rms) changes. A reduction in strength of the undulator segments is being observed, at a level, which is now clearly above the noise. Recently, potential sources for the observed integrated radiation levels have been investigated. The paper discusses the results of these investigation as well as comparison between observed damage and measured dose accumulations and discusses, briefly, strategies for the new LCLS-II upgrade, which will be operating at more than 300 times larger beam rate.

  6. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    SciTech Connect

    Schneider, G.; Heim, S.; Rehbein, S.; Eichert, D.; Guttmann, P.

    2007-01-19

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/{delta}E = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

  7. X-Ray Microscopy at BESSY: From Nano-Tomography to Fs-Imaging

    NASA Astrophysics Data System (ADS)

    Schneider, G.; Guttmann, P.; Heim, S.; Rehbein, S.; Eichert, D.; Niemann, B.

    2007-01-01

    The BESSY X-ray microscopy group has developed a new full-field x-ray microscope with glass capillary condenser. It permits tomography and spectromicroscopy of cryogenic as well as heated samples. Correlative light and x-ray microscopy is supported by an incorporated high resolution light microscope. Spectromicroscopy with polarized x-rays from a helical undulator can be performed with E/ΔE = 104. With the planned BESSY High Gain Harmonic Generation Free Electron Laser (HGHG-FEL) x-ray imaging with ultra-short pulses and an integral photon flux of about 1011 photons/pulse in an energy bandwidth of 0.1% will be possible. Single shot imaging with a full field Transmission X-ray Microscope (TXM) employing a beam shaper as a condenser will be feasible with 20 fs pulses.

  8. Solar X-ray physics

    SciTech Connect

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  9. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  10. Topological X-Rays Revisited

    ERIC Educational Resources Information Center

    Lynch, Mark

    2012-01-01

    We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…

  11. Short wavelength FELs using the SLAC linac

    SciTech Connect

    Winick, H.; Bane, K.; Boyce, R.

    1993-08-01

    Recent technological developments have opened the possibility to construct a device which we call a Linac Coherent Light Source (LCLS); a fourth generation light source, with brightness, coherence, and peak power far exceeding other sources. Operating on the principle of the free electron laser (FEL), the LCLS would extend the range of FEL operation to much aborter wavelength than the 240 mn that has so far been reached. We report the results of studies of the use of the SLAC linac to drive an LCLS at wavelengths from about 3-100 nm initially and possibly even shorter wavelengths in the future. Lasing would be achieved in a single pass of a low emittance, high peak current, high energy electron beam through a long undulator. Most present FELs use an optical cavity to build up the intensity of the light to achieve lasing action in a low gain oscillator configuration. By eliminating the optical cavity, which is difficult to make at short wavelengths, laser action can be extended to shorter wavelengths by Self-Amplified-Spontaneous-Emission (SASE), or by harmonic generation from a longer wavelength seed laser. Short wavelength, single pass lasers have been extensively studied at several laboratories and at recent workshops.

  12. Optical cavity and electron beam requirements for the operation of a 1.5 {angstrom} LCLS in a regenerative amplifier mode

    SciTech Connect

    Tatchyn, R.

    1995-12-31

    Current conceptual designs for Linac Coherent Light Sources (LCLSs) in the 100-1 {angstrom} wavelength range are based on Free Electron Lasers (FELs) that are designed to saturate in a single pass of the electron beam through the undulator. This, in practice, leads to insertion devices several tens of meters in length, which greatly dominates the component costs of the overall LCLS system. Although it is well known that amplification within a cavity would enable much shorter and more economical undulators to be employed, two major practical problems are currently adduced to discount the use of such configurations in the sub-100 {angstrom} wavelength regime: (1) the temporal jitter of the (sub-picosecond) electron bunches required for such FELs can be comparable to or larger that the durations of the bunches themselves, rendering reliable synchronization extremely difficult, and (2) the lack of optical elements of sufficient reflectivity and bandwidth out of which adequately efficient optical cavities can be constructed. In this paper we reasssess the requirements associated with these two aspects of x-ray optics as a possible approach to resolving or making more tractable the resolution of some of the basic problems involved.

  13. X-ray Absorption Spectroscopy

    SciTech Connect

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  14. Key Laser Technologies for X-Ray FELs

    SciTech Connect

    Kaertner, Franz

    2013-08-31

    In the final project period, we demonstrated sub femtosecond timing distribution over a 1.2 km polarization-maintaining (PM) fiber-optic link using balanced optical cross-correlators (BOCs) for link stabilization. By eliminating polarization mode dispersion, link operation for 16 days maintained 0.6 fs RMS timing drift and during a 3-day interval only 0.13 fs drift, which corresponds to a stability level of 10-21. To improve the overall system efficiency and robustness, we developed fiber-coupled, hybrid-integrated BOCs using waveguides in periodically-poled KTiOPO4 (PPKTP). The measured second-harmonic conversion efficiency in the waveguides is a factor of 50 higher than that of bulk-optic crystals. Characterization of 1st-generation devices shows performance comparable to free-space BOCs, with the potential for significant improvement in future devices. For optical-to-RF conversion, we developed two balanced optical-microwave phase detectors (BOM-PD) based on the Sagnac and Mach-Zehnder interferometers. RF extraction using BOM-PDs in phase-locked loops yielded sub-10-fs residual timing jitter for locking bandwidths on the order of several hundred kHz. Finally, we characterized the timing jitter of ultralow-noise Ti:Sapphire oscillators, demonstrating an unprecedented 13 as of jitter integrated over the entire Nyquist band. Our measurements agreed well with theory, confirming our models for quantum-limited laser noise. Measurements of commercially available solid-state lasers at 1550 nm showed that there are laser sources already available with sufficiently low noise to achieve sub-femtosecond performance as master oscillators within a timing distribution system.

  15. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating

  16. Fully coherent hard X-ray generation by two-stage phase-merging enhanced harmonic generation

    NASA Astrophysics Data System (ADS)

    Wang, Guang-Lei; Zhang, Wei-Qing; Yang, Xue-Ming; Feng, Chao; Deng, Hai-Xiao

    2016-09-01

    Cascading stages of seeded free electron lasers (FELs) is a promising way to produce fully coherent X-ray radiation. We study a new approach to produce coherent hard X-rays by cascading the recently proposed phase-merging enhanced harmonic generation (PEHG) The scheme consists of one dogleg and two PEHG configurations, and may be one of the leading candidates for the extracted undulator branch in future X-ray FEL facilities. FEL physics studies show that such a scheme is feasible within the present technology and can provide high brightness X-ray radiation pulses with narrow bandwidth and full coherence The radiated peak power at 1 Å wavelength converted from an initial 200 nm seed laser is over 2 GW Supported by the National Natural Science Foundation of China (21127902 & 11322550) and Ten Thousand Talent Program

  17. The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien

    2014-11-01

    Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.

  18. X-ray diffraction at Matter in Extreme Conditions endstation

    NASA Astrophysics Data System (ADS)

    Xing, Zhou; Galtier, Eric; Lee, Hae Ja; Nagler, Bob

    2015-11-01

    Understanding dynamic response at the atomic level under extreme conditions is highly sought after goal to science frontiers studying warm dense matter, high pressure, geoscience, astrophysics, and planetary science. Thus it is of importance to determine the high pressure phases or metastable phases of material under shock compression. In situ X-ray diffraction technique using LCLS free electron laser X-ray is a powerful tool to record structural behavior and microstructure evolution in dense matter. Shock-induced compression and phase transitions of material lead to changes of the lattice spacing or evolution of new X-ray diffraction patterns. In this talk, we describe a platform dedicated for the X-ray diffraction studies at Matter in Extreme Conditions (MEC), which can be used to reconstruct a complete diffraction pattern from numerous detectors, optimize detector positioning in a timely manner, extract the lattice spacing profiles and texture features. This platform is available to the user community for real-time analysis. We will also discuss experimental results, using this platform, on the crystalline silicon phase transitions up to 60 GPa.

  19. X-ray beam pointer

    NASA Technical Reports Server (NTRS)

    Nelson, C. W.

    1980-01-01

    Inexpensive, readily assembled pointer aims X-ray machine for welded assembly radiographs. Plumb bob used for vertical alinement and yardstick used to visualize X-ray paths were inconvenient and inaccurate. Pointer cuts alinement time by one-half and eliminates necessity of retakes. For 3,000 weld radiographs, pointer will save 300 worker-hours and significant materials costs.

  20. X-ray based extensometry

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.; Pease, D. M.

    1988-01-01

    A totally new method of extensometry using an X-ray beam was proposed. The intent of the method is to provide a non-contacting technique that is immune to problems associated with density variations in gaseous environments that plague optical methods. X-rays are virtually unrefractable even by solids. The new method utilizes X-ray induced X-ray fluorescence or X-ray induced optical fluorescence of targets that have melting temperatures of over 3000 F. Many different variations of the basic approaches are possible. In the year completed, preliminary experiments were completed which strongly suggest that the method is feasible. The X-ray induced optical fluorescence method appears to be limited to temperatures below roughly 1600 F because of the overwhelming thermal optical radiation. The X-ray induced X-ray fluorescence scheme appears feasible up to very high temperatures. In this system there will be an unknown tradeoff between frequency response, cost, and accuracy. The exact tradeoff can only be estimated. It appears that for thermomechanical tests with cycle times on the order of minutes a very reasonable system may be feasible. The intended applications involve very high temperatures in both materials testing and monitoring component testing. Gas turbine engines, rocket engines, and hypersonic vehicles (NASP) all involve measurement needs that could partially be met by the proposed technology.

  1. LCLS-II New Instruments Workshops Report

    SciTech Connect

    Baradaran, Samira; Bergmann, Uwe; Durr, Herrmann; Gaffney, Kelley; Goldstein, Julia; Guehr, Markus; Hastings, Jerome; Heimann, Philip; Lee, Richard; Seibert, Marvin; Stohr, Joachim; /SLAC

    2012-08-08

    The LCLS-II New Instruments workshops chaired by Phil Heimann and Jerry Hastings were held on March 19-22, 2012 at the SLAC National Accelerator Laboratory. The goal of the workshops was to identify the most exciting science and corresponding parameters which will help define the LCLS-II instrumentation. This report gives a synopsis of the proposed investigations and an account of the workshop. Scientists from around the world have provided short descriptions of the scientific opportunities they envision at LCLS-II. The workshops focused on four broadly defined science areas: biology, materials sciences, chemistry and atomic, molecular and optical physics (AMO). Below we summarize the identified science opportunities in the four areas. The frontiers of structural biology lie in solving the structures of large macromolecular biological systems. Most large protein assemblies are inherently difficult to crystallize due to their numerous degrees of freedom. Serial femtosecond protein nanocrystallography, using the 'diffraction-before-destruction' approach to outrun radiation damage has been very successfully pioneered at LCLS and diffraction patterns were obtained from some of the smallest protein crystals ever. The combination of femtosecond x-ray pulses of high intensity and nanosized protein crystals avoids the radiation damage encountered by conventional x-ray crystallography with focused beams and opens the door for atomic structure determinations of the previously largely inaccessible class of membrane proteins that are notoriously difficult to crystallize. The obtained structures will allow the identification of key protein functions and help in understanding the origin and control of diseases. Three dimensional coherent x-ray imaging at somewhat lower resolution may be used for larger objects such as viruses. The chemistry research areas of primary focus are the predictive understanding of catalytic mechanisms, with particular emphasis on photo- and

  2. X-Ray Tomographic Reconstruction

    SciTech Connect

    Bonnie Schmittberger

    2010-08-25

    Tomographic scans have revolutionized imaging techniques used in medical and biological research by resolving individual sample slices instead of several superimposed images that are obtained from regular x-ray scans. X-Ray fluorescence computed tomography, a more specific tomography technique, bombards the sample with synchrotron x-rays and detects the fluorescent photons emitted from the sample. However, since x-rays are attenuated as they pass through the sample, tomographic scans often produce images with erroneous low densities in areas where the x-rays have already passed through most of the sample. To correct for this and correctly reconstruct the data in order to obtain the most accurate images, a program employing iterative methods based on the inverse Radon transform was written. Applying this reconstruction method to a tomographic image recovered some of the lost densities, providing a more accurate image from which element concentrations and internal structure can be determined.

  3. Focusing X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    O'Dell, Stephen; Brissenden, Roger; Davis, William; Elsner, Ronald; Elvis, Martin; Freeman, Mark; Gaetz, Terrance; Gorenstein, Paul; Gubarev, Mikhall; Jerlus, Diab; Juda, Michael; Kolodziejczak, Jeffrey; Murray, Stephen; Petre, Robert; Podgorski, William; Ramsey, Brian; Reid, Paul; Saha, Timo; Wolk, Scott; Troller-McKinstry, Susan; Weisskopf, Martin; Wilke, Rudeger; Zhang, William

    2010-01-01

    During the half-century history of x-ray astronomy, focusing x-ray telescopes, through increased effective area and finer angular resolution, have improved sensitivity by 8 orders of magnitude. Here, we review previous and current x-ray-telescope missions. Next, we describe the planned next-generation x-ray-astronomy facility, the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility, Generation X. Its scientific objectives will require very large areas (about 10,000 sq m) of highly-nested, lightweight grazing-incidence mirrors, with exceptional (about 0.1-arcsec) resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.

  4. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  5. Strong focusing influence on high gain FEL characteristics

    SciTech Connect

    Smirnov, A.; Varfolomeev, A.

    1995-12-31

    The use of intrinsic alternating focusing in a linac-driven FEL with planar undulator is considered numerically. The analysis is done on the basis of TDA code for soft X-ray FEL with FD lattice implementing focusing of quadrupole and periodic sextupole type. The influence of the focusing (type and phase advance) on FEL performance and the reasons of difference in FEL performance for focusing of two kinds are analyzed. A possibility of some kind of beam conditioning for intrinsic focusing is discussed.

  6. Hard X-Ray Emission of X-Ray Bursters

    NASA Technical Reports Server (NTRS)

    Kaaret, Phillip

    1997-01-01

    The main results from this investigation were serendipitous. The long observation approved for the study of the hard X-ray emission of X-ray bursters lead, instead, to one of the largest early samples of the behavior of fast quasi-periodic oscillations (QPOS) in an atoll sources. Our analysis of this data set lead to the several important discoveries including the existence of a robust correlation between QPO frequency and the flux of a soft blackbody component of the X-ray spectrum in the atoll source 4U 0614+091.

  7. LCLS Injector Drive Laser

    SciTech Connect

    Dowell, D.H.; Castro, J.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; White, W.; /SLAC

    2007-11-02

    Requirements for the LCLS injector drive laser present significant challenges to the design of the system. While progress has been demonstrated in spatial shape, temporal shape, UV generation and rep-rate, a laser that meets all of the LCLS specifications simultaneously has yet to be demonstrated. These challenges are compounded by the stability and reliability requirements. The drive laser and transport system has been installed and tested. We will report on the current operational state of the laser and plans for future improvements.

  8. X-Ray photonics: X-rays inspire electron movies

    NASA Astrophysics Data System (ADS)

    Vrakking, Marc J. J.; Elsaesser, Thomas

    2012-10-01

    The advent of high-energy, short-pulse X-ray sources based on free-electron lasers, laser plasmas and high-harmonic generation is now making it possible to probe the dynamics of electrons within molecules.

  9. High-throughput imaging of heterogeneous cell organelles with an X-ray laser (CXIDB ID 25)

    SciTech Connect

    Hantke, Max, F.

    2014-11-17

    Preprocessed detector images that were used for the paper "High-throughput imaging of heterogeneous cell organelles with an X-ray laser". The CXI file contains the entire recorded data - including both hits and blanks. It also includes down-sampled images and LCLS machine parameters. Additionally, the Cheetah configuration file is attached that was used to create the pre-processed data.

  10. X-Ray Emission Spectrometer Design with Single-Shot Pump-Probe and Resonant Excitation Capabilities

    SciTech Connect

    Spoth, Katherine; /SUNY, Buffalo /SLAC

    2012-08-28

    Core-level spectroscopy in the soft X-ray regime is a powerful tool for the study of chemical bonding processes. The ultrafast, ultrabright X-ray pulses generated by the Linac Coherent Light Source (LCLS) allow these reactions to be studied in greater detail than ever before. In this study, we investigated a conceptual design of a spectrometer for the LCLS with imaging in the non-dispersive direction. This would allow single-shot collection of X-ray emission spectroscopy (XES) measurements with varying laser pump X-ray probe delay or a variation of incoming X-ray energy over the illuminated area of the sample. Ray-tracing simulations were used to demonstrate how the components of the spectrometer affect its performance, allowing a determination of the optimal final design. These simulations showed that the spectrometer's non-dispersive focusing is extremely sensitive to the size of the sample footprint; the spectrometer is not able to image a footprint width larger than one millimeter with the required resolution. This is compatible with a single shot scheme that maps out the laser pump X-ray probe delay in the non-dispersive direction as well as resonant XES applications at normal incidence. However, the current capabilities of the Soft X-Ray (SXR) beamline at the LCLS do not produce the required energy range in a small enough sample footprint, hindering the single shot resonant XES application at SXR for chemical dynamics studies at surfaces. If an upgraded or future beamline at LCLS is developed with lower monochromator energy dispersion the width can be made small enough at the required energy range to be imaged by this spectrometer design.

  11. Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator

    SciTech Connect

    Huang, Zhirong; Ding, Yuantao; Schroeder, Carl B.; /LBL, Berkeley

    2012-09-13

    Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

  12. SASE FEL Polarization Control Using Crossed Undulator

    SciTech Connect

    Ding, Yuantao; Huang, Zhirong; /SLAC

    2008-09-30

    There is a growing interest in producing intense, coherent x-ray radiation with an adjustable and arbitrary polarization state. In this paper, we study the crossed undulator scheme for rapid polarization control in a self-amplified spontaneous emission (SASE) free electron laser (FEL). Because a SASE source is a temporally chaotic light, we perform a statistical analysis on the state of polarization using FEL theory and simulations. We show that by adding a small phase shifter and a short (about 1.3 times the FEL power gain length), 90{sup o} rotated planar undulator after the main SASE planar undulator, one can obtain circularly polarized light--with over 80% polarization--near the FEL saturation.

  13. Be/X-ray binaries

    NASA Astrophysics Data System (ADS)

    Reig, Pablo

    2011-03-01

    The interest in X/ γ-ray Astronomy has grown enormously in the last decades thanks to the ability to send X-ray space missions above the Earth’s atmosphere. There are more than half a million X-ray sources detected and over a hundred missions (past and currently operational) devoted to the study of cosmic X/ γ rays. With the improved sensibilities of the currently active missions new detections occur almost on a daily basis. Among these, neutron-star X-ray binaries form an important group because they are among the brightest extra-solar objects in the sky and are characterized by dramatic variability in brightness on timescales ranging from milliseconds to months and years. Their main source of power is the gravitational energy released by matter accreted from a companion star and falling onto the neutron star in a relatively close binary system. Neutron-star X-ray binaries divide into high-mass and low-mass systems according to whether the mass of the donor star is above ˜8 or below ˜2 M⊙, respectively. Massive X-ray binaries divide further into supergiant X-ray binaries and Be/X-ray binaries depending on the evolutionary status of the optical companion. Virtually all Be/X-ray binaries show X-ray pulsations. Therefore, these systems can be used as unique natural laboratories to investigate the properties of matter under extreme conditions of gravity and magnetic field. The purpose of this work is to review the observational properties of Be/X-ray binaries. The open questions in Be/X-ray binaries include those related to the Be star companion, that is, the so-called “Be phenomenon”, such as, timescales associated to the formation and dissipation of the equatorial disc, mass-ejection mechanisms, V/ R variability, and rotation rates; those related to the neutron star, such as, mass determination, accretion physics, and spin period evolution; but also, those that result from the interaction of the two constituents, such as, disc truncation and mass

  14. X-ray burst sources

    NASA Technical Reports Server (NTRS)

    Lewin, W. H. G.

    1986-01-01

    There are about 100 bright X-ray sources in the Galaxy that are accretion-driven systems composed of a neutron star and a low mass companion that fills its critical Roche lobe. Many of these systems generate recurring X-ray bursts that are the result of thermonuclear flashes in the neutron star's surface layers, and are accompanied by a somewhat delayed optical burst due to X-ray heating of accretion disk. The Rapid Burster discovered in 1976 exhibits an interval between bursts that is strongly correlated with the energy in the preceding burst. There is no optical identification for this object.

  15. X-Ray Imaging System

    NASA Astrophysics Data System (ADS)

    1986-01-01

    The FluoroScan Imaging System is a high resolution, low radiation device for viewing stationary or moving objects. It resulted from NASA technology developed for x-ray astronomy and Goddard application to a low intensity x-ray imaging scope. FlouroScan Imaging Systems, Inc, (formerly HealthMate, Inc.), a NASA licensee, further refined the FluoroScan System. It is used for examining fractures, placement of catheters, and in veterinary medicine. Its major components include an x-ray generator, scintillator, visible light image intensifier and video display. It is small, light and maneuverable.

  16. Hummingbird: monitoring and analyzing flash X-ray imaging experiments in real time1

    PubMed Central

    Daurer, Benedikt J.; Hantke, Max F.; Nettelblad, Carl; Maia, Filipe R. N. C.

    2016-01-01

    Advances in X-ray detectors and increases in the brightness of X-ray sources combined with more efficient sample delivery techniques have brought about tremendous increases in the speed of data collection in diffraction experiments. Using X-ray free-electron lasers such as the Linac Coherent Light Source (LCLS), more than 100 diffraction patterns can be collected in a second. These high data rates are invaluable for flash X-ray imaging (FXI), where aerosolized samples are exposed to the X-ray beam and the resulting diffraction patterns are used to reconstruct a three-dimensional image of the sample. Such experiments require immediate feedback on the quality of the data collected to adjust or validate experimental parameters, such as aerosol injector settings, beamline geometry or sample composition. The scarcity of available beamtime at the laser facilities makes any delay extremely costly. This paper presents Hummingbird, an open-source scalable Python-based software tool for real-time analysis of diffraction data with the purpose of giving users immediate feedback during their experiments. Hummingbird provides a fast, flexible and easy-to-use framework. It has already proven to be of great value in numerous FXI experiments at the LCLS. PMID:27275147

  17. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy

    DOE PAGES

    Levantino, M.; Lemke, H. T.; Schirò, G.; Glownia, M.; Cupane, A.; Cammarata, M.

    2015-07-01

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (~70 fs) relaxation preceding a slower (~400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix.

  18. X-ray microtomographic scanners

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  19. Imaging X-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Grant, P. A.; Jackson, J. W., Jr.; Alcorn, G. E.; Marshall, F. E. (Inventor)

    1984-01-01

    An X-ray spectrometer for providing imaging and energy resolution of an X-ray source is described. This spectrometer is comprised of a thick silicon wafer having an embedded matrix or grid of aluminum completely through the wafer fabricated, for example, by thermal migration. The aluminum matrix defines the walls of a rectangular array of silicon X-ray detector cells or pixels. A thermally diffused aluminum electrode is also formed centrally through each of the silicon cells with biasing means being connected to the aluminum cell walls and causes lateral charge carrier depletion between the cell walls so that incident X-ray energy causes a photoelectric reaction within the silicon producing collectible charge carriers in the form of electrons which are collected and used for imaging.

  20. X-ray fiducial foils

    SciTech Connect

    Alford, C.; Serduke, F.; Makowiecki, D.; Jankowski, A.; Wall, M.

    1991-03-13

    An x-ray spectrum from a laser fusion experiment was passed through an Al, Si, Y multilayer foil. The position of the absorption edges of the Al, Si, and Y was used to calibrate the x-ray energy spectrum recorded on photographic film. The foil consisted of 4000 {angstrom} of Al, 6000 {angstrom} of Si and 4000 {angstrom} of Y sputter deposited on a 1.5 {mu}m thick Mylar{reg sign} film. It was necessary to layer the structure in order to achieve the required mechanical strength and dimensional stability. The results include analysis of the x-ray energy spectrum and microstructural characterization of the foil using x-ray diffraction and transmission electron microscopy.

  1. Bone X-Ray (Radiography)

    MedlinePlus

    ... bone x-ray is used to: diagnose fractured bones or joint dislocation. demonstrate proper alignment and stabilization of bony fragments following treatment of a fracture. guide orthopedic surgery, ...

  2. X-Ray Imaging System

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Model 60007A InnerView Real-time X-ray Imaging System, produced by National Imaging Systems, a division of FlouroScan Imaging Systems, Inc. (formerly HealthMate, Inc.), Northbrook, IL, is a third generation spinoff from x-ray astronomy technology. Goddard Space Flight Center developed the original technology into the Lixiscope, a small, portable, minimal radiation x-ray instrument that could be used at the scene of an accident. FlouroScan Imaging Systems, Inc., adapted this technology to develop the FlouroScan, a low-intensity, x-ray system that could be used without the lead aprons, film badges and lead-lined walls that conventional systems require. The InnerView is a spinoff of non-destructive testing and product inspection.

  3. Miniature x-ray source

    DOEpatents

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  4. Abdomen X-Ray (Radiography)

    MedlinePlus

    ... have very controlled x-ray beams and dose control methods to minimize stray (scatter) radiation. This ensures that those parts of a patient's body not being imaged receive minimal radiation exposure. top ...

  5. X-Ray Exam: Finger

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... Results A radiologist, a doctor specially trained in reading and interpreting X-ray images, will look at ...

  6. X-Ray Exam: Hip

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  7. X-Ray Exam: Foot

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  8. X-Ray Exam: Ankle

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  9. X-Ray Exam: Pelvis

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of keeping still while the X-ray is ...

  10. X-Ray Exam: Forearm

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  11. X-Ray Exam: Wrist

    MedlinePlus

    ... KidsHealth in the Classroom What Other Parents Are Reading Upsetting News Reports? What to Say Vaccines: Which ... For older kids, be sure to explain the importance of staying still while the X-ray is ...

  12. Single-shot femtosecond x-ray diffraction from randomly oriented ellipsoidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Bogan, M. J.; Boutet, S.; Barty, A.; Benner, W. H.; Frank, M.; Lomb, L.; Shoeman, R.; Starodub, D.; Seibert, M. M.; Hau-Riege, S. P.; Woods, B.; Decorwin-Martin, P.; Bajt, S.; Schulz, J.; Rohner, U.; Iwan, B.; Timneanu, N.; Marchesini, S.; Schlichting, I.; Hajdu, J.; Chapman, H. N.

    2010-09-01

    Coherent diffractive imaging of single particles using the single-shot “diffract and destroy” approach with an x-ray free electron laser (FEL) was recently demonstrated. A high-resolution low-noise coherent diffraction pattern, representative of the object before it turns into a plasma and explodes, results from the interaction of the FEL with the particle. Iterative phase retrieval algorithms are used to reconstruct two-dimensional projection images of the object from the recorded intensities alone. Here we describe the first single-shot diffraction data set that mimics the data proposed for obtaining 3D structure from identical particles. Ellipsoidal iron oxide nanoparticles (250nm×50nm) were aerosolized and injected through an aerodynamic lens stack into a soft x-ray FEL. Particle orientation was not controlled with this injection method. We observed that, at the instant the x-ray pulse interacts with the particle, a snapshot of the particle’s orientation is encoded in the diffraction pattern. The results give credence to one of the technical concepts of imaging individual nanometer and subnanometer-sized objects such as single molecules or larger clusters of molecules using hard x-ray FELs and will be used to help develop robust algorithms for determining particle orientations and 3D structure.

  13. 600 eV falcon-linac thomson x-ray source

    SciTech Connect

    Crane, J K; LeSage, G P; Ditmire, T; Cross, R; Wharton, K; Moffitt, K; Cowan, T E; Hays, G; Tsai, V; Anderson, G; Shuttlesworth, R; Springer, P

    2000-12-15

    The advent of 3rd generation light sources such as the Advanced Light Source (ALS) at LBL, and the Advanced Photon Source at Argonne, have produced a revolution in x-ray probing of dense matter during the past decade. These machines use electron-synchrotrons in conjunction with undulator stages to produce 100 psec x-ray pulses with photon energies of several kiloelectronvolts (keV). The applications for x-ray probing of matter are numerous and diverse with experiments in medicine and biology, semiconductors and materials science, and plasma and solid state physics. In spite of the success of the 3rd generation light sources there is strong motivation to push the capabilities of x-ray probing into new realms, requiring shorter pulses, higher brightness and harder x-rays. A 4th generation light source, the Linac Coherent Light Source (LCLS), is being considered at the Stanford Linear Accelerator [1]. The LCLS will produce multi-kilovolt x-rays of subpicosecond duration that are 10 orders of magnitude brighter than today's 3rd generation light sources.[1] Although the LCLS will provide unprecedented capability for performing time-resolved x-ray probing of ultrafast phenomena at solid densities, this machine will not be completed for many years. In the meantime there is a serious need for an ultrashort-pulse, high-brightness, hard x-ray source that is capable of probing deep into high-Z solid materials to measure dynamic effects that occur on picosecond time scales. Such an instrument would be ideal for probing the effects of shock propagation in solids using Bragg and Laue diffraction. These techniques can be used to look at phase transitions, melting and recrystallization, and the propagation of defects and dislocations well below the surface in solid materials. [2] These types of dynamic phenomena undermine the mechanical properties of metals and are of general interest in solid state physics, materials science, metallurgy, and have specific relevance to stockpile

  14. LCLS Spectral Flux Viewer

    2005-10-25

    This application (FluxViewer) is a tool for displaying spectral flux data for the Linac Coherent Light Source (LCLS). This tool allows the user to view sliced spatial and energy distributions of the photons selected for specific energies and positions transverse to the beam axis.

  15. Electromechanical x-ray generator

    DOEpatents

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  16. Robert R. Wilson Prize: The Quest for Bright, Coherent X-Rays: A Personal Story

    NASA Astrophysics Data System (ADS)

    Kim, Kwang Je

    2014-03-01

    Stories associated with the advances in x-ray source techniques during the last several decades will be told from a personal viewpoint. I will start from the ``third-generation'' x-ray sources based on storage-ring-based undulators and a struggle to find a proper way to quantify the radiation strength. I will then discuss how the initially incoherent undulator radiation evolves into an intense-quasi-coherent radiation via free-electron laser (FEL) interaction. This so-called self-amplified spontaneous emission (SASE) in the x-ray region could be realized with the advent of laser-induced electron guns and forms the basis of the linac-driven ``fourth generation'' x-ray facilities. An x-ray FEL oscillator (XFELO) will also be feasible if Bragg reflectors, such as diamond crystals, are used as cavity mirrors. An XFELO driven by a CW superconducting linac would be a ``real x-ray laser,'' producing a steady stream of fully coherent, spectrally pure x-ray pulses. An XFELO can be mode-locked, thus producing x-ray spectral comb, if the cavity length can be fixed to a fraction of the x-ray wavelength by referencing to a narrow nuclear resonance. A mode-locked XFELO will enable x-ray quantum optics experiments, such as matter-wave interferometry, for fundamental physics. Alongside these main themes, stories for novel and ``cute'' schemes, such as a crossed undulator for polarization switching and an emittance exchanger for swapping the transverse and longitudinal phase space, will also be presented. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  17. X-Rays, Pregnancy and You

    MedlinePlus

    ... and Procedures Medical Imaging Medical X-ray Imaging X-Rays, Pregnancy and You Share Tweet Linkedin Pin it ... the decision with your doctor. What Kind of X-Rays Can Affect the Unborn Child? During most x- ...

  18. Why Do I Need X-Rays?

    MedlinePlus

    ... to your desktop! more... Why Do I Need X-Rays? Article Chapters Why Do I Need X-Rays? ... of tooth decay. Updated: January 2012 Related Articles: X-Rays The Academy of General Dentistry (AGD) Sets the ...

  19. Commissioning Results of the LCLS Injector

    SciTech Connect

    Dowell, D.H.; Akre, R.; Ding, Y.; Emma, P.; Frisch, J.; Gilevich, S.; Hays, G.; Hering, Ph.; Huang, Z.; Iverson, R.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Schmerge, J.; Turner, J.; Welch, J.; White, W.; Wu, J.; Frohlich, L.; Limberg, T.; Prat, E.; /DESY

    2007-11-16

    The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam has recently been completed. The second phase of construction, including second bunch compressor and full linac, is planned for 2008. In this paper, we report experimental results and experience gained during the first phase of machine commissioning. This includes the cathode, drive laser, RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics.

  20. Initial Commissioning Experience With the LCLS Injector

    SciTech Connect

    Akre, R.; Castro, J.; Ding, Y.; Dowell, D.H.; Emma, P.; Frisch, J.; Gilevich, A.; Hays, G.; Hering, P.; Huang, Z.; Iverson, R.; Krejcik, P.; Limborg-Deprey, C.; Loos, H.; Miahnahri, A.; Rivetta, C.; Saleski, M.; Schmerge, J.F.; Schultz, D.; Turner, J.; Welch, J.; /SLAC /DESY

    2007-11-02

    The Linac Coherent Light Source (LCLS) is a SASE xray Free-Electron Laser (FEL) project presently under construction at SLAC [1]. The injector section, from drive-laser and RF photocathode gun through first bunch compressor chicane, was installed in fall 2006. Initial system commissioning with an electron beam is taking place during the spring and summer of 2007. The second phase of construction, including second bunch compressor and full linac, will begin later, in the fall of 2007. We report here on experience gained during the first phase of machine commissioning, including RF photocathode gun, linac booster section, S-band and X-band RF systems, first bunch compressor, and the various beam diagnostics.

  1. Nanometer x-ray lithography

    NASA Astrophysics Data System (ADS)

    Hartley, Frank T.; Khan Malek, Chantal G.

    1999-10-01

    New developments for x-ray nanomachining include pattern transfer onto non-planar surfaces coated with electrodeposited resists using synchrotron radiation x-rays through extremely high-resolution mask made by chemically assisted focused ion beam lithography. Standard UV photolithographic processes cannot maintain sub-micron definitions over large variation in feature topography. The ability of x-ray printing to pattern thin or thick layers of photoresist with high resolution on non-planar surfaces of large and complex topographies with limited diffraction and scattering effects and no substrate reflection is known and can be exploited for patterning microsystems with non-planar 3D geometries as well as multisided and multilayered substrates. Thin conformal coatings of electro-deposited positive and negative tone photoresist have been shown to be x-ray sensitive and accommodate sub-micro pattern transfer over surface of extreme topographical variations. Chemically assisted focused ion beam selective anisotropic erosion was used to fabricate x-ray masks directly. Masks with feature sizes less than 20 nm through 7 microns of gold were made on bulk silicon substrates and x-ray mask membranes. The technique is also applicable to other high density materials. Such masks enable the primary and secondary patterning and/or 3D machining of Nano-Electro-Mechanical Systems over large depths or complex relief and the patterning of large surface areas with sub-optically dimensioned features.

  2. Tokamak x ray diagnostic instrumentation

    SciTech Connect

    Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

    1987-01-01

    Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

  3. Center for X-Ray Optics, 1992

    SciTech Connect

    Not Available

    1993-08-01

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  4. Two-color x-ray pump x-ray probe study of the core-hole decay dynamics in XeF2

    NASA Astrophysics Data System (ADS)

    Picon, Antonio; Lehmann, C. Stefan; Southworth, Stephen; Ho, Phay; Doumy, Gilles; Kanter, Elliot; Kraessig, Bertold; March, Anne Marie; Moonshiram, Dooshaye; Young, Linda; Pratt, Steve; Ray, Dipanwita; Bostedt, Christoph; Krzywinski, Jacek; Ferguson, Ken; Carron, Sebastian; Bucher, Max; Rolles, Daniel; Erk, Benjamin; Bomme, Cedric; Rudenko, Artem; Osipov, Timur; Berrah, Nora; Cheng, Lan; Stanton, John

    2015-03-01

    To resolve the femtosecond inner-shell dynamics and the subsequent induced electron transfer in a molecule, the core-hole decay dynamics in XeF2 have been directly studied using femtosecond time-resolved x-ray pump x-ray probe coincidence imaging. The study of XeF2 molecule allows us to compare the molecular core-hole decay with the atomic case, Xe atom. To study these processes, the recently developed capability at LCLS was used to generate two-color x-ray pulses with variable delay. A time and position sensitive detector has been used to record the ion fragments in coincidence. The correlated ion kinetic energies make it possible to select and assign different excitation pathways, being able to track the atomic and the molecular core-hole decay dynamics.

  5. LCLS LLRF Upgrades to the SLAC Linac

    SciTech Connect

    Akre, R.; Dowell, D.; Emma, P.; Frisch, J.; Hong, B.; Kotturi, K.; Krejcik, P.; Wu, J.; Byrd, J.; /LBL, Berkeley

    2007-10-04

    The Linac Coherent Light Source (LCLS) at SLAC will be the brightest X-ray laser in the world when it comes on line. In order to achieve the brightness a 200fS length electron bunch is passed through an undulator. To create the 200fS, 3kA bunch, a 10pS electron bunch, created from a photo cathode in an RF gun, is run off crest on the RF to set up a position to energy correlation. The bunch is then compressed by chicanes. The stability of the RF system is critical in setting up the position to energy correlation. Specifications derived from simulations require the RF system to be stable to below 200fS in several critical injector stations and the last kilometer of linac. The SLAC linac RF system is being upgraded to meet these requirements.

  6. Pulsed, tunable, monochromatic X-rays and their role in medicine.

    NASA Astrophysics Data System (ADS)

    Carroll, Frank; Waters, James; Mendenhall, Marcus; Traeger, Robert; Paschal, Cynthia; Brau, Charles

    2000-04-01

    The Vanderbilt FEL has repeatedly produced pulsed, tunable, monochromatic X-rays via inverse Compton scattering. While these experiments offered us proof of principal that such beams can be created in a geometry that easily lends itself to human imaging, it was determined that FEL's aren't the ideal sources for this. By building on the strengths and eliminating the weaknesses of the FEL, a new machine has been designed and is under construction for this purpose. It delivers 10^10 photons of 15-50 keV X-rays in each 2ps pulse, in an area beam geometry, and is capable of running on higher harmonics. Beams such as this are attractive for medical uses, because of the anticipated radiation dose reduction, improvements in contrast and spatial resolution and their versatility in absorption and phase contrast imaging. These beams are useful in plain films, mammography, tomography, angiography and time-of-flight imaging.

  7. Coherent Soft X-Ray Generation in the Water Window with the EEHG Scheme

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2009-05-26

    Recently a scheme entitled echo-enabled harmonic generation (EEHG) was proposed for producing short wavelength FEL radiation that allows far higher harmonic numbers to be accessed as compared with the normal limit arising from incoherent energy spread. In this paper we study the feasibility of a single EEHG stage to generate coherent radiation in the 'water window' (2--4 nm wavelength) directly from a UV seed laser at 190-nm wavelength. We present time-dependent simulation results which demonstrate that the single-stage EEHG FEL can generate high power soft x-ray radiation in the water window with narrow bandwidth close to Fourier transform limit directly from a UV seed laser. The schemes to generate short x-ray pulse from femtosecond to attosecond using EEHG FEL are also discussed.

  8. X-ray spectra of galactic X-ray sources

    NASA Technical Reports Server (NTRS)

    Holt, S. S.

    1980-01-01

    The spectroscopic properties of the various classes of Galactic X-ray sources are discussed, with particular emphasis on binary sources containing an accreting compact object, where post-emission scattering in an accretion disk often prevents the initially produced X-radiation from being observed directly. Theoretical interpretations and X-ray observations are considered for the cataclysmic variables, binary systems with a white dwarf as the compact object and which suffer relatively less from Thomson scattering, and the similar phenomenological spectral characteristics of the bulge sources, including soft transients, bursters and steady X-ray sources with thermal spectra, thought to represent an accreting neutron star, are pointed out. The spectral characteristics of X-ray pulsars in accreting binary systems (rather than the Crab pulsar, which is losing rotational kinetic energy with time) are then presented and interpreted in terms of accretion in the polar regions, and mechanisms for the newly discovered X-ray emission from late-type RS CVn stars are considered.

  9. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.

  10. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  11. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  12. LCLS XTOD Tunnel Vacuum Transport System (XVTS) Final Design Report

    SciTech Connect

    Shen, S

    2006-10-16

    The design of the X-Ray Vacuum Transport System (XVTS) for the Linac Coherent Light Source (LCLS) X-ray Transport, Optics and Diagnostics (XTOD) system has been analyzed and configured by the Lawrence Livermore National Laboratory's New Technologies Engineering Division (NTED) as requested by the SLAC/LCLS program. A preliminary design review was held on 11/14/05 [1][2]. This FDR (Final Design Report) presents system configuration, detailed analyses and selection of the mechanical and electrical components for the XTOD tunnel section, as well as the response to all issues raised in the review committee report. Also included are the plans for procurement, mechanical integration, schedule and the cost estimates. It should be noticed that, after the XVTS PDR, LCLS management has decided to lower the number of beamlines from three to one, and shorten the tunnel length from 212 m to 184 m. [3][4] The final design of XVTS system is completed. The major subjects presented in this report are: (1) Design of the complete system. (2) System analysis results. (3) ES&H issues and plan. (4) Project cost estimates and schedule.

  13. Exploring Mbar shock conditions and isochorically heated aluminum at the MEC end station of the LCLS

    SciTech Connect

    Fletcher, L. B.; Lee, H. J.; SLAC, aff; Barbrel, B.; Gauthier, M.; Galtier, E.; Nagler, B.; Doppner, T.; LePape, S.; Ma, T.; Pak, A.; Turnbull, D.; White, T.; Gregori, G.; Wei, M.; Falcone, R. W.; Heimann, P.; Zastrau, U.; Hastings, J. B.; Glenzer, S. H.

    2015-02-05

    Recent experiments performed at the Matter in Extreme Conditions end station (MEC) of the Linac Coherent Light Source (LCLS) have demonstrated the first spectrally resolved measurements of plasmons from isochorically heated aluminum. The experiments have been performed using a seeded 8-keV x-ray laser beam as a pump and probe to both volumetrically heat and scatter x-rays from aluminum. Collective x-ray Thomson scattering spectra show a well-resolved plasmon feature that is down-shifted in energy by 19 eV. In addition, Mbar shock pressures from laser-compressed aluminum foils using Velocity Interferometer System for Any Reflector (VISAR) have been measured. The combination of experiments fully demonstrates the possibility to perform warm dense matter studies at the LCLS with unprecedented accuracy and precision.

  14. Disentangling formation of multiple-core holes in aminophenol molecules exposed to bright X-FEL radiation

    NASA Astrophysics Data System (ADS)

    Zhaunerchyk, V.; Kamińska, M.; Mucke, M.; Squibb, R. J.; Eland, J. H. D.; Piancastelli, M. N.; Frasinski, L. J.; Grilj, J.; Koch, M.; McFarland, B. K.; Sistrunk, E.; Gühr, M.; Coffee, R. N.; Bostedt, C.; Bozek, J. D.; Salén, P.; Meulen, P. v. d.; Linusson, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Richter, R.; Prince, K. C.; Takahashi, O.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Feifel, R.

    2015-12-01

    Competing multi-photon ionization processes, some leading to the formation of double core hole states, have been examined in 4-aminophenol. The experiments used the linac coherent light source (LCLS) x-ray free electron laser, in combination with a time-of-flight magnetic bottle electron spectrometer and the correlation analysis method of covariance mapping. The results imply that 4-aminophenol molecules exposed to the focused x-ray pulses of the LCLS sequentially absorb more than two x-ray photons, resulting in the formation of multiple core holes as well as in the sequential removal of photoelectrons and Auger electrons (so-called PAPA sequences).

  15. Disentangling formation of multiple-core holes in aminophenol molecules exposed to bright X-FEL radiation

    DOE PAGES

    Zhaunerchyk, V.; Kaminska, M.; Mucke, M.; Squibb, R. J.; Eland, J. H. D.; Piancastelli, M. N.; Frasinski, L. J.; Grilj, J.; Koch, M.; McFarland, B. K.; et al

    2015-10-28

    Competing multi-photon ionization processes, some leading to the formation of double core hole states, have been examined in 4-aminophenol. The experiments used the linac coherent light source (LCLS) x-ray free electron laser, in combination with a time-of-flight magnetic bottle electron spectrometer and the correlation analysis method of covariance mapping. Furthermore, the results imply that 4-aminophenol molecules exposed to the focused x-ray pulses of the LCLS sequentially absorb more than two x-ray photons, resulting in the formation of multiple core holes as well as in the sequential removal of photoelectrons and Auger electrons (so-called PAPA sequences).

  16. The LCLS Undulator Beam Loss Monitor Readout System

    SciTech Connect

    Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

    2012-07-23

    The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

  17. Ultrafast X-ray Sources

    SciTech Connect

    George Neil

    2010-04-19

    Since before the scattering of X-rays off of DNA led to the first understanding of the double helix structure, sources of X-rays have been an essential tool for scientists examining the structure and interactions of matter. The resolution of a microscope is proportional to the wavelength of light so x-rays can see much finer structures than visible light, down to single atoms. In addition, the energy of X-rays is resonant with the core atomic levels of atoms so with appropriate wavelengths the placement of specific atoms in a large molecule can be determined. Over 10,000 scientists use synchrotron sources, storage rings of high energy electrons, each year worldwide. As an example of such use, virtually every picture of a protein or drug molecule that one sees in the scientific press is a reconstruction based on X-ray scattering of synchrotron light from the crystallized form of that molecule. Unfortunately those pictures are static and proteins work through configuration (shape) changes in response to energy transfer. To understand how biological systems work requires following the energy flow to these molecules and tracking how shape changes drive their interaction with other molecules. We'd like to be able to freeze the action of these molecules at various steps along the way with an X-ray strobe light. How fast does it have to be? To actually get a picture of a molecule in a fixed configuration requires X-ray pulses as short as 30 femtoseconds (1/30 of a millionth of a millionth of a second). To capture the energy flow through changes in electronic levels requires a faster strobe, less than 1 femtosecond! And to acquire such information in smaller samples with higher accuracy demands brighter and brighter X-rays. Unfortunately modern synchrotrons (dubbed 3rd Generation Light Sources) cannot deliver such short bright pulses of X-rays. An entirely new approach is required, linear-accelerator (linac-)-based light sources termed 4th or Next Generation Light Sources

  18. Flexible control of femtosecond pulse duration and separation using an emittance-spoiling foil in x-ray free-electron lasers

    SciTech Connect

    Ding, Y.; Behrens, C.; Coffee, R.; Decker, F. -J.; Emma, P.; Field, C.; Helml, W.; Huang, Z.; Krejcik, P.; Krzywinski, J.; Loos, H.; Lutman, A.; Marinelli, A.; Maxwell, T. J.; Turner, J.

    2015-06-22

    We report experimental studies of generating and controlling femtosecond x-ray pulses in free-electron lasers (FELs) using an emittance spoiling foil. By selectivity spoiling the transverse emittance of the electron beam, the output pulse duration or double-pulse separation is adjusted with a variable size single or double slotted foil. Measurements were performed with an X-band transverse deflector located downstream of the FEL undulator, from which both the FEL lasing and emittance spoiling effects are observed directly.

  19. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains. PMID:26967404

  20. X-rays surgical revolution.

    PubMed

    Toledo-Pereyra, Luis H

    2009-01-01

    Wilhelm Roentgen (1845-1923) created a surgical revolution with the discovery of the X-rays in late 1895 and the subsequent introduction of this technique for the management of surgical patients. No other physician or scientist had ever imagined such a powerful and worthwhile discovery. Other scientists paved the way for Roentgen to approach the use of these new X-rays for medical purposes. In this way, initially, and prior to Roentgen, Thompson, Hertz, and Lenard applied themselves to the early developments of this technology. They made good advances but never reached the clearly defined understanding brought about by Roentgen. The use of a Crookes tube, a barium platinocyanide screen, with fluorescent light and the generation of energy to propagate the cathode rays were the necessary elements for the conception of an X-ray picture. On November 8, 1895, Roentgen began his experiments on X-ray technology when he found that some kind of rays were being produced by the glass of the tube opposite to the cathode. The development of a photograph successfully completed this early imaging process. After six intense weeks of research, on December 22, he obtained a photograph of the hand of his wife, the first X-ray ever made. This would be a major contribution to the world of medicine and surgery.

  1. X-ray Echo Spectroscopy.

    PubMed

    Shvyd'ko, Yuri

    2016-02-26

    X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >10^{8}) with broadband ≃5-13  meV dispersing systems are introduced featuring more than 10^{3} signal enhancement. The technique is general, applicable in different photon frequency domains.

  2. Clocking Femtosecond X-Rays

    SciTech Connect

    Cavalieri, A L; Fritz, D M; Lee, S H; Bucksbaum, P H; Reis, D A; Mills, D M; Pahl, R; Rudati, J; Fuoss, P H; Stephenson, G B; Lowney, D P; MacPhee, A G; Weinstein, D; Falcone, R W; Als-Nielsen, J; Blome, C; Ischebeck, R; Schlarb, H; Tschentscher, T; Schneider, J; Sokolowski-Tinten, K; Chapman, H N; Lee, R W; Hansen, T N; Synnergren, O; Larsson, J; Techert, S; Sheppard, J; Wark, J S; Bergh, M; Calleman, C; Huldt, G; der Spoel, D v; Timneanu, N; Hajdu, J; Bong, E; Emma, P; Krejcik, P; Arthur, J; Brennan, S; Gaffney, K J; Lindenberg, A M; Hastings, J B

    2004-10-08

    The Sub-Picosecond Pulse Source (SPPS) at the Stanford Linear Accelerator Center (SLAC) produces the brightest ultrafast x-ray pulses in the world, and is the first to employ compressed femtosecond electron bunches for the x-ray source. Both SPPS and future X-ray Free Electron Lasers (XFEL's) will use precise measurements of individual electron bunches to time the arrival of x-ray pulses for time-resolved experiments. At SPPS we use electro-optic sampling (EOS) to perform these measurements. Here we present the first results using this method. An ultrafast laser pulse (135 fs) passes through an electro-optic crystal adjacent to the electron beam. The refractive index of the crystal is distorted by the strong electromagnetic fields of the ultra-relativistic electrons, and this transient birefringence is imprinted on the laser polarization. A polarizer decodes this signal, producing a time-dependent image of the compressed electron bunch. Our measurements yield the relative timing between an ultrafast optical laser and an ultrafast x-ray pulse to within 60 fs, making it possible to use the SPPS to observe atomic-scale ultrafast dynamics initiated by laser-matter interaction.

  3. Recent Progress in High-Gain FEL Theory

    SciTech Connect

    Huang, Z.; /SLAC

    2005-09-30

    High-gain free electron lasers (FEL) are being developed as extremely bright x-ray sources of a next-generation radiation facility. In this paper, we review the basic theory and the recent progress in understanding the startup, the exponential growth and the saturation of the high-gain process, emphasizing the self-amplified spontaneous emission (SASE). We will also discuss how the FEL performance may be affected by various errors and wakefield effects in the undulator.

  4. LCLS-II high power RF system overview and progress

    SciTech Connect

    Yeremian, Anahid Dian

    2015-10-07

    A second X-ray free electron laser facility, LCLS-II, will be constructed at SLAC. LCLS-II is based on a 1.3 GHz, 4 GeV, continuous-wave (CW) superconducting linear accelerator, to be installed in the first kilometer of the SLAC tunnel. Multiple types of high power RF (HPRF) sources will be used to power different systems on LCLS-II. The main 1.3 GHz linac will be powered by 280 1.3 GHz, 3.8 kW solid state amplifier (SSA) sources. The normal conducting buncher in the injector will use four more SSAs identical to the linac SSAs but run at 2 kW. Two 185.7 MHz, 60 kW sources will power the photocathode dual-feed RF gun. A third harmonic linac section, included for linearizing the bunch energy spread before the first bunch compressor, will require sixteen 3.9 GHz sources at about 1 kW CW. A description and an update on all the HPRF sources of LCLS-II and their implementation is the subject of this paper.

  5. FEL Oscillators

    SciTech Connect

    George Neil

    2003-05-12

    FEL Oscillators have been around since 1977 providing not only a test bed for the physics of Free Electron Lasers and electron/photon interactions but as a workhorse of scientific research. More than 30 FEL oscillators are presently operating around the world spanning a wavelength range from the mm region to the ultraviolet using DC and rf linear accelerators and storage rings as electron sources. The characteristics that have driven the development of these sources are the desire for high peak and average power, high micropulse energies, wavelength tunability, timing flexibility, and wavelengths that are unavailable from more conventional laser sources. Substantial user programs have been performed using such sources encompassing medicine, biology, solid state research, atomic and molecular physics, effects of non-linear fields, surface science, polymer science, pulsed laser vapor deposition, to name just a few.

  6. PROCEEDING OF THE SEEDED X-RAY FREE ELECTRON LASER WORKSHOP.

    SciTech Connect

    WANG,X.J.; MURPHY,J.B.; YU,L.H.; FAATZ,B.; HUANG,Z.; REICHE,S.; ZOLOTOREV,M.

    2002-12-13

    The underlying theory of a high gain free electron laser (FEL) has existed for two decades [1-2], but it is only in the last few years that these novel radiation sources have been realized experimentally. Several high gain FELs have successfully reached saturation in the infrared, visible and the VUV portion of the spectrum: the High Gain Harmonic Generation (HGHG) free electron lasers [3] at BNL and the Self Amplified Spontaneous Emission (SASE) FELs at LEUTL, VISA and TTF [4-6]. The outstanding challenges for future FELs are to extend high gain FELs to the X-ray regime, improve the longitudinal coherence of the radiation using seeded FEL schemes and generate ultrashort pulses (<100 fs). The National Synchrotron Light Source (NSLS) of the Brookhaven National Laboratory (BNL) sponsored a Seeded X-ray Free Electron Laser Workshop on December 13-14, 2002 to explore these challenging issues. Representatives from BNL, DESY, LBNL, SLAC and UCLA made presentations on the novel schemes under consideration at their laboratories. Workshop participants had a lively discussion on the feasibility, performance and R&D issues associated with the seeded XFEL schemes. An improvement of the electron beam quality will certainly be necessary to drive the XFEL. Self-seeding SASE, cascaded HGHG, and SASE pulse compression FELs show the most promise for producing short pulse X-rays. Of these, only the self-seeded and HGHG schemes generate longitudinally coherent radiation. While the pulse length in the self-seeded scheme is determined by the electron bunch length ({approx}100 fs), the pulse length in the HGHG scheme is determined by the short pulse seed laser, and so can be much shorter ({approx} 20 fs).

  7. LCLS Undulator Fiducialization Plan

    SciTech Connect

    Wolf, Zachary

    2010-11-24

    This note presents the LCLS undulator fiducialization plan. The undulators will be fiducialized in the Magnetic Measurement Facility at SLAC. The note begins by summarizing the requirements for the fiducialization. A brief discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage format are presented.

  8. X-ray tensor tomography

    NASA Astrophysics Data System (ADS)

    Malecki, A.; Potdevin, G.; Biernath, T.; Eggl, E.; Willer, K.; Lasser, T.; Maisenbacher, J.; Gibmeier, J.; Wanner, A.; Pfeiffer, F.

    2014-02-01

    Here we introduce a new concept for x-ray computed tomography that yields information about the local micro-morphology and its orientation in each voxel of the reconstructed 3D tomogram. Contrary to conventional x-ray CT, which only reconstructs a single scalar value for each point in the 3D image, our approach provides a full scattering tensor with multiple independent structural parameters in each volume element. In the application example shown in this study, we highlight that our method can visualize sub-pixel fiber orientations in a carbon composite sample, hence demonstrating its value for non-destructive testing applications. Moreover, as the method is based on the use of a conventional x-ray tube, we believe that it will also have a great impact in the wider range of material science investigations and in future medical diagnostics. The authors declare no competing financial interests.

  9. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Stacey Giles briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  10. X-ray Crystallography Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    University of Alabama engineer Lance Weiss briefs NASA astronaut Dr. Bornie Dunbar about the design and capabilities of the X-ray Crystallography Facility under development at the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, AL, April 21, 1999. The X-ray Crystallography Facility is designed to speed the collection of protein structure information from crystals grown aboard the International Space Station. By measuring and mapping the protein crystal structure in space, researchers will avoid exposing the delicate crystals to the rigors of space travel and make important research data available to scientists much faster. The X-ray Crystallography facility is being designed and developed by the Center for Macromolecular Crystallography of the University of Alabama at Birmingham, a NASA Commercial Space Center.

  11. LCLS Undulator Test Plan

    SciTech Connect

    Wolf, Zachary

    2010-11-24

    This note presents the test plan for the LCLS undulators. The undulators will be measured and tuned in the Magnetic Measurement Facility at SLAC. The requirements for tuning are well established and are summarized. A brief discussion of the measurement equipment is presented. This is followed by the detailed test plan in which each step is enumerated. Finally, the measurement results and storage format are presented. The LCLS consists of 33 undulator segments, hereafter referred to as undulators, plus 6 spares and one reference undulator. The undulators must be tuned to meet strict requirements. They must also be fiducialized to allow alignment with other components. This note details the plan for tuning and fiducializing the LCLS undulators. The note begins with the list of tuning and fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a detailed test plan in which all the steps of tuning and fiducialization are enumerated.

  12. The SwissFEL Experimental Laser facility.

    PubMed

    Erny, Christian; Hauri, Christoph Peter

    2016-09-01

    The hard X-ray laser SwissFEL at the Paul Scherrer Institute is currently being commissioned and will soon become available for users. In the current article the laser facility is presented, an integral part of the user facility, as most time-resolved experiments will require a versatile optical laser infrastructure and precise information about the relative delay between the X-ray and optical pulse. The important key parameters are a high availability and long-term stability while providing advanced laser performance in the wavelength range from ultraviolet to terahertz. The concept of integrating a Ti:sapphire laser amplifier system with subsequent frequency conversion stages and drift compensation into the SwissFEL facility environment for successful 24 h/7 d user operation is described. PMID:27577769

  13. X-ray imaging: Perovskites target X-ray detection

    NASA Astrophysics Data System (ADS)

    Heiss, Wolfgang; Brabec, Christoph

    2016-05-01

    Single crystals of perovskites are currently of interest to help fathom fundamental physical parameters limiting the performance of perovskite-based polycrystalline solar cells. Now, such perovskites offer a technology platform for optoelectronic devices, such as cheap and sensitive X-ray detectors.

  14. Portable X-Ray Device

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  15. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1986-01-01

    The analysis of the beryllium-filtered data from Flight 17.020 was completed. The data base provided by the Wisconsin diffuse X-ray sky survey is being analyzed by correlating the B and C band emission with individual velocity components of neutral hydrogen. Work on a solid state detector to be used in high resolution spectroscopy of diffuse or extend X-ray sources is continuing. A series of 21 cm observations was completed. A paper on the effects of process parameter variation on the reflectivity of sputter-deposited tungsten-carvon multilayers was published.

  16. X-ray free-electron lasers: Scientific goals and machine implications

    NASA Astrophysics Data System (ADS)

    Arthur, John

    2001-07-01

    Free electron lasers are now being designed which will operate at wavelengths down to about 1. [1] The physics of the high-gain, single pass FEL process requires extremely bright electron pulses in the 10-20 GeV range. This electron brightness should be achievable using an RF-photocathode source and a linear accelerator, such as the initial acceleration stage of a TeV-range linear electron-positron collider. The x-ray FEL radiation produced will have unique properties. In particular: • The FEL peak intensity and peak brightness will be many orders of magnitude higher than can be produced by any other source. • The pulse length will be less than 1 picosecond, orders of magnitude shorter than can be achieved with any other bright source such as a synchrotron. • The FEL radiation will have full transverse coherence and a degeneracy parameter (photons/coherence volume) equal to 109 or more. No other source can produce hard x-radiation with a degeneracy parameter significantly greater than 1. These properties offer the chance to study chemical, biological, and condensed matter dynamical processes with sub-picosecond time resolution and angstrom spatial resolution. [2] The high peak power of the FEL radiation (greater than 1014W/cm2) could be used to create precisely-controlled chemical and structural modifications inside samples. There is also the possibility that nonlinear x-ray interactions could be used to give increased resolution for spectroscopic studies, to greatly expand the parameter space for atomic physics studies, and to permit new fundamental tests of quantum mechanics. The exploration of these new x-ray techniques will require considerable development, not only in technical areas such as optics and detectors, but also in understanding the basic physics of the interaction of very intense x-radiation with matter. A large collaboration of US institutions is now conducting preliminary research and development in these areas, with the intention of

  17. Time-resolved pump-probe experiments at the LCLS.

    PubMed

    Glownia, James M; Cryan, J; Andreasson, J; Belkacem, A; Berrah, N; Blaga, C I; Bostedt, C; Bozek, J; DiMauro, L F; Fang, L; Frisch, J; Gessner, O; Gühr, M; Hajdu, J; Hertlein, M P; Hoener, M; Huang, G; Kornilov, O; Marangos, J P; March, A M; McFarland, B K; Merdji, H; Petrovic, V S; Raman, C; Ray, D; Reis, D A; Trigo, M; White, J L; White, W; Wilcox, R; Young, L; Coffee, R N; Bucksbaum, P H

    2010-08-16

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  18. Time-resolved pump-probe experiments at the LCLS

    SciTech Connect

    Glownia, James; Cryan, J.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C.L.; Bostedt, C.; Bozek, J.; DiMauro, L.F.; Fang, L.; Frisch, J.; Gessner, O.; Guhr, M.; Hajdu, J.; Hertlein, M.P.; Hoener, M.; Huang, G.; Kornilov, O.; Marangos, J.P.; March, A.M.; McFarland, B.K.; /SLAC /Stanford U., Phys. Dept. /SLAC /IRAMIS, Saclay /Stanford U., Phys. Dept. /Georgia Tech /Argonne /Kansas State U. /SLAC /Stanford U., Phys. Dept. /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Appl. Phys. Dept. /SLAC /LBNL /Argonne /SLAC /SLAC /Stanford U., Appl. Phys. Dept. /Stanford U., Phys. Dept.

    2011-08-12

    The first time-resolved x-ray/optical pump-probe experiments at the SLAC Linac Coherent Light Source (LCLS) used a combination of feedback methods and post-analysis binning techniques to synchronize an ultrafast optical laser to the linac-based x-ray laser. Transient molecular nitrogen alignment revival features were resolved in time-dependent x-ray-induced fragmentation spectra. These alignment features were used to find the temporal overlap of the pump and probe pulses. The strong-field dissociation of x-ray generated quasi-bound molecular dications was used to establish the residual timing jitter. This analysis shows that the relative arrival time of the Ti:Sapphire laser and the x-ray pulses had a distribution with a standard deviation of approximately 120 fs. The largest contribution to the jitter noise spectrum was the locking of the laser oscillator to the reference RF of the accelerator, which suggests that simple technical improvements could reduce the jitter to better than 50 fs.

  19. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGES

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  20. Absolute pulse energy measurements of soft x-rays at the Linac Coherent Light Source.

    PubMed

    Tiedtke, K; Sorokin, A A; Jastrow, U; Juranić, P; Kreis, S; Gerken, N; Richter, M; Arp, U; Feng, Y; Nordlund, D; Soufli, R; Fernández-Perea, M; Juha, L; Heimann, P; Nagler, B; Lee, H J; Mack, S; Cammarata, M; Krupin, O; Messerschmidt, M; Holmes, M; Rowen, M; Schlotter, W; Moeller, S; Turner, J J

    2014-09-01

    This paper reports novel measurements of x-ray optical radiation on an absolute scale from the intense and ultra-short radiation generated in the soft x-ray regime of a free electron laser. We give a brief description of the detection principle for radiation measurements which was specifically adapted for this photon energy range. We present data characterizing the soft x-ray instrument at the Linac Coherent Light Source (LCLS) with respect to the radiant power output and transmission by using an absolute detector temporarily placed at the downstream end of the instrument. This provides an estimation of the reflectivity of all x-ray optical elements in the beamline and provides the absolute photon number per bandwidth per pulse. This parameter is important for many experiments that need to understand the trade-offs between high energy resolution and high flux, such as experiments focused on studying materials via resonant processes. Furthermore, the results are compared with the LCLS diagnostic gas detectors to test the limits of linearity, and observations are reported on radiation contamination from spontaneous undulator radiation and higher harmonic content. PMID:25321502

  1. Fragmentation of clusters and recombination induced by intense and ultrashort x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Timneanu, N.; Iwan, B.; Andreasson, J.; Bergh, M.; Seibert, M.; Bostedt, C.; Schorb, S.; Thomas, H.; Rupp, D.; Gorkhover, T.; Adolph, M.; Möller, T.; Helal, A.; Hoffmann, K.; Kandadai, N.; Keto, J.; Ditmire, T.

    2013-05-01

    Understanding the ultrafast dynamics of matter under extreme conditions is relevant for structural studies and plasma physics with X-ray lasers. We used the pulses from free-electron lasers (FLASH in Hamburg and LCLS in Stanford) to trigger X-ray induced explosions in atomic atoms (Xe) and molecular clusters (CH4 and CD4). The explosion dynamics depends on cluster size and the intensity of the X-ray pulse, and a transition from Coulomb explosion to hydrodynamic expansion is expected with increasing size and increasing pulse intensity. In methane clusters experiments at FLASH, the time-of-flight spectrometry shows the appearance of molecular adducts which are the result of molecular recombination between ions and molecules. The recombination depends on the cluster size and the expansion mechanism and becomes significant in larger clusters. In Xenon cluster experiments at the LCLS, measurements of the ion charge states in clusters suggest a formation of Xe nanoplasma which expands hydrodynamically. The dominance of low charge states of Xe is due to three-body recombination processes involving electron and Xe ions, and it depends on the X-ray intensity and nanoplasma formation.

  2. LCLS-II: Upgrade Plans for the Linac Coherent Light Source-Including New Scientific Opportunities

    NASA Astrophysics Data System (ADS)

    Schlotter, William; LCLS-II Team

    2015-03-01

    The Linac Coherent Light Source (LCLS) is planning a major upgrade that will provide revolutionary new scientific capabilities for exploring materials on the atomic and nano-scale with element specificity and ultrafast temporal resolution. The LCLS is an x-ray free electron laser with six experimental instruments accessible via a peer-reviewed proposal process. The upgraded LCLS-II facility will continuously deliver ultrafast x-ray pulses at repetition rates greater than 100kHz with photon energies tunable between 250 eV and 5 keV. The upgrade will also produce pulses with photon energies as high as 25 keV at a repetition rate of 120 Hz. These capabilities will enable new scientific methods that will revolutionize the study of highly correlated electron systems, magnetization dynamics and nanoscale fluctuations in soft matter to name a few. Expected capabilities and prospective experimental examples will be presented. The Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford University.

  3. Compact x-ray source and panel

    DOEpatents

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  4. X-Ray Diffractive Optics

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Li, Mary; Skinner, Gerald

    2013-01-01

    X-ray optics were fabricated with the capability of imaging solar x-ray sources with better than 0.1 arcsecond angular resolution, over an order of magnitude finer than is currently possible. Such images would provide a new window into the little-understood energy release and particle acceleration regions in solar flares. They constitute one of the most promising ways to probe these regions in the solar atmosphere with the sensitivity and angular resolution needed to better understand the physical processes involved. A circular slit structure with widths as fine as 0.85 micron etched in a silicon wafer 8 microns thick forms a phase zone plate version of a Fresnel lens capable of focusing approx. =.6 keV x-rays. The focal length of the 3-cm diameter lenses is 100 microns, and the angular resolution capability is better than 0.1 arcsecond. Such phase zone plates were fabricated in Goddard fs Detector Development Lab. (DDL) and tested at the Goddard 600-microns x-ray test facility. The test data verified that the desired angular resolution and throughput efficiency were achieved.

  5. Focused X-ray source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  6. Focused X-ray source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  7. X-rays and magnetism.

    PubMed

    Fischer, Peter; Ohldag, Hendrik

    2015-09-01

    Magnetism is among the most active and attractive areas in modern solid state physics because of intriguing phenomena interesting to fundamental research and a manifold of technological applications. State-of-the-art synthesis of advanced magnetic materials, e.g. in hybrid structures paves the way to new functionalities. To characterize modern magnetic materials and the associated magnetic phenomena, polarized x-rays have emerged as unique probes due to their specific interaction with magnetic materials. A large variety of spectroscopic and microscopic techniques have been developed to quantify in an element, valence and site-sensitive way properties of ferro-, ferri-, and antiferromagnetic systems, such as spin and orbital moments, and to image nanoscale spin textures and their dynamics with sub-ns time and almost 10 nm spatial resolution. The enormous intensity of x-rays and their degree of coherence at next generation x-ray facilities will open the fsec time window to magnetic studies addressing fundamental time scales in magnetism with nanometer spatial resolution. This review will give an introduction into contemporary topics of nanoscale magnetic materials and provide an overview of analytical spectroscopy and microscopy tools based on x-ray dichroism effects. Selected examples of current research will demonstrate the potential and future directions of these techniques.

  8. Alpha proton x ray spectrometer

    NASA Technical Reports Server (NTRS)

    Rieder, Rudi; Waeke, H.; Economou, T.

    1994-01-01

    Mars Pathfinder will carry an alpha-proton x ray spectrometer (APX) for the determination of the elemental chemical composition of Martian rocks and soils. The instrument will measure the concentration of all major and some minor elements, including C, N, and O at levels above typically 1 percent.

  9. X-ray Optics for BES Light Source Facilities

    SciTech Connect

    Mills, Dennis; Padmore, Howard; Lessner, Eliane

    2013-03-27

    Each new generation of synchrotron radiation sources has delivered an increase in average brightness 2 to 3 orders of magnitude over the previous generation. The next evolution toward diffraction-limited storage rings will deliver another 3 orders of magnitude increase. For ultrafast experiments, free electron lasers (FELs) deliver 10 orders of magnitude higher peak brightness than storage rings. Our ability to utilize these ultrabright sources, however, is limited by our ability to focus, monochromate, and manipulate these beams with X-ray optics. X-ray optics technology unfortunately lags behind source technology and limits our ability to maximally utilize even today’s X-ray sources. With ever more powerful X-ray sources on the horizon, a new generation of X-ray optics must be developed that will allow us to fully utilize these beams of unprecedented brightness. The increasing brightness of X-ray sources will enable a new generation of measurements that could have revolutionary impact across a broad area of science, if optical systems necessary for transporting and analyzing X-rays can be perfected. The high coherent flux will facilitate new science utilizing techniques in imaging, dynamics, and ultrahigh-resolution spectroscopy. For example, zone-plate-based hard X-ray microscopes are presently used to look deeply into materials, but today’s resolution and contrast are restricted by limitations of the current lithography used to manufacture nanodiffractive optics. The large penetration length, combined in principle with very high spatial resolution, is an ideal probe of hierarchically ordered mesoscale materials, if zone-plate focusing systems can be improved. Resonant inelastic X-ray scattering (RIXS) probes a wide range of excitations in materials, from charge-transfer processes to the very soft excitations that cause the collective phenomena in correlated electronic systems. However, although RIXS can probe high-energy excitations, the most exciting and

  10. X-ray reprocessing in binaries

    NASA Astrophysics Data System (ADS)

    Paul, Biswajit

    2016-07-01

    We will discuss several aspects of X-ray reprocessing into X-rays or longer wavelength radiation in different kinds of binary systems. In high mass X-ray binaries, reprocessing of hard X-rays into emission lines or lower temperature black body emission is a useful tool to investigate the reprocessing media like the stellar wind, clumpy structures in the wind, accretion disk or accretion stream. In low mass X-ray binaries, reprocessing from the surface of the companion star, the accretion disk, warps and other structures in the accretion disk produce signatures in longer wavelength radiation. X-ray sources with temporal structures like the X-ray pulsars and thermonuclear burst sources are key in such studies. We will discuss results from several new investigations of X-ray reprocessing phenomena in X-ray binaries.

  11. An accretion disk swept up by a powerful thermonuclear X-ray burst

    NASA Astrophysics Data System (ADS)

    Degenaar, Nathalie

    Type-I X-ray bursts are thermonuclear explosions occurring in the surface layers of accreting neutron stars. These events are powerful probes of the physics of neutron stars and their surrounding accretion flow. Swift recently caught a very energetic type-I X-ray burst from the neutron star IGR J17062-6143 that displayed exceptional features. Firstly, the light curve of the 18 minute long X-ray burst tail shows an episode of 10 minutes with wild X-ray intensity fluctuations. Secondly, X-ray spectral analysis revealed a highly significant emission line around 1 keV, which can be interpreted as an Fe-L shell line caused by the irradiation of cold gas. Finally, the detection of significant absorption lines and edges in the Fe-K band are strongly suggestive of the presence of hot, highly ionized gas along the line of sight. None of these features are present in the persistent emission of the source. The X-ray burst of IGR J17062-6143 shows the first unambiguous detection of atomic features at CCD resolution. The timescale of the strong intensity variations, the velocity width of the Fe-L emission line, and photo-ionization modeling of the Fe-K absorption features each independently point to swept-up gas at a radius of ~1000 km from the neutron star. The unusual X-ray light curve and spectral properties could have plausibly been caused by a disruption of the accretion disk due to the super-Eddington fluxes reached during the X-ray burst.

  12. Polarization Analysis for Seeded FELs in a Crossed-Planar Undulator

    SciTech Connect

    Geng, Huiping; Ding, Yuantao; Huang, Zhirong; Bartolini, Riccardo; Dunning, David; Thompson, Neil; /Daresbury

    2012-06-25

    The crossed-planar undulator is a promising scheme for full polarization control in x-ray FELs. For SASE FELs, it has been shown a maximum degree of circular polarization of about 80% is achievable at fundamental wavelength just before saturation. In this paper, we study the effectiveness of a crossed undulator for a seeded x-ray FEL. The degree of circular polarization for both the fundamental and the harmonic radiation are considered. Simulations with realistic beam distributions show that a degree of circular polarization of over 90% and 80% is obtainable at the fundamental and 2nd harmonic frequencies, respectively.

  13. Wakefield issue and its impact on X-ray photon pulse in the SXFEL test facility

    NASA Astrophysics Data System (ADS)

    Song, Minghao; Li, Kai; Feng, Chao; Deng, Haixiao; Liu, Bo; Wang, Dong

    2016-06-01

    Besides the designed beam acceleration, the energy of electrons is changed by the longitudinal wakefields in a real free-electron laser (FEL) facility, which may degrade FEL performances from the theoretical expectation. In this paper, with the help of simulation codes, the wakefields induced beam energy loss in the sophisticated undulator section is calculated for Shanghai soft X-ray FEL, which is a two-stage seeded FEL test facility. While the 1st stage 44 nm FEL output is almost not affected by the wakefields, it is found that a beam energy loss about 0.8 MeV degrades the peak brightness of the 2nd stage 8.8 nm FEL by a factor of 1.6, which however can be compensated by a magnetic field fine tuning of each undulator segment. And the longitudinal coherence of the 8.8 nm FEL output illustrates a slight degradation, because of the beam energy curvatures induced by the wakefields.

  14. Center for X-Ray Optics, 1986

    SciTech Connect

    Not Available

    1987-07-01

    The Center for X-Ray Optics has made substantial progress during the past year on the development of very high resolution x-ray technologies, the generation of coherent radiation at x-ray wavelengths, and, based on these new developments, had embarked on several scientific investigations that would not otherwise have been possible. The investigations covered in this report are topics on x-ray sources, x-ray imaging and applications, soft x-ray spectroscopy, synchrotron radiation, advanced light source and magnet structures for undulators and wigglers. (LSP)

  15. High efficiency, multiterawatt x-ray free electron lasers

    NASA Astrophysics Data System (ADS)

    Emma, C.; Fang, K.; Wu, J.; Pellegrini, C.

    2016-02-01

    In this paper we present undulator magnet tapering methods for obtaining high efficiency and multiterawatt peak powers in x-ray free electron lasers (XFELs), a key requirement for enabling 3D atomic resolution single molecule imaging and nonlinear x-ray science. The peak power and efficiency of tapered XFELs is sensitive to time dependent effects, like synchrotron sideband growth. To analyze this dependence in detail we perform a comparative numerical optimization for the undulator magnetic field tapering profile including and intentionally disabling these effects. We show that the solution for the magnetic field taper profile obtained from time independent optimization does not yield the highest extraction efficiency when time dependent effects are included. Our comparative optimization is performed for a novel undulator designed specifically to obtain TW power x-ray pulses in the shortest distance: superconducting, helical, with short period and built-in strong focusing. This design reduces the length of the breaks between modules, decreasing diffraction effects, and allows using a stronger transverse electron focusing. Both effects reduce the gain length and the overall undulator length. We determine that after a fully time dependent optimization of a 100 m long Linac coherent light source-like XFEL we can obtain a maximum efficiency of 7%, corresponding to 3.7 TW peak radiation power. Possible methods to suppress the synchrotron sidebands, and further enhance the FEL peak power, up to about 6 TW by increasing the seed power and reducing the electron beam energy spread, are also discussed.

  16. Microgap x-ray detector

    DOEpatents

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  17. Microgap x-ray detector

    DOEpatents

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  18. Hard X-ray astrophysics

    NASA Technical Reports Server (NTRS)

    Rothschild, R. E.

    1981-01-01

    Past hard X-ray and lower energy satellite instruments are reviewed and it is shown that observation above 20 keV and up to hundreds of keV can provide much valuable information on the astrophysics of cosmic sources. To calculate possible sensitivities of future arrays, the efficiencies of a one-atmosphere inch gas counter (the HEAO-1 A-2 xenon filled HED3) and a 3 mm phoswich scintillator (the HEAO-1 A-4 Na1 LED1) were compared. Above 15 keV, the scintillator was more efficient. In a similar comparison, the sensitivity of germanium detectors did not differ much from that of the scintillators, except at high energies where the sensitivity would remain flat and not rise with loss of efficiency. Questions to be addressed concerning the physics of active galaxies and the diffuse radiation background, black holes, radio pulsars, X-ray pulsars, and galactic clusters are examined.

  19. Kinetic Modeling of the X-ray-induced Damage to a Metalloprotein

    PubMed Central

    Davis, Katherine M.; Kosheleva, Irina; Henning, Robert W.; Seidler, Gerald T.; Pushkar, Yulia

    2013-01-01

    It is well known that biological samples undergo x-ray-induced degradation. One of the fastest occurring x-ray-induced processes involves redox modifications (reduction or oxidation) of redox-active cofactors in proteins. Here we analyze room temperature data on the photoreduction of Mn ions in the oxygen evolving complex (OEC) of photosystem II, one of the most radiation damage sensitive proteins and a key constituent of natural photosynthesis in plants, green algae and cyanobacteria. Time-resolved x-ray emission spectroscopy with wavelength-dispersive detection was used to collect data on the progression of x-ray-induced damage. A kinetic model was developed to fit experimental results, and the rate constant for the reduction of OEC MnIII/IV ions by solvated electrons was determined. From this model, the possible kinetics of x-ray-induced damage at variety of experimental conditions, such as different rates of dose deposition as well as different excitation wavelengths, can be inferred. We observed a trend of increasing dosage threshold prior to the onset of x-ray-induced damage with increasing rates of damage deposition. This trend suggests that experimentation with higher rates of dose deposition is beneficial for measurements of biological samples sensitive to radiation damage, particularly at pink beam and x-ray FEL sources. PMID:23815809

  20. X-Ray-powered Macronovae

    NASA Astrophysics Data System (ADS)

    Kisaka, Shota; Ioka, Kunihito; Nakar, Ehud

    2016-02-01

    A macronova (or kilonova) was observed as an infrared excess several days after the short gamma-ray burst GRB 130603B. Although the r-process radioactivity is widely discussed as an energy source, it requires a huge mass of ejecta from a neutron star (NS) binary merger. We propose a new model in which the X-ray excess gives rise to the simultaneously observed infrared excess via thermal re-emission, and explore what constraints this would place on the mass and velocity of the ejecta. This X-ray-powered model explains both the X-ray and infrared excesses with a single energy source such as the central engine like a black hole, and allows for a broader parameter region than the previous models, in particular a smaller ejecta mass ˜ {10}-3{--}{10}-2{M}⊙ and higher iron abundance mixed as suggested by general relativistic simulations for typical NS-NS mergers. We also discuss the other macronova candidates in GRB 060614 and GRB 080503, and the implications for the search of electromagnetic counterparts to gravitational waves.

  1. X-Ray Crystallography Reagent

    NASA Technical Reports Server (NTRS)

    Morrison, Dennis R. (Inventor); Mosier, Benjamin (Inventor)

    2003-01-01

    Microcapsules prepared by encapsulating an aqueous solution of a protein, drug or other bioactive substance inside a semi-permeable membrane by are disclosed. The microcapsules are formed by interfacial coacervation under conditions where the shear forces are limited to 0-100 dynes per square centimeter at the interface. By placing the microcapsules in a high osmotic dewatering solution. the protein solution is gradually made saturated and then supersaturated. and the controlled nucleation and crystallization of the protein is achieved. The crystal-filled microcapsules prepared by this method can be conveniently harvested and stored while keeping the encapsulated crystals in essentially pristine condition due to the rugged. protective membrane. Because the membrane components themselves are x-ray transparent, large crystal-containing microcapsules can be individually selected, mounted in x-ray capillary tubes and subjected to high energy x-ray diffraction studies to determine the 3-D smucture of the protein molecules. Certain embodiments of the microcapsules of the invention have composite polymeric outer membranes which are somewhat elastic, water insoluble, permeable only to water, salts, and low molecular weight molecules and are structurally stable in fluid shear forces typically encountered in the human vascular system.

  2. Ultrafast Coherent Diffraction Imaging with X-ray Free-Electron Lasers

    SciTech Connect

    Chapman, H N; Bajt, S; Barty, A; Benner, W; Bogan, M; Frank, M; Hau-Riege, S; London, R; Marchesini, S; Spiller, E; Szoke, A; Woods, B; Boutet, S; Hodgson, K; Hajdu, J; Bergh, M; Burmeister, F; Caleman, C; Huldt, G; Maia, F; Seibert, M M; der Spoel, D v

    2006-08-22

    The ultrafast pulses from X-ray free-electron lasers will enable imaging of non-periodic objects at near-atomic resolution [1, Neutze]. These objects could include single molecules, protein complexes, or virus particles. The specimen would be completely destroyed by the pulse in a Coulomb explosion, but that destruction will only happen after the pulse. The scattering from the sample will give structural information about the undamaged object. There are many technical challenges that must be addressed before carrying out such experiments at an XFEL, which we are doing so with experiments at FLASH, the soft-X-ray FEL at DESY.

  3. The Matter in Extreme Conditions (MEC) instrument at LCLS

    NASA Astrophysics Data System (ADS)

    Nagler, Bob

    2015-06-01

    The last five years have seen the commissioning of and first user experiments on both the Free Electron Laser in Hamburg (FLASH) and the Linac Coherent Light Source (LCLS) in Stanford, and more are slated to come online in the next couple of years . The high photon frequency (i.e. larger than the plasma frequency of solid density), short pulse length (i.e. 10s to 100s of femtoseconds) and large photon number per pulse (i.e. 1012 photons per pulse) make it an ideal source to create and study states of matter at high energy density, a long-standing scientific challenge. Indeed, while matter in extreme conditions, which for the purpose of this talk we define as states under pressure up to hundreds of GPa and with temperatures ranging between 1eV and 1000eV, has been studied through dynamic shock compression and there has been significant progress made over many decades. However, large uncertainties still exist in the atomic structure and crystallographic structure, existence of high pressure phases, scattering factors, and equation of state of matter in extreme conditions. The Matter in Extreme Condition (MEC) instrument at LCLS is designed to overcome the unique experimental challenges that the study of matter in extreme conditions bring. It combines a suite of diagnostics and high power and energy optical lasers, which are standard fare in this research field, with the unmatched LCLS X-ray beam, to create an instrument that will be at the forefront of, and have a major impact on MEC science, in particular in the field of high pressure, warm dense matter, high energy density, and ultra-high intensity laser-matter interaction studies. The LCLS beam allows for unique investigation in all these extreme states using diagnostic methods such as X-ray Thomson Scattering, X-ray emission spectroscopy, X-ray diffraction, X-ray absorption spectroscopy, X-ray phase-contrast imaging, and pumping specific absorption lines to study (dense) plasma kinetics. Augmented with optical

  4. Aspergillosis - chest x-ray (image)

    MedlinePlus

    ... usually occurs in immunocompromised individuals. Here, a chest x-ray shows that the fungus has invaded the lung ... are usually seen as black areas on an x-ray. The cloudiness on the left side of this ...

  5. Tuberculosis, advanced - chest x-rays (image)

    MedlinePlus

    ... tissue, and can cause tissue death. These chest x-rays show advanced pulmonary tuberculosis. There are multiple light ... location of cavities within these light areas. The x-ray on the left clearly shows that the opacities ...

  6. Producing X-rays at the APS

    ScienceCinema

    None

    2016-07-12

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  7. Producing X-rays at the APS

    SciTech Connect

    2011-01-01

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  8. Statistical properties of the radiation from SASE FEL operating in a post-saturation regime with and without undulator tapering

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2016-02-01

    We describe statistical and coherence properties of the radiation from X-ray free-electron lasers (XFEL) operating in the post-saturation regime. We consider the practical case of the SASE3 FEL at the European XFEL. We perform comparison of the main characteristics of the X-ray FEL operating in the post-saturation regime with and without undulator tapering: efficiency, coherence time, and degree of transverse coherence.

  9. Phase-sensitive X-ray imager

    DOEpatents

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  10. Center for X-ray Optics, 1988

    SciTech Connect

    Not Available

    1989-04-01

    This report briefly reviews the following topics: soft-x-ray imaging; reflective optics for hard x-rays; coherent XUV sources; spectroscopy with x-rays; detectors for coronary artery imaging; synchrotron-radiation optics; and support for the advanced light source.

  11. Student X-Ray Fluorescence Experiments

    ERIC Educational Resources Information Center

    Fetzer, Homer D.; And Others

    1975-01-01

    Describes the experimental arrangement for x-ray analysis of samples which involves the following: the radioisotopic x-ray disk source; a student-built fluorescence chamber; the energy dispersive x-ray detector, linear amplifier and bias supply; and a multichannel pulse height analyzer. (GS)

  12. Cryotomography x-ray microscopy state

    DOEpatents

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  13. Wakefield Calculations for the LCLS in Multbunch Operation

    SciTech Connect

    Bane, K; /SLAC

    2011-10-17

    Normally the Linac Coherent Light Source (LCLS) operates in single-bunch mode, sending a bunch of up to 250 pC charge at 120 Hz through the linac and the undulator, and the resulting FEL radiation into one of the experimental hutches. With two bunches per rf pulse, each pulse could feed either two experiments or one experiment in a pump-probe type configuration. Two-bunch FEL operation has already been briefly tested at the LCLS, and works reasonably well, although not yet routinely. In this report we study the longitudinal and transverse long-range (bunch-to-bunch) wakefields of the linacs and their effects on LCLS performance in two-bunch mode, which is initially the most likely scenario. The longitudinal wake changes the average energy at the second bunch, and the transverse wake misaligns the second bunch (in transverse phase space) in the presence of e.g. transverse injection jitter or quad misalignments. Finally, we extend the study to consider the LCLS with trains of up to 20 bunches per rf pulse. In the LCLS the bunch is created in an rf gun, and then passes in sequence through Linac 0, Linac 1, Linac X, Bunch Compressor 1 (BC 1), Linac 2, BC 2, Linac 3, and finally the undulator. In the process the bunch energy reaches 13.5 GeV and peak current 3 kA. In Table 1 we present some machine and beam parameters in three of the linacs that we will use in the calculations: initial beam energy E{sub 0}, total accelerator length L, average beta function {beta}{sub y}, bunch peak current I, and rf phase (with respect to crest) {phi}; the final energy of a linac equals E{sub 0} of the following linac, and in Linac 3 is E{sub f} = 13.5 GeV. (The X-band linac, with L = 60 cm, has wake effects that are small compared to the other linacs, and will not be discussed.) In this report we limit our study to trains of equally populated, equally spaced bunches with a total length of less than 100 ns. The charge of each bunch is eN{sub b} = 250 pC.

  14. Laser Safety for the Experimental Halls at SLAC_s Linac Coherent Light Source (LCLS)

    SciTech Connect

    Woods, Michael; Anthony, Perry; Barat, Ken; Gilevich, Sasha; Hays, Greg; White, William E.; /SLAC

    2009-01-15

    The LCLS at the SLAC National Accelerator Laboratory will be the world's first source of an intense hard x-ray laser beam, generating x-rays with wavelengths of 1nm and pulse durations less than 100fs. The ultrafast x-ray pulses will be used in pump-probe experiments to take stop-motion pictures of atoms and molecules in motion, with pulses powerful enough to take diffraction images of single molecules, enabling scientists to elucidate fundamental processes of chemistry and biology. Ultrafast conventional lasers will be used as the pump. In 2009, LCLS will deliver beam to the Atomic Molecular and Optical (AMO) Experiment, located in one of 3 x-ray Hutches in the Near Experimental Hall (NEH). The NEH includes a centralized Laser Hall, containing up to three Class 4 laser systems, three x-ray Hutches for experiments and vacuum transport tubes for delivering laser beams to the Hutches. The main components of the NEH laser systems are a Ti:sapphire oscillator, a regen amplifier, green pump lasers for the oscillator and regen, a pulse compressor and a harmonics conversion unit. Laser safety considerations and controls for the ultrafast laser beams, multiple laser controlled areas, and user facility issues are discussed.

  15. Lattice-level measurement of material strength with LCLS during ultrafast dynamic compression

    NASA Astrophysics Data System (ADS)

    Milathianaki, Despina; Boutet, Sebastien; Ratner, Daniel; White, William; Williams, Garth; Gleason, Arianna; Swift, Damian; Higginbotham, Andrew; Wark, Justin

    2013-10-01

    An in-depth understanding of the stress-strain behavior of materials during ultrafast dynamic compression requires experiments that offer in-situ observation of the lattice at the pertinent temporal and spatial scales. To date, the lattice response under extreme strain-rate conditions (>108 s-1) has been inferred predominantly from continuum-level measurements and multi-million atom molecular dynamics simulations. Several time-resolved x-ray diffraction experiments have captured important information on plasticity kinetics, while limited to nanosecond timescales due to the lack of high brilliance ultrafast x-ray sources. Here we present experiments at LCLS combining ultrafast laser-shocks and serial femtosecond x-ray diffraction. The high spectral brightness (~1012 photons per pulse, ΔE/E = 0.2%) and subpicosecond temporal resolution (<100 fs pulsewidth) of the LCLS x-ray free electron laser allow investigations that link simulations and experiments at the fundamental temporal and spatial scales for the first time. We present movies of the lattice undergoing rapid shock-compression, composed by a series of single femtosecond x-ray snapshots, demonstrating the transient behavior while successfully decoupling the elastic and plastic response in polycrystalline Cu.

  16. An Injector Test Facility for the LCLS

    SciTech Connect

    Colby, E.,; /SLAC

    2007-03-14

    SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

  17. Dynamic Ultra-Bright X-ray Laser Scattering from Isochorically Heated Cryogenic Hydrogen

    NASA Astrophysics Data System (ADS)

    Fletcher, Luke; High Energy Density Collaboration

    2015-11-01

    Recent x-ray scattering experiments performed at the MEC end-station of the LCLS, have demonstrated novel plasma measurements of the electron temperature, pressure, and density by simultaneous high-resolution angularly and spectrally resolved x-ray scattering from shock-compressed materials in the warm dense regime. Such measurements provide the structural properties relating the microscopic quantities in terms of thermodynamic properties using first-principles calculations. These studies have led us on a path where we create conditions with increasing temperatures and pressures to explore the high-energy density phase space. Specifically, we have begun experiments on hot and dense hydrogen plasmas producing energetic proton beams that find applications in fusion research and astrophysical phenomena. For our experiments with the 25 TW short pulse laser we apply repetition rates and pulse widths with a good match to the LCLS x-ray beam capabilities allowing pump-probe experiments with ultrahigh temporal resolution with very high data throughput with shot rates of up to 5 Hz. In this talk we will discuss our recent measurements that have resolved the ultrafast structural response of hydrogen to intense heating.

  18. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    SciTech Connect

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; DeMirci, Hasan

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecond X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.

  19. Goniometer-based femtosecond X-ray diffraction of mutant 30S ribosomal subunit crystals

    DOE PAGES

    Dao, E. Han; Sierra, Raymond G.; Laksmono, Hartawan; Lemke, Henrik T.; Alonso-Mori, Roberto; Coey, Aaron; Larsen, Kevin; Baxter, Elizabeth L.; Cohen, Aina E.; Soltis, S. Michael; et al

    2015-04-30

    In this work, we collected radiation-damage-free data from a set of cryo-cooled crystals for a novel 30S ribosomal subunit mutant using goniometer-based femtosecond crystallography. Crystal quality assessment for these samples was conducted at the X-ray Pump Probe end-station of the Linac Coherent Light Source (LCLS) using recently introduced goniometer-based instrumentation. These 30S subunit crystals were genetically engineered to omit a 26-residue protein, Thx, which is present in the wild-type Thermus thermophilus 30S ribosomal subunit. We are primarily interested in elucidating the contribution of this ribosomal protein to the overall 30S subunit structure. To assess the viability of this study, femtosecondmore » X-ray diffraction patterns from these crystals were recorded at the LCLS during a protein crystal screening beam time. During our data collection, we successfully observed diffraction from these difficult-to-grow 30S ribosomal subunit crystals. Most of our crystals were found to diffract to low resolution, while one crystal diffracted to 3.2 Å resolution. These data suggest the feasibility of pursuing high-resolution data collection as well as the need to improve sample preparation and handling in order to collect a complete radiation-damage-free data set using an X-ray Free Electron Laser.« less

  20. Radiation Protection Studies for LCLS Tune Up Dump

    SciTech Connect

    Santana-Leitner, M.; Fass, A.; Mao, S.; Nuhn, H.D.; Roesler, S.; Rokni, S.; Vollaire, J.; /SLAC

    2010-04-29

    The Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center is a pioneer fourth generation hard x-ray free electron laser that shall start to deliver laser pulses in 2009. Among other components of LCLS that present radiation protection concerns, the tune up dump (tdund) is of special interest because it also constitutes an issue for machine protection, as it is placed close to radiation sensitive components, like electronic devices and permanent magnets in the undulators. This paper first introduces the stopper of tdund looking at the heat load, and then it describes the shielding around the dump necessary to maintain the prompt and residual dose within design values. Next, preliminary comparisons of the magnetization loss in a dedicated on-site magnet irradiation experiment with FLUKA simulations serve to characterize the magnetic response to radiation of magnets like those of LCLS. The previous knowledge, together with the limit for the allowed demagnetization, are used to estimate the lifetime of the undulator. Further simulations provide guidelines on which lifetime can be expected for an electronic device placed at a given distance of tdund.

  1. Cosmic X-ray physics

    NASA Technical Reports Server (NTRS)

    Mccammon, D.; Cox, D. P.; Kraushaar, W. L.; Sanders, W. T.

    1987-01-01

    The soft X-ray sky survey data are combined with the results from the UXT sounding rocket payload. Very strong constraints can then be placed on models of the origin of the soft diffuse background. Additional observational constraints force more complicated and realistic models. Significant progress was made in the extraction of more detailed spectral information from the UXT data set. Work was begun on a second generation proportional counter response model. The first flight of the sounding rocket will have a collimator to study the diffuse background.

  2. Imaging single cells in a beam of live cyanobacteria with an X-ray laser (CXIDB ID 26)

    DOE Data Explorer

    Schot, Gijs, vander

    2015-02-10

    This entry contains ten diffraction patterns, and reconstructions images, of individual living Cyanobium gracile cells, imaged using 517 eV X-rays from the LCLS XFEL. The Hawk software package was used for phasing. The Uppsala aerosol injector was used for sample injection, assuring very low noise levels. The cells come from various stages of the cell cycle, and were imaged in random orientations.

  3. X-ray Spectroscopy of Cooling Cluster

    SciTech Connect

    Peterson, J.R.; Fabian, A.C.; /Cambridge U., Inst. of Astron.

    2006-01-17

    We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

  4. Comets: mechanisms of x-ray activity

    NASA Astrophysics Data System (ADS)

    Ibadov, Subhon

    2016-07-01

    Basic mechanisms of X-ray activity of comets are considered, including D-D mechanism corresponding to generation of X-rays due to production of hot short-living plasma clumps at high-velocity collisions between cometary and interplanetary dust particles as well as M-M one corresponding to production of X-rays due to recombination of multicharge ions of solar wind plasma via charge exchange process at their collisions with molecules/atoms of the cometary atmospheres. Peculiarities of the variation of the comet X-ray spectrum and X-ray luminosity with variation of its heliocentric distance are revealed.

  5. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  6. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  7. X-ray imaging for palaeontology.

    PubMed

    Hohenstein, P

    2004-05-01

    Few may be aware that X-ray imaging is used in palaeontology and has been used since as early as 1896. The X-raying, preparation and exposure of Hunsrück slate fossils are described. Hospital X-ray machines are used by the author in his work. An X-ray is vital to provide evidence that preparation of a slate is worthwhile as well as to facilitate preparation even if there is little external sign of what lies within. The beauty of the X-ray exposure is an added bonus.

  8. Ionospheric effects of solar x-rays

    NASA Astrophysics Data System (ADS)

    Danskin, Donald

    2016-07-01

    The ionospheric absorption of radio waves caused by solar x-ray bursts is measured directly by Riometers from the Canada Riometer Array. The absorption is found to be proportional to the square root of the flux intensity of the X-ray burst with time delays of 18-20 seconds between the peak X-ray emission and absorption in the ionosphere. A detailed analysis showed that some X-ray flares during 2011-2014 are more effective at producing absorption than others. Solar longitude of X-ray burst for several X-class flares shows no consistent pattern of enhancement in the absorption.

  9. Atmospheric electron x-ray spectrometer

    NASA Technical Reports Server (NTRS)

    Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

    2002-01-01

    The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

  10. Stereo soft x-ray microscopy and elemental mapping of hematite and clay suspensions

    SciTech Connect

    Gleber, S.-C.; Thieme, J.; Chao, W.; Fischer, P.

    2008-09-01

    The spatial arrangements of hematite particles within aqueous soil and clay samples are investigated with soft X-ray microscopy, taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures. Manipulation of a sample mounted to the microscope is possible and particles added while imaging can be detected.

  11. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    SciTech Connect

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; Robert, Aymeric; Sikorski, Marcin; Song, Sanghoon; Weng, Tsu -Chien; Bergmann, Uwe

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure and its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.

  12. Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Kroll, Thomas; Chollet, Mathieu; Feng, Yiping; Glownia, James M.; Kern, Jan; Lemke, Henrik T.; Nordlund, Dennis; et al

    2015-04-15

    X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less

  13. Kinematics of Compton backscattering x-ray source for angiography

    SciTech Connect

    Blumberg, L.N.

    1992-05-01

    Calculations of X-Ray production rates, energy spread, and spectrum of Compton-backscattered photons from a Free Electron Laser on an electron beam in a low energy (136-MeV) compact (8.5-m circumference) storage ring indicate that an X-Ray intensity of 34.6 10{sup 7} X-Ray photons per 0.5-mm {times} 0.5-mm pixel for Coronary Angiography near the 33.169-keV iodine K-absorption edge can be achieved in a 4-msec pulse within a scattering cone of 1-mrad half angle. This intensity, at 10-m from the photon-electron interaction point to the patient is about a factor of 10 larger than presently achieved from a 4.5-T superconducting wiggler source in the NSLS 2.5-GeV storage ring and over an area about 5 times larger. The 2.2-keV energy spread of the Compton-backscattered beam is, however, much larger than the 70-eV spread presently attained form the wiggler source and use of a monochromator. The beam spot at the 10-m interaction point-to-patient distance is 20-mm diameter; larger spots are attainable at larger distances but with a corresponding reduction in X-Ray flux. Such a facility could be an inexpensive clinical alternative to present methods of non-invasive Digital Subtraction Angiography (DSA), small enough to be deployed in an urban medical center, and could have other medical, industrial and aerospace applications. Problems with the Compton backscattering source include laser beam heating of the mirror in the FEL oscillator optical cavity, achieving a large enough X-Ray beam spot at the patient, and obtaining radiation damping of the transverse oscillations and longitudinal emittance dilution of the storage ring electron beam resulting from photon-electron collisions without going to higher electron energy where the X-Ray energy spread becomes excessive for DSA. 38 refs.

  14. Comparison of Non-Redundant Array and Double Pinhole Coherence Measurements with Soft X-rays

    SciTech Connect

    Weil, Gabriel; /Northwestern U. /SLAC

    2006-09-11

    Experiments on the future Linac Coherent Light Source (LCLS) and other Free Electron Lasers will need to be performed on a single-shot basis. The double pinhole method of measuring spatial coherence requires a separate measurement, with a different pinhole separation distance, for each length scale sampled. This limits its utility for LCLS. A potential alternative uses a Non-Redundant Array (NRA) of apertures designed to probe the coherence over the range of length scales defined by their physical extent, in a single measurement. This approach was tested by comparing diffraction patterns from soft x-rays incident on double pinhole and NRA absorption mask structures. The double pinhole fringe visibility data serve as discrete reference points that verify the continuous spectrum of the NRA coherence data. The results present a quantitative analysis of the double pinhole coherence measurements and a qualitative comparison to the NRA images.

  15. Controlling explosion dynamics in mixed He/Xe clusters with X-ray double pulses

    NASA Astrophysics Data System (ADS)

    Ziemkiewicz, M.; Bacellar, C.; Chatterley, A.; Cryan, J.; Gessner, O.; Mueller, M.; Rupp, D.; Moeller, T.; Jones, C.; Tanyag, R. M. P.; Bernando, C.; Gomez, L.; Kwok, J.; Vilesov, A.; Ferguson, K.; Bucher, M.; Gorkhover, T.; Carron, S.; Krzywinski, J.; Lutman, A.; Marinelli, A.; Maxwell, T.; Turner, J.; Decker, F.-J.; Bostedt, C.

    2015-05-01

    Intense X-ray induced fragmentation dynamics of hybrid systems consisting of Xe structures embedded in large superfluid helium nanodroplets are studied by femtosecond time-resolved ion mass spectrometry. The clusters are photoionized by a pair of intense X-ray pulses from the Linac Coherent Light Source (LCLS), resulting in fragmentation and ejection of ions with kinetic energies of up to several keV. The production of He++ is of particular interest as this cation is only formed in the mixed system and not upon X-ray illumination of pure He nanodroplets. It is found that the He++ product kinetic energy distribution varies sensitively with the relative timing of the X-ray double pulse, exhibiting complex dynamics as a function of pump-probe delay. Existing models describing similar results for experiments using intense infrared laser pulses are not applicable to this study due to the disparate interactions of intense optical and X-ray fields with matter. Possible phenomena underlying the observed trends are discussed.

  16. X-ray Pulse Length Characterization using the Surface Magneto Optic Kerr Effect

    SciTech Connect

    Krejcik, P.; /SLAC

    2006-10-04

    It will be challenging to measure the temporal profile of the hard X-ray SASE beam independently from the electron beam in the LCLS and other 4th generation light sources. A fast interaction mechanism is needed that can be probed by an ultrafast laser pulse in a pump-probe experiment. It is proposed to exploit the rotation in polarization of light reflected from a thin magnetized film, known as the surface magneto optic Kerr effect (SMOKE), to witness the absorption of the x-ray pulse in the thin film. The change in spin orbit coupling induced by the x-ray pulse occurs on the subfemtosecond time scale and changes the polarization of the probe beam. The limitation to the technique lies with the bandwidth of the probe laser pulse and how short the optical pulse can be made. The SMOKE mechanism will be described and the choices of materials for use with 1.5 {angstrom} x-rays. A schematic description of the pump-probe geometry for x-ray diagnosis is also described.

  17. Orbital-specific mapping of chemical dynamics with ultrafast x-rays

    NASA Astrophysics Data System (ADS)

    Wernet, Philippe

    Charge and spin density changes at the metal sites of transition-metal complexes and in metalloproteins determine reactivity and selectivity. To understand their function and to optimize complexes for photocatalytic applications the changes of charge and spin densities need to be mapped and ultimately controlled. I will discuss how time-resolved soft x-ray spectroscopy enables a fundamental understanding of local atomic and intermolecular interactions and their dynamics on atomic length and time scales of Ångströms and femtoseconds. The approach consists in using time-resolved, atom- and orbital-specific x-ray spectroscopy and quantum chemical theory to map the frontier-orbital interactions and their evolution in real time of ultrafast chemical transformations. We recently used femtosecond resonant inelastic x-ray scattering (RIXS, the x-ray analog of resonant Raman scattering) at the x-ray free-electron laser LINAC Coherent Light Source (LCLS, Stanford, USA) to probe the reaction dynamics of a transition-metal complex in solution on the femtosecond time scale. Spin crossover and ligation are found to define the excited-state dynamics. It is demonstrated how correlating orbital symmetry and orbital interactions with spin multiplicity allows for determining the reactivity of short-lived reaction intermediates. I will discuss how this complements approaches that probe structural dynamics and how it can be extended to map the local chemical interactions and their dynamical evolution in metalloproteins.

  18. The universal method for optimization of undulator tapering in FEL amplifiers

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2015-05-01

    Technique of undulator tapering in the post-saturation regime is used at the existing x-ray FELs for increasing the radiation power. There are also discussions on the future of high peak and average power FELs for scientific and industrial applications. Diffraction effects essentially influence on the choice of the tapering strategy. Recent studies resulted in an general law of the undulator tapering for a seeded FEL amplifier. In this paper we extend these results for the case of the Self Amplified Spontaneous Emission (SASE) FEL.

  19. X-ray lithography using holographic images

    DOEpatents

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  20. Proposed uv-FEL user facility at BNL

    SciTech Connect

    Ben-Zvi, I.; Di Mauro, L.F.; Krinsky, S.; White, M.G.; Yu, L.H.; Batchelor, K.; Friedman, A.; Fisher, A.S.; Halama, H.; Ingold, G.; Johnson, E.D.; Kramer, S.; Rogers, J.T.; Solomon, L.; Wachtel, J.; Zhang, X.

    1991-01-01

    The NSLS at Brookhaven National Laboratory is proposing the construction of a UV-FEL operating in the wavelength range from visible to 750{Angstrom}. Nano-Coulomb electron pulses will be generated at a laser photo-cathode RF gun at a repetition rate of 10 KHz. The 6 ps pulses will be accelerated to 250 MeV in a superconducting linac. The FEL output will serve four stations with independent wavelength tuning, using two wigglers and two rotating mirror beam switches. Seed radiation for the FEL amplifiers will be provided by conventional tunable lasers, and the final frequency multiplication from the visible or near UV to the VUV will be carried out in the FEL itself. Each FEL will comprise of an initial wiggler resonant to the seed wavelength, a dispersion section, and a second wiggler resonant to the output wavelength. The facility will provide pump probe capability, FEL or FEL, and FEL on synchrotron light from an insersion device on the NSLS X-Ray ring. 15 refs., 2 figs., 3 tabs.

  1. Extended range X-ray telescope

    NASA Technical Reports Server (NTRS)

    Hoover, R. B. (Inventor)

    1981-01-01

    An X-ray telescope system is described which is comprised of a tubular mount having a collecting region remote from the one axial end. A soft X-ray/XUV subsystem associated with the collecting region directs only relatively soft, near on-axis X-rays/XUV radiation incident on a first portion of the collecting region into a first detector sensitive to relatively soft X-rays/XUV radiation. A hard X-ray subsystem associated with the collecting region directs only relatively hard near on-axis X-rays incident on a second portion of the collecting region into a second detector sensitive to relatively hard X-rays.

  2. Evolution of X-ray astronomy

    NASA Technical Reports Server (NTRS)

    Rossj, B.

    1981-01-01

    The evolution of X-ray astronomy up to the launching of the Einstein observatory is presented. The evaluation proceeded through the following major steps: (1) discovery of an extrasolar X-ray source, Sco X-1, orders of magnitude stronger than astronomers believed might exist; (2) identification of a strong X-ray source with the Crab Nebula; (3) identification of Sco X-1 with a faint, peculiar optical object; (4) demonstration that X-ray stars are binary systems, each consisting of a collapsed object accreting matter from an ordinary star; (5) discovery of X-ray bursts; (6) discovery of exceedingly strong X-ray emission from active galaxies, quasars and clusters of galaxies; (7) demonstration that the principal X-ray source is a hot gas filling the space between galaxies.

  3. On stellar X-ray emission

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Golub, L.; Vaiana, G. S.

    1985-01-01

    Stellar X-ray astronomy represents an entirely new astronomical discipline which has emerged during the past five years. It lies at the crossroads of solar physics, stellar physics, and general astrophysics. The present review is concerned with the main physical problems which arise in connection with a study of the stellar X-ray data. A central issue is the extent to which the extrapolation from solar physics is justified and the definition (if possible) of the limits to such extrapolation. The observational properties of X-ray emission from stars are considered along with the solar analogy and the modeling of X-ray emission from late-type stars, the modeling of X-ray emission from early-type stars, the physics of stellar X-ray emission, stellar X-ray emission in the more general astrophysical context, and future prospects.

  4. X ray imaging microscope for cancer research

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Shealy, David L.; Brinkley, B. R.; Baker, Phillip C.; Barbee, Troy W., Jr.; Walker, Arthur B. C., Jr.

    1991-01-01

    The NASA technology employed during the Stanford MSFC LLNL Rocket X Ray Spectroheliograph flight established that doubly reflecting, normal incidence multilayer optics can be designed, fabricated, and used for high resolution x ray imaging of the Sun. Technology developed as part of the MSFC X Ray Microscope program, showed that high quality, high resolution multilayer x ray imaging microscopes are feasible. Using technology developed at Stanford University and at the DOE Lawrence Livermore National Laboratory (LLNL), Troy W. Barbee, Jr. has fabricated multilayer coatings with near theoretical reflectivities and perfect bandpass matching for a new rocket borne solar observatory, the Multi-Spectral Solar Telescope Array (MSSTA). Advanced Flow Polishing has provided multilayer mirror substrates with sub-angstrom (rms) smoothnesss for the astronomical x ray telescopes and x ray microscopes. The combination of these important technological advancements has paved the way for the development of a Water Window Imaging X Ray Microscope for cancer research.

  5. Single Shot Spatial and Temporal Coherence Properties of the SLAC Linac Coherent Light Source in the Hard X-Ray Regime

    NASA Astrophysics Data System (ADS)

    Gutt, C.; Wochner, P.; Fischer, B.; Conrad, H.; Castro-Colin, M.; Lee, S.; Lehmkühler, F.; Steinke, I.; Sprung, M.; Roseker, W.; Zhu, D.; Lemke, H.; Bogle, S.; Fuoss, P. H.; Stephenson, G. B.; Cammarata, M.; Fritz, D. M.; Robert, A.; Grübel, G.

    2012-01-01

    We measured the transverse and longitudinal coherence properties of the Linac Coherent Light Source (LCLS) at SLAC in the hard x-ray regime at 9 keV photon energy on a single shot basis. Speckle patterns recorded in the forward direction from colloidal nanoparticles yielded the transverse coherence properties of the focused LCLS beam. Speckle patterns from a gold nanopowder recorded with atomic resolution allowed us to measure the shot-to-shot variations of the spectral properties of the x-ray beam. The focused beam is in the transverse direction fully coherent with a mode number close to 1. The average number of longitudinal modes behind the Si(111) monochromator is about 14.5 and the average coherence time τc=(2.0±1.0)fs. The data suggest a mean x-ray pulse duration of (29±14)fs behind the monochromator for (100±14)fs long electron pulses.

  6. X-ray deconvolution microscopy

    PubMed Central

    Ehn, Sebastian; Epple, Franz Michael; Fehringer, Andreas; Pennicard, David; Graafsma, Heinz; Noël, Peter; Pfeiffer, Franz

    2016-01-01

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship pn with the pixel-size p of the detector and the number of raster-scanning steps n. PMID:27446649

  7. X-ray omni microscopy.

    PubMed

    Paganin, D; Gureyev, T E; Mayo, S C; Stevenson, A W; Nesterets, Ya I; Wilkins, S W

    2004-06-01

    The science of wave-field phase retrieval and phase measurement is sufficiently mature to permit the routine reconstruction, over a given plane, of the complex wave-function associated with certain coherent forward-propagating scalar wave-fields. This reconstruction gives total knowledge of the information that has been encoded in the complex wave-field by passage through a sample of interest. Such total knowledge is powerful, because it permits the emulation in software of the subsequent action of an infinite variety of coherent imaging systems. Such 'virtual optics', in which software forms a natural extension of the 'hardware optics' in an imaging system, may be useful in contexts such as quantitative atom and X-ray imaging, in which optical elements such as beam-splitters and lenses can be realized in software rather than optical hardware. Here, we develop the requisite theory to describe such hybrid virtual-physical imaging systems, which we term 'omni optics' because of their infinite flexibility. We then give an experimental demonstration of these ideas by showing that a lensless X-ray point projection microscope can, when equipped with the appropriate software, emulate an infinite variety of optical imaging systems including those which yield interferograms, Zernike phase contrast, Schlieren imaging and diffraction-enhanced imaging.

  8. X-ray deconvolution microscopy.

    PubMed

    Ehn, Sebastian; Epple, Franz Michael; Fehringer, Andreas; Pennicard, David; Graafsma, Heinz; Noël, Peter; Pfeiffer, Franz

    2016-04-01

    Recent advances in single-photon-counting detectors are enabling the development of novel approaches to reach micrometer-scale resolution in x-ray imaging. One example of such a technology are the MEDIPIX3RX-based detectors, such as the LAMBDA which can be operated with a small pixel size in combination with real-time on-chip charge-sharing correction. This characteristic results in a close to ideal, box-like point spread function which we made use of in this study. The proposed method is based on raster-scanning the sample with sub-pixel sized steps in front of the detector. Subsequently, a deconvolution algorithm is employed to compensate for blurring introduced by the overlap of pixels with a well defined point spread function during the raster-scanning. The presented approach utilizes standard laboratory x-ray equipment while we report resolutions close to 10 μm. The achieved resolution is shown to follow the relationship [Formula: see text] with the pixel-size p of the detector and the number of raster-scanning steps n. PMID:27446649

  9. Double-confocal resonator for X-ray generation via intracavity Thomson scattering

    SciTech Connect

    Xie, M.

    1995-12-31

    There has been a growing interest in developing compact X-ray sources through Thomson scattering of a laser beam by a relativistic electron beam. For higher X-ray flux it is desirable to have the scattering to occur inside an optical resonator where the laser power is higher. In this paper I propose a double-confocal resonator design optimized for head-on Thomson scattering inside an FEL oscillator and analyze its performance taking into account the diffraction and FEL gain. A double confocal resonator is equivalent to two confocal resonators in series. Such a resonator has several advantages: it couples electron beam through and X-ray out of the cavity with holes on cavity mirrors, thus allowing the system to be compact; it supports the FEL mode with minimal diffraction loss through the holes; it provides a laser focus in the forward direction for a better mode overlap with the electron beam; and it provides a focus at the same location in the backward direction for higher Thomson scattering efficiency; in addition, the mode size at the focal point and hence the Rayleigh range can be adjusted simply through intracavity apertures; furthermore, it gives a large mode size at the mirrors to reduce power loading. Simulations as well as analytical results will be presented. Also other configurations of intracavity Thomson scattering where the double-confocal resonator could be useful will be discussed.

  10. Laboratory Calibration of X-ray Velocimeters for Radiation Driven Winds and Outflows Surrounding X-ray Binaries and Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, P.; Graf, A.; Hell, N.; Liedahl, D.; Magee, E. W.; Träbert, E.; Beilmann, C.; Bernitt, S.; Crespo-Lopez-Urritiua, J.; Eberle, S.; Kubicek, K.; Mäckel, V.; Rudolph, J.; Steinbrügge, R.; Ullrich, J.; Kelley, R. L.; Kilbourne, C. A.; Leutenegger, M.; Porter, F. S.; Rasmussen, A.; Simon, M.; Epp, S.

    2011-09-01

    High resolution measurements of X-ray absorption and fluorescence by radiation driven winds and outflows surrounding X-ray binaries and AGN provide a powerful means for measuring wind velocities. The accuracy of these X-ray velocimeters is limited by the accuracy of atomic data. For example, in the case of the high mass X-ray binary Vela X-1 the uncertainty in the calculated transition wavelengths of the K alpha lines produced by photoionization and photoexcitation of Si L-shell ions is comparable to the likely Doppler shifts, making it impossible to determine a reliable velocity. Similar problems also exist in the case of absorption of X-rays by M-shell Fe ions, which produces in some AGN the so-called unresolved transition array across the 15-17 angstrom band. In this case, there is a 15-45 milliangstrom variation among different wavelength calculations. The uncertainty in the calculations makes it impossible to reliably determine the true velocity structure of the outflow, and in turn, prevents a reliable determination of the mass-loss rate of the AGN. We present results of a recent series of laboratory experiments conducted using an electron beam ion trap coupled with the LCLS X-ray free electron laser and the BESSY-II synchrotron and designed to calibrate the velocimeters provided by high resolution instruments on Chandra and XMM-Newton. We also present results of resonant photoexcitation measurements of the transition wavelength of an Fe XVI satellite line 'coincident' with the 2p-3d Fe XVII line 3D at 15.26 angstroms. This line has never been resolved using emission spectroscopy and its measurement confirms the intensity of line 3D is sensitive to the relative abundance of Fe XVI and XVII and thus temperature. Work at LLNL was performed under the auspices of DOE under contract DE-AC53-07NA27344 and supported by NASA's APRA program.

  11. X-ray Optics and Diagnostics for the First Experiments on the Linac Coherent Light Source

    SciTech Connect

    Wootton, A; Arthur, J; Barbee, T; Bionta, R; London, R; Park, H-S; Ryutov, D; Spiller, E; Tatchyn, R

    2001-06-13

    The Linac Coherent Light Source (LCLS) is a 1.5 to 15 {angstrom}-wavelength free-electron laser (FEL), currently proposed for the Stanford Linear Accelerator Center (SLAC). The photon output consists of high brightness, transversely coherent pulses with duration < 300 fs, together with a broad spontaneous spectrum with total power comparable to the coherent output. The output fluence, and pulse duration, pose special challenges for optical component and diagnostic designs. We discuss some of the proposed solutions, and give specific examples related to the planned initial experiments.

  12. Report on the Instrument Development Workshop for Biological Imaging Experiments at LCLS

    SciTech Connect

    Chapman, H; Hajdu, J; Hodgson, K

    2004-08-13

    The Linac Coherent Light Source (LCLS) will launch a new era in X-ray science by providing 200 fs pulses of X rays with a peak brightness up to 10 orders of magnitude greater than current sources. One of the most exciting and far-reaching experiments that this new source will enable is single-particle diffraction imaging, whereby atomic-resolution structure of biological macromolecules, complexes, or viruses could be obtained without the need for crystallization. Time-resolved structures and dynamic processes could be studied, with time steps as short as the LCLS pulse duration. Many of the components of a diffraction imaging experiment have been demonstrated individually, such as image reconstruction and electrospray mass-spectrometer particle selection. There are many issues that cannot be resolved until bright pulsed X-ray sources become available in 2005 to test theories. Bringing all the techniques together to field an experiment at LCLS in 2009 is a challenging, but quite feasible, undertaking that requires a coordinated and sustained effort of the community.

  13. The GALAXIE all-optical FEL project

    SciTech Connect

    Rosenzweig, J. B.; Arab, E.; Andonian, G.; Cahill, A.; Fitzmorris, K.; Fukusawa, A.; Hoang, P.; Jovanovic, I.; Marcus, G.; Marinelli, A.; Murokh, A.; Musumeci, P.; Naranjo, B.; O'Shea, B.; O'Shea, F.; Ovodenko, A.; Pogorelsky, I.; Putterman, S.; Roberts, K.; Shumail, M.; and others

    2012-12-21

    We describe a comprehensive project, funded under the DARPA AXiS program, to develop an all-optical table-top X-ray FEL based on dielectric acceleration and electromagnetic undulators, yielding a compact source of coherent X-rays for medical and related applications. The compactness of this source demands that high field (>GV/m) acceleration and undulation-inducing fields be employed, thus giving rise to the project's acronym: GV/m AcceLerator And X-ray Integrated Experiment (GALAXIE). There are numerous physics and technical hurdles to surmount in this ambitious scenario, and the integrated solutions include: a biharmonic photonic TW structure, 200 micron wavelength electromagnetic undulators, 5 {mu}m laser development, ultra-high brightness magnetized/asymmetric emittance electron beam generation, and SASE FEL operation. We describe the overall design philosophy of the project, the innovative approaches to addressing the challenges presented by the design, and the significant progress towards realization of these approaches in the nine months since project initialization.

  14. Anti-Stokes resonant x-ray Raman scattering for atom specific and excited state selective dynamics

    NASA Astrophysics Data System (ADS)

    Kunnus, Kristjan; Josefsson, Ida; Rajkovic, Ivan; Schreck, Simon; Quevedo, Wilson; Beye, Martin; Grübel, Sebastian; Scholz, Mirko; Nordlund, Dennis; Zhang, Wenkai; Hartsock, Robert W.; Gaffney, Kelly J.; Schlotter, William F.; Turner, Joshua J.; Kennedy, Brian; Hennies, Franz; Techert, Simone; Wernet, Philippe; Odelius, Michael; Föhlisch, Alexander

    2016-10-01

    Ultrafast electronic and structural dynamics of matter govern rate and selectivity of chemical reactions, as well as phase transitions and efficient switching in functional materials. Since x-rays determine electronic and structural properties with elemental, chemical, orbital and magnetic selectivity, short pulse x-ray sources have become central enablers of ultrafast science. Despite of these strengths, ultrafast x-rays have been poor at picking up excited state moieties from the unexcited ones. With time-resolved anti-Stokes resonant x-ray Raman scattering (AS-RXRS) performed at the LCLS, and ab initio theory we establish background free excited state selectivity in addition to the elemental, chemical, orbital and magnetic selectivity of x-rays. This unparalleled selectivity extracts low concentration excited state species along the pathway of photo induced ligand exchange of Fe(CO)5 in ethanol. Conceptually a full theoretical treatment of all accessible insights to excited state dynamics with AS-RXRS with transform-limited x-ray pulses is given—which will be covered experimentally by upcoming transform-limited x-ray sources.

  15. X-Ray Free Electron Laser Interaction With Matter

    SciTech Connect

    Hau-Riege, S

    2009-05-12

    X-ray free electron lasers (XFELs) will enable studying new areas of laser-matter interaction. We summarize the current understanding of the interaction of XFEL pulses with matter and describe some of the simulation approaches that are used to design experiments on future XFEL sources. Modified versions of these models have been successful in guiding and analyzing experiments performed at the extreme-ultraviolet FEL FLASH at wavelengths of 6 nm and longer. For photon energies of several keV, no XFEL-matter interaction experiments have been performed yet but data is anticipated to become available in the near future, which will allow to test our understanding of the interaction physics in this wavelength regime.

  16. Utilizing ablation of solids to characterize a focused soft X-ray laser beam

    NASA Astrophysics Data System (ADS)

    Chalupský, J.; Juha, L.; Kuba, J.; Hájková, V.; Cihelka, J.; Homer, P.; Kozlová, M.; Mocek, T.; Polan, J.; Rus, B.; Krzywinsky, J.; Sobierajski, R.; Wabnitz, H.; Feldhaus, J.; Tiedtke, K.; the, And

    2007-05-01

    An advanced time integrated method has been developed for soft X-ray pulsed laser beam characterization. A technique based on poly (methyl methacrylate) - PMMA laser induced ablation has been used for beam investigations of soft X-ray laser sources like FLASH (Free-electron LASer in Hamburg; formerly known as VUV FEL and/or TTF2 FEL) and plasma-based Ne-like Zn laser performed at PALS (Prague Asterix Laser System). For the interaction experiments reported here, the FLASH system provided ultra-short pulses (~10-fs) of 21.7-nm radiation. The PMMA ablation was also induced by plasma-based Ne-like Zn soft X-ray laser pumped by NIR beams at the PALS facility. This quasi-steady-state (QSS) soft X-ray laser provides 100-ps pulses of 21.2-nm radiation, i.e. at a wavelength very close to that of FLASH but with about 5,000 times longer pulses. In both cases, the PMMA samples were irradiated by a single shot with a focused beam under normal incidence conditions. Characteristics of ablated craters obtained with AFM (Atomic Force Microscope) and Nomarski microscopes were utilized for profile reconstruction and diameter determination of the focused laser beams ablating the PMMA surface.

  17. High Mass X-ray Binary Pulsars

    NASA Astrophysics Data System (ADS)

    Naik, Sachindra

    2016-07-01

    High Mass X-ray Binaries (HMXBs) are interesting objects that provide a wide range of observational probes to the nature of the two stellar components, accretion process, stellar wind and orbital parameters of the systems. Most of the transient HMXBs are found to Be/X-ray binaries (~67%), consisting of a compact object (neutron star) in orbit around the companion Be star. The orbit of the compact object around the Be star is wide and highly eccentric. Be/X-ray binaries are generally quiescent in X-ray emission. The transient X-ray outbursts seen in these objects are known to be due to interaction between the compact object and the circumstellar disk surrounding the Be star. In the recent years, another class of transient HMXBs have been found which have supergiant companions and show shorter X-ray outbursts. X-ray, infrared and optical observations of these HMXBs provide vital information regarding these systems. The timing and broad-band X-ray spectral properties of a few HMXB pulsars, mainly Be/X-ray binary pulsars during regular X-ray outbursts will be discussed.

  18. Controlling X-rays With Light

    SciTech Connect

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  19. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    SciTech Connect

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  20. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser.

    PubMed

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  1. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-11-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.

  2. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser

    PubMed Central

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; Fischer, Birgit; Schroer, Martin A.; Tono, Kensuke; Katayama, Tetsuo; Sprung, Michael; Sikorski, Marcin; Song, Sanghoon; Glownia, James; Chollet, Matthieu; Nelson, Silke; Robert, Aymeric; Gutt, Christian; Yabashi, Makina; Ishikawa, Tetsuya; Grübel, Gerhard

    2015-01-01

    Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources. PMID:26610328

  3. Diffractive X-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Skinner, Gerald K.

    2010-01-01

    Diffractive X-ray telescopes, using zone plates, phase Fresnel lenses, or related optical elements have the potential to provide astronomers with true imaging capability with resolution many orders of magnitude better than available in any other waveband. Lenses that would be relatively easy to fabricate could have an angular resolution of the order of micro-arc-seconds or even better, that would allow, for example, imaging of the distorted spacetime in the immediate vicinity of the super-massive black holes in the center of active galaxies. What then is precluding their immediate adoption? Extremely long focal lengths, very limited bandwidth, and difficulty stabilizing the image are the main problems. The history, and status of the development of such lenses is reviewed here and the prospects for managing the challenges that they present are discussed.

  4. Ultraluminous X-ray Sources

    NASA Astrophysics Data System (ADS)

    Gladstone, Jeanette

    2012-07-01

    The first black hole was observed almost 50 years ago, ˜ 1 year after Sco X-1 (although its nature was not confirmed for ˜ 11 years). Observations of black holes have been ongoing since then, falling in to two distinct categories; stellar-mass (sMBHs; 3 - 80 M_{⊙}) and super-massive black holes (10^6 - 10^9 M_⊙). The missing link between these two types, intermediate mass black holes, has been the target of many searches due to their cosmological implications. Ultraluminous X-ray sources (ULXs) have been proposed to harbor such objects, but recent observational evidence has strongly suggested that the majority contain sMBHs. However, a handful of the brightest ULXs are so luminous that they defy this explanation. Here we will discuss the nature of both standard ULXs and this new bright subgroup of this population.

  5. Industrial X-Ray Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In 1990, Lewis Research Center jointly sponsored a conference with the U.S. Air Force Wright Laboratory focused on high speed imaging. This conference, and early funding by Lewis Research Center, helped to spur work by Silicon Mountain Design, Inc. to break the performance barriers of imaging speed, resolution, and sensitivity through innovative technology. Later, under a Small Business Innovation Research contract with the Jet Propulsion Laboratory, the company designed a real-time image enhancing camera that yields superb, high quality images in 1/30th of a second while limiting distortion. The result is a rapidly available, enhanced image showing significantly greater detail compared to image processing executed on digital computers. Current applications include radiographic and pathology-based medicine, industrial imaging, x-ray inspection devices, and automated semiconductor inspection equipment.

  6. Experimental Studies with Spatial Gaussian-Cut Laser for the LCLS Photocathode Gun

    SciTech Connect

    Zhou, F.; Brachmann, A.; Emma, P.; Gilevich, S.; Huang, Z.; /SLAC

    2011-12-13

    To simplify the LCLS operation and further enhance the injector performances, we are evaluating the various parameters including the photocathode drive laser system. Extensive simulations show that both the projected and time-sliced emittances with spatial Gaussian profiles having reasonable tail-cut are better than those with uniform one. The simulated results are also supported by theoretical analyses. In the LCLS, the spatial uniform or Gaussian-cut laser profiles are conveniently obtained by adjusting the optics of the telescope upstream of an iris, used to define laser size on the cathode. Preliminary beam studies at the LCLS injector show that both the projected and time-sliced emittances with spatial Gaussian-cut laser are almost as good as, although not better than, those with uniform one. In addition, the laser transmission through the iris with the Gaussian-cut profile is twice with uniform one, which can significantly ease LCLS copper cathode/laser operations and thus improve the LCLS operation efficiency. More beam studies are planned to measure FEL performances with the Gaussian-cut in comparison with the uniform one. All simulations and measurements are presented in the paper.

  7. Soft x-ray interferometry

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of the soft x-ray interferometry workshop held at Lawrence Berkeley Laboratory was to discuss with the scientific community the proposed technical design of the soft x-ray Fourier-transform spectrometer being developed at the ALS. Different design strategies for the instrument`s components were discussed, as well as detection methods, signal processing issues, and how to meet the manufacturing tolerances that are necessary for the instrument to achieve the desired levels of performance. Workshop participants were encouraged to report on their experiences in the field of Fourier transform spectroscopy. The ALS is developing a Fourier transform spectrometer that is intended to operate up to 100 eV. The motivation is solely improved resolution and not the throughput (Jaquinot) or multiplex (Fellgett) advantage, neither of which apply for the sources and detectors used in this spectral range. The proposed implementation of this is via a Mach-Zehnder geometry that has been (1) distorted from a square to a rhombus to get grazing incidence of a suitable angle for 100 eV and (2) provided with a mirror-motion system to make the path difference between the interfering beams tunable. The experiment consists of measuring the emergent light intensity (I(x)) as a function of the path difference (x). The resolving power of the system is limited by the amount of path difference obtainable that is 1 cm (one million half-waves at 200{angstrom} wavelength) in the design thus allowing a resolving power of one million. The free spectral range of the system is limited by the closeness with which the function I(x) is sampled. It is proposed to illuminate a helium absorption cell with roughly 1%-band-width light from a monochromator thus allowing one hundred aliases without spectral overlap even for sampling of I(x) at one hundredth of the Nyquist frequency.

  8. Electron beam-based sources of ultrashort x-ray pulses.

    SciTech Connect

    Zholents, A.; Accelerator Systems Division

    2010-09-30

    A review of various methods for generation of ultrashort x-ray pulses using relativistic electron beam from conventional accelerators is presented. Both spontaneous and coherent emission of electrons is considered. The importance of the time-resolved studies of matter at picosecond (ps), femtosecond (fs), and atttosecond (as) time scales using x-rays has been widely recognized including by award of a Nobel Prize in 1999 [Zewa]. Extensive reviews of scientific drivers can be found in [BES1, BES2, BES3, Lawr, Whit]. Several laser-based techniques have been used to generate ultrashort x-ray pulses including laser-driven plasmas [Murn, Alte, Risc, Rose, Zamp], high-order harmonic generation [Schn, Rund, Wang, Arpi], and laser-driven anode sources [Ande]. In addition, ultrafast streak-camera detectors have been applied at synchrotron sources to achieve temporal resolution on the picosecond time scale [Wulf, Lind1]. In this paper, we focus on a different group of techniques that are based on the use of the relativistic electron beam produced in conventional accelerators. In the first part we review several techniques that utilize spontaneous emission of electrons and show how solitary sub-ps x-ray pulses can be obtained at existing storage ring based synchrotron light sources and linacs. In the second part we consider coherent emission of electrons in the free-electron lasers (FELs) and review several techniques for a generation of solitary sub-fs x-ray pulses. Remarkably, the x-ray pulses that can be obtained with the FELs are not only significantly shorter than the ones considered in Part 1, but also carry more photons per pulse by many orders of magnitude.

  9. Parameters for a 30 GeV Undulator Test Facility in the FFTB/LCLS

    SciTech Connect

    Krejcik, Patrick

    2001-04-12

    The parameters for a 30 GeV test beam are outlined for use with an undulator in the FFTB tunnel where the LCLS will eventually be housed. It is proposed to use the SLAC linac and damping rings in their present mode of operation for PEP II injection, where 30 GeV beams are also delivered at 10 Hz to the FFTB. High peak currents are obtained with the addition of a second bunch compressor in the linac. In order to minimize the synchrotron radiation induced emittance growth in the bunch compressor it is necessary to locate the new bunch compressor at the low-energy end of the linac, just after the damping rings. The bunch compressor is a duplicate of the LCLS chicane-style bunch compressor. This test beam would provide an exciting possibility to test LCLS undulator sections and provide a unique high-brightness source of incoherent X-rays and begin developing the LCLS experimental station. The facility will also act as a much needed accelerator test bed for the production, diagnostics and tuning of very short bunches in preparation for the LCLS after the photo injector is commissioned.

  10. X-rays for medical use

    NASA Astrophysics Data System (ADS)

    Hessenbruch, A.

    1995-11-01

    1995 is the centenary of the discovery of X-rays by the German physicist Wilhelm C Rontgen. In the past hundred years, the new rays have developed from being unknown to finding application in many walks of life, not least in medicine. This is so much so that in common speech the word `x-ray` refers not to a form of radiation but to an X-ray photograph taken for the purposes of diagnosis (as in: `I had an X-ray done to see if my leg was broken`). X-rays are now used routinely, and they are used both for diagnosis and for therapy. This paper will give an outline of the use of X-rays in medicine throughout our present century.

  11. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  12. Handbook of X-ray Astronomy

    NASA Astrophysics Data System (ADS)

    Arnaud, Keith; Smith, Randall; Siemiginowska, Aneta; Ellis, Richard; Huchra, John; Kahn, Steve; Rieke, George; Stetson, Peter B.

    2011-11-01

    Practical guide to X-ray astronomy for graduate students, professional astronomers and researchers. Presenting X-ray optics, basic detector physics and data analysis. It introduces the reduction and calibration of X-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The appendices provide reference material often required during data analysis. The handbook web page contains figures and tables: http://xrayastronomyhandbook.com/

  13. Topological X-Rays and MRIs

    ERIC Educational Resources Information Center

    Lynch, Mark

    2002-01-01

    Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…

  14. Lobster-Eye X-Ray Astronomy

    SciTech Connect

    Hudec, R.; Pina, L.; Marsikova, V.; Inneman, A.

    2010-07-15

    We report on technical and astrophysical aspects of Lobster-Eye wide-field X-ray telescopes expected to monitor the sky with high sensitivity and angular resolution of order of 1 arcmin. They will contribute essentially to study of various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc.

  15. Applications of soft x-ray lasers

    SciTech Connect

    Skinner, C.H.

    1993-08-01

    The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

  16. X-ray data booklet. Revision

    SciTech Connect

    Vaughan, D.

    1986-04-01

    A compilation of data is presented. Included are properties of the elements, electron binding energies, characteristic x-ray energies, fluorescence yields for K and L shells, Auger energies, energy levels for hydrogen-, helium-, and neonlike ions, scattering factors and mass absorption coefficients, and transmission bands of selected filters. Also included are selected reprints on scattering processes, x-ray sources, optics, x-ray detectors, and synchrotron radiation facilities. (WRF)

  17. High speed x-ray beam chopper

    DOEpatents

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  18. Angularly resolved x-ray scattering measurements of shock and ramp compressed polycrysaalline diamond

    NASA Astrophysics Data System (ADS)

    MacDonald, M. J.; Fletcher, L. B.; Gamboa, E. J.; Gauthier, M.; Lee, H. J.; Galtier, E.; Ravasio, A.; Gleason, A.; Hamel, S.; Vorberger, J.; Gericke, D. O.; Chen, Z.; Kraus, D.; Barbrel, B.; Funk, S.; Hastings, J. B.; Glenzer, S. H.; HED Science Collaboration Collaboration

    2015-03-01

    Direct measurements of the crystal structure of materials under shock and ramp compression can be obtained using 2D angularly resolved x-ray scattering at the MEC end station of the LCLS facility. Diamond has been proposed as an ablator material for inertial confinement fusion targets, requiring a better understanding how the crystal structure responds to dynamic compression. In this experiment we used the two 527 nm optical lasers to compress 25 and 50 μm diamond foils. Each beam provided 6 J in 3 ns focused to an intensity of 4 ×1014 W/cm2 with different pulse shapes to provide shock and ramp compression. Compression and lattice deformation measurements were made directly from angularly resolved x-ray scattering and compared to DFT simulations.

  19. Saturable Absorption of an X-Ray Free-Electron-Laser Heated Solid-Density Plasma

    NASA Astrophysics Data System (ADS)

    Wark, J. S.; Rackstraw, D. S.; Ciricosta, O.; Vinko, S. M.; Burian, T.; Chalupsky, J.; Hajkova, V.; Juha, L.; Barbrel, B.; Engelhorn, K.; Cho, B.-I.; Chung, H.-K.; Dakovski, G.; Krzywinski, J.; Heimann, P.; Holmes, M.; Turner, J.; Lee, R. W.; Toleikis, S.; Zastrau, U.

    2015-11-01

    High-intensity ~1017 Wcm-2, short duration (100 fsec) x-ray pulses from the LCLS x-ray free-electron laser, with photon energies ranging from below to above the K-edge of cold Al (1560 eV), are used to generate and probe a solid-density aluminum plasma. The photon-energy-dependent transmission of the heating beam is studied through the use of a photodiode. Saturable absorption is observed, with the resulting transmission differing significantly from the cold case, with the increased transmission being due to the K-edge energy of the dominant ion species shifting in time as the solid-density target is heated, in good agreement with atomic-kinetics simulations.

  20. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopya)

    PubMed Central

    Levantino, M.; Lemke, H. T.; Schirò, G.; Glownia, M.; Cupane, A.; Cammarata, M.

    2015-01-01

    We report time-resolved X-ray absorption measurements after photolysis of carbonmonoxy myoglobin performed at the LCLS X-ray free electron laser with nearly 100 fs (FWHM) time resolution. Data at the Fe K-edge reveal that the photoinduced structural changes at the heme occur in two steps, with a faster (∼70 fs) relaxation preceding a slower (∼400 fs) one. We tentatively attribute the first relaxation to a structural rearrangement induced by photolysis involving essentially only the heme chromophore and the second relaxation to a residual Fe motion out of the heme plane that is coupled to the displacement of myoglobin F-helix. PMID:26798812