Science.gov

Sample records for ldef tray clamps

  1. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Cromwell, B. K.; Shepherd, S. D.; Pender, C. W.; Wood, B. E.

    1993-01-01

    Infrared hemispherical reflectance measurements that were made on 58 chromic acid anodized tray clamps from LDEF are described. The measurements were made using a hemiellipsoidal mirror reflectometer with interferometer for wavelengths between 2-15 microns. The tray clamps investigated were from locations about the entire spacecraft and provided the opportunity for comparing the effects of atomic oxygen at each location. Results indicate there was essentially no dependence on atomic oxygen fluence for the surfaces studied, but there did appear to be a slight dependence on solar radiation exposure. The reflectances of the front sides of the tray clamps consistently were slightly higher than for the protected rear tray clamp surfaces.

  2. Spectral infrared hemispherical reflectance measurements for LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Wood, Bobby E.; Cromwell, Brian K.; Pender, Charles W.; Shepherd, Seth D.

    1992-01-01

    This paper describes infrared hemispherical reflectance measurements (2-15 microns) that were made on 58 chromic acid anodized tray clamps retrieved from the LDEF spacecraft. These clamps were used for maintaining the experiments in place and were located at various locations about the spacecraft. Changes in reflectance of the tray clamps at these locations were compared with atomic oxygen fluxes at the same locations. A decrease in absorption band depth was seen for the surfaces exposed to space indicating that there was some surface layer erosion. In all of the surfaces measured, little evidence of contamination was observed and none of the samples showed evidence of the brown nicotine stain that was so prominent in other experiments. Total emissivity values were calculated for both exposed and unexposed tray clamp surfaces. Only small differences, usually less than 1 percent, were observed. The spectral reflectances were measured using a hemi-ellipsoidal mirror reflectometer matched with an interferometer spectrometer. The rapid scanning capability of the interferometer allowed the reflectance measurements to be made in a timely fashion. The ellipsoidal mirror has its two foci separated by 2 inches and located on the major axis. A blackbody source was located at one focus while the tray clamp samples were located at the conjugate focus. The blackbody radiation was modulated and then focused by the ellipsoid onto the tray clamps. Radiation reflected from the tray clamp was sampled by the interferometer by viewing through a hole in the ellipsoid. A gold mirror (reflectance approximately 98 percent) was used as the reference surface.

  3. Scanning electron microscope/energy dispersive x ray analysis of impact residues in LDEF tray clamps

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Durin, Christian; Zolensky, Michael E.

    1993-01-01

    Detailed optical scanning of tray clamps is being conducted in the Facility for the Optical Inspection of Large Surfaces at JSC to locate and document impacts as small as 40 microns in diameter. Residues from selected impacts are then being characterized by Scanning Electron Microscopy/Energy Dispersive X-ray Analysis at CNES. Results from this analysis will be the initial step to classifying projectile residues into specific sources.

  4. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C09 The postflight photograph was taken prior to the experiment tray being removed from the LDEF. The tray corner clamp blocks are un-anodized aluminum and that alone accounts for the major difference in color between the corner clamp blocks and the center clamp blocks. The IDE mounting plate and the detector frames and detectors seem to be in excellent condition. Close inspection of the photograph reveals several locations where impacts on detector surfaces are visible. A faint gold or tan stain can be seen around several of the fasteners and in a rectangular configuration, near the center, along the bottom edge of the detector mounting plate. Stains can also be seen near the top right edge of the solar sensor, on the mounting plate, and around the extreme edges of the solar sensor baseplate. The colors and designs seen on the detectors are reflections of the surrounding area.

  5. LDEF (Postflight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray H01

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The postflight photograph of the Low Tem perature Heat Pipe Package (HEPP) power tray was taken in the SAEF II at KSC after an all up system checkout with interfacing experiments and removal of the tray from the LDEF. An outline of the experiment tray clamp blocks is clearly visible in the light brown stain on the experiment tray flanges. The Low Temperature Heat Pipe Package (HEPP) experiment occupies two 12 inch deep LDEF experiment trays connected with an inter-tray wiring harness. The HEPP Power tray, an end cor ner tray, occupies a location on the space end of the LDEF in tray location H01 and the HEPP Experiment tray, a peripheral tray, is located in the LDEF tray location F12. The power tray (H01) consist of four solar array panels, one nickel-cadmium (NiCd) battery, a Power System Electronics (PSE) unit, protective thermal blankets that line the tray interior and a thirty seven pound baseplate mounted on thermal isolators to provide a thermally stable mounting for the bat tery and the PSE. Thirteen strips of thin film thermal control materials, part of an experiment by NASA GSFC that consist of sixty-five samples located at three different LDEF tray locations (H01, F09 and F12), were attached to the experiment tray flanges with Kapton tape. The experi ment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasten ers. The experiment hardware appears to be intact with no apparent changes other than stains along outer edges of the solar arrays. The light brown stains observed along the upper edges of the solar array mounting plates and around the outer edge of the baseplate in the flight photograph are not apparent in the postflight photo. The atomic oxygen experiment thin film strips appear to be in place with no apparent damage. The Kapton tape appears to be firmly adhered to the tray flanges in all thirteen locations.

  6. LDEF (Postflight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray H01

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray H01 The post landing photograph of the Low Tempera ture Heat Pipe Package (HEPP) experiment was taken from the Orbiter's cargo bay access hatch during post landing operations to prepare the Orbiter for the ferry flight from the Dryden Flight Research Center to the Kennedy Space Center. The white paint dots on the center clamp blocks of the experiment trays right flange and upperer flange appear to be discolored. The discoloration diminishes as as the distance from the vent area of the thermal shields increases. The right and upper tray flanges also appear to be discolored. Finger prints are visible on the thermal panels in the vicinity of the panel mounting fasteners. The Low Temperature Heat Pipe Package (HEPP) experiment occupies two 12 inch deep LDEF experiment trays connected with an inter-tray wiring harness. The HEPP Power tray, an end cor ner tray, occupies a location on the space end of the LDEF in tray location H01 and the HEPP Experiment tray, a peripheral tray, is located in the LDEF tray location F12. The power tray (H01) consist of four solar array panels, one nickel-cadmium (NiCd) battery, a Power System Electronics (PSE) unit, protective thermal blankets that line the tray interior and a thirty seven pound baseplate mounted on thermal isolators to provide a thermally stable mounting for the bat tery and the PSE.. Thirteen strips of thin film thermal control materials, part of an experiment by NASA GSFC that consist of sixty-five samples located at three different LDEF tray locations (H01, F09 and F12), were attached to the experiment tray flanges with Kapton tape. The experi ment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasten ers. The experiment hardware appears to be intact with no apparent changes other than stains along outer edges of the solar arrays. Light brown stains are visible along the upper edges of the

  7. LDEF (Postflight), S0001 : Space Debris Impact Experiment, Tray H05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Space Debris Impact Experiment con sists of a three sixteenth (3/16) of an inch thick chromic anodized aluminum panel mounted in a three (3) inch deep LDEF experiment tray. The side of the plate exposed to the LDEF interior is painted with Chemglaze Z-306 flat black paint over a Chemglaze 9924 wash primer. The panels are attached to the aluminum tray structure with non-magnetic stainless steel fasteners. The panel coatings, a thin layer of chromic anodize facing out and the Chemglaze Z-306 black paint facing the LDEF interior, contribute significantly to thermal control of the LDEF spacecraft. The postflight photograph was taken in SAEF II at the KSC after the experiment was removed from the LDEF. A brown discoloration can be seen on the upper tray flange and a lighter discol oration on the lower tray flange not covered by the experiment tray clamp blocks. Irregular shaped tan discolorations are also visible on the experiment tray sidewall with a darker stain in the right tray corners

  8. LDEF (Flight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray H01

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The flight photograph of the Low Temperature Heat Pipe Package (HEPP) experiment was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays right flange and lower flange appear to be discolored. The discolor ation diminishes as as the distance from the vent area of the thermal shields increases. The right and lower tray flanges also appear to be discolored. Finger prints are visible on the thermal panels in the vicinity of the panel mounting fasteners. The Low Temperature Heat Pipe Package (HEPP) experiment occupies two 12 inch deep LDEF experiment trays connected with an inter-tray wiring harness. The HEPP Power tray, an end cor ner tray, occupies a location on the space end of the LDEF in tray location H01 and the HEPP Experiment tray, a peripheral tray, is located in the LDEF tray location F12. The power tray (H01) consist of four solar array panels, one nickel-cadmium (NiCd) battery, a Power System Electronics (PSE) unit, protective thermal blankets that line the tray interior and a thirty seven pound baseplate mounted on thermal isolators to provide a thermally stable mounting for the bat tery and the PSE. Thirteen strips of thin film thermal control materials, part of an experiment by NASA GSFC that consist of sixty-five samples located at three different LDEF tray locations (H01, F09 and F12), were attached to the experiment tray flanges with Kapton tape. The experi ment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasten ers. The experiment hardware appears to be intact with no apparent changes other than stains along outer edges of the solar arrays. Light brown stains are visible along the upper edges of the solar array mounting plates with faint traces of a lighter colored stain around the outer edge of the base plate. The atomic oxygen experiment thin film strips appear to be in place with no

  9. LDEF (Postflight), AO015 : Free-Flyer Biostack Experiment, Tray G02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO015 : Free-Flyer Biostack Experiment, Tray G02 The post flight photograph was taken in the SAEF II at KSC after the experiment tray was removed from the LDEF. The experiment tray flanges and sidewalls have become discolored with a light tan stain except where the tray clamp blocks were located. The Biostack experiment appears to have survived the extended mission with no visible damage. The experiment housings are intact and all hardware is securely in place. The detector housings appear to be discolored with a stain similar to that on the tray hardware. The exposed Kapton H foil covering windows in two (2) detector housings do not appear to have sustained damage dur ing the extended mission. The perforated dome on two (2) of the detector housings has a slight tan discoloration but no indication of damage.

  10. LDEF (Postflight), AO139A : Growth of Crystals From Solutions in Low Gravity, Tray G06

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO139A : Growth of Crystals From Solutions in Low Gravity, Tray G06 The postflight photograph was taken in the SAEF II at KSC after the experiment tray was removed from the LDEF. The experiment tray flanges have become discolored with a light tan stain except where the tray clamp blocks were located. A darker stain appears to exist at the intersection of the white cover plate and the upper left flange of the experiment tray. The Crystal Growth experiment appears to have survived the extended mission with no visible damage. The experiment cover plate, originally white, appears to be discolored by a very light brown stain but is intact and securely in place.

  11. LDEF (Postflight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray F12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray F12 EL-1994-00190 The postflight photograph of the Low Temperature Heat Pipe Package (HEPP) experiment was taken in the SAEF II at KSC prior to removal of the experiment from the LDEF. The color of the white paint dots on three of the experiment tray clamp blocks appears to be unchanged. The Low Temperature Heat Pipe Package (HEPP) experiment occupies two 12 inch deep LDEF experiment trays connected with an inter-tray wiring harness. The HEPP Experiment tray, a peripheral tray modified to accommodate radiator location and field of view requirements, is located in the LDEF tray location F12. The HEPP Power tray, an end corner tray, is located on the space end of the LDEF in tray location H01. The experiment tray (F12) contains a Constant ConductanceHeat Pipe, a Thermal Diode Low Temperature Heat Pipe, a radiator coupled with a phase change material canister, the data acquisition and control systems and the LDEF experiment power and data system (EPDS) for processing, recording and storing experiment data. The HEPP EPDS is also used to record and store thermal data from the CVCHPE (AO076) and the THERM (P0003) experiments. Fiberglass standoffs and internal multilayer insulation (MLI) blankets ther- mally isolated the experiment from the experiment tray and the LDEF interior. The radiator and radiator shield panels located in the left half of the tray were covered with silvered TEFLON® tape to provide the desired optical properties. The outside of the HEPP, except the radiator shield panels and the radiator, was covered with an aluminized Kapton multilayer insulation (MLI) blanket with the outer Kapton layer coated with vapor deposited aluminum on one side only. The two patches of thin film materials, part of an experiment byNASA GSFC that consist of five patches of thirteen samples each and located at three different places on the LDEF (F09, F12 and H01), were attached to

  12. Analysis of impactor residues in tray clamps from the Long Duration Exposure Facility. Part 1: Clamps from Bay A of the satellite

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Bernhard, Ronald P.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was placed in low Earth orbit (LEO) in 1984 and was recovered 5.7 years later. The LDEF was host to several individual experiments that were specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. It was realized from the beginning, however, that the most efficient use of the satellite would be to examine the entire surface of the Earth for impact features. In this regard, particular interest has centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials is the tray clamps. Therefore, in an effort to understand the nature of particulates in LEO and their effects on spacecraft hardware better, we are analyzing residues found in impact features on LDEF tray clamp surfaces. This catalog presents all data from clamps from Bay A of the LDEF. Subsequent catalogs will include clamps from succeeding bays of the satellite.

  13. LDEF (Flight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray F12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), S1001 : Low-Temperature Heat Pipe Experiment Package (HEPP) for LDEF, Tray F12 EL-1994-00008 The flight photograph of the Low Temperature Heat Pipe Package (HEPP) experimentwas taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be slightly discolored. The Low Temperature Heat Pipe Package (HEPP) experiment occupies two 12 inch deep LDEF experiment trays connected with an inter-tray wiring harness. The HEPP Experiment tray, a peripheral tray modified to accommodate radiator location and field of view requirements, is located in the LDEF tray location F12. The HEPP Power tray, an end corner tray, is located on the space end of the LDEF in tray location H01. The experiment tray (F12) contains a Constant ConductanceHeat Pipe, a Thermal Diode Low Temperature Heat Pipe, a radiator coupled with a phase change material canister, the data acquisition and control systems and the LDEF experiment power and data system (EPDS) for processing, recording and storing experiment data. The HEPP EPDS is also used to record and store thermal data from the CVCHPE (AO076) and the THERM (P0003) experiments. Fiberglass standoffs and internal multilayer insulation (MLI) blankets ther- mally isolated the experiment from the experiment tray and the LDEF interior. The radiator and radiator shield panels located in the left half of the tray were covered with silvered TEFLON® tape to provide the desired optical properties. The outside of the HEPP, except the radiator shield panels and the radiator, was covered with an aluminized Kapton multilayer insulation (MLI) blanket with the outer Kapton layer coated with vapor deposited aluminum on one side only. The two patches of thin film materials, part of an atomic oxygen experiment by NASA GSFC that consist of five patches of thirteen samples each and located at three

  14. LDEF (Postflight), P0006 : Linear Energy Transfer Spectrum Measurement Experiment, Tray F02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), P0006 : Linear Energy Transfer Spectrum Measurement Experiment, Tray F02 EL-1994-00193 LDEF (Postflight), P0006 : Linear Energy Transfer Spectrum Measurement Experiment, Tray F02 The postflight photograph was taken in the SAEF II at KSC after the experiment was removed from the LDEF. The Linear Energy Transfer (LET) Experiment (P0006) is one of three passive experiments located in a 6 inch deep LDEF peripheral tray. The experiment consist of two types of detectors, thermal luminescence and track type, assembled in a sealed container and a silvered TEFLON® thermal cover. Two other experiments, the Seeds in Space Experiment (P0004-01) and the Space Exposed Experiment Developed for Students (SEEDS) P0004-02 were companion experiments in the tray. The experiment hardware was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. Areas of the experiment tray flanges covered by the tray clamp blocks are unstained and clearly visible. The sealed Linear Energy Transfer (LET) Experiment container was machined from aluminum and assembled together with a Buna-N o-ring seal. The canister, approximately 6 inches in diameter and 4.5 inches high, was mounted on the top side of the experiment tray and painted white with Chemglaze II A-276. Thermal control was accomplished by placing the canister on fiberglass isolators and covering the experiment tray with a thin (5 mil) silvered TEFLON® specular cover secured with Velcro pads located on each of the P0004 canister domes and on clips attached to the tray sidewalls. The silvered TEFLON® thermal cover appears to be intact with no apparent damage. The surroundings reflected in the thermal covers specular surface provides an array of colors including white, browns, silver, red, and aqua.

  15. LDEF (Postflight), S0001 : Space Debris Impact Experiment, Tray A06

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The postflight photograph was taken in the SAEF II at KSC prior to experiment removal from the LDEF. The originally white paint dots on clamp blocks at the centers of the experiment tray top and right flanges are now a light tan while the dot on the clamp block at the left end of the lower flange appears to have changed little in color. The experiment tray flanges and lower sidewall appear discolored with a light tan stain. The Space Debris Impact Experiment consists of two (2) three sixteenth (3/16th) inch thick chromic anodized aluminum panels mounted in a three (3) inch deep peripheral LDEF experiment tray. The side of the panels exposed to the LDEF interior are painted black with Chemglaze Z-306 flat black paint over a Chemglaze 9924 wash primer. The panels are attached to the aluminum tray structure with non-magnetic stainless steel fasteners. The panel coatings, a thin layer of chromic anodize facing out and the Chemglaze Z-306 black paint facing the LDEF interior, contribute significantly to thermal control of the LDEF spacecraft. The pink and the greenish-gray tints on the two (2) debris panels are by-product of the chromic anodize coating process and not attributed to contamination and/or exposure to the space environment. The finger prints along the center edges of the debris panels that were observed in the flight photograph are still visible. The vertical streaks seen on the debris panels appear the same as on the prelaunch photograph. The black unit located on the right panel is a keel camera target used during berthing of the LDEF. The color of the stripes and the tip of the vertical rod appear darker than in the prelaunch photograph. The light band along the right side and across the bottom of the panels is caused by light reflecting from the tray sidewalls.

  16. LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D03

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D03 EL-1994-00129 LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D03 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay. The Spacecraft Materials Experiment hardware consist of four LDEF peripheral trays (two sets), two Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using non-magnetic stainless steel fasteners. One six inch tray and one three inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The white paint dots on the experiment tray clamp blocks appear to have changed significantly. The paint on the clamp block located in the center of the trays right flange is brown and the paint on the clamp blocks at each end of the left flange is gray. The tray flanges and clamp blocks appear to have a light tan discoloration. The experiment tray in the D03, trailing edge, location is divided into six sections. One of the six sections, lower right corner, provides space for one of three Trapped Proton Energy Spectrum Determination Experiment, M0002-01, modules. The other five sections of the tray contain M0003 sub-experiments consisting of coatings, thermal paints, polymers, glasses, composites, semi-conductors and detectors that provide data on various

  17. LDEF (Prelaunch), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00044 LDEF (Prelaunch), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper right corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Plate II in the upper center section, has twenty seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. Plate III, in the upper left corner, consist mostly of metallized and thin polymeric films (Kapton, Mylar, TEFLON® , white Tedlar,etc.). Plate IV located in the lower right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Plate V contained thermal plastics and structural film configured into tensile and shear specimen. Plate VI was populated with solar cells and associate components (covers, encapsulants,adhesives, etc.).

  18. LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray C09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray C09 The flight photograph was taken during the LDEF retrieval and provides an on-orbit view of the C09 integrated tray. When comparing this photograph with the prelaunch photograph, very little difference can be seen. A brown stain is visible around some of the fasteners and on mounting plates. The stain has been attributed to outgassing and contamination from the LDEF and experiment related materials being flown. When compared to the prelaunch photograph, the C09 integrated tray seems to be in excellent condition. The Interplanetary Dust Experiment appears to have a thin brown stain around some of the fasteners and also a small rectangular stain, in the center, along the bottom edge of the detector mounting plate. The IDE seems to be in excellent condition with all hardware intact. The colors seen in the detectors is a reflection of the Orbiter's white cargo bay liner.

  19. LDEF (Postflight), P0004-01 : Seeds in Space Experiment, Tray F02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), P0004-01 : Seeds in Space Experiment, Tray F02 EL-1994-00704 The postflight photograph was taken in the SAEF II at KSC after the experiment was removed from the LDEF and the silvered TEFLON® thermal cover was removed from the experiment tray. The Seeds in Space Experiment (P0004-01) is one of three passive experiments located in a 6 inch deep LDEF peripheral tray. The experiment consist of 2 million seeds of 120 different varieties, one sealed canister, two smaller vented canisters, and a silvered TEFLON® thermal cover. Two other experiments, the Space Exposed Experiment Developed for Students (SEEDS) P0004-02 and the Linear Energy Transfer (LET) Experiment (P0006), were companion experiments in the tray. The experiment hardware was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. Areas of the experiment tray flanges covered by the tray clamp blocks are unstained and clearly visible. The sealed Seeds in Space Experiment canister, a base portion and a dome portion, was machined from aluminum and assembled together with a butyl rubber o-ring seal. The machined interior was approximately 4 inches deep with a 12 inch internal diameter, providing a volume of approximately 1/3 cubic foot. the sealed canister was the center canister in the top row. The two vented canisters were also aluminum. One canister, 4 inches in diameter and 4 inches high, was mounted on the top side of the experiment tray at the lower right corner of the large sealed canister. The other vented canister was rectangular in shape and mounted on the bottom side of the tray, the side facing the LDEF interior. The exterior surfaces of all canisters located on the top side of the experiment tray were painted white with Chemglaze II A-276. The exterior surface of the rectangular canister on the bottom side of the experiment tray was coated with Chemglaze Z-306 flat black paint over a Chemglaze 9924 primer. Thermal control was accomplished by

  20. LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray F06

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray F06 The prelaunch photograph provides a view of the Interstellar Gas Experiment (IGE) hardware and shows a single experiment canister housing mounted in a twelve (12) inch deep peripheral tray. The experiment utilizes seven (7) canisters containing high-purity beryllium copper collecting foils, three (3) located in peripheral trays and four (4) located in trays on the space end of the LDEF, to meet experiment objectives. The active portion of the experiment consist of canister electronic timing devices and pyrotechnic cutters that control the exposure time of each collector foil. An electronic voltage multiplier system provides a bias voltage to the grid network located above the beryllium copper collecting foils.The batteries and the electronics are housed beneath the experiment baseplate facing the LDEF interior. The white painted surface area within the LDEF tray provides the optical properties required to maintain the experiment components within temperature limits. The rectangular opening in the upper right corner of the experiment baseplate provide the mounting for the ground support equipment test connector. The white grid voltage connector box, mounted on the side of the canister housing, provides the termination point for the cables running from the grid voltage box beneath the baseplate. The canister housing is a welded aluminum structure with aluminum mounting flanges. The experiment components are assembled using non-magnetic stainless steel fasteners. The aluminum housing cover, removed prior to flight, protects experiment components from damage and large particle contamination during ground handling.

  1. LDEF (Flight), P0004-02 : Space-Exposed Experiment Developed for Students, Tray F02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), P0004-02 : Space-Exposed Experiment Developed for Students, Tray F02 EL-1994-00132 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval and prior to the berthing of LDEF in the Orbiter's cargo bay. The Space Exposed Experiment Developed for Students (SEEDS) P0004-02 is one of three passive experiments located in a 6-inch deep LDEF peripheral tray. The experiment consist of 12.5 million Rutgers tomato seeds, five sealed canisters and a silvered TEFLON® thermal cover. Two other experiments, the Seeds in Space Experiment (P0004-01) and the Linear Energy Transfer (LET) Experiment (P0006), were companion experiments in the tray. The experiment hardware was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. The paint dots, originally white, located on experiment tray clamp blocks now appear brown. The experiment tray flanges also appear to be discolored. The sealed SEEDS canisters, 5 bases and 5 domes, were machined from aluminum plate material and assembled together with a butyl rubber o-ring seal. The machined interior was approximately 4 inches deep with a 12 inch internal diameter, providing an open volume of approximately 1/3 cubic foot in each canister. The 5 canisters were were mounted in the experiment tray along with a similar canister containing the Seeds in Space Experiment. The exterior surfaces of all canisters were painted white with Chemglaze II A-276 and surfaces facing the LDEF interior were coated with Chemglaze Z-306 flat black paint over a Chemglaze 9924 primer. Thermal control was accomplished by placing the canisters on fiberglass isolators and covering the experiment tray with a thin (5 mil) silvered TEFLON® specular cover secured with Velcro pads located on each of the canister domes and on clips attached to the tray sidewalls. The silvered TEFLON® thermal cover appears to be intact with no apparent damage. The three dark spots appearing in a vertical

  2. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 EL-1994-00311 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a brown stain. Outlines of experiment tray clamp blocks are clearly visible on the upper and lower tray flanges. The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the

  3. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C06

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C06 EL-1994-00206 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C06 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a light brown stain. Outlines of experiment tray clamp blocks are clearly visible on the lower tray flanges.The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments

  4. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C05 EL-1994-00205 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C05 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a brown stain that provides outlines of the experiment tray clamp blocks that are clearly visible on the upper and lower tray flanges.The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground

  5. LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray H06

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray H06 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the Interstellar Gas Experiment on the LDEF. The prelaunch photograph provides a view of the Interstellar Gas Experiment (IGE) hardware and shows the orientation of two (2) experiment canister housings mounted in a twelve (12) inch deep end tray. The experiment utilizes seven (7) canisters containing high-purity beryllium copper collecting foils, three (3) located in peripheral trays and four (4) located in trays on the space end of the LDEF, to meet experiment objectives. The active portion of the experiment consist of canister electronic timing devices and pyrotechnic cutters that control the exposure time of each collector foil. An electronic voltage multiplier system provides a bias voltage to a wire mesh grid located above the beryllium copper collecting foils.The batteries and the electronics are housed beneath the experiment baseplate facing the LDEF interior. The white painted surface area within the LDEF tray provides the optical properties required to maintain the experiment components within temperature limits. The two (2) rectangular openings in opposite corners of the experiment baseplate provide the mountings for the grid voltage box and for the ground support equipment test connectors. A white grid voltage box, mounted on the side of each canister housing, provides the termination point for the cables running from the power supply located beneath the baseplate. The canister housing is a welded aluminum structure with aluminum mounting flanges. The experiment components are assembled using non-magnetic stainless steel fasteners. The aluminum housing cover, removed prior to flight, protects experiment components from damage and large particle contamination during ground handling.

  6. LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray H09

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray H09 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the Interstellar Gas Experiment on the LDEF. The prelaunch photograph provides a view of the Interstellar Gas Experiment (IGE) hardware and shows the orientation of two (2) experiment canister housings mounted in a twelve (12) inch deep end tray. The experiment utilizes seven (7) canisters containing high-purity beryllium copper collecting foils, three (3) located in peripheral trays and four (4) located in trays on the space end of the LDEF, to meet experiment objectives. The active portion of the experiment consist of canister electronic timing devices and pyrotechnic cutters that control the exposure time of each collector foil. An electronic voltage multiplier system provides a bias voltage to the grid network located above the beryllium copper collecting foils.The batteries and the electronics are housed beneath the experiment baseplate facing the LDEF interior. The white painted surface area within the LDEF tray provides the optical properties required to maintain the experiment components within temperature limits. The two (2) rectangular openings in opposite corners of the experiment baseplate provide the mountings for the grid voltage box and for the ground support equipment test connectors. A white grid voltage box, mounted on the side of each canister housing, provides the termination point for the cables running from the power supply located beneath the baseplate. The canister housing is a welded aluminum structure with aluminum mounting flanges. The experiment components are assembled using non-magnetic stainless steel fasteners. The aluminum housing cover, removed prior to flight, protects experiment components from damage and large particle contamination during ground handling.

  7. LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray G10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO201 : Interplanetary Dust Experiment, Tray G10 The flight/on-orbit photograph of the G10 experi ment tray was taken from the Orbiter aft flight deck during the LDEF retrieval. A light brown stain can be seen on the experiment tray flanges and to a lesser degree on the IDE Chemglaze Z tained their integrity. A light tan stain on the solar sensor base plate, located in the center of the tray, is more easily seen than that on the IDE mounting plate. Surface defects are highly visible due to the lighting conditions existing at the time the photograph was taken. The lighting angle is such that many impact craters can be seen. Two (2) detectors, located in the twenty (20) detector layout in the lower left corner of the tray, seem to have defects. A triangular shaped discoloration appears on the second detector from the left and in the second row from the bottom. Another irregular shaped discoloration can be seen on the fourth detector from the left and in the third row from the bottom. These discolorations appear to be due to material and/or fabrication defects and not reflected light. The blue colors on the detector's mirror like surface are caused by reflections of the LDEF surroundings.

  8. LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D04 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay. Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using non-magnetic stainless steel fasteners. One six-inch tray and one three-inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The white paint dots on the experiment tray clamp blocks appear to have changed significantly. The paint on the clamp block located in the center of the trays right flange is brown and the paint on the clamp block at the upper end of the left flange is gray. The trays right flange and clamp blocks appear to have a light tan discoloration. The experiment tray in the D04 location is divided into three sections.The top section provides space for the EPDS, the center section accommodates the Signal Conditioning Unit (SCU) and an experiment mounting plate, on an aluminum sub-structure, that is populated with composite material samples. The lower section houses the EECC with a complement of experiment samples that consist of coatings, thermal paints, polymers, glasses and semiconductors. Detectors within the experiment provide environmental data for use in postflight analyses. Batteries and the inter-tray wiring harness are located beneath the tray base plates

  9. LDEF (Flight), S1005 : Transverse Flat-Plate Heat Pipe Experiment, Tray B10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), S1005 : Transverse Flat-Plate Heat Pipe Experiment, Tray B10 EL-1994-00017 The Transverse Flat-Plate Heat Pipe Experiment flight photograph was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. No change in the color of the white paint dots on experiment tray clamp blocks is apparent. The Transverse Flat-Plate Heat Pipe Experiment consist of three (3) transverse flat heat-pipe modules , a power system for the heaters, a data acquisition and storage system and an aluminum support structure placed in a twelve (12) inch deep LDEF experiment tray. The surface of the experiment exposed to the space environment consist of the three heat pipe modules exterior surfaces, silver TEFLON®, and the thermal blankets covering the aluminum mounting hardware and openings between the hardware and the tray sidewalls. The raised surface at the top of each heat pipe module is the fluid reservoir. Five thermocouples, for monitoring the external surface temperature, are located on each module. The specular surface of the silver TEFLON® has become diffuse and appears white. Numerous impact craters, black specks, can be seen on the white surfaces of the modules. There appears to be a light tan discoloration on the surfaces of all three heat pipe modules. Two different types of discolorations can be seen at the top end of the center heat pipe; a dark brown color to the left of the thermocouple and what appears as two multi-color irregular shaped patterns to the right of the thermocouple. A square shaped light brown discoloration is seen near the left edge of the left thermal blanket, approximately half way between the tray bottom and center clamp blocks and also near the top of the thermal blanket between the left heat pipe module and the center heat pipe module.

  10. LDEF (Postflight), AO187-01 : The Chemistry of Micrometeoroids, Tray A03

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO187-01 : The Chemistry of Micrometeoroids, Tray A03 EL-1994-00266 LDEF (Postflight), AO187-01 : The Chemistry of Micrometeoroids, Tray A03 The experiment is shown in the postflight configuration before closing the canisters with ground support equipment that bypassed the experiments onboard electronics circuitry. Three full panels and approximately 3/4th of the other panel are covered with gold foil (>99.99 percent pure). The remaining area on the fourth panel is covered with strips of other detector materials: zirconium, beryllium, titanium, platium, aluminum, carbon, Kapton, polyethylene and TEFLON®. A brown stain is visible on the experiment tray flanges, however, most of the stains observed in the flight photograph are obscured by reflected light. All materials remain intact with no visual evidence of damage to the experiment. The reflection of a video camera on a tripod and light sources can be seen on the gold foil covered panels. The experiment canisters are shown after being closed by using the experiments ground support equipment. The stain buildup can be clearly seen at the vertical center of the right tray flange. The clean area was located under the experiment tray clamp block and was not exposed to the staining medium. The stain also coats other areas that were exposed during the mission but are not as noticeable. The experiment hardware seems to be intact and have no damage.

  11. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02 EL-1994-00385 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E02 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The white paint dot on the experiment tray clamp blocks located at the center of the trays lower and left flanges and at the right end of the trays upper flange appear to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an

  12. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A02

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A02 EL-1994-00387 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A02 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The white paint dot on the experiment tray clamp blocks located at the center of the trays upper and right flanges and at the left end of the trays lower flange appear to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar with a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an

  13. LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray E12

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO038 : Interstellar Gas Experiment, Tray E12 The prelaunch photograph provides a view of the Interstellar Gas Experiment (IGE) hardware and shows the orientation of two (2) experiment canister housings mounted in a twelve (12) inch deep peripheral tray. The experiment utilizes seven (7) canisters containing high-purity beryllium copper collecting foils, three (3) located in peripheral trays and four (4) located in trays on the space end of the LDEF, to meet experiment objectives. The active portion of the experiment consist of canister electronic timing devices and pyrotechnic cutters that control the exposure time of each collector foil. An electronic voltage multiplier system provides a bias voltage to the grid network located above the beryllium copper collecting foils.The batteries and the electronics are housed beneath the experiment baseplate facing the LDEF interior. The white painted surface area within the LDEF tray provides the optical properties required to maintain the experiment components within temperature limits. The two (2) rectangular openings in opposite corners of the experiment baseplate provide the mountings for the ground support equipment test connectors. A white grid voltage connector box, mounted on the side of each canister housing, provides the termination point for the cables running from the grid voltage box beneath the baseplate. The canister housing is a welded aluminum structure with aluminum mounting flanges. The experiment components are assembled using non-magnetic stainless steel fasteners. The aluminum housing cover, removed prior to flight, protects experiment components from damage and large particle contamination during ground handling.

  14. LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00147 LDEF (Postflight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The post flight photograph was taken in the SAEF II at KSC prior to removal of the experiment tray from the LDEF and shows the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper right corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Three of the four solar arrays are missing. Other components appear to be secure. Plate II in the top center section, has twenty seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. The composites appear to be intact with no physical damage. Plate III, in the upper left corner, consist of metallized and thin polymeric films (Kapton, Mylar, TEFLON® , white Tedlar,etc.). The thin films without protective coatings sustained significant damage and most were destroyed. The thin film specimen hanging by one end in the flight photograph is missing. The metallized film apparently survived the mission with minimum damage. Plate IV located in the lower right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Several of the coatings appear to have darkened and a unique pattern of light brown discoloration appears around the outer edges of the mounting plate and along the lower edge of the coverplates. Plate V, in the lower center section, contained thermal plastics and structural film configured into tensile and

  15. LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 EL-1994-00666 LDEF (Flight), AO171 : Solar-Array-Materials Passive LDEF Experiment, Tray A08 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay and shows the Solar Array Materials Passive LDEF Experiment (SAMPLE) on the LDEF. Six (6) plates of passive components, provided by various experiment organizations and designated plate I thru plate VI, are shown mounted in a three (3) inch deep LDEF peripheral tray. All six plates are aluminum and attach to the LDEF experiment tray with non-magnetic stainless steel fasteners. Plate I, located in the upper left corner, consist of a combination of solar cells with and without covers, solar cell modules and solar arrays assembled on the baseplate. Two of the four solar arrays are missing and one appears to be attached at only one corner. Other components appear to be secure. Plate II in the left center section, has twenty-seven (27) composite samples, carbon fiber and glass fiber, mounted on the baseplate. The composites appear to be intact with no physical damage. Plate III, in the lower left corner, consist mostly of metallized and thin polymeric films (Kapton, Mylar, TEFLON® , white Tedlar,etc.). The thin films without protective coatings sustained significant damage and most were destroyed. The metallized film apparently survived with minimum damage. Plate IV located in the upper right corner consist of metals and coatings mounted in an aluminum baseplate and covered with a thin aluminum coverplate that partially mask the specimen. Several of the coatings appear to have changed to a darker color and a light brown discoloration appears around the outer edges of the mounting plate and along the right edge of the coverplates. Plate V, in the right center section, contained thermal plastics and structural film configured into tensile and shear specimen. All

  16. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray C03 The IDE mounting plate and the detector frames are coated with a brown stain similiar to that seen on the other experiments in this and other trays located nearby. The stain seems to be slightly darker along the lower edge of the solar sensor mounting plate. The colors and designs seen on the detectors are reflections of the surrounding area. The thin brown film on the detectors metallic surface has resulted in a duller reflection of a technician, in the upper left, and other items.

  17. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 EL-1994-00391 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The paint dots on the experiment tray clamp blocks, originally white, appearsDE:to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at leastDE:one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The

  18. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 EL-1994-00184 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The paint dots on the experiment tray clamp blocks, originally white, appears to be discolored by a brown stain. The experiment tray flanges also appear to be coated but with a lighter colored stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE

  19. Atomic oxygen exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Atomic oxygen exposures were determined analytically for rows, longerons, and end bays of the Long Duration Exposure Facility (LDEF). The calculations are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation on atomic oxygen flux. Results incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the 6-year flight of the spacecraft. To facilitate use of the data, both detailed tabulations and summary charts for atomic oxygen fluences are presented.

  20. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 EL-1994-00088 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B05 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp block of the experiment trays lower flange appears to be discolored by a dark brown stain. The tray flanges also appear to be discolored but with a lighter stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF

  1. Solar exposure of LDEF experiment trays

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.

    1992-01-01

    Exposure to solar radiation is one of the primary causes of degradation of materials on spacecraft. Accurate knowledge of solar exposure is needed to evaluate the performance of materials carried on the Long Duration Exposure Facility (LDEF) during its nearly 6 year orbital flight. Presented here are tables and figures of calculated solar exposure for the experiment rows, longerons, and end bays of the spacecraft as functions of time in orbit. The data covers both direct solar and earth reflected radiation. Results are expressed in cumulative equivalent sun hours (CESH) or the hours of direct, zero incidence solar radiation that would cause the same irradiance of a surface. Space end bays received the most solar radiation, 14,000 CESH; earth end bays received the least, 4,500 CESH. Row locations received between 6,400 CESH and 11,200 CESH with rows facing either eastward or westward receiving the most radiation and rows facing northward or southward receiving the least.

  2. LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00020 LDEF (Flight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The flight photograph of the Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays right flange and lower flange appear to be slightly discolored. The LDEF structure, top intercostal, has a dark brown discoloration adjacent to the black thermal panel. Aluminum particles from the degraded CVCHPE thermal blanket are also visible in this area. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminumized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of an atomic oxygen experiment (see S1001) by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. The external CVCHPE materials have changed significantly. The Kapton on the thermal blanket aluminized Kapton cover appears to be completely eroded, except under Kel-F buttons used to secure the blanket, leaving only the very thin vapor deposited aluminum coating as a cover. Parts of the aluminum coating residue has moved to

  3. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 EL-1994-00089 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be discolored by a dark brown stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal cover appears to be specular and

  4. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 EL-1994-00019 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be slightly discolored. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal covers surface appears to have changed from

  5. Analysis of impactor residues in tray clamps from the Long Duration Exposure Facility. Part 2: Clamps from Bay B of the satellite

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was placed in low-Earth orbit (LEO) in 1984 and recovered 5.7 years later. The LDEF was host to several individual experiments specifically designed to characterize critical aspects of meteoroid and debris environment in LEO. However, it was realized from the beginning that the most efficient use of the satellite would be to examine the entire surface for impact features. In this regard, particular interest centered on common exposed materials that faced in all LDEF pointing directions. Among the most important of these materials was the tray clamps. Therefore, in an effort to better understand the nature of particulates in LEO and their effects on spacecraft hardware, residues found in impact features on LDEF tray clamp surfaces are being analyzed. This catalog presents all data from clamps from Bay B of the LDEF. NASA Technical Memorandum 104759 has cataloged impacts that occurred on Bay B (published March 1993). Subsequent catalogs will include clamps from succeeding bays of the satellite.

  6. LDEF (Postflight), S0001 : Space Debris Impact Experiment, Tray D06

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The postflight photograph, taken prior to removal of the experiment trays from the LDEF, again shows a significant difference in the color of the paint dots on the experiment tray clamp blocks. The direction and intensity of the artifical light source has caused hot spots and reflections that tend to wash-out the brown stain on the aluminum structure. The Space Debris Impact Experiment panels have a clean washed-out look that is attributed to the lighting. The center panel has a pink tint and the end panel has a green tint as they appeared in the pre-launch photograph. The finger prints seen on the flight photograph are not visible but a faint shadow of the palm print can be seen. With the change in direction of the light source, the panel serial numbers and the location of impacts can not be determined.

  7. LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D09 EL-1994-00124 LDEF (Flight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D09 The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay. The Spacecraft Materials Experiment hardware consist of four LDEF peripheral trays (two sets), two Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using non-magnetic stainless steel fasteners. One six-inch tray and one three-inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The originally white paint dots on the clamp block located in the center of the trays right flange and on the clamp blocks at each end of the left flange appear to be off-white. The experiment tray in the D09, leading edge, location is divided into six sections. One of the six sections, upper right corner, provides space for one of three Trapped Proton Energy Spectrum Determination Experiment, M0002-01, modules. The other five sections of the tray contain M0003 sub-experiments consisting of coatings, thermal paints, polymers, glasses, composites, solar power components, semi-conductors and detectors that provide various environmental data. The experiment, overall, appears in good condition. The experiments located in the upper left and center left sections are

  8. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01 EL-1994-00188 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to removal of the experiment tray from the LDEF. The white paint dot on the experiment tray clamp block located at the center of the trays lower flange appears to be discolored by a brown stain. The experiment trays lower flange also appear to be coated but with a lighter colored stain. The white paint dots on clamp blocks at each end of the trays upper flange appear to be discolored very little. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is

  9. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07 EL-1994-00312 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The outline of the experiment tray clamp blocks is clearly visible on the upper tray flange and to a lesser extent on the lower flange. The holding fixture hardware covers the clamp block areas on the end flanges. The prelaunch photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC prior to installation of the experiment tray on the LDEF. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the

  10. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C11

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C11 EL-1994-00299 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C11 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a light brown stain. Outlines of experiment tray clamp blocks are faint but visible on the upper and lower experiment tray flanges.The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground

  11. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C08 EL-1994-00212 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C08 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear discolored by a brown stain. Outlines of experiment tray clamp blocks are clearly visible on the upper and lower experiment tray flanges.The experiment tray holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the

  12. LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 EL-1994-00354 LDEF (Postflight), AO076 : Cascade Variable-Conductance Heat Pipe, Tray F09 The postflight photograph was taken in the SAEF II at KSC prior to removal of the experiment from the LDEF. The color of the white paint dots on the exper- iment tray clamp blocks appear to be unchanged. The LDEF structure, the intercostal on the right, has a dark brown discoloration adjacent to the black Earth end thermal panel. Aluminum pieces of the degraded CVCHPE thermal cover that were shown lodged in the vent area between the intercostal and the black thermal panel in the flight photograph are gone. The Cascade Variable Conductance Heat Pipe Experiment (CVCHPE) occupies a 6 inch deep LDEF peripheral experiment tray and consist of two series connected variable conductance heatpipes, a black chrome solar collector panel and a silvered TEFLON® radiator panel, a power source to support six thermistor-type temperature monitoring sensors and actuations of two valves. Fiberglass standoffs and internal insulation blankets thermally isolated the experiment from the experiment tray and the LDEF interior. The outside of the CVCHPE, except the collector and radiator panels, was covered with an aluminized Kapton multilayer insulation (MLI) blanket with an outer layer of 0.076 mm thick Kapton. The two patches of thin film materials, part of Experiment S1001 by NASA GSFC, were attached to the cover of the external thermal blanket with Kapton tape. The experiment was assembled and mounted in the experiment tray with non-magnetic stainless steel fasteners. The external surface of the CVCHPE has changed from that observed in the flight photograph. The thin vapor deposited aluminum coating, left after the Kapton eroded, is essentially gone with only fragments left near the edges of the thermal blanket. Pieces of a layer of Dacron mesh (bridle vail) material, used to separate the thermal cover from the thermal

  13. LDEF (Postflight), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF. The Trapped Proton Energy Spectrum Determination Experiment is one of four experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experiments are located in periph eral LDEF integrated experiment trays in the D03 and D09 tray locations. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, appears to be intact with no apparent physical damage. The brown discoloration appears to be much lighter in this photograph than in the flight photograph, however, the postflight photograph of the individual experiment verifies the darker discoloration in the flight photograph. The light ing angle and intensity appear to have washed out the colors in the upper half of the integrated tray. The sub experiments appear to be intact and secure.

  14. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 EL-1994-00207 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after removal of the experiment tray from the LDEF. The experiment tray flanges appear to be discolored by a light brown stain. An outline of experiment tray clamp block locations is clearly visible on the experiment trays upper flange and to a lesser extent on its lower flange. The holding fixture hardware covers the clamp block areas on the end flanges. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to

  15. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 EL-1994-00038 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D05 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp block of the experiment trays upper flange and on the tray clamp blocks at each end of the trays lower flange appear to be discolored by a brown stain. The experiment tray flanges also appear to be discolored by the stain. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical

  16. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01 EL-1994-00134 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D01 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The paint dot , originally white, on the experiment tray clamp block located at the center of the trays lower flange appears to be discolored by a brown stain. The experiment trays lower flange also appears to be coated but with a much lighter stain. The paint dots on clamp blocks at each end of the trays upper flange appear to be discolored very little. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the

  17. LDEF (Flight), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The flight photograph was taken from the Orbiter aft flight deck during the LDEF retrieval prior to berthing the LDEF in the Orbiter cargo bay. The Trapped Proton Energy Spectrum Determination Experiment is one of four experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experi ments are located in peripheral LDEF integrated experiment tray in the D03 and D09 tray loca tions. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, appears to be intact with with no visible damage. A brown discoloration is visible on the Trapped Proton Energy experiment detector housings and along the upper surfaces of the experiment sup port structure. The discoloration around the outer edges of the experiment mounting plate appears to be a much lighter tan color. The sub-experiments are intact and secure with no visible dam age.

  18. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray H11 The Interplanetary Dust Experiment hardware has a thin brown stain on the exposed surfaces. A deeper brown stain, probably from the material underneath the small electrical cover plate of the detector frame, can be seen in the upper right corner of some of the detectors. Stain that was seen on the solar sensor base plate in the flight photograph cannot be seen because of reflected light. The colors seen in the detector's mirror like surface are reflections of the surrounding area. A dark spot seen on a detector in the third row from the top in the flight photograph, was not found in a postflight inspection. A close inspection of this photograph does reveal several impact damage locations.

  19. LDEF (Flight), S0069 : Thermal Control Surfaces Experiment, Tray A09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), S0069 : Thermal Control Surfaces Experiment, Tray A09 EL-1994-00660 The flight photograph was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The paint dots on clamp blocks located at the centers of the upper and left tray flanges have changed from their original white color to an off-white. Brown discolorations are visible on the experiment trays left and lower flanges. The Thermal Control Surfaces Experiment (TCSE) is completely self-contained in a twelve (12) inch deep LDEF experiment tray and consist of the power and data systems, a carousel, a pre-programmed controller and the sample materials. The experiment structure is fabricated from aluminum alloys and assembled using non-magnetic stainless steel fasteners. The photograph shows the carousel sample mounting plate rotated into the open position and a thermal shroud that covers the experiment structure and the power and data system components. The aluminum sample mounting plate accommodates twenty five (25) active samples mounted in calorimeters to thermally isolate the samples from the mounting plate, twenty-four (24) passive samples and three (3) radiometers. The thermal shroud, an aluminum alloy sheet material that is thermally isolated from the experiment structure, has an inside surface coated with black thermal paint and an outside (exposed) surface covered with two (2) mil silver TEFLON®, applied to the aluminum with Y966 acrylic adhesive. The most obvious change is the color of the 2 mil silver TEFLON® surface on the shroud. The original silver mirror-like surface now appears white with copious amounts of a brown discoloration in a distinct pattern. The upper and lower triangular sections of the shroud have many irregular shaped black discolorations and an areas where the adhesive appears to have failed. Changes in color have occurred in both the active and passive samples. Note the top four active coating samples located on

  20. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray G10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray G10 The IDE experiment appears to be in excellent condition in the postflight photograph. All bond joints seem to have survived the space environment and the experiment hardware seems to be intact. The direction and intensity of the artificial light source has caused hot spots and reflections that tend to wash out the brown stain on the exposed surfaces. A close inspection of individual detectors reveal locations where impacts have occurred and damage is present. In the detector layout in the lower left corner of the tray, two detectors continue to show the discolorations observed in the flight photograph. A triangular shape can be seen in the detector located in the second horizontal row from the bottom and the second vertical row from the left. The other detector, located in the third horizontal row from the bottom and the fourth vertical row from the left has an irregular shaped, very faint, discolora tion. The blue color in the detectors metallic surface is caused by reflections of the surrounding area.

  1. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C11

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C11 EL-1994-00010 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray C11 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp block of the experiment trays left flange and on the clamp blocks located at the upper and lower ends of the experiment trays right flange appear to be in near prelaunch condition. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover

  2. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07 EL-1994-00087 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray B07 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dots on the center clamp blocks of the experiment trays left flange and lower flange appear to be slightly discolored but the paint dot on the clamp block located at the right end of the upper flange appears to be stained less. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the

  3. LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 EL-1994-00062 LDEF (Flight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray D07 The flight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The white paint dot on the center clamp block of the experiment trays upper flange appears to be in prelaunch condition but the paint dot on the clamp block located at the right end of the lower flange appears to be slightly discolored. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments

  4. LDEF (Postflight), S0069 : Thermal Control Surfaces Experiment, Tray A09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S0069 : Thermal Control Surfaces Experiment, Tray A09 EL-1994-00144 The postflight photograph was taken in the SAEF II at KSC prior to experiment removal from the LDEF. The originally white paint dot on clamp blocks appear to have changed slightly to an off-white color. The experiment trays upper and left flanges appear to have a light tan discoloration. The Thermal Control Surfaces Experiment (TCSE) is completely self-contained in a twelve (12) inch deep LDEF experiment tray and consist of the power and data systems, a carousel, a pre-programmed controller and the sample materials. The experiment structure is fabricated from aluminum alloys and assembled using non-magnetic stainless steel fasteners. The photograph shows the carousel sample mounting plate rotated into the open position and a thermal shroud that covers the experiment structure and the power and data system components. The aluminum sample mounting plate accommodates twenty-five (25) active samples mounted in calorimeters to thermally isolate the samples from the mounting plate, twenty-four (24) passive samples and three (3) radiometers. The thermal shroud, an aluminum alloy sheet material that is thermally isolated from the experiment structure, has an inside surface coated with black thermal paint and an outside (exposed) surface covered with two (2) mil silver TEFLON®, bonded to the aluminum with Y966 adhesive. The most obvious change is the color of the 2 mil silver TEFLON® surface on the shroud. The original silver mirror-like surface now appears white with copious amounts of a brown discoloration in a distinct pattern. The upper and lower triangular sections of the shroud have many irregular shaped black discolorations and an areas where the adhesive appears to have failed. Changes in color have occurred in both the active and passive samples. Note the top four active coating samples located on the outer radii, two of the first three, originally white, now appear brown and

  5. LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray B12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO201 : Interplanetary Dust Experiment, Tray B12 The postflight photograph shows little change of the exposed surfaces when compared with the prelaunch photograph. Although not noticable in the photograph, a light coating of contamination was seen on all experiment surfaces in this location. The difference in colors of the IDE detectors, located on the right hand mounting plate, is a result of the reflected surroundings and not related to space exposure. A close observation of the detector surfaces reveal that some damage has occured from meteroid and/or debris impacts. One impact crater can be seen, upper right quadrant, on the detector located in the sixth (6th) row down from the top and the fifth (5th) row from the right. Other impacts, smaller in size, show as small white dots on the detector surface. The solar sensor seems to have changed little, if any. However, the color of the solar array baseplate, showing indications of contamination, appears to be darker than the detector mounting plate. The center section cover plate shows little change when compared with the pre-launch photograph. However, during inspection, a light coat of the brown contamination has been observed on all surfaces. The color of the bonding material (RTV) used to secure several thin specimen, sapphire, to individual mounting plates has changed from pink to gold. At one location, that of a single specimen, the bonding material is more gray than gold in color. This has been attributed to the specimen being considerably thicker. The EPDS thermal cover in the right hand side of the tray shows a light coating of brown contamination on the Chemglaze II A-276 white paint.

  6. LDEF (Postflight), S0001 : Space Debris Impact Experiment, Tray G04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S0001 : Space Debris Impact Experiment, Tray G04 The Space Debris Impact Experiment con sist of a three sixteenth (3/16) of an inch thick chromic anodized aluminum panel mounted in a three (3) inch deep LDEF experiment tray. The side of the plate exposed to the LDEF interior is painted with Chemglaze Z-306 flat black paint over a Chemglaze #9924 wash primer. The panels are attached to the aluminum tray structure with non-magnetic stainless steel fasteners. The panel coatings, a thin layer of chromic anodize facing out and the Chemglaze Z-306 black paint facing the LDEF interior, contribute significantly to thermal control of the LDEF spacecraft. The photograph was taken in SAEF II at the KSC after the experiment was removed from the LDEF. The light pink tint of the debris panel is a by-product of the chromic anodize coating pro cess and not attributed to contamination and/or exposure to the space environment. A brown stain is located in the lower right corner of the tray.

  7. LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D03

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D03 EL-1994-00210 LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D03 The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF. The Spacecraft Materials Experiment hardware consist of four LDEF peripheral trays (two sets), two Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using nonmagnetic stainless steel fasteners. One six inch tray and one three inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The experiment tray in the D03 location is divided into six sections. One of the six sections, lower right corner, provides space for one of three Trapped Proton Energy Spectrum Determination Experiment, M0002-01, modules. The other five sections of the tray contain M0003 sub-experiments consisting of coatings, thermal paints, polymers, glasses, composites, semi-conductors and detectors that provide data on various environmental parameters.The experiment appears to be in good condition. Composite material samples located in upper right, upper center and lower center tray sections remain intact but are bleached or discolored. The metallized and coated polymers located in the upper left tray section appear to be have survived the exposure intact but appear discolored. Approximately half of the

  8. LDEF (Postflight), S0109 : Fiber Optic Data Transmission Experiment, Tray C12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Fiber Optic Data Transmission Experiment (FODTE) postflight photograph was taken in the SAEF II at KSC after the experiment was removed from the LDEF. The experiment trays lower flange has a light tan discoloration that is visible in areas not protected by the tray clamp blocks. Dark brown discolorations can be seen near the center of the tray left flange and on the upper and lower flanges near the corners of the white cover plate. The tray sidewalls appear to be heavily stained in corners, along the three areas adjacent to the white cover plate and at the intersection of the sidewalls with the experiment sup- port structure. The FODTE occupies a six (6) inch deep LDEF peripheral tray and consist of an aluminum internal support structure, four aluminum mounting plates, an aluminum cover plate, ten fiber optic cable samples with connectors, aluminum brackets and non-magnet fasteners required to assemble the experiment. Four optical fiber cables (two black, one blue and one bright orange), each configured in the form of a planar, helix coil, are attached to the thermally isolated mounting plates with black anodized aluminum clips cushioned with silicone-rubber spacers. The four mounting plates are coated with a Catalac off-white thermal control paint and the exposed surface of the cover plate is painted with Chemglaze II A-276 white to meet thermal control requirements. Six additional coils of optical fiber cable samples, secured with nylon cable ties, are located in the bottom of the tray, four below the mounting plates and two below the cover plate. Each sample terminates in connectors mounted in brackets located in the tray bottom or on the backside of the thermally isolated mounting plates. The FODTE appears to be intact with no apparent physical damage. A flow pattern of discoloration appears to flow in a downward direction from fasteners used to secure the four mounting plates. The colors of two coils of the externally mounted fiber optic cables have

  9. LDEF (Prelaunch), M0002-01 : Trapped-Proton Energy Spectrum Determination, Tray G12

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Trapped Proton Energy Spectrum Determination Experiment is one of four (4) experiments located in a three (3) inch deep LDEF end center tray. Additional Trapped Proton Energy Experiments are located in peripheral LDEF integrated experiment trays in the D03 and D09 tray locations. The identifica tion plate on the lower right corner of the experiment mounting plate identifies the experiments location and orientation in the experiment tray. The Trapped Proton Energy experiment, located in the upper left quadrant of the integrated tray, consist of a primary experiment and three (3) sub experiments mounted on an aluminum mount ing plate. The primary experiment components include six (6) stacks of CR-39 passive detectors in individual aluminum housings and an aluminum mounting structure, configured to provide the desired exposure for the detector stacks. The secondary experiments consist of the Neutron and Proton Activation experiment that expose metal samples to the ambient flux throughout the mis sion, the Microsphere Dosimetry experiment housed in a cylindrical aluminum container and the Flux Measurement by Ion Trapping experiment consisting of a variety of sample materials that are exposed to the space environment for the total mission. The exterior surfaces of the mounting plate, the experiment housings and the support structure are coated with IITRI S13G-LO white paint.The experiment is assembled using non-magnetic stainless steel fasteners and safety wire.

  10. LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D08

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D08 The postflight photograph was taken in SAEF II at KSC prior to the experiment trays removal from the LDEF. The Spacecraft Materials Experiment hardware consist of four LDEF peripheral trays (two sets), two Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using nonmagnetic stainless steel fasteners. One six inch tray and one three inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The experiment tray in the D08 location is divided into three sections.The right section provides space for the EPDS, the center section accommodates the Signal Conditioning Unit (SCU) and an experiment mounting plate, on an aluminum sub-structure, that is populated with composite material samples. The left section houses the EECC with a complement of experiment samples that consist of coatings, thermal paints, polymers, glasses, semi-conductors. Detectors within the experiment provide environmental data for use in postflight analyses. Batteries and inter-tray wiring harness are located beneath the tray base plates. The EPDS is under an aluminum cover, coated with a white thermal control paint (Chemglaze II A-276) and thermally isolated from the tray structure by fiberglass clips. The SCU cover is also coated with a white thermal control paint, IITRI S13G-LO, and the EECC is covered with a

  11. LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D04 The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF. The Spacecraft Materials Experiment hardware consist of four LDEF peripheral trays (two sets), two Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using nonmagnetic stainless steel fasteners. One six inch tray and one three inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The experiment tray in the D04 location is divided into three sections.The right section provides space for the EPDS, the center section accommodates the Signal Conditioning Unit (SCU) and an experiment mounting plate, on an aluminum sub-structure, that is populated with composite material samples. The left section houses the EECC with a complement of experiment samples that consist of coatings, thermal paints, polymers, glasses, semi-conductors. Detectors within the experiment provide environmental data for use in postflight analyses. Batteries and inter-tray wiring harness are located beneath the tray base plates. The EPDS is underneath an aluminum cover, coated with a white thermal control paint (Chemglaze II A-276) and thermally isolated from the tray structure by fiberglas clips. The SCU cover is also coated with a white thermal control paint, IITRI S13G-LO, and the EECC is covered with a

  12. LDEF (Postflight), S1005 : Transverse Flat-Plate Heat Pipe Experiment, Tray B10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S1005 : Transverse Flat-Plate Heat Pipe Experiment, Tray B10 EL-1994-00123 The Transverse Flat-Plate Heat Pipe Experiment postflight photograph was taken in the Orbiter Processing Facility (OPF) at KSC during removal of the LDEF from the Orbiter's cargo bay. The thermal blanket (with the patches) across the lower edge of the photograph is part of the Orbiter thermal protection system and not associated with the heat pipe experiment. The Transverse Flat-Plate Heat Pipe Experiment consist of three (3) transverse flat heat-pipe modules , a power system for the heaters, a data acquisition and storage system and an aluminum support structure placed in a twelve (12) inch deep LDEF experiment tray. The surface of the experiment exposed to the space environment consist of the three heat pipe modules exterior surfaces, silver TEFLON®, and the thermal blankets covering the aluminum mounting hardware and openings between the hardware and the tray sidewalls. The raised surface at the left end of each heat pipe module is the fluid reservoir. The specular surface of the silver TEFLON® has become diffuse and appears white. Numerous impact craters, black specks, can be seen on the white surfaces of the modules and on the thermal blankets. A light tan discoloration is visible on the surfaces of all three heat pipe modules. Two different types of discolorations can be seen at the left end of the center heat pipe; a dark brown color below the thermocouple and what appears as two multi-color irregular shaped patterns above the thermocouple. A square shaped light brown discoloration is seen near the bottom edge of the thermal blanket between the lower heat pipe module and the tray sidewall and also near the left end of the thermal blanket located between the lower and the center heat pipe modules.

  13. LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D09

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D09 EL-1994-00211 LDEF (Postflight), M0003 : Space Environment Effects on Spacecraft Materials, Tray D09 The postflight photograph was taken in SAEF II at KSC after the experiment tray was removed from the LDEF. The Spacecraft Materials Experiment hardware consist of four LDEF peripheral trays (two sets), two Experiment Power and Data Systems (EPDS), two Environment Exposure Control Canisters (EECC), twelve LiSO2 batteries and internal support structure, instrumentation and black anodized aluminum mounting plates for experiment samples. The experiment structural members were assembled using nonmagnetic stainless steel fasteners. One six inch tray and one three inch tray with a connecting wiring harness, one EPDS, one EECC and six LiSO2 batteries were located in tray locations D08 and D09 near the LDEF leading edge and a similar set of hardware was located near the LDEF trailing edge in tray locations D03 and D04. The environmental exposure was similar with one significant exception, the trailing edge location was not exposed to continuous bombardment by the relativity high atomic oxygen flux. The experiment tray in the D09, leading edge, location is divided into six sections. One of the six sections, upper right corner, provides space for one of three Trapped Proton Energy Spectrum Determination Experiment, M0002-01, modules. The other five sections of the tray contain M0003 sub-experiments consisting of coatings, thermal paints, polymers, glasses, composites, solar power components, semiconductors and detectors that provide various environmental data. The experiments, overall, appear to be in good condition. The experiments located in the upper left and center left sections are heavily coated with debris particles from the degradation of other experiments. Experiments in three of the five sections appear to have survived the mission intact with minor physical damage. Experiments in

  14. LDEF (Postflight)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Passive Grapple Tray postflight photograph was taken in the Orbiter Processing Facility (OPF) at KSC during the removal of LDEF from the Orbiter's cargo bay. The tray assembly consists of a modified six (6) inch deep LDEF peripheral experiment tray, a chromic anodized aluminum mounting plate, a Standard Mechanical Grapple Fixture, provided by JSC, and non-magnetic stainless steel fasteners. Two (2) aluminum plates, one in the upper left corner and one near the right center of the tray, cover access openings in the mounting plate. The black chevrons painted on the left half of the mounting plate are used for tray identification and the camera target, black with white markings, is attached to the right edge of the grapple fixture to assist the operator in positioning the RMS end effector during retrieval operations. The grapple tray assembly appears to be intact with no apparent physical damage. The white paint dot on clamp blocks located at the right and left ends of the lower tray flange has changed to a brown color and the tray upper sidewall and tray flanges have become discolored by a light brown stain. The chromic anodized aluminum mounting plate and the passive grapple fixture appear to be discolored by a light brown stain similar to that on the tray sidewall and flanges. The dark irregular shaped discoloration on the lower right corner of the grapple fixture mounting plate is an abrasion that existed preflight. The pinkish tint on the mounting plate is the by-product of the chromic anodizing process and is not attributed to exposure to the space environment. The white stripes on the black camera target and the white tip of the vertical rod located on the target have changed in color from white to brown. The light band along the right edge of the grapple fixture mounting plate is caused by light reflecting from the tray sidewalls.

  15. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 EL-1994-00272 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A04 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in SAEF II at KSC after the experiment tray was removed from the LDEF and the silvered TEFLON® thermal cover removed. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. A copper coated pressure sensitive tape was used to provide an electrical ground strap between the thermal cover and the LDEF structure. All experiment hardware appears to be in prelaunch condition and securely in place. The three cylindrical pressure vessels containing the experiment detectors are shown mounted in the experiment tray with the frame for mounting the

  16. LDEF (Flight), M0001 : Heavy Ions in Space, Tray H12

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), M0001 : Heavy Ions in Space, Tray H12 EL-1994-00676 The flight photograph of the Heavy Ions in Space Experiment was taken from the Orbiter's aft flight deck during LDEF retrieval operations. A light coating of the stain can be seen on the tray flange adjacent to the American flag. The photograph shows four (4) experiment modules mounted in the LDEF provided end center experiment tray.An experiment module consist of the thermal cover, a top stack of Lexan sheets for detecting low-energy ions, a honeycomb pressure cover and the main stack of CR-39 used to detect cosmic rays mounted in an aluminum housing. Three modules are identical while the fourth module has been divided into four smaller units that allows the use of pressure covers with a lower energy threshold to Ion penetration. The exposed surface of each module is a white paint overcoat, Chemglaze II A-276, that has been applied to the top layer, aluminized Kapton, of a multilayer thermal blanket. The frame around each of the four modules, a Z shaped aluminum structure, is covered with a silverized TEFLON® film secured with 3M Y966 acrylic transfer tape. The 3M Y966 tape on a silverized TEFLON® film is also used to attach the multi-layer thermal insulation blankets to the modules frame. The combination of the silverized TEFLON® and the white paint provides the appropriate optical properities needed to meet experiment thermal requirements. Extensive damage occurred to the experiment's multi-layer thermal blankets during the LDEF mission, prior to retrieval operations. It appears that the tape used attach the thermal blankets to the structure failed in tension. When the bond joint released along two (2) sides, the tension was releaved and the remaining tape continued to hold the blanket to the structure through out the rest mission and the post-flight operations. The outside blanket surfaces that were originally white are now coated with a glossy dark brown stain thought to be from

  17. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray F04

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray F04 EL-1994-00171 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray F04 The postflight photograph was taken in the SAEF II at KSC after the experiment was removed from the LDEF. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal cover appears to be specular and intact. The circular damaged locations that appeared to to be impact points in the flight photograph are not as apparent in the reflections and is less taut cover. The wrinkled spots on the thermal cover are areas

  18. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 EL-1994-00162 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray E10 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in the Orbiter Processing Facility during removal of the LDEF from the Orbiter's payload bay. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays lower flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal covers surface appears to have changed from specular to opaque with numerous black dots of various sizes that appear to be impact craters. Many of the craters appear to have

  19. LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10 EL-1994-00122 LDEF (Postflight), AO178 : A High-Resolution Study of Ultra-heavy Cosmic-Ray Nuclei, Tray A10 The postflight photograph of the Ultra Heavy Cosmic Ray Experiment (UHCRE) was taken in the Orbiter Processing Facility (OPF) at KSC during removal of the LDEF from the Orbiters cargo bay. The UHCRE detectors were contained in 16 peripheral LDEF trays with at least one UHCRE tray located on each row of the LDEF except row 3, row 9 and row 12. Each tray contains three cylindrical aluminum pressure vessels with an integral aluminum support structure. Each cylinder is filled with an Eccofoam insert that houses 4 UHCRE detector stacks. Each stack consist of layers of Lexan polycarbonate sheets (approximately 70) interleaved with several thin sheets of lead. Forty-seven of the 48 pressure vessels were pressurized to 1.0 bar of a dry gas mixture (oxygen, nitrogen and helium) and sealed. One of the units was left unsealed in order to investigate the effects of the vacuum environment on the detector materials. Thermal control was accomplished by attaching an aluminized Kapton thermal cover on the tray bottom (the Kapton facing the LDEF interior), placing the aluminum cylinder support structure on thermal isolators and covering the experiment with a thin (5 mil) silvered TEFLON® thermal cover. The silvered TEFLON® cover was supported by an aluminum frame, an integral part of the experiment structure, and held in place by Velcro pads selectively located on the frame and on the back of the cover. The copper colored strip extending over the trays upper flange is a copper coated pressure sensitive tape used to provide an electrical ground between the experiments thermal cover and the LDEF structure. The UHCRE thermal covers surface appears to have changed from specular to opaque (glossy white) with many black dots of various sizes that appear to be impact craters. An impact

  20. Analytical electron microscopy of LDEF impactor residues

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; Barrett, Ruth A.; Zolensky, Michael E.

    1995-01-01

    The LDEF contained 57 individual experiment trays or tray portions specifically designed to characterize critical aspects of meteoroid and debris environment in low-Earth orbit (LEO). However, it was realized from the beginning that the most efficient use of the satellite would be to characterize impact features from the entire surface of the LDEF. With this in mind particular interest has focused on common materials facing in all 26 LDEF facing directions; among the most important of these materials has been the tray clamps. Therefore, in an effort to better understand the nature and flux of particulates in LEO, and their effects on spacecraft hardware, we are analyzing residues found in impact features on LDEF tray clamp surfaces. This paper summarizes all data from 79 clamps located on Bay A & B of the LDEF. We also describe current efforts to characterize impactor residues recovered from the impact craters, and we have found that a low, but significant, fraction of these residues have survived in a largely unmelted state. These residues can be characterized sufficiently to permit resolution of the impactor origin. We have concentrated on the residue from chondritic interplanetary dust particles (micrometeoroids), as these represent the harshest test of our analytical capabilities.

  1. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    NASA Technical Reports Server (NTRS)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  2. LDEF Materials/Contamination

    NASA Technical Reports Server (NTRS)

    Pippin, Gary

    1997-01-01

    This pictorial presentation reviews the post-flight analysis results from two type of hardware (tray clamp bolt heads and uhcre flight experiment tray walls) from the Long Duration Exposure Facility (LDEF). It will also discuss flight hardware for one upcoming (Effects of the Space Environment on Materials (ESEM) flight experiment), and two current flight experiments evaluating the performance of materials in space (Passive Optical Sample Assembly (POSA) 1&2 flight experiments. These flight experiments also are concerned with contamination effects which will also be discussed.

  3. Collection and review of metals data obtained from LDEF experiment specimens and support hardware

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger; Pippin, H. Gary

    1995-01-01

    LDEF greatly extended the range of data available for metals exposed to the low-Earth-orbital environment. The effects of low-Earth-orbital exposure on metals include meteoroid and debris impacts, solar ultraviolet radiation, thermal cycling, cosmic rays, solar particles, and surface oxidation and contamination. This paper is limited to changes in surface composition and texture caused by oxidation and contamination. Surface property changes afford a means to study the environments (oxidation and contamination) as well as in-space stability of metal surfaces. We compare thermal-optical properties for bare aluminum and anodized aluminum clamps flown on LDEF. We also show that the silicon observed on the LDEF tray clamps and tray clamp bolt heads is not necessarily evidence of silicon contamination of LDEF from the shuttle. The paper concludes with a listing of LDEF reports that have been published thus far that contain significant findings concerning metals.

  4. Surface characterization of LDEF materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P.; Grammer, Holly Little

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  5. Anodized aluminum on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    A compilation of reported analyses and results obtained for anodized aluminum flown on the Long Duration Exposure Facility (LDEF) was prepared. Chromic acid, sulfuric acid, and dyed sulfuric acid anodized surfaces were exposed to the space environment. The vast majority of the anodized surface on LDEF was chromic acid anodize because of its selection as a thermal control coating for use on the spacecraft primary structure, trays, tray clamps, and space end thermal covers. Reports indicate that the chromic acid anodize was stable in solar absorptance and thermal emittance, but that contamination effects caused increases in absorptance on surfaces exposed to low atomic oxygen fluences. There were some discrepancies, however, in that some chromic acid anodized specimens exhibited significant increases in absorptance. Sulfuric acid anodized surfaces also appeared stable, although very little surface area was available for evaluation. One type of dyed sulfuric acid anodize was assessed as an optical baffle coating and was observed to have improved infrared absorptance characteristics with exposure on LDEF.

  6. LDEF materials data analysis: Representative examples

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    Part of the philosophy which guided the examination of hardware from the Long Duration Exposure Facility (LDEF) was that materials present at multiple locations should have fairly high priority for investigation. Properties of such materials were characterized as a function of exposure conditions to obtain as much data as possible for predicting performance lifetimes. Results from examination of several materials from interior locations of LDEF, selected measurements on silverized teflon blanket specimens, and detailed measurements on the copper grounding strap from tray D11 are summarized. Visual observations of interior locations of LDEF made during deintegration at KSC showed apparent changes in particular specimens. This inspection lead to testing of selected nylon clamps, fiberglass shims, and heat shrink tubing from wire harness clamps, and visually discolored silver coated hex nuts.

  7. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1992-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken in Feb. 1990 showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 and scrapings indicate that the film is primarily of organic composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain are present at openings and vents to the interior of the LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. Photographs of the deintegrated LDEF graphically show the stain distribution. The exterior of the LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint for thermal control. The brown staining of the LDEF is consistent with long-term outgassing of hydrocarbons from these paints followed by rapid solar-ultraviolet-induced polymerization of the outgassed hydrocarbons when the outgassed molecules stuck to surfaces exposed to sunlight.

  8. LDEF materials overview

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.

    1993-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The 5-year, 9-month flight of LDEF greatly enhanced the potential value of all materials on LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements so that the combined value of all LDEF materials data to current and future space missions will be addressed and documented. An overview of the interim LDEF materials findings of the principal investigators and the Materials Special Investigation Group is provided. These revelations are based on observations of LEO environmental effects on materials made in space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format that categorizes the revelations as 'clear findings' or 'obscure preliminary findings' (and progress toward their resolution), plus resultant needs for new space materials developments and ground simulation testing/analytical modeling, in seven categories: materials

  9. Effects of long-term exposure on LDEF fastener assemblies

    NASA Technical Reports Server (NTRS)

    Spear, Steve; Dursch, Harry

    1992-01-01

    This presentation summarizes the Systems Special Investigations Group (SIG) findings from testing and analysis of fastener assemblies used on the Long Duration Exposure Facility (LDEF) structure, the tray mounting clamps, and by the various experimenters. The LDEF deintegration team and several experimenters noted severe fastener damage and hardware removal difficulties during post-flight activities. The System SIG has investigated all reported instances, and in all cases examined to date, the difficulties were attributed to galling during installation or post-flight removal. To date, no evidence of coldwelding was found. Correct selection of materials and lubricants as well as proper mechanical procedures is essential to ensure successful on-orbit or post-flight installation and removal of hardware.

  10. Organic contamination of LDEF

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.

    1991-01-01

    A brown stain of varying thickness was present on most of the exterior surface of the retrieved Long Duration Exposure Facility (LDEF). Tape lifts of Earth-end LDEF surfaces taken showed that the surface particle cleanliness immediately after retrieval was very good, but faint footprints of the tape strips on the tested surfaces indicated a very faint film was removed by the tape. Solvent wipes of these surfaces showed that the stain was not amenable to standard organic solvent removal. Infrared spectra of optical windows from tray E5 show that the organic film is hydrocarbon in composition, but is not similar to the oil that seeped from tray C12. Very dark and heavy deposits of the stain is present at openings and vents to the interior of LDEF. Heavy brown and blue-green deposits are present in the interior of LDEF where sunlight penetrated through cracks and vent openings. The exterior of LDEF had significant areas painted with a white polyurethane paint for thermal control, and almost all of the interior was painted with a black polyurethane paint. Brown staining is consistent with outgassing of hydrocarbons from these paints by rapid solar UV induced polymerization of the outgassed hydrocarbons when they hit sunlight exposed areas.

  11. Manual for LDEF tensile tests

    NASA Technical Reports Server (NTRS)

    Witte, W. G., Jr.

    1985-01-01

    One of the experiments aboard the NASA Long Duration Exposure Facility (LDEF) consists of a tray of approximately one hundred tensile specimens of several candidate space structure composite materials. During the LDEF flight the materials will be subjected to the space environment and to possible contamination during launch and recovery. Tensile tests of representative samples were made before the LDEF flight to obtain baseline data. Similar tests will be made on control specimens stored on earth for the length of the LDEF flight and on recovered flight specimens. This manual codifies the details of testing, data acquisition, and handling used in obtaining the baseline data so that the same procedures and equipment will be used on the subsequent tests.

  12. Ionizing radiation exposure of LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V. (Editor); Heinrich, W. (Editor)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) was launched into orbit by the Space Shuttle 'Challenger' mission 41C on 6 April 1984 and was deployed on 8 April 1984. The original altitude of the circular orbit was 258.5 nautical miles (479 km) with the orbital inclination being 28.5 degrees. The 21,500 lb NASA Langley Research Center satellite, having dimensions of some 30x14 ft was one of the largest payloads ever deployed by the Space Shuttle. LDEF carried 57 major experiments and remained in orbit five years and nine months (completing 32,422 orbits). It was retrieved by the Shuttle 'Columbia' on January 11, 1990. By that time, the LDEF orbit had decayed to the altitude of 175 nm (324 km). The experiments were mounted around the periphery of the LDEF on 86 trays and involved the representation of more than 200 investigators, 33 private companies, 21 universities, seven NASA centers, nine Department of Defense laboratories and eight foreign countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures, power and propulsion. The data contained in the LDEF mission represents an invaluable asset and one which is not likely to be duplicated in the foreseeable future. The data and the subsequent knowledge which will evolve from the analysis of the LDEF experiments will have a very important bearing on the design and construction of the Space Station Freedom and indeed on other long-term, near-earth orbital space missions. A list of the LDEF experiments according to experiment category and sponsor is given, as well as a list of experiments containing radiation detectors on LDEF including the LDEF experiment number, the title of the experiment, the principal investigator, and the type of radiation detectors carried by the specific experiment.

  13. Particle types and sources associated with LDEF

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.; Wascher, W. W.

    1992-01-01

    The particulate contamination history of the Long Duration Exposure Facility (LDEF) can be resolved by careful analysis of particle types, the LDEF time line, evidence of the relationship between particles and the surface of the LDEF, and a consideration of probable sources. This work is far from complete but was initiated as part of the characterization of the condition of experimental trays that were returned to principle investigators for their analysis. The work presented in this photo-essay is continuing and will be updated in subsequent reports to NASA and at future technical meetings.

  14. Exposure of LDEF materials to atomic oxygen: Results of EOIM 3

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.

    1995-01-01

    The third Effects of Oxygen Atom Interaction with Materials (EOIM 3) experiment flew on STS-46 from July 31 to August 8, 1992. The EOIM-3 sample tray was exposed to the low-earth orbit space environment for 58.55 hours at an altitude of 124 nautical miles resulting in a calculated total atomic oxygen (AO) fluence of 1.99 x 10(exp 20) atoms/sq cm. Five samples previously flown on the Long Duration Exposure Facility (LDEF) Experiment M0003 were included on the Aerospace EOIM 3 experimental tray: (1) Chemglaze A276 white thermal control paint from the LDEF trailing edge (TE); (2) S13GLO white thermal control paint from the LDEF TE; (3) S13GLO from the LDEF leading edge (LE) with a visible contamination layer from the LDEF mission; (4) Z306 black thermal control paint from the LDEF TE with a contamination layer from the LDEF mission; and (5) anodized aluminum from the LDEF TE with a contamination layer from the LDEF mission. The purpose of this experiment was twofold: (l) investigate the response of trailing edge LDEF materials to atomic oxygen exposure, thereby simulating LDEF leading edge phenomena; (2) investigate the response of contaminated LDEF samples to atomic oxygen in attempts to understand LDEF contamination-atomic oxygen interactions. This paper describes the response of these materials to atomic oxygen exposure, and compares the results of the EOIM 3 experiment to the LDEF mission and to ground-based atomic oxygen exposure studies.

  15. LDEF (Prelaunch)

    NASA Technical Reports Server (NTRS)

    1983-01-01

    LDEF (Prelaunch) The LDEF structure is shown mounted on the LDEF Assembly and Transport System in Building 1250 at the Langley Research Center (LaRC), Hampton Virginia, during pre-ship wiring checks. The structure is a welded / bolted assembly fab- ricated from aluminum alloy 6061-T6 extrusions, forgings, tubing and plate materials and assembled with stainless steel fasteners. The eight (8) internal tubular diagonals between the center ring structure and the two end frames provide torsional stiffness to the structure.

  16. Results of examination of the A276 white and Z306 black thermal control paint disks flown on LDEF

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    Specimens of A276 white and Z306 black thermal control paints were analyzed for the effects of space environmental exposure as part of the Long Duration Exposure Facility (LDEF) Materials Special Investigation Group activity. The specimens, actually disks or spots of paint on tray clamps, were located at regular intervals on all LDEF longerons and intercostals. The principle conclusions from the analysis are: UV exposure degraded the surface resin of A276 paint, with coating solar absorptance increasing with UV exposure; contamination, though detected, was not enough to have adversely affected optical properties; atomic oxygen eroded resin on specimens with incidence angles of up to 100 deg; the erosion of Z306 paint on leading edge specimens removed a minimum of 10 microns of that coating; and the erosion of A276 paint at up to 80 deg incidence angle resulted in near original condition solar absorptance readings.

  17. Duplication and analysis of meteoroid damage on LDEF and advanced spacecraft materials

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1995-01-01

    The analysis of exposed surfaces on LDEF since its retrieval in 1990 has revealed a wide range of meteoroid and debris (M&D) impact features in the sub-micron to millimeter size range, ranging from quasi-infinite target cratering in LDEF metallic structural members (e.g. inter-costals, tray clamps, etc.) to non-marginal perforations in metallic experimental surfaces (e.g. thin foil detectors, etc.). Approximately 34,000 impact features are estimated to exist on the exposed surfaces of LDEF. The vast majority of impact craters in metal substrates exhibit circular footprints, with approximately 50 percent retaining impactor residues in varying states of shock processing. The fundamental goals of this project were to duplicate and analyze meteoroid impact damage on spacecraft metallic materials with a view to quantifying the residue retention and oblique impact morphology characteristics. Using the hypervelocity impact test facility established at Auburn University a series of impact tests (normal and oblique incidence) were executed producing consistently high (11-12 km/s) peak impact velocities, the results of which were subsequently analyzed using Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDXS) facilities at Auburn University.

  18. LDEF yaw and pitch angle estimates

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Gebauer, Linda

    1992-01-01

    Quantification of the LDEF yaw and pitch misorientations is crucial to the knowledge of atomic oxygen exposure of samples placed on LDEF. Video camera documentation of the LDEF spacecraft prior to grapple attachment, atomic oxygen shadows on experiment trays and longerons, and a pinhole atomic oxygen camera placed on LDEF provided sources of documentation of the yaw and pitch misorientation. Based on uncertainty-weighted averaging of data, the LDEF yaw offset was found to be 8.1 plus or minus 0.6 degrees, allowing higher atomic oxygen exposure of row 12 than initially anticipated. The LDEF pitch angle offset was found to be 0.8 plus or minus 0.4 degrees, such that the space end was tipped forward toward the direction of travel. The resulting consequences of the yaw and pitch misorientation of LDEF on the atomic oxygen fluence is a factor of 2.16 increase for samples located on row 12, and a factor of 1.18 increase for samples located on the space end compared to that which would be expected for perfect orientation.

  19. Radioactive 7Be materials flown on LDEF

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Following the discovery of the atmospheric cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), we began a search for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enable its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained.

  20. LDEF: A bibliography with abstracts

    NASA Technical Reports Server (NTRS)

    Gouger, H. Garland (Editor)

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was a free-flying cylindrical structure that housed self-contained experiments in trays mounted on the exterior of the structure. Launched into orbit from the Space Shuttle Challenger in 1984, the LDEF spent almost six years in space before being recovered in 1990. The 57 experiments investigated the effects of the low earth orbit environment on materials, coatings, electronics, thermal systems, seeds, and optics. It also carried experiments that measured crystals growth, cosmic radiation, and micrometeoroids. This bibliography contains 435 selected records from the NASA aerospace database covering the years 1973 through June of 1992. The citations are arranged within subject categories by author and date of publication.

  1. LDEF Update

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This video explores the research being done on the Long Duration Exposure Facility (LDEF), a satellite carrying 57 experiments designed to study the effects of the space environment, which had been in orbit for almost 6 years, and was retrieved and brought back to Earth by the Space Shuttle astronauts. The video shows scenes of the retrieval of LDEF, as well as scenes of ongoing research into the data returned with the satellite from experiments on external coating, contamination of optical materials by thermal control paint, the effects of cosmic rays on different materials, and the effect of the space environment on 12 million tomato seeds that have since been planted.

  2. Proceedings of the LDEF Materials Data Analysis Workshop

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1990-01-01

    The 5-year, 10-month flight of the Long Duration Exposure Facility (LDEF) greatly enhanced the potential value of most LDEF materials, compared to the original 1-year flight plan. NASA recognized this potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group in early 1989 to address the expanded opportunities available in the LDEF structure and on experimental trays, so that the value of all LDEF materials to current and future space missions would be assessed and documented. The LDEF Materials Data Analysis Workshop served as one step toward the realization of that responsibility and ran concurrently with activities surrounding the successful return of the spacecraft to the NASA Kennedy Space Center. A compilation of visual aids utilized by speakers at the workshop is presented. Session 1 summarized current information on analysis responsibilities and plans and was aimed at updating the workshop attendees: the LDEF Advisory Committee, Principle Investigators, Special Investigation Group Members, and others involved in LDEF analyses or management. Sessions 2 and 3 addressed materials data analysis methodology, specimen preparation, shipment and archival, and initial plans for the LDEF Materials Data Base. A complementary objective of the workshop was to stimulate interest and awareness of opportunities to vastly expand the overall data base by considering the entire spacecraft as a materials experiment.

  3. LDEF materials: An overview of the interim findings

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.

    1992-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effect (SEE) on materials that are unparalleled in the history of the U.S. space program. The 5.8-year flight of LDEF greatly enhanced the potential value of materials data from LDEF to the international SEE community, compared to that of the original 1-year flight plan. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials of the same space vehicle. NASA recognized the potential by forming the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) to address the greatly expanded materials and LEO space environment parameter analysis opportunities available in the LDEF structure, experiment trays, and corollary measurements, so that the combined value of all LDEF materials data to current and future space missions will be assessed and documented. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. These revelations are based on observations of LEO environmental effects on materials made in-space during LDEF retrieval and during LDEF tray deintegration at the Kennedy Space Center, and on findings of approximately 1.5 years of laboratory analyses of LDEF materials by the LDEF materials scientists. These findings were extensively reviewed and discussed at the MSIG-sponsored LDEF Materials Workshop '91. The results are presented in a format which categorizes the revelations as 'clear findings' or 'confusing/unexplained findings' and resultant needs for new space materials developments and ground simulation testing/analytical modeling in seven categories: environmental parameters and data bases; LDEF

  4. Analysis of materials from MSFC LDEF experiments

    NASA Technical Reports Server (NTRS)

    Johnson, R. Barry

    1991-01-01

    In preparation for the arrival of the Long Duration Exposure Facility (LDEF) samples, a material testing and handling approach was developed for the evaluation of the materials. A configured lab was made ready for the de-integration of the LDEF experiments. The lab was prepared to clean room specifications and arranged with the appropriate clean benches, tables, lab benches, clean room tools, particulate counter, and calibrated and characterized analytical instrumentation. Clean room procedures were followed. Clean room attire and shoe cleaning equipment were selected and installed for those entering. Upon arrival of the shipping crates they were taken to the lab, logged in, and opened for examination. The sample trays were then opened for inspection and test measurements. The control sample measurements were made prior to placement into handling and transport containers for the flight sample measurements and analysis. Both LDEF flight samples and LDEF type materials were analyzed and tested for future flight candidate material evaluation. Both existing and newly purchased equipment was used for the testing and evaluation. Existing Space Simulation Systems had to be upgraded to incorporate revised test objectives and approaches. Fixtures such as special configured sample holders, water, power and LN2 feed-throughs, temperature measurement and control, front surface mirrors for reflectance and deposition, and UV grade windows had to be designed, fabricated, and installed into systems to achieve the revised requirements. New equipment purchased for LDEF analysis was incorporated into and/or used with existing components and systems. A partial list of this equipment includes a portable monochromator, enhanced UV System, portable helium leak detector for porosity and leak measurements, new turbo pumping system, vacuum coaster assembly, cryopumps, and analytical and data acquisition equipment. A list of materials tested, equipment designed, fabricated and installed

  5. Cosmogenic radionuclides on LDEF: An unexpected Be-10 result

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Dezfouly-Arjomandy, B.; Harmon, B. A.

    1993-01-01

    Following the discovery of the atmospheric derived cosmogenic radionuclide Be-7 on the Long Duration Exposure Facility (LDEF), a search began for other known nuclides produced by similar mechanisms. None of the others have the narrow gamma-ray line emission of Be-7 decay which enabled its rapid detection and quantification. A search for Be-10 atoms on LDEF clamp plates using accelerator mass spectrometry is described. An unexpected result was obtained.

  6. LDEF microenvironments, observed and predicted

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.

    1992-01-01

    Complex protrusions and surface indentations on spacecraft equipment alter exposure environments by casting shadows, producing reflections and scattering incident atomic oxygen flux and UV radiation. A computer model is being developed to predict these effects. The model accounts for any arbitrary shape, size, orientation, or curvature of exposed objects. LDEF offers a unique opportunity to compare model prediction with observations. For this purpose, a study is underway on twelve of LDEF's copper grounding straps. These straps were exposed at various angles from the ram vector during the LDEF flight. Microenvironment variables include shadowing and reflections from clamps and fasteners, and varying exposure caused by bending of the straps. Strap measurements include optical properties, surface film composition by ESCA, and film thickness measurements by optical interference techniques. The features of the microenvironment model and the analytical methods used to examine the straps are discussed. Data are presented showing predicted microenvironmental variations. These variations are compared with observed point to point differences in surface properties of the straps.

  7. Characterization of polymer films retrieved from LDEF

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Rock, Neil I.; Williams, Kevin D.; Strganac, Thomas W.; Farrow, Allan

    1992-01-01

    One of the trays aboard LDEF was an experiment having the objective of assessing the effects of long term exposure of candidate balloon films, tapes, and lines to the hostile environment of space. The fortuitous location of these materials on LDEF minimized direct impact by atomic oxygen thus providing an opportunity to study the effects of low earth orbit environments on polymeric materials without the worry of atomic oxygen abrasion. The resulting chemical, morphological, and thermomechanical changes for polyethylene specimens are reviewed. In addition, preliminary data for fluorinated ethylene/propylene copolymers used for thermal blankets is presented. Polyethylene is observed to crosslink and branch from exposure to atomic oxygen and/or ultraviolet with a decrease in crystallinity.

  8. LDEF (Flight), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Solar Ce

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Solar Cells Developed in Germany, Tray E03 The flight photograph was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The capture cells of experiment A0187-02 are in the left two thirdsThe Experiment Exposure Control Canister containing experiment S1002 is the item located in the right one third section of the tray. The EECC is closed with the S1002 experiments inside. The EECC hardware is intact and appears to be in very good shape. The material on the corners of the thermal cover, near the center of the tray, is layers of tape used to blunt corners of the cover that could possibly snag an astronaut's suit if brushed during an EVA. The tape layers seem to have separated but are still attached and remain in place. The brown stain coats the exposed tray sidewall, the base plate in the tray bottom, the lead screw and the thermal covers. Two (2) Impact craters are located near the center of the base plate, another is located between the two (2) lower screws on the support rail at the right bottom edge of the tray. An impact crater appears as a white dot on the darker background. Additional craters are visible on the EECC aluminum thermal covers, the tray flanges and the LDEF structure.

  9. LDEF (Prelaunch), AO187-02 : Chemical and Isotropic Measurements of Micrometeoroids by Secondary Ion

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO187-02 : Chemical and Isotropic Measurements of Micrometeoroids by Secondary Ion Mass Spectrometry, Tray E08 The prelaunch photograph shows one hundred twenty (120) experiment capture cells installed on six support panels that are mounted in LDEF provided experiment trays. A capture cell consist of four polished high purity germanium plates covered with a 2.5um thick Mylar foil coated with 1300 angstroms of tantalum vapor deposited on the backside and 100 angstroms of gold-palladium vapor deposited on the front side. The capture cells are mounted within an aluminum frame on each panel. The fasteners are nonmagnetic stainless steel.

  10. LDEF (Postflight), AO180 : The Effect of Space Environment Exposure on the Properties of Polymer Mat

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO180 : The Effect of Space Environment Exposure on the Properties of Polymer Matrix Composite Materials, Tray D12 The postflight photograph was taken in the SAEF-II facility prior to removal of experiment trays from the LDEF. The Polymer Matrix Composite Materials experiment appears the same as in the flight photograph. The composite containing the aramid (Kevlar) fibers has changed from a yellow to a light brown color and the cylinderical tubes containing the boron and carbon fiber materials have changed from a light green tint to a brown color. The experiment mounting hardware and fasteners seem to be intact and in very good condition.

  11. Space environment durability of beta cloth in LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Linton, Roger C.; Whitaker, Ann F.; Finckenor, Miria M.

    1993-01-01

    Beta cloth performance for use on long-term space vehicles such as Space Station Freedom (S.S. Freedom) requires resistance to the degrading effects of the space environment. The major issues are retention of thermal insulating properties through maintaining optical properties, preserving mechanical integrity, and generating minimal particulates for contamination-sensitive spacecraft surfaces and payloads. The longest in-flight test of beta cloth's durability was on the Long Duration Exposure Facility (LDEF), where it was exposed to the space environment for 68 months. The LDEF contained 57 experiments which further defined the space environment and its effects on spacecraft materials. It was deployed into low-Earth orbit (LEO) in Apr. 1984 and retrieved Jan. 1990 by the space shuttle. Among the 10,000 plus material constituents and samples onboard were thermal control blankets of multilayer insulation with a beta cloth outer cover and Velcro attachments. These blankets were exposed to hard vacuum, thermal cycling, charged particles, meteoroid/debris impacts, ultraviolet (UV) radiation, and atomic oxygen (AO). Of these space environmental exposure elements, AO appears to have had the greatest effect on the beta cloth. The beta cloth analyzed in this report came from the MSFC Experiment S1005 (Transverse Flat-Plate Heat Pipe) tray oriented approximately 22 deg from the leading edge vector of the LDEF satellite. The location of the tray on LDEF and the placement of the beta cloth thermal blankets are shown. The specific space environment exposure conditions for this material are listed.

  12. A final look at LDEF electro-optic systems components

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1995-01-01

    Postrecovery characteristics of LDEF electro-optic components from the GTRI tray are compared with their prelaunch characteristics and with the characteristics of similar components from related experiments. Components considered here include lasers, light-emitting diodes, semiconducting radiation detectors and arrays, optical substrates, filters, and mirrors, and specialized coatings. Our understanding of the physical effects resulting from low earth orbit are described, and guidelines and recommendations for component and materials choices are presented.

  13. LDEF (Postflight), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tr

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tray H07 The postflight photograph was taken in the KSC SAEF II facility after the experiment was removed from the LDEF. The Space-Based Radar (SBR) Phased-Array Antenna occupies a six (6) inch deep LDEF end corner tray located on the space end of the LDEF. A light tan discoloration is visible on the left and lower flanges of the experiment tray and also on the unpainted aluminum filler to the left of the passive part of the experiment. A darker stain has discolored the lower corners of the tray structure. The SBR Phased-Array Antenna experiment, consisting of an active part in the upper half of the tray and a passive part located in the lower half of the experiment tray, appears to be intact with no apparent physical damage. The black thermal coating on the active part of the experiment appears to have changed from a flat black to a dark gray while the coating on the passive part of the experiment appears less degraded. The exposed Kapton specimen surfaces in both the active and passive parts of the experiment appear to have changed from specular to diffuse from exposure to the space environment.

  14. LDEF (Prelaunch), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Solar

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Solar Cells Developed in Germany, Tray E03 The prelaunch photograph provides a view of the two (2) experiments located in a six (6) inch LDEF experiment tray. The A0187-02 is located in the right two thirds (2/3rd) of the tray and the EECC containing the S1002 experiment occupies the remaining section. The tan colored strips on the tray flanges are protective coatings that are removed prior to tray testing. S1002 - The Effects on Coatings and Solar Cells experiment is contained within the Experiment Exposure Control Canister (EECC) that is located in the left one third (1/3rd) of the experiment tray. The EECC hardware consists of the housing, the drawer that contains the experiment samples, the drawer opening and closing mechanism (a screw drive system) and chromic anodized aluminum thermal covers that are seen in the photograph. The hardware is fabricated from aluminum or non-magnetic steels and is assembled with non-magnetic stainless steel fasteners. The canister will be opened in orbit after the LDEF has been deployed, the Orbiter has departed and initial outgassing of materials on the LDEF has occurred. The canister is programmed to close approximately nine (9) months after opening and prior to the scheduled LDEF retrieval. Experiment samples located in the EECC consist of Second Surface Mirrors (SSM), SSM with Interference Filters (SSM/IF), SSM/IF with a Conductive Layer (SSM/IF/LS, Optical Solar Reflectors (OSR), Quartz Crystal Microbalance (QCM), Coatings and Solar Cell Modules of the types flown on the GEOS and OTS satellites.

  15. LDEF post-retrieval evaluation of exobiology interests

    NASA Technical Reports Server (NTRS)

    Bunch, T. E.; Radicatldibrozolo, F.; Fitzgerald, Ray

    1991-01-01

    Cursory examination of the Long Duration Exposure Facility (LDEF) shows the existence of thousands of impact craters of which less than 1/3 exceed 0.3 mm in diameter; the largest crater is 5.5 mm. Few craters show oblique impact morphology and, surprisingly, only a low number of craters have recognizable impact debris. Study of this debris could be of interest to exobiology in terms of C content and carbonaceous materials. All craters greater that 0.3 mm have been imaged and recorded into a data base by the preliminary examination team. Various portions of the LDEF surfaces are contaminated by outgassed materials from experimenters trays, in addition to the LDEF autocontamination and impact with orbital debris not of extraterrestrial origin. Because interplanetary dust particles (IDP's) nominally impacted the LDEF at velocities greater than 3 km/s, the potential for intact survival of carbonaceous compounds is mostly unknown for hypervelocity impacts. Calculations show that for solid phthalic acid (a test impactor), molecular dissociation would not necessarily occur below 3 km/s, if all of the impact energy was directed at breaking molecular bonds, which is not the case. Hypervelocity impact experiments (LDEF analogs) were performed using the Ames Vertical Gun Facility. Grains of phthalic acid and the Murchison meteorite (grain diameter = 0.2 for both) were fired into an Al plate at 2.1 and 4.1 km/s respectively. The results of the study are presented, and it is concluded that meaningful biogenic elemental and compound information can be obtained from IDP impacts on the LDEF.

  16. The Fixture Device of the Horizontal Machining Center for the Input Tray Part Processing

    NASA Astrophysics Data System (ADS)

    Zhou, Ping

    The input tray part is key parts on the production of auto parts of the on the automatic line, this paper mainly studies on the horizontal machining center using the fixture device, the device to ensure the machining accuracy of the input tray part. Through the analysis of the positioning and clamping of the input tray part, design a clamp device, the device is applied in on the horizontal machining center, and on the basis of the fixture add auxiliary support device, in order to improve the input tray part rigidity and stability of processing.

  17. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    This report covers work performed by Science Applications International Corporation (SAIC) under contract NAS8-39386 from the NASA Marshall Space Flight Center entitled LDEF Satellite Radiation Analyses. The basic objective of the study was to evaluate the accuracy of present models and computational methods for defining the ionizing radiation environment for spacecraft in Low Earth Orbit (LEO) by making comparisons with radiation measurements made on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The emphasis of the work here is on predictions and comparisons with LDEF measurements of induced radioactivity and Linear Energy Transfer (LET) measurements. These model/data comparisons have been used to evaluate the accuracy of current models for predicting the flux and directionality of trapped protons for LEO missions.

  18. Selected results for metals from LDEF experiment A0171

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.

    1992-01-01

    Metal specimens in disk type and ribbon configurations of interest to various programs at the Marshall Space Flight Center were exposed to the LEO environment for 5.8 years on Long Duration Exposure Facility (LDEF) Experiment A0171. Most of the metals flown were well heat sunk in the LDEF experiment tray which experienced benign temperatures, but a few metals were thermally isolated allowing them to experience greater thermal extremes. All metal specimens whose preflight weights were known showed a weight change as a result of exposure. Optical property and mass changes are attributed principally to atomic oxygen exposures. Silver and copper were grossly affected whereas tantalum, molybdenum, and several preoxidized alloys were the least affected. Metals contained in this experiment are shown. Results including mass, surface morphology, and optical property changes from selected evaluations of these metals are presented.

  19. LDEF satellite radiation study

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1994-01-01

    Some early results are summarized from a program under way to utilize LDEF satellite data for evaluating and improving current models of the space radiation environment in low earth orbit. Reported here are predictions and comparisons with some of the LDEF dose and induced radioactivity data, which are used to check the accuracy of current models describing the magnitude and directionality of the trapped proton environment. Preliminary findings are that the environment models underestimate both dose and activation from trapped protons by a factor of about two, and the observed anisotropy is higher than predicted.

  20. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstong, T. W.

    1993-01-01

    A three-dimensional geometry and mass model of the Long Duration Exposure Facility (LDEF) spacecraft and experiment trays was developed for use in predictions and data interpretation related to ionizing radiation measurements. The modeling approach, level of detail incorporated, example models for specific experiments and radiation dosimeters, and example applications of the model are described.

  1. First radiobiological results of LDEF-1 experiment A0015 with Arabidopsis seed embryos and Sordaria fungus spores.

    PubMed

    Zimmermann, M W; Gartenbach, K E; Kranz, A R

    1994-10-01

    This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.

  2. Status of LDEF radiation modeling

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Armstrong, T. W.; Colborn, B. L.

    1995-01-01

    The current status of model prediction and comparison with LDEF radiation dosimetry measurements is summarized with emphasis on major results obtained in evaluating the uncertainties of present radiation environment model. The consistency of results and conclusions obtained from model comparison with different sets of LDEF radiation data (dose, activation, fluence, LET spectra) is discussed. Examples where LDEF radiation data and modeling results can be utilized to provide improved radiation assessments for planned LEO missions (e.g., Space Station) are given.

  3. LDEF materials data bases

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials representing the largest collection of materials flown in low Earth orbit (LEO) and retrieved for ground based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper discusses the format and content of the three data bases developed or being developed to accomplish this task. The hardware and software requirements for each of these three data bases are discussed along with current availability of the data bases. This paper also serves as a user's guide to the MAPTIS LDEF Materials Data Base.

  4. Comparison of Contamination Model Predictions to LDEF Surface Measurements

    NASA Technical Reports Server (NTRS)

    Gordon, Tim; Rantanen, Ray; Pippin, Gary; Finckenor, Miria

    1998-01-01

    Contaminant deposition measurements have been made on species content and depth profiles on three experiments trays from the Long Duration Exposure Facility (LDEF), Auger, Argon sputtering, Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) analysis. The integrated spacecraft environment model (ISEM) was used to predict the deposition levels of the contaminants measured on the three trays. The details of the modeling and assumptions used are presented along with the predictions for the deposition on select surfaces on the trays. These are compared to the measured results. The trays represent surfaces that have a high atomic oxygen flux, and intermediate oxygen flux, and no oxygen flux. All surfaces received significant solar Ultraviolet flux. It appears that the atomic oxygen was the primary agent that caused significant deposition to occur. Surfaces that saw significant contaminant flux solar UV and no atomic oxygen did not show any appreciable levels of observable deposition. The implications of the atom ic oxygen interaction with contaminant deposits containing silicon contaminant sources is discussed. The primary contaminant sources are DC61104 adhesive and Z306 paint. The results and interpretation of the findings have a potential significant impact on spacecraft surfaces that are exposed to solar UV and atomic oxygen in low Earth orbit.

  5. Rigid clamp

    DOEpatents

    Benavides, Gilbert L.; Burt, Jack D.

    1994-01-01

    The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object.

  6. Rigid clamp

    DOEpatents

    Benavides, G.L.; Burt, J.D.

    1994-07-12

    The invention relates to a clamp mechanism that can be used to attach or temporarily support objects inside of tubular goods. The clamp mechanism can also be modified so that it grips objects. The clamp has a self-centering feature to accommodate out-of-roundness or other internal defections in tubular objects such as pipe. A plurality of clamping shoes are expanded by a linkage which is preferably powered by a motor to contact the inside of a pipe. The motion can be reversed and jaw elements can be connected to the linkage so as to bring the jaws together to grab an object. 12 figs.

  7. The Long Duration Exposure Facility (LDEF) photographic survey special publication

    NASA Technical Reports Server (NTRS)

    Oneal, Robert L.; Levine, Arlene S.; Kiser, Carol C.

    1995-01-01

    During the construction, integration, launch, retrieval and deintegration of the Long Duration Exposure Facility (LDEF), photographic surveys were made. Approximately 10,000 photographs were taken during the various phases of the LDEF project. These surveys are of technical and scientific importance because they revealed the pre and post flight conditions of the experiment trays as well as the spacecraft. Visual inspection of the photographs reveal valuable data such as space environment's effects and the earth atmosphere's effects post-retrieval. Careful files and records have been kept of these photographs. Each photograph has a Kennedy Space Center photo number or a Johnson Spaceflight Center photo number as well as a Langley Research Center photo number. The tray number, row number, and experiment number are also noted. Out of the 10,000 photographs taken, approximately 700 selected photographs were chosen for publication in a NASA Special Publication (SP) because they reveal the effects of space exposure to the viewer. These photographs will give researchers and spacecraft designers visual images of the effects of the space environment on specific materials, systems and spacecraft in general. One can visually see the degradation of thermal blankets, meteoroid craters, outgassing discoloration, atomic oxygen erosion, etc.

  8. LDEF (Prelaunch), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tra

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO133 : Effect of Space Environment on Space-Based Radar Phased-Array Antenna, Tray H07 The prelaunch photograph was taken in SAEF II at KSC prior to installation of the integrated tray on the LDEF. The Space-Based Radar (SBR) Phased-Array Antenna Experiment occupies a six (6) inch deep LDEF end corner tray located on the space end of the LDEF. The SBR Phased-Array Antenna experiment consists of both passive and active parts. The passive part , shown in the left half of the experiment tray, investigates the dimensional stability of Kapton when exposed to induced stresses in the space environment. Continuous and spliced specimen of both plain Kapton (127 um thick) and glass reinforced Kapton (196 um thick) will be exposed for the entire mission. The Kapton specimen array contains eight 2.54-cm-wide specimen and sixteen (16) 1.27-cm-wide specimen. The specimen are stretched over an aluminum roller assembly and utilize a spring loaded mechanism to provide preselected stresses. An aluminum support structure houses two (2) identical set of specimen, one exposed to the total environment and one shadowed. The fasteners are non-magnetic stainless steel and the black surface is a thermal control coating, 3M-Nextel 401-610 (Black Velvet). The active part of the experiment, located in the right half of the tray, investigates the interaction between high voltage and low-Earth-orbit plasma. A fourteen (14) inch wide by twenty eight (28) inch long section of the Grumman SBR Phased-Array antenna consisting of two Kapton antenna planes and a perforated aluminum ground plane mounted on an aluminum support structure. Cop- per dipole elements deposited on the Kapton antenna plane provide the high voltage electrodes. The fasteners are non-magnetic stainless steel and the black surface is a thermal control coating, 3M-Nextel 401-610 (Black Velvet).

  9. Data bases for LDEF results

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1993-01-01

    The Long Duration Exposure Facility (LDEF) carried 57 experiments and 10,000 specimens for some 200 LDEF experiment investigators. The external surface of LDEF had a large variety of materials exposed to the space environment which were tested preflight, during flight, and post flight. Thermal blankets, optical materials, thermal control paints, aluminum, and composites are among the materials flown. The investigations have produced an abundance of analysis results. One of the responsibilities of the Boeing Support Contract, Materials and Systems Special Investigation Group, is to collate and compile that information into an organized fashion. The databases developed at Boeing to accomplish this task is described.

  10. LDEF Satellite Radiation Analyses

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1996-01-01

    Model calculations and analyses have been carried out to compare with several sets of data (dose, induced radioactivity in various experiment samples and spacecraft components, fission foil measurements, and LET spectra) from passive radiation dosimetry on the Long Duration Exposure Facility (LDEF) satellite, which was recovered after almost six years in space. The calculations and data comparisons are used to estimate the accuracy of current models and methods for predicting the ionizing radiation environment in low earth orbit. The emphasis is on checking the accuracy of trapped proton flux and anisotropy models.

  11. LDEF (Postflight), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Sola

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), S1002 : Investigation of Critical Surface Degradation Effects on Coating and Solar Cells Developed in Germany, Tray E03 The postflight photograph was taken in the SAEF II at KSC after the experiment was removed from the LDEF. The capture cells of experiment A0187-02 are in the left two thirdsThe Experiment Exposure Control Canister containing experiment S1002 is the item located in the right one third section of the tray. Details of the EECC containing the experiment cannot be defined due to the glare of the lights on the aluminum surfaces. The brown stain is clearly visible on the left end of the bottom tray flange. Note the spring collar near the lower end of the lead screw. The collar, pushed along the lead screw as the door opens, is an indication that the EECC did open and close while in orbit. The green tint on the two (2) debris panels is a by-product of the chromic anodize coating process and not attributed to contamination and/or exposure to the space environment. A light colored irregular shaped vertical streak is seen on the right debris panel. The light band across the top and bottom edges of the panels is caused by light reflecting from the tray sidewalls.

  12. LDEF Space Plasma-High Voltage Drainage Experiment post-flight results

    NASA Technical Reports Server (NTRS)

    Yaung, J. Y.; Blakkolb, B. K.; Wong, W. C.; Ryan, L. E.; Schurig, H. J.; Taylor, W. W. L.

    1993-01-01

    The Space Plasma-High Voltage Drainage Experiment (SP-HVDE) was comprised of two identical experimental trays. With one tray located on the leading (ram facing, B10) edge and the other located on the trailing (wake facing, D4) edge of the Long Duration Exposure Facility (LDEF), it was possible to directly compare the effects of ram and wake spacecraft environments on charged dielectric materials. Six arrays of Kapton dielectric samples of 2 mil, 3 mil, and 5 mil thicknesses maintained at +/- 300, +/- 500, and +/- 1000 voltage bias formed the experimental matrix of each tray. In addition, each tray carried two solar cell strings, one biased at +300 volts and the other at -300 volts, to study current leakage from High Voltage Solar Arrays (HVSA). The SP-HVDE provides the first direct, long-term, in-flight measurements of average leakage current through dielectric materials under electric stress. The experiment also yields information on the long term stability of the bulk dielectric properties of such materials. Data and findings of the SP-HVDE are an extension of those from shorter term flight experiments such as the PIX-1 (Plasma Interaction Experiment) and PIX-2 and are therefore valuable in the design and evaluation of long-lived space systems with high voltage systems exposed to the low earth orbital environment. A summary of the SP-HVDE post flight analysis final report delivered to the LDEF Project Office under contract to the National Aeronautics and Space Administration is presented.

  13. LDEF SP-HVDE (space plasma-high voltage drainage experiment) post-flight data on spacecraft leakage current and discharge

    NASA Technical Reports Server (NTRS)

    Yaung, J. Y.; Wong, W. C.; Blakkolb, B. K.; Ryan, L. E.

    1991-01-01

    Two identical SP-HVDE (Space Plasma-High Voltage Drainage Experiment) trays were designed and fabricated and were flown in the NASA LDEF in the LEO environment. The trays were placed with one near the leading edge and one near the trailing edge, and investigation was performed to compare the environmental interactions on the dielectric samples of the two trays. The original objective was successfully achieved by measuring the first in-flight long term average leakage current through 156 coulometers. Less than 5 percent anomalous behavior of the coulometers were found in the post flight analysis.

  14. Successfully downsize trayed columns

    SciTech Connect

    Sloley, A.W.; Fleming, B. )

    1994-03-01

    Techniques for the design and sizing of new trayed distillation columns are abundant in the literature. So, too, are the guidelines for modifying towers for operation beyond their original design range. Reducing capacity of distillation trays merits at least as much consideration. Indeed, lack of knowledge and experience in this area causes many tower failures and misdesigned columns. In this article, the authors present some practical design considerations, based on field experience, for tower trays operating at loadings dramatically lower than normal for a particular design. General considerations cover liquid and vapor hydraulics and flow behavior. Case studies are included for there typical units: a refinery vacuum crude still, a petrochemical superfractionator, and a steam stripper.

  15. Databases for LDEF results

    NASA Technical Reports Server (NTRS)

    Bohnhoff-Hlavacek, Gail

    1992-01-01

    One of the objectives of the team supporting the LDEF Systems and Materials Special Investigative Groups is to develop databases of experimental findings. These databases identify the hardware flown, summarize results and conclusions, and provide a system for acknowledging investigators, tracing sources of data, and future design suggestions. To date, databases covering the optical experiments, and thermal control materials (chromic acid anodized aluminum, silverized Teflon blankets, and paints) have been developed at Boeing. We used the Filemaker Pro software, the database manager for the Macintosh computer produced by the Claris Corporation. It is a flat, text-retrievable database that provides access to the data via an intuitive user interface, without tedious programming. Though this software is available only for the Macintosh computer at this time, copies of the databases can be saved to a format that is readable on a personal computer as well. Further, the data can be exported to more powerful relational databases, capabilities, and use of the LDEF databases and describe how to get copies of the database for your own research.

  16. VOC strippers; How many trays

    SciTech Connect

    Li, K.Y.; Hsias, K.J. )

    1990-02-01

    Air stripping is often used to remove volatile organic components (VOC) from water effluents. The stripping tower usually uses a packed bed because of its high efficiency. However, a tray tower sometimes is used because of its easier operation and maintenance, particularly when scaling problems inside the stripping tower are serious. One important step in designing a tray tower is to determine the number of trays for a required stripping separation. The procedure usually starts from a calculation of the number of ideal trays by using the Kremser equation. Then the number of nonideal trays is calculated from the number of ideal trays divided by the overall tray efficiency. This design calculation leaves the concentration distributions through the tower uncertain. Also, reliable values of the overall tray efficiency are difficult to obtain since tray efficiencies for various species and tray designs can differ. In this paper, design equations for the nonideal tray tower are developed based on a combination of the mass balance and the Murphree tray efficiency. Air stripping of chlorinated hydrocarbons from water are used as examples to demonstrate the calculations.

  17. LEO spacecraft leakage current and discharging phenomena - TRW LDEF SP-HVDE (space plasma-high voltage drainage experiment)

    NASA Technical Reports Server (NTRS)

    Yaung, J. Y.; Wong, W. C.; Blakkolb, B. K.; Ryan, L. E.; Taylor, W. W. L.

    1991-01-01

    Two identical SP-HVDE trays were flown in the NASA 5.75-year LDEF (Long Duration Exposure Facility), one near the leading edge and the other near the trailing edge, in the LEO (low earth orbit) environment. Each experiment tray consisted of six assemblies with each made of Kapton dielectric samples of varying thicknesses (i.e., 2 mils, 3 mils, and 5 mils) biased under +/- 300 V, +/- 500 V, and +/- 1000 V. The objectives have been successfully achieved by measuring the first post-flight long-term (i.e. roughly 8-month experiment) average leakage current through 95 percent measurable coulombmeters and surface materials.

  18. Some results of the oxidation investigation of copper and silver samples flown on LDEF

    NASA Technical Reports Server (NTRS)

    Derooij, A.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Mission provides a unique opportunity to study the long term effects of the space environment on materials. The LDEF has been deployed in orbit on 7 April 1984 by the shuttle Challenger in an almost circular orbit with a mean altitude of 477 km and an inclination of 28.5 degrees. It was retrieved from its decayed orbit of 335 km by the shuttle Columbia on 12 January 1990 after almost 6 years in space. The LDEF is a 12-sided, 4.267 m diameter, and 9.144 m long structure. The experiments, placed on trays, are attached to the twelve sides and the two ends of the spacecraft. The LDEF was passively stabilized with one end of the spacecraft always pointing towards the earth center and one of the sides (row 9) always facing the flight direction. The materials investigated originate from the Ultra-Heavy Cosmic Ray Experiment (UHCRE). The main objective is a detailed study of the charge spectra of ultraheavy cosmic-ray nuclei from zinc to uranium and beyond, using solid-state track detectors. Besides the aluminium alloy used for the experiment, UHCRE comprises several other materials. The results of space exposure for two of them, the copper grounding strips and the thermal covers (FEP Teflon/Ag/Inconel) painted black on the inner side (Chemglaze Z306), are presented.

  19. LDEF meteoroid and debris database

    NASA Technical Reports Server (NTRS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  20. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1992-01-01

    A systematic study of the induced radioactivity of the Long Duration Exposure Facility (LDEF) is being carried out in order to gather information about the low earth orbit radiation environment and its effects on materials. The large mass of the LDEF spacecraft, its stabilized configuration, and long mission duration have presented an opportunity to determine space radiation-induced radioactivities with a precision not possible before. Data presented include preliminary activities for steel and aluminum structural samples, and activation subexperiment foils. Effects seen in the data show a clear indication of the trapped proton anisotropy in the South Atlantic Anomaly and suggest contributions from different sources of external radiation fluxes.

  1. Development and application of a 3-D geometry/mass model for LDEF satellite ionizing radiation assessments

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    A computer model of the three dimensional geometry and material distributions for the LDEF spacecraft, experiment trays, and, for selected trays, the components of experiments within a tray was developed for use in ionizing radiation assessments. The model is being applied to provide 3-D shielding distributions around radiation dosimeters to aid in data interpretation, particularly in assessing the directional properties of the radiation exposure. Also, the model has been interfaced with radiation transport codes for 3-D dosimetry response predictions and for calculations related to determining the accuracy of trapped proton and cosmic ray environment models. The methodology is described used in developing the 3-D LDEF model and the level of detail incorporated. Currently, the trays modeled in detail are F2, F8, and H12 and H3. Applications of the model which are discussed include the 3-D shielding distributions around various dosimeters, the influence of shielding on dosimetry responses, and comparisons of dose predictions based on the present 3-D model vs those from 1-D geometry model approximations used in initial estimates.

  2. Surface Analysis of LDEF Materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P. (Principal Investigator)

    1996-01-01

    The abstract to the M.S. thesis included as appendix to this report contains the details of the research performed under this grant. Presentations and publications resulting from the research are listed as the main content of the report itself. The thesis describes the surface characterization procedures and analysis of materials flown in the NASA Long Duration Exposure Facility (LDEF).

  3. Transmittance measurements of ultra violet and visible wavelength interference filters flown aboard LDEF

    NASA Technical Reports Server (NTRS)

    Mooney, Thomas A.; Smajkiewicz, Ali

    1991-01-01

    A set of ten interference filters for the UV and VIS spectral region were flown on the surface of the Long Duration Exposure Facility (LDEF) Tray B-8 along with earth radiation budget (ERB) components from the Eppley Laboratory. Transmittance changes and other degradation observed after the return of the filters to Barr are reported. Substrates, coatings, and (where applicable) cement materials are identified. In general, all filters except those containing lead compounds survived well. Metal dielectric filters for the UV developed large numbers of pinholes which caused an increase in transmittance. Band shapes and spectral positioning, however, did not change.

  4. LDEF Materials Results for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F. (Compiler); Gregory, John (Compiler)

    1993-01-01

    These proceedings describe the application of LDEF data to spacecraft and payload design, and emphasize where space environmental effects on materials research and development is needed as defined by LDEF data. The LDEF six years of exposure of materials has proven to be by far the most comprehensive source of information ever obtained on the long-term performance of materials in the space environment. The conference provided a forum for materials scientists and engineers to review and critically assess the LDEF results from the standpoint of their relevance, significance, and impact on spacecraft design practice. The impact of the LDEF findings on materials selection and qualification, and the needs and plans for further study, were addressed from several perspectives. Many timely and needed changes and modifications in external spacecraft materials selection have occurred as a result of LDEF investigations.

  5. Way to predict tray temperatures

    SciTech Connect

    Rice, V.L.

    1984-08-01

    An analysis of distillation columns often requires data for individual tray temperatures, either specific ones or the entire profile. A common approach to obtain this temperature information is through use of a rigorous tray-by-tray distillation simulation, usually with a main-frame computer system. Unfortunately, this rigorous approach is either impractical or just too much trouble in many cases. For example, an on-line optimizing control scheme rarely has enough space (computer memory) or real time for a rigorous calculation of distillation column tray temperatures. A shorter method is presented in this article that predicts the tray temperatures of simple distillation columns. Following the theoretical discussion of the method, some examples of its use are presented.

  6. Changes in oxidation state of chromium during LDEF exposure

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1992-01-01

    The solar collector used for the McDonnell-Douglas Cascade Variable Heat Pipe, Experiment A0076 (Michael Grote - Principal Investigator) was finished with black chromium plating as a thermal control coating. The coating is metallic for low emittance, and is finely microcrystalline to a dimension which yields its high absorptivity. An underplate of nickel was applied to the aluminum absorber plate in order to achieve optimal absorptance characteristics from the black chromium plate surface. Experiment A0076 was located at tray position F9, receiving a projected 8.7 x 10 exp 21 atomic oxygen atoms/sq cm and 11,200 ESH solar radiation. During retrieval, it was observed that the aluminized kapton thermal blankets covering most of the tray were severely eroded by atomic oxygen, and that a 'flap' of aluminum foil was overlaying a roughly triangular shaped portion of the absorber panel. The aluminum foil 'flap' was lost sometime between the Long Duration Exposure Facility (LDEF) retrieval and deintegration. At deintegration, the black chromium was observed to have discolored where it had been covered by the foil 'flap'. A summary of the investigation into the cause of the discoloration is presented.

  7. Long Duration Exposure Facility (LDEF) Archive System

    NASA Technical Reports Server (NTRS)

    Wilson, Brenda K.

    1995-01-01

    The Long Duration Exposure Facility (LDEF) Archive System is designed to provide spacecraft designers and space environment researchers single point access to all available resources from LDEF. These include data, micrographs, photographs, technical reports, papers, hardware and test specimens, as well as technical expertise. Further, the LDEF Archive System is planned such that it could be the foundation for a NASA Space Environments and Effects (SEE) Archive System, with the addition of other spaceflight, laboratory and theoretical space environments and effects data and associated materials. This paper describes the current status and plans of the LDEF Archive System.

  8. An interim overview of LDEF materials findings

    NASA Technical Reports Server (NTRS)

    Stein, Brad A.

    1992-01-01

    The flight and retrieval of the National Aeronautics and Space Administration's Long Duration Exposure Facility (LDEF) provided an opportunity for the study of the low-Earth orbit (LEO) environment and long-duration space environmental effects (SEE) on materials that is unparalleled in the history of the U.S. Space Program. The remarkable flight attitude stability of LDEF enables specific analyses of various individual and combined effects of LEO environmental parameters on identical materials on the same space vehicle. This paper provides an overview of the interim LDEF materials findings of the Principal Investigators and the Materials Special Investigation Group. In general, the LDEF data is remarkably consistent; LDEF will provide a 'benchmark' for materials design data bases for satellites in low-Earth orbit. Some materials were identified to be encouragingly resistant to LEO SEE for 5.8 years; other 'space qualified' materials displayed significant environmental degradation. Molecular contamination was widespread; LDEF offers an unprecedented opportunity to provide a unified perspective of unmanned LEO spacecraft contamination mechanisms. New material development requirements for long-term LEO missions have been identified and current ground simulation testing methods/data for new, durable materials concepts can be validated with LDEF results. LDEF findings are already being integrated into the design of Space Station Freedom.

  9. Third LDEF Post-Retrieval Symposium Abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1993-01-01

    This volume is a compilation of abstracts submitted to the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The abstracts represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  10. LDEF meteoroid and debris database

    NASA Astrophysics Data System (ADS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photo-documented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  11. Distillation tray structural parameter study: Phase 1

    NASA Technical Reports Server (NTRS)

    Winter, J. Ronald

    1991-01-01

    The purpose here is to identify the structural parameters (plate thickness, liquid level, beam size, number of beams, tray diameter, etc.) that affect the structural integrity of distillation trays in distillation columns. Once the sensitivity of the trays' dynamic response to these parameters has been established, the designer will be able to use this information to prepare more accurate specifications for the construction of new trays. Information is given on both static and dynamic analysis, modal response, and tray failure details.

  12. Clamp usable as jig and lifting clamp

    DOEpatents

    Tsuyama, Yoshizo

    1976-01-01

    There is provided a clamp which is well suited for use as a lifting clamp for lifting and moving materials of assembly in a shipyard, etc. and as a pulling jig in welding and other operations. The clamp comprises a clamp body including a shackle for engagement with a pulling device and a slot for receiving an article, and a pair of jaws provided on the leg portions of the clamp body on the opposite sides of the slot to grip the article in the slot, one of said jaws consisting of a screw rod and the other jaw consisting of a swivel jaw with a spherical surface, whereby when the article clamped in the slot by the pair of jaws tends to slide in any direction with respect to the clamp body, the article is more positively gripped by the pair of jaws.

  13. A Search for Meteor Shower Signatures in the LDEF IDE Data

    NASA Technical Reports Server (NTRS)

    Cooke, William J.; McNamara, Heather A.

    2005-01-01

    For 346 days after the deployment of the LDEF satellite on April 7, 1984, the tape recorder belonging to the Interplanetary Dust Experiment (DE) stored information on over 15,000 impacts made by submicron and larger-size particles on its metal oxide silicon (MOS) detectors. These detectors were mounted on trays facing in six orthogonal directions - LDEF ram and trailing edge, the poles of the LDEF orbit (north and south), and radially inward (towards the Earth) and outward (towards space). The 13.1 second time resolution provided by the IDE electronics, combined with the high sensitivity of the MOS detectors and large collecting area (approximately 1 sq.m) of the experiment, conclusively showed that the small particle environment at the LDEF altitude of 480 km was highly time-variable, with particle fluxes spanning over four orders of magnitude. A large number of the 15,000 impacts recorded by IDE occurred in groups, which were of two types - the spikes, single, isolated events of high intensity and the multiple orbit event sequences (MOES), which were series of events separated in time by integer multiples of the LDEF orbital period. Even though the spikes were generally more intense, the MOES could be quite long-lived, some lasting for many days. A previous paper by Cooke et al. attributed the MOES to impacts by man-made debris particles in orbits intersecting that of LDEF. The 20 day longevity of one of these events - termed the May Swarm - led to the suggestion that the debris particles must be con- stantly replenished by their source, as the orbits of micron sized particles will rapidly decay under the influence of radiation pressure and other non-gravitational forces, entering Earth's atmosphere after only a few revolutions. However, the date of onset of the May Swarm (May 22) and the long duration of this event may indicate a possible correlation with the annual Arietid meteor shower, which peaks around June 8. As this seemed to hold the promise of a less

  14. LDEF (Prelaunch), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on G

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on Graphite-Polyimide and Graphite-Epoxy Mechanical Properties, Tray A01 The Graphite-Polyimide and Graphite-Epoxy Mechanical Properties experiment is located in two (2) three (3) inch deep peripheral trays, A01 and A07. The experiment hardware configuration in the A01 tray consists of a graph- ite-epoxy honeycomb sandwich panel in the lower one half (1/2) of the tray, a graphite-epoxy panel in the upper right one third (1/3rd) section and two (2) graphite-polyimide panels, one in the upper center and one in the upper left sections of the experiment tray. The panels are supported by a substructure and held in place with aluminum strips and non-magnetic stainless steel fasteners. The mounting system, designed to allow for differential thermal expansion, minimizes the risk of inducing high stresses into the test panels.

  15. A photon phreak digs the LDEF happening

    NASA Technical Reports Server (NTRS)

    Smith, Alan R.; Hurley, Donna L.

    1993-01-01

    A year ago at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium, detailed measurements on trunnion sections, as well as results from 'intentional' samples (Co, Ni, In, Ta, and V) and spacecraft parts were reported. For this year's Symposium, some of these findings are re-evaluated in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned need to be applied to future missions - right back to the early phases of mission planning.

  16. A photon phreak digs the LDEF happenings

    SciTech Connect

    Smith, A.R.; Hurley, D.L.

    1992-06-01

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from intentional'' samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year's Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  17. A photon phreak digs the LDEF happenings

    SciTech Connect

    Smith, A.R.; Hurley, D.L.

    1992-06-01

    A year ago at the First LDEF Post-Retrieval Symposium, we reported detailed measurements on trunnion sections, as well as results from ``intentional`` samples (Co, Ni, In, Ta, and V) and spacecraft parts. For this year`s Symposium we re-evaluate some of these findings in combination with more recent results, to cast a longer perspective on the LDEF experience, and to sketch some promising avenues toward more effective participation in future missions. The LDEF analysis effort has been a superb training exercise, from which lessons learned needs be applied to future missions -- right back to the early phases of mission planning.

  18. Induced radioactivity in LDEF components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Fishman, G. J.; Parnell, T. A.; Laird, C. E.

    1991-01-01

    The systematics of induced radioactivity on the Long Duration Exposure Facility (LDEF) were studied in a wide range of materials using low level background facilities for detection of gamma rays. Approx. 400 samples of materials processed from structural parts of the spacecraft, as well as materials from onboard experiments, were analyzed at national facilities. These measurements show the variety of radioisotopes that are produced with half-lives greater than 2 wks, most of which are characteristic of proton induced reactions above 20 MeV. For the higher activity, long lived isotopes, it was possible to map the depth and directional dependences of the activity. Due to the stabilized configuration of the LDEF, the induced radioactivity data clearly show contributions from the anisotropic trapped proton flux in the South Atlantic Anomaly. This effect is discussed, along with evidence for activation by galactic protons and thermal neutrons. The discovery of Be-7 was made on leading side parts of the spacecraft, although this was though not to be related to the in situ production of radioisotopes from external particle fluxes.

  19. Flexible Interior-Impression-Molding Tray

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.

    1991-01-01

    Device used inside combustion chamber of complicated shape for nondestructive evaluation of qualities of welds, including such features as offset, warping, misalignment of parts, and dropthrough. Includes flexible polypropylene tray trimmed to fit desired interior surface contour. Two neodymium boron magnets and inflatable bladder attached to tray. Tray and putty inserted in cavity to make mold of interior surface.

  20. Force-Measuring Clamps

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark

    2003-01-01

    Force-measuring clamps have been invented to facilitate and simplify the task of measuring the forces or pressures applied to clamped parts. There is a critical need to measure clamping forces or pressures in some applications for example, while bonding sensors to substrates or while clamping any sensitive or delicate parts. Many manufacturers of adhesives and sensors recommend clamping at specific pressures while bonding sensors or during adhesive bonding between parts in general. In the absence of a force-measuring clamp, measurement of clamping force can be cumbersome at best because of the need for additional load sensors and load-indicating equipment. One prior method of measuring clamping force involved the use of load washers or miniature load cells in combination with external power sources and load-indicating equipment. Calibrated spring clamps have also been used. Load washers and miniature load cells constitute additional clamped parts in load paths and can add to the destabilizing effects of loading mechanisms. Spring clamps can lose calibration quickly through weakening of the springs and are limited to the maximum forces that the springs can apply. The basic principle of a force-measuring clamp can be implemented on a clamp of almost any size and can enable measurement of a force of almost any magnitude. No external equipment is needed because the component(s) for transducing the clamping force and the circuitry for supplying power, conditioning the output of the transducers, and displaying the measurement value are all housed on the clamp. In other words, a force-measuring clamp is a complete force-application and force-measurement system all in one package. The advantage of unitary packaging of such a system is that it becomes possible to apply the desired clamping force or pressure with precision and ease.

  1. LDEF experiment A0034: Atomic oxygen stimulated outgassing

    NASA Astrophysics Data System (ADS)

    Linton, Roger C.; Kamenetzky, Rachel R.; Reynolds, John M.; Burris, Charles L.

    1992-01-01

    The passive Long Duration Exposure Facility (LDEF) Experiment A0034, 'Atomic Oxygen Stimulated Outgassing', consisted of two identical one-sixth tray modules, exposing selected thermal control coatings to atomic oxygen and the combined space environment on the leading edge, and for reference, to the relative 'wake' environment of the trailing edge. Optical mirrors were included adjacent to the thermal coatings for deposition of the outgassing products. Ultraviolet grade windows and metal covers were provided for additional assessment of the effects of various environmental factors. Preliminary results indicate that orbital atomic oxygen is both a degrading and optically restorative factor in the thermo-optical properties of selected thermal coatings. There is evidence of more severe optical degradation on collector mirrors adjacent to coatings that were exposed to RAM-impinging atomic oxygen. This evidence of atomic oxygen stimulated outgassing is discussed in relation to alternative factors that could affect degradation. The general effects of the space environment on the experiment hardware as well as the specimens are discussed.

  2. Force-Measuring Clamp

    NASA Technical Reports Server (NTRS)

    Nunnelee, Mark (Inventor)

    2004-01-01

    A precision clamp that accurately measures force over a wide range of conditions is described. Using a full bridge or other strain gage configuration. the elastic deformation of the clamp is measured or detected by the strain gages. Thc strain gages transmit a signal that corresponds to the degree of stress upon the clamp. Thc strain gage signal is converted to a numeric display. Calibration is achieved by ero and span potentiometers which enable accurate measurements by the force-measuring clamp.

  3. Quick-attach clamp

    NASA Technical Reports Server (NTRS)

    Vano, A. E.

    1968-01-01

    Clamp of the slideable jaw type can be applied to moving lines such as cables or ropes. The clamp has a trigger-operated jaw that can be attached to a redrop parachute on a moving tow cable. The trigger mechanism maintains the jaws retracted in the housing until they are released for clamping.

  4. Photovoltaic panel clamp

    SciTech Connect

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  5. Photovoltaic panel clamp

    DOEpatents

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  6. LDEF SP-HVDE (Space Plasma-High Voltage Drainage Experiment) post-flight results: Leakage current and discharge

    NASA Technical Reports Server (NTRS)

    Yaung, J. Y.; Wong, W. C.; Blakkolb, B. K.; Ryan, L. E.; Chedotte, J. E.; Taylor, W. W. L.

    1992-01-01

    TRW designed and fabricated two identical SP-HVDE trays which were flown in the NASA LDEF (Long Duration Exposure Facility) for 5.75 years in the LEO (low earth orbit) environment. One tray was placed near the leading edge and one near the trailing edge, and investigations were performed to compare the environmental interactions on the dielectric samples of the two trays. Each tray consisted of six assemblies with Kapton dielectric samples of varying thicknesses (i.e., 2 mils, 3 mil, and 5 mils) biased under +/- 300 V, +/- 500 V, and +/- 1000 V. The original objective was successfully achieved by measuring the first in-flight average leakage current through the samples. Less than 5 percent of the post-flight coulometers behaved anomalously. The data should be valuable to the design and evaluation of spacecraft with high voltage systems. M/D (micrometeoroid and debris) impacts over the dielectric samples were examined using a SEM (Scanning Electron Microscope) and an EDS (Energy Dispersive x-ray Spectrometer). These impact sites were sprayed by silver which were most likely caused either by the impact or a 'local ESD' (electrostatic discharge).

  7. TRAY MOUNTAIN ROADLESS AREA, GEORGIA.

    USGS Publications Warehouse

    Nelson, Arthur E.; Chatman, Mark L.

    1984-01-01

    A mineral survey indicates that the Tray Mountain Roadless Area, Georgia has little promise for the occurrence of metallic mineral resources. Rocks underlying the Tray Mountain Roadless Area are suitable for crushed rock or aggregate; however, other sources for these materials are available closer to present markets. There is a possibility for the occurrence of hydrocarbon resources underlying the area at great depth, but no hydrocarbon potential was identified. Detailed studies are needed to establish the presence or absence and mineral-resource potential of olivine, nickel, cobalt, and chrome in the two mafic-ultramafic bodies in the Hayesville thrust sheet. The cause of the lead anomaly in pan concentrate samples taken from the southwest part of the roadless area has not been established; the mineral residence and source of the anomaly remain to be determined.

  8. Preliminary total dose measurements on LDEF.

    PubMed

    Reitz, G

    1992-01-01

    After spending nearly six years in Earth orbit twenty stacks consisting of radiation detectors and biological objects are now back on Earth. These stacks (Experiment A0015 Free Flyer Biostack) are part of the fifty seven science and technology experiments of the Long Duration Exposure Facility (LDEF) of NASA. The major objectives of the Free Flyer Biostack experiments are to investigate the biological effectiveness of single heavy ions of the cosmic radiation in various biological systems and to provide information about the spectral composition of the radiation field and the total dose received in the LDEF orbit. The Biostacks are mounted in two different locations of the LDEF. Up to three layers of Lithium fluoride thermoluminescence dosimeters (TLD) of different isotopic composition were located at different depths of some Biostacks. The preliminary analysis of the TLD yields maximum absorbed dose rates of 2.24 mGy day-1 behind 0.7 g cm-2 shielding and 1.17 mGy day-1 behind 12 g cm-2 shielding. A thermal neutron fluence of 1.7 n cm-2 s-1 is determined from the differences in absorbed dose for different isotopic mixtures of Lithium. The results of this experiment on LDEF are especially valuable and of high importance since LDEF stayed for about six years in the prospected orbit of the Space Station Freedom. There is no knowledge about the effectiveness of the space radiation in long-term spaceflights and the dosimetric data in this orbit are scarce.

  9. Overview of the LDEF MSIG databasing activities

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.

    1995-01-01

    The Long Duration Exposure Facility (LDEF) and the accompanying experiments were composed of and contained a wide variety of materials, representing the largest collection of materials flown in low earth orbit (LEO) and retrieved for ground-based analysis to date. The results and implications of the mechanical, thermal, optical, and electrical data from these materials are the foundation on which future LEO spacecraft and missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been charged with establishing and developing databases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the spacecraft user community in an easily accessed, user-friendly form. This paper gives an overview of the current LDEF Materials Databases, their capabilities, and availability. An overview of the philosophy and format of a developing handbook on LEO effects on materials is also described.

  10. LDEF Materials Workshop 1991, part 2

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1992-01-01

    The LDEF Materials Workshop 1991 was a follow-on to the Materials Sessions at the First LDEF Post-Retrieval Symposium held in Kissimmee, Florida, June 1991. The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coating and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit to investigate the effects of LEO exposure on materials which were not originally planned to be test specimens. Papers from the technical sessions are presented.

  11. Custom impression trays. Part II: Removal forces.

    PubMed

    Dixon, D L; Breeding, L C; Moseley, J P

    1994-03-01

    When choosing a material for making custom impression trays, it is important to understand the forces to which the tray will be subjected during removal of the completed impression from the oral cavity. Such forces have not been recorded in the dental literature. The purpose of Part II of this three-part series was to record these forces in vitro, using two different tray-removal methods. A polymethyl methacrylate custom tray was used during this study. Results from this investigation indicated that it is easier to remove a completed impression, made with a custom tray, by a single point of anterior force application (224 N) than by force application evenly around the tray (514 N). The recorded force values from this investigation will be used in Part III of this series.

  12. LDEF (Postflight), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on Graphite-Polyimide and Graphite-Epoxy Mechanical Properties, Tray A01 The Graphite-Polyimide and Graphite-Epoxy Mechanical Properties experiment postflight photograph was taken in the Orbiter Processing Facility during the period when the LDEF was being transferred from the Orbiter cargo bay to the KSC Payload Transporter. The photograph shows considerably more detail than the flight photograph. The horizontal lines on the honeycomb panel that appear to be cracks from space exposure are instead fine lines of excess epoxy resin formed during the bagging and curing process. The harsh white color of the epoxy adhesive along the rivet lines is from the lighting conditions in the OPF. The brown discoloration on the paint dots and the stain on the aluminum mounting strips appear to have changed little from the flight photograph. The greater detail does show that a stain exists at most composite and mounting strip interfaces.

  13. LDEF (Prelaunch), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on G

    NASA Technical Reports Server (NTRS)

    1984-01-01

    LDEF (Prelaunch), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on Graphite-Polyimide and Graphite-Epoxy Mechanical Properties, Tray A07 The Graphite-Polyimide and Graphite-Epoxy Mechanical Properties experiment fills two (2) three (3) inch deep peripheral trays, A01 and A07. The experiment in the A07 experiment tray, shown in this photograph, consist of three (3) Graphite-Polyimide laminate panels and associated mounting hardware. Each panel occupies one third (1/3) of the LDEF experiment tray; a PMR-15 precured graphite-polyimide panel (T40T30060-009) in the right one third section, a F-178/T300 cocured graphite-polyimide panel (T40T30060-005) in the center one third section and a F-178/T300 precured graphite-polyimide panel (T40T30060-001) is in the left one third section of the tray. The panels are held in place with aluminum strips and non-magnetic stainless steel fasteners. The aluminum strips are covered with a dull gold coating over most of the exposed surface. The coating has been scraped from the aluminum mounting strip near the upper left tray corner. The mounting system, designed to allow for differential thermal expansion, minimizes the risk of inducing high stresses into the test panels. PMR-15 Graphite-Polyimide Panel (precured) - The PMR-15 graphite-polyimide laminated panel (T40T30060-009) is a uniform dark brown with a yellow identification number. The panel has several off-white marks in the lower right corner and light grayish-brown discolorations can be seen behind the identification number and behind the off-white marks. F-178/T300 Graphite-Polyimide Panel (cocured) - The F178/T300 graphite-polyimide laminated panel (T40T30060-005) is also a dark brown with a yellow identification number and small offwhite marks in the lower right corner. F-178/300 Graphite-Polyimide Panel (precured) - The F178/300 graphite-polyimide laminated panel (T40T30060-001) is a dark brown color with a yellow identification number and

  14. Insulated pipe clamp design

    SciTech Connect

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized.

  15. Partial analysis of LDEF experiment A-0114

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1991-01-01

    During the contract period, work concentrated on four main components. Data from the UAH silver pin hole camera was analyzed for determination of the mean Long Duration Exposure Facility (LDEF) satellite attitude and stability in orbit, to include pitch and yaw. Chemical testing performed on the AO-114 hot plate determined the form and locus of absorption of cosmogenic beryllium-7. Reaction rates of atomic oxygen with Kapton and other polymeric solids integrated over the whole LDEF orbital lifetime were analyzed. These rates were compared with the JSC estimated values for Space Station exposures. Metal and polymer films exposed on A0114 (C-9 and C-3 plates) were also analyzed.

  16. LDEF electronic systems: Successes, failures and lessons

    NASA Technical Reports Server (NTRS)

    Miller, E. A.; Brooks, L. K.; Johnson, C. J.; Levorsen, J. L.; Mulkey, O. R.; Porter, D. C.; Smith, D. W.

    1992-01-01

    Following LDEF retrieval, a series of tests were performed of various NASA and experimenter electronics, including the NASA provided data and initiate systems. The post-flight test program objectives and observations are discussed, as well as the 'lessons learned' from these examinations. Results are also included of an evaluation of electronic hardware flown on Boeing's LDEF experiment. Overall the electronic systems performed remarkably well, even though most were developed under budget restraints and used some non-space qualified components. Several anomalies were observed, however, including some which resulted in loss of data. Suggestions for avoiding similar problems on future programs are presented.

  17. Radial wedge flange clamp

    DOEpatents

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  18. LDEF microenvironments, observed and predicted

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Pippin, H. G.; Gillis, J. R.

    1993-01-01

    A computer model for prediction of atomic oxygen exposure of spacecraft in low earth orbit, referred to as the primary atomic oxygen model, was originally described at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The primary atomic oxygen model accounts for variations in orbit parameters, the condition of the atmosphere, and for the orientation of exposed surfaces relative to the direction of spacecraft motion. The use of the primary atomic oxygen model to define average atomic oxygen exposure conditions for a spacecraft is discussed and a second microenvironments computer model is described that accounts for shadowing and scattering of atomic oxygen by complex surface protrusions and indentations. Comparisons of observed and predicted erosion of fluorinated ethylene propylene (FEP) thermal control blankets using the models are presented. Experimental and theoretical results are in excellent agreement. Work is in progress to expand modeling capability to include ultraviolet radiation exposure and to obtain more detailed information on reflecting and scattering characteristics of material surfaces.

  19. LDEF (Postflight), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Postflight), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on Graphite-Polyimide and Graphite-Epoxy Mechanical Properties, Tray A07 The postflight photograph was taken in the Operations and Control (O&C) facility after the LDEF had been transferred from the KSC Payload Transporter to the LDEF Assembly and Transport System (LATS) and shows more detail than the flight photograph. The areas on the aluminum mounting strips where the coating has been scraped and/or abraided can be seen in greater detail under the better lighting conditions. The coating color remains essentially the same. The white paint dots on the tray clampblocks have changed little from the orginal color. PMR-15 Graphite-Polyimide Panel (precured) - The PMR-15 graphite-polyimide laminated panel (T40T30060-009) postflight photograph provides more detail than the flight photograph. The geometric pattern seen on the flight photograph is not visible, however, the horizontal lines, cracks and/or crazing, observed previously are better defined. A gray haze or dust appears to cover the gray/brown panel surface. The yellow colored identification numbers seem to be a little lighter than in the flight photograph but the white marking in the upper left corner do not appear to have changed. Scratch marks/abrasions on the lower left edge of panel were on prelaunch photographs. F-178/T300 Graphite-Polyimide Panel (cocured) - The 178/T300 graphite-polyimide panel (T40T30060-005) seems to have changed in color from the light gray in the flight photograph to a brownish gray. The yellow identification numbers seem lighter while the white marking in the upper left corner appear brighter. The fine horizontal lines, cracks and/or crazing, are still visible on the panel surface. F178/T300 Graphite-Polyimide Panel (precured) - The 178/T300 graphite-polyimide laminated panel (T40T30060-001) seems to have changed to a brownish gray from the light gray color seen in the flight photograph

  20. Reusable thermal cycling clamp

    NASA Technical Reports Server (NTRS)

    Debnam, W. J., Jr.; Fripp, A. L.; Crouch, R. K. (Inventor)

    1985-01-01

    A reusable metal clamp for retaining a fused quartz ampoule during temperature cycling in the range of 20 deg C to 1000 deg C is described. A compressible graphite foil having a high radial coefficient of thermal expansion is interposed between the fused quartz ampoule and metal clamp to maintain a snug fit between these components at all temperature levels in the cycle.

  1. Photographic Survey of the LDEF Mission

    NASA Technical Reports Server (NTRS)

    ONeal, Robert L.; Levine, Arlene S.; Kiser, Carol C.

    1996-01-01

    This publication documents a selected number of pre-flight, in-flight, and postflight photographs of the LDEF and experiments. Changes in condition of the experiments caused by space exposure are discussed. Accompanying this black and white publication it a CD-ROM that contains the color version of the photographs as well as the text.

  2. Selected results for LDEF thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1993-01-01

    Several different thermal control coatings were analyzed as part of the Long Duration Exposure Facility (LDEF) Materials Special Investigation Group activity and as part of the Space Environment Effects on Spacecraft Materials Experiment M0003. A brief discussion of the results obtained for these materials is presented.

  3. Gamma radiation survey of the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; Mckisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

    1991-01-01

    The retrieval of the Long Duration Exposure Facility (LDEF) spacecraft after nearly 6 years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. The first complete gamma ray survey was conducted of a large spacecraft on LDEF shortly after its return to Earth. A surprising observation was the large Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes seen during the survey, the strongest being Na-22 and Mn-54, are all attributed to activation of spacecraft components in orbit. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

  4. LDEF data: Comparisons with existing models

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Watts, Alan J.; Wagner, John D.; Atkinson, Dale R.

    1993-01-01

    The relationship between the observed cratering impact damage on the Long Duration Exposure Facility (LDEF) versus the existing models for both the natural environment of micrometeoroids and the man-made debris was investigated. Experimental data was provided by several LDEF Principal Investigators, Meteoroid and Debris Special Investigation Group (M&D SIG) members, and by the Kennedy Space Center Analysis Team (KSC A-Team) members. These data were collected from various aluminum materials around the LDEF satellite. A PC (personal computer) computer program, SPENV, was written which incorporates the existing models of the Low Earth Orbit (LEO) environment. This program calculates the expected number of impacts per unit area as functions of altitude, orbital inclination, time in orbit, and direction of the spacecraft surface relative to the velocity vector, for both micrometeoroids and man-made debris. Since both particle models are couched in terms of impact fluxes versus impactor particle size, and much of the LDEF data is in the form of crater production rates, scaling laws have been used to relate the two. Also many hydrodynamic impact computer simulations were conducted, using CTH, of various impact events, that identified certain modes of response, including simple metallic target cratering, perforations and delamination effects of coatings.

  5. Sand Tray Group Counseling with Adolescents

    ERIC Educational Resources Information Center

    Draper, Kay; Ritter, Kelli B.; Willingham, Elizabeth U.

    2003-01-01

    Sand tray group counseling with adolescents is an activity-based intervention designed to help participants address specific intrapersonal concerns, learn important skills of socialization, and develop a caring community. The main focus of the group is building small worlds with miniature figures in individual trays of sand and having an…

  6. The preliminary Long Duration Exposure Facility (LDEF) materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1992-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated for LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux), and author(s) or principal investigator(s). The LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which was computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. This paper describes the LDEF Materials Data Base and includes step-by-step example searches using the data base. Information on how to become an authorized user of the system is included.

  7. Contamination on LDEF: Sources, distribution, and history

    NASA Technical Reports Server (NTRS)

    Pippin, Gary; Crutcher, Russ

    1993-01-01

    An introduction to contamination effects observed on the Long Duration Exposure Facility (LDEF) is presented. The activities reported are part of Boeing's obligation to the LDEF Materials Special Investigation Group. The contamination films and particles had minimal influence on the thermal performance of the LDEF. Some specific areas did have large changes in optical properties. Films also interfered with recession rate determination by reacting with the oxygen or physically shielding underlying material. Generally, contaminant films lessen the measured recession rate relative to 'clean' surfaces. On orbit generation of particles may be an issue for sensitive optics. Deposition on lenses may lead to artifacts on photographic images or cause sensors to respond inappropriately. Particles in the line of sight of sensors can cause stray light to be scattered into sensors. Particles also represent a hazard for mechanisms in that they can physically block and/or increase friction or wear on moving surfaces. LDEF carried a rather complex mixture of samples and support hardware into orbit. The experiments were assembled under a variety of conditions and time constraints and stored for up to five years before launch. The structure itself was so large that it could not be baked after the interior was painted with chemglaze Z-306 polyurethane based black paint. Any analysis of the effects of molecular and particulate contamination must account for a complex array of sources, wide variation in processes over time, and extreme variation in environment from ground to launch to flight. Surface conditions at certain locations on LDEF were established by outgassing of molecular species from particular materials onto adjacent surfaces, followed by alteration of those species due to exposure to atomic oxygen and/or solar radiation.

  8. Effects of the LDEF orbital environment on the reflectance of optical mirror materials

    NASA Technical Reports Server (NTRS)

    Herzig, Howard; Fleetwood, Charles, Jr.

    1995-01-01

    Specimens of eight different optical mirror materials were flown in low earth orbit as part of the Long Duration Exposure Facility (LDEF) manifest to determine their ability to withstand exposure to the residual atomic oxygen and other environmental effects at those altitudes. Optical thin films of aluminum, gold, iridium, osmium, platinum, magnesium fluoride-overcoated aluminum and reactively deposited, silicon monoxide-protected aluminum, all of which were vacuum deposited on polished fused silica substrates, were included as part of Experiment S0010, Exposure of Spacecraft Coatings. Two specimens of polished, chemical vapor deposited (CVD) silicon carbide were installed in sites available in Experiment A0114, Interaction of Atomic Oxygen with Solid Surfaces at Orbital Altitudes, which included trays in two of the spacecraft bays, one on the leading edge and the other on the trailing edge. One of the silicon carbide samples was located in each of these trays. This paper will compare specular reflectance data from the preflight and postflight measurements made on each of these samples and attempt to explain the changes in light of the specific environments to which the experiments were exposed.

  9. Laser beam guard clamps

    DOEpatents

    Dickson, Richard K.

    2010-09-07

    A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

  10. A monogenean without clamps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ectoparasites face a daily challenge: to remain attached to their host. Polyopisthocotylean monogeneans attach to the surface of fish gills by highly specialized structures, the sclerotized clamps. In the original description of the protomicrocotylid species Lethacotyle fijiensis, described 50 years...

  11. Develop and Manufacture an airlock sliding tray

    SciTech Connect

    Lawton, Cindy M.

    2014-02-26

    Objective: The goal of this project is to continue to develop an airlock sliding tray and then partner with an industrial manufacturing company for production. The sliding tray will be easily installed into and removed from most glovebox airlocks in a few minutes. Technical Approach: A prototype of a sliding tray has been developed and tested in the LANL cold lab and 35 trays are presently being built for the plutonium facility (PF-4). The current, recently approved design works for a 14-inch diameter round airlock and has a tray length of approximately 20 inches. The grant will take the already tested and approved round technology and design for the square airlock. These two designs will be suitable for the majority of the existing airlocks in the multitude of DOE facilities. Partnering with an external manufacturer will allow for production of the airlock trays at a much lower cost and increase the availability of the product for all DOE sites. Project duration is estimated to be 12-13 months. Benefits: The purpose of the airlock sliding trays is fourfold: 1) Mitigate risk of rotator cuff injuries, 2) Improve ALARA, 3) Reduce risk of glovebox glove breaches and glove punctures, and 4) Improve worker comfort. I have had the opportunity to visit many other DOE facilities including Savannah, Y-12, ORNL, Sandia, and Livermore for assistance with ergonomic problems and/or injuries. All of these sites would benefit from the airlock sliding tray and I can assume all other DOE facilities with gloveboxes built prior to 1985 could also use the sliding trays.

  12. Fluid mechanics of distillation trays (II): Prediction of flow fields on some practically important sieve trays

    SciTech Connect

    Basaran, O.A.; Wohlhuter, F.K.

    1995-04-01

    Separation processes account for 6% of the annual US energy expenditure, 50% of which is consumed by distillation alone. Therefore, it is not too surprising that distillation, the work horse of the chemical process industry, is under attack by emerging technologies based on membranes and adsorption, whose proponents claim enormous potential savings in energy expenditures. Moreover, the massive scale of use plus the energy intensiveness implies that even small improvements in the efficiency of distillation processes can result in large gains in energy savings. Such improvements can come from developing fundamental understanding of the fluid mechanics of tray columns, which has heretofore been lacking and is the subject of this paper. The flow on a distillation tray is governed by the equations of mass and momentum conservation in three-dimensions. These equations are reduced here to a set of two-dimensional equations by averaging them across the depth of the fluid film flowing across the tray. The depth-averaged equations are then solved by a Galerkin/finite element technique. The evolution of film height and flow fields are determined for three types of trays that are commonly found in the laboratory and in actual plants: rectangular trays, circular trays, and so-called race track trays. Sample results include development and growth of eddies of zones of recirculation on various types of trays, variation of film height with position on a tray, and effect of tray geometry, flow rate, and physical properties on tray holdup. Occurrence of eddies and large height variations on trays can have detrimental consequences in vapor-liquid contacting operations. Therefore, the new rigorous computations should prove indispensable in developing column designs that avoid or minimize them.

  13. LDEF materials special investigation group's data bases

    NASA Technical Reports Server (NTRS)

    Strickland, John W.; Funk, Joan G.; Davis, John M.

    1993-01-01

    The Long Duration Exposure Facility (LDEF) was composed of and contained a wide array of materials, representing the largest collection of materials flown for space exposure and returned for ground-based analyses to date. The results and implications of the data from these materials are the foundation on which future space missions will be built. The LDEF Materials Special Investigation Group (MSIG) has been tasked with establishing and developing data bases to document these materials and their performance to assure not only that the data are archived for future generations but also that the data are available to the space user community in an easily accessed, user-friendly form. The format and content of the data bases developed or being developed to accomplish this task are discussed. The hardware and software requirements for each of the three data bases are discussed along with current availability of the data bases.

  14. First LDEF Post-Retrieval Symposium abstracts

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Compiler)

    1991-01-01

    The LDE facility was designed to better understand the environments of space and the effects of prolonged exposure in these environments on future spacecraft. The symposium abstracts presented here are organized according to the symposium agenda into five sessions. The first session provides an overview of the LDEF, the experiments, the mission, and the natural and induced environments the spacecraft and experiments encountered during the mission. The second session presents results to date from studies to better define the environments of near-Earth space. The third session addresses studies of the effects of the space environments on spacecraft materials. The fourth session addresses studies of the effects of the space environments on spacecraft systems. And the fifth session addresses other subjects such as results of the LDEF life science and crystal growth experiments.

  15. Criticality of Be-7 concentration in LDEF

    NASA Technical Reports Server (NTRS)

    Young, Poh Shien

    1992-01-01

    Heretofore, a number of papers reported the detection of high Be-7 concentration in the LDEF. It sounded alarming for space flight in the LDEF orbit, since Be-7 has a half life of 54 days and emits gamma rays of 0.48 MeV which is ionizing radiation. Two concerns are raised: the high concentration of harmful rays to spacecraft crews; and the concentration damage to spacecraft electronic components. A need was established to estimate the dosage of this concentration and compare the value of the allowed limits. As a result, the dosage was calculated of 0.03 rad. When this is compared with the human limit of 25 rads and the susceptibility requirement of 800 rads, the Be-7 amount should not be considered critical. The calculation of Be-7 dosage is detailed.

  16. LDEF Materials Workshop 1991, part 1

    NASA Technical Reports Server (NTRS)

    Stein, Bland A. (Compiler); Young, Philip R. (Compiler)

    1992-01-01

    The workshop comprised a series of technical sessions on materials themes, followed by theme panel meetings. Themes included materials, environmental parameters, and data bases; contamination; thermal control and protective coatings and surface treatments; polymers and films; polymer matrix composites; metals, ceramics, and optical materials; lubricants adhesives, seals, fasteners, solar cells, and batteries. This report contains most of the papers presented at the technical sessions. It also contains theme panel reports and visual aids. This document continues the LDEF Space Environmental Effects on Materials Special Investigation Group (MSIG) pursuit of its charter to investigate the effects of LEO exposure on materials which where not originally planned to be test specimens and to integrate this information with data generated by principal investigators into an LDEF materials data base.

  17. LDEF solar cell radiation effects analysis

    NASA Technical Reports Server (NTRS)

    Rives, Carol J.; Azarewicz, Joseph L.; Massengill, Lloyd

    1993-01-01

    Because of the extended time that the Long Duration Exposure Facility (LDEF) mission stayed in space, the solar cells on the satellite experienced greater environments than originally planned. The cells showed an overall degradation in performance that is due to the combined effects of the various space environments. The purpose of this analysis is to calculate the effect of the accumulated radiation on the solar cells, thereby helping Marshall Space Flight Center (MSFC) to unravel the relative power degradation from the different environments.

  18. Long Duration Exposure Facility (LDEF) results

    NASA Technical Reports Server (NTRS)

    Preuss, Ludwig

    1991-01-01

    Thermal control coatings, solar cells, and micrometeoroid capture cells were flown on the LDEF-Experiment S1002 to investigate the behavior of these components under space conditions and to collect micrometeoroids and debris. The experiment and the components to be investigated are described. The visual inspections, electrical and thermooptical measurements as well as chemical and metallurgical investigations conducted on the complete experiment as well as on single components are described, analyzed and discussed.

  19. LDEF Interplanetary Dust Experiment (IDE) results

    NASA Technical Reports Server (NTRS)

    Oliver, John P.; Singer, S. F.; Weinberg, J. L.; Simon, C. G.; Cooke, W. J.; Kassel, P. C.; Kinard, W. H.; Mulholland, J. D.; Wortman, J. J.

    1995-01-01

    The Interplanetary Dust Experiment (IDE) provided high time resolution detection of microparticle impacts on the Long Duration Exposure Facility satellite. Particles, in the diameter range from 0.2 microns to several hundred microns, were detected impacting on six orthogonal surfaces of the gravity-gradient stabilized LDEF spacecraft. The total sensitive surface area was about one square meter, distributed between LDEF rows 3 (Wake or West), 6 (South), 9 (Ram or East), 12 (North), as well as the Space and Earth ends of LDEF. The time of each impact is known to an accuracy that corresponds to better than one degree in orbital longitude. Because LDEF was gravity-gradient stabilized and magnetically damped, the direction of the normal to each detector panel is precisely known for each impact. The 11 1/2 month tape-recorded data set represents the most extensive record gathered of the number, orbital location, and incidence direction for microparticle impacts in low Earth orbit. Perhaps the most striking result from IDE was the discovery that microparticle impacts, especially on the Ram, South, and North surfaces, were highly episodic. Most such impacts occurred in localized regions of the orbit for dozens or even hundreds of orbits in what we have termed Multiple Orbit Event Sequences (MOES). In addition, more than a dozen intense and short-lived 'spikes' were seen in which impact fluxes exceeded the background by several orders of magnitude. These events were distributed in a highly non-uniform fashion in time and terrestrial longitude and latitude.

  20. Skylab Food Heating and Serving Tray

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Shown here is the Skylab food heating and serving tray in its stowed position. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  1. A New Idea for Dissecting Tray

    ERIC Educational Resources Information Center

    Branham, Arthur

    1976-01-01

    A method of preparing a special dissecting tray to be used with transmitted light as well as reflected light is presented. It may also be used with an overhead projector to illustrate some skeletal structures in vertebrates. (Author/EB)

  2. Gamma radiation survey of the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Phillips, G. W.; King, S. E.; August, R. A.; Ritter, J. C.; Cutchin, J. H.; Haskins, P. S.; Mckisson, J. E.; Ely, D. W.; Weisenberger, A. G.; Piercey, R. B.

    1992-01-01

    The retrieval of the Long Duration Exposure Facility spacecraft in January 1990 after nearly six years in orbit offered a unique opportunity to study the long term buildup of induced radioactivity in the variety of materials on board. We conducted the first complete gamma-ray survey of a large spacecraft on LDEF shortly after its return to earth. A surprising observation was the Be-7 activity which was seen primarily on the leading edge of the satellite, implying that it was picked up by LDEF in orbit. This is the first known evidence for accretion of a radioactive isotope onto an orbiting spacecraft. Other isotopes observed during the survey, the strongest being Na-22, are all attributed to activation of spacecraft components. Be-7 is a spallation product of cosmic rays on nitrogen and oxygen in the upper atmosphere. However, the observed density is much greater than expected due to cosmic-ray production in situ. This implies transport of Be-7 from much lower altitudes up to the LDEF orbit.

  3. Radioactivities induced in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.; Moss, Calvin E.; Bobias, S. George; Masarik, Jozef

    1993-01-01

    Radioactivities induced in several Long Duration Exposure Facilities (LDEF) samples were measured by low-level counting at Los Alamos and elsewhere. These radionuclides have activities similar to those observed in meteorites and lunar samples. Some trends were observed in these measurements in terms of profiles in trunnion layers and as a function of radionuclide half-life. Several existing computer codes were used to model the production by the protons trapped in the Earth's radiation belts and by the galactic cosmic rays of some of these radionuclides, Mn-54 and Co-57 in steel, Sc-46 in titanium, and Na-22 in alloys of titanium and aluminum. Production rates were also calculated for radionuclides possibly implanted in LDEF, Be-7, Be-10, and C-14. Enhanced concentrations of induced isotopes in the surfaces of trunnion sections relative to their concentrations in the center are caused by the lower-energy protons in the trapped radiation. Secondary neutrons made by high-energy trapped protons and by galactic cosmic rays produce much of the observed radioactivities, especially deep in an object. Comparisons of the observed to calculated activities of several radionuclides with different half-lives indicate that the flux of trapped protons at LDEF decreased significantly at the end of the mission.

  4. Performance of selected polymeric materials on LDEF

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Stein, Bland A.

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials for potential advanced spacecraft application. This paper examines the molecular level response of selected polymeric materials which flew onboard this vehicle. Polymers include epolyimide, polysulfone, and polystyrene film and polyimide, polysulfone, and epoxy matrix resin/graphite fiber reinforced composites. Several promising experimental films were also studied. Most specimens received 5.8 years of low Earth orbital (LEO) exposure on LDEF. Several samples received on 10 months of exposure. Chemical characterization techniques included ultraviolet-visible and infrared spectroscopy, thermal analysis, x-ray photoelectron spectroscopy, and selected solution property measurements. Results suggest that many molecular level effects present during the first 10 months of exposure were not present after 5.8 years of exposure for specimens on or near Row 9. Increased AO fluence near the end of the mission likely eroded away much environmentally induced surface phenomena. The objective of this work is to provide fundamental information for use in improving the performance of polymeric materials for LEO application. A secondary objective is to gain an appreciation for the constraints and limitations of results from LDEF polymeric materials experiments.

  5. View of food tray to be used in Skylab program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A close-up view of a food tray which is scheduled to be used in the Skylab program. Several packages of space food lie beside the tray. The food in the tray is ready to eat. Out of tray, starting from bottom left: grape drink, beef pot roast, chicken and rice, beef sandwiches and sugar cookie cubes, In tray, from back left: orange drink, strawberries, asparagus, prime rib, dinner roll and butterscotch pudding in the center.

  6. Predictions of LDEF radioactivity and comparison with measurements

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.; Harmon, B. A.; Laird, C. E.

    1995-01-01

    As part of the program to utilize LDEF data for evaluation and improvement of current ionizing radiation environmental models and related predictive methods for future LEO missions, calculations have been carried out to compare with the induced radioactivity measured in metal samples placed on LDEF. The predicted activation is about a factor of two lower than observed, which is attributed to deficiencies in the AP8 trapped proton model. It is shown that this finding based on activation sample data is consistent with comparisons made with other LDEF activation and dose data. Plans for confirming these results utilizing additional LDEF data sets, and plans for model modifications to improve the agreement with LDEF data, are discussed.

  7. Evaluation of seals, lubricants, and adhesives used on LDEF

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Keough, Bruce; Pippin, Gary

    1993-01-01

    A wide variety of seals, lubricants, and adhesives were used on the Long Duration Exposure Facility (LDEF). The results, to date, of the Systems Special Investigation Group (SIG) and the Materials SIG investigation into the effect of the long term low Earth orbit (LEO) exposure on these materials is discussed. Results of this investigation show that if the material was shielded from exposure to LDEF's external environment, the 69 month exposure to LEO had minimal effect on the material. However, if the material was on LDEF's exterior surface, a variety of events occurred ranging from no material change, to changes in mechanical or physical properties, to complete disappearance of the material. The results are from the following sources: (1) visual examinations and/or testing of materials performed by various LDEF experimenters, (2) testing done at Boeing in support of the Materials or Systems SIG investigations, (3) testing done at Boeing on Boeing hardware flown on LDEF.

  8. Clamping characteristics study on different types of clamping unit

    SciTech Connect

    Jiao, Zhiwei; Liu, Haichao; Xie, Pengcheng; Yang, Weimin

    2015-05-22

    Plastic products are becoming more and more widely used in aerospace, IT, digital electronics and many other fields. With the development of technology, the requirement of product precision is getting higher and higher. However, type and working performance of clamping unit play a decisive role in product precision. Clamping characteristics of different types of clamping unit are discussed in this article, which use finite element numerical analysis method through the software ABAQUS to study the clamping uniformity, and detect the clamping force repeatability precision. The result shows that compared with toggled three-platen clamping unit, clamping characteristics of internal circulation two-platen clamping unit are better, for instance, its mold cavity deformation and force that bars and mold parting surface suffered are more uniform, and its clamping uniformity and repeatability precision is also better.

  9. Mask side wall clamping

    NASA Astrophysics Data System (ADS)

    Naaijkens, G. J. P.; Rosielle, P. C. J. N.; Steinbuch, M.

    2013-04-01

    Current state-of-the-art optical lithography scanners using 193nm wavelength lasers and numerical apertures of 1.35 have reached fundamental printing limits. Yet, consumer demands and device trends continue to drive smaller feature sizes, and most IC manufacturers have already navigated beyond the lithographic printing limits by turning to double patterning techniques.1 Requiring an extra lithography step for these techniques, it is essential to keep costs down by e.g. increasing wafer throughput. Currently, leading edge immersion scanners consistently produce over 190 wafers per hour (wph). However, to keep decreasing the cost per transistor, higher throughputs of 250 wph are key targets for the year 20132. Amongst others, higher throughput can be acquired by increasing acceleration of the positioning stages. One of the constraining technologies is the current mask or reticle clamping concept due to its friction based acceleration. While current reticle accelerations amount to 150 m/s2, some research3 has already been performed to reticle stage accelerations of 400 m/s2. In this paper, a novel reticle clamping concept is presented. The concept is shown to be suitable for accelerations larger than 400 m/s2 entirely eliminating reticle slip, whilst meeting specifications for clamping induced error with a pattern deformation of < 0.12 nm on wafer stage level (WS) and comprising high clamp stiffness.

  10. Clamp for detonating fuze

    NASA Technical Reports Server (NTRS)

    Holderman, E. J.

    1968-01-01

    Quick acting clamp provides physical support for a closely confined detonating fuse in an application requiring removal and replacement at frequent intervals during test. It can be designed with a base of any required strength and configuration to permit the insertion of an object.

  11. LDEF materials results for spacecraft applications: Executive summary

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F. (Compiler); Dooling, D. (Compiler)

    1995-01-01

    To address the challenges of space environmental effects, NASA designed the Long Duration Exposure Facility (LDEF) for an 18-month mission to expose thousands of samples of candidate materials that might be used on a space station or other orbital spacecraft. LDEF was launched in April 1984 and was to have been returned to Earth in 1985. Changes in mission schedules postponed retrieval until January 1990, after 69 months in orbit. Analyses of the samples recovered from LDEF have provided spacecraft designers and managers with the most extensive data base on space materials phenomena. Many LDEF samples were greatly changed by extended space exposure. Among even the most radially altered samples, NASA and its science teams are finding a wealth of surprising conclusions and tantalizing clues about the effects of space on materials. Many were discussed at the first two LDEF results conferences and subsequent professional papers. The LDEF Materials Results for Spacecraft Applications Conference was convened in Huntsville to discuss implications for spacecraft design. Already, paint and thermal blanket selections for space station and other spacecraft have been affected by LDEF data. This volume synopsizes those results.

  12. The Long Duration Exposure Facility (LDEF) annotated bibliography

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    1995-01-01

    A major objective of the Space Act of 1958 which led to the establishment of the National Aeronautics and Space Administration (NASA) was the dissemination of science and technology. Today, under NASA administrator Daniel Goldin and the White House, there is a reemphasis on the dissemination and transfer of NASA science and technology to U.S. industry: both aerospace and non aerospace. The goal of this transfer of science and technology is to aid U.S. industries, making them more competitive in the global economy. After 69 months in space, LDEF provided new and important information on the space environment and how this hostile environment impacts spacecraft materials and systems. The space environment investigated by the LDEF researchers included: ionizing radiation, ultraviolet radiation, meteoroid and debris, atomic oxygen, thermal cycling, vacuum, microgravity, induced contamination and various synergistic effects. The materials used as part of LDEF and its experiments include polymers, metals, glass, paints and coatings. Fiber optic, mechanical, electrical, and optical systems were also used on LDEF. As part of the effort to disseminate and transfer LDEF science and technology, an annotated bibliographic database is being developed. This bibliography will be available electronically, as well as in hard copy. All LDEF domestic and foreign publications in the open literature, including scientific journals, the NASA LDEF Symposia volumes, books, technical reports and unrestricted contractor reports will be included in this database. The hard copy, as well as the electronic database, will be categorized by section in the scientific and technical discipline.

  13. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1992-01-01

    Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.

  14. Surface contamination on LDEF exposed materials

    NASA Technical Reports Server (NTRS)

    Hemminger, Carol S.

    1992-01-01

    X-ray photoelectron spectroscopy (XPS) has been used to study the surface composition and chemistry of Long Duration Exposure Facility (LDEF) exposed materials including silvered Teflon (Ag/FEP), Kapton, S13GLO paint, quartz crystal monitors (QCM's), carbon fiber/organic matrix composites, and carbon fiber/Al Alloy composites. In each set of samples, silicones were the major contributors to the molecular film accumulated on the LDEF exposed surfaces. All surfaces analyzed have been contaminated with Si, O, and C; most have low levels (less than 1 atom percent) of N, S, and F. Occasionally observed contaminants included Cl, Na, K, P, and various metals. Orange/brown discoloration observed near vent slots in some Ag/FEP blankets were higher in carbon, sulfur, and nitrogen relative to other contamination types. The source of contamination has not been identified, but amine/amide functionalities were detected. It is probable that this same source of contamination account for the low levels of sulfur and nitrogen observed on most LDEF exposed surfaces. XPS, which probes 50 to 100 A in depth, detected the major sample components underneath the contaminant film in every analysis. This probably indicates that the contaminant overlayer is patchy, with significant areas covered by less that 100 A of molecular film. Energy dispersive x-ray spectroscopy (EDS) of LDEF exposed surfaces during secondary electron microscopy (SEM) of the samples confirmed contamination of the surfaces with Si and O. In general, particulates were not observed to develop from the contaminant overlayer on the exposed LDEF material surfaces. However, many SiO2 submicron particles were seen on a masked edge of an Ag/FEP blanket. In some cases such as the carbon fiber/organic matrix composites, interpretation of the contamination data was hindered by the lack of good laboratory controls. Examination of laboratory controls for the carbon fiber/Al alloy composites showed that preflight contamination was

  15. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.

  16. FNAS/LDEF Radiation Data Analysis

    NASA Technical Reports Server (NTRS)

    Gregory, John

    1998-01-01

    The radioactive isotope Be-7 was discovered on the forward-facing side of the LDEF satellite in amounts far exceeding that expected from direct cosmic ray activation of the spacecraft material. This prompted an examination of the production of cosmogenic isotopes in the atmosphere and of the processes by which they may be transported to orbital altitudes and absorbed by a spacecraft. Be-7 is only one of several atmospheric cosmogenic isotopes which might be detectable at orbital altitudes and which might prove to be as useful as tracers of atmospheric circulation processes in the mesosphere and thermosphere, as they have been in the lower layers of the atmosphere.

  17. [Clamping procedures in hepatic surgery].

    PubMed

    Frangov, T; Dimitrova, V; Kasten, D; Bismiut, A

    2005-01-01

    The advance of liver surgery and transplantation offers a new procedures--vascular clamping. Results of hepatic resections depends essentially on proper control of intraoperative hemorrhage. We present here the different procedures for vascular clamping and discussing their indications. Four parametres can be used to define the type of clamping: 1) place of application--control of arterial or glisson pedicles and portal veins (pedicles, selective hilar, suprahilar and intrahepatic clamps), suprahepatic veins or vena cava; 2) selectivity--partial or total clamp of hepatic blood supply; 3) duration--continuous or intermittent; 4) association measures to favor tolerence to ischemia (cooling, preservation fluids) or to limit downstream consequences (extracorporal circulaton, derivation). The clamping procedures depends on the localisation of the lesion and its relationships with the great vessels, presence of liver desease and the patients general and cardiovascular status. The aim is to use clamp moderate, favoring selective clamps to avoid ischemia. PMID:18693516

  18. Skylab Food Heating and Serving Tray

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Shown here is the Skylab food heating and serving tray with food, drink, and utensils. The tray contained heating elements for preparing the individual food packets. The food on Skylab was a great improvement over that on earlier spaceflights. It was no longer necessary to squeeze liquified food from plastic tubes. Skylab's kitchen in the Orbital Workshop wardroom was so equipped that each crewman could select his own menu and prepare it to his own taste. The Marshall Space Flight Center had program management responsibility for the development of Skylab hardware and experiments.

  19. 21 CFR 872.6880 - Preformed impression tray.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6880 Preformed impression tray. (a) Identification. A preformed impression tray is a metal or plastic device intended to hold impression...

  20. 21 CFR 872.6880 - Preformed impression tray.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6880 Preformed impression tray. (a) Identification. A preformed impression tray is a metal or plastic device intended to hold impression...

  1. 21 CFR 872.6880 - Preformed impression tray.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6880 Preformed impression tray. (a) Identification. A preformed impression tray is a metal or plastic device intended to hold impression...

  2. 21 CFR 872.6880 - Preformed impression tray.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6880 Preformed impression tray. (a) Identification. A preformed impression tray is a metal or plastic device intended to hold impression...

  3. 21 CFR 872.6880 - Preformed impression tray.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6880 Preformed impression tray. (a) Identification. A preformed impression tray is a metal or plastic device intended to hold impression...

  4. Long Duration Exposure Facility (LDEF) structural verification test report

    NASA Technical Reports Server (NTRS)

    Jones, T. C.; Lucy, M. H.; Shearer, R. L.

    1983-01-01

    Structural load tests on the Long Duration Exposure Facility's (LDEF) primary structure were conducted. These tests had three purposes: (1) demonstrate structural adequacy of the assembled LDEF primary structure when subjected to anticipated flight loads; (2) verify analytical models and methods used in loads and stress analysis; and (3) perform tests to comply with the Space Transportation System (STS) requirements. Test loads were based on predicted limit loads which consider all flight events. Good agreement is shown between predicted and observed load, strain, and deflection data. Test data show that the LDEF structure was subjected to 1.2 times limit load to meet the STS requirements. The structural adequacy of the LDEF is demonstrated.

  5. Long Duration Exposure Facility (LDEF) space environments overview

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Martin, Glenna D.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was retrieved from Earth orbit in January 1990 after spending almost six years in space. It had flown in a near-circular orbit with an inclination of 28.5 degrees. Initially, the orbit altitude was approximately 257 nautical miles; however, when the LDEF was retrieved the orbit altitude had decayed to approximately 179 nautical miles. The LDEF was passively stabilized about three axes while in free flight, making it an ideal platform for exposing experiments which were measuring the environments of near-Earth space and investigating the long-term effects of these environments on spacecraft. A brief overview of the encountered environments that were of most interest to the LDEF investigators is presented.

  6. Geometrical analysis of the microcraters found on LDEF samples

    NASA Technical Reports Server (NTRS)

    Yamakoshi, Kazuo; Ohashi, Hideo; Noma, Motosaku; Sakurai, Hirohisa; Nakashima, Kazuo; Nogami, Kenichi; Omori, Rie

    1993-01-01

    Diameters (D) and depths (T) of microcraters found on LDEF samples were measured and their origins were deduced by the (D/T) ratios, which distinguish projectile materials. From the results, one iron and several stony projectiles could be recognized.

  7. Gamma-ray spectrometry of LDEF samples

    SciTech Connect

    Winn, W.G.

    1991-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectroscopy. The study quantified particle induced activations of (sup 22)Na, {sup 46}Sc, {sup 51}Cr, {sup 54}Mn, {sup 56}Co, {sup 57}Co, {sup 58}Co, and {sup 60}Co. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which have been reported to collect noticeable {sup 7}Be on their leading surfaces. No significant {sup 7}Be was detected in the samples analyzed. The Underground Counting Facility at Savannah River Laboratory (SRL) was used in this work. The facility is 50 ft. underground, constructed with low-background shielding materials, and operated as a clean room. The most sensitive analyses were performed with a 90%-efficient HPGe gamma-ray detector, which is enclosed in a purged active/passive shield. Each sample was counted for one to six days in two orientations to yield more representative average activities for the sample. The non-standard geometries of the LDEF samples prompted the development of a novel calibration method, whereby the efficiency about the samples surfaces (measured with point sources) predicted the efficiency for the bulk sample.

  8. Prediction of LDEF ionizing radiation environment

    NASA Technical Reports Server (NTRS)

    Watts, John W.; Parnell, T. A.; Derrickson, James H.; Armstrong, T. W.; Benton, E. V.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) spacecraft flew in a 28.5 deg inclination circular orbit with an altitude in the range from 172 to 258.5 nautical miles. For this orbital altitude and inclination two components contribute most of the penetrating charge particle radiation encountered - the galactic cosmic rays and the geomagnetically trapped Van Allen protons. Where shielding is less than 1.0 g/sq cm geomagnetically trapped electrons make a significant contribution. The 'Vette' models together with the associated magnetic filed models were used to obtain the trapped electron and proton fluences. The mission proton doses were obtained from the fluence using the Burrell proton dose program. For the electron and bremsstrahlung dose we used the Marshall Space Flight Center (MSFC) electron dose program. The predicted doses were in general agreement with those measured with on-board thermoluminescent detector (TLD) dosimeters. The NRL package of programs, Cosmic Ray Effects on MicroElectronics (CREME), was used to calculate the linear energy transfer (LET) spectrum due to galactic cosmic rays (GCR) and trapped protons for comparison with LDEF measurements.

  9. 21 CFR 872.6870 - Disposable fluoride tray.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Disposable fluoride tray. 872.6870 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6870 Disposable fluoride tray. (a) Identification. A disposable fluoride tray is a device made of styrofoam intended to apply fluoride topically...

  10. 21 CFR 872.6870 - Disposable fluoride tray.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Disposable fluoride tray. 872.6870 Section 872...) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6870 Disposable fluoride tray. (a) Identification. A disposable fluoride tray is a device made of styrofoam intended to apply fluoride topically...

  11. 21 CFR 868.6100 - Anesthetic cabinet, table, or tray.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Anesthetic cabinet, table, or tray. 868.6100... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6100 Anesthetic cabinet, table, or tray. (a) Identification. An anesthetic cabinet, table, or tray is a device intended to...

  12. 21 CFR 868.6100 - Anesthetic cabinet, table, or tray.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Anesthetic cabinet, table, or tray. 868.6100... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6100 Anesthetic cabinet, table, or tray. (a) Identification. An anesthetic cabinet, table, or tray is a device intended to...

  13. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material. (a) Identification. Resin impression tray material is a device intended for use in a two-step dental mold fabricating... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resin impression tray material. 872.3670...

  14. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material. (a) Identification. Resin impression tray material is a device intended for use in a two-step dental mold fabricating... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resin impression tray material. 872.3670...

  15. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  16. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  17. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  18. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  19. 21 CFR 884.1550 - Amniotic fluid sampler (amniocentesis tray).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Amniotic fluid sampler (amniocentesis tray). 884... Diagnostic Devices § 884.1550 Amniotic fluid sampler (amniocentesis tray). (a) Identification. The amniotic fluid sampler (amniocentesis tray) is a collection of devices used to aspirate amniotic fluid from...

  20. 21 CFR 868.6100 - Anesthetic cabinet, table, or tray.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Anesthetic cabinet, table, or tray. 868.6100... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6100 Anesthetic cabinet, table, or tray. (a) Identification. An anesthetic cabinet, table, or tray is a device intended to...

  1. 21 CFR 868.6100 - Anesthetic cabinet, table, or tray.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Anesthetic cabinet, table, or tray. 868.6100... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6100 Anesthetic cabinet, table, or tray. (a) Identification. An anesthetic cabinet, table, or tray is a device intended to...

  2. 21 CFR 868.6100 - Anesthetic cabinet, table, or tray.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Anesthetic cabinet, table, or tray. 868.6100... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Miscellaneous § 868.6100 Anesthetic cabinet, table, or tray. (a) Identification. An anesthetic cabinet, table, or tray is a device intended to...

  3. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resin impression tray material. 872.3670 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material. (a) Identification. Resin impression tray material is a device intended for use in a two-step dental mold...

  4. Ionizing radiation exposure of LDEF (pre-recovery estimates).

    PubMed

    Benton, E V; Heinrich, W; Parnell, T A; Armstrong, T W; Derrickson, J H; Fishman, G J; Frank, A L; Watts, J W; Wiegel, B

    1992-01-01

    The long duration exposure facility (LDEF), launched into a 258 nautical mile orbit with an inclination of 28.5 degrees, remained in space for nearly 6 yr. The 21,500 lb NASA satellite was one of the largest payloads ever deployed by the Space Shuttle. LDEF completed 32,422 orbits and carried 57 major experiments representing more than 200 investigators from 33 private companies, 21 universities and nine countries. The experiments covered a wide range of disciplines including basic science, electronics, optics, materials, structures and power and propulsion. A number of the experiments were specifically designed to measure the radiation environment. These experiments are of specific interest, since the LDEF orbit is essentially the same as that of the Space Station Freedom. Consequently, the radiation measurements on LDEF will play a significant role in the design of radiation shielding of the space station. The contributions of the various authors presented here attempt to predict the major aspects of the radiation exposure received by the various LDEF experiments and therefore should be helpful to investigators who are in the process of analyzing experiments which may have been affected by exposure to ionizing radiation. The paper discusses the various types and sources of ionizing radiation including cosmic rays, trapped particles (both protons and electrons) and secondary particles (including neutrons, spallation products and high-LET recoils), as well as doses and LET spectra as a function of shielding. Projections of the induced radioactivity of LDEF are also discussed. PMID:11537534

  5. Individualized impression trays from existing complete dentures.

    PubMed

    McArthur, D R

    1980-11-01

    This technique can be used to avoid the making of preliminary impressions for complete dentures in patients with abnormally small oral openings. With this method, the patient must have existing dentures, and the border extensions must be adequate to serve as individualized impression trays.

  6. The bonding properties of elastomer tray adhesives.

    PubMed

    Davis, G B; Moser, J B; Brinsden, G I

    1976-09-01

    1. The surface yielded by the acrylic resin formed against tinfoil provided better retention for the rubber base than any other surface tested. 2. Wax consistently gave the worst results in spite of careful boiling out. 3. The use of wax or asbestos spacers would not degrade the resin surface if tinfoil, or presumably the more easily obtainable aluminum foil, were used as a separating medium. 4. For drying times of between 15 minutes and 72 hours, no significant change was found in bond strength of elastomer to tray material. 5. Drying times of less than 15 minutes were found to be inadequate and to decrease bond strength; they are clinically inadvisable. 6. If, as a result of unavoidable delay, a tray is painted and then left for a number of days prior to making the impression, satisfactory bonding will still occur. However, if the dentist wishes to apply a second coat and dry it for 15 minutes, an increase in bond strength is likely to occur. 7. In the six systems tested, failure occurred at varied levels, from a low of 20 p.s.i. to a high of 80 p.s.i. 8. In the silicone and polyether systems, cohesive failure of the elastomer occurred before the adhesive bond between elastomer and tray failed. This finding correlates with the clinical observation that silicones and polyethers are more difficult to remove completely from acrylic resin trays when an impression has to be repeated. PMID:784960

  7. The Skills Minister's In-Tray

    ERIC Educational Resources Information Center

    Hancock's, Matthew

    2012-01-01

    In the "Adults Learning" autumn issue, the journal staff asked key players in the learning and skills sector what they thought should be at the top of new skills minister Matthew Hancock's in-tray. The new minister shares that his job in the further education and skills sector is to rise to the challenge and play his full part in giving people of…

  8. MISSE 1 and 2 Tray Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.

    2006-01-01

    The Materials International Space Station Experiment (MISSE 1 & 2) was deployed August 10,2001 and retrieved July 30,2005. This experiment is a co-operative endeavor by NASA-LaRC. NASA-GRC, NASA-MSFC, NASA-JSC, the Materials Laboratory at the Air Force Research Laboratory, and the Boeing Phantom Works. The objective of the experiment is to evaluate performance, stability, and long term survivability of materials and components planned for use by NASA and DOD on future LEO, synchronous orbit, and interplanetary space missions. Temperature is an important parameter in the evaluation of space environmental effects on materials. The MISSE 1 & 2 had autonomous temperature data loggers to measure the temperature of each of the four experiment trays. The MISSE tray-temperature data loggers have one external thermistor data channel, and a 12 bit digital converter. The MISSE experiment trays were exposed to the ISS space environment for nearly four times the nominal design lifetime for this experiment. Nevertheless, all of the data loggers provided useful temperature measurements of MISSE. The temperature measurement system has been discussed in a previous paper. This paper presents temperature measurements of MISSE payload experiment carriers (PECs) 1 and 2 experiment trays.

  9. LDEF (Flight), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on Grap

    NASA Technical Reports Server (NTRS)

    1990-01-01

    LDEF (Flight), AO175 : Evaluation of Long-Duration Exposure to the Natural Space Environment on Graphite-Polyimide and Graphite-Epoxy Mechanical Properties, Tray A07 The flight photograph was taken while the LDEF was attached to the Orbiter's RMS arm prior to berthing in the Orbiter's cargo bay. The paint dots on the tray clampblocks have changed little from the orginal white color. The dots along the lower tray flange seem to have a faint light brown tint. The dull gold coating observed on the aluminum mounting strips in the prelaunch photograph has turned to a medium brown. The areas where the coating was scraped or abraided away appears as a metallic surface. PMR-15 Graphite-Polyimide Panel (precured) - The PMR-15 graphite-polyimide laminated panel (T40T30060-009) appears to have changed from the prelaunch brown color to a light gray. A geometric pattern, probably the results of the laminating process, is visible on the panel surface. Fine horizontal lines, cracks and/or crazing, can be seen over the geometrical pattern. The yellow colored identification numbers seem to be a little darker in the flight photograph but the white marking in the upper left corner do not appear to have changed. Scratch marks / abrasions on the lower left edge of panel were on prelaunch photographs. F-178/T300 Graphite-Polyimide Panel (cocured) - The 178/T300 graphite-polyimide panel (T40T30060-005) seems to have changed from the pre-launch dark brown to a light gray color. The yellow identification numbers seem darker in the flight photograph while the white marking in the upper left corner appear brighter. There appears to be fine horizontal lines, cracks and/or crazing, on the panel surface. F178/T300 Graphite-Polyimide Panel (precured) - The 178/T300 graphite-polyimide laminated panel (T40T30060-001) seems to have changed from the prelaunch dark brown color with a lighter brown area along its vertical center, extending from top to bottom, to a uniform light gray color. The yellow

  10. The bond strength of different tray adhesives on vinyl polysiloxane to two tray materials: an in vitro study.

    PubMed

    Ashwini, B L; Manjunath, S; Mathew, K Xavier

    2014-03-01

    There has been no established chemical bonding between custom tray resin and the elastomeric impression materials without the use of manufacturer's recommended specific tray adhesive. The present study was aimed to compare the bond strength of the manufacturer recommended tray adhesives with the universal tray adhesives using the medium body consistency vinyl polysiloxane (VPS) material and custom tray made of autopolymerising resin and visible light cure (VLC) resin. A total 90 cubicle specimens of autopolymerising resin and 90 specimens of VLC resin were tested for its tensile bond strength. Effectiveness of universal tray adhesive was compared with manufactured tray adhesive. Each of these specimens was then subjected to tensile load in hounsefield universal testing machine at a cross head speed of 5 mm/min and the results were compared and evaluated using one way analysis of variance and post hoc Tuckey's test. Analysis of bond strength revealed that the universal tray adhesive showed better strength and was statiscally significant when compared to the manufacture supplied tray adhesive. Comparison between both the groups, VLC resin showed better bond strength as compared to autopolymerizing resin. Universal tray adhesive had better tensile bond strength than the manufacturers recommended tray adhesive with the medium body viscosity VPS impression material for both autopolymerising and VLC tray resin. PMID:24604995

  11. Analysis of systems hardware flown on LDEF. Results of the systems special investigation group

    NASA Technical Reports Server (NTRS)

    Dursch, Harry W.; Spear, W. Steve; Miller, Emmett A.; Bohnhoff-Hlavacek, Gail L.; Edelman, Joel

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was retrieved after spending 69 months in low Earth orbit (LEO). LDEF carried a remarkable variety of mechanical, electrical, thermal, and optical systems, subsystems, and components. The Systems Special Investigation Group (Systems SIG) was formed to investigate the effects of the long duration exposure to LEO on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. Discussed here is the status of the LDEF Systems SIG investigation through the end of 1991.

  12. Immediate or early cord clamping vs delayed clamping.

    PubMed

    Hutchon, D J R

    2012-11-01

    Over the past 40 years, there have been a number of review articles attempting to rationalise cord clamping practice. Early cord clamping was originally thought to be important in active management of the third stage of labour, but this was never evidence based. Without an evidence base to justify it, early cord clamping in clinical practice has remained very variable. There is good evidence that early cord clamping leads to hypovolaemia, anaemia and low iron stores in the neonate. We review all the evidence and discuss possible reasons why some obstetricians and midwives persevere with early clamping. We explain how a variable definition, defective education, deferred responsibility between obstetrician and paediatrician, variable guidelines and a lack of appreciation for the potential harm of the intervention, have all contributed. This study describes how the need for early cord clamping can be avoided in practically all clinical complications of birth.

  13. Nonlinear modal interactions in clamped-clamped mechanical resonators.

    PubMed

    Westra, H J R; Poot, M; van der Zant, H S J; Venstra, W J

    2010-09-10

    A theoretical and experimental investigation is presented on the intermodal coupling between the flexural vibration modes of a single clamped-clamped beam. Nonlinear coupling allows an arbitrary flexural mode to be used as a self-detector for the amplitude of another mode, presenting a method to measure the energy stored in a specific resonance mode. The observed complex nonlinear dynamics are quantitatively captured by a model based on coupling of the modes via the beam extension; the same mechanism is responsible for the well-known Duffing nonlinearity in clamped-clamped beams. PMID:20867605

  14. Energy harvesting under excitation of clamped-clamped beam

    NASA Astrophysics Data System (ADS)

    Batra, Ashok; Alomari, Almuatasim; Aggarwal, Mohan; Bandyopadhyay, Alak

    2016-04-01

    In this article, a piezoelectric energy harvesting has been developed experimentally and theoretically based on Euler- Bernoulli Theory. A PVDF piezoelectric thick film has attached along of clamped-clamped beam under sinusoidal base excitation of shaker. The results showed a good agreement between the experimental and simulation of suggested model. The voltage output frequency response function (FRF), current FRF, and output power has been studied under short and open circuit conditions at first vibration mode. The mode shape of the clamped-clamped beam for first three resonance frequency has been modeled and investigated using COMSOL Multiphysics and MATLAB.

  15. Cantilever clamp fitting

    NASA Technical Reports Server (NTRS)

    Melton, Patrick B. (Inventor)

    1989-01-01

    A device is disclosed for sealing and clamping a cylindrical element which is to be attached to an object such as a wall, a pressurized vessel or another cylindrical element. The device includes a gland having an inner cylindrical wall, which is threaded at one end and is attached at a bendable end to a deformable portion, which in turn is attached to one end of a conical cantilever structure. The other end of the cantilever structure connects at a bendable area to one end of an outer cylindrical wall. The opposite end of cylindrical wall terminates in a thickened portion, the radially outer surface of which is adapted to accommodate a tool for rotating the gland. The terminal end of cylindrical wall also includes an abutment surface, which is adapted to engage a seal, which in turn engages a surface of a receiver. The receiver further includes a threaded portion for engagement with the threaded portion of gland whereby a tightening rotation of gland relative to receiver will cause relative movement between cylindrical walls and of gland. This movement causes a rotation of the conical structure and thus a bending action at bending area and at the bending end of the upper end of inner cylindrical wall. These rotational and bending actions result in a forcing of the deformable portion radially inwardly so as to contact and deform a pipe. This forcible contact creates a seal between gland and pipe, and simultaneously clamps the pipe in position.

  16. LDEF electronic systems: Successes, failures, and lessons

    NASA Technical Reports Server (NTRS)

    Miller, Emmett; Porter, Dave; Smith, Dave; Brooks, Larry; Levorsen, Joe; Mulkey, Owen

    1991-01-01

    Following the Long Duration Exposure Facility (LDEF) retrieval, the Systems Special Investigation Group (SIG) participated in an extensive series of tests of various electronic systems, including the NASA provided data and initiate systems, and some experiment systems. Overall, these were found to have performed remarkably well, even though most were designed and tested under limited budgets and used at least some nonspace qualified components. However, several anomalies were observed, including a few which resulted in some loss of data. The postflight test program objectives, observations, and lessons learned from these examinations are discussed. All analyses are not yet complete, but observations to date will be summarized, including the Boeing experiment component studies and failure analysis results related to the Interstellar Gas Experiment. Based upon these observations, suggestions for avoiding similar problems on future programs are presented.

  17. Adhesion of elastomeric impression materials to trays.

    PubMed

    Bindra, B; Heath, J R

    1997-01-01

    The tensile and shear adhesive bond strengths of two addition cured silicones (Provil and Express) and a polyether (Impregum) impression material to brass, poly(methylmethacrylate) and visible light-cured (VLC) tray resin were determined. Adhesive application significantly increased the bond strength; Provil and Express adhered most strongly to brass; whilst the Impregum-VLC combination produced the strongest bond. Indeed, VLC resin generated greater adhesion than acrylic resin. Exchanging the adhesives specified for each silicone material generally resulted in higher bond strengths. No correlation was established between speed of separation of the test surfaces and bond strength. For optimum clinical performance, the impression material (adhesive) tray material giving the highest bond strength should be utilized.

  18. Impression material thickness in stock and custom trays.

    PubMed

    Bomberg, T J; Hatch, R A; Hoffman, W

    1985-08-01

    This study did not examine the accuracy of the resultant impressions. Rather, the impression material thickness in impressions made using both the highly advocated custom acrylic resin tray and in the highly used manufactured stock tray was examined. Comparison between the material thickness at the prepared tooth area revealed a mean difference in material thickness of less than 1 mm. The question of the significance of this difference remains to be answered. If the difference is not significant in the success of the impression and the resultant casting, then there are several advantages in using the manufactured stock tray; the first is economy. The average cost of a custom acrylic full arch impression tray is $3.65, compared with an average cost of slightly over $0.30 for the stock tray. The second advantage is the convenience factor. Making a custom tray requires planning, study models, laboratory time, curing interval, and finishing time. In contrast, the stock tray can be selected, adapted, and used in a single visit for both anticipated and unanticipated situations. If the difference in material thickness is significant, the custom tray is indicated. However, attention to detail in making and inserting the tray in the mouth must be observed to maximize the benefits of the custom tray.

  19. CoFlo tray Design and Technology Report

    SciTech Connect

    William R. Trutna

    2005-04-04

    This report consists of two major segments. CoFlo Tray Design is the first section. The objectives of this section are: (1) Determine the design requirements for increased capacity by the substitution of CoFlo trays for sieve trays in a 15-tray 46-inch diameter column. The Design Basis was obtained from the Separations Research Program, which was solicited by an industrial customer on the use of CoFlo trays for their application. (2) Illustrate the design procedures so that they can be computerized to rapidly provide design and cost information for future customers. A summary of the research studies on which each design procedure is based is included. (3) Compare the costs of new sieve tray and CoFlo tray columns for this application to illustrate the savings inherent in the CoFlo process. Exhibits are the second section of this report and its objectives are to: (a) Report the extensive research studies on the CoFlo tray and related items; (b) Analyze present and potential future performance of the CoFlo tray; (c) Present comparative costs for sieve and CoFlo tray columns; and (d) List the applications for the CoFlo deentrainer.

  20. Biosensing with T-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Fischer, Bernd M.; Helm, Hanspeter; Abbott, Derek

    2007-07-01

    In the recent years, it has been shown that terahertz (or T-ray) spectroscopy is a versatile tool for biosensing and safety applications. This is due to the fact that the THz-spectra of many biomolecules show very characteristic, distinct spectroscopic features. Furthermore, most non-metallic packaging materials are nearly transparent in this frequency range (0.1 - 6 THz, 3 cm -1 - 200 cm -1), so that it is possible to non-invasively identify even sealed substances like pharmaceuticals, illicit drugs or explosives by their spectroscopic signatures. This opens a significant potential for a wide range of applications from quality control of pharmaceutical substances via safety applications through to biomedical applications. The individual spectroscopic features below approximately 5 THz that spurred the increased world wide interest in T-ray spectroscopy are mainly due to intermolecular rather than intramolecular vibrations in the polycrystalline samples. The spectra of more complex biomolecules, like proteins and nucleotides, typically show less or even no sharp features, due to the lack of long- range intermolecular order. Furthermore, due to the typically significantly smaller sample amount, the signal to noise ratio is strongly increased. Water shows a strong absorption in this frequency range, which all together makes real biomedical applications of T-ray spectroscopy rather difficult. Yet, by combining a careful sample preparation, novel experimental techniques and an advanced signal processing of the experimental data we can still clearly distinguish between even complex biomolecules and therefore demonstrate the potential the technique holds for biomedical applications.

  1. Dimensional stability of autopolymerizing acrylic resin impression trays.

    PubMed

    Fehling, A W; Hesby, R A; Pelleu, G B

    1986-05-01

    A study was undertaken to determine the optimal interval between fabrication of an autopolymerizing acrylic resin custom impression tray and making a final impression. Twenty mandibular arch-shaped trays, 10 each of Fastray and Formatray resin, were evaluated for dimensional change. Both materials behaved similarly. Cross-arch contraction of the borders of buccal flanges and unilateral expansion of the borders of buccal-to-lingual flanges were observed. These changes indicate distortion. Linear dimensional changes occurred throughout 6 hours, which suggests that any impression made in a methyl methacrylate acrylic resin custom impression tray should be poured as soon as is conveniently possible. Significant linear dimensional changes were observed for only 40 minutes from the initiation of tray fabrication. This study concludes that while an aged tray is preferred, it is acceptable to make an impression in an autopolymerizing resin custom impression tray after 40 minutes.

  2. Origin of orbital debris impacts on LDEF's trailing surfaces

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1993-01-01

    A model was developed to determine the origin of orbital impacts measured on the training surfaces of LDEF. The model calculates the expected debris impact crater distribution around LDEF as a function of debris orbital parameters. The results show that only highly elliptical, low inclination orbits could be responsible for these impacts. The most common objects left in this type of orbit are orbital transfer stages used by the U.S. and ESA to place payloads into geosynchronous orbit. Objects in this type of orbit are difficult to catalog by the U.S. Space Command; consequently there are independent reasons to believe that the catalog does not adequately represent this population. This analysis concludes that the relative number of cataloged objects with highly elliptical, low inclination orbits must be increased by a factor of 20 to be consistent with the LDEF data.

  3. Analysis of surfaces from the LDEF A0114, phase 4

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1991-01-01

    Progress made from 1 Mar. to 31 Aug. 1991 is presented. The work concentrated on profilometry measurements of eroded and corroded sample surfaces, optical transmission measurements, analysis of the pinhole camera, and x-ray photoelectron spectroscopic (XPS) analysis of some samples. The following papers are presented: (1) observation of Be-7 on the surface of the Long Duration Exposure Facility (LDEF) Spacecraft; (2) measurement of the passive attitude control performance of a recovered spacecraft; (3) effects on LDEF exposed copper flim and bulk; (4) measurements of erosion characteristics for metal and polymer surfaces using profilometry; (5) the interactions of atmospheric cosmogenic radionuclides with spacecraft surfaces; (6) pinhole cameras as sensors for atomic oxygen in orbit; and (7) interaction of atomic oxygen with solid surfaces in low earth orbit- results from LDEF experiment A0114.

  4. Light-polymerized materials for custom impression trays.

    PubMed

    Wirz, J; Jaeger, K; Schmidli, F

    1990-01-01

    Custom trays are indispensable for making impressions with elastomeric products. Previous studies have demonstrated that certain autopolymerized materials are particularly suitable, but had some limitations. The recently introduced halogen-light-polymerized resins permit fabrication of custom trays that have the needed physical properties for accuracy and strength. No storage period is necessary for completion of polymerization, and the trays are not subject to distortion in moisture, making them suitable for use in the electroforming of casts.

  5. Interplanetary meteoroid debris in LDEF metal craters

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Horz, F.; Bradley, J.

    1992-01-01

    The extraterrestrial meteoroid residue found lining craters in the Long Duration Exposure Facility (LDEF) aluminum and gold targets is highly variable in both quantity and type. In typical craters only a minor amount of residue is found and for these craters it is evident that most of the impacting projectile was ejected during crater formation. Less than 10 percent of the craters greater than 100 microns contain abundant residue consistent with survival of a major fraction of the projectile. In these cases the residue can be seen optically as a dark liner and it can easily be analyzed by SEM-EDX techniques. Because they are rare, the craters with abundant residue must be a biased sampling of the meteoroids reaching the earth. Factors that favor residue retention are low impact velocity and material properties such as high melting point. In general, the SEM-EDX observations of crater residues are consistent with the properties of chondritic meteorites and interplanetary dust particles collected in the stratosphere. Except for impacts by particles dominated by single minerals such as FeS and olivine, most of the residue compositions are in broad agreement with the major element compositions of chondrites. In most cases the residue is a thin liner on the crater floor and these craters are difficult to quantitatively analyze by EDX techniques because the electron beam excites both residue and underlying metal substrate. In favorable cases, the liner is thick and composed of vesicular glass with imbedded FeNi, sulfide and silicate grains. In the best cases of meteoroid preservation, the crater is lined with large numbers of unmelted mineral grains. The projectiles fragmented into micron sized pieces but the fragments survived without melting. In one case, the grains contain linear defects that appear to be solar flare tracks. Solar flare tracks are common properties of small interplanetary particles and their preservation during impact implies that the fragments were

  6. Results of the examination of LDEF polyurethane thermal control coatings

    NASA Technical Reports Server (NTRS)

    Golden, Johnny L.

    1994-01-01

    This report summarizes the condition of polyurethane thermal control coatings subjected to 69 months of low earth orbit (LEO) exposure on the Long Duration Exposure Facility (LDEF) mission. Specimens representing all environmental aspects obtainable by LDEF were analyzed. Widely varying changes in the thermo-optical and mechanical properties of these materials were observed, depending on atomic oxygen and ultraviolet radiation fluences. High atomic oxygen fluences, regardless of ultraviolet radiation exposure levels, resulted in near original optical properties for these coatings but with a degradation in their mechanical condition. A trend in solar absorptance increase with ultraviolet radiation fluence was observed. Contamination, though observed, exhibited minimal effects.

  7. Passive stabilization of the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Das, A.

    1974-01-01

    The results of a study on the application of the magnetically anchored rate damper to gravity gradient stabilization of the Long Duration Exposure Facility (LDEF) are presented. The analyses and simulations required to investigate the use of an existing viscous magnetic rate damper for rate stabilizing the LDEF spacecraft were performed. The following tasks were included: linear performance estimates, capture and damper requirements, and performance prediction. Each of these tasks was performed for two gravity gradient stabilization configurations; an axisymmetric configuration for two-axis (pitch and roll) stability; and a non-axisymmetric configuration for three-axis stability. The results are presented by stabilization configuration.

  8. Characterization of selected LDEF: Exposed polymer films and resins

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.

    1992-01-01

    The Long Duration Exposure Facility (LDEF) provided a unique environmental exposure of a wide variety of materials. The effects of 5 years and 10 months of Low-Earth Orbit (LEO) exposure of these materials to atomic oxygen, ultraviolet and particulate radiation, meteoroid and debris, vacuum, contamination, and thermal cycling is providing a data base unparalleled in the history of space environment research. Working though the Environmental Effects on Materials Special Investigation Group (MSIG), a number of polymeric materials in various processed forms have been assembled from LDEF investigators for analysis at the NASA Langley Research Center. This paper reports the status of on-going chemical characterization of these materials.

  9. The magnitude of impact damage on LDEF materials

    NASA Technical Reports Server (NTRS)

    Allbrooks, Martha; Atkinson, Dale

    1992-01-01

    The purpose of this report is to document the magnitude and types of impact damage to materials and systems on the LDEF. This report will provide insights which permit NASA and industry space-systems designers to more rapidly identify potential problems and hazards in placing a spacecraft in low-Earth orbit (LEO). This report is structured to provide (1) a background on LDEF, (2) an introduction to the LEO meteoroid and debris environments, and (3) descriptions of the types of damage caused by impacts into structural materials, and contamination caused by spallation and ejecta from impact events.

  10. Damage areas on selected LDEF aluminum surfaces

    NASA Technical Reports Server (NTRS)

    Coombs, Cassandra R.; Atkinson, Dale R.; Allbrooks, Martha K.; Watts, Alan J.; Hennessy, Corey J.; Wagner, John D.

    1993-01-01

    With the U.S. about to embark on a new space age, the effects of the space environment on a spacecraft during its mission lifetime become more relevant. Included among these potential effects are degradation and erosion due to micrometeoroid and debris impacts, atomic oxygen and ultraviolet light exposure as well as material alteration from thermal cycling, and electron and proton exposure. This paper focuses on the effects caused by micrometeoroid and debris impacts on several LDEF aluminum plates from four different bay locations: C-12, C-10, C-01, and E-09. Each plate was coated with either a white, black, or gray thermal paint. Since the plates were located at different orientations on the satellite, their responses to the hypervelocity impacts varied. Crater morphologies range from a series of craters, spall zones, domes, spaces, and rings to simple craters with little or no spall zones. In addition, each of these crater morphologies is associated with varying damage areas, which appear to be related to their respective bay locations and thus exposure angles. More than 5% of the exposed surface area examined was damaged by impact cratering and its coincident effects (i.e., spallation, delamination and blow-off). Thus, results from this analysis may be significant for mission and spacecraft planners and designers.

  11. Radioactivities induced in some LDEF samples

    NASA Technical Reports Server (NTRS)

    Reedy, Robert C.; Moss, Calvin E.

    1992-01-01

    Final activities are reported for gamma ray emitting isotopes measured in 35 samples from LDEF. In 26 steel trunnion samples, activities of Mn-54 and Co-57 were measured and limits set on other isotopes. In five Al end support retainer plates and two Al keel plate samples, Na-22 was measured. In two Ti clip samples, Na-22 was measured, limits for Sc-46 were obtained, and high activities for impurity Uranium and daughter isotopes were observed. Four sets of depth vs activity profiles were measured for the D sections of the trunnion. For all 4 profiles, the activities first decreased with increasing distance from the surface of the trunnion but were fairly flat near the center. These profiles are consistent with production by both the lower energy (approx. 100 MeV) trapped particles and high energy (approx. 10 GeV) galactic-cosmic ray particles. For the near surface samples, the earth quadrant had more Mn-54 than the space quadrant. For the D sections, there was less Mn-54 in the east trunnion than in the west trunnion. Comparisons are made among the samples and with activities measured by others. The limit for Sc-46 in the Ti clips is compared with the activities of Mn-54 produced in the steel pieces by similar reactions. Activities predicted by several models are compared with the measured activities.

  12. Radiation exposure of LDEF: Initial results

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.; Benton, E. R.; Csige, I.; Parnell, T. A.; Watts, J. W., Jr.

    1992-01-01

    Initial results from LDEF include radiation detector measurements from four experiments, P0006, P0004, M0004, and A0015. The detectors were located on both the leading and trailing edges of the orbiter and also on the Earthside end. This allowed the directional dependence of the incoming radiation to be measured. Total absorbed doses from thermoluminescent detectors (TLDs) verified the predicted spatial east-west dose ratio dependence of a factor approx. 2.5, due to trapped proton anisotropy in the South Atlantic Anomaly. On the trailing edge of the orbiter a range of doses from 6.64 to 2.91 Gy were measured under Al equivalent shielding of 0.42 to 1.11 g/sq cm. A second set of detectors near this location yielded doses of 6.48 to 2.66 Gy under Al equivalent shielding of 0.48 to 15.4 g/sq cm. On the leading edge, doses of 2.58 to 2.10 Gy were found under Al equivalent shielding of 1.37 to 2.90 g/sq cm. Initial charged particle LET (linear energy transfer) spectra, fluxes, doses and dose equivalents, for LET in H2O greater than or = 8 keV/micron, were measured with plastic nuclear track detectors (PNTDs) located in two experiments. Also preliminary data on low energy neutrons were obtained from detectors containing (6)LiF foils.

  13. Revisiting impressions using dual-arch trays.

    PubMed

    Small, Bruce W

    2012-01-01

    Making routine perfect impressions is the goal of any restorative dentist. Using dual-arch trays is an easy, repeatable way to accomplish that goal, as long as each step is done before the next and each step is performed perfectly. This column reviewed several articles that support the metal dual-arch concept and provided some clinical tips that might help restorative dentists. The dual-arch technique does have its limits and is meant for one or two teeth in a quadrant when there are other teeth to occlude with. Also, if the case involves anterior guidance, a full-arch impression maybe advisable.

  14. Internal V-Band Clamp

    DOEpatents

    Vaughn, Mark R.; Hafenrichter, Everett S.; Chapa, Agapito C.; Harris, Steven M.; Martinez, Marcus J.; Baty, Roy S.

    2006-02-28

    A system for clamping two tubular members together in an end-to-end relationship uses a split ring with a V-shaped outer rim that can engage a clamping surface on each member. The split ring has a relaxed closed state where the ends of the ring are adjacent and the outside diameter of the split ring is less than the minimum inside diameter of the members at their ends. The members are clamped when the split ring is spread into an elastically stretched position where the ring rim is pressed tightly against the interior surfaces of the members. Mechanisms are provided for removing the spreader so the split ring will return to the relaxed state, releasing the clamped members.

  15. Management of umbilical cord clamping.

    PubMed

    Webbon, Lucy

    2013-02-01

    The Royal College of Midwives (RCM) has updated its third stage of labour guidelines (RCM 2012) to be clearly supportive of a delay in umbilical cord clamping, although specific guidance on timing is yet to be announced. It is therefore imperative that both midwives and student midwives understand and are able to integrate delaying into their practice, as well as communicating to women the benefits; only in this way can we give women fully informed choices on this aspect of care. The main benefit of delayed cord clamping is the protection it can provide in reducing childhood anaemia, which is a major issue, especially in poorer countries. A review of the evidence found no risks linked to delayed clamping, and no evidence that it cannot be used in combination with the administration of uterotonic drugs. Delayed cord clamping can be especially beneficial for pre term and compromised babies.

  16. Sand Tray and Group Therapy: Helping Parents Cope

    ERIC Educational Resources Information Center

    James, Linda; Martin, Don

    2002-01-01

    Sand tray with group therapy can be an effective treatment approach for parents coping with adolescent substance abuse and/or dependency. Excerpts of parent sand trays are presented to demonstrate pretreatment tasks that decrease denial, reduce reactive anger, stop enabling behaviors, and build support systems. Parent-child relational issues,…

  17. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  18. STS-5 crewmembers with meal tray assembly on middeck

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Commander Brand (in dark blue shirt), Pilot Overmyer (left), and Mission Specialist (MS) Lenoir (right) conduct microgravity experiments with food containers and meal tray assemblies in front of middeck port side wall and side hatch. Brand prepares to eat as meal tray assembly floats above his chest and Overmeyer and Lenoir look on. Sign on port side wall is labeled STS-5 Message Board.

  19. 21 CFR 872.6870 - Disposable flouride tray.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Disposable flouride tray. 872.6870 Section 872.6870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6870 Disposable flouride tray....

  20. 21 CFR 872.6870 - Disposable flouride tray.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Disposable flouride tray. 872.6870 Section 872.6870 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6870 Disposable flouride tray....

  1. Scoping estimates of the LDEF satellite induced radioactivity

    NASA Technical Reports Server (NTRS)

    Armstrong, Tony W.; Colborn, B. L.

    1990-01-01

    The Long Duration Exposure Facility (LDEF) satellite was recovered after almost six years in space. It was well-instrumented with ionizing radiation dosimeters, including thermoluminescent dosimeters, plastic nuclear track detectors, and a variety of metal foil samples for measuring nuclear activation products. The extensive LDEF radiation measurements provide the type of radiation environments and effects data needed to evaluate and help resolve uncertainties in present radiation models and calculational methods. A calculational program was established to aid in LDEF data interpretation and to utilize LDEF data for assessing the accuracy of current models. A summary of the calculational approach is presented. The purpose of the reported calculations is to obtain a general indication of: (1) the importance of different space radiation sources (trapped, galactic, and albedo protons, and albedo neutrons); (2) the importance of secondary particles; and (3) the spatial dependence of the radiation environments and effects expected within the spacecraft. The calculational method uses the High Energy Transport Code (HETC) to estimate the importance of different sources and secondary particles in terms of fluence, absorbed dose in tissue and silicon, and induced radioactivity as a function of depth in aluminum.

  2. The Long Duration Exposure Facility (LDEF). Mission 1 Experiments.

    ERIC Educational Resources Information Center

    Clark, Lenwood G., Ed.; And Others

    The Long Duration Exposure Facility (LDEF) has been designed to take advantage of the two-way transportation capability of the space shuttle by providing a large number of economical opportunities for science and technology experiments that require modest electrical power and data processing while in space and which benefit from postflight…

  3. Evaluation of seals, lubricants, and adhesives used on LDEF

    NASA Technical Reports Server (NTRS)

    Pippin, H. Gary; Keough, Bruce; Dursch, Harry

    1992-01-01

    A wide variety of seals, lubricants, and adhesives were used on LDEF. This paper will discuss the ongoing Materials Special Investigations Group investigation into the effect of the long term exposure of these various materials to the Low Earth Orbit (LEO) environment. This investigation includes the testing of hardware at Boeing, documenting and collating experimenter test results, and deriving 'lessons learned.'

  4. Materials And Processes Technical Information System (MAPTIS) LDEF materials data base

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.; Strickland, John W.; Davis, John M.

    1993-01-01

    A preliminary Long Duration Exposure Facility (LDEF) Materials Data Base was developed by the LDEF Materials Special Investigation Group (MSIG). The LDEF Materials Data Base is envisioned to eventually contain the wide variety and vast quantity of materials data generated from LDEF. The data is searchable by optical, thermal, and mechanical properties, exposure parameters (such as atomic oxygen flux) and author(s) or principal investigator(s). Tne LDEF Materials Data Base was incorporated into the Materials and Processes Technical Information System (MAPTIS). MAPTIS is a collection of materials data which has been computerized and is available to engineers, designers, and researchers in the aerospace community involved in the design and development of spacecraft and related hardware. The LDEF Materials Data Base is described and step-by-step example searches using the data base are included. Information on how to become an authorized user of the system is included.

  5. Interplanetary meteoroid debris in LDEF metal craters

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D.; Bradley, J.; Hoerz, Friedrich

    1993-01-01

    We have examined craters in Al and Au LDEF surfaces to determine the nature of meteoroid residue in the rare cases where projectile material is abundantly preserved in the crater floor. Typical craters contain only small amounts of residue and we find that less than 10 percent of the craters in Al have retained abundant residue consistent with survival of a significant fraction (greater than 20 percent) of the projectile mass. The residue-rich craters can usually be distinguished optically because their interiors are darker than ones with little or no apparent projectile debris. The character of the meteoroid debris in these craters ranges from thin glass liners, to thick vesicular glass containing unmelted mineral fragments, to debris dominated by unmelted mineral fragments. In the best cases of meteoroid survival, unmelted mineral fragments preserve both information on projectile mineralogy as well as other properties such as nuclear tracks caused by solar flare irradiation. The wide range of the observed abundance and alteration state of projectile residue is most probably due to differences in impact velocity. The crater liners are being studied to determine the composition of meteoroids reaching the Earth. The compositional types most commonly seen in the craters are: (1) chondritic (Mg, Si, S, Fe in approximately solar proportions), (2) Mg silicate. amd (3) iron sulfide. These are also the most common compositional types of extraterrestrial particle types collected in the stratosphere. The correlation between these compositions indicates that vapor fractionation was not a major process influencing residue composition in these craters. Although the biases involved with finding analyzable meteoroid debris in metal craters differ from those for extraterrestrial particles collected in and below the atmosphere, there is a common bias favoring particles with low entry velocity. For craters this is very strong and probably all of the metal craters with abundant

  6. Split-tapered joint clamping device

    DOEpatents

    Olsen, Max J.; Schwartz, Jr., John F.

    1988-01-01

    This invention relates to a clamping device for removably attaching a tool element to a bracket element wherein a bracket element is disposed in a groove in the tool and a clamping member is disposed in said groove and in engagement with a clamping face of the bracket and a wall of the groove and with the clamping member having pivot means engaging the bracket and about which the clamping member rotates.

  7. Visual observation of the dynamic flow of elastomer rubber impression material between the impression tray and oral mucosa while seating the impression tray.

    PubMed

    Nishigawa, G; Natsuaki, N; Maruo, Y; Okamoto, M; Minagi, S

    2003-06-01

    The purpose of this study was to inspect visually, the dynamics of the impression flow at seating of the impression tray. The effects of the relief and the escape hole of the impression tray on the impression flow were also examined. Three types of the transparent impression tray (flat tray, relief tray and escape hole tray) were prepared. Transparent silicone polymer was put on the impression tray surface. Four drops of the dark blue silicone impression material was injected into the transparent silicone polymer on the impression tray. The impression tray was seated on the model of the denture-supporting mucosa. The movement of the four drops caused by the impression flow was visually recorded with the video camera and examined. The result for the flat tray showed that the impression material moved from inside to the outside. It was also shown that the speed of the moved impression material increased as the seating of the impression tray advanced. The results for the relief tray and the escape hole tray showed the effect of the relief and the escape hole prepared to the impression tray on the speed and the direction of the flow of the impression material.

  8. Loading clamps for DNA replication and repair.

    PubMed

    Bloom, Linda B

    2009-05-01

    Sliding clamps and clamp loaders were initially identified as DNA polymerase processivity factors. Sliding clamps are ring-shaped protein complexes that encircle and slide along duplex DNA, and clamp loaders are enzymes that load these clamps onto DNA. When bound to a sliding clamp, DNA polymerases remain tightly associated with the template being copied, but are able to translocate along DNA at rates limited by rates of nucleotide incorporation. Many different enzymes required for DNA replication and repair use sliding clamps. Clamps not only increase the processivity of these enzymes, but may also serve as an attachment point to coordinate the activities of enzymes required for a given process. Clamp loaders are members of the AAA+ family of ATPases and use energy from ATP binding and hydrolysis to catalyze the mechanical reaction of loading clamps onto DNA. Many structural and functional features of clamps and clamp loaders are conserved across all domains of life. Here, the mechanism of clamp loading is reviewed by comparing features of prokaryotic and eukaryotic clamps and clamp loaders.

  9. Micromachined patch-clamp apparatus

    DOEpatents

    Okandan, Murat

    2012-12-04

    A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.

  10. LDEF's map experiment foil perforations yield hypervelocity impact penetration parameters

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1992-01-01

    The space exposure of LDEF for 5.75 years, forming a host target in low earth orbit (LEO) orbit to a wide distribution of hypervelocity particulates of varying dimensions and different impact velocities, has yielded a multiplicity of impact features. Although the projectile parameters are generally unknown and, in fact not identical for any two impacts on a target, the great number of impacts provides statistically meaningful basis for the valid comparison of the response of different targets. Given sufficient impacts for example, a comparison of impact features (even without knowledge of the project parameters) is possible between: (1) differing material types (for the same incident projectile distribution); (2) differing target configurations (e.g., thick and thin targets for the same material projectiles; and (3) different velocities (using LDEF's different faces). A comparison between different materials is presented for infinite targets of aluminum, Teflon, and brass in the same pointing direction; the maximum finite-target penetration (ballistic limit) is also compared to that of the penetration of similar materials comprising of a semi-infinite target. For comparison of impacts on similar materials at different velocities, use is made of the pointing direction relative to LDEF's orbital motion. First, however, care must be exercised to separate the effect of spatial flux anisotropies from those resulting from the spacecraft velocity through a geocentrically referenced dust distribution. Data comprising thick and thin target impacts, impacts on different materials, and in different pointing directions is presented; hypervelocity impact parameters are derived. Results are also shown for flux modeling codes developed to decode the relative fluxes of Earth orbital and unbound interplanetary components intercepting LDEF. Modeling shows the west and space pointing faces are dominated by interplanetary particles and yields a mean velocity of 23.5 km/s at LDEF

  11. T-ray topography by time-domain polarimetry.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-07-01

    We demonstrate a method for substantially improving the axial resolution of terahertz time-of-flight measurements by analyzing the time-dependent polarization direction of an elliptically polarized single-cycle terahertz electromagnetic (T-ray) pulse. We show that, at its most sensitive, the technique has an axial resolution of ∼λ/1000 (<1 μm) with a subsecond measurement time, and very clear T-ray topographic images are obtained. Such a very high axial resolution of the T-ray topography opens the way for novel industrial and biomedical applications such as fine metalworking and corneal inspection in a safe manner. PMID:22743502

  12. Structure of a Sliding Clamp on DNA

    SciTech Connect

    Georgescu,R.; Kim, S.; Yurieva, O.; Kuriyan, J.; Kong, X.; O'Donnell, M.

    2008-01-01

    The structure of the E. coli {beta} clamp polymerase processivity factor has been solved in complex with primed DNA. Interestingly, the clamp directly binds the DNA duplex and also forms a crystal contact with the ssDNA template strand, which binds into the protein-binding pocket of the clamp. We demonstrate that these clamp-DNA interactions function in clamp loading, perhaps by inducing the ring to close around DNA. Clamp binding to template ssDNA may also serve to hold the clamp at a primed site after loading or during switching of multiple factors on the clamp. Remarkably, the DNA is highly tilted as it passes through the {beta} ring. The pronounced 22 angle of DNA through {beta} may enable DNA to switch between multiple factors bound to a single clamp simply by alternating from one protomer of the ring to the other.

  13. Automated planar patch-clamp.

    PubMed

    Milligan, Carol J; Möller, Clemens

    2013-01-01

    Ion channels are integral membrane proteins that regulate the flow of ions across the plasma membrane and the membranes of intracellular organelles of both excitable and non-excitable cells. Ion channels are vital to a wide variety of biological processes and are prominent components of the nervous system and cardiovascular system, as well as controlling many metabolic functions. Furthermore, ion channels are known to be involved in many disease states and as such have become popular therapeutic targets. For many years now manual patch-clamping has been regarded as one of the best approaches for assaying ion channel function, through direct measurement of ion flow across these membrane proteins. Over the last decade there have been many remarkable breakthroughs in the development of technologies enabling the study of ion channels. One of these breakthroughs is the development of automated planar patch-clamp technology. Automated platforms have demonstrated the ability to generate high-quality data with high throughput capabilities, at great efficiency and reliability. Additional features such as simultaneous intracellular and extracellular perfusion of the cell membrane, current clamp operation, fast compound application, an increasing rate of parallelization, and more recently temperature control have been introduced. Furthermore, in addition to the well-established studies of over-expressed ion channel proteins in cell lines, new generations of planar patch-clamp systems have enabled successful studies of native and primary mammalian cells. This technology is becoming increasingly popular and extensively used both within areas of drug discovery as well as academic research. Many platforms have been developed including NPC-16 Patchliner(®) and SyncroPatch(®) 96 (Nanion Technologies GmbH, Munich), CytoPatch™ (Cytocentrics AG, Rostock), PatchXpress(®) 7000A, IonWorks(®) Quattro and IonWorks Barracuda™, (Molecular Devices, LLC); Dynaflow(®) HT (Cellectricon

  14. The ionizing radiation environment of LDEF prerecovery predictions

    NASA Technical Reports Server (NTRS)

    Watts, John W., Jr.; Derrickson, James H.; Parnell, T. A.; Fishman, G. J.; Harmon, A.; Benton, E. V.; Frank, A. L.; Heinrich, Wolfgang

    1991-01-01

    The Long Duration Exposure Facility (LDEF) was exposed to several sources of ionizing radiation while in orbit. The principal ones were trapped belt protons and electrons, galactic cosmic rays, and albedo particles (protons and neutrons) from the atmosphere. Large solar flares in 1989 may have caused a small contribution. Prior to the recovery of the spacecraft, a number of calculations and estimates were made to predict the radiation exposure of the spacecraft and experiments. These were made to assess whether measurable radiation effects might exist, and to plan the analysis of the large number of radiation measurements available on the LDEF. Calculations and estimates of total dose, particle fluences, linear energy transfer spectra, and induced radioactivity were made. The principal sources of radiation is described, and the preflight predictions are summarized.

  15. Collection, analysis, and archival of LDEF activation data

    NASA Technical Reports Server (NTRS)

    Laird, C. E.; Harmon, B. A.; Fishman, G. J.; Parnell, T. A.

    1993-01-01

    The study of the induced radioactivity of samples intentionally placed aboard the Long Duration Exposure Facility (LDEF) and samples obtained from the LDEF structure is reviewed. The eight laboratories involved in the gamma-ray counting are listed and the scientists and the associated counting facilities are described. Presently, most of the gamma-ray counting has been completed and the spectra are being analyzed and corrected for efficiency and self absorption. The acquired spectra are being collected at Eastern Kentucky University for future reference. The results of these analyses are being compiled and reviewed for possible inconsistencies as well as for comparison with model calculations. These model calculations are being revised to include the changes in trapped-proton flux caused by the onset of the period of maximum solar activity and the rapidly decreasing spacecraft orbit. Tentative plans are given for the storage of the approximately 1000 gamma-ray spectra acquired in this study and the related experimental data.

  16. Induced radioactivity of LDEF materials and structural components

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Laird, C. E.; Fishman, G. J.; Parnell, T. A.; Camp, D. C.; Frederick, C. E.; Hurley, D. L.; Lindstrom, D. J.; Moss, C. E.; Reedy, R. C.; Reeves, J. H.; Smith, A. R.; Winn, W. G.; Benton, E. V.

    1996-01-01

    We present an overview of the Long Duration Exposure Facility (LDEF) induced activation measurements. The LDEF, which was gravity-gradient stabilized, was exposed to the low Earth orbit (LEO) radiation environment over a 5.8 year period. Retrieved activation samples and structural components from the spacecraft were analyzed with low and ultra-low background HPGe gamma spectrometry at several national facilities. This allowed a very sensitive measurement of long-lived radionuclides produced by proton- and neutron-induced reactions in the time-dependent, non-isotropic LEO environment. A summary of major findings from this study is given that consists of directionally dependent activation, depth profiles, thermal neutron activation, and surface beryllium-7 deposition from the upper atmosphere. We also describe a database of these measurements that has been prepared for use in testing radiation environmental models and spacecraft design.

  17. Custom impression trays: Part I--Mechanical properties.

    PubMed

    Breeding, L C; Dixon, D L; Moseley, J P

    1994-01-01

    Dimensional stability of custom impression trays is an important factor in determining the degree of accuracy achieved in forming a master cast. Such trays must remain stable over time and must not exhibit permanent deformation when a completed impression is removed from the oral cavity. Measurement of the mechanical properties allows comparison between various tray materials and is useful in interpreting data on stresses incurred during removal of the completed impression. In Part I of this three-part series, the various mechanical properties of five tray resins: one autopolymerizing polymethyl methacrylate, one light-polymerizing, and three brands of thermoplastic resins were recorded and compared. The thermoplastic resins studied in this investigation exhibited lower measured values for the strength and elastic modulus properties than the light-polymerizing resin and the autopolymerizing polymethyl methacrylate resin studied.

  18. Custom impression trays: Part I--Mechanical properties.

    PubMed

    Breeding, L C; Dixon, D L; Moseley, J P

    1994-01-01

    Dimensional stability of custom impression trays is an important factor in determining the degree of accuracy achieved in forming a master cast. Such trays must remain stable over time and must not exhibit permanent deformation when a completed impression is removed from the oral cavity. Measurement of the mechanical properties allows comparison between various tray materials and is useful in interpreting data on stresses incurred during removal of the completed impression. In Part I of this three-part series, the various mechanical properties of five tray resins: one autopolymerizing polymethyl methacrylate, one light-polymerizing, and three brands of thermoplastic resins were recorded and compared. The thermoplastic resins studied in this investigation exhibited lower measured values for the strength and elastic modulus properties than the light-polymerizing resin and the autopolymerizing polymethyl methacrylate resin studied. PMID:8120842

  19. Capabilities of the LDEF-2 heavy nuclei collection

    NASA Technical Reports Server (NTRS)

    Drach, J.; Price, P. B.; Salamon, M. H.; Tarle, G.; Ahlen, S. P.

    1985-01-01

    To take the next big step beyond High Energy Astronomy Observatory (HEAO-3) the Heavy Nuclei Collector (HNC), to be carried on an LDEF reflight, has the goals of greatly increased collecting power ( 30 actinides) and charge resolution sigma sub Z or = 0.25 E for Z up to approximately 100, which will provide abundances of all the charges 40 or Z or = 96 and permit sensitive searches for hypothetical particles such as monopoles, superheavy elements, and quark nuggets.

  20. Experimental impacts into Teflon targets and LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Hoerz, F.; Cintala, M. J.; Zolensky, M. E.; Bernhard, R. P.; See, T. H.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) exposed approximately 20 sq m of identical thermal protective blankets, predominantly on the Ultra-Heavy Cosmic Ray Experiment (UHCRE). Approximately 700 penetration holes greater than 300 micron in diameter were individually documented, while thousands of smaller penetrations and craters occurred in these blankets. As a result of their 5.7 year exposure and because they pointed into a variety of different directions relative to the orbital motion of the nonspinning LDEF platform, these blankets can reveal important dynamic aspects of the hypervelocity particle environment in near-earth orbit. The blankets were composed of an outer teflon layer (approximately 125 micron thick), followed by a vapor-deposited rear mirror of silver (less than 1000 A thick) that was backed with an organic binder and a thermal protective paint (approximately 50 to 75 micron thick), resulting in a cumulative thickness (T) of approximately 175 to 200 microns for the entire blanket. Many penetrations resulted in highly variable delaminations of the teflon/metal or metal/organic binder interfaces that manifest themselves as 'dark' halos or rings, because of subsequent oxidation of the exposed silver mirror. The variety of these dark albedo features is bewildering, ranging from totally absent, to broad halos, to sharp single or multiple rings. Over the past year experiments were conducted over a wide range of velocities (i.e., 1 to 7 km/s) to address velocity dependent aspects of cratering and penetrations of teflon targets. In addition, experiments were performed with real LDEF thermal blankets to duplicate the LDEF delaminations and to investigate a possible relationship of initial impact conditions on the wide variety of dark halo and ring features.

  1. Study of balloon and thermal control material degradation aboard LDEF

    NASA Technical Reports Server (NTRS)

    Letton, Alan; Rock, Neil I.; Williams, Kevin D.; Strganac, Thomas

    1991-01-01

    The initial results of analysis performed on a number of polymeric materials which were exposed aboard the Long Duration Exposure Facility (LDEF) are discussed. These materials include two typical high altitude balloon films (a polyester and a polyethylene) and silver-backed Teflon from thermal control blanket samples. The techniques used for characterizing changes in mechanical properties, chemical structure and surface morphology include Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy, and dynamic mechanical analysis.

  2. Follow up on the crystal growth experiments of the LDEF

    NASA Technical Reports Server (NTRS)

    Nielsen, K. F.; Lind, M. D.

    1993-01-01

    The results of the 4 solution growth experiments on the LDEF have been published elsewhere. Both the crystals of CaCO3, which were large and well shaped, and the much smaller TTF-TCNQ crystals showed unusual morphological behavior. The follow up on these experiments was begun in 1981, when ESA initiated a 'Concept Definition Study' on a large, 150 kg, Solution Growth Facility (SGF) to be included in the payload of EURECA-1, the European Retrievable Carrier. This carrier was a continuation of the European Spacelab and at that time planned for launch in 1987. The long delay of the LDEF retrieval and of subsequent missions brought about reflections both on the concept of crystal growth in space and on the choice of crystallization materials that had been made for the LDEF. Already before the LDEF retrieval, research on TTF-TCNQ had been stopped, and a planned growth experiment with TTF-TCNQ on the SGF/EURECA had been cancelled. The target of the SGF investigation is now more fundamental in nature. None of the crystals to be grown here are, like TTF-TCNQ, in particular demand by science or industry, and the crystals only serve the purpose of model crystals. The real purpose of the investigation is to study the growth behavior. One of the experiments, the Soret Coefficient Measurement experiment is not growing crystals at all, but has it as its sole purpose to obtain accurate information on thermal diffusion, a process of importance in crystal growth from solution.

  3. Analysis of surfaces from the LDEF A0114, phase 2

    NASA Technical Reports Server (NTRS)

    Gregory, John C.

    1992-01-01

    Analysis of surfaces from the Long Duration Exposure Facility (LDEF) continued during the reporting period. Work has continued on profilometry measurements of eroded and corroded sample surfaces, optical transmission measurements, analysis of the pinhole camera, and x-ray photoelectron spectroscopy (XPS) analysis of some samples. Papers that have appeared or have been accepted for publications are listed. Several of these papers and an abstact are included.

  4. Results from the cascaded variable conductance heatpipe experiment on LDEF

    NASA Technical Reports Server (NTRS)

    Grote, Michael G.

    1991-01-01

    A Variable Conductance Heat Pipe Experiment (CVCHPE) was successfully flown onboard the LDEF and demonstrated temperature control better than +/- 0.3 C during 50 days of on-orbit data collection in a widely varying external environment. The experiment used two series connected, dry reservoir variable conductance heat pipes which require no electrical power for operation. The heat pipes used a central artery design with ammonia working fluid and nitrogen control gas.

  5. Absorbed dose and LET spectra measurements on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Csige, I.; Frank, A. L.; Benton, E. R.; Frigo, L. A.; Parnell, T. A.; Watts, J.; Harmon, A.

    1995-01-01

    Total absorbed doses measured with TLD's, linear energy transfer (LET) spectra measured with plastic track detectors, and low energy neutrons measured on LDEF have been compared with model calculations. The total absorbed doses measured in TLD's were higher than predicted in the calculations of Armstrong et al. and differ from the calculations of Atwell et al. LDEF LET spectra are dependent on detector orientation, shielding and experiment location. These factors need to be taken into account when modeling the LDEF LET spectra. LET spectra measured with plastic nuclear track detectors (PNTD's) also deviate significantly from calculations especially for high LET particles (LET(sub infinity) H2O greater than 100keV/micron). Modeling efforts to date do not include the contribution of proton induced secondaries. Analysis of polycarbonate PNTD's from the West-side of LDEF has revealed a very high fluence of tracks (greater than 1 x 10(exp 7) tracks/cm(exp 2) under 2 gm/cm(exp 2) shielding). Fluence drops off rapidly as shielding depth increases. Tracks only form in the region of the detector closest to the surface, not in the bulk of the detector. To date no adequate explanation for this observation has been found. We plan to measure range distribution of very high LET (LET (sub infinity) H2O greater than 500 keV/micron) secondary particles produced in silicon wafer by high energy primary cosmic ray particles. Refinements of experimental techniques and model calculations are being carried out in order to understand existing discrepancies between experimental measurements and calculations.

  6. The effects of disposable and custom-made impression trays on the accuracy of impressions.

    PubMed

    Burton, J F; Hood, J A; Plunkett, D J; Johnson, S S

    1989-06-01

    This study indicates that some non-rigid impression trays, including disposable plastic trays and custom-made acrylic resin trays, may produce unreliable results when used with some medium-bodied elastomers. The study does not question the well-documented clinical accuracy of these elastomers when they are used with rigid trays. Disposable plastic trays are found to be acceptable when used with a combination of reversible and non-reversible hydrocolloid impression materials.

  7. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 3

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers presented at the First Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life sciences.

  8. LDEF: 69 Months in Space. Second Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    This document is a compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  9. LDEF: 69 Months in Space. Part 4: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are presented. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.

  10. LDEF: 69 Months in Space. Part 3: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    Papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium are included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science.

  11. LDEF: 69 Months in Space. Part 1: Second Post-Retrieval Symposium

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1993-01-01

    A compilation of papers presented at the Second Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium is included. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life sciences.

  12. Technique for making flexible impression trays for the microstomic patient.

    PubMed

    Whitsitt, J A; Battle, L W

    1984-10-01

    This impression technique can be used for patients in whom routine use of stock impression trays is hindered by microstomia. Putty wash material can be manipulated with minimal effort and time. Placing the completed preliminary impression in a free-flowing mix of dental stone stabilizes the impression material and facilitates boxing and pouring of the impression. The resultant preliminary casts can then be used for diagnostic purposes and for making rigid sectional trays for final impressions.

  13. A study of the antimicrobial properties of impression tray adhesives.

    PubMed

    Herman, D A

    1993-01-01

    Three impression tray adhesives were tested for their antimicrobial actions on three bacteria strains used for disinfectant studies. The colony forming unit (CFU) counts from plating the adhesive-exposed bacteria showed a significant reduction in number compared with the CFU of the controls. Statistical analyses confirmed the significant reduction (p < 0.05) for all but one test case. Proper infection control procedures should always be followed, but the added benefits of disinfection by impression tray adhesives can help prevent cross contamination.

  14. Fullerenes in an impact crater on the LDEF spacecraft.

    PubMed

    Radicati di Brozolo, F; Bunch, T E; Fleming, R H; Macklin, J

    1994-05-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  15. Effects of orbital exposure on Halar during the LDEF mission

    NASA Technical Reports Server (NTRS)

    Brower, William E., Jr.; Holla, Harish; Bauer, Robert A.

    1992-01-01

    Thermomechanical Analysis (TMA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) were performed on samples of Halar exposed on the LDEF Mission for 6 years in orbit and unexposed Halar control samples. Sections 10-100 microns thick were removed from the exposed surface down to a depth of 1,000 microns through the 3 mm thick samples. The TMA and DSC results, which arise from the entire slice and not just its surface, showed no differences between the LDEF and the control samples. TMA scans were run from ambient to 300 C; results were compared by a tabulation of the glass transition temperatures. DSC scans were run from ambient to 700 C; the enthalpy of melting was compared for the samples as a function of section depth with the sample. The TGA results, which arise from the surface of the sample initially, showed a sharp increase in the topmost 50 micron section (the exposed, discolored side) in the weight loss of 170 C in oxygen. This weight loss dropped to bulk values in the range of depth of 50-200 microns. The control sample showed only a slight increase in weight loss as the top surface was approached. The LDEF Halar sample appears to be mechanically undamaged, with a surface layer which oxidizes faster as a result of orbital exposure.

  16. Fullerenes in an impact crater on the LDEF spacecraft

    NASA Technical Reports Server (NTRS)

    Radicati di Brozolo, F.; Bunch, T. E.; Fleming, R. H.; Macklin, J.

    1994-01-01

    The fullerenes C60 and C70 have been found to occur naturally on Earth and have also been invoked to explain features in the absorption spectra of interstellar clouds. But no definitive spectroscopic evidence exists for fullerenes in space and attempts to find fullerenes in carbonaceous chondrites have been unsuccessful. Here we report the observation of fullerenes associated with carbonaceous impact residue in a crater on the Long Duration Exposure Facility (LDEF) spacecraft. Laser ionization mass spectrometry and Raman spectroscopy indicate the presence of fullerenes in the crater and in adjacent ejecta. Man-made fullerenes survive experimental hypervelocity (approximately 6.1 km s-1) impacts into aluminium targets, suggesting that space fullerenes contained in a carbonaceous micrometeorite could have survived the LDEF impact at velocities towards the lower end of the natural particle encounter range (<13 km s-1). We also demonstrate that the fullerenes were unlikely to have formed as instrumental artefacts, nor are they present as contaminants. Although we cannot specify the origin of the fullerenes with certainty, the most plausible source is the chondritic impactor. If, alternatively, the impact produced the fullerenes in situ on LDEF, then this suggests a viable mechanism for fullerene production in space.

  17. Follow up on the crystal growth experiments of the LDEF

    NASA Astrophysics Data System (ADS)

    Nielsen, K. F.; Lind, M. D.

    1992-06-01

    The 4 solution growth experiments on the LDEF were presented thoroughly elsewhere. The CaCO3-experiment, and to a certain extent also the TTF-TCNQ-experiments yielded useful results. In Jan. 1992, the next series of solution growth experiments were sent to ESA for shipment to KSC. As on the LDEF, the SGF (solution growth facility) of the EURECA-1 contains 4 large experiments. From the beginning, the planning and developments were introduced. Still, the basic concept was maintained, and the CaCO3-experiment, that showed the best results on the LDEF, will now be repeated with improved technology and in larger scale on the EURECA-1. The contents of the 4 SGF experiments are as follows: (1) growth of calcium-carbonate crystals; (2) formation and transformation of tri-calcium-phosphate; (3) growth of zeolite crystals; and (4) soret coefficient measurements (diffusion). The scientific background for the choice of experiments and the major improvements of the SGF are reviewed. Furthermore, some ideas on basic microgravity solution growth experimentation from ESA's newly established EWG (Expert Working Group) on solution growth are reported.

  18. Long Duration Exposure Facility (LDEF) attitude measurements of the interplanetary dust experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.; Motley, William R., III

    1992-01-01

    The Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) was unique in providing a time history of impacts of micron-sized particles on six orthogonal faces of LDEF during the first year in orbit. The value of this time resolved data depended on and was enhanced by the proper operation of some basic LDEF systems. Thus, the value of the data is greatly enhanced when the location and orientation of LDEF is known for each time of impact. The location and velocity of LDEF as a function of time can be calculated from the 'two-line elements' published by GSFC during the first year of the LDEF mission. The attitude of LDEF was passively stabilized in a gravity-gradient mode and a magnetically anchored viscous damper was used to dissipate roll, pitch, and yaw motions. Finally, the IDE used a standard LDEF Experiment Power and Data System (EPDS) to collect and store data and also to provide a crystal derived clock pulse (1 count every 13.1072 seconds) for all IDE time measurements. All that remained for the IDE was to provide a system to calibrate the clock, eliminating accumulative errors, and also verify the attitude of LDEF. The IDE used solar cells on six orthogonal faces to observe the LDEF sunrise and provide data about the LDEF attitude. The data was recorded by the EPDS about 10 times per day for the first 345 days of the LDEF mission. This data consist of the number of IDE counts since the last LDEF sunrise and the status of the six solar cells (light or dark) at the time of the last IDE count. The EPDS determined the time that data was recorded and includes, with each record, the master EPDS clock counter (1 count every 1.6384 seconds) that provided the range and resolution for time measurements. The IDE solar cells provided data for an excellent clock calibration, meeting their primary purpose, and the time resolved LDEF attitude measurements that can be gleaned from this data are presented.

  19. Prefabricated stock trays for impression of auricular region.

    PubMed

    Vibha, Shetty; Anandkrishna, G N; Anupam, Purwar; Namratha, N

    2010-06-01

    The conventional methods of impression making for maxillofacial defects are cumbersome and time consuming for both patient and operator. This study focuses upon standardizing and simplifying the impression making methodology for auricular prosthesis with the help of prefabricated stock trays for auricular region. The stock trays were designed on positive replicas of anatomical structures, broadly divided into long and narrow, short and broad and long and broad ear. For each stock tray, impressions of auricle, of patients of different morphology were made with plastic funnels of different shape and size ensuring at least 6 mm of space between the anatomical part and inner surface of funnel and master cast was obtained. Subsequent adaptation of wax was done and fabrications of stock stainless steel trays were done. A standardized stock tray for making of auricular impressions was developed. From this innovative technical procedure it is possible to get an accurate impression of auricular defects now by the use of prefabricated stock trays rather than the cumbersome conventional method.

  20. Tensile bond strength between custom tray and elastomeric impression material.

    PubMed

    Maruo, Yukinori; Nishigawa, Goro; Oka, Morihiko; Minagi, Shogo; Irie, Masao; Suzuki, Kazuomi

    2007-05-01

    The aim of this study was to investigate how to achieve sufficient and stable adhesive strength between impression material and tray. Impression materials were molded between autopolymerizing resin columns, and tensile strength was measured as a function of these factors: tray storage time (1, 2, 4, 7, and 10 days), adhesive drying time (0, 1, 5, 10, and 15 minutes), and tray surface roughness (air abrasion, bur-produced roughness, and no treatment). Tensile bond strength was not affected by tray storage time throughout the entire evaluation period of 10 days. As for tray adhesive drying time, Reprosil and Exaimplant yielded extremely low values for drying times of 10 minutes or less (P<0.05), while Imprint II and Impregum were not influenced by drying time. Vinyl polysiloxane achieved the highest adhesive strength with bur-produced roughness, which was significantly higher than with air abrasion or no treatment (P<0.05), whereas polyether achieved the lowest value with bur-produced roughness (P<0.05). It was concluded that surface treatment of custom tray should be adapted to the type of impression material used to achieve optimum bond strength.

  1. Analysis of systems hardware flown on LDEF: New findings and comparison to other retrieved spacecraft hardware

    NASA Technical Reports Server (NTRS)

    Dursch, Harry; Bohnhoff-Hlavacek, Gail; Blue, Donald; Hansen, Patricia

    1995-01-01

    The Long Duration Exposure Facility (LDEF) was retrieved in 1990 after spending 69 months in low-earth-orbit (LEO). A wide variety of mechanical, electrical, thermal, and optical systems, subsystems, and components were flown on LDEF. The Systems Special Investigation Group (Systems SIG) was formed by NASA to investigate the effects of the 69 month exposure on systems related hardware and to coordinate and collate all systems analysis of LDEF hardware. This report is the Systems SIG final report which updates earlier findings and compares LDEF systems findings to results from other retrieved spacecraft hardware such as Hubble Space Telescope. Also included are sections titled (1) Effects of Long Duration Space Exposure on Optical Scatter, (2) Contamination Survey of LDEF, and (3) Degradation of Optical Materials in Space.

  2. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  3. Migration and generation of contaminants from launch through recovery: LDEF case history

    NASA Technical Reports Server (NTRS)

    Crutcher, E. R.; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1992-01-01

    It is possible to recreate the contamination history of the Long Duration Exposure Facility (LDEF) through an analysis of its contaminants and selective samples that were collected from surfaces with better documented exposure histories. This data was then used to compare estimates based on monitoring methods that were selected for the purpose of tracking LDEF's exposure to contaminants. The LDEF experienced much more contamination than would have been assumed based on the monitors. Work is still in progress but much of what was learned so far is already being used in the selection of materials and in the design of systems for space. Now experiments are being prepared for flight to resolve questions created by the discoveries on the LDEF. A summary of what was learned about LDEF contaminants over the first year since recovery and deintegration is presented. Over 35 specific conclusions in 5 contamination related categories are listed.

  4. Influence of Custom Trays, Dual-Arch Passive, Flexed Trays and Viscosities of Elastomeric Impression Materials on Working Dies

    PubMed Central

    Kohli, Shivani; Kalsi, Rupali

    2016-01-01

    Introduction Dual arch impression technique signifies an essential improvement in fixed prosthodontics and has numerous benefits over conventional impression techniques. The accuracy of working dies fabricated from dual arch impression technique remains in question because there is little information available in the literature. Aim This study was conducted to compare the accuracy of working dies fabricated from impressions made from two different viscosities of impression materials using metal, plastic dual arch trays and custom made acrylic trays. Materials and Methods The study samples were grouped into two groups based on the viscosity of impression material used i.e. Group I (monophase), whereas Group II consisted of Dual Mix technique using a combination of light and heavy body material. These were further divided into three subgroups A, B and C depending on the type of impression tray used (metal dual arch tray, plastic dual arch tray and custom made tray). Measurements of the master cast were made using profile projector. Descriptive statistics like mean, Standard Deviation (SD) were calculated for all the groups. One way analysis of variance (ANOVA) was used for multiple group comparisons. A p-value of 0.05 or less was considered statistically significant. Results The gypsum dies obtained with the three types of impression trays using two groups of impression materials were smaller than the master models in dimensions. Conclusion The plastic dual arch trays produced dies which were the least accurate of the three groups. There was no significant difference in the die dimensions obtained using the two viscosities of impression materials. PMID:27437342

  5. A clamped rectangular plate containing a crack

    NASA Technical Reports Server (NTRS)

    Tang, R.; Erdogan, F.

    1985-01-01

    The general problem of a rectangular plate clamped along two parallel sides and containing a crack parallel to the clamps is considered. The problem is formulated in terms of a system of singular integral equations and the asymptotic behavior of the stress state near the corners is investigated. Numerical examples are considered for a clamped plate without a crack and with a centrally located crack, and the stress intensity factors and the stresses along the clamps are calculated.

  6. Clamping down on mammalian meiosis

    PubMed Central

    Lyndaker, Amy M; Vasileva, Ana; Wolgemuth, Debra J; Weiss, Robert S; Lieberman, Howard B

    2013-01-01

    The RAD9A-RAD1-HUS1 (9-1-1) complex is a PCNA-like heterotrimeric clamp that binds damaged DNA to promote cell cycle checkpoint signaling and DNA repair. While various 9-1-1 functions in mammalian somatic cells have been established, mounting evidence from lower eukaryotes predicts critical roles in meiotic germ cells as well. This was investigated in 2 recent studies in which the 9-1-1 complex was disrupted specifically in the mouse male germline through conditional deletion of Rad9a or Hus1. Loss of these clamp subunits led to severely impaired fertility and meiotic defects, including faulty DNA double-strand break repair. While 9-1-1 is critical for ATR kinase activation in somatic cells, these studies did not reveal major defects in ATR checkpoint pathway signaling in meiotic cells. Intriguingly, this new work identified separable roles for 9-1-1 subunits, namely RAD9A- and HUS1-independent roles for RAD1. Based on these studies and the high-level expression of the paralogous proteins RAD9B and HUS1B in testis, we propose a model in which multiple alternative 9-1-1 clamps function during mammalian meiosis to ensure genome maintenance in the germline. PMID:24013428

  7. Applications of T-ray spectroscopy in the petroleum field

    NASA Astrophysics Data System (ADS)

    Al-Douseri, Fatemah M.

    2005-11-01

    Because of heavy usage of petroleum products, which are the main source of energy in daily life and industry, a fast, reliable, and portable analysis system is needed to complement traditional techniques. Terahertz (THz) radiation, or T-rays, is electromagnetic radiation in the 0.1 to 10 THz frequency range. One unique attribute of T-rays is their ability to sensitively measure the induced molecular dipole moments in non-polar liquids such as aromatics, which make up the majority of the contents of many petroleum products. This information can lead to several applications in petroleum analysis. The application of T-rays to petroleum product analysis has the potential to make a significant impact in the petroleum field. In this dissertation, I show the first use of T-ray time-domain spectroscopy and Fourier transform infrared (FTIR) spectroscopy techniques for petroleum product analysis. I report on the feasibility of analyzing selected petroleum products, including gasoline, diesel, lubricating oil, and selected compounds of toluene, ethylbenzene, and xylene (BTEX). With the use of a T-ray time-domain spectrometer. I demonstrate that gasolines with different octane numbers and diesel all show specific absorption coefficients and refractive indexes in the spectral range from 0.5 to 2.0 THz. Furthermore, I report the qualitative and quantitative analysis of selected BTEX components in gasoline and diesel using FTIR spectroscopy in the 50 to 650 cm-1 region. I distinguish gasolines with different octane numbers from diesel and lubricating oil according to their different spectral features. I also determine the concentration of (o, m, p) xylene isomers in gasoline according to their specific absorption bands. The experimental results in this thesis, imply that linking between the knowledge of petroleum products and the development of T-ray spectrometer with the cooperation of industry might translate the T-ray spectroscopic system into a real world application in

  8. Clamping down on clamps and clamp loaders--the eukaryotic replication factor C.

    PubMed

    Mossi, R; Hübscher, U

    1998-06-01

    DNA transactions such as DNA replication and DNA repair require the concerted action of many enzymes, together with other proteins and non-protein cofactors. Among them three main accessory proteins, replication factor C (RF-C), proliferating-cell nuclear antigen (PCNA) and replication protein A (RP-A), are essential for accurate and processive DNA synthesis by DNA polymerases. RF-C is a complex consisting of five polypeptides with distinct functions. RF-C can bind to a template-primer junction and, in the presence of ATP, load the PCNA clamp onto DNA, thereby recruiting DNA polymerases to the site of DNA synthesis. RF-C not only acts as a clamp loader in DNA replication and DNA repair, but there is some evidence that it could be involved in several other processes such as transcription, S-phase checkpoint regulation, apoptosis, differentiation and telomere-length regulation.

  9. Dynamics of Open DNA Sliding Clamps.

    PubMed

    Oakley, Aaron J

    2016-01-01

    A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders. PMID:27148748

  10. Dynamics of Open DNA Sliding Clamps

    PubMed Central

    Oakley, Aaron J.

    2016-01-01

    A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders. PMID:27148748

  11. Custom impression trays. Part III: A stress distribution model.

    PubMed

    Moseley, J P; Dixon, D L; Breeding, L C

    1994-05-01

    All resins used to make custom impression trays exhibit plastic deformation at some force value; therefore it is important to compare the physical property values of such materials with the stresses to which impression trays are subjected during dental procedures. A simple mathematical model of a custom tray was developed to predict stress distributions in this final part of a three-part investigation. Experimental stress analysis of such a tray confirmed the accuracy of the model, which was then used to predict the maximum stress experienced by the tray during removal of a completed impression from the oral cavity. The results of this analysis indicated that these stresses would be significantly lower than the yield stress for a commonly used polymethyl methacrylate resin or a light-polymerized resin. The stresses were also sufficiently low for us to conclude that thermoplastic resins would not permanently deform; however, the stresses encountered in the experimental confirmation procedure were close to the yield stress values for these materials.

  12. Status of LDEF ionizing radiation measurements and analysis

    NASA Technical Reports Server (NTRS)

    Parnell, Thomas A.

    1993-01-01

    At this symposium significant new data and analyses were reported in cosmic ray research, radiation dosimetry, induced radioactivity, and radiation environment modeling. Measurements of induced radioactivity and absorbed dose are nearly complete, but much analysis and modeling remains. Measurements and analyses of passive nuclear track detectors (PNTD), used to derive the cosmic ray composition and spectra, and linear energy transfer (LET) spectra, are only a few percent complete, but important results have already emerged. As one might expect at this stage of the research, some of the new information has produced questions rather than answers. Low-energy heavy nuclei detected by two experiments are not compatible with known solar or cosmic components. Various data sets on absorbed dose are not consistent, and a new trapped proton environment model does not match the absorbed dose data. A search for cosmogenic nuclei other than Be-7 on Long Duration Exposure Facility (LDEF) surfaces has produced an unexpected result, and some activation data relating to neutrons is not yet understood. Most of these issues will be resolved by the analysis of further experiment data, calibrations, or the application of the large LDEF data set that offers alternate data or analysis techniques bearing on the same problem. The scope of the papers at this symposium defy a compact technical summary. I have attempted to group the new information that I noted into the following groups: induced radioactivity; absorbed dose measurements; LET spectra and heavy ion dosimetry; environment modeling and three dimensional shielding effects; cosmogenic nuclei; and cosmic rays and other heavy ions. The papers generally are expository and have excellent illustrations, and I refer to their figures rather than reproduce them here. The general program and objectives of ionizing radiation measurements and analyses on LDEF has been described previously.

  13. Long Duration Exposure Facility (LDEF) attitude measurements of the Interplanetary Dust Experiment

    NASA Technical Reports Server (NTRS)

    Kassel, Philip C., Jr.; Motley, William R., III; Singer, S. Fred; Mulholland, J. Derral; Oliver, John P.; Weinberg, Jerry L.; Cooke, William J.; Wortman, Jim J.

    1993-01-01

    Analysis of the data from the Long Duration Exposure Facility (LDEF) Interplanetary Dust Experiment (IDE) sun sensors has allowed a confirmation of the attitude of LDEF during its first year in orbit. Eight observations of the yaw angle at specific times were made and are tabulated in this paper. These values range from 4.3 to 12.4 deg with maximum uncertainty of plus or minus 2.0 deg and an average of 7.9 deg. No specific measurements of pitch or roll were made but the data indicates that LDEF had an average pitch down attitude of less than 0.7 deg.

  14. Atomic oxygen flux and fluence calculation for Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Bourassa, Roger J.; Gillis, James R.

    1991-01-01

    The LDEF mission was to study the effects of the space environment on various materials over an extended period of time. One of the important factors for materials degradation in low earth orbit is the atomic oxygen fluxes and fluences experienced by the materials. These fluxes and fluences are a function of orbital parameters, solar and geomagnetic activity, and material surface orientation. Calculations of atomic oxygen fluences and fluxes for the LDEF mission are summarized. Included are descriptions of LDEF orbital parameters, solar and geomagnetic data, computer code FLUXAV, which was used to perform calculations of fluxes and fluences, along with a discussion of the calculated fluxes and fluences.

  15. A modified edentulous maxillary custom tray to help prevent gagging.

    PubMed

    Callison, G M

    1989-07-01

    The gag reflex can be a normal, healthy defense mechanism to prevent foreign objects from entering the trachea. During certain dental procedures, however, gagging can greatly complicate the final result, especially during the maxillary complete denture final impression. A modification can be made to the maxillary custom acrylic resin tray to aid in securing a clinically acceptable elastomeric final impression. This modification involves forming a vacuum chamber at the posterior extent of the custom tray to which a saliva ejector tip is embedded. When the saliva ejector is connected to the low-volume evacuation hose, the chamber will trap any excess impression material that might extrude from the posterior border of the loaded tray. This results in a reduced chance of eliciting the patient's gag reflex. PMID:2664161

  16. A modified edentulous maxillary custom tray to help prevent gagging.

    PubMed

    Callison, G M

    1989-07-01

    The gag reflex can be a normal, healthy defense mechanism to prevent foreign objects from entering the trachea. During certain dental procedures, however, gagging can greatly complicate the final result, especially during the maxillary complete denture final impression. A modification can be made to the maxillary custom acrylic resin tray to aid in securing a clinically acceptable elastomeric final impression. This modification involves forming a vacuum chamber at the posterior extent of the custom tray to which a saliva ejector tip is embedded. When the saliva ejector is connected to the low-volume evacuation hose, the chamber will trap any excess impression material that might extrude from the posterior border of the loaded tray. This results in a reduced chance of eliciting the patient's gag reflex.

  17. Syncom 4 deploy, LDEF retrieval highlight 10-day Columbia flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The objectives of Space Shuttle Mission STS-32 are described along with major flight activities, prelaunch and launch operations, trajectory sequence of events, and landing and post-landing operations. The primary objectives of STS-32 are the deployment of a Navy synchronous communications satellite (Syncom 4) and the retrieval of the Long Duration Exposure Facility (LDEF) launched from the Challenger in April 1984. Secondary STS-32 payloads include a protein crystal growth experiment, the Fluids Experiment Apparatus (FEA) for the investigation of microgravity materials processing, the Mesoscale Lighting Experiment, the Latitude-Longitude Locator Experiment, the Americal Flight Echocardiograph, and an experiment to investigate neurospora circadian rhythms in a microgravity environment.

  18. Gamma ray spectrometry of LDEF samples at SRL

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1992-01-01

    A total of 31 samples from the Long Duration Exposure Facility (LDEF), including materials of aluminum, vanadium, and steel trunnions were analyzed by ultra-low-level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include end pieces, which were reported to collect noticeable Be-7 on their leading surfaces. No significant Be-7 was detected in the samples analyzed.

  19. A study of the antimicrobial properties of impression tray adhesives.

    PubMed

    Herman, D A

    1993-01-01

    Three impression tray adhesives were tested for their antimicrobial actions on three bacteria strains used for disinfectant studies. The colony forming unit (CFU) counts from plating the adhesive-exposed bacteria showed a significant reduction in number compared with the CFU of the controls. Statistical analyses confirmed the significant reduction (p < 0.05) for all but one test case. Proper infection control procedures should always be followed, but the added benefits of disinfection by impression tray adhesives can help prevent cross contamination. PMID:8455154

  20. A nonequilibrium model for dynamic simulation of tray distillation columns

    SciTech Connect

    Kooijman, H.A.; Taylor, R.

    1995-08-01

    A nonequilibrium model for the dynamic simulation of distillation columns is described. The nonequilibrium model includes the direct calculation of the rates of mass and energy transfer and is better able to model the actual physical processes occurring on a real distillation tray than is the conventional equilibrium stage model. Example calculations show that heat-transfer limitations and the vapor holdup above the froth cannot be neglected at elevated pressures. Back-computed Murphree tray efficiencies are not constant over time, which implies that the equilibrium model should not be used for dynamic simulations.

  1. Visualization of three-dimensional liquid flow on sieve trays

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling

    2004-03-01

    This paper presents the simulated result of three-dimensional liquid velocity profile on sieve trays by using a computational flow dynamics (CFD) model with considerations of volume fraction of gas and liquid and the interfacial forces. The Κ-ɛ equation is used for the closure of basic equations. For the first time the three-dimensional liquid flow on a distillation column with ten trays under total reflux is visualized. The simulation was carried out with an Origin 200 Server Workstation of SGI Company using Star-CD V3.1 program. Simulation provides the detailed information of the distribution of 3D liquid velocity on the distillation column.

  2. Challenges to validation of a complex nonsterile medical device tray.

    PubMed

    Prince, Daniel; Mastej, Jozef; Hoverman, Isabel; Chatterjee, Raja; Easton, Diana; Behzad, Daniela

    2014-01-01

    Validation by steam sterilization of reusable medical devices requires careful attention to many parameters that directly influence whether or not complete sterilization occurs. Complex implant/instrument tray systems have a variety of configurations and components. Geobacillus stearothermophilus biological indicators (BIs) are used in overkill cycles to to simulate worst case conditions and are intended to provide substantial sterilization assurance. Survival of G. stearothermophilus spores was linked to steam access and size of load in the chamber. By a small and reproducible margin, it was determined that placement of the trays in a rigid container into minimally loaded chambers were more difficult to completely sterilize than maximally loaded chambers. PMID:25046511

  3. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  4. An introduction to shuttle/LDEF retrieval operations: The R-bar approach option. [orbital mechanics and braking schedule

    NASA Technical Reports Server (NTRS)

    Hall, W. M.

    1978-01-01

    Simulated orbiter direct approaches during long duration exposure facility (LDEF) retrieval operations reveal that the resultant orbiter jet plume fields can significantly disturb LDEF. An alternate approach technique which utilizes orbital mechanics forces in lieu of jets to brake the final orbiter/LDEF relative motion during the final approach, is described. Topics discussed include: rendezvous operations from the terminal phase initiation burn through braking at some standoff distance from LDEF, pilot and copilot activities, the cockpit instrumentation employed, and a convenient coordinate frame for studying the relative motion between two orbiting bodies. The basic equations of motion for operating on the LDEF radius vector are introduced. Practical considerations of implementing an R-bar approach, namely, orbiter/LDEF relative state uncertainties and orbiter control system limitations are explored. A possible R-bar approach strategy is developed and demonstrated.

  5. Characteristics of hypervelocity impact craters on LDEF experiment S1003 and implications of small particle impacts on reflective surfaces

    NASA Technical Reports Server (NTRS)

    Mirtich, Michael J.; Rutledge, Sharon K.; Banks, Bruce A.; Devries, Christopher; Merrow, James E.

    1993-01-01

    The Ion Beam textured and coated surfaces EXperiment (IBEX), designated S1003, was flown on LDEF at a location 98 deg in a north facing direction relative to the ram direction. Thirty-six diverse materials were exposed to the micrometeoroid (and some debris) environment for 5.8 years. Optical property measurements indicated no changes for almost all of the materials except S-13G, Kapton, and Kapton-coated surfaces, and these changes can be explained by other environmental effects. From the predicted micrometeoroid flux of NASA SP-8013, no significant changes in optical properties of the surfaces due to micrometeoroids were expected. There were hypervelocity impacts on the various diverse materials flown on IBEX, and the characteristics of these craters were documented using scanning electron microscopy (SEM). The S1003 alumigold-coated aluminum cover tray was sectioned into 2 cm x 2 cm pieces for crater documentation. The flux curve generated from this crater data fits well between the 1969 micrometeoroid model and the Kessler debris model for particles less than 10(exp -9) gm which were corrected for the S1003 positions (98 deg to ram). As the particle mass increases, the S1003 impact data is greater than that predicted by even the debris model. This, however, is consistent with data taken on intercostal F07 by the Micrometeoroid/Debris Special Investigating Group (M/D SIG). The mirrored surface micrometeoroid detector flown on IBEX showed no change in solar reflectance and corroborated the S1003 flux curve, as well as results of this surface flown on SERT 2 and OSO 3 for as long as 21 years.

  6. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  7. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  8. The implications of the LDEF results on Space Station Freedom power system materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Degroh, Kim K.; Mirtich, Michael J.; Gebauer, Linda; Olle, Raymond; Hill, Carol M.

    1993-01-01

    Results and implications of Long Duration Exposure Facility (LDEF) exposure of materials relevant to the Space Station Freedom (SSF) power system materials are presented. Atomic oxygen interactions with potential synergistic UV effects on silicone materials on LDEF were shown to result in the deposition of a dark contaminant film on adjoining surfaces. Silicones associated with solar array construction have the potential for causing reduced solar illumination of the solar cells if such silicone molecular fragments are found to be surface mobile. Results of LDEF atomic oxygen protective coatings on polyimide Kapton indicated acceptable durability to the synergistic effects of atomic oxygen, UV, thermal cycling, and micrometeoroid or debris impact. Results of combined atomic oxygen, UV radiation, thermal cycling, and micrometeoroid and debris impacts on LDEF high emittance radiator coatings indicate long term emittance and absorptance durability of Z 93 (zinc oxide pigment in a potassium silicate binder) coatings which have been selected for SSF radiator surfaces.

  9. LDEF polymeric materials: A summary of Langley characterization

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Whitley, Karen S.; Kalil, Carol R.; Siochi, Emilie J.; Shen, James Y.; Chang, A. C.

    1995-01-01

    The NASA Long Duration Exposure Facility (LDEF) enabled the exposure of a wide variety of materials to the low earth orbit (LEO) environment. This paper provides a summary of research conducted at the Langley Research Center into the response of selected LDEF polymers to this environment. Materials examined include graphite fiber reinforced epoxy, polysulfone, and additional polyimide matrix composites, films of FEP Teflon, Kapton, several experimental high performance polyimides, and films of more traditional polymers such as poly(vinyl toluene) and polystyrene. Exposure duration was either 10 months or 5.8 years. Flight and control specimens were characterized by a number of analytical techniques including ultraviolet-visible and infrared spectroscopy, thermal analysis, scanning electron and scanning tunneling microscopy, x-ray photoelectron spectroscopy, and, in some instances, selected solution property measurements. Characterized effects were found to be primarily surface phenomena. These effects included atomic oxygen-induced erosion of unprotected surfaces and ultraviolet-induced discoloration and changes in selected molecular level parameters. No gross changes in molecular structure or glass transition temperature were noted. The intent of this characterization is to increase our fundamental knowledge of space environmental effects as an aid in developing new and improved polymers for space application. A secondary objective is to develop benchmarks to enhance our methodology for the ground-based simulation of environmental effects so that polymer performance in space can be more reliably predicted.

  10. Resolving LDEF's flux distribution: Orbital (debris?) and natural meteoroid populations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.

    1993-01-01

    A consistent methodology for the collation of data from both penetration and perforation experiments and from data in the Meteoroid and Debris Special Investigator Group (M-D SIG) data-base has led to the derivation of the average impact flux over LDEF's exposure history 1984-1990. Data are first presented for LDEF's N,S,E,W and Space faces ('offset' by 8 deg and 'tilted' by 1 deg respectively). A model fit is derived for ballistic limits of penetration from 1 micron to 1mm of aluminium target, corresponding to impactor masses from 10(exp -18) kg (for rho sub p = 2g/cu cm) to 10(exp -10) kg (for rho sub p = 1g/cu cm). A second order harmonic function is fitted to the N,S,E, and W fluxes to establish the angular distribution at regular size intervals; this fit is then used to provide 'corrected' data corresponding to fluxes applicable to true N,S,E,W and Space directions for a LEO 28.5 degree inclination orbit at a mean altitude of 465 km.

  11. Modelling hypervelocity impacts into aluminum structures based on LDEF data

    NASA Technical Reports Server (NTRS)

    Coombs, C. R.; Atkinson, D. R.; Watts, A. J.; Wagner, J. R.; Allbrooks, M. K.; Hennessy, C. J.

    1993-01-01

    Realizing and understanding the effects of the near-Earth space environment on a spacecraft during its mission lifetime is becoming more important with the regeneration of America's space program. Included among these potential effects are the following: erosion and surface degradation due to atomic oxygen impingement; ultraviolet exposure embrittlement; and delamination, pitting, cratering, and ring formation due to micrometeoroid and debris impacts. These effects may occur synergistically and may alter the spacecraft materials enough to modify the resultant crater, star crack, and/or perforation. This study concentrates on modelling the effects of micrometeoroid and debris hypervelocity impacts into aluminum materials (6061-T6). Space debris exists in all sizes, and has the possibility of growing into a potentially catastrophic problem, particularly since self-collisions between particles can rapidly escalate the number of small impactors. We have examined the morphologies of the Long Duration Exposure Facility (LDEF) impact craters and the relationship between the observed impact damage on LDEF versus the existing models for both the natural (micrometeoroid) and manmade (debris) environments in order to better define these environments.

  12. Measured space environmental effects to LDEF during retrieval

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Linder, W. Kelly; Borson, Eugene N.

    1993-01-01

    Data gathered by the Interim Operational Contamination Monitor (IOCM) with regard to the effect of the space environment on the STS-32 Shuttle mission and on the Long Duration Exposure Facility (LDEF) are reported. IOCM measures the deposition of molecular and particulate contamination during all flight phases. It also measures the thermophysical properties of thermal control surfaces by calorimetry, the flux of the ambient atomic oxygen environment, the incident solar flux, and the absolute ambient pressure in the payload bay. The IOCM also provides a structure and sample holders for the exposure of passive material samples to the space environment. One of the more salient results from the STS-32 flight suggests that the LDEF emitted a large number of particulates after berthing into the Shuttle. The mission atomic oxygen fluence was also calculated. Although the fluence was low by normal standards, the Kapton (trademark) passive samples exhibited the onset of erosion. Orbital debris and micrometeoroid impacts also occurred during the retrieval mission. The average perforation diameter was approximately 1.25 micrometers. The largest perforation diameter was measured at 65 micrometers.

  13. RMS-grappled LDEF is positioned over OV-102's payload bay during STS-32

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Wide angle view looks through aft flight deck viewing window at the Long Duration Exposure Facility (LDEF) grappled by the remote manipulator system (RMS) and positioned vertically above Columbia's, Orbiter Vehicle (OV) 102's, payload bay (PLB). STS-32 crewmembers are conducting a photo survey of LDEF before stowing it in the PLB for its return to Earth. In the background are OV-102's wings, the orbital maneuvering system (OMS) pods, and vertical tail highlighted against the Earth's surface.

  14. LDEF grappled by remote manipulator system (RMS) during STS-32 retrieval

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This view taken through overhead window W7 on Columbia's, Orbiter Vehicle (OV) 102's, aft flight deck shows the Long Duration Exposure Facility (LDEF) in the grasp of the remote manipulator system (RMS) during STS-32 retrieval activities. Other cameras at eye level were documenting the bus-sized spacecraft at various angles as the RMS manipulated LDEF for a lengthy photo survey. The glaring celestial body in the upper left is the sun with the Earth's surface visible below.

  15. LDEF positioned by RMS over OV-102's payload during STS-32 retrieval

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During STS-32 retrieval activity and photo survey, the Long Duration Exposure Facility (LDEF) is grappled and positioned by remote manipulator system (RMS) over Columbia's, Orbiter Vehicle (OV) 102's, payload bay (PLB). The view was captured through the aft flight deck viewing window and shows the 14 ft (4.3 meter) end of the LDEF spacecraft. The cloud-covered Earth surface appears in the distant background.

  16. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 3

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.

  17. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 1

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume (Part 1 of 3) is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included.

  18. LDEF: 69 Months in Space. Third Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1995-01-01

    This volume is a compilation of papers presented at the Third Long Duration Exposure Facility (LDEF) Post-Retrieval Symposium. The papers represent the data analysis of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, micrometeoroid, etc.), electronics, optics, and life science. In addition, papers on preliminary data analysis of EURECA, EOIM-3, and other spacecraft are included. This second of three parts covers spacecraft construction materials.

  19. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The Long Duration Exposure Facility (LDEF) was composed of many separate experiments, some of which contained solar cells. These solar cells were distributed at various positions on the LDEF and, therefore, were exposed to the space environment with an orientational dependence. This report will address the space environmental effects on solar cells and solar cell assemblies (SCA's), including electrical interconnects and associated insulation blankets where flown in conjunction with solar cells.

  20. STS-32 crewmembers pose with LDEF model at T-30 press conference

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-32 crewmembers pose with a model of the Long Duration Exposure Facility (LDEF) at T-30 preflight press conference in the JSC Auditorium and Public Affairs Facility Bldg 2. From right to left are Mission Specialist (MS) G. David Low, MS Marsha S. Ivins, MS Bonnie J. Dunbar, Pilot James D. Wetherbee, and Commander Daniel C. Brandenstein standing behind a LDEF scale model and in front of a mural of a space shuttle launch.

  1. Prefabricated custom impression trays for the altered cast technique.

    PubMed

    Lund, P S; Aquilino, S A

    1991-12-01

    Removable partial prosthodontic treatment requires multiple patient appointments with intermediate laboratory steps. A technique is described that allows the removable partial denture framework try-in and the impression for the altered cast to be efficiently completed in a single appointment. The method uses prefabricated custom impression trays that are readily attached to the framework after the try-in.

  2. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... fabrication of crowns, bridges, or full dentures. A preliminary plaster or stone model of the patient's...

  3. Training to Increase Safe Tray Carrying among Cocktail Servers

    ERIC Educational Resources Information Center

    Scherrer, Megan D.; Wilder, David A.

    2008-01-01

    We evaluated the effects of training on proper carrying techniques among 3 cocktail servers to increase safe tray carrying on the job and reduce participants' risk of developing musculoskeletal disorders. As participants delivered drinks to their tables, their finger, arm, and neck positions were observed and recorded. Each participant received…

  4. 5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF CABLE SHED AND CABLE TRAY EMANATING FROM SOUTH FACE OF LAUNCH OPERATIONS BUILDING. MICROWAVE DISH IN FOREGROUND. METEOROLOGICAL TOWER IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. Astronaut Norman Thagard changes tray in RAHF for rodents

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Astronaut Norman Thagard changes a tray in the research animal holding facility (RAHF) for rodents at the Ames double rack facility aboard the Spacelab 3 science module in the cargo bay of the shuttle Challenger. Lending a hand is payload specialist Lodewijk van den Berg. Both men are wearing protective clothing and surgical masks for this procedure.

  6. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  7. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  8. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  9. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  10. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  11. 40. Coffee bean drying trays that are stored in racks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Coffee bean drying trays that are stored in racks under building and pulled out to sun dry beans on terraces to the north and south of building. HAER PR, 6-MAGU, 1C-3 - Hacienda Buena Vista, PR Route 10 (Ponce to Arecibo), Magueyes, Ponce Municipio, PR

  12. Diverless pipeline repair clamp: Phase 2

    SciTech Connect

    Miller, J.E.; Lane, B. )

    1992-04-01

    The objective of this project sponsored by the Pipeline Research Committee of the American Gas Association, is to develop a system suitable for repairing small leaks on deepwater pipelines. Phase I of the project, completed in 1990 by Stress Engineering Services, Inc. investigated the types of problems that would have to be overcome to effect a diverless clamp-type repair. Several repair systems were investigated and ten mechanisms were proposed that could be used to secure two clamp halves together. This current Phase 11 effort, is to take two most promising clamp concepts from Phase 1, further evaluate hardware and installation issues, develop conceptual designs, and determine which concept should be carried forward to detailed design. The two concepts evaluated were (1) a bolted split-sleeve clamp suited for ROV installation, and (2) a hydraulically self-actuating clamp requiring only placement on the pipe and actuation by ROV hydraulic hot stabs. Both concepts were evaluated for a 12-inch (324 mm) nominal pipe diameter with an ANSI 900 (15.3 mPa) pressure rating, presuming either system could be adapted to a wider range of pipe sizes and design pressures. Based on the results of this investigation a modified bolted split-sleeve clamp was recommended over the hydraulically self-actuating clamp. The main reasons are (1) the bolted split-sleeve clamp can be adapted to installation by a ROV, (2) sealing and clamping mechanisms borrow from available proven technology, (3) it would require less development effort than the hydraulically self-actuating clamp, and (4) the bolted split-sleeve clamp would probably result in a simpler, less costly design.

  13. Geometry and mass model of ionizing radiation experiments on the LDEF satellite

    NASA Technical Reports Server (NTRS)

    Colborn, B. L.; Armstrong, T. W.

    1992-01-01

    Extensive measurements related to ionizing radiation environments and effects were made on the LDEF satellite during its mission lifetime of almost 6 years. These data, together with the opportunity they provide for evaluating predictive models and analysis methods, should allow more accurate assessments of the space radiation environment and related effects for future missions in low Earth orbit. The LDEF radiation dosimetry data is influenced to varying degrees by material shielding effects due to the dosimeter itself, nearby components and experiments, and the spacecraft structure. A geometry and mass model is generated of LDEF, incorporating sufficient detail that it can be applied in determining the influence of material shielding on ionizing radiation measurements and predictions. This model can be used as an aid in data interpretation by unfolding shielding effects from the LDEF radiation dosimeter responses. Use of the LDEF geometry/mass model, in conjunction with predictions and comparisons with LDEF dosimetry data currently underway, will also allow more definitive evaluations of current radiation models for future mission applications.

  14. Time to implement delayed cord clamping.

    PubMed

    McAdams, Ryan M

    2014-03-01

    Immediate umbilical cord clamping after delivery is routine in the United States despite little evidence to support this practice. Numerous trials in both term and preterm neonates have demonstrated the safety and benefit of delayed cord clamping. In premature neonates, delayed cord clamping has been shown to stabilize transitional circulation, lessening needs for inotropic medications and reducing blood transfusions, necrotizing enterocolitis, and intraventricular hemorrhage. In term neonates, delayed cord clamping has been associated with decreased iron-deficient anemia and increased iron stores with potential valuable effects that extend beyond the newborn period, including improvements in long-term neurodevelopment. The failure to more broadly implement delayed cord clamping in neonates ignores published benefits of increased placental blood transfusion at birth and may represent an unnecessary harm for vulnerable neonates.

  15. LET spectra measurements on LDEF: variations with shielding and location.

    PubMed

    Benton, E V; Frank, A L; Csige, I; Frigo, L A; Benton, E R

    1996-11-01

    LET spectra measurements made with passive plastic nuclear track detectors (PNTDs) were found to depend on detector orientation, shielding and experiment location. LET spectra were measured at several locations on LDEF as part of the P0006 LETSME experiment (Benton and Parnell, 1984), the P0004 Seeds in Space experiment (Parks and Alston, 1984), the A00l5 Free Flyer Biostacks and the M0004 Fiber Optics Data Link experiment (Taylor, 1984). Locations included the east, west and Earth sides of the LDEF satellite. The LET spectra measured with PNTDs deviated significantly from calculations, especially for high LET particles (LET infinity H2O > or = 100 keV/micrometer). At high LETs, short-range inelastic secondary particles produced by trapped proton interactions with the nuclei of the detector were found to be the principal contributor to LET spectra. At lower LETs, the spectra appeared to be due to short-range, inelastic and stopping primary protons, with primary GCR particles making a smaller contribution. The dependence of LET spectra on detector orientation and shielding was studied using the four orthogonal stacks in the P0006 experiment. Both measurements of total track density and LET spectra showed a greater number of particles arriving from the direction of space than from Earth. Measurements of LET spectra in CR-39 PNTD on the east (leading) and west (trailing) sides of LDEF showed a higher rate of production at the west side. This was caused by a larger flux of trapped protons on the west side as predicted by the east/west trapped proton anisotropy in the South Atlantic Anomaly (SAA). Track density measured in CR-39 PNTDs increased as a function of shielding depth in the detector stack. A similar measurement made in a thick stack of CR-39 interspersed with layers of Al and exposed to 154 MeV protons at a ground-based accelerator showed a similar result, indicating that a significant fraction of the particle events counted were from secondaries and that the

  16. Is There A Difference in Bone Ingrowth in Modular Versus Monoblock Porous Tantalum Tibial Trays?

    PubMed Central

    Hanzlik, Josa A.; Day, Judd S.; Rimnac, Clare M.; Kurtz, Steven M.

    2015-01-01

    Contemporary total knee designs incorporating highly porous metallic surfaces have demonstrated promising clinical outcomes. However, stiffness differences between modular and monoblock porous tantalum tibial trays may affect bone ingrowth. This study investigated effect of implant design, spatial location and clinical factors on bone ingrowth in retrieved porous tantalum tibial trays. Three modular and twenty-one monoblock tibial trays were evaluated for bone ingrowth. Nonparametric statistical tests were used to investigate differences in bone ingrowth measurements by implant design, spatial location on the tray, substrate depth and clinical factors. Modular trays (5.3±3.2%) exhibited higher bone ingrowth than monoblock trays (1.6±1.9%, p=0.032). Bone ingrowth in both designs was highest in the initial 500 μm from the surface. Implantation time was positively correlated with bone ingrowth for monoblock trays. PMID:25743106

  17. Gamma ray spectrometry of LDEF samples at SRS

    NASA Technical Reports Server (NTRS)

    Winn, Willard G.

    1991-01-01

    A total of 31 samples from Long Duration Exposure Facility (LDEF), including materials of Al, V, and steel trunnions were analyzed by ultralow level gamma spectrometry. The study quantified particle induced activations of Na-22, Sc-46, Cr-51, Mn-54, Co-56, Co-57, Co-58, and Co-60. The samples of trunnion sections exhibited increasing activity toward the outer end of the trunnion and decreasing activity toward its radial center. The trunnion sections did not include an end piece that collects noticeable Be-7 on its leading surface. No significant Be-7 was detected in the samples analyzed. The most sensitive analyses were performed with a 90 pct. efficient HPGe gamma ray detector, which is enclosed in a purged active/passive active shield.

  18. Degradation of electro-optic components aboard LDEF

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1993-01-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  19. Degradation of electro-optic components aboard LDEF

    NASA Astrophysics Data System (ADS)

    Blue, M. D.

    1993-04-01

    Remeasurement of the properties of a set of electro-optic components exposed to the low-earth environment aboard the Long Duration Exposure Facility (LDEF) indicates that most components survived quite well. Typical components showed some effects related to the space environment unless well protected. The effects were often small but significant. Results for semiconductor infrared detectors, lasers, and LED's, as well as filters, mirrors, and black paints are described. Semiconductor detectors and emitters were scarred but reproduced their original characteristics. Spectral characteristics of multi-layer dielectric filters and mirrors were found to be altered and degraded. Increased absorption in black paints indicates an increase in absorption sites, giving rise to enhanced performance as coatings for baffles and sunscreens.

  20. Measured space environmental effects to LDEF during retrieval

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Linder, W. Kelly

    1992-01-01

    On the STS-32 shuttle mission, a space flight experiment provided an understanding of the effects of the space environment on the Long Duration Exposure Facility (LDEF) from rendezvous with the shuttle until removal from the payload bay at the Orbiter Processing Facility (OPF) at KSC. The Interim Operational Contamination Monitor (IOCM) is an attached shuttle payload that has been used on two earlier flights (STS 51C and STS 28) to quantify the contamination deposited during the course of the mission. The IOCM can characterize by direct measurement, the deposition of molecular and particulate contamination during any phase of flight. In addition to these principal measurements, the IOCM actively measures the thermophysical properties of thermal control surfaces by calorimetry, the flux of the ambient atomic oxygen environment, the incident solar flux, and the absolute ambient pressure in the payload bay. The IOCM also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g. thermal cycling, atomic oxygen, and micrometeoroids and/or orbital debris, etc. One of the more salient results from the STS-32 flight suggests that the LDEF emitted a large number of particulates after berthing into the shuttle. The mission atomic oxygen fluence was also calculated. Although the fluence was low by normal standards, the Kapton passive samples exhibited the onset of erosion. Orbital debris and micrometeoroid impacts also occurred during the retrieval mission. The average perforation diameter was approximately 12.5 microns. The largest perforation diameter was measured at 65 microns.

  1. Transistorized circuit clamps voltage with 0.1 percent error

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Transistorized clamping circuit clamps either of two voltage levels to input of digital-to-analog resistive matrix with 0.1 percent error. Clamping circuit technique has analog, digital, and hybrid circuit applications.

  2. The monogenean which lost its clamps.

    PubMed

    Justine, Jean-Lou; Rahmouni, Chahrazed; Gey, Delphine; Schoelinck, Charlotte; Hoberg, Eric P

    2013-01-01

    Ectoparasites face a daily challenge: to remain attached to their hosts. Polyopisthocotylean monogeneans usually attach to the surface of fish gills using highly specialized structures, the sclerotized clamps. In the original description of the protomicrocotylid species Lethacotyle fijiensis, described 60 years ago, the clamps were considered to be absent but few specimens were available and this observation was later questioned. In addition, genera within the family Protomicrocotylidae have either clamps of the "gastrocotylid" or the "microcotylid" types; this puzzled systematists because these clamp types are characteristic of distinct, major groups. Discovery of another, new, species of the genus Lethacotyle, has allowed us to explore the nature of the attachment structures in protomicrocotylids. Lethacotyle vera n. sp. is described from the gills of the carangid Caranx papuensis off New Caledonia. It is distinguished from Lethacotyle fijiensis, the only other species of the genus, by the length of the male copulatory spines. Sequences of 28S rDNA were used to build a tree, in which Lethacotyle vera grouped with other protomicrocotylids. The identity of the host fish was confirmed with COI barcodes. We observed that protomicrocotylids have specialized structures associated with their attachment organ, such as lateral flaps and transverse striations, which are not known in other monogeneans. We thus hypothesized that the clamps in protomicrocotylids were sequentially lost during evolution, coinciding with the development of other attachment structures. To test the hypothesis, we calculated the surfaces of clamps and body in 120 species of gastrocotylinean monogeneans, based on published descriptions. The ratio of clamp surface: body surface was the lowest in protomicrocotylids. We conclude that clamps in protomicrocotylids are vestigial organs, and that occurrence of "gastrocotylid" and simpler "microcotylid" clamps within the same family are steps in an

  3. The Monogenean Which Lost Its Clamps

    PubMed Central

    Justine, Jean-Lou; Rahmouni, Chahrazed; Gey, Delphine; Schoelinck, Charlotte; Hoberg, Eric P.

    2013-01-01

    Ectoparasites face a daily challenge: to remain attached to their hosts. Polyopisthocotylean monogeneans usually attach to the surface of fish gills using highly specialized structures, the sclerotized clamps. In the original description of the protomicrocotylid species Lethacotyle fijiensis, described 60 years ago, the clamps were considered to be absent but few specimens were available and this observation was later questioned. In addition, genera within the family Protomicrocotylidae have either clamps of the “gastrocotylid” or the “microcotylid” types; this puzzled systematists because these clamp types are characteristic of distinct, major groups. Discovery of another, new, species of the genus Lethacotyle, has allowed us to explore the nature of the attachment structures in protomicrocotylids. Lethacotyle vera n. sp. is described from the gills of the carangid Caranx papuensis off New Caledonia. It is distinguished from Lethacotyle fijiensis, the only other species of the genus, by the length of the male copulatory spines. Sequences of 28S rDNA were used to build a tree, in which Lethacotyle vera grouped with other protomicrocotylids. The identity of the host fish was confirmed with COI barcodes. We observed that protomicrocotylids have specialized structures associated with their attachment organ, such as lateral flaps and transverse striations, which are not known in other monogeneans. We thus hypothesized that the clamps in protomicrocotylids were sequentially lost during evolution, coinciding with the development of other attachment structures. To test the hypothesis, we calculated the surfaces of clamps and body in 120 species of gastrocotylinean monogeneans, based on published descriptions. The ratio of clamp surface: body surface was the lowest in protomicrocotylids. We conclude that clamps in protomicrocotylids are vestigial organs, and that occurrence of “gastrocotylid” and simpler “microcotylid” clamps within the same family are

  4. Brain Imaging Using T-Rays Instrumentation Advances

    NASA Astrophysics Data System (ADS)

    Treviño-Palacios, C. G.; Celis-López, M. A.; Lárraga-Gutiérrez, J. M.; García-Garduño, A.; Zapata-Nava, O. J.; Díaz, A. Orduña; Torres-Jácome, A.; de-la-Hidalga-Wade, J.; Iturbe-Castillo, M. D.

    2010-12-01

    We present the advances on a brain imaging setup using submillimeter detectors and terahertz laser source. Terahertz radiation, known as T-rays, falls in the far infrared region of the electromagnetic spectrum close to the microwaves and fraction of millimeter wavelengths. These T-rays are ideal candidates for medical imaging because the wavelength is long enough to be dispersed by molecular structures and sufficient small to produce images with a reasonable resolution, in a non-ionizing way. The millimeter detectors used in this proposal are being developed in parallel to the detectors used in the large Millimeter Telescope (LMT/GTM). Using the non-ionizing water absorption to terahertz radiation by different tissues we study the absorption difference between healthy and tumors in spite of the large absorption by water present in the body.

  5. Voltage clamp effects on bacterial chemotaxis.

    PubMed Central

    Margolin, Y; Eisenbach, M

    1984-01-01

    To examine whether or not sensory signaling in bacteria is by way of fluctuations in membrane potential, we studied the effect of clamping the potential on bacterial chemotaxis. The potential was clamped by valinomycin, a K+ -specific ionophore, in the presence of K+. Despite the clamped potential, sensory signaling did occur: both Escherichia coli and Bacillus subtilis cells were still excitable and adaptable under these conditions. It is concluded that signaling in the excitation and adaptation steps of chemotaxis is not by way of fluctuations in the membrane potential. PMID:6430873

  6. Molecular Mechanisms of DNA Polymerase Clamp Loaders

    NASA Astrophysics Data System (ADS)

    Kelch, Brian; Makino, Debora; Simonetta, Kyle; O'Donnell, Mike; Kuriyan, John

    Clamp loaders are ATP-driven multiprotein machines that couple ATP hydrolysis to the opening and closing of a circular protein ring around DNA. This ring-shaped clamp slides along DNA, and interacts with numerous proteins involved in DNA replication, DNA repair and cell cycle control. Recently determined structures of clamp loader complexes from prokaryotic and eukaryotic DNA polymerases have revealed exciting new details of how these complex AAA+ machines perform this essential clamp loading function. This review serves as background to John Kuriyan's lecture at the 2010 Erice School, and is not meant as a comprehensive review of the contributions of the many scientists who have advanced this field. These lecture notes are derived from recent reviews and research papers from our groups.

  7. Organ protection during aortic cross-clamping.

    PubMed

    Yeung, Kak Khee; Groeneveld, Menno; Lu, Joyce Ja-Ning; van Diemen, Pepijn; Jongkind, Vincent; Wisselink, Willem

    2016-09-01

    Open surgical repair of an aortic aneurysm requires aortic cross-clamping, resulting in temporary ischemia of all organs and tissues supplied by the aorta distal to the clamp. Major complications of open aneurysm repair due to aortic cross-clamping include renal ischemia-reperfusion injury and postoperative colonic ischemia in case of supra- and infrarenal aortic aneurysm repair. Ischemia-reperfusion injury results in excessive production of reactive oxygen species and in oxidative stress, which can lead to multiple organ failure. Several perioperative protective strategies have been suggested to preserve renal function during aortic cross-clamping, such as pharmacotherapy and therapeutic hypothermia of the kidneys. In this chapter, we will briefly discuss the pathophysiology of ischemia-reperfusion injury and the preventative measures that can be taken to avoid abdominal organ injury. Finally, techniques to minimize the risk of complications during and after open aneurysm repair will be presented. PMID:27650341

  8. LDEF Interplanetary Dust Experiment - Techniques for identification and study of long-lived orbital debris clouds

    NASA Technical Reports Server (NTRS)

    Singer, S. F.; Oliver, J. P.; Weinberg, J. L.; Cooke, W. J.; Montague, N. L.; Mulholland, J. D.; Wortman, J. J.; Kassel, P. C.; Kinard, W. H.

    1991-01-01

    The Long Duration Exposure Facility (LDEF) is a 12-sided, 4.3-m-diameter, 9.1-m-long cylinder designed and built by NASA Langley to carry experiments for extended periods in space. The LDEF was first placed in orbit by the Shuttle Challenger on 7 April 1984 and recovered by the Shuttle Columbia in January 1990, only days before it was expected to burn up in the earth's atmosphere. The Interplanetary Dust Experiment (IDE) was designed to detect impacts of extra-terrestrial particles and orbital debris. The IDE detectors (which covered about 1 sq m of the surface of LDEF) were sensitive to particles ranging in size from about 0.2 to 100 microns. Data were recorded for 11.5 months before the supply of magnetic tape was exhausted. Examination of the LDEF IDE dataset shows that impacts often occurred in 'bursts', during which numerous impacts occurred in a short time (typically 3-5 min) at a rate much greater than the average impact rate. In several cases, such events reoccurred each time the LDEF returned to the same point in its orbit. Such multi-orbit event sequences were found to extend for as many as 25 or more orbits.

  9. LDEF meteoroid and debris special investigation group investigations and activities at the Johnson Space Center

    NASA Technical Reports Server (NTRS)

    See, Thomas H.; Warren, Jack L.; Zolensky, Michael E.; Sapp, Clyde A.; Bernhard, Ronald P.; Dardano, Claire B.

    1995-01-01

    Since the return of the Long Duration Exposure Facility (LDEF) in January, 1990, members of the Meteoroid and Debris Special Investigation Group (M&D SIG) at the Johnson Space Center (JSC) in Houston, Texas have been examining LDEF hardware in an effort to expand the knowledge base regarding the low-Earth orbit (LEO) particulate environment. In addition to the various investigative activities, JSC is also the location of the general Meteoroid & Debris database. This publicly accessible database contains information obtained from the various M&D SIG investigations, as well as limited data obtained by individual LDEF Principal Investigators. LDEF exposed approximately 130 m(exp 2) of surface area to the LEO particulate environment, approximately 15.4 m(exp 2) of which was occupied by structural frame components (i.e., longerons and intercoastals) of the spacecraft. The data reported here was obtained as a result of detailed scans of LDEF intercoastals, 68 of which reside at JSC. The limited amount of data presently available on the A0178 thermal control blankets was reported last year and will not be reiterated here. The data presented here are limited to measurements of crater diameters and their frequency of occurrence (i.e., flux).

  10. Structural analysis of a eukaryotic sliding DNA clamp-clamp loadercomplex.

    SciTech Connect

    Bowman, Gregory D.; O'Donnell, Mike; Kuriyan, John

    2006-06-17

    Sliding clamps are ring-shaped proteins that encircle DNA and confer high processivity on DNA polymerases. Here we report the crystal structure of the five-protein clamp loader complex (replication factor-C, RFC) of the yeast Saccharomyces cerevisiae, bound to the sliding clamp (proliferating cell nuclear antigen, PCNA). Tight interfacial coordination of the ATP analogue ATP-?-S by RFC results in a spiral arrangement of the ATPase domains of the clamp loader above the PCNA ring. Placement of a model for primed DNA within the central hole of PCNA reveals a striking correspondence between the RFC spiral and the grooves of the DNA double helix. This model, in which the clamp loader complex locks onto primed DNA in a screw-cap-like arrangement, provides a simple explanation for the process by which the engagement of primer-template junctions by the RFC:PCNA complex results in ATP hydrolysis and release of the sliding clamp on DNA.

  11. The financial and environmental costs of reusable and single-use plastic anaesthetic drug trays.

    PubMed

    McGain, F; McAlister, S; McGavin, A; Story, D

    2010-05-01

    We modelled the financial and environmental costs of two commonly used anaesthetic plastic drug trays. We proposed that, compared with single-use trays, reusable trays are less expensive, consume less water and produce less carbon dioxide, and that routinely adding cotton and paper increases financial and environmental costs. We used life cycle assessment to model the financial and environmental costs of reusable and single-use trays. From our life cycle assessment modelling, the reusable tray cost (Australian dollars) $0.23 (95% confidence interval [CI] $0.21 to $0.25) while the single-use tray alone cost $0.47 (price range of $0.42 to $0.52) and the single-use tray with cotton and gauze added was $0.90 (no price range in Melbourne). Production of CO2 was 110 g CO2 (95% CI 98 to 122 g CO2) for the reusable tray, 126 g (95% CI 104 to 151 g) for single-use trays alone (mean difference of 16 g, 95% CI -8 to 40 g) and 204 g CO2 (95% CI 166 to 268 g CO2) for the single-use trays with cotton and paper Water use was 3.1 l (95% CI 2.5 to 3.7 l) for the reusable tray, 10.4 l (95% CI 8.2 to 12.7 l) for the single-use tray and 26.7 l (95% CI 20.5 to 35.4 l) for the single-use tray with cotton and paper Compared with reusable plastic trays, single-use trays alone cost twice as much, produced 15% more CO2 and consumed three times the amount of water Packaging cotton gauze and paper with single-use trays markedly increased the financial, energy and water costs. On both financial and environmental grounds it appears difficult to justify the use of single-use drug trays. PMID:20514965

  12. Is There A Difference in Bone Ingrowth in Modular Versus Monoblock Porous Tantalum Tibial Trays?

    PubMed

    Hanzlik, Josa A; Day, Judd S; Rimnac, Clare M; Kurtz, Steven M

    2015-06-01

    Contemporary total knee designs incorporating highly porous metallic surfaces have demonstrated promising clinical outcomes. However, stiffness differences between modular and monoblock porous tantalum tibial trays may affect bone ingrowth. This study investigated effect of implant design, spatial location and clinical factors on bone ingrowth. Three modular and twenty-one monoblock retrieved porous tantalum tibial trays were evaluated for bone ingrowth. Nonparametric statistical tests were used to investigate differences in bone ingrowth by implant design, tray spatial location, substrate depth and clinical factors. Modular trays (5.3 ± 3.2%) exhibited higher bone ingrowth than monoblock trays (1.6 ± 1.9%, P = 0.032). Bone ingrowth in both designs was highest in the initial 500 μm from the surface. Implantation time was positively correlated with bone ingrowth for monoblock trays.

  13. Overview of the space environmental effects observed on the retrieved Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Kinard, W.; O'Neal, R.; Wilson, B.; Jones, J.; Levine, A.; Calloway, R.

    1994-01-01

    The Long Duration Exposure Facility (LDEF), which encompassed 57 experiments with more than 10,000 test specimens, spent 69 months in Low Earth Orbit (LEO) before it was retrieved by the Space Shuttle in January 1990. Hundreds of LDEF investigators, after studying for over two years these retrieved test specimens and the onboard recorded data and systems hardware, have generated a unique first-hand view of the long-term synergistic effects that the LEO environment can have on spacecraft. These studies have also contributed significantly toward more accurate models of the LEO radiation, meteoroid, manmade debris and atomic oxygen environments. This paper provides an overview of some of the many LDEF observations and the implications these can have on future spacecraft such as Space Station Freedom.

  14. Summary of solar cell data from the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank

    1994-01-01

    The contractor has obtained and reviewed data relating solar cells assemblies (SCA's) flown as part of the following LDEF experiments: the Advanced Photovoltaic Experiment (S0014); the Solar Array Materials Passive LDEF Experiment (A0171); the Advanced Solar Cell and Coverglass Analysis Experiment (M0003-4); the LDEF Heat Pipe Experiment (S1001); the Evaluation of Thermal Control Coatings Y Solar Cells Experiment (S1002); and the Space Plasma-High Voltage Drainage Experiment (A0054). Where possible, electrical data have been tabulated and correlated with various environmental effects, including meteoroid and debris impacts, radiation exposure, atomic oxygen exposure, contamination, UV radiation exposure, and thermal cycling. The type, configuration, and location of all SCA's are documented here. By gathering all data and results together, a comparison of the survivability of the various types and configurations can be made.

  15. A measurement of the radiation dose to LDEF by passive dosimetry

    NASA Technical Reports Server (NTRS)

    Blake, J. B.; Imamoto, S. S.

    1993-01-01

    The results from a pair of thermoluminescent dosimeter experiments flown aboard the Long Duration Exposure Facility (LDEF) show an integrated dose several times smaller than that predicted by the NASA environmental models for shielding thicknesses much greater than 0.10 gm/sq cm aluminum. For thicknesses between 0.01 and 0.1 gm/sq cm, the measured dose was in agreement with predictions. The Space and Environment Technology Center of The Aerospace Corporation fielded two related experiments on LDEF to measure the energetic radiation dose by means of passive dosimetry. The sensors were LiF thermoluminescent dosimeters mounted behind various thicknesses of shielding. The details of the experiment are described first, followed by the results of the observations. A comparison is made with the predictions based upon the NASA environmental models and the actual mission profile flown by LDEF; conclusions follow.

  16. Pinhole cameras as sensors for atomic oxygen in orbit: Application to attitude determination of the LDEF

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Gregory, John C.

    1992-01-01

    Images produced by pinhole cameras using film sensitive to atomic oxygen provide information on the ratio of spacecraft orbital velocity to the most probable thermal speed of oxygen atoms, provided the spacecraft orientation is maintained stable relative to the orbital direction. Alternatively, information on the spacecraft attitude relative to the orbital velocity can be obtained, provided that corrections are properly made for thermal spreading and a corotating atmosphere. The Long Duration Exposure Facility (LDEF) orientation, uncorrected for a corotating atmosphere, was determined to be yawed 8.0 +/- 0.4 degrees from its nominal attitude, with an estimated +/- 0.35 degree oscillation in yaw. The integrated effect of inclined orbit and corotating atmosphere produces an apparent oscillation in the observed yaw direction, suggesting that the LDEF attitude measurement will indicate even better stability when corrected for a corotating atmosphere. The measured thermal spreading is consistent with major exposure occurring during high solar activity, which occurred late during the LDEF mission.

  17. Polymer matrix composites on LDEF experiments M0003-9 and M0003-10

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Cookson, Thomas; Blair, Christopher

    1992-01-01

    Over 250 polymer matrix composites were exposed to the natural space environment on Long Duration Exposure Facility (LDEF) experiments M0003-9 and 10. The experiments included a wide variety of epoxy, thermoplastic, polyimide, and bismalimide matrix composites reinforced with graphite, glass, or organic fibers. A review of the significant observations and test results obtained to date is presented. Estimated recession depths from atomic oxygen exposure are reported and the resulting surface morphologies are discussed. The effects of the LDEF exposure on the flexural strength and modulus, short beam shear strength, and coefficient of thermal expansion of several classes of bare and coated composites are reviewed. Lap shear data are presented for composite-to-composite and composite-to-aluminum alloy samples that were prepared using different bonding techniques and subsequently flown on LDEF.

  18. The performance of thermal control coatings on LDEF and implications to future spacecraft

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.

    1993-01-01

    The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.

  19. Overview of the space environmental effects observed on the retrieved Long Duration Exposure Facility (LDEF).

    PubMed

    Kinard, W; O'Neal, R; Wilson, B; Jones, J; Levine, A; Calloway, R

    1994-10-01

    The Long Duration Exposure Facility (LDEF), which encompassed 57 experiments with more than 10,000 test specimens, spent 69 months in low Earth orbit (LEO) before it was retrieved by the Space Shuttle in January 1990. Hundreds of LDEF investigators, after studying for over two years these retrieved test specimens and the onboard recorded data and systems hardware, have generated a unique first-hand view of the long term synergistic effects that the LEO environment can have on spacecraft. These studies have also contributed significantly toward more accurate models of the LEO radiation, meteoroid, manmade debris and atomic oxygen environments. This paper provides an overview of some of the many LDEF observations and the implications these can have on future spacecraft such as Space Station Freedom.

  20. Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.

    2010-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.

  1. The influence of impression trays on the accuracy of stone casts poured from irreversible hydrocolloid impressions.

    PubMed

    Mendez, A J

    1985-09-01

    An investigation was conducted to determine which of four commonly used impression trays yields the best results when making irreversible hydrocolloid impressions. This objective was achieved by evaluating the comparative accuracy of stone casts obtained from irreversible hydrocolloid impressions made with trays of different characteristics. The following conclusions are drawn from this study. Some kind of distortion can be expected in irreversible hydrocolloid impressions with the use of any of the tested impression trays. The perforated trays (B and D) reproduce more accurately the distances along the length and the width of the arch than the nonperforated trays (A and C). The depth of the palatal vault (distance f-g) is reproduced most accurately by the Rim-lock nonperforated tray (A) followed closely by the stock perforated (B) and the custom nonperforated (C) trays. Under the conditions of this study, all the impressions had a tendency to be oversized except the impressions made with the stock perforated tray (B). Those impressions were slightly undersized for all but two measured distances. Clinically significant inaccuracies produced by any of the four tested impression trays were not found in this study.

  2. Effect of liquid channeling on a 1.8-m distillation sieve tray

    SciTech Connect

    Proctor, S.J.; Biddulph, M.W.; Krishnamurthy, K.R.

    1998-06-01

    This paper describes an experimental investigation designed to establish the extent of the effects of liquid channeling and stagnant zones on the efficiency of a 1.8-m diameter sieve tray. The method used is to compare performance, in the same column and using the same system, with a novel tray which is known, from hydraulic studies, to remove stagnant zones. It is found that there is an observable loss in efficiency in the sieve tray, particularly at heavy loadings, and this will have implications for designers specifying high-capacity trays for new or upgraded columns.

  3. Diverless pipeline repair clamp, Phase 3

    SciTech Connect

    Miller, J.E.

    1993-08-01

    The objective of this project is to develop a system suitable for repairing small leaks in deep water pipelines. It is assumed that leak repair operations at the water depths in question will be performed by Remotely Operated Vehicles (ROV`s). This report summarizes the results of the third and final phase of this project. Phase 3 work included design, manufacture, and dry testing of (1) a one-half scale model of a 12 inch repair clamp, (2) a full-scale bolt test fixture to demonstrate bolt containment and startup under realistic misalignment of the clamp halves, and (3) a full-scale one-way cylinder for end seal activation. Phase 3 also included a study commissioned from Oceaneering directed at defining the interfaces of the clamp package and the ROV, including suggested procedures for deployment and positioning of the clamp package on the pipeline. Issues regarding bolt make-up by the ROV were also studied in detail and limitations in bolting capability were outlined. The conclusion of this work is that the clamping system described herein may be implemented in a direct manner. The design issues causing the most concern have been resolved through laboratory tests. Note however that all testing performed was mechanical in nature and performed in a dry environment. The recommended next development step, prior to declaring the system operational, is to manufacture a fully outfitted clamp package and to perform installation tests in a controlled underwater environment using a typical deepwater ROV. Wet tests are required in order to demonstrate ROV interfaces and installation procedures, however, the major mechanical features represented by the clamp design as well as its operation have been proven.

  4. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  5. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  6. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  7. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Neurosurgical head holder (skull clamp). 882.4460... holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used to clamp the patient's skull to hold head and neck in a particular position during surgical procedures....

  8. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Cable clamps and grips. 18.40 Section 18.40... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable (trailing) cables to prevent strain on the cable terminals of a machine. Also insulated clamps shall be provided...

  9. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Clips, straps, and hose clamps..., straps, and hose clamps. (a) Each clip, strap, and hose clamp must: (1) Be made from a corrosion... under § 183.590, a hose clamp installed on a fuel line system requiring metallic fuel lines or...

  10. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Clips, straps, and hose clamps..., straps, and hose clamps. (a) Each clip, strap, and hose clamp must: (1) Be made from a corrosion... under § 183.590, a hose clamp installed on a fuel line system requiring metallic fuel lines or...

  11. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Clips, straps, and hose clamps..., straps, and hose clamps. (a) Each clip, strap, and hose clamp must: (1) Be made from a corrosion... under § 183.590, a hose clamp installed on a fuel line system requiring metallic fuel lines or...

  12. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Clips, straps, and hose clamps..., straps, and hose clamps. (a) Each clip, strap, and hose clamp must: (1) Be made from a corrosion... under § 183.590, a hose clamp installed on a fuel line system requiring metallic fuel lines or...

  13. 33 CFR 183.532 - Clips, straps, and hose clamps.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Clips, straps, and hose clamps..., straps, and hose clamps. (a) Each clip, strap, and hose clamp must: (1) Be made from a corrosion... under § 183.590, a hose clamp installed on a fuel line system requiring metallic fuel lines or...

  14. Modelling the near-Earth space environment using LDEF data

    NASA Technical Reports Server (NTRS)

    Atkinson, Dale R.; Coombs, Cassandra R.; Crowell, Lawrence B.; Watts, Alan J.

    1992-01-01

    Near-Earth space is a dynamic environment, that is currently not well understood. In an effort to better characterize the near-Earth space environment, this study compares the results of actual impact crater measurement data and the Space Environment (SPENV) Program developed in-house at POD, to theoretical models established by Kessler (NASA TM-100471, 1987) and Cour-Palais (NASA SP-8013, 1969). With the continuing escalation of debris there will exist a definite hazard to unmanned satellites as well as manned operations. Since the smaller non-trackable debris has the highest impact rate, it is clearly necessary to establish the true debris environment for all particle sizes. Proper comprehension of the near-Earth space environment and its origin will permit improvement in spacecraft design and mission planning, thereby reducing potential disasters and extreme costs. Results of this study directly relate to the survivability of future spacecraft and satellites that are to travel through and/or reside in low Earth orbit (LEO). More specifically, these data are being used to: (1) characterize the effects of the LEO micrometeoroid an debris environment on satellite designs and components; (2) update the current theoretical micrometeoroid and debris models for LEO; (3) help assess the survivability of spacecraft and satellites that must travel through or reside in LEO, and the probability of their collision with already resident debris; and (4) help define and evaluate future debris mitigation and disposal methods. Combined model predictions match relatively well with the LDEF data for impact craters larger than approximately 0.05 cm, diameter; however, for smaller impact craters, the combined predictions diverge and do not reflect the sporadic clouds identified by the Interplanetary Dust Experiment (IDE) aboard LDEF. The divergences cannot currently be explained by the authors or model developers. The mean flux of small craters (approximately 0.05 cm diameter) is

  15. Secondary particle contribution to LET spectra on LDEF

    NASA Technical Reports Server (NTRS)

    Benton, E. R.; Benton, E. V.; Frank, A. L.; Frigo, L. A.; Csige, I.

    1996-01-01

    Four experiments utilizing passive detectors (P0006, P0004, A0015, M0004) were flown on LDEF to study the radiation environment. These experiments have been summarized in a companion paper (Benton et al., 1996). One of the experimental goals was to measure LET spectra at different locations and shielding depths with plastic nuclear track detectors (PNTD). It was found that the LET spectra extended well above the LET cutoff imposed by the geomagnetic field on GCR particle penetration into LEO. The high LET particles detected were mostly short-range (range < 2000 m), indicating that they were secondaries produced locally within the PNTD. The presence of these high LET particle fluences is important for the determination of dose equivalent because of the high Quality Factors (Q) involved. A relatively small fraction of particle fluence can contribute a large fraction of dose equivalent. Short-range, inelastic secondary particles produced by trapped protons in the South Atlantic Anomaly (SAA) were found to be a major contributor to the LET spectra above 100 keV/micrometer. The LET spectra were found to extend beyond the approximately 137 keV/micrometer relativistic GCR Fe peak to over 1000 keV/micrometer. The high LET tail of the LET spectra was measured in CR-39 and polycarbonate PNTDs using different techniques. GCR made a relatively modest contribution to the LET spectra as compared to the contributions from short-range secondary particles and stopping protons. LET spectra intercomparisons were made between LDEF measurements and exposures to 154 MeV accelerated proton beams. The similarities support the role of nuclear interactions by trapped protons as the major source of secondary particles in the PNTDs. Also techniques were employed to reduce the range cutoff for detection of the short-range secondaries to approximately 1 micrometer, so that essentially all secondary particles were included in the LET spectra. This has allowed a more realistic assessment of

  16. During STS-32 retrieval, RMS lowers LDEF into OV-102's payload bay (PLB)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    During STS-32 retrieval activities, the Long Duration Exposure Facility (LDEF) grappled by the remote manipulator system (RMS) end effector is lowered into Columbia's, Orbiter Vehicle (OV) 102's, lit payload bay (PLB). The scene is framed in an aft flight deck viewing window. Visible on the 14 ft (4.3 meter) end of LDEF is the support structure with payload retention latch assembly (PRLA) trunnions that will secure the reusable 12-sided structure in the PLB during reentry and landing. In the background, highlighted against the Earth's surface are OV-102's wings, the orbital maneuvering system (OMS) pods, and the vertical tail.

  17. LDEF grappled and positioned by RMS over OV-102's payload bay during STS-32

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The Long Duration Exposure Facility (LDEF) is grappled by remote manipulator system (RMS) end effector and positioned horizontally over Columbia's, Orbiter Vehicle (OV) 102's, payload bay (PLB) during STS-32 retrieval activities. LDEF is a free-flying passive spacecraft that has provided 57 experiments with long-term exposure to the space environment. The gradient stabilized platform was deployed in April, 1984. Also visible are the PLB, the frame of an aft viewing window, the orbital maneuvering system (OMS) pods and vertical tail, and the cloud-covered Earth surface.

  18. Radiation sensitivity of quartz crystal oscillators experiment for the Long Duration Exposure Facility (LDEF), part 2

    NASA Technical Reports Server (NTRS)

    Ahearn, J. S.; Venables, J. D.

    1993-01-01

    The stability of high precision quartz crystal oscillators exposed to the radiation environment of NASA's Long Duration Exposure Facility (LDEF) was studied. Comparisons between pre-flight and post-flight frequency drift rates indicate that oscillators made from swept premium Q quartz exhibited a significantly greater post-flight drift rate than before exposure, but that the effect annealed after five months aging at 75 C (the operating temperature). The result that six years worth of radiation damage annealed out in less than six months suggests that if the oscillators had been powered during the LDEF mission, no net change in drift rate beyond their normal baseline value would have occurred.

  19. Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets

    NASA Technical Reports Server (NTRS)

    Drolshagen, Gerhard

    1993-01-01

    The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.

  20. Piezoresistive cantilever force-clamp system

    NASA Astrophysics Data System (ADS)

    Park, Sung-Jin; Petzold, Bryan C.; Goodman, Miriam B.; Pruitt, Beth L.

    2011-04-01

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or "clamps" the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of μN force and nm up to tens of μm displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  1. Piezoresistive cantilever force-clamp system

    SciTech Connect

    Park, Sung-Jin; Petzold, Bryan C.; Pruitt, Beth L.; Goodman, Miriam B.

    2011-04-15

    We present a microelectromechanical device-based tool, namely, a force-clamp system that sets or ''clamps'' the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude. The system implements a piezoresistive cantilever as a force sensor and the built-in capacitive sensor of a piezoelectric actuator as a displacement sensor, such that sample indentation depth can be directly calculated from the force and displacement signals. A programmable real-time controller operating at 100 kHz feedback calculates the driving voltage of the actuator. The system has two distinct modes: a force-clamp mode that controls the force applied to a sample and a displacement-clamp mode that controls the moving distance of the actuator. We demonstrate that the system has a large dynamic range (sub-nN up to tens of {mu}N force and nm up to tens of {mu}m displacement) in both air and water, and excellent dynamic response (fast response time, <2 ms and large bandwidth, 1 Hz up to 1 kHz). In addition, the system has been specifically designed to be integrated with other instruments such as a microscope with patch-clamp electronics. We demonstrate the capabilities of the system by using it to calibrate the stiffness and sensitivity of an electrostatic actuator and to measure the mechanics of a living, freely moving Caenorhabditis elegans nematode.

  2. An Ultrasonic Clamp for Bloodless Partial Nephrectomy

    NASA Astrophysics Data System (ADS)

    Lafon, Cyril; Bouchoux, Guillaume; Murat, François Joseph; Birer, Alain; Theillère, Yves; Chapelon, Jean Yves; Cathignol, Dominique

    2007-05-01

    Maximum conservation of the kidney is preferable through partial nephrectomy for patients at risk of disease recurrence of renal cancers. Haemostatic tools are needed in order to achieve bloodless surgery and reduce post surgery morbidity. Two piezo-ceramic transducers operating at a frequency of 4 MHz were mounted on each arm of a clamp. When used for coagulation purposes, two transducers situated on opposite arms of the clamp were driven simultaneously. Heat delivery was optimized as each transducers mirrored back to targeted tissues the wave generated by the opposite transducer. Real-time treatment monitoring with an echo-based technique was also envisaged with this clamp. Therapy was periodically interrupted so one transducer could generate a pulse. The echo returning from the opposite transducer was treated. Coagulation necroses were obtained in vitro on substantial thicknesses (23-38mm) of pig liver over exposure durations ranging from 30s to 130s, and with acoustic intensities of less than 15W/cm2 per transducer. Both kidneys of two pigs were treated in vivo with the clamp (14.5W/cm2 for 90s), and the partial nephrectomies performed proved to be bloodless. In vitro and in vivo, wide transfixing lesions corresponded to an echo energy decrease superior to -10dB and parabolic form of the time of flight versus treatment time. In conclusion, this ultrasound clamp has proven to be an excellent mean for achieving monitored haemostasis in kidney.

  3. Compact, Stiff, Remotely-Actuable Quick-Release Clamp

    NASA Technical Reports Server (NTRS)

    Tsai, Ted W. (Inventor)

    2000-01-01

    The present invention provides a clamp that is compact and lightweight, yet provides high holding strength and stiffness or rigidity. The clamp uses a unique double slant interface design which provides mechanical advantages to resist forces applied to the clamp member as the load increases. The clamp allows for rapid and remote-activated release of the clamp jaws by applying only a small operating force to an over-center lock/release mechanism, such as by pulling a manual tether.

  4. Atomic oxygen effects on LDEF experiment AO171

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann F.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Norwood, Joseph K.

    1993-01-01

    The Solar Array Materials Passive Long Duration Exposure Facility (LDEF) Experiment (SAMPLE), AO171, contained in total approximately 100 materials and materials processes with a 300 specimen complement. With the exception of experiment solar cell and solar cell modules, all test specimens were weighed before flight, thus allowing an accurate determination of mass loss as a result of space exposure. Since almost all of the test specimens were thermal vacuum baked before flight, the mass loss sustained can be attributed principally to atomic oxygen attack. The atomic oxygen effects observed and measured in five classes of materials is documented. The atomic oxygen reactivity values generated for these materials are compared to those values derived for the same materials from exposures on short term shuttle flights. An assessment of the utility of predicting long term atomic oxygen effects from short term exposures is given. This experiment was located on Row 8 position A which allowed all experiment materials to be exposed to an atomic oxygen fluence of 6.93 x 10(exp 21) atoms/cm(sup 2) as a result of being positioned 38 degrees off the RAM direction.

  5. EnviroNET: On-line information for LDEF

    NASA Technical Reports Server (NTRS)

    Lauriente, Michael

    1993-01-01

    EnviroNET is an on-line, free-form database intended to provide a centralized repository for a wide range of technical information on environmentally induced interactions of use to Space Shuttle customers and spacecraft designers. It provides a user-friendly, menu-driven format on networks that are connected globally and is available twenty-four hours a day - every day. The information, updated regularly, includes expository text, tabular numerical data, charts and graphs, and models. The system pools space data collected over the years by NASA, USAF, other government research facilities, industry, universities, and the European Space Agency. The models accept parameter input from the user, then calculate and display the derived values corresponding to that input. In addition to the archive, interactive graphics programs are also available on space debris, the neutral atmosphere, radiation, magnetic fields, and the ionosphere. A user-friendly, informative interface is standard for all the models and includes a pop-up help window with information on inputs, outputs, and caveats. The system will eventually simplify mission analysis with analytical tools and deliver solutions for computationally intense graphical applications to do 'What if...' scenarios. A proposed plan for developing a repository of information from the Long Duration Exposure Facility (LDEF) for a user group is presented.

  6. Effects on LDEF exposed copper film and bulk

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Gregory, John C.; Christl, Ligia C.; Raikar, Ganesh N.

    1991-01-01

    Two forms of copper were exposed to the Long Duration Exposure Facility (LDEF) Mission 1 environment: a copper film, initially 74.2 plus or minus 1.1 nm thick sputter coated on a fused silica flat and a bulk piece of oxygen-free, high conductivity (OFHC) copper. The optical density of the copper film changed from 1.33 to 0.70 where exposed, and the film thickness increased to 106.7 plus or minus 0.5 nm where exposed. The exposed area appears purple by reflection and green by transmission for the thin film and maroon color for the bulk copper piece. The exposed areas increased in thickness, but only increase in the thickness of the thin film sample could be readily measured. The increase in film thickness is consistent with the density changes occurring during conversion of copper to an oxide. However, we have not been able to confirm appreciable conversion to an oxide by x-ray diffraction studies. We have not yet subjected the sample to e-beams or more abusive investigations out of concern that the film might be modified.

  7. Aeroelastic Response and Protection of Space Shuttle External Tank Cable Trays

    NASA Technical Reports Server (NTRS)

    Edwards, John W.; Keller, Donald F.; Schuster, David M.; Piatak, David J.; Rausch, Russ D.; Bartels, Robert E.; Ivanco, Thomas G.; Cole, Stanley R.; Spain, Charles V.

    2005-01-01

    Sections of the Space Shuttle External Tank Liquid Oxygen (LO2) and Liquid Hydrogen (LH2) cable trays are shielded from potentially damaging airloads with foam Protuberance Aerodynamic Load (PAL) Ramps. Flight standard design LO2 and LH2 cable tray sections were tested with and without PAL Ramp models in the United States Air Force Arnold Engineering Development Center s (AEDC) 16T transonic wind tunnel to obtain experimental data on the aeroelastic stability and response characteristics of the trays and as part of the larger effort to determine whether the PAL ramps can be safely modified or removed. Computational Fluid Dynamic simulations of the full-stack shuttle launch configuration were used to investigate the flow characeristics around and under the cable trays without the protective PAL ramps and to define maximum crossflow Mach numbers and dynamic pressures experienced during launch. These crossflow conditions were used to establish wind tunnel test conditions which also included conservative margins. For all of the conditions and configurations tested, no aeroelastic instabilities or unacceptable dynamic response levels were encountered and no visible structural damage was experienced by any of the tested cable tray sections. Based upon this aeroelastic characterization test, three potentially acceptable alternatives are available for the LO2 cable tray PAL Ramps: Mini-Ramps, Tray Fences, or No Ramps. All configurations were tested to maximum conditions, except the LH2 trays at -15 deg. crossflow angle. This exception is the only caveat preventing the proposal of acceptable alternative configurations for the LH2 trays as well. Structural assessment of all tray loads and tray response measurements from launches following the Shuttle Return To Flight with the existing PAL Ramps will determine the acceptability of these PAL Ramp alternatives.

  8. Fiber optic accelerometer based on clamped beam

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Li, Fang

    2013-01-01

    In this paper a fiber optic accelerometer (FOA) based on camped beam is proposed. The clamped beam is used as the elastic element and a mass installed on the clamped beam is used as the inertial element. The accelerometer is based on a fiber optic Michelson interferometer and has a sensing arm and a reference arm. The optical fiber of the sensing arm is wrapped on the clamped beam and the mass, which are both cylinder shaped. The sensitivity of the FOA is analyzed based on the theory of elasticity; the frequency response is analyzed based on the theory of vibration. Experiment is carried out to test the performance of the fiber optic accelerometer. The experiment results show a high sensitivity and a flat frequency response within the low frequency range of 5-250 Hz, which agrees well with the theoretical result.

  9. Perspectives on implementing delayed cord clamping.

    PubMed

    Leslie, Mayri Sagady

    2015-01-01

    Expanding evidence supports delayed cord clamping (DCC) for both term and preterm infants. This article explores issues that may be keeping early cord clamping (ECC) in place as usual practice. Professional organizations almost universally recommend DCC for preterm infants, but some reserve recommending it for term infants only in resource-poor settings. Concerns about polycythemia and jaundice persist in the literature, while years of published randomized controlled trials do not support the assumptions behind the concerns. New data suggest that DCC may improve resuscitative efforts in compromised infants. Multiple perspectives are offered for consideration when thinking about incorporating DCC into practice.

  10. Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C

    PubMed Central

    Marzahn, Melissa R.; Hayner, Jaclyn N.; Meyer, Jennifer A.; Bloom, Linda B.

    2014-01-01

    DNA polymerases require a sliding clamp to achieve processive DNA synthesis. The toroidal clamps are loaded onto DNA by clamp loaders, members of the AAA+ family of ATPases. These enzymes utilize the energy of ATP binding and hydrolysis to perform a variety of cellular functions. In this study, a clamp loader-clamp binding assay was developed to measure the rates of ATP-dependent clamp binding and ATP-hydrolysis-dependent clamp release for the S. cerevisiae clamp loader (RFC) and clamp (PCNA). Pre-steady-state kinetics of PCNA binding showed that although ATP binding to RFC increases affinity for PCNA, ATP binding rates and ATP-dependent conformational changes in RFC are fast relative to PCNA binding rates. Interestingly, RFC binds PCNA faster than the Escherichia coli γ complex clamp loader binds the β-clamp. In the process of loading clamps on DNA, RFC maintains contact with PCNA while PCNA closes, as the observed rate of PCNA closing is faster than the rate of PCNA release, precluding the possibility of an open clamp dissociating from DNA. Rates of clamp closing and release are not dependent on the rate of the DNA binding step and are also slower than reported rates of ATP hydrolysis, showing that these rates reflect unique intramolecular reaction steps in the clamp loading pathway. PMID:25450506

  11. Normative data for distal line bisection and baking tray task.

    PubMed

    Facchin, Alessio; Beschin, Nicoletta; Pisano, Alessia; Reverberi, Cristina

    2016-09-01

    Line bisection is one of the tests used to diagnose unilateral spatial neglect (USN). Despite its wide application, no procedure or norms were available for the distal variant when the task was performed at distance with a laser pointer. Furthermore, the baking tray task was an ecological test aimed at diagnosing USN in a more natural context. The aim of this study was to collect normative values for these two tests in an Italian population. We recruited a sample of 191 healthy subjects with ages ranging from 20 to 89 years. They performed line bisection with a laser pointer on three different line lengths (1, 1.5, and 2 m) at a distance of 3 m. After this task, the subjects performed the baking tray task and a second repetition of line bisection to test the reliability of measurement. Multiple regression analysis revealed no significant effects of demographic variables on the performance of both tests. Normative cut-off values for the two tests were developed using non-parametric tolerance intervals. The results formed the basis for clinical use of these two tools for assessing lateralized performance of patients with brain injury and for diagnosing USN.

  12. Normative data for distal line bisection and baking tray task.

    PubMed

    Facchin, Alessio; Beschin, Nicoletta; Pisano, Alessia; Reverberi, Cristina

    2016-09-01

    Line bisection is one of the tests used to diagnose unilateral spatial neglect (USN). Despite its wide application, no procedure or norms were available for the distal variant when the task was performed at distance with a laser pointer. Furthermore, the baking tray task was an ecological test aimed at diagnosing USN in a more natural context. The aim of this study was to collect normative values for these two tests in an Italian population. We recruited a sample of 191 healthy subjects with ages ranging from 20 to 89 years. They performed line bisection with a laser pointer on three different line lengths (1, 1.5, and 2 m) at a distance of 3 m. After this task, the subjects performed the baking tray task and a second repetition of line bisection to test the reliability of measurement. Multiple regression analysis revealed no significant effects of demographic variables on the performance of both tests. Normative cut-off values for the two tests were developed using non-parametric tolerance intervals. The results formed the basis for clinical use of these two tools for assessing lateralized performance of patients with brain injury and for diagnosing USN. PMID:27259570

  13. Using Sand Trays and Miniature Figures to Facilitate Career Decision Making

    ERIC Educational Resources Information Center

    Sangganjanavanich, Varunee Faii; Magnuson, Sandy

    2011-01-01

    Sand tray therapy has earned status as a respected, often powerful, therapeutic modality. Counselors have used sand trays and figures for a variety of purposes with children, adolescents, adults, families, and groups. This modality can also be used to facilitate career decision making and related issues as clients create visual representations of…

  14. Preliminary results for LDEF/HEPP thermal control samples

    NASA Technical Reports Server (NTRS)

    Kauder, Lon

    1991-01-01

    Sixty-five one inch by twelve inch strips of Kapton coated with various black paints, clear coatings, and thin film oxides were placed at three locations on the Long Duration Exposure Facility. Two sets were flown in the ram direction on top of the MLI blanket of the Cascade Variable Conductance Heat Pipe Experiment. Two other sets were flown on top of the MLI blanket of the Low Temperature Heat Pipe Experiment perpendicular to the ram direction. The last thirteen samples were taped to the perimeter of the HEPP power tray on the space end of the satellite. The solar absorptance and normal emittance measurements made on the 52 remaining samples are presented, as well as data on the above mentioned samples.

  15. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 1

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers from the symposium is presented. The papers represent the preliminary data analysis of the 57 experiments flown on the Long Duration Exposure Facility (LDEF). The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroids), electronics, optics, and life sciences.

  16. LDEF: 69 Months in Space. First Post-Retrieval Symposium, part 2

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S. (Editor)

    1992-01-01

    A compilation of papers from the symposium is presented. The preliminary data analysis is presented of the 57 experiments flown on the LDEF. The experiments include materials, coatings, thermal systems, power and propulsion, science (cosmic ray, interstellar gas, heavy ions, and micrometeoroid), electronics, optics, and life science.

  17. Space environmental effect on solar cells: LDEF and other flight tests

    NASA Technical Reports Server (NTRS)

    Gruenbaum, Peter; Dursch, Harry

    1995-01-01

    This paper summarizes results of several experiments flown on the Long Duration Exposure Facility (LDEF) to examine the effects of the space environment on materials and technologies to be used in solar arrays. The various LDEF experiments are compared to each other as well as to other solar cell flight data published in the literature. Data on environmental effects such as atomic oxygen, ultraviolet light, micrometeoroids and debris, and charged particles are discussed in detail. The results from the LDEF experiments allow us to draw several conclusions. Atomic oxygen erodes unprotected silver interconnects, unprotected Kapton, and polymer cell covers, but certain dielectric coatings can protect both silver and Kapton. Cells that had wrap-around silver contacts sometimes showed erosion at the edges, but more recently developed wrap-through cells are not expected to have these problems. Micrometeoroid and debris damage is limited to the area close to the impact, and microsheet covers provide the cells with some protection. Damage from charged particles was as predicted, and the cell covers provided adequate protection. In general, silicon cells with microsheet covers showed very little degradation, and solar modules showed less than 3 percent degradation, except when mechanically damaged. The solar cell choices for the Space Station solar array are supported by the data from LDEF.

  18. Migration and generation of contaminants from launch through recovery: LDEF case history

    NASA Technical Reports Server (NTRS)

    Crutcher, E. Russ; Nishimura, L. S.; Warner, K. J.; Wascher, W. W.

    1991-01-01

    The migration of contaminants to and between Long Duration Exposure Facility (LDEF) surfaces reveals new information relevant to all future space missions. The surface of the LDEF satellite closely paralleled over seven meters of the shuttle during one launch and one reentry. Transfer of contaminants from the shuttle bay to the payload were documented and partially quantified for both the launch and recovery separately. LDEF carried a load of volatile silicones and hydrocarbons into orbit which were then polymerized by UV radiation into tough, dark brown stains on exposed surfaces. The distribution of these stains is providing new information on deposition mechanisms that should be studied on future missions. Electrostatic effects, diffusional flow, and effects due to small surface temperature differences at the time of UV exposure are suggested. The types of functional groups present in the LDEF deposit it nearly identical to stains recovered from other spacecraft. These stains were remarkably stable in low Earth orbit even with atomic oxygen exposure if the amount of silicones present was sufficient to create a sealing layer of silicon dioxide over the dark brown stain beneath.

  19. Impact of LDEF photovoltaic experiment findings upon spacecraft solar array design and development requirements

    NASA Technical Reports Server (NTRS)

    Young, Leighton E.

    1993-01-01

    Photovoltaic cells (solar cells) and other solar array materials were flown in a variety of locations on the Long Duration Exposure Facility (LDEF). With respect to the predicted leading edge, solar array experiments were located at 0 degrees (row 9), 30 degrees (row 8) and 180 degrees (row 3). Postflight estimates of location of the experiments with respect to the velocity vector add 8.1 degrees to these values. Experiments were also located on the Earth end of the LDEF longitudinal axis. Types and magnitudes of detrimental effects differ between the locations with some commonality. Postflight evaluation of the solar array experiments reveal that some components/materials are very resistant to the environment to which they were exposed while others need protection, modification, or replacement. Interaction of materials with atomic oxygen (AO), as an area of major importance, was dramatically demonstrated by LDEF results. Information gained from the LDEF flight allows array developers to set new requirements for on-going and future technology and flight component development.

  20. Calculated values of atomic oxygen fluences and solar exposure on selected surfaces of LDEF

    NASA Technical Reports Server (NTRS)

    Gillis, J. R.; Pippin, H. G.; Bourassa, R. J.; Gruenbaum, P. E.

    1995-01-01

    Atomic oxygen (AO) fluences and solar exposure have been modeled for selected hardware from the Long Duration Exposure Facility (LDEF). The atomic oxygen exposure was modeled using the microenvironment modeling code SHADOWV2. The solar exposure was modeled using the microenvironment modeling code SOLSHAD version 1.0.

  1. Atomic oxygen interactions with protected organic materials on the Long Duration Exposure Facility (LDEF)

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Bucholz, Justine L.; Cales, Michael R.

    1995-01-01

    The Long Duration Exposure Facility (LDEF) has provided an excellent opportunity to understand the nature of directed atomic oxygen interactions with protected polymers and composites. Although there were relatively few samples of materials with protective coatings on their external surfaces on LDEF which were exposed to a high atomic oxygen fluence, analysis of such samples has enabled an examination of the shape of atomic oxygen undercut cavities at defect sites in the protective coatings. Samples of front-surface aluminized (Kapton) polyimide were inspected by scanning electron microscopy to identify and measure crack defects in the aluminum protective coatings. After chemical removal of the aluminum coating, measurements were also made of the width of the oxidized undercut cavities below the crack defects. The LDEF flight undercut cavity geometries were then compared with Monte Carlo computational model undercut cavity predictions. The comparison of the LDEF results and computational modeling indicates agreement in specific undercut cavity geometries for atomic oxygen reaction probabilities dependent upon the 0.68 to 3.0 power of the energy. However, no single energy dependency was adequate to replicate flight results over a variety of aluminum crack widths.

  2. Thermal control paints on LDEF: Results of M0003 sub-experiment 18

    NASA Technical Reports Server (NTRS)

    Jaggers, C. H.; Meshishnek, M. J.; Coggi, J. M.

    1993-01-01

    Several thermal control paints were flown on the Long Duration Exposure Facility (LDEF), including the white paints Chemglaze A276, S13GLO, and YB-71, and the black paint D-111. The effects of low earth orbit, which includes those induced by UV radiation and atomic oxygen, varied significantly with each paint and its location on LDEF. For example, samples of Chemglaze A276 located on the trailing edge of LDEF darkened significantly due to UV-induced degradation of the paint's binder, while leading edge samples remained white but exhibited severe atomic oxygen erosion of the binder. Although the response of S13GLO to low earth orbit is much more complicated, it also exhibited greater darkening on trailing edge samples as compared to leading edge samples. In contrast, YB-71 and D-111 remained relatively stable and showed minimal degradation. The performance of these paints as determined by changes in their optical and physical properties, including solar absorptance as well as surface chemical changes and changes in surface morphology is examined. It will also provide a correlation of these optical and physical property changes to the physical phenomena that occurred in these materials during the LDEF mission.

  3. Low energy ions in the heavy ions in space (HIIS) experiment on LDEF.

    PubMed

    Kleis, T; Tylka, A J; Boberg, P R; Adams, J H; Beahm, L P

    1996-01-01

    We present data from the Lexan top stacks in the Heavy Ions In Space (HIIS) experiment which was flown for six years (April 1984-Jan 1990) onboard the LDEF spacecraft in 28.5 degrees orbit at about 476 km altitude. HIIS was built of passive (i.e. no timing resolution) plastic track detectors which collected particles continuously over the entire mission. In this paper we present data on low energy heavy ions (10 < or = Z, 20MeV/nuc < E < 200 MeV/nuc). These ions are far below the geomagnetic cutoff for fully ionized ions in the LDEF orbit even after taking into account the severe cutoff suppression caused by occasional large geomagnetic storms during the LDEF mission. Our preliminary results indicate an unusual elemental composition of trapped particles in the inner magnetosphere during the LDEF mission, including both trapped anomalous cosmic ray species (Ne, Ar) and other elements (such as Mg and Fe) which are not found in the anomalous component of cosmic rays. The origin of the non-anomalous species is not understood, but they may be associated with the solar energetic particle events and geomagnetic disturbances of 1989.

  4. Effect of Modularity on the Fatigue Performance of Tibial Tray Designs in TKA Prostheses.

    PubMed

    Krishnan, Ahilan Anantha; Ghyar, Rupesh; Ravi, Bhallamudi

    2016-01-01

    Fatigue performance of tibial tray in total knee arthroplasty (TKA) is of critical importance in terms of longevity of the prosthesis. Standards have been proposed by American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) to ensure its long-term structural integrity. The aim of the current study is to evaluate the effect of modularity in the tibial tray following the testing standards, using finite element analysis. Goodman and Sines criteria were used to compare the fatigue safety factor (FSF) of four modular designs versus the two conventional designs. Cruciate-retaining (CR) type modular tibial tray designs were better than posterior-stabilized (PS) type tibial tray designs. More cutouts in the tray and absence of keel were reasons for poor fatigue performance.

  5. Effect of Modularity on the Fatigue Performance of Tibial Tray Designs in TKA Prostheses.

    PubMed

    Krishnan, Ahilan Anantha; Ghyar, Rupesh; Ravi, Bhallamudi

    2016-01-01

    Fatigue performance of tibial tray in total knee arthroplasty (TKA) is of critical importance in terms of longevity of the prosthesis. Standards have been proposed by American Society for Testing and Materials (ASTM) and International Organization for Standardization (ISO) to ensure its long-term structural integrity. The aim of the current study is to evaluate the effect of modularity in the tibial tray following the testing standards, using finite element analysis. Goodman and Sines criteria were used to compare the fatigue safety factor (FSF) of four modular designs versus the two conventional designs. Cruciate-retaining (CR) type modular tibial tray designs were better than posterior-stabilized (PS) type tibial tray designs. More cutouts in the tray and absence of keel were reasons for poor fatigue performance. PMID:27649765

  6. Patch-clamp amplifiers on a chip.

    PubMed

    Weerakoon, Pujitha; Culurciello, Eugenio; Yang, Youshan; Santos-Sacchi, Joseph; Kindlmann, Peter J; Sigworth, Fred J

    2010-10-15

    We present the first, fully integrated, two-channel implementation of a patch-clamp measurement system. With this "PatchChip" two simultaneous whole-cell recordings can be obtained with rms noise of 8pA in a 10kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10pF and 100MΩ respectively under computer control. Recordings of hERG and Na(v) 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5μm silicon-on-sapphire process; its size is 3×3mm(2) and the power consumption is 5mW per channel with a 3.3V power supply.

  7. [Spinal cord ischemia following subrenal aortic clamping].

    PubMed

    Battisti, G; Marigliani, M; Stio, F; Iavarone, C

    1990-01-01

    The paraplegia caused by an aortic clamping just below the Renal artery is a rare but very complication in aortic surgery. Such a complication is even rarer if we consider the few cases reported in literature following a reconstructive surgery for occlusive chronic diseases of aortiliac axes. The authors have studied the case of a patient bearing the syndrome of Leriche; this one had an aortic clamping below the kidney and soon after developed an acute ischaemic syndrome below the spinal medulla with flaccid paraparesis, anal and vesical sphincteric diseases and persistence of deep tactile sensibility. After a reconstruction of vascular anatomy of the medulla they emphasize the importance, in such a disease, of the "arteria radicularis magna" of Adamkievicz and its place of origin. After they discuss the severe physioopathologic moments that are connected: with the direct ischaemia following aortic clamping in the cases where the arteria radicularis magna rises at a level lower than the clamping itself; with the embolism or thrombosis caused by surgical manipulation peroperatively (it might be the cause of paraplegia more frequent in aneurysmectomia surgery); with the severe hypotension per- and post operatively for the existence of arteriosclerotic disease of the lumbar arteries. Finally they analyses preoperatively diagnostic possibilities and per operatively methods used in preventing this sort of complication.

  8. Patch-clamp amplifiers on a chip

    PubMed Central

    Weerakoon, Pujitha; Culurciello, Eugenio; Yang, Youshan; Santos-Sacchi, Joseph; Kindlmann, Peter J.; Sigworth, Fred J.

    2010-01-01

    We present the first, fully-integrated, two-channel implementation of a patch-clamp measurement system. With this “PatchChip” two simultaneous whole-cell recordings can be obtained with rms noise of 8 pA in a 10 kHz bandwidth. The capacitance and series-resistance of the electrode can be compensated up to 10 pF and 100 MΩ respectively under computer control. Recordings of hERG and Nav 1.7 currents demonstrate the system's capabilities, which are on par with large, commercial patch-clamp instrumentation. By reducing patch-clamp amplifiers to a millimeter size micro-chip, this work paves the way to the realization of massively-parallel, high-throughput patch-clamp systems for drug screening and ion-channel research. The PatchChip is implemented in a 0.5 μm silicon-on-sapphire process; its size is 3 × 3 mm2 and the power consumption is 5 mW per channel with a 3.3 V power supply. PMID:20637803

  9. Π-Clamp-mediated cysteine conjugation.

    PubMed

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J; Santos, Michael S; Van Voorhis, Troy; Pentelute, Bradley L

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the 'π-clamp', that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  10. Analytical chemistry: Clamping down on cancer detection

    NASA Astrophysics Data System (ADS)

    Gorodetskaya, Irina A.; Gorodetsky, Alon A.

    2015-07-01

    An electrochemical clamp assay that enables the rapid and sensitive detection of nucleic acids containing single base mutations has now been developed. It has been shown to differentiate between cancer patient samples featuring a specific mutation, and controls from healthy donors or other cancer patients, all directly in unprocessed serum.

  11. Π-Clamp-mediated cysteine conjugation.

    PubMed

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J; Santos, Michael S; Van Voorhis, Troy; Pentelute, Bradley L

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the 'π-clamp', that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics. PMID:26791894

  12. Planar patch clamp: advances in electrophysiology.

    PubMed

    Brüggemann, Andrea; Farre, Cecilia; Haarmann, Claudia; Haythornthwaite, Ali; Kreir, Mohamed; Stoelzle, Sonja; George, Michael; Fertig, Niels

    2008-01-01

    Ion channels have gained increased interest as therapeutic targets over recent years, since a growing number of human and animal diseases have been attributed to defects in ion channel function. Potassium channels are the largest and most diverse family of ion channels. Pharmaceutical agents such as Glibenclamide, an inhibitor of K(ATP) channel activity which promotes insulin release, have been successfully sold on the market for many years. So far, only a small group of the known ion channels have been addressed as potential drug targets. The functional testing of drugs on these ion channels has always been the bottleneck in the development of these types of pharmaceutical compounds.New generations of automated patch clamp screening platforms allow a higher throughput for drug testing and widen this bottleneck. Due to their planar chip design not only is a higher throughput achieved, but new applications have also become possible. One of the advantages of planar patch clamp is the possibility of perfusing the intracellular side of the membrane during a patch clamp experiment in the whole-cell configuration. Furthermore, the extracellular membrane remains accessible for compound application during the experiment.Internal perfusion can be used not only for patch clamp experiments with cell membranes, but also for those with artificial lipid bilayers. In this chapter we describe how internal perfusion can be applied to potassium channels expressed in Jurkat cells, and to Gramicidin channels reconstituted in a lipid bilayer. PMID:18998092

  13. Clamp and Gas Nozzle for TIG Welding

    NASA Technical Reports Server (NTRS)

    Gue, G. B.; Goller, H. L.

    1982-01-01

    Tool that combines clamp with gas nozzle is aid to tungsten/inert-gas (TIG) welding in hard-to-reach spots. Tool holds work to be welded while directing a stream of argon gas at weld joint, providing an oxygen-free environment for tungsten-arc welding.

  14. Space environmental effects on LDEF low Earth orbit exposed graphite reinforced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    George, Pete

    1992-01-01

    The Long Duration Exposure Facility (LDEF) was deployed on April 7, 1984 in low earth orbit (LEO) at an altitude of 482 kilometers. On board experiments experienced the harsh LEO environment including atomic oxygen (AO), ultraviolet radiation (UV), and thermal cycling. During the 5.8 year mission, the LDEF orbit decayed to 340 kilometers where significantly higher AO concentrations exist. LDEF was retrieved on January 12, 1990 from this orbit. One experiment on board LDEF was M0003, Space Effects on Spacecraft Materials. As a subset of M0003 nearly 500 samples of polymer, metal, and glass matrix composites were flown as the Advanced Composites Experiment M0003-10. The Advanced Composites Experiment is a joint effort between government and industry with the Aerospace Corporation serving as the experiment integrator. A portion of the graphite reinforced polymer matrix composites were furnished by the Boeing Defense and Space Group, Seattle, Washington. Test results and discussions for the Boeing portion of M0003-10 are presented. Experiment and specimen location on the LDEF are presented along with a quantitative summary of the pertinent exposure conditions. Matrix materials selected for the test were epoxy, polysulfone, and polyimide. These composite materials were selected due to their suitability for high performance structural capability in spacecraft applications. Graphite reinforced polymer matrix composites offer higher strength to weight ratios along with excellent dimensional stability. The Boeing space exposed and corresponding ground control composite specimens were subjected to post flight mechanical, chemical, and physical testing in order to determine any changes in critical properties and performance characteristics. Among the more significant findings are the erosive effect of atomic oxygen on leading edge exposed specimens and microcracking in non-unidirectionally reinforced flight specimens.

  15. Origin of orbital debris impacts on Long Duration Exposure Facility's (LDEF) trailing surfaces

    NASA Technical Reports Server (NTRS)

    Kessler, Donald J.

    1992-01-01

    Orbital debris tracked by the US Space Command is mostly in near circular orbit around the Earth. If small debris were in the same types of orbits, there would be very few orbital debris impacts on the Long Duration Exposure Facility's (LDEF's) trailing surfaces. However, at least 15 percent of the impacts found on the trailing A03 gold surface was found to be orbital debris impacts. This measurement suggests that the orbital distribution of small debris is not the same as that of larger debris. Although this is not a total surprise, since modelling of satellite breakups has predicted different distributions, it does raise questions as to what types of orbits could be responsible for these impacts. A model was developed to explain these LDEF results. The model calculates the expected debris impact crater distribution around LDEF, as a function of debris orbital parameters. The results show that only low inclination and highly elliptical orbits could be responsible for these impacts. The most common object left in this type of orbit is an orbital transfer stage, used by the US and ESA to place objects into geosynchronous orbit, and inclinations near 28 and 7 degrees for the US and ESA, respectively. Even large fragments from satellites, which break up in these types of orbits, are difficult to observe from the ground; consequently, little is known about the number and characteristics of breakups in these orbits. The LDEF data suggest that these objects are breaking up. The LDEF data also suggest that the ratio of the contribution of small debris from this type of orbit to the contribution from circular orbits is about an order of magnitude larger than the same ratio for debris tracked by the US Space Command.

  16. Projectile compositions and modal frequencies on the chemistry of micrometeoroids LDEF experiment

    NASA Technical Reports Server (NTRS)

    Bernhard, Ronald P.; See, Thomas H.; Hoerz, Friedrich

    1993-01-01

    The Chemistry of Micrometeoroids Experiment (LDEF instrument A0187-1) exposed witness plates of high-purity gold (greater than 99.99 percent Au) and commercial aluminum (greater than 99 percent Al) with the objective of analyzing the residues of cosmic-dust and orbital-debris particles associated with hypervelocity impact craters. The gold substrates were located approximately 8 deg off LDEF's trailing edge (Bay A03), while the aluminum surfaces resided in Bay A11, approximately 52 deg from LDEF's leading edge. SEM-EDX techniques were employed to analyze the residues associated with 199 impacts on the gold and 415 impacts on the aluminum surfaces. The residues that could be analyzed represent natural or man-made materials. The natural particles dominate at all particle sizes less than 5 micron. It is possible to subdivide both particle populations into subclasses. Chondritic compositions dominate the natural impactors (71 percent), followed by monomineralic, mafic-silicate compositions (26 percent), and by Fe-Ni rich sulfides (approximately 3 percent). Approximately 30 percent of all craters on the gold collectors were caused by man-made debris such as aluminum, paint flakes, and other disintegrated, structural and electronic components. Equations-of-state and associated calculations of shock stresses for typical LDEF impacts into the gold and aluminum substrates suggest that substantial vaporization may have occurred during many of the impacts and is the reason why approximately 50 percent of all craters did not contain sufficient residue to permit analysis by the SEM-EDX technique. After converting the crater diameters into projectile sizes using encounter speeds typical for the trailing-edge and forward-facing (Row 11) directions, and accounting for normalized exposure conditions of the CME collectors, we derived the absolute and relative fluxes of specific projectile classes. The natural impactors encounter all LDEF pointing directions with comparable, modal

  17. Dynamics and Stability of Pinned-Clamped and Clamped-Pinned Cylindrical Shells Conveying Fluid

    NASA Astrophysics Data System (ADS)

    Misra, A. K.; Wong, S. S. T.; Païdoussis, M. P.

    2001-11-01

    The paper examines the dynamics and stability of fluid-conveying cylindrical shells having pinned-clamped or clamped-pinned boundary conditions, where ``pinned'' is an abbreviation for ``simply supported''. Flügge's equations are used to describe the shell motion, while the fluid-dynamic perturbation pressure is obtained utilizing the linearized potential flow theory. The solution is obtained using two methods - the travelling wave method and the Fourier-transform approach. The results obtained by both methods suggest that the negative damping of the clamped-pinned systems and positive damping of the pinned-clamped systems, observed by previous investigators for any arbitrarily small flow velocity, are simply numerical artefacts; this is reinforced by energy considerations, in which the work done by the fluid on the shell is shown to be zero. Hence, it is concluded that both systems are conservative.

  18. Dimensional stability ofautoclave sterilised addition cured impressions and trays.

    PubMed

    Deb, S; Etemad-Shahidi, S; Millar, B J

    2014-03-01

    The aim of this study was to investigate the dimensional accuracy of impressions following sterilisation by autoclaving. Dental impressions (75) were of a dentoform containing 6 reference points. The impressions were split into 5 groups of 15, each group used a different impression technique. Groups were divided into 3 subgroups with 5 impressions as control, 5 for disinfection by Perform-ID and 5 being autoclaved. Measurements were made using a travelling light microscope. A minimal significant dimensional difference (0.010.05). The trays and materials tested were suitable for the autoclave sterilisation.

  19. Using double-poured alginate impressions to fabricate bleaching trays.

    PubMed

    Haywood, V B; Powe, A

    1998-01-01

    Esthetic and diagnostic treatment often requires two casts of one arch, one for baseline and one for alterations (diagnostic wax-up, bleaching tray, occlusal analysis). The purpose of this study was to compare the accuracy of stone casts generated from a second pour of a properly handled alginate impression with first-poured casts. A maxillary dentoform was indexed with six reference spaces (#8-15, 9-2, 2-15, and incisal-to-gingival of #3, 9, 14). Irreversible hydrocolloid (Jeltrate) impressions were made in perforated steel trays by a single investigator. Impression material was spatulated for 1 minute. The seated impression and dentoform were wrapped in a damp paper towel to simulate intraoral conditions, and allowed to set for 2 minutes. Upon separation, the impression was stored in a damp towel for 5 minutes. The impression was poured in cast stone (Microstone) according to the manufacturer's instructions. The stone-filled impression was immediately rewrapped in a damp paper towel and allowed to set for 45 minutes at room temperature. Upon removal of the stone, the impression was rinsed with cold water, shaken dry, and repoured in the same manner. Ten impressions were made: the first five impressions were poured to make casts for Group A, then repoured as described above for casts for Group B. The remaining five impressions were poured once to make casts for Group C. The six spaces of each cast were measured three times in random order using a dial caliper and the space average calculated for the cast. At each space, analysis of variance showed no significant difference among Groups A, B, or C (P < 0.05). When alginate impressions that have been poured with cast stone are kept moist during stone setting and repoured within 45 minutes, two casts can be generated from one impression with the same degree of accuracy as two casts made from taking two separate impressions, providing the alginate does not tear during first cast removal.

  20. The effect of tray selection on the accuracy of elastomeric impression materials.

    PubMed

    Gordon, G E; Johnson, G H; Drennon, D G

    1990-01-01

    This study evaluated the accuracy of reproduction of stone casts made from impressions using different tray and impression materials. The tray materials used were an acrylic resin, a thermoplastic, and a plastic. The impression materials used were an additional silicone, a polyether, and a polysulfide. Impressions were made of a stainless steel master die that simulated crown preparations for a fixed partial denture and an acrylic resin model with cross-arch and anteroposterior landmarks in stainless steel that typify clinical intra-arch distances. Impressions of the fixed partial denture simulation were made with all three impression materials and all three tray types. Impressions of the cross-arch and anteroposterior landmarks were made by using all three tray types with only the addition reaction silicone impression material. Impressions were poured at 1 hour with a type IV dental stone. Data were analyzed by using ANOVA with a sample size of five. Results indicated that custom-made trays of acrylic resin and the thermoplastic material performed similarly regarding die accuracy and produced clinically acceptable casts. The stock plastic tray consistently produced casts with greater dimensional change than the two custom trays. PMID:2404101

  1. New correlation for sieve-tray point efficiency, entrainment, and section efficiency

    SciTech Connect

    Bennett, D.L.; Watson, D.N.; Wiescinski, M.A.

    1997-06-01

    A comprehensive composite database for distillation sieve-tray efficiency is used to develop point efficiency and entrainment correlations based on a model that considers the fluid on the distillation tray to be contained in a liquid-continuous region near the tray deck and a vapor-continuous region on top of the liquid-continuous region. This model allows estimates of the portion of the mass transfer resistance that occurs on the liquid side and vapor side of the interface. For most cases, most of the mass transfer occurs within the liquid-continuous region. The liquid side resistance is often significant. The entrainment correlation is consistent with the work of bennett et al., which relates entrainment to the ratios of the liquid to vapor density and the forth height to the tray spacing. A simple liquid continuous-only mass-transfer model containing only four empirical parameters correlates the point efficiency data to within 6.4%. Despite a twofold change in vapor Schmidt number, no dependency on vapor Schmidt number is seen. Important dimensionless groupings are the Reynolds number based on the hole velocity, effective froth density, ratio of the liquid inventory to the perforation diameter, and fraction of the tray area perforated. Mathematically simple and accurate methods allow the prediction of the section efficiency for trays operating in cross or parallel flow. They address vapor and liquid mixing, entrainment and a criterion to avoid significant degradation of the tray efficiency due to weeping.

  2. Effect of bite tray impression technique on relocation accuracy in frameless stereotactic radiotherapy

    SciTech Connect

    Herbert, Clare E.; Ebert, Martin A.; Barclay, D.; Whittall, David S.; Joseph, David J.; Harper, Chris S.; Spry, Nigel A

    2003-03-31

    A previously developed method for achieving patient relocation in fractionated stereotactic radiotherapy (attachment of an infrared fiducial system to a bite tray) relies on the integrity of a bite tray system that incorporates moulding to the patient's upper dentition. Reproducible and accurate patient positioning requires stability of the bite tray and mould during the full treatment process, both during the time the bite tray is inserted in the patient's mouth, and between separate bite tray insertions. The optimum construction method for a stable reproducible tray has not been sufficiently investigated. We undertook a study to identify factors which might influence the integrity of the hard palate bite tray system. Reprosil Fast Set Putty was used to construct 3 impression conditions; teeth only; teeth and alveolar sulcus; and teeth, alveolar sulcus, and the hard palate. Reproducibility was assessed by volunteers inserting the impressions multiple times and recording the locations of 8 standard reference points. Our results showed the optimal impression technique (i.e., the one that led to the smallest ranges in positional and rotational errors) was that which incorporated the teeth, alveolar sulcus, and hard palate.

  3. Single molecule study of a processivity clamp sliding on DNA

    SciTech Connect

    Laurence, T A; Kwon, Y; Johnson, A; Hollars, C; O?Donnell, M; Camarero, J A; Barsky, D

    2007-07-05

    Using solution based single molecule spectroscopy, we study the motion of the polIII {beta}-subunit DNA sliding clamp ('{beta}-clamp') on DNA. Present in all cellular (and some viral) forms of life, DNA sliding clamps attach to polymerases and allow rapid, processive replication of DNA. In the absence of other proteins, the DNA sliding clamps are thought to 'freely slide' along the DNA; however, the abundance of positively charged residues along the inner surface may create favorable electrostatic contact with the highly negatively charged DNA. We have performed single-molecule measurements on a fluorescently labeled {beta}-clamp loaded onto freely diffusing plasmids annealed with fluorescently labeled primers of up to 90 bases. We find that the diffusion constant for 1D diffusion of the {beta}-clamp on DNA satisfies D {le} 10{sup -14} cm{sup 2}/s, much slower than the frictionless limit of D = 10{sup -10} cm{sup 2}/s. We find that the {beta} clamp remains at the 3-foot end in the presence of E. coli single-stranded binding protein (SSB), which would allow for a sliding clamp to wait for binding of the DNA polymerase. Replacement of SSB with Human RP-A eliminates this interaction; free movement of sliding clamp and poor binding of clamp loader to the junction allows sliding clamp to accumulate on DNA. This result implies that the clamp not only acts as a tether, but also a placeholder.

  4. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Carotid artery clamp. 882.5175 Section 882.5175...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5175 Carotid artery clamp. (a) Identification. A carotid artery clamp is a device that is surgically placed around a patient's carotid...

  5. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Carotid artery clamp. 882.5175 Section 882.5175...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5175 Carotid artery clamp. (a) Identification. A carotid artery clamp is a device that is surgically placed around a patient's carotid...

  6. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Carotid artery clamp. 882.5175 Section 882.5175...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5175 Carotid artery clamp. (a) Identification. A carotid artery clamp is a device that is surgically placed around a patient's carotid...

  7. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Carotid artery clamp. 882.5175 Section 882.5175...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5175 Carotid artery clamp. (a) Identification. A carotid artery clamp is a device that is surgically placed around a patient's carotid...

  8. 21 CFR 882.5175 - Carotid artery clamp.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Carotid artery clamp. 882.5175 Section 882.5175...) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Therapeutic Devices § 882.5175 Carotid artery clamp. (a) Identification. A carotid artery clamp is a device that is surgically placed around a patient's carotid...

  9. 21 CFR 882.4460 - Neurosurgical head holder (skull clamp).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Neurosurgical head holder (skull clamp). 882.4460... (CONTINUED) MEDICAL DEVICES NEUROLOGICAL DEVICES Neurological Surgical Devices § 882.4460 Neurosurgical head holder (skull clamp). (a) Identification. A neurosurgical head holder (skull clamp) is a device used...

  10. 30 CFR 18.40 - Cable clamps and grips.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... prevent strain on both ends of each cable or cord leading from a machine to a detached or separately... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Cable clamps and grips. 18.40 Section 18.40... Requirements § 18.40 Cable clamps and grips. Insulated clamps shall be provided for all portable...

  11. 33 CFR 183.560 - Hose clamps: Installation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Hose clamps: Installation. 183... Hose clamps: Installation. Each hose clamp on a hose from the fuel tank to the fuel inlet connection on the engine, a hose between the fuel pump and the carburetor, or a vent line must: (a) Be used...

  12. 33 CFR 183.560 - Hose clamps: Installation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Hose clamps: Installation. 183... Hose clamps: Installation. Each hose clamp on a hose from the fuel tank to the fuel inlet connection on the engine, a hose between the fuel pump and the carburetor, or a vent line must: (a) Be used...

  13. 33 CFR 183.560 - Hose clamps: Installation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Hose clamps: Installation. 183... Hose clamps: Installation. Each hose clamp on a hose from the fuel tank to the fuel inlet connection on the engine, a hose between the fuel pump and the carburetor, or a vent line must: (a) Be used...

  14. 33 CFR 183.560 - Hose clamps: Installation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Hose clamps: Installation. 183... Hose clamps: Installation. Each hose clamp on a hose from the fuel tank to the fuel inlet connection on the engine, a hose between the fuel pump and the carburetor, or a vent line must: (a) Be used...

  15. 33 CFR 183.560 - Hose clamps: Installation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Hose clamps: Installation. 183... Hose clamps: Installation. Each hose clamp on a hose from the fuel tank to the fuel inlet connection on the engine, a hose between the fuel pump and the carburetor, or a vent line must: (a) Be used...

  16. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays.

    PubMed

    Chen, Hu; Yang, Xu; Chen, Litong; Wang, Yong; Sun, Yuchun

    2016-01-14

    The objective was to establish and evaluate a method for manufacture of custom trays for edentulous jaws using computer aided design and fused deposition modeling (FDM) technologies. A digital method for design the custom trays for edentulous jaws was established. The tissue surface data of ten standard mandibular edentulous plaster models, which was used to design the digital custom tray in a reverse engineering software, were obtained using a 3D scanner. The designed tray was printed by a 3D FDM printing device. Another ten hand-made custom trays were produced as control. The 3-dimentional surface data of models and custom trays was scanned to evaluate the accuracy of reserved impression space, while the difference between digitally made trays and hand-made trays were analyzed. The digitally made custom trays achieved a good matching with the mandibular model, showing higher accuracy than the hand-made ones. There was no significant difference of the reserved space between different models and its matched digitally made trays. With 3D scanning, CAD and FDM technology, an efficient method of custom tray production was established, which achieved a high reproducibility and accuracy.

  17. Application of FDM three-dimensional printing technology in the digital manufacture of custom edentulous mandible trays

    PubMed Central

    Chen, Hu; Yang, Xu; Chen, Litong; Wang, Yong; Sun, Yuchun

    2016-01-01

    The objective was to establish and evaluate a method for manufacture of custom trays for edentulous jaws using computer aided design and fused deposition modeling (FDM) technologies. A digital method for design the custom trays for edentulous jaws was established. The tissue surface data of ten standard mandibular edentulous plaster models, which was used to design the digital custom tray in a reverse engineering software, were obtained using a 3D scanner. The designed tray was printed by a 3D FDM printing device. Another ten hand-made custom trays were produced as control. The 3-dimentional surface data of models and custom trays was scanned to evaluate the accuracy of reserved impression space, while the difference between digitally made trays and hand-made trays were analyzed. The digitally made custom trays achieved a good matching with the mandibular model, showing higher accuracy than the hand-made ones. There was no significant difference of the reserved space between different models and its matched digitally made trays. With 3D scanning, CAD and FDM technology, an efficient method of custom tray production was established, which achieved a high reproducibility and accuracy. PMID:26763620

  18. Dimensional accuracy of 2-stage putty-wash impressions: influence of impression trays and viscosity.

    PubMed

    Balkenhol, Markus; Ferger, Paul; Wöstmann, Bernd

    2007-01-01

    The aim of this in vitro study was to evaluate the influence of the impression tray and viscosity of the wash material on the dimensional accuracy of impressions taken using a 2-stage putty-wash technique. Identically shaped metal stock trays (MeTs) and disposable plastic stock trays (DiTs) were used for taking impressions (n = 10) of a mandibular cast (4 abutments) with 2 different impression materials. Dies were poured and the relative diameter deviation was calculated after measurement. Zero viscosity of the materials was determined. Dimensional accuracy was significantly affected when DiTs were used. Lower-viscosity wash materials led to more precise impressions.

  19. π-Clamp-mediated cysteine conjugation

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; van Voorhis, Troy; Pentelute, Bradley L.

    2016-02-01

    Site-selective functionalization of complex molecules is one of the most significant challenges in chemistry. Typically, protecting groups or catalysts must be used to enable the selective modification of one site among many that are similarly reactive, and general strategies that selectively tune the local chemical environment around a target site are rare. Here, we show a four-amino-acid sequence (Phe-Cys-Pro-Phe), which we call the ‘π-clamp’, that tunes the reactivity of its cysteine thiol for site-selective conjugation with perfluoroaromatic reagents. We use the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues. These examples include antibodies and cysteine-based enzymes that would be difficult to modify selectively using standard cysteine-based methods. Antibodies modified using the π-clamp retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach to mediate site-selective chemistry and provides new avenues to modify biomolecules for research and therapeutics.

  20. Carbon nanotube-clamped metal atomic chain

    PubMed Central

    Tang, Dai-Ming; Yin, Li-Chang; Li, Feng; Liu, Chang; Yu, Wan-Jing; Hou, Peng-Xiang; Wu, Bo; Lee, Young-Hee; Ma, Xiu-Liang; Cheng, Hui-Ming

    2010-01-01

    Metal atomic chain (MAC) is an ultimate one-dimensional structure with unique physical properties, such as quantized conductance, colossal magnetic anisotropy, and quantized magnetoresistance. Therefore, MACs show great potential as possible components of nanoscale electronic and spintronic devices. However, MACs are usually suspended between two macroscale metallic electrodes; hence obvious technical barriers exist in the interconnection and integration of MACs. Here we report a carbon nanotube (CNT)-clamped MAC, where CNTs play the roles of both nanoconnector and electrodes. This nanostructure is prepared by in situ machining a metal-filled CNT, including peeling off carbon shells by spatially and elementally selective electron beam irradiation and further elongating the exposed metal nanorod. The microstructure and formation process of this CNT-clamped MAC are explored by both transmission electron microscopy observations and theoretical simulations. First-principles calculations indicate that strong covalent bonds are formed between the CNT and MAC. The electrical transport property of the CNT-clamped MAC was experimentally measured, and quantized conductance was observed. PMID:20427743

  1. π-Clamp Mediated Cysteine Conjugation

    PubMed Central

    Zhang, Chi; Welborn, Matthew; Zhu, Tianyu; Yang, Nicole J.; Santos, Michael S.; Van Voorhis, Troy; Pentelute, Bradley L.

    2016-01-01

    Site-selective functionalization of complex molecules is a grand challenge in chemistry. Protecting groups or catalysts must be used to selectively modify one site among many that are similarly reactive. General strategies are rare such the local chemical environment around the target site is tuned for selective transformation. Here we show a four amino acid sequence (Phe-Cys-Pro-Phe), which we call the “π-clamp”, tunes the reactivity of its cysteine thiol for the site-selective conjugation with perfluoroaromatic reagents. We used the π-clamp to selectively modify one cysteine site in proteins containing multiple endogenous cysteine residues (e.g. antibodies and cysteine-based enzymes), which was impossible with prior cysteine modification methods. The modified π-clamp antibodies retained binding affinity to their targets, enabling the synthesis of site-specific antibody-drug conjugates (ADCs) for selective killing of HER2-positive breast cancer cells. The π-clamp is an unexpected approach for site-selective chemistry and provides opportunities to modify biomolecules for research and therapeutics. PMID:26791894

  2. Using double-poured alginate impressions to fabricate bleaching trays.

    PubMed

    Haywood, V B; Powe, A

    1998-01-01

    Esthetic and diagnostic treatment often requires two casts of one arch, one for baseline and one for alterations (diagnostic wax-up, bleaching tray, occlusal analysis). The purpose of this study was to compare the accuracy of stone casts generated from a second pour of a properly handled alginate impression with first-poured casts. A maxillary dentoform was indexed with six reference spaces (#8-15, 9-2, 2-15, and incisal-to-gingival of #3, 9, 14). Irreversible hydrocolloid (Jeltrate) impressions were made in perforated steel trays by a single investigator. Impression material was spatulated for 1 minute. The seated impression and dentoform were wrapped in a damp paper towel to simulate intraoral conditions, and allowed to set for 2 minutes. Upon separation, the impression was stored in a damp towel for 5 minutes. The impression was poured in cast stone (Microstone) according to the manufacturer's instructions. The stone-filled impression was immediately rewrapped in a damp paper towel and allowed to set for 45 minutes at room temperature. Upon removal of the stone, the impression was rinsed with cold water, shaken dry, and repoured in the same manner. Ten impressions were made: the first five impressions were poured to make casts for Group A, then repoured as described above for casts for Group B. The remaining five impressions were poured once to make casts for Group C. The six spaces of each cast were measured three times in random order using a dial caliper and the space average calculated for the cast. At each space, analysis of variance showed no significant difference among Groups A, B, or C (P < 0.05). When alginate impressions that have been poured with cast stone are kept moist during stone setting and repoured within 45 minutes, two casts can be generated from one impression with the same degree of accuracy as two casts made from taking two separate impressions, providing the alginate does not tear during first cast removal. PMID:9656923

  3. Contaminant Interferences with SIMS Analyses of Microparticle Impactor Residues on LDEF Surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Batchelor, D.; Griffis, D. P.; Hunter, J. L.; Misra, V.; Ricks, D. A.; Wortman, J. J.

    1992-01-01

    Elemental analyses of impactor residues on high purity surface exposed to the low earth orbit (LEO) environment for 5.8 years on Long Duration Exposure Facility (LDEF) has revealed several probable sources for microparticles at this altitude, including natural micrometeorites and manmade debris ranging from paint pigments to bits of stainless steel. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences included pre-, post-, and in-flight deposited particulate surface contaminants, as well as indigenous heterogeneous material contaminants. Non-flight contaminants traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF and proximity to active electrical fields. In-flight deposited (low velocity) contaminants included urine droplets and bits of metal film from eroded thermal blankets.

  4. Preliminary analysis of LDEF instrument A0187-1: Chemistry of Micrometeoroids Experiment

    NASA Technical Reports Server (NTRS)

    Hoerz, Friedrich; Bernhard, Ronald P.; Warren, Jack; See, Thomas H.; Brownlee, Donald E.; Laurance, Mark R.; Messenger, Scott; Peterson, Robert B.

    1992-01-01

    The Chemistry of Micrometeoroids Experiment (CME) exposed approximately 0.8 sq. m of gold on the Long Duration Exposure Facility's (LDEF's) trailing edge (location A03) and approximately 1.1 sq. m of aluminum in the forward-facing A11 location. The most significant results to date relate to the discovery of unmelted pyroxene and olivine fragments associated with natural cosmic dust impacts. The latter are sufficiently large for detailed phase studies, and they serve to demonstrate that recovery of unmelted dust fragments is a realistic prospect for further dust experiments that will employ more advanced collector media. We also discovered that man-made debris impacts occur on the LDEF's trailing edge with substantially higher frequency than expected, suggesting that orbital debris in highly elliptical orbits may have been somewhat underestimated.

  5. LDEF polymeric materials: 10 months versus 5.8 years of exposure

    NASA Technical Reports Server (NTRS)

    Young, Philip R.; Slemp, Wayne S.; Chang, Alice C.

    1993-01-01

    The chemical characterization of several polymeric materials which received 10 months of exposure and 5.8 years of exposure on a Row 9 Long Duration Exposure Facility (LDEF) experiment (A0134) is reported. Specimens include fluorinated ethylene propylene (FEP) teflon film, polysulfone film, and graphite fiber reinforced epoxy amd polysulfone matrix composites. The responses of these materials to the two LEO exposures are compared. The results of infrared, thermal, x-ray photoelectron, and scanning electron microscope analyses are reported. Solution property measurements of various molecular weight parameters are presented for the thermoplastic polysulfone materials. Molecular level effects attributable to exposure that were present in 10-month exposed specimens were not found in 5.8-year exposed specimens. This result suggests that increased atomic oxygen fluence toward the end of the LDEF mission may have eroded away selected environmentally induced changes in surface chemistry for 5.8-year exposure specimens.

  6. Be-10 in terrestrial bauxite and industrial aluminum: An LDEF fallout

    NASA Technical Reports Server (NTRS)

    Gregory, J. C.; Albrecht, A.; Herzog, G.; Klein, J.; Middleton, R.; Harmon, B. A.; Parnell, T. A.

    1995-01-01

    Work has continued on the search for Be-10 on metals other than aluminum flown on LDEF. Much time-consuming extractive chemistry has been performed at Rutgers University on turnings obtained from the ends of two stainless steel trunnions from LDEF and the prepared samples will be run on the University of Pennsylvania accelerator mass spectrometer. We have continued to investigate our discovery of naturally-occurring Be-10 contamination in bauxite and industrial aluminums from different sources. Measurements of Be-10 in ores from three different sites, and from four different samples of commercial aluminum have been made. Our investigators indicate that the contamination in commercial aluminum metal originates in its principal ore, bauxite. The levels in some bauxite samples were much greater than the maximum possible for in situ production by cosmic ray secondaries. Absorption of atmospheric Be-10 by surface ores exposed to rainfall is a reasonable explanation.

  7. Results from the LDEF/A0076 cascaded variable conductance heatpipe experiment

    NASA Technical Reports Server (NTRS)

    Grote, Michael G.

    1992-01-01

    The A0076 Variable Conductance Heat Pipe Experiment (CVCHPE) on the Long Duration Exposure Facility (LDEF) demonstrated temperature control better than +/- 0.3 C during fifty days on on-orbit data collection in a widely varying external environment. The experiment used two series connected, dry reservoir variable conductance heat pipes which require no electrical power for operation. The heat pipes used a central artery design with ammonia working fluid and nitrogen control gas. The LDEF was in orbit for almost six years rather than the planned one year mission. Although no additional data were taken during this extended period, post-test data indicated that the set point drifted upward less than 1 C per year. There were significant changes to the appearance of all external thermal control surfaces primarily due to atomic oxygen degradation, and one small anomaly in the electronics. These changes, though, had little effect on the CVCHPE performance.

  8. Atomic oxygen and ultraviolet radiation mission total exposures for LDEF experiments

    NASA Technical Reports Server (NTRS)

    Bourassa, R. J.; Gillis, J. R.; Rousslang, Ken W.

    1992-01-01

    Atomic oxygen and solar radiation exposures were determined analytically for rows, longerons, and end bays of the LDEF. Calculated atomic oxygen exposures are based on an analytical model that accounts for the effects of thermal molecular velocity, atmospheric temperature, number density, spacecraft velocity, incidence angle, and atmospheric rotation. Results also incorporate variations in solar activity, geomagnetic index, and orbital parameters occurring over the six year flight of the spacecraft. Solar radiation exposure calculations are based on the form factors reported in the Solar Illumination Data Package prepared by NASA Langley. The earth albedo value for these calculations was based on the Nimbus 7 earth radiation data set. Summary charts for both atomic oxygen and solar radiation exposure are presented to facilitate the use of the data generated by LDEF experimenters.

  9. LDEF Experiment P0006 Linear Energy Transfer Spectrum Measurement (LETSME) quick look report

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A preliminary analysis of the various passive radiation detector materials included in the P0006 LETSME experiment flown on LDEF (Long Duration Exposure Facility) is presented. It consists of four tasks: (1) readout and analysis of thermoluminescent detectors (TLD); (2) readout and analysis of fission foil/mica detectors; (3) readout and analysis of (6)LiF/CR-39 detectors; and (4) preliminary processing and readout of CR-39 and polycarbonate plastic nuclear track detectors (PNTD).

  10. LDEF's contribution to the selection of thermal control coatings for the Space Station

    NASA Technical Reports Server (NTRS)

    Babel, Henry W.

    1995-01-01

    The design of the Space Station presented new challenges in the selection and qualification of thermal control materials that would survive in low Earth orbit for a duration of up to 30 years. Prior to LDEF, flight data were obtained from Orbiting Solar Observatory (OSO) satellites, a number of Orbiter flights, and limited ground tests. The excellent data obtained from the OSO satellites were based on calorimetry and temperature measurements which were transmitted to Earth; these satellites were not recovered. For some of these flight experiments it was difficult to distinguish between changes due to contamination, atomic oxygen (AO), ultraviolet radiation (UV), particle radiation and the synergistic effects between them. The data from Shuttle flights were primarily focused on developing a better understanding of atomic oxygen (AO) effects. Although UV and AO were present, the relatively short duration of the Orbiter flights, about one week, was viewed as too short to show the effects from UV or possible synergistic interactions with AO and contamination. At the beginning of the program in 1989 there was no established design data base for AO resistant thermal control coatings for the Space Station. Then came the Long Duration Exposure Facility (LDEF). It provided the first long life data for materials exposed and recovered from space with a characterized environment. Post flight analysis proved data on the effects of contamination on optical properties in the ram (velocity) and wake directions and the erosion of Teflon and multilayer insulation (MLI) covers. The results from LDEF confirmed and, in some cases, modified the approach used for the Space Station, as well as helped to focus our development activities. These development activities resulted in a number of new technical solutions which are applicable to many spacecraft surfaces and missions. LDEF also showed the detrimental effects that could occur from silicone contamination, an issue that has not been

  11. Secondary ion mass spectrometry (SIMS) analysis of hypervelocity microparticle impact sites on LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Simon, C. G.; Buonaquisti, A. J.; Batchelor, D. A.; Hunter, J. L.; Griffis, D. P.; Misra, V.; Ricks, D. R.; Wortman, J. J.; Brownlee, D. E.; Best, S. R.

    1995-01-01

    Two dimensional elemental ion maps have been recorded for hundreds of microparticle impact sites and contamination features on LDEF surfaces. Since the majority of the analyzed surfaces were metal-oxide-silicon (MOS) impact detectors from the Interplanetary Dust Experiment, a series of 'standard' and 'blank' analyses of these surfaces are included. Hypervelocity impacts of forsterite olivine microparticles on activated flight sensors served as standards while stylus and pulsed laser simulated 'impacts' served as analytical blanks. Results showed that despite serious contamination issues, impactor residues can be identified in greater than 1/3 of the impact sites. While aluminum oxide particles could not be detected on aluminum surfaces, they were detected on germanium surfaces from row 12. Remnants of manmade debris impactors consisting of paint chips and bits of metal were identified on surfaces from LDEF Rows 3 (west or trailing side), 6 (south), 9 (ram or leading side), 12 (north) and the space end. Higher than expected ratios of manmade microparticle impacts to total microparticle impacts were found on the space end and the trailing side. These results were consistent with time-tagged and time-segregated microparticle impact data from the IDE and other LDEF experiments. A myriad of contamination interferences were identified and their effects on impactor debris identification mitigated during the course of this study. These interferences include pre-, post and inflight deposited surface contaminants as well as indigenous heterogeneous material contaminants. Non-flight contaminations traced to human origins, including spittle and skin oils, contributed significant levels of alkali-rich carbonaceous interferences. A ubiquitous layer of in-flight deposited silicaceous contamination varied in thickness with location on LDEF, even on a micro scale. In-flight deposited (low velocity) contaminants include urine droplets and bits of metal film from eroded thermal

  12. Attitude stability of LDEF: Refinement of results from the silver pinhole camera

    NASA Technical Reports Server (NTRS)

    Peters, P. N.; Gregory, J. C.

    1992-01-01

    A measurement was previously described of the angular offset and attitude stability of the LDEF spacecraft using a simple pinhole camera device in the UAH experiment A0114. This device uses a silver surface to record the impact zone of atmospheric atomic oxygen passing through a small pinhole on the front surface of the satellite. The shape and size of this zone are well defined if the satellite velocity and gas temperature are known. The circular symmetry of the zone would be distorted by oscillation of the LDEF about its stable attitude, or by the effect of the co-rotation of the Earth's atmosphere for cases of satellites in nonequatorial orbits. The observed ellipticity of 1.05 with the major axis in the yaw direction is equivalent to an oscillation of + or - 0.2 deg about the stable attitude. The uncertainty in that measurement was estimated at about 0.1 deg. A refined analysis based on summing distributions of flux versus incidence angle for a large number of orbital positions, and including a co-rotating atmosphere, indicates that the combined distributions produce a result consistent with the measured exposed spot. It is suggested that, within the precision of the measurements, no actual oscillation of the LDEF is required to produce the results. Thus, the LDEF may have maintained a stable attitude to better than 0.1 deg, even under conditions of maximum aerodynamic perturbation when the silver oxygen record was made. This error is some two orders of magnitude lower than the predicted uncertainty in yaw oscillation and may indicate that the predict methodologies are too conservative.

  13. Derivation of particulate directional information from analysis of elliptical impact craters on LDEF

    NASA Technical Reports Server (NTRS)

    Newman, P. J.; Mackay, N.; Deshpande, S. P.; Green, S. F.; Mcdonnell, J. A. M.

    1993-01-01

    The Long Duration Exposure Facility provided a gravity gradient stabilized platform which allowed limited directional information to be derived from particle impact experiments. The morphology of impact craters on semi-infinite materials contains information which may be used to determine the direction of impact much more accurately. We demonstrate the applicability of this technique and present preliminary results of measurements from LDEF and modelling of interplanetary dust and space debris.

  14. Space debris: Orbital microparticulates impacting LDEF experiments favour a natural extraterrestrial origin

    NASA Technical Reports Server (NTRS)

    Mcdonnell, Tony

    1991-01-01

    The results of work carried out at the Unit for Space Sciences at the University of Kent at Canterbury, United Kingdom, on the micrometeoroid and space debris environment of near Earth space are described. The primary data for the research program is supplied by an examination of several types of exposed surface from the NASA Long Duration Exposure Facility (LDEF), including an experiment dedicated to the detection of micrometeoroids and space debris provided by the University.

  15. Dimensional stability of elastomeric impression materials in custom-made and stock trays.

    PubMed

    Valderhaug, J; Fløystrand, F

    1984-10-01

    Elastomeric impression materials for fixed prosthodontics are considered most stable when they have an even thickness of 2 to 4 mm. To obtain this, a custom-made impression tray is recommended. The purpose of the present study was to compare the stability of impressions made in custom trays and trays made of chromium-plated brass. The impression materials chosen were polyether and silicone. Two master models of the upper jaw were made of metal. The canines and first molars represented abutment teeth with flat occlusal surfaces. An engraved cross on each surface made it possible to measure in a microscope the distances between the abutment teeth on the models and in the impressions. The accuracy of the method was within +/- 8 micron. Twelve standardized impressions were made with each impression material in the two types of trays. The distances between the abutment teeth were measured immediately on removal of the impression, and after 1 and 24 hours. Although ample amount of impression material (2 to 9 mm) was allowed, the linear dimensional stability of the impressions made in stock trays was not inferior to the stability of impressions made in custom-made trays.

  16. Heat and Mass Transfer Measurements for Tray-Fermented Fungal Products

    NASA Astrophysics Data System (ADS)

    Jou, R.-Y.; Lo, C.-T.

    2011-01-01

    In this study, heat and mass transfer in static tray fermentation, which is widely used in solid-state fermentation (SSF) to produce fungal products, such as enzymes or koji, is investigated. Specifically, kinetic models of transport phenomena in the whole-tray chamber are emphasized. The effects of temperature, moisture, and humidity on microbial growth in large-scale static tray fermentation are essential to scale-up SSF and achieve uniform fermentation. In addition, heat and mass transfer of static tray fermentation of Trichoderma fungi with two tray setups—traditional linen coverings and stacks in a temperature-humidity chamber is examined. In both these setups, the following factors of fermentation were measured: air velocity, air temperature, illumination, pH, carbon dioxide (CO2) concentration, and substrate temperature, and the effects of bed height, moisture of substrate, and relative humidity of air are studied. A thin (1 cm) bed at 28 °C and 95 % relative humidity is found to be optimum. Furthermore, mixing was essential for achieving uniform fermentation of Trichoderma fungi. This study has important applications in large-scale static tray fermentation of fungi.

  17. Report on full-scale horizontal cable tray fire tests, FY 1988

    SciTech Connect

    Riches, W.M.

    1988-09-01

    In recent years, there has been much discussion throughout industry and various governmental and fire protection agencies relative to the flammability and fire propagation characteristics of electrical cables in open cable trays. It has been acknowledged that under actual fire conditions, in the presence of other combustibles, electrical cable insulation can contribute to combustible fire loading and toxicity of smoke generation. Considerable research has been conducted on vertical cable tray fire propagation, mostly under small scale laboratory conditions. In July 1987, the Fermi National Accelerator Laboratory initiated a program of full scale, horizontal cable tray fire tests, in the absence of other building combustible loading, to determine the flammability and rate of horizontal fire propagation in cable tray configurations and cable mixes typical of those existing in underground tunnel enclosures and support buildings at the Laboratory. The series of tests addressed the effects of ventilation rates and cable tray fill, fire fighting techniques, and effectiveness and value of automatic sprinklers, smoke detection and cable coating fire barriers in detecting, controlling or extinguishing a cable tray fire. This report includes a description of the series of fire tests completed in June 1988, as well as conclusions reached from the test results.

  18. M and D SIG progress report: Laboratory simulations of LDEF impact features

    NASA Technical Reports Server (NTRS)

    Horz, Friedrich; Bernhard, R. P.; See, T. H.; Atkinson, D.; Allbrooks, M.

    1992-01-01

    Laboratory impact experiments are needed to understand the relationship between a measured penetration hole diameter and associated projectile dimension in the thermal blankets of experiment A0178, which occupied some 16 sq. m. These blankets are composed of 125 micron thick Teflon that has an Ag/enconel second mirror surface, backed by organic binder and Chemglaze paint for a total thickness of some 170 microns. While dedicated experiments are required to understand the penetration behavior of this compound target in detail, we report here on impact simulations sponsored by other projects into pure Teflon and aluminum targets. These experiments will allow first order interpretations of impact features on the Long Duration Exposure Facility (LDEF), and they will serve as guides for dedicated experiments that employ the real LDEF blankets, both exposed and unexposed, for a refined understanding of the LDEF's collisional environment. We employed a light gas gun to launch soda-lime glass spheres from 50 to 3200 microns in diameter that impacted targets of variable thickness. Penetration measurements are given.

  19. Changes in chemical and optical properties of thin film metal mirrors on LDEF

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Zwiener, James M.; Gregory, John C.; Raikar, Ganesh N.; Christl, Ligia C.; Wilkes, Donald R.

    1995-01-01

    Thin films of the metals Cu, Ni, Pt, Au, Sn, Mo, and W deposited on fused silica flats were exposed at ambient temperature on the leading and trailing faces of the LDEF. Reflectances of these films were measured from 250 to 2500 nm and compared with controls. The exposed films were subjected to the LDEF external environment including atomic oxygen, molecular contamination, and solar ultraviolet. Major changes in optical and infrared reflectance were seen for Cu, Mo, Ni, and W films on the leading face of LDEF and are attributed to partial conversion of metal to metal oxide. Smaller changes in optical properties are seen on all films and are probably caused by thin contaminant films deposited on top of the metal. The optical measurements are correlated with film thickness measurements, x-ray photoelectron spectroscopy, optical calculations, and, in the case of Cu, with x-ray diffraction measurements. In a few cases, comparisons with results from a similar UAH experiment on STS-8 have been drawn.

  20. Pinhole cameras as sensors for atomic oxygen in orbit; application to attitude determination of the LDEF

    NASA Technical Reports Server (NTRS)

    Peters, Palmer N.; Gregory, John C.

    1991-01-01

    Images produced by pinhole cameras using film sensitive to atomic oxygen provide information on the ratio of spacecraft orbital velocity to the most probable thermal speed of oxygen atoms, provided the spacecraft orientation is maintained stable relative to the orbital direction. Alternatively, as it is described, information on the spacecraft attitude relative to the orbital velocity can be obtained, provided that corrections are properly made for thermal spreading and a co-rotating atmosphere. The LDEF orientation, uncorrected for a co-rotating atmosphere, was determined to be yawed 8.0 minus/plus 0.4 deg from its nominal attitude, with an estimated minus/plus 0.35 deg oscillation in yaw. The integrated effect of inclined orbit and co-rotating atmosphere produces an apparent oscillation in the observed yaw direction, suggesting that the LDEF attitude measurement will indicate even better stability when corrected for a co-rotating atmosphere. The measured thermal spreading is consistent with major exposure occurring during high solar activity, which occurred late during the LDEF mission.