Science.gov

Sample records for ldl-scavenger receptor sites

  1. Nicotine recruits glutamate receptors to postsynaptic sites.

    PubMed

    Duan, Jing-Jing; Lozada, Adrian F; Gou, Chen-Yu; Xu, Jing; Chen, Yuan; Berg, Darwin K

    2015-09-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input that the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors.

  2. Nicotine Recruits Glutamate Receptors to Postsynaptic Sites

    PubMed Central

    Duan, Jing-jing; Lozada, Adrian F.; Gou, Chen-yu; Xu, Jing; Chen, Yuan; Berg, Darwin K.

    2015-01-01

    Cholinergic neurons project throughout the nervous system and activate nicotinic receptors to modulate synaptic function in ways that shape higher order brain function. The acute effects of nicotinic signaling on long-term synaptic plasticity have been well-characterized. Less well understood is how chronic exposure to low levels of nicotine, such as those encountered by habitual smokers, can alter neural connections to promote addiction and other lasting behavioral effects. We show here that chronic exposure of hippocampal neurons in culture to low levels of nicotine recruits AMPA and NMDA receptors to the cell surface and sequesters them at postsynaptic sites. The receptors include GluA2-containing AMPA receptors, which are responsible for most of the excitatory postsynaptic current mediated by AMPA receptors on the neurons, and include NMDA receptors containing GluN1 and GluN2B subunits. Moreover, we find that the nicotine treatment also increases expression of the presynaptic component synapsin 1 and arranges it in puncta juxtaposed to the additional AMPA and NMDA receptor puncta, suggestive of increases in synaptic contacts. Consistent with increased synaptic input, we find that the nicotine treatment leads to an increase in the excitatory postsynaptic currents mediated by AMPA and NMDA receptors. Further, the increases skew the ratio of excitatory-to-inhibitory input the cell receives, and this holds both for pyramidal neurons and inhibitory neurons in the hippocampal CA1 region. The GluN2B-containing NMDA receptor redistribution at synapses is associated with a significant increase in GluN2B phosphorylation at Tyr1472, a site known to prevent GluN2B endocytosis. These results suggest that chronic exposure to low levels of nicotine not only alters functional connections but also is likely to change excitability levels across networks. Further, it may increase the propensity for synaptic plasticity, given the increase in synaptic NMDA receptors. PMID:26365992

  3. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  4. [Sites of synthesis of acetylcholine receptors in denervated muscles].

    PubMed

    Giacobini Robecchi, M G; Garelli, M; Filogamo, G

    1980-09-01

    Muscle fibres binding with 125I alpha-bungarotoxine from Bungarus Multicinctus, after treatment with saponine, shows (in electron microscope autoradiography) intracellular binding sites identifying sites of acetylcholine receptor synthesis. In innervated muscle, the acetylcholine receptor is located only at the neuromuscular junction. In denervated muscle the receptor is distributed along the whole sarcolemma; in this situation the acetylcholine receptor is synthesized "ex novo" in the membrane system over the whole length of the muscle fibre.

  5. [Structural regularities in activated cleavage sites of thrombin receptors].

    PubMed

    Mikhaĭlik, I V; Verevka, S V

    1999-01-01

    Comparison of thrombin receptors activation splitting sites sequences testifies to their similarity both in activation splitting sites of protein precursors and protein proteinase inhibitors reactive sites. In all these sites corresponded to effectory sites P2'-positions are placed by hydrophobic amino-acids only. The regularity defined conforms with previous thesis about the role of effectory S2'-site in regulation of the processes mediated by serine proteinases.

  6. Melanocortin MC₄ receptor expression sites and local function.

    PubMed

    Siljee-Wong, Jacqueline E

    2011-06-11

    The melanocortin MC(4) receptor plays an important role in energy metabolism, but also affects blood pressure, heart rate and erectile function. Localization of the receptors that fulfill these distinct roles is only partially known. Mapping of the melanocortin MC(4) receptor has been stymied by the absence of a functional antibody. Several groups have examined mRNA expression of the melanocortin MC(4) receptor in the rodent brain and transgenic approaches have also been utilized to visualize melanocortin MC(4) receptor expression sites within the brain. Ligand expression and binding studies have provided additional information on the areas of the brain where this elusive receptor is functionally expressed. Finally, microinjection of melanocortin MC(4) receptor ligands in specific nuclei has further served to elucidate the function of melanocortin MC(4) receptors in these nuclei. These combined approaches have helped link the anatomy and function of this receptor, such as the role of paraventricular hypothalamic nucleus melanocortin MC(4) receptor in the regulation of food intake. Intriguingly, however, numerous expression-sites have been identified that have not been linked to a specific receptor function such as those along the optic tract and olfactory tubercle. Further research is needed to clarify the function of the melanocortin MC(4) receptor at these sites.

  7. Anesthetics Target Interfacial Transmembrane Sites in Nicotinic Acetylcholine Receptors

    PubMed Central

    Forman, Stuart A.; Chiara, David C.; Miller, Keith W.

    2014-01-01

    General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface. PMID:25316107

  8. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation

    PubMed Central

    Liebick, Marcel; Schläger, Christian; Oppermann, Martin

    2016-01-01

    Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general. PMID:27310579

  9. Whole-genome cartography of estrogen receptor alpha binding sites.

    PubMed

    Lin, Chin-Yo; Vega, Vinsensius B; Thomsen, Jane S; Zhang, Tao; Kong, Say Li; Xie, Min; Chiu, Kuo Ping; Lipovich, Leonard; Barnett, Daniel H; Stossi, Fabio; Yeo, Ailing; George, Joshy; Kuznetsov, Vladimir A; Lee, Yew Kok; Charn, Tze Howe; Palanisamy, Nallasivam; Miller, Lance D; Cheung, Edwin; Katzenellenbogen, Benita S; Ruan, Yijun; Bourque, Guillaume; Wei, Chia-Lin; Liu, Edison T

    2007-06-01

    Using a chromatin immunoprecipitation-paired end diTag cloning and sequencing strategy, we mapped estrogen receptor alpha (ERalpha) binding sites in MCF-7 breast cancer cells. We identified 1,234 high confidence binding clusters of which 94% are projected to be bona fide ERalpha binding regions. Only 5% of the mapped estrogen receptor binding sites are located within 5 kb upstream of the transcriptional start sites of adjacent genes, regions containing the proximal promoters, whereas vast majority of the sites are mapped to intronic or distal locations (>5 kb from 5' and 3' ends of adjacent transcript), suggesting transcriptional regulatory mechanisms over significant physical distances. Of all the identified sites, 71% harbored putative full estrogen response elements (EREs), 25% bore ERE half sites, and only 4% had no recognizable ERE sequences. Genes in the vicinity of ERalpha binding sites were enriched for regulation by estradiol in MCF-7 cells, and their expression profiles in patient samples segregate ERalpha-positive from ERalpha-negative breast tumors. The expression dynamics of the genes adjacent to ERalpha binding sites suggest a direct induction of gene expression through binding to ERE-like sequences, whereas transcriptional repression by ERalpha appears to be through indirect mechanisms. Our analysis also indicates a number of candidate transcription factor binding sites adjacent to occupied EREs at frequencies much greater than by chance, including the previously reported FOXA1 sites, and demonstrate the potential involvement of one such putative adjacent factor, Sp1, in the global regulation of ERalpha target genes. Unexpectedly, we found that only 22%-24% of the bona fide human ERalpha binding sites were overlapping conserved regions in whole genome vertebrate alignments, which suggest limited conservation of functional binding sites. Taken together, this genome-scale analysis suggests complex but definable rules governing ERalpha binding and gene

  10. Imidazoline binding sites and receptors in cardiovascular tissue.

    PubMed

    Molderings, G J; Göthert, M

    1999-01-01

    1. Imidazoline binding sites and receptors and their endogenous ligands have been identified in cardiovascular tissue of various species including human beings. 2. I2- (but only exceptionally I1-)imidazoline binding sites have been shown to exist on cardiac myocytes and vascular smooth muscle cells; at present, their functional role is unknown. 3. The sympathetic nerves supplying the cardiovascular system are endowed with presynaptic inhibitory imidazoline receptors that may become of therapeutic relevance as targets of drugs. 4. ATP-sensitive K+ channels present in heart and blood vessels can be blocked by several imidazolines and guanidines; hence, those drugs can interfere with the cardioprotective effects resulting from K(ATP) channel activation by a decrease in the endogenous ligand ATP or by drugs. 5. Imidazoline derivatives exhibit antiarrhythmic properties that are due to a reduction of sympathetic tone by central and peripheral mechanisms and to blockade of postsynaptic alpha2-adrenoceptors in the heart and coronary arteries. 6. Agmatine and clonidine-displacing substance, which are endogenous ligands at imidazoline and alpha2-receptors, are present in the blood serum and appear to participate in vascular smooth muscle proliferation and blood pressure regulation.

  11. Viral receptor-binding site antibodies with diverse germline origins

    PubMed Central

    Schmidt, Aaron G.; Therkelsen, Matthew D.; Stewart, Shaun; Kepler, Thomas B.; Liao, Hua-Xin; Moody, M. Anthony; Haynes, Barton F.; Harrison, Stephen C.

    2015-01-01

    Vaccines for rapidly evolving pathogens will confer lasting immunity if they elicit antibodies recognizing conserved epitopes, such as a receptor-binding site (RBS). From characteristics of an influenza-virus RBS-directed antibody, we devised a signature motif to search for similar antibodies. We identified, from three vaccinees, over 100 candidates encoded by eleven different VH genes. Crystal structures show that antibodies in this class engage the hemagglutinin RBS and mimic binding of the receptor, sialic acid, by supplying a critical dipeptide on their projecting, heavy-chain third complementarity determining region. They share contacts with conserved, receptor-binding residues but contact different residues on the RBS periphery, limiting the likelihood of viral escape when several such antibodies are present. These data show that related modes of RBS recognition can arise from different germline origins and mature through diverse affinity maturation pathways. Immunogens focused on an RBS-directed response will thus have a broad range of B-cell targets. PMID:25959776

  12. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  13. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site

    PubMed Central

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S.; Wang, Junzhi; Fry, Elizabeth E.; Stuart, David I.; Rao, Zihe

    2017-01-01

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention. PMID:28074040

  14. Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site.

    PubMed

    Wang, Xiangxi; Zhu, Ling; Dang, Minghao; Hu, Zhongyu; Gao, Qiang; Yuan, Shuai; Sun, Yao; Zhang, Bo; Ren, Jingshan; Kotecha, Abhay; Walter, Thomas S; Wang, Junzhi; Fry, Elizabeth E; Stuart, David I; Rao, Zihe

    2017-01-24

    Hepatitis A virus (HAV) infects ∼1.4 million people annually and, although there is a vaccine, there are no licensed therapeutic drugs. HAV is unusually stable (making disinfection problematic) and little is known of how it enters cells and releases its RNA. Here we report a potent HAV-specific monoclonal antibody, R10, which neutralizes HAV infection by blocking attachment to the host cell. High-resolution cryo-EM structures of HAV full and empty particles and of the complex of HAV with R10 Fab reveal the atomic details of antibody binding and point to a receptor recognition site at the pentamer interface. These results, together with our observation that the R10 Fab destabilizes the capsid, suggest the use of a receptor mimic mechanism to neutralize virus infection, providing new opportunities for therapeutic intervention.

  15. Are high-affinity progesterone binding site(s) from porcine liver microsomes members of the sigma receptor family?

    PubMed

    Meyer, C; Schmieding, K; Falkenstein, E; Wehling, M

    1998-04-24

    Membrane progesterone binding sites have been purified recently from pig liver. Since progesterone is considered as an endogenous sigma (sigma) receptor ligand, these sites were characterized pharmacologically by ligands selective for sigma receptor and dopamine receptor binding sites, and by other drugs from distinct pharmacological classes. Binding studies using the radioligand [3H]progesterone were done in crude membrane preparations and solubilized fractions to determine half-maximal inhibitory concentration (IC50) values, from which inhibitory constants (Ki values) were calculated. Radioligand binding was inhibited by the sigma receptor ligands haloperidol, carbetapentane citrate, 1,3-Di(2-tolyl)guanidine (DTG), R(-)-N-(3-phenyl-1-propyl)-1-phenyl-2 aminopropane HCl (R(-)-PPAAP HCl), or sigma receptor antagonists like (+)-3-(3-hydroxyphenyl)-N-propylpiperidine HCl (R(+)-PPP HCl) and cis-9-[3-(3,5-dimethyl-1-piperazinyl)propyl]-9H-carbazole dihydrochloride (rimcazole 2HCl). The hierarchy of inhibitory action was not fully compatible with either sigma receptor class I (moderate affinity of pentazocine, diphenylhydantoin (phenytoin) insensitivity) or II sites (high affinity of carbetapentane). The data thus suggest that progesterone binding sites in porcine liver membranes are related to the sigma receptor binding site superfamily, but may represent a particular species with progesterone specificity.

  16. Number and locations of agonist binding sites required to activate homomeric Cys-loop receptors.

    PubMed

    Rayes, Diego; De Rosa, María José; Sine, Steven M; Bouzat, Cecilia

    2009-05-06

    Homo-pentameric Cys-loop receptors contain five identical agonist binding sites, each formed at a subunit interface. To determine the number and locations of binding sites required to generate a stable active state, we constructed a receptor subunit with a mutation that disables the agonist binding site and a reporter mutation that alters unitary conductance and coexpressed mutant and nonmutant subunits. Although receptors with a range of different subunit compositions are produced, patch-clamp recordings reveal that the amplitude of each single-channel opening event reports the number and, for certain subunit combinations, the locations of subunits with intact binding sites. We find that receptors with three binding sites at nonconsecutive subunit interfaces exhibit maximal mean channel open time, receptors with binding sites at three consecutive or two nonconsecutive interfaces exhibit intermediate open time, and receptors with binding sites at two consecutive or one interface exhibit brief open time. Macroscopic recordings after rapid application of agonist reveal that channel activation slows and the extent of desensitization decreases as the number of binding sites per receptor decreases. The overall results provide a framework for defining mechanisms of activation and drug modulation for homo-pentameric Cys-loop receptors.

  17. Prenatal exposure to methylmercury alters development of adrenergic receptor binding sites in peripheral sympathetic target tissues

    SciTech Connect

    Slotkin, T.A.; Orband, L.; Cowdery, T.; Kavlock, R.J.; Bartolome, J.

    1987-01-01

    In order to assess the impact of prenatal exposure to methylmercury on sympathetic neurotransmission, effects on development of adrenergic receptor binding sites in peripheral tissues was evaluated. In the liver, methylmercury produced a dose-dependent increase in alpha/sub 1/, alpha/sub 2/, and beta-receptor binding of radioliganda throughout the first 5 weeks of postnatal life. Similarly, renal alpha-receptor subtypes showed increased binding capabilities, but binding to alpha-receptor sites was reduced. At least some of the changes in receptors appear to be of functional significance, as physiological reactivity to adrenergic stimulation is altered in the same directions in these two tissues. The actions of methylmercury displayed tissue specificity in that the same receptor populations were largely unaffected in other tissues (lung, heart). These results suggest that methylmercury exposure in utero alters adrenergic responses through targeted effects on postsynaptic receptor populations in specific tissues.

  18. Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s)

    PubMed Central

    2015-01-01

    Undesirable side effects associated with orthosteric agonists/antagonists of cannabinoid 1 receptor (CB1R), a tractable target for treating several pathologies affecting humans, have greatly limited their translational potential. Recent discovery of CB1R negative allosteric modulators (NAMs) has renewed interest in CB1R by offering a potentially safer therapeutic avenue. To elucidate the CB1R allosteric binding motif and thereby facilitate rational drug discovery, we report the synthesis and biochemical characterization of first covalent ligands designed to bind irreversibly to the CB1R allosteric site. Either an electrophilic or a photoactivatable group was introduced at key positions of two classical CB1R NAMs: Org27569 (1) and PSNCBAM-1 (2). Among these, 20 (GAT100) emerged as the most potent NAM in functional assays, did not exhibit inverse agonism, and behaved as a robust positive allosteric modulator of binding of orthosteric agonist CP55,940. This novel covalent probe can serve as a useful tool for characterizing CB1R allosteric ligand-binding motifs. PMID:26529344

  19. Purification of high affinity benzodiazepine receptor binding site fragments from rat brain

    SciTech Connect

    Klotz, K.L.

    1984-01-01

    In central nervous system benzodiazepine recognition sites occur on neuronal cell surfaces as one member of a multireceptor complex, including recognition sites for benzodiazepines, gamma aminobutyric acid (GABA), barbiturates and a chloride ionophore. During photoaffinity labelling, the benzodiazepine agonist, /sup 3/H-flunitrazepam, is irreversibly bound to central benzodiazepine high affinity recognition sites in the presence of ultraviolet light. In these studies a /sup 3/H-flunitrazepam radiolabel was used to track the isolation and purification of high affinity agonist binding site fragments from membrane-bound benzodiazepine receptor in rat brain. The authors present a method for limited proteolysis of /sup 3/H-flunitrazepam photoaffinity labeled rat brain membranes, generating photolabeled benzodiazepine receptor fragments containing the agonist binding site. Using trypsin chymotrypsin A/sub 4/, or a combination of these two proteases, they have demonstrated the extent and time course for partial digestion of benzodiazepine receptor, yielding photolabeled receptor binding site fragments. These photolabeled receptor fragments have been further purified on the basis of size, using ultrafiltration, gel permeation chromatography, and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as well as on the basis of hydrophobicity, using a high performance liquid chromatography (HPLC) precolumn, several HPLC elution schemes, and two different HPLC column types. Using these procedures, they have purified three photolabeled benzodiazepine receptor fragments containing the agonist binding site which appear to have a molecular weight of less than 2000 daltons each.

  20. Structural Studies of GABAA Receptor Binding Sites: Which Experimental Structure Tells us What?

    PubMed Central

    Puthenkalam, Roshan; Hieckel, Marcel; Simeone, Xenia; Suwattanasophon, Chonticha; Feldbauer, Roman V.; Ecker, Gerhard F.; Ernst, Margot

    2016-01-01

    Atomic resolution structures of cys-loop receptors, including one of a γ-aminobutyric acid type A receptor (GABAA receptor) subtype, allow amazing insights into the structural features and conformational changes that these pentameric ligand-gated ion channels (pLGICs) display. Here we present a comprehensive analysis of more than 30 cys-loop receptor structures of homologous proteins that revealed several allosteric binding sites not previously described in GABAA receptors. These novel binding sites were examined in GABAA receptor homology models and assessed as putative candidate sites for allosteric ligands. Four so far undescribed putative ligand binding sites were proposed for follow up studies based on their presence in the GABAA receptor homology models. A comprehensive analysis of conserved structural features in GABAA and glycine receptors (GlyRs), the glutamate gated ion channel, the bacterial homologs Erwinia chrysanthemi (ELIC) and Gloeobacter violaceus GLIC, and the serotonin type 3 (5-HT3) receptor was performed. The conserved features were integrated into a master alignment that led to improved homology models. The large fragment of the intracellular domain that is present in the structure of the 5-HT3 receptor was utilized to generate GABAA receptor models with a corresponding intracellular domain fragment. Results of mutational and photoaffinity ligand studies in GABAA receptors were analyzed in the light of the model structures. This led to an assignment of candidate ligands to two proposed novel pockets, candidate binding sites for furosemide and neurosteroids in the trans-membrane domain were identified. The homology models can serve as hypotheses generators, and some previously controversial structural interpretations of biochemical data can be resolved in the light of the presented multi-template approach to comparative modeling. Crystal and cryo-EM microscopic structures of the closest homologs that were solved in different conformational

  1. Site-directed alkylation of multiple opioid receptors. I. Binding selectivity

    SciTech Connect

    James, I.F.; Goldstein, A.

    1984-05-01

    A method for measuring and expressing the binding selectivity of ligands for mu, delta, and kappa opioid binding sites is reported. Radioligands are used that are partially selective for these sites in combination with membrane preparations enriched in each site. Enrichment was obtained by treatment of membranes with the alkylating agent beta-chlornaltrexamine in the presence of appropriate protecting ligands. After enrichment for mu receptors, (/sup 3/H) dihydromorphine bound to a single type of site as judged by the slope of competition binding curves. After enrichment for delta or kappa receptors, binding sites for (/sup 3/H) (D-Ala2, D-Leu5)enkephalin and (3H)ethylketocyclazocine, respectively, were still not homogeneous. There were residual mu sites in delta-enriched membranes but no evidence for residual mu or delta sites in kappa-enriched membranes were found. This method was used to identify ligands that are highly selective for each of the three types of sites.

  2. Exploration of N-arylpiperazine Binding Sites of D2 Dopaminergic Receptor.

    PubMed

    Soskic, Vukic; Sukalovic, Vladimir; Kostic-Rajacic, Sladjana

    2015-01-01

    The crystal structures of the D3 dopamine receptor and several other G-protein coupled receptors (GPCRs) were published in recent times. Those 3D structures are used by us and other scientists as a template for the homology modeling and ligand docking analysis of related GPCRs. Our main scientific interest lies in the field of pharmacologically active N-arylpiperazines that exhibit antipsychotic and/or antidepressant properties, and as such are dopaminergic and serotonergic receptor ligands. In this short review article we are presenting synthesis and biological data on the new N-arylpipereazine as well our results on molecular modeling of the interactions of those N-arylpiperazines with the model of D2 dopamine receptors. To obtain that model the crystal structure of the D3 dopamine receptor was used. Our results show that the N-arylpiperazines binding site consists of two pockets: one is the orthosteric binding site where the N-arylpiperazine part of the ligand is docked and the second is a non-canonical accessory binding site for N-arylpipereazine that is formed by a second extracellular loop (ecl2) of the receptor. Until now, the structure of this receptor region was unresolved in crystal structure analyses of the D3 dopamine receptor. To get a more complete picture of the ligand - receptor interaction, DFT quantum mechanical calculations on N-arylpiperazine were performed and the obtained models were used to examine those interactions.

  3. Identification and Functional Characterization of the Phosphorylation Sites of the Neuropeptide FF2 Receptor*

    PubMed Central

    Bray, Lauriane; Froment, Carine; Pardo, Pierre; Candotto, Cédric; Burlet-Schiltz, Odile; Zajac, Jean-Marie; Mollereau, Catherine; Moulédous, Lionel

    2014-01-01

    The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, 412TNST415 at the end of the C terminus of the receptor, and additional sites involved in desensitization (372TS373) and internalization (Ser395). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns. PMID:25326382

  4. Ultrastructural localization of 5'AMP odorant receptor sites on the dendrites of olfactory receptor neurons of the spiny lobster.

    PubMed

    Blaustein, D N; Simmons, R B; Burgess, M F; Derby, C D; Nishikawa, M; Olson, K S

    1993-07-01

    A unique probe--biotinylated adenosine-5'-monophosphate (5'AMP-biotin)--was used in transmission electron microscopic (TEM) studies to localize 5'AMP odorant binding sites on the dendrites of olfactory receptor neurons in the aesthetasc sensilla of the spiny lobster, Panulirus argus. This probe is capable of both binding to and exciting 5'AMP-sensitive olfactory receptor neurons, as revealed through biochemical and electrophysiological assays. TEM studies showed that 5'AMP-biotin binding sites are distributed along the entire dendritic region that is exposed to odorants, including the transitional zone (between the inner and outer dendritic segments, including the ciliary segment) and all of the outer dendritic segment. The density of 5'AMP binding sites per micron2 of membrane is similar along the length of the olfactory dendrite. However, the relative number of 5'AMP-biotin binding sites per micron2 of sensillar area diminishes in the distal 30% of the aesthetasc due to a decrease in the amount of dendritic membrane in that region. The distribution of these 5'AMP binding sites is therefore much more extensive than that of enzymes that inactivate 5'AMP--5'ectonucleotidase/phosphatase--which are restricted to the transitional zone (Gleeson et al., 1991). Taken together, these results suggest that 5'AMP-biotin is labeling 5'AMP-specific olfactory receptor sites that are located along the entire outer dendritic segment and that can be coupled to olfactory transduction. This study represents the first in situ localization of specific olfactory receptor sites using a specific, functionally defined ligand.

  5. Agonist and antagonist protect sulfhydrals in the binding site of the D-1 dopamine receptor

    SciTech Connect

    Sidhu, A.; Kebabian, J.W.; Fishman, P.H.

    1986-05-01

    An iodinated compound (/sup 125/I)-SCH 23982 (8-iodo-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-ol) has been characterized as a specific, high affinity (Kd = 0.7 nM) ligand for the D-1 dopamine receptor. The ligand binding site of the D-1 receptor in rat striatum was inactivated by N-ethylmaleimide (NEM) in a time and concentration dependent manner. The inactivation was rapid and irreversible with a 70% net loss of binding sites. Scatchard analysis of binding to NEM-treated tissue showed a decrease both in receptor number and in radioligand affinity. The remaining receptors retained their selectivity for stereoisomers of both agonist and antagonist. Receptor occupancy by either a D-1 specific agonist or antagonist protected in a dose dependent manner the binding sites from inactivation by NEM; the agonist was more effective than the antagonist. The agonist high affinity site, however, was abolished in the absence or presence of protective compound, presumably because of inactivation of the GTP-binding component of adenylate cyclase. In this regard, there was a total loss of agonist- and forskolin-stimulated adenylate cyclase activity after NEM treatment. The authors conclude that the D-1 dopamine receptor contains NEM-sensitive sulfhydral group(s) at or near the vicinity of the ligand binding site.

  6. Metal binding sites of the estradiol receptor from calf uterus and their possible role in the regulation of receptor function

    SciTech Connect

    Medici, N.; Minucci, S.; Nigro, V.; Abbondanza, C.; Armetta, I.; Molinari, A.M.; Puca, G.A. )

    1989-01-10

    The existence of putative metal binding sites on the estradiol receptor (ER) molecule from calf uterus was evaluated by immobilizing various divalent metals to iminodiacetate-Sepharose. ER from both crude and highly purified preparations binds to metal-containing adsorbents complexed with Zn(II), Ni(II), Co(II), and Cu(II), but not to those complexed with Fe(II) and Cd(II). Analysis of affinity-labeled ER by ({sup 3}H)tamoxifen aziridine after elution from a column of Zn(II)-charged iminodiacetate-Sepharose showed that ER fragments obtained by extensive trypsinization were also bound. Zn(II) and the same other metals able to bind ER, when immobilized on resins, inhibit the binding of estradiol to the receptor at micromolar concentration. This inhibition is noncompetitive and can be reversed by EDTA. The inhibition of the hormone binding was still present after trypsin treatment of the cytosol, and it was abolished by preincubation with the hormone. Micromolar concentrations of these metals were able to block those chemical-physical changes occurring during the process of ER transformation in vitro. The presence of metal binding sites that modulate the ER activity in the hormone binding domain of ER is speculated. Since progesterone receptor showed the same pattern of binding and elution from metal-containing adsorbents, the presence of metal binding regulatory sites could be a property of all steroid receptors.

  7. CNTF variants with increased biological potency and receptor selectivity define a functional site of receptor interaction.

    PubMed Central

    Saggio, I; Gloaguen, I; Poiana, G; Laufer, R

    1995-01-01

    Human CNTF is a neurocytokine that elicits potent neurotrophic effects by activating a receptor complex composed of the ligand-specific alpha-receptor subunit (CNTFR alpha) and two signal transducing proteins, which together constitute a receptor for leukemia inhibitory factor (LIFR). At high concentrations, CNTF can also activate the LIFR and possibly other cross-reactive cytokine receptors in the absence of CNTFR alpha. To gain a better understanding of its structure-function relationships and to develop analogs with increased receptor specificity, the cytokine was submitted to affinity maturation using phage display technology. Variants with greatly increased CNTFR alpha affinity were selected from a phage-displayed library of CNTF variants carrying random amino acid substitutions in the putative D helix. Selected variants contained substitutions of the wild-type Gln167 residue, either alone or in combination with neighboring mutations. These results provide evidence for an important functional role of the mutagenized region in CNTFR alpha binding. Affinity enhancing mutations conferred to CNTF increased potency to trigger biological effects mediated by CNTFR alpha and enhanced neurotrophic activity on chicken ciliary neurons. In contrast, the same mutations did not potentiate the CNTFR alpha-independent receptor actions of CNTF. These CNTF analogs thus represent receptor-specific superagonists, which should help to elucidate the mechanisms underlying the pleiotropic actions of the neurocytokine. PMID:7621819

  8. GHB receptor targets in the CNS: focus on high-affinity binding sites.

    PubMed

    Bay, Tina; Eghorn, Laura F; Klein, Anders B; Wellendorph, Petrine

    2014-01-15

    γ-Hydroxybutyric acid (GHB) is an endogenous compound in the mammalian brain with both low- and high-affinity receptor targets. GHB is used clinically in the treatment of symptoms of narcolepsy and alcoholism, but also illicitly abused as the recreational drug Fantasy. Major pharmacological effects of exogenous GHB are mediated by GABA subtype B (GABAB) receptors that bind GHB with low affinity. The existence of GHB high-affinity binding sites has been known for more than three decades, but the uncovering of their molecular identity has only recently begun. This has been prompted by the generation of molecular tools to selectively study high-affinity sites. These include both genetically modified GABAB knock-out mice and engineered selective GHB ligands. Recently, certain GABA subtype A (GABAA) receptor subtypes emerged as high-affinity GHB binding sites and potential physiological mediators of GHB effects. In this research update, a description of the various reported receptors for GHB is provided, including GABAB receptors, certain GABAA receptor subtypes and other reported GHB receptors. The main focus will thus be on the high-affinity binding targets for GHB and their potential functional roles in the mammalian brain.

  9. Biochemical study of multiple drug recognition sites on central benzodiazepine receptors

    SciTech Connect

    Trifiletti, R.R.

    1986-01-01

    The benzodiazepine receptor complex of mammalian brain possesses recognition sites which mediate (at least in part) the pharmacologic actions of the 1,4-benzodiazepines and barbiturates. Evidence is provided suggesting the existence of least seven distinct drug recognition sites on this complex. Interactions between the various recognition sites have been explored using radioligand binding techniques. This information is utilized to provide a comprehensive scheme for characterizing receptor-active drugs on an anxiolytic-anticonvulsant/proconvulsant continuum using radioligand binding techniques, as well as a comprehensive program for identifying potential endogenous receptor-active substances. Further evidence is provided here supporting the notion of benzodiazepine recognition site heterogeneity. Classical 1,4-benzodiazepines do not appear to differentiate two populations of benzodiazepine receptors in an equilibrium sense, but appear to do so in a kinetic sense. An apparent physical separation of the two receptor subtypes can be achieved by differential solubilization. The benzodiazepine binding subunit can be identified by photoaffinity labeling with the benzodiazepine agonist (/sup 3/H)flunitrazepan. Conditions for reproducible partial proteolytic mapping of (/sup 3/H)flunitrazepam photoaffinity labeled receptors are established. From these maps, it is concluded that there are probably no major differences in the primary sequence of the benzodiazepine binding subunit in various regions of the rat central nervous system.

  10. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model.

    PubMed

    Kleist, Andrew B; Getschman, Anthony E; Ziarek, Joshua J; Nevins, Amanda M; Gauthier, Pierre-Arnaud; Chevigné, Andy; Szpakowska, Martyna; Volkman, Brian F

    2016-08-15

    Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.

  11. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    SciTech Connect

    Gil, D.W.; Wolfe, B.B.

    1986-05-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands (/sup 3/H)quinuclidinyl benzilate or (/sup 3/H)PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of (/sup 3/H)quinuclidinyl benzilate in a biphasic manner.

  12. Conserved residues in RF-NH₂ receptor models identify predicted contact sites in ligand-receptor binding.

    PubMed

    Bass, C; Katanski, C; Maynard, B; Zurro, I; Mariane, E; Matta, M; Loi, M; Melis, V; Capponi, V; Muroni, P; Setzu, M; Nichols, R

    2014-03-01

    Peptides in the RF-NH2 family are grouped together based on an amidated dipeptide C terminus and signal through G-protein coupled receptors (GPCRs) to influence diverse physiological functions. By determining the mechanisms underlying RF-NH2 signaling targets can be identified to modulate physiological activity; yet, how RF-NH2 peptides interact with GPCRs is relatively unexplored. We predicted conserved residues played a role in Drosophila melanogaster RF-NH2 ligand-receptor interactions. In this study D. melanogaster rhodopsin-like family A peptide GPCRs alignments identified eight conserved residues unique to RF-NH2 receptors. Three of these residues were in extra-cellular loops of modeled RF-NH2 receptors and four in transmembrane helices oriented into a ligand binding pocket to allow contact with a peptide. The eighth residue was unavailable for interaction; yet its conservation suggested it played another role. A novel hydrophobic region representative of RF-NH2 receptors was also discovered. The presence of rhodopsin-like family A GPCR structural motifs including a toggle switch indicated RF-NH2s signal classically; however, some features of the DMS receptors were distinct from other RF-NH2 GPCRs. Additionally, differences in RF-NH2 receptor structures which bind the same peptide explained ligand specificity. Our novel results predicted conserved residues as RF-NH2 ligand-receptor contact sites and identified unique and classic structural features. These discoveries will aid antagonist design to modulate RF-NH2 signaling.

  13. Specificity of Auxin-binding Sites on Maize Coleoptile Membranes as Possible Receptor Sites for Auxin Action 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Dissociation coefficients of auxin-binding sites on maize (Zea mays L.) coleoptile membranes were measured, for 48 auxins and related ring compounds, by competitive displacement of 14C-naphthaleneacetic acid from the binding sites. The sites bind with high affinity several ring compounds with acidic side chains 2 to 4 carbons long, and much more weakly bind neutral ring compounds and phenols related to these active acids, most phenoxyalkylcarboxylic acids, and arylcarboxylic acids except benzoic acid, which scarcely binds, and triiodobenzoic acids, which bind strongly. Specificity of the binding is narrowed in the presence of a low molecular weight “supernatant factor” that occurs in maize and other tissues. Activity of many of the analogs as auxin agonists or antagonists in the cell elongation response was determined with maize coleoptiles. These activities on the whole roughly parallel the affinities of the binding sites for the same compounds, especially affinities measured in the presence of supernatant factor, but there are some quantitative discrepancies, especially among phenoxyalkylcarboxylic acids. In view of several factors that can cause receptor affinity and biological activity values to diverge quantitatively among analogs, the findings appear to support the presumption that the auxin-binding sites may be receptors for auxin action. PMID:16660143

  14. The I1-imidazoline receptor: from binding site to therapeutic target in cardiovascular disease

    PubMed Central

    Ernsberger, Paul; Friedman, Jacob E.; Koletsky, Richard J.

    2005-01-01

    Objective To review previous work and present additional evidence characterizing the I1-imidazoline receptor and its role in cellular signaling, central cardiovascular control, and the treatment of metabolic syndromes. Second-generation centrally-acting antihypertensives inhibit sympathetic activity mainly via imidazoline receptors, whereas first-generation agents act viaα2-adrenergic receptors. The I1 subtype of imidazoline receptor resides in the plasma membrane and binds central antihypertensives with high affinity. Methods and results Radioligand binding assays have characterized I1-imidazoline sites in the brainstem site of action for these agents in the rostral ventrolateral medulla. Binding affinity at I1-imidazoline sites, but not at other classes of imidazoline binding sites, correlates closely with the potency of central antihypertensive agents in animals and in human clinical trials. The antihypertensive action of systemic moxonidine is eliminated by the I1/α2-antagonist efaroxan, but not by selective blockade of α2-adrenergic receptors. Until now, the cell signaling pathway coupled to I1-imidazoline receptors was unknown. Using a model system lacking α2-adrenergic receptors (PC12 pheochromocytoma cells) we have found that moxonidine acts as an agonist at the cell level and I1-imidazoline receptor activation leads to the production of the second messenger diacylglycerol, most likely through direct activation of phosphatidylcholine-selective phospholipase C. The obese spontaneously hypertensive rat (SHR; SHROB strain) shows many of the abnormalities that cluster in human syndrome X, including elevations in blood pressure, serum lipids and insulin. SHROB and their lean SHR littermates were treated with moxonidine at 8 mg/kg per day. SHROB and SHR treated with moxonidine showed not only lowered blood pressure but also improved glucose tolerance and facilitated insulin secretion in response to a glucose load. Because α2-adrenergic agonists impair

  15. Effect of mutations in putative hormone binding sites on V2 vasopressin receptor function.

    PubMed

    Sebti, Y; Rabbani, M; Sadeghi, H Mir Mohammad; Sardari, S; Ghahremani, M H; Innamorati, G

    2015-01-01

    The vasopressin V2 receptor belongs to the large family of the G-protein coupled receptors and is responsible for the antidiuretic effect of the neurohypophyseal hormone arginine vasopressin (AVP). Based on bioinformatic studies it seems that Ala300 and Asp297 of the V2 vasopressin receptor (V2R) are involved in receptor binding. Ala300Glu mutation resulted in lower energy while Asp297Tyr mutation resulted in higher energy in AVP-V2R docked complex rather than the wild type. Therefore we hypothesized that the Ala300Glu mutation results in stronger and Asp297Tyr mutation leads to weaker ligand-receptor binding. Site directed mutagenesis of Asp297Tyr and Ala300Glu was performed using nested polymerase chain reaction. After restriction enzyme digestion, the inserts were ligated into the pcDNA3 vector and Escherichia coli XL1-Blue competent cells were transformed using commercial kit and electroporation methods. The obtained colonies were analyzed for the presence and orientation of the inserts using proper restriction enzymes. After transient transfection of COS-7 cells using ESCORT™ IV transfection reagent, the adenylyl cyclase activity assay was performed for functional studies. The cell surface expression of V2R was analyzed by indirect ELISA method. Based on the obtained results, the Ala300Glu mutation of V2R led to reduced levels of cAMP production without a marked effect on the receptor expression and the receptor binding. Effect of Asp297Tyr mutation on cell surface expression of V2R was the same as the wild type receptor. Pretreatment with 1 nM vasopressin showed an increased level of Asp297Tyr mutant receptor internalization as compared to the wild type receptor, while the effect of 100 nM vasopressin was similar in the mutant and wild type receptors. These data suggest that alterations in Asp297 but not Ala300 would affect the hormone receptor binding.

  16. Receptor modelling of secondary particulate matter at UK sites

    NASA Astrophysics Data System (ADS)

    Charron, A.; Degrendele, C.; Laongsri, B.; Harrison, R. M.

    2012-10-01

    Complementary approaches have been taken to better understand the sources and their spatial distribution for secondary inorganic (nitrate and sulphate) and secondary organic aerosol sampled at a rural site (Harwell) in the southern United Kingdom. A concentration field map method was applied to 1581 daily samples of chloride, nitrate and sulphate from 2006 to 2010, and 982 samples for organic carbon and elemental carbon from 2007 to 2010. This revealed a rather similar pattern of sources for nitrate, sulphate and secondary organic carbon within western/central Europe, which in the case of nitrate and sulphate, correlated significantly with EMEP emissions maps of NOx and SO2. A slightly more southerly source emphasis for secondary organic carbon may reflect the contribution of biogenic sources. Trajectory clusters confirm this pattern of behaviour with a major contribution from mainland European sources. Similar behaviours of, on the one hand, sulphate and organic carbon and, on the other hand, EC and nitrate showed that the former are more subject to regional influence than the latter in agreement with the slower atmospheric formation of sulphate and secondary organic aerosol than for nitrate, and the local/mesoscale influences upon primary EC. In a separate study, measurements of sulphate, nitrate, elemental and organic carbon were made in 100 simultaneously collected samples at Harwell and at a suburban site in Birmingham (UK). This showed a significant correlation in concentrations between the two sites for all of the secondary constituents, further indicating secondary organic aerosol to be a regional pollutant behaving similarly to sulphate and nitrate.

  17. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites.

    PubMed

    Prasanna, Xavier; Chattopadhyay, Amitabha; Sengupta, Durba

    2014-03-18

    The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.

  18. Multiple binding sites in the nicotinic acetylcholine receptors: An opportunity for polypharmacolgy.

    PubMed

    Iturriaga-Vásquez, Patricio; Alzate-Morales, Jans; Bermudez, Isabel; Varas, Rodrigo; Reyes-Parada, Miguel

    2015-11-01

    For decades, the development of selective compounds has been the main goal for chemists and biologists involved in drug discovery. However, diverse lines of evidence indicate that polypharmacological agents, i.e. those that act simultaneously at various protein targets, might show better profiles than selective ligands, regarding both efficacy and side effects. On the other hand, the availability of the crystal structure of different receptors allows a detailed analysis of the main interactions between drugs and receptors in a specific binding site. Neuronal nicotinic acetylcholine receptors (nAChRs) constitute a large and diverse family of ligand-gated ion channels (LGICs) that, as a product of its modulation, regulate neurotransmitter release, which in turns produce a global neuromodulation of the central nervous system. nAChRs are pentameric protein complexes in such a way that expression of compatible subunits can lead to various receptor assemblies or subtypes. The agonist binding site, located at the extracellular region, exhibits different properties depending on the subunits that conform the receptor. In the last years, it has been recognized that nAChRs could also contain one or more allosteric sites which could bind non-classical nicotinic ligands including several therapeutically useful drugs. The presence of multiple binding sites in nAChRs offers an interesting possibility for the development of novel polypharmacological agents with a wide spectrum of actions.

  19. Characterization of 5-HT1D receptor binding sites in post-mortem human brain cortex.

    PubMed Central

    Martial, J; de Montigny, C; Cecyre, D; Quirion, R

    1991-01-01

    The present study provides further evidence for the presence of serotonin1D (5-HT1D) receptors in post-mortem human brain. Receptor binding parameters in temporal cortex homogenates were assessed using [3H]5-HT in the presence of 100 nM 8-OH-DPAT, 1 microM propranolol and 1 microM mesulergine to prevent labelling of the 5-HT1A, 5-HT1B and 5-HT1C sites, respectively. Under these conditions, [3H]5-HT apparently bound to a class of high affinity (Kd = 5.0 +/- 1.0 nM) low capacity (Bmax = 96 +/- 23 fmol/mg protein) sites. In competition experiments, 5-HT and 5-carboxyamidotryptamine (5-CT), as well as ergotamine, lysergic acid, sumatriptan and RU-24969 exhibited high affinity for these sites. This pharmacological profile is concordant with the ligand selectivity pattern reported for 5-HT1D receptors in other species and thus provides further evidence for its existence in human temporal cortex. In addition, the competition profile of some ligands, particularly of unlabelled 5-HT, 5-CT and ergotamine, revealed the existence of a lower affinity binding site. The latter suggests receptor heterogeneity or the presence of a lower affinity state of 5-HT1D receptors. PMID:1911737

  20. Characterization of a second ligand binding site of the insulin receptor

    SciTech Connect

    Hao Caili; Whittaker, Linda; Whittaker, Jonathan . E-mail: jonathan.whittaker@case.edu

    2006-08-18

    Insulin binding to its receptor is characterized by high affinity, curvilinear Scatchard plots, and negative cooperativity. These properties may be the consequence of binding of insulin to two receptor binding sites. The N-terminal L1 domain and the C-terminus of the {alpha} subunit contain one binding site. To locate a second site, we examined the binding properties of chimeric receptors in which the L1 and L2 domains and the first Fibronectin Type III repeat of the insulin-like growth factor-I receptor were replaced by corresponding regions of the insulin receptor. Substitutions of the L2 domain and the first Fibronectin Type III repeat together with the L1 domain produced 80- and 300-fold increases in affinity for insulin. Fusion of these domains to human immunoglobulin Fc fragment produced a protein which bound insulin with a K {sub d} of 2.9 nM. These data strongly suggest that these domains contain an insulin binding site.

  1. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  2. A Predicted Binding Site for Cholesterol on the GABAA Receptor

    PubMed Central

    Hénin, Jérôme; Salari, Reza; Murlidaran, Sruthi; Brannigan, Grace

    2014-01-01

    Modulation of the GABA type A receptor (GABAAR) function by cholesterol and other steroids is documented at the functional level, yet its structural basis is largely unknown. Current data on structurally related modulators suggest that cholesterol binds to subunit interfaces between transmembrane domains of the GABAAR. We construct homology models of a human GABAAR based on the structure of the glutamate-gated chloride channel GluCl of Caenorhabditis elegans. The models show the possibility of previously unreported disulfide bridges linking the M1 and M3 transmembrane helices in the α and γ subunits. We discuss the biological relevance of such disulfide bridges. Using our models, we investigate cholesterol binding to intersubunit cavities of the GABAAR transmembrane domain. We find that very similar binding modes are predicted independently by three approaches: analogy with ivermectin in the GluCl crystal structure, automated docking by AutoDock, and spontaneous rebinding events in unbiased molecular dynamics simulations. Taken together, the models and atomistic simulations suggest a somewhat flexible binding mode, with several possible orientations. Finally, we explore the possibility that cholesterol promotes pore opening through a wedge mechanism. PMID:24806926

  3. Site-Specific N-Glycosylation of Endothelial Cell Receptor Tyrosine Kinase VEGFR-2.

    PubMed

    Chandler, Kevin Brown; Leon, Deborah R; Meyer, Rosana D; Rahimi, Nader; Costello, Catherine E

    2017-02-03

    Vascular endothelial growth factor receptor-2 (VEGFR-2) is an important receptor tyrosine kinase (RTK) that plays critical roles in both physiologic and pathologic angiogenesis. The extracellular domain of VEGFR-2 is composed of seven immunoglobulin-like domains, each with multiple potential N-glycosylation sites (sequons). N-glycosylation plays a central role in RTK ligand binding, trafficking, and stability. However, despite its importance, the functional role of N-glycosylation of VEGFR-2 remains poorly understood. The objectives of the present study were to characterize N-glycosylation sites in VEGFR-2 via enzymatic release of the glycans and concomitant incorporation of (18)O into formerly N-glycosylated sites followed by tandem mass spectrometry (MS/MS) analysis to determine N-glycosylation site occupancy and the site-specific N-glycan heterogeneity of VEGFR-2 glycopeptides. The data demonstrated that all seven VEGFR-2 immunoglobulin-like domains have at least one occupied N-glycosylation site. MS/MS analyses of glycopeptides and deamidated, deglycosylated (PNGase F-treated) peptides from ectopically expressed VEGFR-2 in porcine aortic endothelial (PAE) cells identified N-glycans at the majority of the 17 potential N-glycosylation sites on VEGFR-2 in a site-specific manner. The data presented here provide direct evidence for site-specific, heterogeneous N-glycosylation and N-glycosylation site occupancy on VEGFR-2. The study has important implications for the therapeutic targeting of VEGFR-2, ligand binding, trafficking, and signaling.

  4. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.

    PubMed

    Moore, D D; Marks, A R; Buckley, D I; Kapler, G; Payvar, F; Goodman, H M

    1985-02-01

    Glucocorticoid receptor (GCR) protein stimulates transcription from a variety of cellular genes. We show here that GCR partially purified from rat liver binds specifically to a site within the first intron of the human growth hormone (hGH) gene, approximately 100 base pairs downstream from the start of hGH transcription. GCR binding is selectively inhibited by methylation of two short, symmetrically arranged clusters of guanine residues within this site. A cloned synthetic 24-base-pair deoxyoligonucleotide containing the predicted GCR binding sequence interacts specifically with GCR. The hGH binding site shares sequence homology with a GCR binding site upstream from the human metallothionein II gene and a subset of GCR binding sites from mouse mammary tumor virus. All of these binding sites for this eukaryotic transcriptional regulatory protein show remarkable similarity in overall geometry to the binding sites for several prokaryotic transcriptional regulatory proteins.

  5. Study of V2 vasopressin receptor hormone binding site using in silico methods

    PubMed Central

    Sebti, Yeganeh; Sardari, Soroush; Sadeghi, Hamid Mir Mohammad; Ghahremani, Mohammad Hossein; Innamorati, Giulio

    2015-01-01

    The antidiuretic effect of arginine vasopressin (AVP) is mediated by the vasopressin V2 receptor. The docking study of AVP as a ligand to V2 receptor helps in identifying important amino acid residues that might be involved in AVP binding for predicting the lowest free energy state of the protein complex. Whereas previous researchers were not able to detect the exact site of the ligand-receptor binding, we designed the current study to identify the vasopressin V2 receptor hormone binding site using bioinformatic methods. The 3D structure of nonapeptide hormone vasopressin was extracted from Protein Data Bank. Since no suitable template resembling V2 receptor was found, an ab initio approach was chosen to model the protein receptor. Using protein docking methods such as Hex protein-protein docking, the model of V2 receptor was docked to the peptide ligand AVP to identify possible binding sites. The residues that involved in binding site are W293, W296, D297, A300, and P301. The lowest free energy state of the protein complex was predicted after mutation in the above residues. The amount of gained energies permits us to compare the mutant forms with native forms and help to asses critical changes such as positive and negative mutations followed by ranking the best mutations. Based on the mutation/docking predictions, we found some mutants such as W293D and A300E possess positively inducing effect in ligand binding and some of them such as A300R present negatively inducing effect in ligand binding. PMID:26600856

  6. Prediction of the Human EP1 Receptor Binding Site by Homology Modeling and Molecular Dynamics Simulation

    PubMed Central

    Zare, Behnoush; Madadkar-Sobhani, Armin; Dastmalchi, Siavoush; Mahmoudian, Masoud

    2011-01-01

    The prostanoid receptor EP1 is a G-protein-coupled receptor (GPCR) known to be involved in a variety of pathological disorders such as pain, fever and inflammation. These receptors are important drug targets, but design of subtype specific agonists and antagonists has been partially hampered by the absence of three-dimensional structures for these receptors. To understand the molecular interactions of the PGE2, an endogen ligand, with the EP1 receptor, a homology model of the human EP1 receptor (hEP1R) with all connecting loops was constructed from the 2.6 Å resolution crystal structure (PDB code: 1L9H) of bovine rhodopsin. The initial model generated by MODELLER was subjected to molecular dynamics simulation to assess quality of the model. Also, a step by step ligand-supported model refinement was performed, including initial docking of PGE2 and iloprost in the putative binding site, followed by several rounds of energy minimizations and molecular dynamics simulations. Docking studies were performed for PGE2 and some other related compounds in the active site of the final hEP1 receptor model. The docking enabled us to identify key molecular interactions supported by the mutagenesis data. Also, the correlation of r2=0.81 was observed between the Ki values and the docking scores of 15 prostanoid compounds. The results obtained in this study may provide new insights toward understanding the active site conformation of the hEP1 receptor and can be used for the structure-based design of novel specific ligands. PMID:22145106

  7. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor.

    PubMed Central

    Wiger, D; Michaelsen, T E

    1985-01-01

    Immunoglobulin Fc-binding activity was detected by indirect immunofluorescence employing fluorochrome conjugated F(ab')2 antibody fragments on acetone-fixed cell cultures infected with herpes simplex virus type 1 (HSV-1). Using this method the Fc receptor-like activity seemed to be restricted to the IgG class of human immunoglobulins. While IgG1, IgG2, and IgG4 myeloma proteins bind to this putative Fc gamma receptor at a concentration of 0.002 mg/ml, IgG3 myeloma proteins were without activity at 0.1 mg/ml. The binding activity was associated with the Fc fragments of IgG, while the pFc' fragments of IgG appeared to be unable to bind in this assay system. The reactivity and specificity of the HSV-1 Fc receptor was independent of both the type of tissue culture cells used and the strain of HSV-1 inducing the Fc receptor-like activity. The HSV-1-induced Fc receptor has a similar specificity for human immunoglobulin class and subclasses as staphylococcal Protein A. However, these two Fc receptors exhibit at least one striking difference. The IgG3 G3m(st) protein which binds to Protein A does not bind to HSV-1-induced Fc receptor. A possible reaction site for the HSV-1 Fc receptor on IgG could be at or near Asp 276. Images Figure 1 PMID:2982735

  8. Binding-site analysis of opioid receptors using monoclonal anti-idiotypic antibodies

    SciTech Connect

    Conroy, W.G.

    1988-01-01

    Structural relatedness between the variable region of anti-ligand antibodies and opioid binding sites allowed the generation of anti-idiotypic antibodies which recognized opioid receptors. The IgG{sub 3}k antibodies which bound to opioid receptors were obtained when an anti-morphine antiserum was the idiotype. Both antibodies bound to opioid receptors, but only one of these blocked the binding of ({sup 3}H)naloxone. The antibody which did not inhibit the binding of ({sup 3}H)naloxone was itself displaced from the receptor by opioid ligands. The unique binding properties displayed by this antibody indicated that anti-idiotypic antibodies are not always a perfect image of the original ligand, and therefore may be more useful than typical ligands as probes for the receptor. An auto-anti-idiotypic technique was successfully used to obtain anti-opioid receptor antibodies. Another IgG{sub 3}k antibody that blocked the binding of ({sup 3}H)naloxone to rat brain opioid receptors was obtained when a mouse was immunized with naloxone conjugated to bovine serum albumin. These data confirmed that an idiotype-anti-idiotype network which can generate an anti-receptor antibody normally functions when an opioid ligand is introduced into an animal in an immunogenic form.

  9. Distinct ETA Receptor Binding Mode of Macitentan As Determined by Site Directed Mutagenesis

    PubMed Central

    Gatfield, John; Mueller Grandjean, Celia; Bur, Daniel; Bolli, Martin H.; Nayler, Oliver

    2014-01-01

    The competitive endothelin receptor antagonists (ERA) bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min) occupancy half-lives at the ETA receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ETA receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ETA receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ETA receptor-antagonist interaction modes, we performed functional studies using ETA receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ETA receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that – in contrast to bosentan and ambrisentan - macitentan-ETA receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and insurmountable antagonism. PMID

  10. A molecular characterization of the agonist binding site of a nematode cys-loop GABA receptor

    PubMed Central

    Kaji, Mark D; Kwaka, Ariel; Callanan, Micah K; Nusrat, Humza; Desaulniers, Jean-Paul; Forrester, Sean G

    2015-01-01

    Background and Purpose Cys-loop GABA receptors represent important targets for human chemotherapeutics and insecticides and are potential targets for novel anthelmintics (nematicides). However, compared with insect and mammalian receptors, little is known regarding the pharmacological characteristics of nematode Cys-loop GABA receptors. Here we have investigated the agonist binding site of the Cys-loop GABA receptor UNC-49 (Hco-UNC-49) from the parasitic nematode Haemonchus contortus. Experimental Approach We used two-electrode voltage-clamp electrophysiology to measure channel activation by classical GABA receptor agonists on Hco-UNC-49 expressed in Xenopus laevis oocytes, along with site-directed mutagenesis and in silico homology modelling. Key Results The sulphonated molecules P4S and taurine had no effect on Hco-UNC-49. Other classical Cys-loop GABAA receptor agonists tested on the Hco-UNC-49B/C heteromeric channel had a rank order efficacy of GABA > trans-4-aminocrotonic acid > isoguvacine > imidazole-4-acetic acid (IMA) > (R)-(−)-4-amino-3-hydroxybutyric acid [R(−)-GABOB] > (S)-(+)-4-amino-3-hydroxybutyric acid [S(+)-GABOB] > guanidinoacetic acid > isonipecotic acid > 5-aminovaleric acid (DAVA) (partial agonist) > β-alanine (partial agonist). In silico ligand docking revealed some variation in binding between agonists. Mutagenesis of a key serine residue in binding loop C to threonine had minimal effects on GABA and IMA but significantly increased the maximal response to DAVA and decreased twofold the EC50 for R(−)- and S(+)-GABOB. Conclusions and Implications The pharmacological profile of Hco-UNC-49 differed from that of vertebrate Cys-loop GABA receptors and insect resistance to dieldrin receptors, suggesting differences in the agonist binding pocket. These findings could be exploited to develop new drugs that specifically target GABA receptors of parasitic nematodes. PMID:25850584

  11. The interaction site for tamoxifen aziridine with the bovine estrogen receptor

    SciTech Connect

    Ratajczak, T.; Wilkinson, S.P.; Brockway, M.J.; Haehnel, R.M.; Moritz, R.L.; Begg, G.S.; Simpson, R.J.

    1989-08-15

    Calf uterine estrogen receptor was covalently labeled with ({sup 3}H)tamoxifen aziridine during affinity chromatography purification. After carboxymethylation, affinity labeled receptor was digested with trypsin under limit conditions and the labeled peptides were fractionated by reversed-phase high performance liquid chromatography into one major and two minor components. Sequence analysis of the dominant labeled fragment indicated the facile cleavage of label during Edman degradation but identified two peptides, both derived from the extreme carboxyl terminus of the steroid-binding domain. The 17 residues of one peptide were fully conserved in all estrogen receptors. This fragment contained five nucleophilic amino acids and was considered as the more favored interaction site for tamoxifen aziridine. A corresponding region of the glucocorticoid receptor has recently been identified as one of three major contact sites for glucocorticoids. A comparison of amino acid physical characteristics in the hormone-binding domains of human estrogen and glucocorticoid receptors demonstrated an excellent structural correlation between the two regions and delineated elements in the estrogen receptor which may be directly involved in estradiol binding.

  12. Analysis of acetylcholine receptor phosphorylation sites using antibodies to synthetic peptides and monoclonal antibodies.

    PubMed Central

    Safran, A; Neumann, D; Fuchs, S

    1986-01-01

    Three peptides corresponding to residues 354-367, 364-374, 373-387 of the acetylcholine receptor (AChR) delta subunit were synthesized. These peptides represent the proposed phosphorylation sites of the cAMP-dependent protein kinase, the tyrosine-specific protein kinase and the calcium/phospholipid-dependent protein kinase respectively. Using these peptides as substrates for phosphorylation by the catalytic subunit of cAMP-dependent protein kinase it was shown that only peptides 354-367 was phosphorylated whereas the other two were not. These results verify the location of the cAMP-dependent protein kinase phosphorylation site within the AChR delta subunit. Antibodies elicited against these peptides reacted with the delta subunit. The antipeptide antibodies and two monoclonal antibodies (7F2, 5.46) specific for the delta subunit were tested for their binding to non-phosphorylated receptor and to receptor phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. Antibodies to peptide 354-367 were found to react preferentially with non-phosphorylated receptor whereas the two other anti-peptide antibodies bound equally to phosphorylated and non-phosphorylated receptors. Monoclonal antibody 7F2 reacted preferentially with the phosphorylated form of the receptor whereas monoclonal antibody 5.46 did not distinguish between the two forms. Images Fig. 2. Fig. 4. Fig. 5. PMID:3816758

  13. Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA.

    PubMed

    Payvar, F; Firestone, G L; Ross, S R; Chandler, V L; Wrange, O; Carlstedt-Duke, J; Gustafsson, J A; Yamamoto, K R

    1982-01-01

    Glucocorticoid hormones selectively stimulate the rate of transcription of integrated mammary tumor virus (MTV) sequences in infected rat hepatoma cells. Using two independent assays, we find that purified rat liver glucocorticoid receptor protein binds specifically to at least four widely separated regions on pure MTV proviral DNA. One of these specific binding domains, which itself contains at least two distinct receptor binding sites, resides within a fragment of viral DNA that maps 110-449 bp upstream of the promoter for MTV RNA synthesis. Three other binding domains lie downstream of the promoter and within the MTV primary transcription unit. Restriction fragments bearing separate binding domains have been introduced into cultured cells; transformants have been recovered in which the introduced fragments are expressed under glucocorticoid control. Thus, it appears that this assay will be useful for assessing the biological significance of the receptor binding sites detected in vitro.

  14. GLUCOCORTICOID RECEPTOR REGULATION IN THE RAT EMBRYO: A POTENTIAL SITE FOR DEVELOPMENTAL TOXICITY?

    EPA Science Inventory

    Glucocorticoid receptor regulation in the rat embryo: a potential site for developmental toxicity?

    Ghosh B, Wood CR, Held GA, Abbott BD, Lau C.

    National Research Council, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.

  15. Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites (Final Report)

    EPA Science Inventory

    EPA's Ecological Risk Assessment Support Center (ERASC) announced the release of the final report, Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites. The report provides an overview of an approach for assessing risk to ...

  16. The effective opening of nicotinic acetylcholine receptors with single agonist binding sites

    PubMed Central

    Williams, Dustin K.; Stokes, Clare; Horenstein, Nicole A.

    2011-01-01

    We have identified a means by which agonist-evoked responses of nicotinic receptors can be conditionally eliminated. Modification of α7L119C mutants by the sulfhydryl reagent 2-aminoethyl methanethiosulfonate (MTSEA) reduces responses to acetylcholine (ACh) by more than 97%, whereas corresponding mutations in muscle-type receptors produce effects that depend on the specific subunits mutated and ACh concentration. We coexpressed α7L119C subunits with pseudo wild-type α7C116S subunits, as well as ACh-insensitive α7Y188F subunits with wild-type α7 subunits in Xenopus laevis oocytes using varying ratios of cRNA. When mutant α7 cRNA was coinjected at a 5:1 ratio with wild-type cRNA, net charge responses to 300 µM ACh were retained by α7L119C-containing mutants after MTSEA modification and by the ACh-insensitive Y188F-containing mutants, even though the expected number of ACh-sensitive wild-type binding sites would on average be fewer than two per receptor. Responses of muscle-type receptors with one MTSEA-sensitive subunit were reduced at low ACh concentrations, but much less of an effect was observed when ACh concentrations were high (1 mM), indicating that saturation of a single binding site with agonist can evoke strong activation of nicotinic ACh receptors. Single-channel patch clamp analysis revealed that the burst durations of fetal wild-type and α1β1γδL121C receptors were equivalent until the α1β1γδL121C mutants were exposed to MTSEA, after which the majority (81%) of bursts were brief (≤2 ms). The longest duration events of the receptors modified at only one binding site were similar to the long bursts of native receptors traditionally associated with the activation of receptors with two sites containing bound agonists. PMID:21444659

  17. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome.

    PubMed

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A H; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G; Engen, John R; Finley, Daniel; Walters, Kylie J

    2016-02-19

    Hundreds of pathways for degradation converge at ubiquitin recognition by a proteasome. Here, we found that the five known proteasomal ubiquitin receptors in yeast are collectively nonessential for ubiquitin recognition and identified a sixth receptor, Rpn1. A site ( T1: ) in the Rpn1 toroid recognized ubiquitin and ubiquitin-like ( UBL: ) domains of substrate shuttling factors. T1 structures with monoubiquitin or lysine 48 diubiquitin show three neighboring outer helices engaging two ubiquitins. T1 contributes a distinct substrate-binding pathway with preference for lysine 48-linked chains. Proximal to T1 within the Rpn1 toroid is a second UBL-binding site ( T2: ) that assists in ubiquitin chain disassembly, by binding the UBL of deubiquitinating enzyme Ubp6. Thus, a two-site recognition domain intrinsic to the proteasome uses distinct ubiquitin-fold ligands to assemble substrates, shuttling factors, and a deubiquitinating enzyme.

  18. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    NASA Astrophysics Data System (ADS)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  19. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    SciTech Connect

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.; Mantyh, P.W. )

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific binding of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.

  20. Modelling of the binding site of the human m1 muscarinic receptor: Experimental validation and refinement

    NASA Astrophysics Data System (ADS)

    Bourdon, Hélène; Trumpp-Kallmeyer, Susanne; Schreuder, Herman; Hoflack, , Jan; Hibert, Marcel; Wermuth, Camille-Georges

    1997-07-01

    Our model of the human m1 muscarinic receptor has been refined on the basis of the recently published projection map of bovine rhodopsin. The refined model has a slightly different helix arrangement, which reveals the presence of an extra hydrophobic pocket located between helices 3, 4 and 5. The interaction of series of agonists and antagonists with the m1 muscarinic receptor has been studied experimentally by site-directed mutagenesis. In order to account for the observed results, three-dimensional models of m1 ligands docked in the target receptor are proposed. Qualitatively, the obtained models are in good agreement with the experimental observations. Agonists and partial agonists have a relatively small size. They can bind to the same region of the receptor using, however, different anchoring receptor residues. Antagonists are usually larger molecules, filling almost completely the same pocket as agonists. They can usually produce much stronger interactions with aromatic residues. Experimental data combined with molecular modelling studies highlight how subtle and diverse receptor-ligand interactions could be.

  1. Single chain human interleukin 5 and its asymmetric mutagenesis for mapping receptor binding sites.

    PubMed

    Li, J; Cook, R; Dede, K; Chaiken, I

    1996-01-26

    Wild type human (h) interleukin 5 (wt IL5) is composed of two identical peptide chains linked by disulfide bonds. A gene encoding a single chain form of hIL5 dimer was constructed by linking the two hIL5 chain coding regions with Gly-Gly linker. Expression of this gene in COS cells yielded a single chain IL5 protein (sc IL5) having biological activity similar to that of wt IL5, as judged by stimulation of human cell proliferation. Single chain and wt IL5 also had similar binding affinity for soluble IL5 receptor alpha chain, the specificity subunit of the IL5 receptor, as measured kinetically with an optical biosensor. The design of functionally active sc IL5 molecule. Such mutagenesis was exemplified by changes at residues Glu-13, Arg-91, Glu-110, and Trp-111. The receptor binding and bioactivity data obtained are consistent with a model in which residues from both IL5 monomers interact with the receptor alpha chain, while the interaction likely is asymmetric due to the intrinsic asymmetry of folded receptor. The results demonstrate a general route to the further mapping of receptor and other binding sites on the surface of human IL5.

  2. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE PAGES

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...

    2015-07-13

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  3. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    SciTech Connect

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; Sapparapu, Gopal; Crowe, James. E.; Spiller, Benjamin W.

    2015-07-13

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In this paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.

  4. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    PubMed Central

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; Sapparapu, Gopal; Crowe, James. E.; Spiller, Benjamin W.

    2015-01-01

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. Here, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility. PMID:26170302

  5. Progesterone receptor induces bcl-x expression through intragenic binding sites favoring RNA polymerase II elongation

    PubMed Central

    Bertucci, Paola Y.; Nacht, A. Silvina; Alló, Mariano; Rocha-Viegas, Luciana; Ballaré, Cecilia; Soronellas, Daniel; Castellano, Giancarlo; Zaurin, Roser; Kornblihtt, Alberto R.; Beato, Miguel; Vicent, Guillermo P.; Pecci, Adali

    2013-01-01

    Steroid receptors were classically described for regulating transcription by binding to target gene promoters. However, genome-wide studies reveal that steroid receptors-binding sites are mainly located at intragenic regions. To determine the role of these sites, we examined the effect of progestins on the transcription of the bcl-x gene, where only intragenic progesterone receptor-binding sites (PRbs) were identified. We found that in response to hormone treatment, the PR is recruited to these sites along with two histone acetyltransferases CREB-binding protein (CBP) and GCN5, leading to an increase in histone H3 and H4 acetylation and to the binding of the SWI/SNF complex. Concomitant, a more relaxed chromatin was detected along bcl-x gene mainly in the regions surrounding the intragenic PRbs. PR also mediated the recruitment of the positive elongation factor pTEFb, favoring RNA polymerase II (Pol II) elongation activity. Together these events promoted the re-distribution of the active Pol II toward the 3′-end of the gene and a decrease in the ratio between proximal and distal transcription. These results suggest a novel mechanism by which PR regulates gene expression by facilitating the proper passage of the polymerase along hormone-dependent genes. PMID:23640331

  6. Identification of constitutive androstane receptor and glucocorticoid receptor binding sites in the CYP2C19 promoter.

    PubMed

    Chen, Yuping; Ferguson, Stephen S; Negishi, Masahiko; Goldstein, Joyce A

    2003-08-01

    CYP2C19 is an important human drug-metabolizing enzyme that metabolizes a number of clinically used drugs including the antiulcer drug omeprazole, the anxiolytic drug diazepam, the beta-blocker propranolol, the antimalarial drug proguanil, certain antidepressants and barbiturates, and the prototype substrate S-mephenytoin. Previous studies show that compounds such as rifampicin and dexamethasone induce CYP2C19 both in vivo in humans and in vitro in human hepatocytes. This study examines the transcriptional regulation of CYP2C19. Analysis of the CYP2C19 promoter revealed a single constitutive androstane receptor (CAR) binding site (CAR-RE; -1891/-1876 bp) and a glucocorticoid-responsive element (GRE; -1750/-1736 bp). Gel-shift assays showed that CAR-RE binds CAR and pregnane X receptor (PXR). Cotransfection with hCAR, mCAR, or hPXR in HepG2 cells up-regulated transcription of CYP2C19 promoter constructs, whereas mutation of the -1891-bp CAR-RE abolished up-regulation. Expression with hCAR also up-regulated endogenous CYP2C19 mRNA content in HepG2 cells. Androstenol repressed the mCAR-mediated constitutive activation of the CYP2C19 promoter in HepG2 cells, whereas the potent mCAR ligand 1,4-bis[2-3,5-dichloropyridyloxyl)] benzene derepressed this response. Rifampicin produced a modest increase in promoter activity in cells cotransfected with hPXR. Dexamethasone activated the -2.7-kb CYP2C19 promoter constructs in HepG2 cells only in the presence of cotransfected glucocorticoid receptor (GR), whereas the GR antagonist mifepristone inhibits this response. Mutation of the GRE abolishes dexamethasone activation. This is the first study to identify nuclear receptor binding sites (CAR/PXR and GR) in the CYP2C19 promoter and to suggest that these receptors may up-regulate CYP2C19 constitutively and possibly its response to drugs.

  7. An Accessory Agonist Binding Site Promotes Activation of α4β2* Nicotinic Acetylcholine Receptors*

    PubMed Central

    Wang, Jingyi; Kuryatov, Alexander; Sriram, Aarati; Jin, Zhuang; Kamenecka, Theodore M.; Kenny, Paul J.; Lindstrom, Jon

    2015-01-01

    Neuronal nicotinic acetylcholine receptors containing α4, β2, and sometimes other subunits (α4β2* nAChRs) regulate addictive and other behavioral effects of nicotine. These nAChRs exist in several stoichiometries, typically with two high affinity acetylcholine (ACh) binding sites at the interface of α4 and β2 subunits and a fifth accessory subunit. A third low affinity ACh binding site is formed when this accessory subunit is α4 but not if it is β2. Agonists selective for the accessory ACh site, such as 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283), cannot alone activate a nAChR but can facilitate more efficient activation in combination with agonists at the canonical α4β2 sites. We therefore suggest categorizing agonists according to their site selectivity. NS9283 binds to the accessory ACh binding site; thus it is termed an accessory site-selective agonist. We expressed (α4β2)2 concatamers in Xenopus oocytes with free accessory subunits to obtain defined nAChR stoichiometries and α4/accessory subunit interfaces. We show that α2, α3, α4, and α6 accessory subunits can form binding sites for ACh and NS9283 at interfaces with α4 subunits, but β2 and β4 accessory subunits cannot. To permit selective blockage of the accessory site, α4 threonine 126 located on the minus side of α4 that contributes to the accessory site, but not the α4β2 sites, was mutated to cysteine. Alkylation of this cysteine with a thioreactive reagent blocked activity of ACh and NS9283 at the accessory site. Accessory agonist binding sites are promising drug targets. PMID:25869137

  8. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    PubMed Central

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-01-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor. PMID:27498819

  9. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response.

    PubMed

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; Di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2016-08-08

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  10. The Sigma-2 Receptor and Progesterone Receptor Membrane Component 1 are Different Binding Sites Derived From Independent Genes

    PubMed Central

    Chu, Uyen B.; Mavlyutov, Timur A.; Chu, Ming-Liang; Yang, Huan; Schulman, Amanda; Mesangeau, Christophe; McCurdy, Christopher R.; Guo, Lian-Wang; Ruoho, Arnold E.

    2015-01-01

    The sigma-2 receptor (S2R) is a potential therapeutic target for cancer and neuronal diseases. However, the identity of the S2R has remained a matter of debate. Historically, the S2R has been defined as (1) a binding site with high affinity to 1,3-di-o-tolylguanidine (DTG) and haloperidol but not to the selective sigma-1 receptor ligand (+)-pentazocine, and (2) a protein of 18–21 kDa, as shown by specific photolabeling with [3H]-Azido-DTG and [125I]-iodoazido-fenpropimorph ([125I]-IAF). Recently, the progesterone receptor membrane component 1 (PGRMC1), a 25 kDa protein, was reported to be the S2R (Nature Communications, 2011, 2:380). To confirm this identification, we created PGRMC1 knockout NSC34 cell lines using the CRISPR/Cas9 technology. We found that in NSC34 cells devoid of or overexpressing PGRMC1, the maximum [3H]-DTG binding to the S2R (Bmax) as well as the DTG-protectable [125I]-IAF photolabeling of the S2R were similar to those of wild-type control cells. Furthermore, the affinities of DTG and haloperidol for PGRMC1 (KI = 472 μM and 350 μM, respectively), as determined in competition with [3H]-progesterone, were more than 3 orders of magnitude lower than those reported for the S2R (20–80 nM). These results clarify that PGRMC1 and the S2R are distinct binding sites expressed by different genes. PMID:26870805

  11. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors

    PubMed Central

    Borghese, Cecilia M.; Ruiz, Carlos I.; Lee, Ui S.; Cullins, Madeline A.; Bertaccini, Edward J.; Trudell, James R.; Harris, R. Adron

    2016-01-01

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6′ mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6′M), increased inhibition (T6′V) and small potentiation (T6′Y and T6′F). The 5′ mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3′ and 9′) or no changes (2′ and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6′ position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2′, 5′, 6’ and 9′ residues were easily accessible from the ion pore, with 5′ and 6′ residues from neighboring subunits facing each other; L3′ and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15′S), ρ1(T6′Y) and ρ1(T6′Y,I15′S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6’ position. Replacing the bulky 15′ residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites. PMID:26571107

  12. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors.

    PubMed

    Borghese, Cecilia M; Ruiz, Carlos I; Lee, Ui S; Cullins, Madeline A; Bertaccini, Edward J; Trudell, James R; Harris, R Adron

    2016-01-20

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6' mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6'M), increased inhibition (T6'V), and small potentiation (T6'Y and T6'F). The 5' mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3' and 9') or no changes (2' and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6' position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2', 5', 6', and 9' residues were easily accessible from the ion pore, with 5' and 6' residues from neighboring subunits facing each other; L3' and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15'S), ρ1(T6'Y), and ρ1(T6'Y,I15'S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6' position. Replacing the bulky 15' residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites.

  13. Comparative receptor mapping of serotoninergic 5-HT3 and 5-HT4 binding sites*

    NASA Astrophysics Data System (ADS)

    López-Rodríguez, María L.; Morcillo, María José; Benhamú, Bellinda; Rosado, María Luisa

    1997-11-01

    The clinical use of currently available drugs acting at the5-HT4 receptor has been hampered by their lack of selectivityover 5-HT3 binding sites. For this reason, there is considerableinterest in the medicinal chemistry of these serotonin receptor subtypes, andsignificant effort has been made towards the discovery of potent and selectiveligands. Computer-aided conformational analysis was used to characterizeserotoninergic 5-HT3 and 5-HT4 receptorrecognition. On the basis of the generally accepted model of the5-HT3 antagonist pharmacophore, we have performed a receptormapping of this receptor binding site, following the active analog approach(AAA) defined by Marshall. The receptor excluded volume was calculated as theunion of the van der Waals density maps of nine active ligands(pKi ≥ 8.9), superimposed in pharmacophoric conformations.Six inactive analogs (pKi < 7.0) were subsequently used todefine the essential volume, which in its turn can be used to define theregions of steric intolerance of the 5-HT3 receptor. Five activeligands (pKi ≥ 9.3) at 5-HT4 receptors wereused to construct an antagonist pharmacophore for this receptor, and todetermine its excluded volume by superimposition of pharmacophoricconformations. The volume defined by the superimposition of five inactive5-HT4 receptor analogs that possess the pharmacophoric elements(pKi ≤ 6.6) did not exceed the excluded volume calculated forthis receptor. In this case, the inactivity may be due to the lack of positiveinteraction of the amino moiety with a hypothetical hydrophobic pocket, whichwould interact with the voluminous substituents of the basic nitrogen ofactive ligands. The difference between the excluded volumes of both receptorshas confirmed that the main difference is indeed in the basic moiety. Thus,the 5-HT3 receptor can only accommodate small substituents inthe position of the nitrogen atom, whereas the 5-HT4 receptorrequires more voluminous groups. Also, the basic nitrogen is located at ca

  14. In vivo brain dopaminergic receptor site mapping using /sup 75/Se-labeled pergolide analogs: the effects of various dopamine receptor agonists and antagonists

    SciTech Connect

    Weaver, A.

    1986-01-01

    Perogolide mesylate is a new synthetic ergoline derivative which is reported to possess agonistic activity at central dopamine receptor sites in the brain. The authors have synthesized a (/sup 75/Se)-radiolabeled pergolide mesylate derivative, (/sup 75/Se)-pergolide tartrate, which, after i.v. administration to mature male rats, showed a time course differentiation in the uptake of this radiolabeled compound in isolated peripheral and central (brain) tissues that are known to be rich in dopamine receptor sites. Further studies were conducted in which the animals were preexposed to the dopamine receptor agonist SKF-38393, as well as the dopamine receptor antagonists (+)-butaclamol, (-)-butaclamol, (+/-)-butaclamol and (-)-chloroethylnorapomorphine, to substantiate the specific peripheral and central localization patterns of (/sup 75/Se)-pergolide tartrate. Further investigations were also conducted in which the animals received an i.v. administration of N-isopropyl-l-123-p-iodoamphetamine ((/sup 123/I)-iodoamphetamine). However, (/sup 123/I)-iodoamphetamine did not demonstrate a specific affinity for any type of receptor site in the brain. These investigations further substantiated the fact that (/sup 75/Se)-pergolide tartrate does cross the blood-brain barrier is quickly localized at specific dopamine receptor sites in the intact rat brain and that this localization pattern can be affected by preexposure to different dopamine receptor agonists and antagonists. Therefore, these investigations provided further evidence that (/sup 75/Se)-pergolide tartrate and other radiolabeled ergoline analogs might be useful as brain dopamine receptor localization radiopharmaceuticals.

  15. Regional development of glutamate-N-methyl-D-aspartate receptor sites in asphyxiated newborn infants.

    PubMed

    Andersen, D L; Tannenberg, A E; Burke, C J; Dodd, P R

    1998-04-01

    The N-methyl-D-aspartate (NMDA) subclass of glutamate receptors was examined in newborn infants dying between 25 weeks' gestation and term, either from acute cerebral hypoxia, or from other noncerebral conditions incompatible with life. Frontal, occipital, temporal, and motor cortex tissue samples were obtained at autopsy (post mortem delay: median, 45.9 hr; range, 24-96 hr) and frozen for subsequent [3H]MK801 homogenate binding assays. Whereas no significant variation was observed in ligand affinity (KD), in all cases receptor density (BMAX) increased with gestational age, in occipital cortex (27 weeks, BMAX = 222 +/- 44 fmol x mg protein(-1); 39 weeks, 439 +/- 42 fmol x mg protein[-1]), but not in motor or temporal cortex. The gestational-age increase also occurred in control frontal cortex (27 weeks, 284 +/- 80; 39 weeks, 567 +/- 40 fmol x mg protein[-1]), but was significantly less marked in frontal cortex in hypoxia cases (27 weeks, 226 +/- 90; 39 weeks, 326 +/- 47 fmol x mg protein[-1]). In all cortical areas except temporal, the maximal response to glutamate did not vary across case groups. Hypoxia cases showed an increased response to glutamate enhancement selectively in temporal cortex. Binding site density did not correlate with degree of hypoxia as assessed pathologically, suggesting that receptor differences preceded the hypoxic episode. Regional differences in glutamate-NMDA receptor sites may underlie increased vulnerability to hypoxia at birth.

  16. Targeting Receptors, Transporters and Site of Absorption to Improve Oral Drug Delivery

    PubMed Central

    Hamman, J.H.; Demana, P.H.; Olivier, E.I.

    2007-01-01

    Although the oral route of drug administration is the most acceptable way of self-medication with a high degree of patient compliance, the intestinal absorption of many drugs is severely hampered by different biological barriers. These barriers comprise of biochemical and physical components. The biochemical barrier includes enzymatic degradation in the gastrointestinal lumen, brush border and in the cytoplasm of the epithelial cells as well as efflux transporters that pump drug molecules from inside the epithelial cell back to the gastrointestinal lumen. The physical barrier consists of the epithelial cell membranes, tight junctions and mucus layer. Different strategies have been applied to improve the absorption of drugs after oral administration, which range from chemical modification of drug molecules and formulation technologies to the targeting of receptors, transporters and specialized cells such as the gut-associated lymphoid tissues. This review focuses specifically on the targeting of receptor-mediated endocytosis, transporters and the absorption-site as methods of optimizing intestinal drug absorption. Intestinal epithelial cells express several nutrient transporters that can be targeted by modifying the drug molecule in such a way that it is recognized as a substrate. Receptor-mediated endocytosis is a transport mechanism that can be targeted for instance by linking a receptor substrate to the drug molecule of interest. Many formulation strategies exist for enhancing drug absorption of which one is to deliver drugs at a specific site in the gastrointestinal tract where optimum drug absorption takes place. PMID:21901064

  17. In vivo receptor binding of opioid drugs at the mu site

    SciTech Connect

    Rosenbaum, J.S.; Holford, N.H.; Sadee, W.

    1985-06-01

    The in vivo receptor binding of a series of opioid drugs was investigated in intact rats after s.c. administration of (/sup 3/H)etorphine tracer, which selectively binds to mu sites in vivo. Receptor binding was determined by a membrane filtration assay immediately after sacrifice of the animals and brain homogenization. Coadministration of unlabeled opioid drugs together with tracer led to a dose-dependent decrease of in vivo tracer binding. Estimates of the doses required to occupy 50% of the mu sites in vivo established the following potency rank order: diprenorphine, naloxone, buprenorphine, etorphine, levallorphan, cyclazocine, sufentanil, nalorphine, ethylketocyclazocine, ketocyclazocine, pentazocine, morphine. In vivo-in vitro differences among the relative receptor binding potencies were only partially accounted for by differences in their access to the brain and the regulatory effects of Na+ and GTP, which are expected to reduce agonist affinities in vivo. The relationship among mu receptor occupancy in vivo and pharmacological effects of the opioid drugs is described.

  18. Cleavage Site Localization Differentially Controls Interleukin-6 Receptor Proteolysis by ADAM10 and ADAM17

    PubMed Central

    Riethmueller, Steffen; Ehlers, Johanna C.; Lokau, Juliane; Düsterhöft, Stefan; Knittler, Katharina; Dombrowsky, Gregor; Grötzinger, Joachim; Rabe, Björn; Rose-John, Stefan; Garbers, Christoph

    2016-01-01

    Limited proteolysis of the Interleukin-6 Receptor (IL-6R) leads to the release of the IL-6R ectodomain. Binding of the cytokine IL-6 to the soluble IL-6R (sIL-6R) results in an agonistic IL-6/sIL-6R complex, which activates cells via gp130 irrespective of whether the cells express the IL-6R itself. This signaling pathway has been termed trans-signaling and is thought to mainly account for the pro-inflammatory properties of IL-6. A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 are the major proteases that cleave the IL-6R. We have previously shown that deletion of a ten amino acid long stretch within the stalk region including the cleavage site prevents ADAM17-mediated cleavage, whereas the receptor retained its full biological activity. In the present study, we show that deletion of a triple serine (3S) motif (Ser-359 to Ser-361) adjacent to the cleavage site is sufficient to prevent IL-6R cleavage by ADAM17, but not ADAM10. We find that the impaired shedding is caused by the reduced distance between the cleavage site and the plasma membrane. Positioning of the cleavage site in greater distance towards the plasma membrane abrogates ADAM17-mediated shedding and reveals a novel cleavage site of ADAM10. Our findings underline functional differences in IL-6R proteolysis by ADAM10 and ADAM17. PMID:27151651

  19. Model of the whole rat AT1 receptor and the ligand-binding site.

    PubMed

    Baleanu-Gogonea, Camelia; Karnik, Sadashiva

    2006-02-01

    We present a three-dimensional model of the rat type 1 receptor (AT1) for the hormone angiotensin II (Ang II). Ang II and the AT1 receptor play a critical role in the cell-signaling process responsible for the actions of renin-angiotensin system in the regulation of blood pressure, water-electrolyte homeostasis and cell growth. Development of improved therapeutics would be significantly enhanced with the availability of a 3D-structure model for the AT1 receptor and of the binding site for agonists and antagonists. This model was constructed using a combination of computation and homology-modeling techniques starting with the experimentally determined three-dimensional structure of bovine rhodopsin (PDB#1F88) as a template. All 359 residues and two disulfide bonds in the rat AT1 receptor have been accounted for in this model. Ramachandran-map analysis and a 1 nanosecond molecular dynamics simulation of the solvated receptor with and without the bound ligand, Ang II, lend credence to the validity of the model. Docking calculations were performed with the agonist, Ang II and the antihypertensive antagonist, losartan. [Figure: see text].

  20. Differences in the sites of phosphorylation of the insulin receptor in vivo and in vitro

    SciTech Connect

    White, M.F.; Takayama, S.; Kahn, C.R.

    1985-08-05

    Phosphorylation of the insulin receptor was studied in intact well differentiated hepatoma cells (Fao) and in a solubilized and partially purified receptor preparation obtained from these cells by affinity chromatography on wheat germ agglutinin agarose. Tryptic peptides containing the phosphorylation sites of the beta-subunit of the insulin receptor were analyzed by reverse-phase high performance liquid chromatography. Phosphoamino acid content of these peptides was determined by acid hydrolysis and high voltage electrophoresis. Separation of the phosphopeptides from unstimulated Fao cells revealed one major and two minor phosphoserine-containing peptides and a single minor phosphothreonine-containing peptide. Insulin (10(-7) M) increased the phosphorylation of the beta-subunit of the insulin receptor 3- to 4-fold in the intact Fao cell. After insulin stimulation, two phosphotyrosine-containing peptides were identified. Tyrosine phosphorylation reached a steady state within 20 s after the addition of insulin and remained nearly constant for 1 h. Under our experimental conditions, no significant change in the amount of (TSP)phosphoserine or (TSP)phosphothreonine associated with the beta-subunit was found during the initial response of cells to insulin. When the insulin receptor was extracted from the Fao cells and incubated in vitro with (gamma-TSP)ATP and MnS , very little phosphorylation occurred in the absence of insulin.

  1. Site of action of the general anesthetic propofol in muscarinic M1 receptor-mediated signal transduction.

    PubMed

    Murasaki, Osamu; Kaibara, Muneshige; Nagase, Yoshihisa; Mitarai, Sayaka; Doi, Yoshiyuki; Sumikawa, Koji; Taniyama, Kohtaro

    2003-12-01

    Although a potential target site of general anesthetics is primarily the GABA A receptor, a chloride ion channel, a previous study suggested that the intravenous general anesthetic propofol attenuates the M1 muscarinic acetylcholine receptor (M1 receptor)-mediated signal transduction. In the present study, we examined the target site of propofol in M1 receptor-mediated signal transduction. Two-electrode voltage-clamp method was used in Xenopus oocytes expressing both M1 receptors and associated G protein alpha subunits (Gqalpha). Propofol inhibited M1 receptor-mediated signal transduction in a dose-dependent manner (IC50 = 50 nM). Injection of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) into oocytes overexpressing Gqalpha was used to investigate direct effects of propofol on G protein coupled with the M1 receptor. Propofol did not affect activation of Gqalpha-mediated signal transduction with the intracellular injection of GTPgammaS. We also studied effects of propofol on l-[N-methyl-3H]scopolamine methyl chloride ([3H]NMS) binding and M1 receptor-mediated signal transduction in mammalian cells expressing M1 receptor. Propofol inhibited the M1 receptor-mediated signal transduction but did not inhibit binding of [3H]NMS. Effects of propofol on Gs- and Gi/o-coupled signal transduction were investigated, using oocytes expressing the beta2 adrenoceptor (beta2 receptor)/cystic fibrosis transmembrane conductance regulator or oocytes expressing the M2 muscarinic acetylcholine receptor (M2 receptor)/Kir3.1 (a member of G protein-gated inwardly rectifying K(+) channels). Neither beta2 receptor-mediated nor M2 receptor-mediated signal transduction was inhibited by a relatively high concentration of propofol (50 microM). These results indicate that propofol inhibits M1 receptor-mediated signal transduction by selectively disrupting interaction between the receptor and associated G protein.

  2. Identification of a phosphorylation site in the hinge region of the human progesterone receptor and additional amino-terminal phosphorylation sites.

    PubMed

    Knotts, T A; Orkiszewski, R S; Cook, R G; Edwards, D P; Weigel, N L

    2001-03-16

    We have previously reported the identification of seven in vivo phosphorylation sites in the amino-terminal region of the human progesterone receptor (PR). From our previous in vivo studies, it was evident that several phosphopeptides remained unidentified. In particular, we wished to determine whether human PR contains a phosphorylation site in the hinge region, as do other steroid receptors including chicken PR, human androgen receptor, and mouse estrogen receptor. Previously, problematic trypsin cleavage sites hampered our ability to detect phosphorylation sites in large incomplete tryptic peptides. Using a combination of mass spectrometry and in vitro phosphorylation, we have identified six previously unidentified phosphorylation sites in human PR. Using nanoelectrospray ionization mass spectrometry, we have identified two new in vivo phosphorylation sites, Ser(20) and Ser(676), in baculovirus-expressed human PR. Ser(676) is analogous to the hinge site identified in other steroid receptors. Additionally, precursor ion scans identified another phosphopeptide that contains Ser(130)-Pro(131), a likely candidate for phosphorylation. In vitro phosphorylation of PR with Cdk2 has revealed five additional in vitro Cdk2 phosphorylation sites: Ser(25), Ser(213), Thr(430), Ser(554), and Ser(676). At least two of these, Ser(213) and Ser(676), are authentic in vivo sites. We confirmed the presence of the Cdk2-phosphorylated peptide containing Ser(213) in PR from in vivo labeled T47D cells, indicating that this is an in vivo site. Our combined studies indicate that most, if not all, of the Ser-Pro motifs in human PR are sites for phosphorylation. Taken together, these data indicate that the phosphorylation of PR is highly complex, with at least 14 phosphorylation sites.

  3. Distribution of cholecystokinin receptor binding sites in the human brain: an autoradiographic study

    SciTech Connect

    Dietl, M.M.; Probst, A.; Palacios, J.M.

    1987-01-01

    Cholecystokinin (CCK) binding sites were localized by in vitro autoradiography in human postmortem brain materials from 12 patients without reported neurological diseases using (125I)Bolton-Hunter CCK octapeptide (BHCCK-8) as a ligand. The pharmacological characteristics of BHCCK-8 binding to mounted tissue sections were comparable to those previously reported in the rat. CCK-8 being the most potent displacer, followed by caerulein, CCK-4, and gastrin I. The distribution of BHCCK-8 binding sites was heterogeneous. These sites were highly concentrated in a limited number of gray matter areas and nuclei. The highest binding densities were seen in the glomerular and external plexiform layers of the olfactory bulb. BHCCK-8 binding sites were also enriched in the neocortex, where they presented a laminar distribution with low levels in lamina I, moderate concentration in laminae II to IV, high density in lamina V, and low levels in lamina VI. A different laminar distribution was seen in the visual cortex, where a low receptor density was observed in lamina IV but higher density in laminae II and VI. In the basal ganglia the nucleus accumbens, caudatus, and the putamen presented moderate to high densities of binding sites, while the globus pallidus lacked sites of BHCCK-8 binding. In the limbic system the only area presenting moderate to high density was the amygdaloid complex, particularly in the granular nucleus, while most of the thalamic nuclei were extremely poor or lacked BHCCK-8 binding. The hippocampal formation showed low (CA1-3) to moderate (subiculum) densities. Midbrain areas generally disclosed very low levels of BHCCK-8 binding sites. The pontine gray and the nucleus reticularis tegmenti pontis showed a relatively high density of CCK-8 receptor specific binding.

  4. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    SciTech Connect

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.; Donis, Ruben O.; Stevens, James

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avian receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.

  5. Elucidation of a four-site allosteric network in fibroblast growth factor receptor tyrosine kinases

    PubMed Central

    Chen, Huaibin; Marsiglia, William M; Cho, Min-Kyu; Huang, Zhifeng; Deng, Jingjing; Blais, Steven P; Gai, Weiming; Bhattacharya, Shibani; Neubert, Thomas A; Traaseth, Nathaniel J; Mohammadi, Moosa

    2017-01-01

    Receptor tyrosine kinase (RTK) signaling is tightly regulated by protein allostery within the intracellular tyrosine kinase domains. Yet the molecular determinants of allosteric connectivity in tyrosine kinase domain are incompletely understood. By means of structural (X-ray and NMR) and functional characterization of pathogenic gain-of-function mutations affecting the FGF receptor (FGFR) tyrosine kinase domain, we elucidated a long-distance allosteric network composed of four interconnected sites termed the ‘molecular brake’, ‘DFG latch’, ‘A-loop plug’, and ‘αC tether’. The first three sites repress the kinase from adopting an active conformation, whereas the αC tether promotes the active conformation. The skewed design of this four-site allosteric network imposes tight autoinhibition and accounts for the incomplete mimicry of the activated conformation by pathogenic mutations targeting a single site. Based on the structural similarity shared among RTKs, we propose that this allosteric model for FGFR kinases is applicable to other RTKs. DOI: http://dx.doi.org/10.7554/eLife.21137.001 PMID:28166054

  6. NMDA receptor coagonist glycine site: evidence for a role in lateral hypothalamic stimulation of feeding.

    PubMed

    Stanley, B G; Butterfield, B S; Grewal, R S

    1997-08-01

    To investigate the role of the glycine coagonist binding site on the N-methyl-D-aspartate (NMDA) receptor in feeding control, we injected the glycine site antagonist 7-chlorokynurenic acid (7-CK) into the lateral hypothalamus (LH) of satiated rats before LH injection of NMDA, 7-CK (10-44 nmol) blocked the 6- to 10-g eating response elicited by NMDA. This block was reversed by LH pretreatment with glycine, arguing for a specific action at the glycine site. In contrast to the suppression produced by high doses, 7-CK at 0.1 nmol enhanced NMDA-elicited eating. For examination of behavioral specificity, 7-CK was injected into the LH before kainic acid (KA) or DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA). 7-CK at a dose of 0.1 nmol suppressed feeding elicited by KA or AMPA, but at 10 nmol it suppressed eating elicited by AMPA while enhancing eating elicited by KA. Finally, bilateral LH injection of 7-CK effectively suppressed eating produced by fasting. These findings support a role for the NMDA receptor coagonist glycine site in LH regulation of eating behavior.

  7. Calcium channel receptor sites for (+)-[3H]PN 200-110 in coronary artery.

    PubMed

    Yamada, S; Kimura, R; Harada, Y; Nakayama, K

    1990-01-01

    The receptor sites for 1,4-dihydropyridine (DHP) Ca++ channel antagonists in porcine coronary artery were identified and characterized by a binding assay using (+)-[3H]PN 200-110 as a radioligand. Specific (+)-[3H]PN 200-110 binding in porcine coronary artery was saturable, reversible and of high affinity (Kd = 0.24 nM) and it showed a pharmacological specificity as well as stereoselectivity which characterized the receptor sites for DHP Ca++ channel antagonists. DHP antagonists competed for the (+)-[3H]PN 200-110 binding in order: PN 200-110 greater than mepirodipine greater than nisoldipine greater than nicardipine greater than nitrendipine greater than nimodipine greater than nifedipine greater than (-)-PN 200-110. (+)-PN 200-110 was approximately 140 times as potent as the (-)-isomer. The potencies (PKi) of these eight DHP Ca++ channel antagonists in competing for (+)-[3H]PN 200-110 binding sites in porcine coronary artery correlated well with their pharmacological potencies. Specific (+)-[3H]PN 200-110 binding in the coronary artery was enhanced by d-cis-diltiazem and was inhibited incompletely by verapamil and D-600. In EDTA-pretreated coronary artery, the maximal number of binding sites for specific (+)-[3H]PN 200-110 binding was reduced (80%) markedly, and it was restored to the untreated level by the addition of Ca++ and Mg++.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  9. Allosteric antagonist binding sites in class B GPCRs: corticotropin receptor 1

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Supriyo; Subramanian, Govindan; Hall, Spencer; Lin, Jianping; Laoui, Abdelazize; Vaidehi, Nagarajan

    2010-08-01

    The 41 amino acid neuropeptide, corticotropin-releasing factor (CRF) and its associated receptors CRF1-R and CRF2-R have been targeted for treating stress related disorders. Both CRF1-R and CRF2-R belong to the class B G-protein coupled receptors for which little information is known regarding the small molecule antagonist binding characteristics. However, it has been shown recently that different non-peptide allosteric ligands stabilize different receptor conformations for CRF1-R and hence an understanding of the ligand induced receptor conformational changes is important in the pharmacology of ligand binding. In this study, we modeled the receptor and identified the binding sites of representative small molecule allosteric antagonists for CRF1-R. The predicted binding sites of the investigated compounds are located within the transmembrane (TM) domain encompassing TM helices 3, 5 and 6. The docked compounds show strong interactions with H228 on TM3 and M305 on TM5 that have also been implicated in the binding by site directed mutation studies. H228 forms a hydrogen bond of varied strengths with all the antagonists in this study and this is in agreement with the decreased binding affinity of several compounds with H228F mutation. Also mutating M305 to Ile showed a sharp decrease in the calculated binding energy whereas the binding energy loss on M305 to Leu was less significant. These results are in qualitative agreement with the decrease in binding affinities observed experimentally. We further predicted the conformational changes in CRF1-R induced by the allosteric antagonist NBI-27914. Movement of TM helices 3 and 5 are dominant and generates three degenerate conformational states two of which are separated by an energy barrier from the third, when bound to NBI-27914. Binding of NBI-27914 was predicted to improve the interaction of the ligand with M305 and also enhanced the aromatic stacking between the ligand and F232 on TM3. A virtual ligand screening of 13

  10. Exploring the binding site of the human muscarinic M3 receptor: Homology modeling and docking study

    NASA Astrophysics Data System (ADS)

    Ostopovici, Liliana; Mracec, Maria; Mracec, Mircea; Borota, Ana

    The human muscarinic M3 receptor (hM3) and its interactions with selective agonists and antagonists were investigated by means of combined homology and docking approach. Also, two pharmacophoric models for the hM3 agonist and antagonist binding sites were proposed. The three-dimensional (3D) structure of hM3 receptor was modeled based on the high-resolution X-ray structure of bovine rhodopsin from the Protein Data Bank (PDB). To validate the reliability of the model obtained, the main chain torsion angles phi (?) and psi (?) were examined in a Ramachandran plot, and all omega angles were measured for peptidic bond planarity. The characteristics of the active site, the position, and the orientation of ligands in situ, as well as the binding modes of the representative agonists and antagonists, were analyzed by applying a molecular docking technique using the AutoDock 3.0.5 program. Specific interactions responsible for recognition of the hM3 receptor, like ionic bond formed between protonated amine of the ligands and the Asp3.6 side chain were identified. Structure-reactivity relationships have been explained by analyzing the 3D structure of the hM3 model and the ligand conformations resulted from molecular docking simulation.

  11. Molecular Modeling of the M3 Acetylcholine Muscarinic Receptor and Its Binding Site

    PubMed Central

    Martinez-Archundia, Marlet; Cordomi, Arnau; Garriga, Pere; Perez, Juan J.

    2012-01-01

    The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand. PMID:22500107

  12. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor.

    PubMed

    Maillet, Emeline L; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Margolskee, Robert F; Osman, Roman; Max, Marianna

    2015-10-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2's VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste.

  13. Characterization of the Binding Site of Aspartame in the Human Sweet Taste Receptor

    PubMed Central

    Maillet, Emeline L.; Cui, Meng; Jiang, Peihua; Mezei, Mihaly; Hecht, Elizabeth; Quijada, Jeniffer; Osman, Roman; Max, Marianna

    2015-01-01

    The sweet taste receptor, a heterodimeric G protein-coupled receptor comprised of T1R2 and T1R3, binds sugars, small molecule sweeteners, and sweet proteins to multiple binding sites. The dipeptide sweetener, aspartame binds in the Venus Flytrap Module (VFTM) of T1R2. We developed homology models of the open and closed forms of human T1R2 and human T1R3 VFTMs and their dimers and then docked aspartame into the closed form of T1R2’s VFTM. To test and refine the predictions of our model, we mutated various T1R2 VFTM residues, assayed activity of the mutants and identified 11 critical residues (S40, Y103, D142, S144, S165, S168, Y215, D278, E302, D307, and R383) in and proximal to the binding pocket of the sweet taste receptor that are important for ligand recognition and activity of aspartame. Furthermore, we propose that binding is dependent on 2 water molecules situated in the ligand pocket that bridge 2 carbonyl groups of aspartame to residues D142 and L279. These results shed light on the activation mechanism and how signal transmission arising from the extracellular domain of the T1R2 monomer of the sweet receptor leads to the perception of sweet taste. PMID:26377607

  14. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor.

    PubMed Central

    Barchan, D; Kachalsky, S; Neumann, D; Vogel, Z; Ovadia, M; Kochva, E; Fuchs, S

    1992-01-01

    The ligand binding site of the nicotinic acetylcholine receptor (AcChoR) is within a short peptide from the alpha subunit that includes the tandem cysteine residues at positions 192 and 193. To elucidate the molecular basis of the binding properties of the AcChoR, we chose to study nonclassical muscle AcChoRs from animals that are resistant to alpha-neurotoxins. We have previously reported that the resistance of snake AcChoR to alpha-bungarotoxin (alpha-BTX) may be accounted for by several major substitutions in the ligand binding site of the receptor. In the present study, we have analyzed the binding site of AcChoR from the mongoose, which is also resistant to alpha-neurotoxins. It was shown that mongoose AcChoR does not bind alpha-BTX in vivo or in vitro. cDNA fragments of the alpha subunit of mongoose AcChoR corresponding to codons 122-205 and including the presumed ligand binding site were cloned, sequenced, and expressed in Escherichia coli. The expressed protein fragments of the mongoose, as well as of snake receptors, do not bind alpha-BTX. The mongoose fragment is highly homologous (greater than 90%) to the respective mouse fragment. Out of the seven amino acid differences between the mongoose and mouse in this region, five cluster in the presumed ligand binding site, close to cysteines 192 and 193. These changes are at positions 187 (Trp----Asn), 189 (Phe----Thr), 191 (Ser----Ala), 194 (Pro----Leu), and 197 (Pro----His). The mongoose like the snake AcChoR has a potential glycosylation site in the binding site domain. Sequence comparison between species suggests that substitutions at positions 187, 189, and 194 are important in determining the resistance of mongoose and snake AcChoR to alpha-BTX. In addition, it was shown that amino acid residues that had been reported to be necessary for acetylcholine binding are conserved in the toxin-resistant animals as well. Images PMID:1380164

  15. How the mongoose can fight the snake: the binding site of the mongoose acetylcholine receptor.

    PubMed

    Barchan, D; Kachalsky, S; Neumann, D; Vogel, Z; Ovadia, M; Kochva, E; Fuchs, S

    1992-08-15

    The ligand binding site of the nicotinic acetylcholine receptor (AcChoR) is within a short peptide from the alpha subunit that includes the tandem cysteine residues at positions 192 and 193. To elucidate the molecular basis of the binding properties of the AcChoR, we chose to study nonclassical muscle AcChoRs from animals that are resistant to alpha-neurotoxins. We have previously reported that the resistance of snake AcChoR to alpha-bungarotoxin (alpha-BTX) may be accounted for by several major substitutions in the ligand binding site of the receptor. In the present study, we have analyzed the binding site of AcChoR from the mongoose, which is also resistant to alpha-neurotoxins. It was shown that mongoose AcChoR does not bind alpha-BTX in vivo or in vitro. cDNA fragments of the alpha subunit of mongoose AcChoR corresponding to codons 122-205 and including the presumed ligand binding site were cloned, sequenced, and expressed in Escherichia coli. The expressed protein fragments of the mongoose, as well as of snake receptors, do not bind alpha-BTX. The mongoose fragment is highly homologous (greater than 90%) to the respective mouse fragment. Out of the seven amino acid differences between the mongoose and mouse in this region, five cluster in the presumed ligand binding site, close to cysteines 192 and 193. These changes are at positions 187 (Trp----Asn), 189 (Phe----Thr), 191 (Ser----Ala), 194 (Pro----Leu), and 197 (Pro----His). The mongoose like the snake AcChoR has a potential glycosylation site in the binding site domain. Sequence comparison between species suggests that substitutions at positions 187, 189, and 194 are important in determining the resistance of mongoose and snake AcChoR to alpha-BTX. In addition, it was shown that amino acid residues that had been reported to be necessary for acetylcholine binding are conserved in the toxin-resistant animals as well.

  16. Identification of tyrosine phosphorylation sites in human Gab-1 protein by EGF receptor kinase in vitro.

    PubMed

    Lehr, S; Kotzka, J; Herkner, A; Klein, E; Siethoff, C; Knebel, B; Noelle, V; Brüning, J C; Klein, H W; Meyer, H E; Krone, W; Müller-Wieland, D

    1999-01-05

    Grb2-associated binder-1 (Gab-1) has been identified recently in a cDNA library of glioblastoma tumors and appears to play a central role in cellular growth response, transformation, and apoptosis. Structural and functional features indicate that Gab-1 is a multisubstrate docking protein downstream in the signaling pathways of different receptor tyrosine kinases, including the epidermal growth factor receptor (EGFR). Therefore, the aim of the study was to characterize the phosphorylation of recombinant human Gab-1 (hGab-1) protein by EGFR in vitro. Using the pGEX system to express the entire protein and different domains of hGab-1 as glutathione S-transferase proteins, kinetic data for phosphorylation of these proteins by wheat germ agglutinine-purified EGFR and the recombinant EGFR (rEGFR) receptor kinase domain were determined. Our data revealed similar affinities of hGab-1-C for both receptor preparations (KM = 2.7 microM for rEGFR vs 3.2 microM for WGA EGFR) as well as for the different recombinant hGab-1 domains. To identify the specific EGFR phosphorylation sites, hGab-1-C was sequenced by Edman degradation and mass spectrometry. The entire protein was phosphorylated by rEGFR at eight tyrosine residues (Y285, Y373, Y406, Y447, Y472, Y619, Y657, and Y689). Fifty percent of the identified radioactivity was incorporated in tyrosine Y657 as the predominant peak in HPLC analysis, a site exhibiting features of a potential Syp (PTP1D) binding site. Accordingly, GST-pull down assays with A431 and HepG2 cell lysates showed that phosphorylated intact hGab-1 was able to bind Syp. This binding appears to be specific, because it was abolished by changing the Y657 of hGab-1 to F657. These results demonstrate that hGab-1 is a high-affinity substrate for the EGFR and the major tyrosine phosphorylation site Y657 in the C terminus is a specific binding site for the tyrosine phosphatase Syp.

  17. Electrophysiological evidence for acidic, basic, and neutral amino acid olfactory receptor sites in the catfish

    PubMed Central

    1984-01-01

    Electrophysiological experiments indicate that olfactory receptors of the channel catfish, Ictalurus punctatus, contain different receptor sites for the acidic (A), basic (B), and neutral amino acids; further, at least two partially interacting neutral sites exist, one for the hydrophilic neutral amino acids containing short side chains (SCN), and the second for the hydrophobic amino acids containing long side chains (LCN). The extent of cross-adaptation was determined by comparing the electro-olfactogram (EOG) responses to 20 "test" amino acids during continuous bathing of the olfactory mucosa with water only (control) to those during each of the eight "adapting" amino acid regimes. Both the adapting and test amino acids were adjusted in concentrations to provide approximately equal response magnitudes in the unadapted state. Under all eight adapting regimes, the test EOG responses were reduced from those obtained in the unadapted state, but substantial quantitative differences resulted, depending upon the molecular structure of the adapting stimulus. Analyses of the patterns of EOG responses to the test stimuli identified and characterized the respective "transduction processes," a term used to describe membrane events initiated by a particular subset of amino acid stimuli that are intricately linked to the origin of the olfactory receptor potential. Only when the stimulus compounds interact with different transduction processes are the stimuli assumed to bind to different membrane "sites." Four relatively independent L-alpha-amino acid transduction processes (and thus at least four binding sites) identified in this report include: (a) the A process for aspartic and glutamic acids; (b) the B process for arginine and lysine; (c) the SCN process for glycine, alanine, serine, glutamine, and possibly cysteine; (d) the LCN process for methionine, ethionine, valine, norvaline, leucine, norleucine, glutamic acid-gamma-methyl ester, histidine, phenylalanine, and also

  18. The nociceptin pharmacophore site for opioid receptor binding derived from the NMR structure and bioactivity relationships.

    PubMed

    Orsini, Michael J; Nesmelova, Irina; Young, Helen C; Hargittai, Balazs; Beavers, Mary Pat; Liu, Jingchun; Connolly, Peter J; Middleton, Steven A; Mayo, Kevin H

    2005-03-04

    Nociceptin, a 17 amino acid opioid-like peptide that has an inhibitory effect on synaptic transmission in the nervous system, is involved in learning, memory, attention, and emotion and is also implicated in the perception of pain and visual, auditory, and olfactory functions. In this study, we investigated the NMR solution structure of nociceptin in membrane-like environments (trifluoroethanol and SDS micelles) and found it to have a relatively stable helix conformation from residues 4-17 with functionally important N-terminal residues being folded aperidoically on top of the helix. In functional assays for receptor binding and calcium flux, alanine-scanning variants of nociceptin indicated that functionally important residues generally followed helix periodicity, consistent with the NMR structural model. Structure-activity relationships allowed identification of pharmacophore sites that were used in small molecule data base searches, affording hits with demonstrated nociceptin receptor binding affinities.

  19. Discovery of a novel allosteric modulator of 5-HT3 receptors: inhibition and potentiation of Cys-loop receptor signaling through a conserved transmembrane intersubunit site.

    PubMed

    Trattnig, Sarah M; Harpsøe, Kasper; Thygesen, Sarah B; Rahr, Louise M; Ahring, Philip K; Balle, Thomas; Jensen, Anders A

    2012-07-20

    The ligand-gated ion channels in the Cys-loop receptor superfamily mediate the effects of neurotransmitters acetylcholine, serotonin, GABA, and glycine. Cys-loop receptor signaling is susceptible to modulation by ligands acting through numerous allosteric sites. Here we report the discovery of a novel class of negative allosteric modulators of the 5-HT(3) receptors (5-HT(3)Rs). PU02 (6-[(1-naphthylmethyl)thio]-9H-purine) is a potent and selective antagonist displaying IC(50) values of ~1 μM at 5-HT(3)Rs and substantially lower activities at other Cys-loop receptors. In an elaborate mutagenesis study of the 5-HT(3)A receptor guided by a homology model, PU02 is demonstrated to act through a transmembrane intersubunit site situated in the upper three helical turns of TM2 and TM3 in the (+)-subunit and TM1 and TM2 in the (-)-subunit. The Ser(248), Leu(288), Ile(290), Thr(294), and Gly(306) residues are identified as important molecular determinants of PU02 activity with minor contributions from Ser(292) and Val(310), and we propose that the naphthalene group of PU02 docks into the hydrophobic cavity formed by these. Interestingly, specific mutations of Ser(248), Thr(294), and Gly(306) convert PU02 into a complex modulator, potentiating and inhibiting 5-HT-evoked signaling through these mutants at low and high concentrations, respectively. The PU02 binding site in the 5-HT(3)R corresponds to allosteric sites in anionic Cys-loop receptors, which emphasizes the uniform nature of the molecular events underlying signaling through the receptors. Moreover, the dramatic changes in the functional properties of PU02 induced by subtle changes in its binding site bear witness to the delicate structural discrimination between allosteric inhibition and potentiation of Cys-loop receptors.

  20. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36.

    PubMed

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127-279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127-279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions.

  1. Three Dimensional Structure Prediction of Fatty Acid Binding Site on Human Transmembrane Receptor CD36

    PubMed Central

    Tarhda, Zineb; Semlali, Oussama; Kettani, Anas; Moussa, Ahmed; Abumrad, Nada A.; Ibrahimi, Azeddine

    2013-01-01

    CD36 is an integral membrane protein which is thought to have a hairpin-like structure with alpha-helices at the C and N terminals projecting through the membrane as well as a larger extracellular loop. This receptor interacts with a number of ligands including oxidized low density lipoprotein and long chain fatty acids (LCFAs). It is also implicated in lipid metabolism and heart diseases. It is therefore important to determine the 3D structure of the CD36 site involved in lipid binding. In this study, we predict the 3D structure of the fatty acid (FA) binding site [127–279 aa] of the CD36 receptor based on homology modeling with X-ray structure of Human Muscle Fatty Acid Binding Protein (PDB code: 1HMT). Qualitative and quantitative analysis of the resulting model suggests that this model was reliable and stable, taking in consideration over 97.8% of the residues in the most favored regions as well as the significant overall quality factor. Protein analysis, which relied on the secondary structure prediction of the target sequence and the comparison of 1HMT and CD36 [127–279 aa] secondary structures, led to the determination of the amino acid sequence consensus. These results also led to the identification of the functional sites on CD36 and revealed the presence of residues which may play a major role during ligand-protein interactions. PMID:24348024

  2. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    PubMed Central

    Abellán, P. Gómez; Santos, C. Gómez; Madrid, J. A.; Milagro, F. I.; Campion, J.; Martínez, J. A.; Luján, J. A.; Ordovás, J. M.; Garaulet, M.

    2015-01-01

    Introduction Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. Objective We investigated the ex vivo circadian behavior of leptin and its receptor expression in human adipose tissue (AT). Subjects and methods Visceral and subcutaneous abdominal AT biopsies (n = 6) were obtained from morbid obese women (BMI ≥ 40 kg/m2). Anthropometric variables and fasting plasma glucose, leptin, lipids and lipoprotein concentrations were determined. In order to investigate rhythmic expression pattern of leptin and its receptor, AT explants were cultured during 24-h and gene expression was analyzed at the following times: 08:00, 14:00, 20:00, 02:00 h, using quantitative real-time PCR. Results Leptin expression showed an oscillatory pattern that was consistent with circadian rhythm in cultured AT. Similar patterns were noted for the leptin receptor. Leptin showed its achrophase (maximum expression) during the night, which might be associated to a lower degree of fat accumulation and higher mobilization. When comparing both fat depots, visceral AT anticipated its expression towards afternoon and evening hours. Interestingly, leptin plasma values were associated with decreased amplitude of LEP rhythm. This association was lost when adjusting for waist circumference. Conclusion Circadian rhythmicity has been demonstrated in leptin and its receptor in human AT cultures in a site-specific manner. This new knowledge paves the way for a better understanding of the autocrine/paracrine role of leptin in human AT. PMID:22411388

  3. Molecuar model of the DNA interaction site for the cyclic AMP receptor protein.

    PubMed

    O'Neill, M C; Amass, K; de Crombrugghe, B

    1981-04-01

    A topological model of the DNA binding site for the cyclic AMP receptor protein (CRP) is presented. A consensus sequence drawn from the known CRP binding sites has several symmetrical subregions that are spatially resolved onto different faces of the DNA helix. Consideration of available biochemical and genetic data suggest one particular choice among the possible symmetrical arrangements. In this case, the sequence of its helical form presents nearly the same pattern of exposed base pairs on two faces of the helix. These two faces are separated by a helix angle of 72 degrees; the similar sequences that are exposed in the grooves occur in opposite orientations on the two faces. We propose that this inverted symmetry arrangement provides each of the identical subunits of the CRP with a similar recognition region within the overall site. In gal and ara, the site appears to accommodate a single molecule of the CRP; in lac, the site repeats the symmetrical arrangement and should accommodate two molecules of the CRP.

  4. Identification of a novel K311 ubiquitination site critical for androgen receptor transcriptional activity.

    PubMed

    McClurg, Urszula L; Cork, David M W; Darby, Steven; Ryan-Munden, Claudia A; Nakjang, Sirintra; Mendes Côrtes, Leticia; Treumann, Achim; Gaughan, Luke; Robson, Craig N

    2016-11-29

    The androgen receptor (AR) is the main driver of prostate cancer (PC) development and progression, and the primary therapeutic target in PC. To date, two functional ubiquitination sites have been identified on AR, both located in its C-terminal ligand binding domain (LBD). Recent reports highlight the emergence of AR splice variants lacking the LBD that can arise during disease progression and contribute to castrate resistance. Here, we report a novel N-terminal ubiquitination site at lysine 311. Ubiquitination of this site plays a role in AR stability and is critical for its transcriptional activity. Inactivation of this site causes AR to accumulate on chromatin and inactivates its transcriptional function as a consequence of inability to bind to p300. Additionally, mutation at lysine 311 affects cellular transcriptome altering the expression of genes involved in chromatin organization, signaling, adhesion, motility, development and metabolism. Even though this site is present in clinically relevant AR-variants it can only be ubiquitinated in cells when AR retains LBD suggesting a role for AR C-terminus in E2/E3 substrate recognition. We report that as a consequence AR variants lacking the LBD cannot be ubiquitinated in the cellular environment and their protein turnover must be regulated via an alternate pathway.

  5. A Simple Method for Improving Torsion Optimization of Ligand Molecules in Receptor Binding Sites.

    PubMed

    Che, Jianwei

    2005-07-01

    A simple but effective method is introduced for optimizing ligand molecules in torsion space within receptor binding sites. The algorithm makes use of geometric constraints of ligand molecules to search for energetically favorable conformations. It is applied to a conjugate gradient (CG) method as an example. During conformational energy optimization, new line search directions are modified according to the spatial span of rotational groups in ligand molecules. Significant improvements were observed in terms of the abilities both to recover global optimal structures and to obtain lower energy ensembles. This simple algorithm allows rapid implementation and can be incorporated into other conformational energy optimization techniques.

  6. QM/MM Model of the Mouse Olfactory Receptor MOR244-3 Validated by Site-Directed Mutagenesis Experiments

    PubMed Central

    Sekharan, Sivakumar; Ertem, Mehmed Z.; Zhuang, Hanyi; Block, Eric; Matsunami, Hiroaki; Zhang, Ruina; Wei, Jennifer N.; Pan, Yi; Batista, Victor S.

    2014-01-01

    Understanding structure/function relationships of olfactory receptors is challenging due to the lack of x-ray structural models. Here, we introduce a QM/MM model of the mouse olfactory receptor MOR244-3, responsive to organosulfur odorants such as (methylthio)methanethiol. The binding site consists of a copper ion bound to the heteroatoms of amino-acid residues H105, C109, and N202. The model is consistent with site-directed mutagenesis experiments and biochemical measurements of the receptor activation, and thus provides a valuable framework for further studies of the sense of smell at the molecular level. PMID:25185561

  7. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site

    PubMed Central

    Snell, Heather D.

    2015-01-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride’s positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound’s potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ. PMID:25829529

  8. Amiloride and GMQ Allosteric Modulation of the GABA-A ρ1 Receptor: Influences of the Intersubunit Site.

    PubMed

    Snell, Heather D; Gonzales, Eric B

    2015-06-01

    Amiloride, a diuretic used in the treatment of hypertension and congestive heart failure, and 2-guanidine-4-methylquinazoline (GMQ) are guanidine compounds that modulate acid-sensing ion channels. Both compounds have demonstrated affinity for a variety of membrane proteins, including members of the Cys-loop family of ligand-gated ion channels, such as the heteromeric GABA-A αβγ receptors. The actions of these guanidine compounds on the homomeric GABA-A ρ1 receptor remains unclear, especially in light of how many GABA-A αβγ receptor modulators have different effects in the GABA-A ρ1 receptors. We sought to characterize the influence of amiloride and GMQ on the human GABA-A ρ1 receptors using whole-cell patch-clamp electrophysiology. The diuretic amiloride potentiated the human GABA-A ρ1 GABA-mediated current, whereas GMQ antagonized the receptor. Furthermore, a GABA-A second transmembrane domain site, the intersubunit site, responsible for allosteric modulation in the heteromeric GABA-A receptors mediated amiloride's positive allosteric actions. In contrast, the mutation did not remove GMQ antagonism but only changed the guanidine compound's potency within the human GABA-A ρ1 receptor. Through modeling and introduction of point mutations, we propose that the GABA-A ρ1 intersubunit site plays a role in mediating the allosteric effects of amiloride and GMQ.

  9. Denosumab mimics the natural decoy receptor osteoprotegerin by interacting with its major binding site on RANKL.

    PubMed

    Schieferdecker, Aneta; Voigt, Mareike; Riecken, Kristoffer; Braig, Friederike; Schinke, Thorsten; Loges, Sonja; Bokemeyer, Carsten; Fehse, Boris; Binder, Mascha

    2014-08-30

    Bone homeostasis critically relies on the RANKL-RANK-OPG axis which can be targeted by the fully human monoclonal antibody denosumab in conditions with increased bone resporption such as bone metastases. The binding site and therefore the molecular mechanism by which this antibody inhibits RANKL has not been characterized so far. Here, we used random peptide phage display library screenings to identify the denosumab epitope on RANKL. Alignments of phage derived peptide sequences with RANKL suggested that this antibody recognized a linear epitope between position T233 and Y241. Mutational analysis confirmed the core residues as critical for this interaction. The spatial localization of this epitope on a 3-dimensional model of RANKL showed that it overlapped with the major binding sites of OPG and RANK on RANKL. We conclude that denosumab inhibits RANKL by both functional and molecular mimicry of the natural decoy receptor OPG.

  10. Multiple site receptor modeling with a minimal spanning tree combined with a Kohonen neural network

    NASA Astrophysics Data System (ADS)

    Hopke, Philip K.

    1999-12-01

    A combination of two pattern recognition methods has been developed that allows the generation of geographical emission maps form multivariate environmental data. In such a projection into a visually interpretable subspace by a Kohonen Self-Organizing Feature Map, the topology of the higher dimensional variables space can be preserved, but parts of the information about the correct neighborhood among the sample vectors will be lost. This can partly be compensated for by an additional projection of Prim's Minimal Spanning Tree into the trained neural network. This new environmental receptor modeling technique has been adapted for multiple sampling sites. The behavior of the method has been studied using simulated data. Subsequently, the method has been applied to mapping data sets from the Southern California Air Quality Study. The projection of a 17 chemical variables measured at up to 8 sampling sites provided a 2D, visually interpretable, geometrically reasonable arrangement of air pollution source sin the South Coast Air Basin.

  11. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  12. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  13. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    SciTech Connect

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  14. Identification of novel allosteric modulator binding sites in NMDA receptors: A molecular modeling study.

    PubMed

    Kane, Lucas T; Costa, Blaise M

    2015-09-01

    The dysfunction of N-methyl-d-Aspartate receptors (NMDARs), a subtype of glutamate receptors, is correlated with schizophrenia, stroke, and many other neuropathological disorders. However, not all NMDAR subtypes equally contribute towards these disorders. Since NMDARs composed of different GluN2 subunits (GluN2A-D) confer varied physiological properties and have different distributions in the brain, pharmacological agents that target NMDARs with specific GluN2 subunits have significant potential for therapeutic applications. In our previous research, we have identified a family of novel allosteric modulators that differentially potentiate and/or inhibit NMDARs of differing GluN2 subunit composition. To further elucidate their molecular mechanisms, in the present study, we have identified four potential binding sites for novel allosteric modulators by performing molecular modeling, docking, and in silico mutations. The molecular determinants of the modulator binding sites (MBS), analysis of particular MBS electrostatics, and the specific loss or gain of binding after mutations have revealed modulators that have strong potential affinities for specific MBS on given subunits and the role of key amino acids in either promoting or obstructing modulator binding. These findings will help design higher affinity GluN2 subunit-selective pharmaceuticals, which are currently unavailable to treat psychiatric and neurological disorders.

  15. Cross-neutralizing human anti-poliovirus antibodies bind the recognition site for cellular receptor

    PubMed Central

    Chen, Zhaochun; Fischer, Elizabeth R.; Kouiavskaia, Diana; Hansen, Bryan T.; Ludtke, Steven J.; Bidzhieva, Bella; Makiya, Michelle; Agulto, Liane; Purcell, Robert H.; Chumakov, Konstantin

    2013-01-01

    Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus. PMID:24277851

  16. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    SciTech Connect

    Nye, J.S.

    1988-01-01

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one class of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.

  17. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed Central

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-01-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine. Images PMID:3458258

  18. Mapping of the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor.

    PubMed

    Neumann, D; Barchan, D; Safran, A; Gershoni, J M; Fuchs, S

    1986-05-01

    Synthetic peptides and their respective antibodies have been used in order to map the alpha-bungarotoxin binding site within the alpha subunit of the acetylcholine receptor. By using antibodies to a synthetic peptide corresponding to residues 169-181 of the alpha subunit, we demonstrate that this sequence is included within the 18-kDa toxin binding fragment previously reported. Furthermore, the 18-kDa fragment was also found to bind a monoclonal antibody (5.5) directed against the cholinergic binding site. Sequential proteolysis of the acetylcholine receptor with trypsin, prior to Staphylococcus aureus V8 protease digestion, resulted in a 15-kDa toxin binding fragment that is included within the 18-kDa fragment but is shorter than it only at its carboxyl terminus. This 15-kDa fragment therefore initiates beyond Asp-152 and terminates in the region of Arg-313/Lys-314. In addition, experiments are reported that indicate that in the intact acetylcholine receptor, Cys-128 and/or Cys-142 are not crosslinked by disulfide bridges with any of the cysteines (at positions 192, 193, and 222) that reside in the 15-kDa toxin binding fragment. Finally, the synthetic dodecapeptide Lys-His-Trp-Val-Tyr-Tyr-Thr-Cys-Cys-Pro-Asp-Thr, which is present in the 15-kDa fragment (corresponding to residues 185-196 of the alpha subunit) was shown to bind alpha-bungarotoxin directly. This binding was completely inhibited by competition with d-tubocurarine.

  19. Identification and functional analysis of tomato BRI1 and BAK1 receptor kinase phosphorylation sites.

    PubMed

    Bajwa, Vikramjit S; Wang, Xiaofeng; Blackburn, R Kevin; Goshe, Michael B; Mitra, Srijeet K; Williams, Elisabeth L; Bishop, Gerard J; Krasnyanski, Sergei; Allen, George; Huber, Steven C; Clouse, Steven D

    2013-09-01

    Brassinosteroids (BRs) are plant hormones that are perceived at the cell surface by a membrane-bound receptor kinase, BRASSINOSTEROID INSENSITIVE1 (BRI1). BRI1 interacts with BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) to initiate a signal transduction pathway in which autophosphorylation and transphosphorylation of BRI1 and BAK1, as well as phosphorylation of multiple downstream substrates, play critical roles. Detailed mechanisms of BR signaling have been examined in Arabidopsis (Arabidopsis thaliana), but the role of BRI1 and BAK1 phosphorylation in crop plants is unknown. As a foundation for understanding the mechanism of BR signaling in tomato (Solanum lycopersicum), we used liquid chromatography-tandem mass spectrometry to identify multiple in vitro phosphorylation sites of the tomato BRI1 and BAK1 cytoplasmic domains. Kinase assays showed that both tomato BRI1 and BAK1 are active in autophosphorylation as well as transphosphorylation of each other and specific peptide substrates with a defined sequence motif. Site-directed mutagenesis revealed that the highly conserved kinase domain activation loop residue threonine-1054 was essential for tomato BRI1 autophosphorylation and peptide substrate phosphorylation in vitro. Furthermore, analysis of transgenic lines expressing full-length tomato BRI1-Flag constructs in the weak tomato bri1 allele, curl3(-abs1), demonstrated that threonine-1054 is also essential for normal BRI1 signaling and tomato growth in planta. Finally, we cloned the tomato ortholog of TGF-β Receptor Interacting Protein (TRIP1), which was previously shown to be a BRI1-interacting protein and kinase domain substrate in Arabidopsis, and found that tomato TRIP1 is a substrate of both tomato BRI1 and BAK1 kinases in vitro.

  20. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    PubMed Central

    Cao, Yangrong; Cho, Sung-Hwan; Xu, Dong; Stacey, Gary

    2016-01-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecular interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. The in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues. PMID:27583834

  1. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    PubMed

    Koland, John G

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  2. Coarse-Grained Molecular Simulation of Epidermal Growth Factor Receptor Protein Tyrosine Kinase Multi-Site Self-Phosphorylation

    PubMed Central

    Koland, John G.

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  3. The thrombin receptor extracellular domain contains sites crucial for peptide ligand-induced activation.

    PubMed Central

    Bahou, W F; Coller, B S; Potter, C L; Norton, K J; Kutok, J L; Goligorsky, M S

    1993-01-01

    A thrombin receptor (TR) demonstrating a unique activation mechanism has recently been isolated from a megakaryocytic (Dami) cell line. To further study determinants of peptide ligand-mediated activation phenomenon, we have isolated, cloned, and stably expressed the identical receptor from a human umbilical vein endothelial cell (HUVEC) library. Chinese hamster ovary (CHO) cells expressing a functional TR (CHO-TR), platelets, and HUVECs were then used to specifically characterize alpha-thrombin- and peptide ligand-induced activation responses using two different antibodies: anti-TR34-52 directed against a 20-amino acid peptide spanning the thrombin cleavage site, and anti-TR1-160 generated against the NH2-terminal 160 amino acids of the TR expressed as a chimeric protein in Escherichia coli. Activation-dependent responses to both alpha-thrombin (10 nM) and peptide ligand (20 microM) were studied using fura 2-loaded cells and microspectrofluorimetry. Whereas preincubation of CHO-TR with anti-TR34-52 abolished only alpha-thrombin-induced [Ca2+]i transients, preincubation with anti-TR1-160 abrogated both alpha-thrombin- and peptide ligand-induced responses. This latter inhibitory effect was dose dependent and similar for both agonists, with an EC50 of approximately 90 micrograms/ml. Anti-TR1-160 similarly abolished peptide ligand-induced [Ca2+]i transients in platelets and HUVECs, whereas qualitatively different responses characterized by delayed but sustained elevations in [Ca2+]i transients were evident using alpha-thrombin. Platelet aggregation to low concentrations of both ligands was nearly abolished by anti-TR1-160, although some shape change remained; anti-TR34-52 only inhibited alpha-thrombin-induced aggregation. These data establish that a critical recognition sequence for peptide ligand-mediated receptor activation is contained on the NH2-terminal portion of the receptor, upstream from the first transmembrane domain. Furthermore, alpha

  4. Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region.

    PubMed

    Payvar, F; DeFranco, D; Firestone, G L; Edgar, B; Wrange, O; Okret, S; Gustafsson, J A; Yamamoto, K R

    1983-12-01

    Glucocorticoid receptor protein stimulates transcription initiation within murine mammary tumor virus (MTV) DNA sequences in vivo, and interacts selectively with MTV DNA in vitro. We mapped and compared five regions of MTV DNA that are bound specifically by purified receptor; one resides upstream of the transcription start site, and the others are distributed within transcribed sequences between 4 and 8 kb from the initiation site. Each region contains at least two strong binding sites for receptor, which itself appears to be a tetramer of 94,000 dalton hormone-binding subunits. Three of the five binding regions contain nine nuclease footprints that lack extensive homology, although a family of related octanucleotides can be discerned. Receptor interacts with the different regions with similar efficiencies, suggesting that receptor affinity for upstream and internal regions may differ by less than one order of magnitude. Moreover, each region appears to be bound independent of the others. A restriction fragment containing four footprint sequences from one of the regions has previously been shown to act in vivo as a receptor-dependent transcriptional enhancer element, implying that the binding sites detected in vitro may be biologically functional.

  5. ACE-Asia: Size Resolved Sampling of Aerosols on the Ronald H Brown and US Western Receptor Sites

    NASA Astrophysics Data System (ADS)

    Jimenez-Cruz, M. P.; Cliff, S. S.; Perry, K. D.; Cahill, T. A.; Bates, T. S.

    2001-12-01

    The ACE (Aerosol Characterization Experiment)-Asia project was pre-dominantly performed during the spring of 2001. In addition to the core Asian sampling sites, we sampled at 4 Western US receptor sites. The receptor sites include, Mauna Loa Observatory, Hawaii, Crater Lake Oregon, Adak Island, Alaska and Rattlesnake Mountain, Washington. A small subset of sites (Rattlesnake Mtn., MLO, and Asian sites) continued during a 6-week intensive summer study. For the spring study, an 8-stage DRUM impactor also sampled aboard the NOAA ship RV Ronald H Brown, and mix of 8- and 3-DRUM impactors were used at the western US receptor sites. The impactors are capable of size-segregated, time-resolved aerosol collection. The size categories for the 8-DRUM are inlet-5.00, 5.00-2.50, 2.50-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-.026, 0.26-.09 microns and 3-DRUM: 2.50-1.10, 1.10-0.34, 0.34-0.12 microns. These samples were analyzed in 6 hour time bites using synchrotron-XRF for quantitative composition for elements sodium through uranium, when present. A major dust event occurring around April 13 was detected at all receptor sites. Comparisons of key elemental ratios and conservative tracers will be presented.

  6. Interaction of tryptamine and ergoline compounds with threonine 196 in the ligand binding site of the 5-hydroxytryptamine6 receptor.

    PubMed

    Boess, F G; Monsma, F J; Meyer, V; Zwingelstein, C; Sleight, A J

    1997-09-01

    We examined the ligand-binding site of the 5-hydroxytryptamine6 (5-HT6) receptor using site-directed mutagenesis. Interactions with residues in two characteristic positions of trans-membrane region V are important for ligand binding in several bioamine receptors. In the 5-HT6 receptor, one of these residues is a threonine (Thr196), whereas in most other mammalian 5-HT receptors, the corresponding residue is alanine. After transient expression in human embryonic kidney 293 cells, we determined the effects of the mutation T196A on [3H]d-lysergic acid diethylamide (LSD) binding and adenylyl cyclase stimulation. This mutation produced a receptor with a 10-fold reduced affinity for [3H]LSD and a 6-fold reduced affinity for 5-HT. The potency of both LSD and 5-HT for stimulation of adenylyl cyclase was also reduced by 18- and 7-fold, respectively. The affinity of other N1-unsubstituted ergolines (e.g., ergotamine, lisuride) was reduced 10-30 fold, whereas the affinity of N1-methylated ergolines (e.g., metergoline, methysergide, mesulergine) and other ligands, such as methiothepine, clozapine, ritanserin, amitriptyline, and mainserin, changed very little or increased. This indicates that in wild-type 5-HT6 receptor, Thr196 interacts with the N1 of N1-unsubstituted ergolines and tryptamines, probably forming a hydrogen bond. Based on molecular modeling, a serine residue in transmembrane region IV of the 5-HT2A receptor has previously been proposed to interact with the N1-position of 5-HT. When the corresponding residue of the 5-HT6 receptor (Ala154) was converted to serine, no change in the affinity of twelve 5-HT6 receptor ligands or in the potency of 5-HT and LSD could be detected, suggesting that this position does not contribute to the ligand binding site of the 5-HT6 receptor.

  7. Activation of a GTP-binding protein and a GTP-binding-protein-coupled receptor kinase (beta-adrenergic-receptor kinase-1) by a muscarinic receptor m2 mutant lacking phosphorylation sites.

    PubMed

    Kameyama, K; Haga, K; Haga, T; Moro, O; Sadée, W

    1994-12-01

    A mutant of the human muscarinic acetylcholine receptor m2 subtype (m2 receptor), lacking a large part of the third intracellular loop, was expressed and purified using the baculovirus/insect cell culture system. The mutant was not phosphorylated by beta-adrenergic-receptor kinase, as expected from the previous assignment of phosphorylation sites to the central part of the third intracellular loop. However, the m2 receptor mutant was capable of stimulating beta-adrenergic-receptor-kinase-1-mediated phosphorylation of a glutathione S-transferase fusion protein containing the m2 phosphorylation sites in an agonist-dependent manner. Both mutant and wild-type m2 receptors reconstituted with the guanine-nucleotide-binding regulatory proteins (G protein), G(o) and G(i)2, displayed guanine-nucleotide-sensitive high-affinity agonist binding, as assessed by displacement of [3H]quinuclidinyl-benzilate binding with carbamoylcholine, and both stimulated guanosine 5'-3-O-[35S]thiotriphosphate ([35S]GTP[S]) binding in the presence of carbamoylcholine and GDP. The Ki values of carbamoylcholine effects on [3H]quinuclidinyl-benzilate binding were indistinguishable for the mutant and wild-type m2 receptors. Moreover, the phosphorylation of the wild-type m2 receptor by beta-adrenergic-receptor kinase-1 did not affect m2 interaction with G proteins as assessed by the binding of [3H]quinuclidinyl benzilate or [35S]GTP[S]. These results indicate that (a) the m2 receptor serves both as an activator and as a substrate of beta-adrenergic-receptor kinase, and (b) a large part of the third intracellular loop of the m2 receptor does not contribute to interaction with G proteins and its phosphorylation by beta-adrenergic-receptor kinase does not uncouple the receptor and G proteins in reconstituted lipid vesicles.

  8. Targeting extracellular domains D4 and D7 of vascular endothelial growth factor receptor 2 reveals allosteric receptor regulatory sites.

    PubMed

    Hyde, Caroline A C; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H Kaspar; Ballmer-Hofer, Kurt

    2012-10-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory "designed ankyrin repeat proteins" (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies.

  9. Targeting Extracellular Domains D4 and D7 of Vascular Endothelial Growth Factor Receptor 2 Reveals Allosteric Receptor Regulatory Sites

    PubMed Central

    Hyde, Caroline A. C.; Giese, Alexandra; Stuttfeld, Edward; Abram Saliba, Johan; Villemagne, Denis; Schleier, Thomas; Binz, H. Kaspar

    2012-01-01

    Vascular endothelial growth factors (VEGFs) activate three receptor tyrosine kinases, VEGFR-1, -2, and -3, which regulate angiogenic and lymphangiogenic signaling. VEGFR-2 is the most prominent receptor in angiogenic signaling by VEGF ligands. The extracellular part of VEGF receptors consists of seven immunoglobulin homology domains (Ig domains). Earlier studies showed that domains 2 and 3 (D23) mediate ligand binding, while structural analysis of dimeric ligand/receptor complexes by electron microscopy and small-angle solution scattering revealed additional homotypic contacts in membrane-proximal Ig domains D4 and D7. Here we show that D4 and D7 are indispensable for receptor signaling. To confirm the essential role of these domains in signaling, we isolated VEGFR-2-inhibitory “designed ankyrin repeat proteins” (DARPins) that interact with D23, D4, or D7. DARPins that interact with D23 inhibited ligand binding, receptor dimerization, and receptor kinase activation, while DARPins specific for D4 or D7 did not prevent ligand binding or receptor dimerization but effectively blocked receptor signaling and functional output. These data show that D4 and D7 allosterically regulate VEGFR-2 activity. We propose that these extracellular-domain-specific DARPins represent a novel generation of receptor-inhibitory drugs for in vivo applications such as targeting of VEGFRs in medical diagnostics and for treating vascular pathologies. PMID:22801374

  10. Mapping of scorpion toxin receptor sites at voltage-gated sodium channels.

    PubMed

    Gurevitz, Michael

    2012-09-15

    Scorpion alpha and beta toxins interact with voltage-gated sodium channels (Na(v)s) at two pharmacologically distinct sites. Alpha toxins bind at receptor site-3 and inhibit channel inactivation, whereas beta toxins bind at receptor site-4 and shift the voltage-dependent activation toward more hyperpolarizing potentials. The two toxin classes are subdivided to distinct pharmacological groups according to their binding preferences and ability to compete for the receptor sites at Na(v) subtypes. To elucidate the toxin-channel surface of interaction at both receptor sites and clarify the molecular basis of varying toxin preferences, an efficient bacterial system for their expression in recombinant form was established. Mutagenesis accompanied by toxicity, binding and electrophysiological assays, in parallel to determination of the three-dimensional structure using NMR and X-ray crystallography uncovered a bipartite bioactive surface in toxin representatives of all pharmacological groups. Exchange of external loops between the mammalian brain channel rNa(v)1.2a and the insect channel DmNa(v)1 highlighted channel regions involved in the varying sensitivity to assorted toxins. In parallel, thorough mutagenesis of channel external loops illuminated points of putative interaction with the toxins. Amino acid substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain II of rNa(v)1.2a had prominent impact on the activity of the beta-toxin Css4 (from Centruroides suffusus suffusus), and substitutions at external loops S1-S2 and S3-S4 of the voltage sensor module in domain IV affected the activity of the alpha-toxin Lqh2 (from Leiurus quinquestriatus hebraeus). Rosetta modeling of toxin-Na(v) interaction using the voltage sensor module of the potassium channel as template raises commonalities in the way alpha and beta toxins interact with the channel. Css4 interacts with rNa(v)1.2a at a crevice between S1-S2 and S3-S4 transmembrane segments in domain

  11. The peptide agonist-binding site of the glucagon-like peptide-1 (GLP-1) receptor based on site-directed mutagenesis and knowledge-based modelling.

    PubMed

    Dods, Rachel L; Donnelly, Dan

    2015-11-23

    Glucagon-like peptide-1 (7-36)amide (GLP-1) plays a central role in regulating blood sugar levels and its receptor, GLP-1R, is a target for anti-diabetic agents such as the peptide agonist drugs exenatide and liraglutide. In order to understand the molecular nature of the peptide-receptor interaction, we used site-directed mutagenesis and pharmacological profiling to highlight nine sites as being important for peptide agonist binding and/or activation. Using a knowledge-based approach, we constructed a 3D model of agonist-bound GLP-1R, basing the conformation of the N-terminal region on that of the receptor-bound NMR structure of the related peptide pituitary adenylate cyclase-activating protein (PACAP21). The relative position of the extracellular to the transmembrane (TM) domain, as well as the molecular details of the agonist-binding site itself, were found to be different from the model that was published alongside the crystal structure of the TM domain of the glucagon receptor, but were nevertheless more compatible with published mutagenesis data. Furthermore, the NMR-determined structure of a high-potency cyclic conformationally-constrained 11-residue analogue of GLP-1 was also docked into the receptor-binding site. Despite having a different main chain conformation to that seen in the PACAP21 structure, four conserved residues (equivalent to His-7, Glu-9, Ser-14 and Asp-15 in GLP-1) could be structurally aligned and made similar interactions with the receptor as their equivalents in the GLP-1-docked model, suggesting the basis of a pharmacophore for GLP-1R peptide agonists. In this way, the model not only explains current mutagenesis and molecular pharmacological data but also provides a basis for further experimental design.

  12. Analysis of digitalis genin receptor site in Na,K-ATPase

    SciTech Connect

    Ahmed, K.; McParland, R.; Becker, R.; From, A.; Fullerton, D.S.

    1987-05-01

    Na,K-ATPase is believed to be the receptor for digitalis glycosides, with binding site located in the ..cap alpha..-subunit. To identify this binding site, the enzyme was covalently labeled with a photoactive probe localized in C17 side group of the cardenolide ((/sup 3/H)24-azidodigitoxoside). /sup 3/H-labeled ..cap alpha..-subunit was purified, and subjected to trypsin digestion. Fractions containing /sup 3/H-labeled material were pooled. Amino acid sequence analysis of this material suggested the presence of two peptides (residues 68-146; residues 263-342). Additional studies have employed purification of the /sup 3/H-labeled material by chromatography on Sepharose-6B, and CNBr cleavage followed by chromatography on hydroxylapatite. Amino acid sequence analysis of the purified /sup 3/H-labeled peptide thus isolated indicated sequence containing amino acid residues 263-342. These data suggest that this is the peptide containing the digitalis genin binding site, and rule out such a role for the other peptide (amino acids 68 - 146). Preliminary data also hint that binding of the /sup 3/H-probe occurs at the leu residue in the sequence glu tyr thr try leu glu .. present in the peptide containing residues 263 - 342.

  13. Sequences flanking the core-binding site modulate glucocorticoid receptor structure and activity

    PubMed Central

    Schöne, Stefanie; Jurk, Marcel; Helabad, Mahdi Bagherpoor; Dror, Iris; Lebars, Isabelle; Kieffer, Bruno; Imhof, Petra; Rohs, Remo; Vingron, Martin; Thomas-Chollier, Morgane; Meijsing, Sebastiaan H.

    2016-01-01

    The glucocorticoid receptor (GR) binds as a homodimer to genomic response elements, which have particular sequence and shape characteristics. Here we show that the nucleotides directly flanking the core-binding site, differ depending on the strength of GR-dependent activation of nearby genes. Our study indicates that these flanking nucleotides change the three-dimensional structure of the DNA-binding site, the DNA-binding domain of GR and the quaternary structure of the dimeric complex. Functional studies in a defined genomic context show that sequence-induced changes in GR activity cannot be explained by differences in GR occupancy. Rather, mutating the dimerization interface mitigates DNA-induced changes in both activity and structure, arguing for a role of DNA-induced structural changes in modulating GR activity. Together, our study shows that DNA sequence identity of genomic binding sites modulates GR activity downstream of binding, which may play a role in achieving regulatory specificity towards individual target genes. PMID:27581526

  14. The interleukin 1 (IL-1) receptor accessory protein Toll/IL-1 receptor domain: analysis of putative interaction sites in vitro mutagenesis and molecular modeling.

    PubMed

    Radons, Jurgen; Dove, Stefan; Neumann, Detlef; Altmann, Reinhold; Botzki, Alexander; Martin, Michael U; Falk, Werner

    2003-12-05

    The Toll/interleukin 1 (IL-1) receptor family plays an important role in both innate and adaptive immunity. These receptors are characterized by a C-terminal homology motif called the Toll/IL-1 receptor (TIR) domain. A principal function of the TIR domain is mediating homotypic protein-protein interactions in the signal transduction pathway. To suggest interaction sites of TIR domains in the IL-1 receptor complex, we modeled the putative three-dimensional structure of the TIR domain within the co-receptor chain, IL-1 receptor accessory protein. The model was based on homology with the crystal structures of human TLR1 and TLR2. The final structure of the IL-1 receptor accessory protein TIR domain suggests the conserved regions box 1 and 2, including Pro-446, as well as box 3 within the C-terminal alpha-helix as possible protein-protein interaction sites due to their exposure and their electrostatic potential. Pro-446, corresponding to the Pro/His mutation in dominant negative TLR4, is located in the third loop at the outmost edge of the TIR domain and does not play any structural role. Inhibition of IL-1 responsiveness seen after substitution of Pro-446 by charged amino acids is due to the loss of an interaction site for other TIR domains. Amino acids 527-534 as part of the loop close to the conserved box 3 are critical for recruitment of myeloid differentiation factor 88 and to a lesser extent for IL-1 responsiveness. Modeling suggests that native folding of the TIR domain may be approached by the responsive deletion mutants delta528-534 and delta527-533, whereas the C-terminal beta-strand and/or alpha-helix is displaced in the nonresponsive mutant delta527-534.

  15. Distinct Phosphorylation Sites on the β2-Adrenergic Receptor Establish a Barcode That Encodes Differential Functions of β-Arrestin

    PubMed Central

    Nobles, Kelly N.; Xiao, Kunhong; Ahn, Seungkirl; Shukla, Arun K.; Lam, Christopher M.; Rajagopal, Sudarshan; Strachan, Ryan T.; Huang, Teng-Yi; Bressler, Erin A.; Hara, Makoto R.; Shenoy, Sudha K.; Gygi, Steven P.; Lefkowitz, Robert J.

    2012-01-01

    Phosphorylation of G protein–coupled receptors (GPCRs, which are also known as seven-transmembrane spanning receptors) by GPCR kinases (GRKs) plays essential roles in the regulation of receptor function by promoting interactions of the receptors with β-arrestins. These multifunctional adaptor proteins desensitize GPCRs, by reducing receptor coupling to G proteins and facilitating receptor internalization, and mediate GPCR signaling through β-arrestin–specific pathways. Detailed mapping of the phosphorylation sites on GPCRs targeted by individual GRKs and an understanding of how these sites regulate the specific functional consequences of β-arrestin engagement may aid in the discovery of therapeutic agents targeting individual β-arrestin functions. The β2-adrenergic receptor (β2AR) has many serine and threonine residues in the carboxyl-terminal tail and the intracellular loops, which are potential sites of phosphorylation. We monitored the phosphorylation of the β2AR at specific sites upon stimulation with an agonist that promotes signaling by both G protein–mediated and β-arrestin–mediated pathways or with a biased ligand that promotes signaling only through β-arrestin–mediated events in the presence of the full complement of GRKs or when either GRK2 or GRK6 was depleted. We correlated the specific and distinct patterns of receptor phosphorylation by individual GRKs with the functions of β-arrestins and propose that the distinct phosphorylation patterns established by different GRKs establish a “barcode” that imparts distinct conformations to the recruited β-arrestin, thus regulating its functional activities. PMID:21868357

  16. Repeated administration of desipramine and a GABAB receptor antagonist, CGP 36742, discretely up-regulates GABAB receptor binding sites in rat frontal cortex.

    PubMed Central

    Pratt, G. D.; Bowery, N. G.

    1993-01-01

    1. GABAB receptor binding site densities within laminar regions of the rat frontal cortex were examined autoradiographically following repeated administration (21 days) of the antidepressants desipramine, paroxetine and amitriptyline in addition to the GABAB receptor antagonists, CGP 35348 and CGP 36742. beta 1-Adrenoceptor autoradiography was studied in parallel with that for GABAB receptor sites. 2. The effects of these compounds were examined concomitantly on the GABAB receptor-mediated inhibition of forskolin- and enhancement of noradrenaline-stimulated cyclic AMP production. 3. GABAB receptor binding was increased by both desipramine (20 mg kg-1, p.o. and 10 mg kg-1, i.p.) and CGP 36742 (100 mg kg-1, i.p.) in the outer laminar region of the frontal cortex by around 50% above control levels. Conversely, no significant changes were mediated by paroxetine, amitriptyline, CGP 35348 or the GABAB receptor agonist, baclofen. 4. With the exception of paroxetine, all compounds down-regulated the total beta-adrenoceptor population throughout frontal cortical laminae which was attributable to the beta 1-adrenoceptor subtype. In contrast, the reduction in beta-adrenoceptors mediated by CGP 35348 and CGP 36742 did not occur as a consequence of reduced beta 1-adrenoceptor numbers. 5. Protracted treatment with CGP 35348, failed to influence forskolin-stimulated cyclic AMP production; however, a significant increase in the accumulation of cyclic AMP produced in response to forskolin was seen after treatment with CGP 36742. 6. Such discretely localized changes in GABAB receptor densities induced by desipramine and CGP 36742 may provide an explanation for the discrepancies reported in membrane binding studies and possibly implicate a role for GABAB receptor antagonists in antidepressant therapy. Images Figure 1 Figure 3 PMID:8242244

  17. Concanavalin A and ricinus communis receptor sites in normal human oral mucosa.

    PubMed

    Dabelsteen, E; Fejerskov, O; Norén, O; Mackenzie, I C

    1978-01-01

    Fluorescein conjugates of concanavalin A (Con-A) and Ricinus communis fraction 120 (RCA120) were shown to bind to the cell surfaces of basal and spinous cell layers in oral buccal mucosa. Palatal epithelium showed distinct binding to basal and spinous cells; cell membranes in the granular layer occasionally bound Con-A and always RCA120. The ultrastructural localization of Con-A binding sites on exfoliated buccal cells was detected by the Con-A peroxidase staining method. The Con-A receptors were seen on the cell surface in association with the outer leaflet of the plasma membrane. The reaction products appeared as a homogeneous, electron-dense layer containing irregularly distributed globules.

  18. Single-Channel Current Through Nicotinic Receptor Produced by Closure of Binding Site C-Loop

    SciTech Connect

    Wang, Hailong; Cheng, Xiaolin; McCammon, Jonathan

    2009-01-01

    We investigated the initial coupling of agonist binding to channel gating of the nicotinic acetylcholine receptor using targeted molecular-dynamics (TMD) simulation. After TMD simulation to accelerate closure of the C-loops at the agonist binding sites, the region of the pore that passes through the cell membrane expands. To determine whether the structural changes in the pore result in ion conduction, we used a coarse-grained ion conduction simulator, Biology Boltzmann transport Monte Carlo, and applied it to two structural frames taken before and after TMD simulation. The structural model before TMD simulation represents the channel in the proposed resting state, whereas the model after TMD simulation represents the channel in the proposed active state. Under external voltage biases, the channel in the active state was permeable to cations. Our simulated ion conductance approaches that obtained experimentally and recapitulates several functional properties characteristic of the nicotinic acetylcholine receptor. Thus, closure of the C-loop triggers a structural change in the channel sufficient to account for the open channel current. This approach of applying Biology Boltzmann transport Monte Carlo simulation can be used to further investigate the binding to gating transduction mechanism and the structural bases for ion selection and translocation.

  19. Oxytocin receptor binding sites in the periphery of the neonatal mouse

    PubMed Central

    Greenwood, Maria A.

    2017-01-01

    Oxytocin (OXT) is a pleiotropic regulator of physiology and behavior. An emerging body of evidence demonstrates a role for OXT in the transition to postnatal life of the infant. To identify potential sites of OXT action via the OXT receptor (OXTR) in the newborn mouse, we performed receptor autoradiography on 20 μm sagittal sections of whole postnatal day 0 male and female mice on a C57BL/6J background using the 125iodinated ornithine vasotocin analog ([125I]-OVTA) radioligand. A competitive binding assay on both wild-type (WT) and OXTR knockout (OXTR KO) tissue was used to assess the selectivity of [125I]-OVTA for neonatal OXTR. Radioactive ligand (0.05 nM [125I]-OVTA) was competed against concentrations of 0 nM, 10 nM, and 1000 nM excess unlabeled OXT. Autoradiographs demonstrated the high selectivity of the radioligand for infant peripheral OXTR. Specific ligand binding activity for OXTR was observed in the oronasal cavity, the eye, whisker pads, adrenal gland, and anogenital region in the neonatal OXTR WT mouse, but was absent in neonatal OXTR KO. Nonspecific binding was observed in areas with a high lipid content such as the scapular brown adipose tissue and the liver: in these regions, binding was present in both OXTR WT and KO mice, and could not be competed away with OXT in either WT or KO mice. Collectively, these data confirm novel OXT targets in the periphery of the neonate. These peripheral OXTR sites, coupled with the immaturity of the neonate’s own OXT system, suggest a role for exogenous OXT in modulating peripheral physiology and development. PMID:28235051

  20. Mapping the receptor site for α-scorpion toxins on a Na+ channel voltage sensor

    PubMed Central

    Wang, Jinti; Yarov-Yarovoy, Vladimir; Kahn, Roy; Gordon, Dalia; Gurevitz, Michael; Scheuer, Todd; Catterall, William A.

    2011-01-01

    The α-scorpions toxins bind to the resting state of Na+ channels and inhibit fast inactivation by interaction with a receptor site formed by domains I and IV. Mutants T1560A, F1610A, and E1613A in domain IV had lower affinities for Leiurus quinquestriatus hebraeus toxin II (LqhII), and mutant E1613R had ∼73-fold lower affinity. Toxin dissociation was accelerated by depolarization and increased by these mutations, whereas association rates at negative membrane potentials were not changed. These results indicate that Thr1560 in the S1-S2 loop, Phe1610 in the S3 segment, and Glu1613 in the S3-S4 loop in domain IV participate in toxin binding. T393A in the SS2-S6 loop in domain I also had lower affinity for LqhII, indicating that this extracellular loop may form a secondary component of the receptor site. Analysis with the Rosetta-Membrane algorithm resulted in a model of LqhII binding to the voltage sensor in a resting state, in which amino acid residues in an extracellular cleft formed by the S1-S2 and S3-S4 loops in domain IV interact with two faces of the wedge-shaped LqhII molecule. The conserved gating charges in the S4 segment are in an inward position and form ion pairs with negatively charged amino acid residues in the S2 and S3 segments of the voltage sensor. This model defines the structure of the resting state of a voltage sensor of Na+ channels and reveals its mode of interaction with a gating modifier toxin. PMID:21876146

  1. Exploration of the ligand binding site of the human 5-HT(4) receptor by site-directed mutagenesis and molecular modeling.

    PubMed

    Mialet, J; Dahmoune, Y; Lezoualc'h, F; Berque-Bestel, I; Eftekhari, P; Hoebeke, J; Sicsic, S; Langlois, M; Fischmeister, R

    2000-06-01

    Among the five human 5-HT(4) (h5-HT(4)) receptor isoforms, the h5-HT(4(a)) receptor was studied with a particular emphasis on the molecular interactions involved in ligand binding. For this purpose, we used site-directed mutagenesis of the transmembrane domain. Twelve mutants were constructed with a special focus on the residue P4.53 of helix IV which substitutes in h5-HT(4) receptors the highly conserved S residue among the rhodopsin family receptors. The mutated receptors were transiently expressed in COS-7 cells. Ligand binding or competition studies with two h5-HT(4) receptor agonists, serotonin and ML10302 and two h5-HT(4) receptor antagonists, [(3)H]-GR113808 and ML10375 were performed on wild type and mutant receptors. Functional activity of the receptors was evaluated by measuring the ability of serotonin to stimulate adenylyl cyclase. Ligand binding experiments revealed that [(3)H]-GR113808 did not bind to mutants P4.53A, S5.43A, F6.51A, Y7.43A and to double mutant F6.52V/N6.55L. On the other hand mutations D3.32N, S5.43A and Y7.43A appeared to promote a dramatic decrease of h5-HT(4(a)) receptor functional activity. From these studies, S5.43 and Y7.43 clearly emerged as common anchoring sites to antagonist [(3)H]-GR113808 and to serotonin. According to these results, we propose ligand-receptor complex models with serotonin and [(3)H]-GR113808. For serotonin, three interaction points were selected including ionic interaction with D3.32, a stabilizing interaction of this ion pair by Y7.43 and a hydrogen bond with S5.43. [(3)H]-GR113808 was also docked, based on the same type of interactions with S5.43 and D3.32: the proposed model suggested a possible role of P4.53 in helix IV structure allowing the involvement of a close hydrophobic residue, W4.50, in a hydrophobic pocket for hydrophobic interactions with the indole ring of [(3)H]-GR113808.

  2. Distribution of Unlinked Receptor Sites for Transposed Ac Elements from the Bz-M2(ac) Allele in Maize

    PubMed Central

    Dooner, H. K.; Belachew, A.; Burgess, D.; Harding, S.; Ralston, M.; Ralston, E.

    1994-01-01

    We have shown before that the Ac element from the maize bz-m2(Ac) allele, located in the short arm of chromosome 9 (9S), transposes preferentially to sites that are linked to the bz donor locus. Yet, about half of the Ac transpositions recovered from bz-m2(Ac) are in receptor sites not linked to the donor locus. In this study, we have analyzed the distribution of those unlinked receptor sites. Thirty-seven transposed Ac (trAc) elements that recombined independently of the bz locus were mapped using a set of wx reciprocal translocations. We found that the distribution of unlinked receptor sites for trAs was not random. Ten trAcs mapped to 9L, i.e., Ac had transposed to sites physically, if not genetically, linked to the donor site. Among chromosomes other than 9, the Ac element of bz-m2(Ac) appeared to have transposed preferentially to certain chromosomes, such as 5 and 7, but infrequently to others, such as 1, the longest chromosome in the maize genome. The seven trAc elements in chromosome 5 were mapped relative to markers in 5S and 5L and localized to both arms of 5. We also investigated the transposition of Ac to the homolog of the donor chromosome. We found that Ac rarely transposes from bz-m2(Ac) to the homologous chromosome 9. The clustering of Ac receptor sites around the donor locus has been taken to mean that a physical association between the donor site and nearby receptor sites occurs during transposition. The preferential occurrence of 9L among chromosomes harboring unlinked receptor sites would be expected according to this model, since sites in 9L would tend to be physically closer to 9S than sites in other chromosomes. The nonrandom pattern seen among the remaining chromosomes could reflect an underlying nuclear architecture, i.e., an ordering of the chromosomes in the interphase nucleus, as suggested from previous cytological observations. PMID:8138163

  3. Investigating the Role of Loop C Hydrophilic Residue ‘T244’ in the Binding Site of ρ1 GABAC Receptors via Site Mutation and Partial Agonism

    PubMed Central

    Naffaa, Moawiah M.; Absalom, Nathan; Solomon, V. Raja; Chebib, Mary; Hibbs, David E.; Hanrahan, Jane R.

    2016-01-01

    The loop C hydrophilic residue, threonine 244 lines the orthosteric binding site of ρ1 GABAC receptors was studied by point mutation into serine, alanine and cysteine, and tested with GABA, some representative partial agonists and antagonists. Thr244 has a hydroxyl group essential for GABA activity that is constrained by the threonine methyl group, orienting it toward the binding site. Significant decreases in activation effects of the studied ligands at ρ1 T244S mutant receptors, suggests a critical role for this residue. Results of aliphatic and heteroaromatic partial agonists demonstrate different pharmacological effects at ρ1 T244S mutant receptors when co-applied with GABA EC50 responses. ρ1 T244A and ρ1 T244C mutant receptors have minimal sensitivity to GABA at high mM concentrations, whereas, the ρ1 WT partial agonists, β-alanine and MTSEA demonstrate more efficacy and potency, respectively, than GABA at these mutant receptors. This study explores the role of Thr244 in the binding of agonists as an initial step during channel gating by moving loop C towards the ligand. PMID:27244450

  4. Receptor site topographies for phencyclidine-like and sigma drugs: predictions from quantitative conformational, electrostatic potential, and radioreceptor analyses.

    PubMed

    Manallack, D T; Wong, M G; Costa, M; Andrews, P R; Beart, P M

    1988-12-01

    Computer-assisted molecular modelling techniques and electrostatic analyses of a wide range of phenycyclidine (PCP) and sigma ligands, in conjunction with radioreceptor studies, were used to determine the topographies of the PCP and sigma receptors. The PCP receptor model was defined using key molecules from the arylcyclohexylamine, benzomorphan, bridged benz[f]isoquinoline, and dibenzocycloalkenimine drug classes. Hypothetical receptor points (R1, R2) were constructed onto the aromatic ring of each compound to represent hydrophobic interactions with the receptor, along with an additional receptor point (R3) representing a hydrogen bond between the nitrogen atom and the receptor. The superimposition of these key molecules gave the coordinates of the receptor points and nitrogen defining the primary PCP pharmacophore as follows: R1 (0.00, 3.50, 0.00), R2 (0.00, -3.50, 0.00), R3 (6.66, -1.13, 0.00), and N (3.90, -1.46, -0.32). Additional analyses were used to describe secondary binding sites for an additional hydrogen bonding site and two lipophilic clefts. Similarly, the sigma receptor model was constructed from ligands of the benzomorphan, octahydrobenzo[f]quinoline, phenylpiperidine, and diphenylguanidine drug classes. Coordinates for the primary sigma pharmacophore are as follows: R1 (0.00, 3.50, 0.00), R2 (0.00, -3.50, 0.00), R3 (6.09, 2.09, 0.00), and N (4.9, -0.12, -1.25). Secondary binding sites for sigma ligands were proposed for the interaction of aromatic ring substituents and large N-substituted lipophilic groups with the receptor. The sigma receptor model differs from the PCP model in the position of nitrogen atom, direction of the nitrogen lone pair vector, and secondary sigma binding sites. This study has thus demonstrated that the differing quantitative structure-activity relationships of PCP and sigma ligands allow the definition of discrete receptors. These models may be used in conjunction with rational drug design techniques to design novel PCP

  5. Using an α-bungarotoxin binding site tag to study GABA A receptor membrane localization and trafficking.

    PubMed

    Brady, Megan L; Moon, Charles E; Jacob, Tija C

    2014-03-28

    It is increasingly evident that neurotransmitter receptors, including ionotropic GABA A receptors (GABAAR), exhibit highly dynamic trafficking and cell surface mobility(1-7). To study receptor cell surface localization and endocytosis, the technique described here combines the use of fluorescent α-bungarotoxin with cells expressing constructs containing an α-bungarotoxin (Bgt) binding site (BBS). The BBS (WRYYESSLEPYPD) is based on the α subunit of the muscle nicotinic acetylcholine receptor, which binds Bgt with high affinity(8,9). Incorporation of the BBS site allows surface localization and measurements of receptor insertion or removal with application of exogenous fluorescent Bgt, as previously described in the tracking of GABAA and metabotropic GABAB receptors(2,10). In addition to the BBS site, we inserted a pH-sensitive GFP (pHGFP(11)) between amino acids 4 and 5 of the mature GABAAR subunit by standard molecular biology and PCR cloning strategies (see Figure 1)(12). The BBS is 3' of the pH-sensitive GFP reporter, separated by a 13-amino acid alanine/proline linker. For trafficking studies described in this publication that are based on fixed samples, the pHGFP serves as a reporter of total tagged GABAAR subunit protein levels, allowing normalization of the Bgt labeled receptor population to total receptor population. This minimizes cell to cell Bgt staining signal variability resulting from higher or lower baseline expression of the tagged GABAAR subunits. Furthermore the pHGFP tag enables easy identification of construct expressing cells for live or fixed imaging experiments.

  6. Identification of key phosphorylation sites in PTH1R that determine arrestin3 binding and fine-tune receptor signaling

    PubMed Central

    Zindel, Diana; Engel, Sandra; Bottrill, Andrew R.; Pin, Jean-Philippe; Prézeau, Laurent; Tobin, Andrew B.; Bünemann, Moritz; Krasel, Cornelius; Butcher, Adrian J.

    2016-01-01

    The parathyroid hormone receptor 1 (PTH1R) is a member of family B of G-protein-coupled receptors (GPCRs), predominantly expressed in bone and kidney where it modulates extracellular Ca2+ homeostasis and bone turnover. It is well established that phosphorylation of GPCRs constitutes a key event in regulating receptor function by promoting arrestin recruitment and coupling to G-protein-independent signaling pathways. Mapping phosphorylation sites on PTH1R would provide insights into how phosphorylation at specific sites regulates cell signaling responses and also open the possibility of developing therapeutic agents that could target specific receptor functions. Here, we have used mass spectrometry to identify nine sites of phosphorylation in the C-terminal tail of PTH1R. Mutational analysis revealed identified two clusters of serine and threonine residues (Ser489–Ser495 and Ser501–Thr506) specifically responsible for the majority of PTH(1–34)-induced receptor phosphorylation. Mutation of these residues to alanine did not affect negatively on the ability of the receptor to couple to G-proteins or activate extracellular-signal-regulated kinase 1/2. Using fluorescence resonance energy transfer and bioluminescence resonance energy transfer to monitor PTH(1–34)-induced interaction of PTH1R with arrestin3, we show that the first cluster Ser489–Ser495 and the second cluster Ser501–Thr506 operated in concert to mediate both the efficacy and potency of ligand-induced arrestin3 recruitment. We further demonstrate that Ser503 and Thr504 in the second cluster are responsible for 70% of arrestin3 recruitment and are key determinants for interaction of arrestin with the receptor. Our data are consistent with the hypothesis that the pattern of C-terminal tail phosphorylation on PTH1R may determine the signaling outcome following receptor activation. PMID:27623777

  7. Carboxyl-terminal multi-site phosphorylation regulates internalization and desensitization of the human sst2 somatostatin receptor.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Schütz, Dagmar; Nagel, Falko; Stumm, Ralf; Schulz, Stefan

    2014-04-25

    The somatostatin receptor 2 (sst2) is the pharmacological target of somatostatin analogs that are widely used in the diagnosis and treatment of human neuroendocrine tumors. We have recently shown that the stable somatostatin analogs octreotide and pasireotide (SOM230) stimulate distinct patterns of sst2 receptor phosphorylation and internalization. Like somatostatin, octreotide promotes the phosphorylation of at least six carboxyl-terminal serine and threonine residues namely S341, S343, T353, T354, T356 and T359, which in turn leads to a robust receptor endocytosis. Unlike somatostatin, pasireotide stimulates a selective phosphorylation of S341 and S343 of the human sst2 receptor followed by a partial receptor internalization. Here, we show that exchange of S341 and S343 by alanine is sufficient to block pasireotide-driven internalization, whereas mutation of T353, T354, T356 and T359 to alanine is required to strongly inhibited both octreotide- and somatostatin-induced internalization. Yet, combined mutation of T353, T354, T356 and T359 is not sufficient to prevent somatostatin-driven β-arrestin mobilization and receptor desensitization. Replacement of all fourteen carboxyl-terminal serine and threonine residues by alanine completely abrogates sst2 receptor internalization and β-arrestin mobilization in HEK293 cells. Together, our findings demonstrate for the first time that agonist-selective sst2 receptor internalization is regulated by multi-site phosphorylation of its carboxyl-terminal tail.

  8. Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors

    PubMed Central

    Eaton, Megan M.; Cao, Lily Q.; Chen, Ziwei; Franks, Nicholas P.; Evers, Alex S.

    2015-01-01

    Propofol is a sedative and anesthetic agent that can both activate GABAA receptors and potentiate receptor activation elicited by submaximal concentrations of the transmitter. A recent modeling study of the β3 homomeric GABAA receptor postulated a high-affinity propofol binding site in a hydrophobic pocket in the middle of a triangular cleft lined by the M1 and M2 membrane-spanning domains of one subunit and the M2 domain of the neighboring subunit. The goal of the present study was to gain functional evidence for the involvement of this pocket in the actions of propofol. Human β3 and α1β3 receptors were expressed in Xenopus oocytes, and the effects of substitutions of selected residues were probed on channel activation by propofol and pentobarbital. The data demonstrate the vital role of the β3(Y143), β3(F221), β3(Q224), and β3(T266) residues in the actions of propofol but not pentobarbital in β3 receptors. The effects of β3(Y143W) and β3(Q224W) on activation by propofol are likely steric because propofol analogs with less bulky ortho substituents activated both wild-type and mutant receptors. The T266W mutation removed activation by propofol in β3 homomeric receptors; however, this mutation alone or in combination with a homologous mutation (I271W) in the α1 subunit had almost no effect on activation properties in α1β3 heteromeric receptors. We hypothesize that heteromeric α1β3 receptors can be activated by propofol interactions with β3–β3, α1–β3, and β3–α1 interfaces, but the exact locations of the binding site and/or nature of interactions vary in different classes of interfaces. PMID:26206487

  9. Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors.

    PubMed

    Eaton, Megan M; Cao, Lily Q; Chen, Ziwei; Franks, Nicholas P; Evers, Alex S; Akk, Gustav

    2015-10-01

    Propofol is a sedative and anesthetic agent that can both activate GABA(A) receptors and potentiate receptor activation elicited by submaximal concentrations of the transmitter. A recent modeling study of the β3 homomeric GABA(A) receptor postulated a high-affinity propofol binding site in a hydrophobic pocket in the middle of a triangular cleft lined by the M1 and M2 membrane-spanning domains of one subunit and the M2 domain of the neighboring subunit. The goal of the present study was to gain functional evidence for the involvement of this pocket in the actions of propofol. Human β3 and α1β3 receptors were expressed in Xenopus oocytes, and the effects of substitutions of selected residues were probed on channel activation by propofol and pentobarbital. The data demonstrate the vital role of the β3(Y143), β3(F221), β3(Q224), and β3(T266) residues in the actions of propofol but not pentobarbital in β3 receptors. The effects of β3(Y143W) and β3(Q224W) on activation by propofol are likely steric because propofol analogs with less bulky ortho substituents activated both wild-type and mutant receptors. The T266W mutation removed activation by propofol in β3 homomeric receptors; however, this mutation alone or in combination with a homologous mutation (I271W) in the α1 subunit had almost no effect on activation properties in α1β3 heteromeric receptors. We hypothesize that heteromeric α1β3 receptors can be activated by propofol interactions with β3-β3, α1-β3, and β3-α1 interfaces, but the exact locations of the binding site and/or nature of interactions vary in different classes of interfaces.

  10. The binding site of the nicotinic acetylcholine receptor in animal species resistant to alpha-bungarotoxin.

    PubMed

    Barchan, D; Ovadia, M; Kochva, E; Fuchs, S

    1995-07-18

    The ligand binding site of the nicotinic acetylcholine receptor (AChR) is located in the alpha-subunit, within a small fragment containing the tandem cysteines at positions 192 and 193. We have been analyzing the binding site domain of AChRs from several animal species exhibiting various degrees of resistance to alpha-bungarotoxin (alpha-BTX). Our earlier work on the snake and mongoose AChR, both of which do not bind alpha-BTX, suggested that amino acid substitutions at positions 187, 189, and 194 of the AChR alpha-subunit are important in determining the resistance of these AChRs to alpha-BTX. In the present study, we have examined the correlation between alpha-BTX binding and the structure of the binding site domain of AChR from the hedgehog, shrew, cat, and human. Fragments of the AChR alpha-subunit corresponding to residues 122-205 from these species were cloned, sequenced, and expressed in Escherichia coli. The hedgehog fragment does not bind alpha-BTX, in common with the snake and mongoose AChR, and the human fragment is a partial binder. The shrew and cat fragments bind alpha-BTX to a similar extent as the mouse fragment. The hedgehog and human AChRs have nonaromatic amino acid residues at positions 187 and 189 of the alpha-subunit, as is seen with the "toxin resistant" snake and mongoose, and in contrast with the "toxin binders", which have aromatic residues at these two positions.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Localization of a site on bacterial superantigens that determines T cell receptor beta chain specificity

    PubMed Central

    1993-01-01

    A defining characteristic of superantigens is their ability to stimulate T cells based predominantly on the type of variable segment of the T cell receptor (TCR) beta chain (V beta). The V beta specificity of these toxins most likely results from direct contact between the toxin and the TCR, although the low affinity nature of this binding has prevented direct assessment of this interaction. To identify important functional sites on the toxin, we created chimeric enterotoxin genes between staphylococcal enterotoxins A and E (SEA and SEE) and tested the V beta specificity of the chimeric toxins. This approach allowed us to identify three amino acid residues in the extreme COOH terminus of these toxins that are largely responsible for their ability to stimulate either human V beta 5- or V beta 8-bearing T cells, or mouse V beta 3 or V beta 11. We also found that residues in the NH2 terminus were required for wild-type levels of V beta-specific T cell activation, suggesting that the NH2 and COOH ends of these superantigens may come together to form the full TCR V beta contact site. SEA and SEE also differ with respect to their class II binding characteristics. Using the same chimeric molecules, we demonstrate that the first third of the molecule controls the class II binding phenotype. These data lead us to propose that for SEA and SEE, and perhaps for all bacterial-derived superantigens, the COOH and NH2 termini together form the contact sites for the TCR and therefore largely determine the V beta specificity of the toxin, while the NH2 terminus alone binds major histocompatibility complex class II molecules. The predominant role of the COOH terminus of bacterial superantigens in determining V beta specificity resembles current models being proposed for virally encoded superantigens, suggesting that these molecules may demonstrate some structural relationship not seen at the amino acid level. PMID:7678849

  12. Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins.

    PubMed

    Amatruda, T T; Dragas-Graonic, S; Holmes, R; Perez, H D

    1995-11-24

    The binding of small peptide ligands to high affinity chemoattractant receptors on the surface of neutrophils and monocytes leads to activation of heterotrimeric G-proteins, stimulation of phosphatidylinositol-phospholipase C (PI-PLC), and subsequently to the inflammatory response. It was recently shown (Amatruda, T. T., Gerard, N. P., Gerard, C., and Simon, M. I. (1993) J. Biol. Chem. 268, 10139-10144) that the receptor for the chemoattractant peptide C5a specifically interacts with G alpha 16, a G-protein alpha subunit of the Gq class, to trigger ligand-dependent stimulation of PI-PLC in transfected cells. In order to further characterize this chemoattractant peptide signal transduction pathway, we transfected cDNAs encoding the formylmethionylleucylphenylalanine receptor (fMLPR) into COS cells and measured the production of inositol phosphates. Ligand-dependent activation of PI-PLC was seen in COS cells transfected with the fMLPR and G alpha 16 and stimulated with fMLP but not in cells transfected with receptor alone or with receptor plus G alpha q. Chimeric receptors in which the N-terminal extracellular domain, the second intracellular domain, or the intracellular C-terminal tail of the fMLP receptor was replaced with C5a receptor domains (Perez, H. D., Holmes, R., Vilander, L. R., Adams, R. R., Manzana, W., Jolley, D., and Andrews, W. H. (1993) J. Biol. Chem. 268, 2292-2295) were capable of ligand-dependent activation of PI-PLC when co-transfected with G alpha 16. A chimeric receptor exchanging the first intracellular domain of the fMLPR was constitutively activated, stimulating PI-PLC in the absence of ligand. Constitutive activation of PI-PLC, to a level 233% of that seen in cells transfected with wild-type fMLP receptors, was dependent on G alpha 16. Site-directed mutagenesis of the first intracellular domain of the fMLPR (amino acids 54-62) reveals this to be a domain necessary for ligand-dependent activation of G alpha 16. These results suggest that

  13. Characterization of the Igf-II Binding Site of the IGF-II/MAN-6-P Receptor Extracellular Domain.

    NASA Astrophysics Data System (ADS)

    Garmroudi, Farideh

    1995-01-01

    In mammals, insulin-like growth factor II (IGF -II) and glycoproteins bearing the mannose 6-phosphate (Man -6-P) recognition marker bind with high affinity to the same receptor. The functional consequences of IGF-II binding to the receptor at the cell surface are not clear. In these studies, we sought to broaden our understanding of the functional regions of the receptor regarding its IGF -II binding site. The IGF-II binding/cross-linking domain of the IGF-II/Man-6-P receptor was mapped by sequencing receptor fragments covalently attached to IGF-II. Purified rat placental or bovine liver receptors were affinity-labeled, with ^{125}I-IGF-II and digested with endoproteinase Glu-C. Analysis of digests by gel electrophoresis revealed a major radiolabeled band of 18 kDa, which was purified by gel filtration chromatography followed by reverse-phase HPLC and electroblotting. Sequence analysis revealed that, the peptide S(H)VNSXPMF, located within extracellular repeat 10 and beginning with serine 1488 of the bovine receptor, was the best candidate for the IGF-II cross-linked peptide. These data indicated that residues within repeats 10-11 were important for IGF -II binding. To define the location of the IGF-II binding site further, a nested set of six human receptor cDNA constructs was designed to produce epitope-tagged fusion proteins encompassing the region between repeats 8 and 11 of the human IGF-II/Man-6-P receptor extracellular domain. These truncated receptors were transiently expressed in COS-7 cells, immunoprecipitated and analyzed for their abilities to bind and cross-link to IGF-II. All of the constructs were capable of binding/cross-linking to IGF-II, except for the 9.0-11 construct. Displacement curve analysis indicated that the truncated receptors were approximately equivalent in IGF-II binding affinity, but were of 5- to 10-fold lower affinity than full-length receptors. Sequencing of the 9.0-11 construct indicated the presence of a point mutation

  14. The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2.

    PubMed

    Leitinger, Birgit; Steplewski, Andrzej; Fertala, Andrzej

    2004-12-03

    The human discoidin domain receptors (DDRs), DDR1 and DDR2, are expressed widely and, uniquely among receptor tyrosine kinases, activated by the extracellular matrix protein collagen. This activation is due to a direct interaction of collagen with the DDR discoidin domain. Here, we localised a specific DDR2 binding site on the triple-helical region of collagen II. Collagen II was found to be a much better ligand for DDR2 than for DDR1. As expected, DDR2 binding to collagen II was dependent on triple-helical collagen and was mediated by the DDR2 discoidin domain. Collagen II served as a potent stimulator of DDR2 autophosphorylation, the first step in transmembrane signalling. To map the DDR2 binding site(s) on collagen II, we used recombinant collagen II variants with specific deletions of one of the four repeating D periods. We found that the D2 period of collagen II was essential for DDR2 binding and receptor autophosphorylation, whereas the D3 and D4 periods were dispensable. The DDR2 binding site on collagen II was further defined by recombinant collagen II-like proteins consisting predominantly of tandem repeats of the D2 or D4 period. The D2 construct, but not the D4 construct, mediated DDR2 binding and receptor autophosphorylation, demonstrating that the D2 period of collagen II harbours a specific DDR2 recognition site. The discovery of a site-specific interaction of DDR2 with collagen II gives novel insight into the nature of the interaction of collagen II with matrix receptors.

  15. Plasticity-related binding of GABA and muscarinic receptor sites in piriform cortex of rat: An autoradiographic study

    SciTech Connect

    Thomas, A.P.; Westrum, L.E. )

    1989-09-01

    This study has used the recently developed in vitro quantitative autoradiographic technique to examine the effects of olfactory bulb (OB) removal on receptor-binding sites in the deafferented piriform cortex (PC) of the rat. The gamma-aminobutyric acid-benzodiazepine receptor (GABA-BZR)- and muscarinic cholinergic receptor (MChR)-binding sites in layer I of PC were localized using (3H)flunitrazepam and (3H)quinuclidinyl benzilate as ligands, respectively. From the resultant autoradiograms the optical densities were measured using a Drexel-DUMAS image analysis system. The densities of BZR and MChR-binding sites were markedly increased in the PC ipsilateral to the lesion as compared to the contralateral side in those subjects that were operated in adulthood (Postnatal Day 100, PN 100). Comparisons between the unoperated and PN 100 operated animals also showed significant increases in the deafferented PC. In the animals operated on the day of birth (PN 0) no significant differences were seen between the operated and the contralateral PC. The difference between the PN 0 deafferented PC and the unoperated controls shows a slight decrease in BZR density in the former group; however, in case of the MChR there is a slight increase on the side of the lesion. These results demonstrate that deafferentation of PC by OB removal appears to modulate both the BZR-binding sites that are coupled with the GABA-A receptor complex and the MChR-binding sites. The results also suggest that possibility of a role for these neurotransmitter receptor-binding sites in plasticity following deafferentation.

  16. Location of the epidermal growth factor binding site on the EGF receptor. A resonance energy transfer study.

    PubMed

    Carraway, K L; Koland, J G; Cerione, R A

    1990-09-18

    As a first step toward developing a structural map of key sites on the epidermal growth factor (EGF) receptor, we have used resonance energy transfer to measure the distance of closest approach between the receptor-bound growth factor molecule and lipid molecules at the surface of the plasma membrane. EGF, specifically labeled at its amino terminus with fluorescein 5-isothiocyanate, was used as an energy donor in these experiments, while either octadecylrhodamine B or octadecylrhodamine 101, inserted into plasma membranes isolated from human epidermoid carcinoma (A431) cells, served as the energy acceptors. The energy transfer measurements indicate that the amino terminus of the bound growth factor is about 67 A away from the plasma membrane. On the basis of the dimensions of the EGF molecule, this suggests that EGF binds to a site on its receptor that is a considerable distance (52-82 A) from the surface of these cells. Identical results were obtained under conditions where the receptor functions as an active tyrosine kinase, suggesting that the relative juxtaposition of the EGF binding domain to the membrane surface does not change with receptor autophosphorylation or with the activation of the receptor tyrosine kinase activity.

  17. Multiplex detection of functional G protein-coupled receptors harboring site-specifically modified unnatural amino acids.

    PubMed

    Naganathan, Saranga; Ray-Saha, Sarmistha; Park, Minyoung; Tian, He; Sakmar, Thomas P; Huber, Thomas

    2015-01-27

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide-alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism.

  18. Multiplex Detection of Functional G Protein-Coupled Receptors Harboring Site-Specifically Modified Unnatural Amino Acids

    PubMed Central

    2015-01-01

    We developed a strategy for identifying positions in G protein-coupled receptors that are amenable to bioorthogonal modification with a peptide epitope tag under cell culturing conditions. We introduced the unnatural amino acid p-azido-l-phenylalanine (azF) into human CC chemokine receptor 5 (CCR5) at site-specific amber codon mutations. We then used strain-promoted azide–alkyne [3+2] cycloaddition to label the azF-CCR5 variants with a FLAG peptide epitope-conjugated aza-dibenzocyclooctyne (DBCO) reagent. A microtiter plate-based sandwich fluorophore-linked immunosorbent assay was used to probe simultaneously the FLAG epitope and the receptor using infrared dye-conjugated antibodies so that the extent of DBCO incorporation, corresponding nominally to labeling efficiency, could be quantified ratiometrically. The extent of incorporation of DBCO at the various sites was evaluated in the context of a recent crystal structure of maraviroc-bound CCR5. We observed that labeling efficiency varied dramatically depending on the topological location of the azF in CCR5. Interestingly, position 109 in transmembrane helix 3, located in a hydrophobic cavity on the extracellular side of the receptor, was labeled most efficiently. Because the bioorthogonal labeling and detection strategy described might be used to introduce a variety of different peptide epitopes or fluorophores into engineered expressed receptors, it might prove to be useful for a wide range of applications, including single-molecule detection studies of receptor trafficking and signaling mechanism. PMID:25524496

  19. Quantitative encoding of a partial agonist effect on individual opioid receptors by multi-site phosphorylation and threshold detection

    PubMed Central

    Lau, Elaine K.; Trester-Zedlitz, Michelle; Trinidad, Jonathan C.; Kotowski, Sarah J.; Krutchinsky, Andrew N.; Burlingame, Alma L.; von Zastrow, Mark

    2013-01-01

    Many drugs act as partial agonists of seven-transmembrane signaling receptors when compared to endogenous ligands. Partial agonism is well described as a 'macroscopic' property manifest at the level of physiological systems or cell populations, but it is not known whether partial agonists encode discrete regulatory information at the 'microscopic' level of individual receptors. We addressed this question by focusing on morphine, a partial agonist drug for µ-type opioid peptide receptors, and combining quantitative mass spectrometry with cell biological analysis to investigate morphine's reduced efficacy for promoting receptor endocytosis when compared to a peptide full agonist. We show that these chemically distinct ligands produce a complex, and qualitatively similar mixture of phosphorylated opioid receptor forms in intact cells. Quantitatively, however, the agonists promote markedly disproportional production of multi-site phosphorylation involving a specific Ser/Thr motif, whose modification at more than one residue is essential for efficient recruitment of the adaptor protein β-arrestin to clathrin-coated pits that mediate subsequent endocytosis of MORs. These results reveal quantitative encoding of agonist-selective endocytosis at the level of individual opioid receptors, based on the conserved biochemical principles of multi-site phosphorylation and threshold detection. PMID:21868358

  20. Evidence of positive selection at codon sites localized in extracellular domains of mammalian CC motif chemokine receptor proteins

    PubMed Central

    2010-01-01

    Background CC chemokine receptor proteins (CCR1 through CCR10) are seven-transmembrane G-protein coupled receptors whose signaling pathways are known for their important roles coordinating immune system responses through targeted trafficking of white blood cells. In addition, some of these receptors have been identified as fusion proteins for viral pathogens: for example, HIV-1 strains utilize CCR5, CCR2 and CCR3 proteins to obtain cellular entry in humans. The extracellular domains of these receptor proteins are involved in ligand-binding specificity as well as pathogen recognition interactions. In mammals, the majority of chemokine receptor genes are clustered together; in humans, seven of the ten genes are clustered in the 3p21-24 chromosome region. Gene conversion events, or exchange of DNA sequence between genes, have been reported in chemokine receptor paralogs in various mammalian lineages, especially between the cytogenetically closely located pairs CCR2/5 and CCR1/3. Datasets of mammalian orthologs for each gene were analyzed separately to minimize the potential confounding impact of analyzing highly similar sequences resulting from gene conversion events. Molecular evolution approaches and the software package Phylogenetic Analyses by Maximum Likelihood (PAML) were utilized to investigate the signature of selection that has acted on the mammalian CC chemokine receptor (CCR) gene family. The results of neutral vs. adaptive evolution (positive selection) hypothesis testing using Site Models are reported. In general, positive selection is defined by a ratio of nonsynonymous/synonymous nucleotide changes (dN/dS, or ω) >1. Results Of the ten mammalian CC motif chemokine receptor sequence datasets analyzed, only CCR2 and CCR3 contain amino acid codon sites that exhibit evidence of positive selection using site based hypothesis testing in PAML. Nineteen of the twenty codon sites putatively indentified as likely to be under positive selection code for amino acid

  1. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  2. Antibody recognition of the pandemic H1N1 Influenza virus hemagglutinin receptor binding site.

    PubMed

    Hong, Minsun; Lee, Peter S; Hoffman, Ryan M B; Zhu, Xueyong; Krause, Jens C; Laursen, Nick S; Yoon, Sung-Il; Song, Langzhou; Tussey, Lynda; Crowe, James E; Ward, Andrew B; Wilson, Ian A

    2013-11-01

    Influenza virus is a global health concern due to its unpredictable pandemic potential. This potential threat was realized in 2009 when an H1N1 virus emerged that resembled the 1918 virus in antigenicity but fortunately was not nearly as deadly. 5J8 is a human antibody that potently neutralizes a broad spectrum of H1N1 viruses, including the 1918 and 2009 pandemic viruses. Here, we present the crystal structure of 5J8 Fab in complex with a bacterially expressed and refolded globular head domain from the hemagglutinin (HA) of the A/California/07/2009 (H1N1) pandemic virus. 5J8 recognizes a conserved epitope in and around the receptor binding site (RBS), and its HCDR3 closely mimics interactions of the sialic acid receptor. Electron microscopy (EM) reconstructions of 5J8 Fab in complex with an HA trimer from a 1986 H1 strain and with an engineered stabilized HA trimer from the 2009 H1 pandemic virus showed a similar mode of binding. As for other characterized RBS-targeted antibodies, 5J8 uses avidity to extend its breadth and affinity against divergent H1 strains. 5J8 selectively interacts with HA insertion residue 133a, which is conserved in pandemic H1 strains and has precluded binding of other RBS-targeted antibodies. Thus, the RBS of divergent HAs is targeted by 5J8 and adds to the growing arsenal of common recognition motifs for design of therapeutics and vaccines. Moreover, consistent with previous studies, the bacterially expressed H1 HA properly refolds, retaining its antigenic structure, and presents a low-cost and rapid alternative for engineering and manufacturing candidate flu vaccines.

  3. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    SciTech Connect

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. Erasmus Univ. of Rotterdam )

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  4. Functional analysis of the BRI1 receptor kinase by Thr-for-Ser substitution in a regulatory autophosphorylation site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BRI1 becomes highly phosphorylated in vivo upon perception of the ligand, brassinolide, as a result of autophosphorylation and transphosphorylation by its co-receptor kinase, BAK1. Important autophosphorylation sites include those involved in activation of kinase activity and those that are inhibito...

  5. The effect of interferon on the receptor sites to rabies virus on mouse neuroblastoma cells

    SciTech Connect

    Briggs, D.J.

    1989-01-01

    The binding of rabies virus to mouse neuroblastoma cells (MNA) primed with alpha interferon (IFN-{alpha}), beta interferon (IFN-{beta}), or alpha bungarotoxin (BTX) was examined. A saturable number of receptor sites to rabies virus was calculated by increasing the amount of {sup 3}H-CVS added to a constant number of untreated MNA cells. MNA cells were then exposed to 20 I.U. of IFN-{alpha}, IFN-{beta}, or 1 {mu}g of BTX and assayed to determine if these treatments had an effect on the number of receptor sites to rabies virus. Total amount of {sup 3}H-CVS bound to MNA cells was determined during a three hour incubation period. Cold competition assays using 1,000 fold excess unlabeled CVS were used to determine non-specific binding for each treatment. Specific binding was then calculated by subtracting non-specific binding from the total amount of CVS bound to MNA cells. A similar amount of total viral protein bound to untreated and IFN-{beta}, and BTX treated cells after 180 minutes of incubation. The bound protein varied by only 0.07 {mu}g. However, the amount of specific and non-specific binding varied a great deal between treatments. BTX caused an increase in non-specific and a decrease in specific binding of rabies virus. IFN-{beta} produced variable results in non-specific and specific binding while IFN-{alpha} caused mainly specific binding to occur. The most significant change brought about by IFN-{alpha} was an increase in the rate of viral attachment. At 30 minutes post-infection, IFN-{alpha} treated cells had bound 90% of the total amount of virus bound to untreated cells after 180 minutes. The increased binding rate did not cause a productive infection of rabies virus. No viral production was evident after an incubation period of 48 hours in either IFN-{alpha} or IFN-{beta} treated cells.

  6. Removal of either N-glycan site from the envelope receptor binding domain of Moloney and Friend but not AKV mouse ecotropic gammaretroviruses alters receptor usage

    SciTech Connect

    Knoper, Ryan C.; Ferrarone, John; Yan Yuhe; Lafont, Bernard A.P.; Kozak, Christine A.

    2009-09-01

    Three N-linked glycosylation sites were removed from the envelope glycoproteins of Friend, Moloney, and AKV mouse ecotropic gammaretroviruses: gs1 and gs2, in the receptor binding domain; and gs8, in a region implicated in post-binding cell fusion. Mutants were tested for their ability to infect rodent cells expressing 4 CAT-1 receptor variants. Three mutants (Mo-gs1, Mo-gs2, and Fr-gs1) infect NIH 3T3 and rat XC cells, but are severely restricted in Mus dunni cells and Lec8, a Chinese hamster cell line susceptible to ecotropic virus. This restriction is reproduced in ferret cells expressing M. dunni dCAT-1, but not in cells expressing NIH 3T3 mCAT-1. Virus binding assays, pseudotype assays, and the use of glycosylation inhibitors further suggest that restriction is primarily due to receptor polymorphism and, in M. dunni cells, to glycosylation of cellular proteins. Virus envelope glycan size or type does not affect infectivity. Thus, host range variation due to N-glycan deletion is receptor variant-specific, cell-specific, virus type-specific, and glycan site-specific.

  7. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE, IN VIVO

    EPA Science Inventory

    In vitro, toluene disrupts the function of NMDA-glutamate receptors, indicating that effects on NMDA receptor function may contribute to toluene neurotoxicity. NMDA-glutamate receptors are widely present in the visual system and contribute to pattern-elicited visual evoked potent...

  8. Acetylcholine Receptor and Ion Conductance Modulator Sites at the Murine Neuromuscular Junction: Evidence from Specific Toxin Reactions

    PubMed Central

    Albuquerque, Edson X.; Barnard, Eric A.; Chiu, Tieh H.; Lapa, Antonio J.; Dolly, J. Oliver; Jansson, Sten-Erik; Daly, John; Witkop, Bernhard

    1973-01-01

    The perhydro derivative of histrionicotoxin reversibly blocks the excitatory ionic transduction system in the synaptic and sarcolemmal membranes of mammalian skeletal muscle cells. The efficacy of perhydrohistrionicotoxin as an antagonist at the post-synaptic membrane is increased by the transient presence of acetylcholine in the endplate of innervated muscles and at extrajunctional receptors in denervated muscles. α-Bungarotoxin and [3H]monoacetyl-α-bungarotoxin block the endplate acetylcholine receptors, each binding to the same extent. The effect of bungarotoxin is partially reversible. These electrophysiological results, together with the effects of perhydrohistrionicotoxin and/or d-tubocurarine on the binding of [3H]monoacetyl-α-bungarotoxin at endplates of murine diaphragm muscle and on the bungarotoxin-elicited irreversible blockade of neuromuscular transmission, suggest that at least two types of sites participate in the synaptic excitation by acetylcholine. One site, competitively blocked by bungarotoxin and by curare, is presumably the acetylcholine receptor. Binding of bungarotoxin at this site is responsible for an irreversible blockade of neuromuscular transmission. The second site, competitively blocked by bungarotoxin and perhydrohistrionicotoxin, is proposed to be part of the cholinergic ion conductance modulator. Binding of bungarotoxin to this site does not result in an irreversible blockade. Images PMID:4351811

  9. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    SciTech Connect

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.; Barker, D.L.

    1985-12-01

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably less effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.

  10. The reaction site of a non-competitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor.

    PubMed Central

    Oberthür, W; Muhn, P; Baumann, H; Lottspeich, F; Wittmann-Liebold, B; Hucho, F

    1986-01-01

    A site in the primary structure of the nicotinic acetylcholine receptor from Torpedo marmorata covalently labeled with the non-competitive antagonist [3H]triphenylmethylphosphonium (TPMP+) was localized. The label was found in position 262 of the delta-polypeptide chain. This site is specifically labeled in the presence of the agonist carbamoylcholine. Labeling is prevented by the non-competitive antagonist histrionicotoxin. Position 262, probably a serine, is located in the highly conserved membrane-spanning helix M2 (according to the predicted folding scheme of Finer-Moore and Stroud (1984). The relationship of this site to the receptor's ion channel and its regulation is discussed. Images Fig. 2. PMID:3758027

  11. A Novel Loop Domain in Superantigens Extends Their T Cell Receptor Recognition Site

    SciTech Connect

    Gunther,S.; Varma, A.; Moza, B.; Kasper, K.; Wyatt, A.; Zhu, P.; Nur-ur Rahman, A.; Li, Y.; Mariuzza, R.; et al.

    2007-01-01

    Superantigens (SAGs) interact with host immune receptors to induce a massive release of inflammatory cytokines that can lead to toxic shock syndrome and death. Bacterial SAGs can be classified into five distinct evolutionary groups. Group V SAGs are characterized by the {alpha}3-{beta}8 loop, a unique {approx}15 amino acid residue extension that is required for optimal T cell activation. Here, we report the X-ray crystal structures of the group V SAG staphylococcal enterotoxin K (SEK) alone and in complex with the TCR hV{beta}5.1 domain. SEK adopts a unique TCR binding orientation relative to other SAG-TCR complexes, which results in the {alpha}3-{beta}8 loop contacting the apical loop of framework region 4, thereby extending the known TCR recognition site of SAGs. These interactions are absolutely required for TCR binding and T cell activation by SEK, and dictate the TCR V{beta} domain specificity of SEK and other group V SAGs.

  12. A mutational analysis of the acetylcholine receptor channel transmitter binding site.

    PubMed Central

    Akk, G; Zhou, M; Auerbach, A

    1999-01-01

    Mutagenesis and single-channel kinetic analysis were used to investigate the roles of four acetylcholine receptor channel (AChR) residues that are candidates for interacting directly with the agonist. The EC50 of the ACh dose-response curve was increased following alpha-subunit mutations Y93F and Y198F and epsilon-subunit mutations D175N and E184Q. Single-channel kinetic modeling indicates that the increase was caused mainly by a reduced gating equilibrium constant (Theta) in alphaY198F and epsilonD175N, by an increase in the equilibrium dissociation constant for ACh (KD) and a reduction in Theta in alphaY93F, and only by a reduction in KD in epsilonE184Q. This mutation altered the affinity of only one of the two binding sites and was the only mutation that reduced competition by extracellular K+. Additional mutations of epsilonE184 showed that K+ competition was unaltered in epsilonE184D and was virtually eliminated in epsilonE184K, but that neither of these mutations altered the intrinsic affinity for ACh. Thus there is an apparent electrostatic interaction between the epsilonE184 side chain and K+ ( approximately 1.7kBT), but not ACh+. The results are discussed in terms of multisite and induced-fit models of ligand binding to the AChR. PMID:9876135

  13. Ligand Promiscuity of Aryl Hydrocarbon Receptor Agonists and Antagonists Revealed by Site-Directed Mutagenesis

    PubMed Central

    Soshilov, Anatoly A.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse chemicals. To examine the mechanisms responsible for the promiscuity in AhR ligand binding, we determined the effects of mutations within the AhR ligand-binding domain (LBD) on the activity of diverse AhR ligands. Site-directed mutagenesis identified Ile319 of the mouse AhR and, to a lesser extent, Phe318 as residues involved in ligand-selective modulation of AhR transformation using a panel of 12 AhR ligands. These ligands could be categorized into four distinct structurally related groups based on their ability to activate AhR mutants at position 319 in vitro. The mutation I319K was selectively activated by FICZ and not by other examined ligands in vitro and in cell culture. F318L and F318A mutations resulted in the conversion of AhR agonists β-naphthoflavone and 3-methylcholanthrene, respectively, into partial agonists/antagonists. Hsp90 binding to the AhR was decreased with several mutations and was inversely correlated with AhR ligand-binding promiscuity. Together, these data define overlapping amino acid residues within the AhR LBD involved in the selectivity of ligand binding, the agonist or antagonist mode of ligand binding, and hsp90 binding and provide insights into the ligand diversity of AhR activators. PMID:24591650

  14. Pore architecture and ion sites in acid-sensing ion channels and P2X receptors.

    PubMed

    Gonzales, Eric B; Kawate, Toshimitsu; Gouaux, Eric

    2009-07-30

    Acid-sensing ion channels are proton-activated, sodium-selective channels composed of three subunits, and are members of the superfamily of epithelial sodium channels, mechanosensitive and FMRF-amide peptide-gated ion channels. These ubiquitous eukaryotic ion channels have essential roles in biological activities as diverse as sodium homeostasis, taste and pain. Despite their crucial roles in biology and their unusual trimeric subunit stoichiometry, there is little knowledge of the structural and chemical principles underlying their ion channel architecture and ion-binding sites. Here we present the structure of a functional acid-sensing ion channel in a desensitized state at 3 A resolution, the location and composition of the approximately 8 A 'thick' desensitization gate, and the trigonal antiprism coordination of caesium ions bound in the extracellular vestibule. Comparison of the acid-sensing ion channel structure with the ATP-gated P2X(4) receptor reveals similarity in pore architecture and aqueous vestibules, suggesting that there are unanticipated yet common structural and mechanistic principles.

  15. Matricryptic sites control tissue injury responses in the cardiovascular system: relationships to pattern recognition receptor regulated events.

    PubMed

    Davis, George E

    2010-03-01

    This review addresses new concepts related to the importance of how cells within the cardiovascular system respond to matricryptic sites generated from the extracellular matrix (ECM) following tissue injury. A model is presented whereby matricryptic sites exposed from the ECM result in activation of multiple cell surface receptors including integrins, scavenger receptors, and toll-like receptors which together are hypothesized to coactivate downstream signaling pathways which alter cell behaviors following tissue injury. Of great interest are the relationships between matricryptic fragments of ECM called matricryptins and other stimuli that activate cells during injury states such as released components from cells (DNA, RNA, cytoskeletal components such as actin) or products from infectious agents in innate immunity responses. These types of cell activating molecules, which are composed of repeating molecular elements, are known to interact with pattern recognition receptors that (i) are expressed from cell surfaces, (ii) are released from cells following tissue injury, or (iii) circulate as components of plasma. Thus, cell recognition of matricryptic sites from the ECM appears to be an important component of a broad cell and tissue sensory system to detect and respond to environmental cues generated following varied types of tissue injury.

  16. Receptor binding sites for substance P in surgical specimens obtained from patients with ulcerative colitis and Crohn disease

    SciTech Connect

    Mantyh, C.R.; Gates, T.S.; Zimmerman, R.P.; Welton, M.L.; Passaro, E.P. Jr.; Vigna, S.R.; Maggio, J.E.; Kruger, L.; Mantyh, P.W.

    1988-05-01

    Several lines of evidence indicate that tachykinin neuropeptides (substance P (SP), substance K (SK), and neuromedin K (NK)) play a role in regulating the inflammatory and immune responses. To test this hypothesis in a human inflammatory disease, quantitative receptor autoradiography was used to examine possible abnormalities in tachykinin binding sites in surgical specimens from patients with inflammatory bowel disease. In all cases, specimens were processed for quantitative receptor autoradiography by using /sup 125/I-labeled Bolton-Hunter conjugates of NK, SK, and SP. In colon tissue obtained from ulcerative colitis and Crohn disease patients, very high concentrations of SP receptor binding sites are expressed by arterioles and venules located in the submucosa, muscalairs mucosa, external circular muscle, external longitudinal muscle, and serosa, in contrast to control patients. These results demonstrate that receptor binding sites for SP, but not SK or NK, are ectopically expressed in high concentrations by cells involved in mediating inflammatory and immune responses. These data suggest that SP may be involved in the pathophysiology of inflammatory bowel disease and might provide some insight into the interaction between the nervous system and the regulation of inflammation and the immune response in human inflammatory disease.

  17. Mutations in the GM1 Binding Site of Simian Virus 40 VP1 Alter Receptor Usage and Cell Tropism

    PubMed Central

    Magaldi, Thomas G.; Buch, Michael H. C.; Murata, Haruhiko; Erickson, Kimberly D.; Neu, Ursula; Garcea, Robert L.; Peden, Keith; Stehle, Thilo

    2012-01-01

    Polyomaviruses are nonenveloped viruses with capsids composed primarily of 72 pentamers of the viral VP1 protein, which forms the outer shell of the capsid and binds to cell surface oligosaccharide receptors. Highly conserved VP1 proteins from closely related polyomaviruses recognize different oligosaccharides. To determine whether amino acid changes restricted to the oligosaccharide binding site are sufficient to determine receptor specificity and how changes in receptor usage affect tropism, we studied the primate polyomavirus simian virus 40 (SV40), which uses the ganglioside GM1 as a receptor that mediates cell binding and entry. Here, we used two sequential genetic screens to isolate and characterize viable SV40 mutants with mutations in the VP1 GM1 binding site. Two of these mutants were completely resistant to GM1 neutralization, were no longer stimulated by incorporation of GM1 into cell membranes, and were unable to bind to GM1 on the cell surface. In addition, these mutant viruses displayed an infection defect in monkey cells with high levels of cell surface GM1. Interestingly, one mutant infected cells with low cell surface GM1 more efficiently than wild-type virus, apparently by utilizing a different ganglioside receptor. Our results indicate that a small number of mutations in the GM1 binding site are sufficient to alter ganglioside usage and change tropism, and they suggest that VP1 divergence is driven primarily by a requirement to accommodate specific receptors. In addition, our results suggest that GM1 binding is required for vacuole formation in permissive monkey CV-1 cells. Further study of these mutants will provide new insight into polyomavirus entry, pathogenesis, and evolution. PMID:22514351

  18. Angiotensin II binding sites in the rat fetus: characterization of receptor subtypes and interaction with guanyl nucleotides.

    PubMed

    Feuillan, P P; Millan, M A; Aguilera, G

    1993-03-19

    Angiotensin II (AII) receptor subtypes were studied in the 18-day gestation fetal rat, using two non-peptide AII antagonists: (2-n-butyl-4-chloro-5-hydroxymethyl-1-(2'-(1H-tetrazol-5-yl) biphenyl-4-yl)methyl)imidazol (DuP 753; type 1 (AT1) specific), and 1-(4-amino-3-methylphenyl)methyl-5-diphenacetyl -4,5,6,7-tetrahydro-1-H-imidazo[4,5-c]pyridine-6-carboxylic acid (PD 123177; type 2 (AT2) specific). Autoradiography using 125I(-)[Sar1,Ile8]AII showed that 10 microM PD 123177 decreased binding to near-nonspecific levels in skin, skeletal muscle and adrenal medulla, whereas 10 microM DuP 753 blocked binding in the liver and lung. Studies in skin and liver membranes confirmed the autoradiographic data: AT1 receptors were predominant in the liver (95%), and AT2 in the skin (97%). There was no cross-reactivity between receptor subtype and the heterologous antagonist up to a concentration of 10 microM. In both skin and liver, 2 mM dithiothreitol enhanced the binding of AT2 receptors by increasing receptor affinity, but inhibited binding of AT1 by decreasing the receptor number. In the absence of antagonists, guanyl nucleotides, added at equilibrium, caused marked dissociation of 125I-AII binding in liver membranes, but had minimal effect in skin. However, dissociation occurred in the skin when AT2 sites were blocked with 10 microM PD 123177, and in liver, dissociation was not observed when AT1 sites were blocked with DuP 753. Hence, in contrast to classical AII target tissues, which contain predominantly AT1, most of the sites in fetal skin and skeletal muscle are AT2. The demonstration that the effects of guanyl nucleotides are selective for receptor subtype suggests that the AT1 receptor, but not the AT2, is coupled to cell function via guanyl nucleotide binding proteins. The functional importance of the AT2 receptors and their role in fetal physiology is under current investigation.

  19. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    SciTech Connect

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-10-01

    [AsnB26]- and [GlyB26]-insulin mutants attain a B26-turn like fold without assistance of chemical modifications. Their structures match the insulin receptor interface and expand the spectrum of insulin conformations. The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.

  20. IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site.

    PubMed

    Garcia-Elias, Anna; Lorenzo, Ivan M; Vicente, Rubén; Valverde, Miguel A

    2008-11-14

    Activation of the non-selective cation channel TRPV4 by mechanical and osmotic stimuli requires the involvement of phospholipase A2 and the subsequent production of the arachidonic acid metabolites, epoxieicosatrienoic acids (EET). Previous studies have shown that inositol trisphosphate (IP3) sensitizes TRPV4 to mechanical, osmotic, and direct EET stimulation. We now search for the IP3 receptor-binding site on TRPV4 and its relevance to IP3-mediated sensitization. Three putative sites involved in protein-protein interactions were evaluated: a proline-rich domain (PRD), a calmodulin (CaM)-binding site, and the last four amino acids (DAPL) that show a PDZ-binding motif-like. TRPV4-DeltaCaM-(Delta812-831) channels preserved activation by hypotonicity, 4alpha-phorbol 12,13-didecanoate, and EET but lost their physical interaction with IP3 receptor 3 and IP3-mediated sensitization. Deletion of a PDZ-binding motif-like (TRPV4-DeltaDAPL) did not affect channel activity or IP3-mediated sensitization, whereas TRPV4-DeltaPRD-(Delta132-144) resulted in loss of channel function despite correct trafficking. We conclude that IP3-mediated sensitization requires IP3 receptor binding to a TRPV4 C-terminal domain that overlaps with a previously described calmodulin-binding site.

  1. Antibodies to synthetic peptides as probes for the binding site on the alpha subunit of the acetylcholine receptor.

    PubMed Central

    Neumann, D; Gershoni, J M; Fridkin, M; Fuchs, S

    1985-01-01

    Synthetic peptides and their respective antibodies were used in an attempt to localize and identify the ligand-binding site of the nicotinic acetylcholine receptor. Two peptides of the receptor alpha subunit were synthesized, the first corresponding to the NH2-terminal domain (positions 1-20) and the other, to a segment (residues 126-143) that contains the first two cysteine residues. Specific antipeptide antibodies were elicited in rabbits after immunization with the peptides conjugated to bovine serum albumin. The antipeptide antibodies thus obtained cross-reacted with the receptor and bound specifically to its alpha subunit. The antipeptide antibodies were used to test whether the peptide sequences corresponded to the alpha-bungarotoxin (alpha-BTX)-binding site. Staphylococcus aureus V8-protease digestion of the isolated receptor alpha subunit generated several fragments. Antipeptide (1-20) and antipeptide (126-143) both bound a 26-kDa fragment, whereas only antipeptide (126-143) bound a 17-kDa fragment. None of these fragments were found to bind alpha-BTX. On the other hand, alpha-BTX bound to an 18-kDa fragment that did not react with either of the antipeptide antibodies. Moreover, the 26-kDa and 17-kDa fragments were also found to contain the endoglycosidase H-susceptible oligosaccharide chain. Our results indicate that the toxin-binding site lies beyond the first possible V8 protease cleavage site after residues 126-143: i.e., Asp-152. This location is in agreement with the possibility that cysteine residues 192 and/or 193 are in close proximity to or contiguous with the ligand-binding site. Images PMID:2582416

  2. Functional characterization of ivermectin binding sites in α1β2γ2L GABA(A) receptors

    PubMed Central

    Estrada-Mondragon, Argel; Lynch, Joseph W.

    2015-01-01

    GABAA receptors (GABAARs) are the major inhibitory neurotransmitter receptors in the brain and are therapeutic targets for many indications including sedation, anesthesia and anxiolysis. There is, however, considerable scope for the development of new therapeutics with improved beneficial effects and reduced side-effect profiles. The anthelminthic drug, ivermectin, activates the GABAAR although its binding site is not known. The molecular site of action of ivermectin has, however, been defined by crystallography in the homologous glutamate-gated chloride channel. Resolving the molecular mechanisms of ivermectin binding to α1β2γ2L GABAARs may provide insights into the design of improved therapeutics. Given that ivermectin binds to subunit interfaces, we sought to define (1) which subunit interface sites it binds to, (2) whether these sites are equivalent in terms of ivermectin sensitivity or efficacy, and (3) how many must be occupied for maximal efficacy. Our approach involved precluding ivermectin from binding to particular interfaces by introducing bulky M3 domain 36′F sidechains to the “+” side of those interfaces. We thereby demonstrated that ivermectin produces irreversible channel activation only when it binds to the single γ2L-β2 interface site. When it binds to α1-β2 sites it elicits potentiation of GABA-gated currents but has no irreversible activating effect. Ivermectin cannot bind to the β2-α1 interface site due to its endogenous bulky 36′ methionine. Replacing this with an alanine creates a functional site at this interface, but surprisingly it is inhibitory. Molecular docking simulations reveal that the γ2L-β2 interface forms more contacts with ivermectin than the other interfaces, possibly explaining why ivermectin appears to bind irreversibly at this interface. This study demonstrates unexpectedly stark pharmacological differences among GABAAR ivermectin binding sites. PMID:26441518

  3. VOC emissions, evolutions and contributions to SOA formation at a receptor site in eastern China

    NASA Astrophysics Data System (ADS)

    Yuan, B.; Hu, W. W.; Shao, M.; Wang, M.; Chen, W. T.; Lu, S. H.; Zeng, L. M.; Hu, M.

    2013-09-01

    Volatile organic compounds (VOCs) were measured by two online instruments (GC-FID/MS and PTR-MS) at a receptor site on Changdao Island (37.99° N, 120.70° E) in eastern China. Reaction with OH radical dominated chemical losses of most VOC species during the Changdao campaign. A photochemical-age-based parameterization method is used to calculate VOC emission ratios and to quantify the evolution of ambient VOCs. The calculated emission ratios of most hydrocarbons agree well with those obtained from emission inventory data, but determined emission ratios of oxygenated VOCs (OVOCs) are significantly higher than those from emission inventory data. The photochemical-age-based parameterization method is also used to investigate primary emissions and secondary formation of organic aerosol. The primary emission ratio of organic aerosol (OA) to CO is determined to be 14.9 μg m-3 ppm-1, and secondary organic aeorosols (SOA) are produced at an enhancement ratio of 18.8 μg m-3 ppm-1 to CO after 50 h of photochemical processing in the atmosphere. SOA formation is significantly higher than the level determined from VOC oxidation under both high-NOx (2.0 μg m-3 ppm-1 CO) and low-NOx conditions (6.5 μg m-3 ppm-1 CO). Polycyclic aromatic hydrocarbons (PAHs) and higher alkanes (> C10) account for as high as 17.4% of SOA formation, which suggests semi-volatile organic compounds (SVOCs) may be a large contributor to SOA formation during the Changdao campaign. The SOA formation potential of primary VOC emissions determined from field campaigns in Beijing and Pearl River Delta (PRD) is lower than the measured SOA levels reported in the two regions, indicating SOA formation is also beyond explainable by VOC oxidation in the two city clusters.

  4. Specific epidermal growth factor receptor autophosphorylation sites promote mouse colon epithelial cell chemotaxis and restitution.

    PubMed

    Yamaoka, Toshimitsu; Frey, Mark R; Dise, Rebecca S; Bernard, Jessica K; Polk, D Brent

    2011-08-01

    Upon ligand binding, epidermal growth factor (EGF) receptor (R) autophosphorylates on COOH-terminal tyrosines, generating docking sites for signaling partners that stimulate proliferation, restitution, and chemotaxis. Specificity for individual EGFR tyrosines in cellular responses has been hypothesized but not well documented. Here we tested the requirement for particular tyrosines, and associated downstream pathways, in mouse colon epithelial cell chemotactic migration. We compared these requirements to those for the phenotypically distinct restitution (wound healing) migration. Wild-type, Y992/1173F, Y1045F, Y1068F, and Y1086F EGFR constructs were expressed in EGFR(-/-) cells; EGF-induced chemotaxis or restitution were determined by Boyden chamber or modified scratch wound assay, respectively. Pharmacological inhibitors of p38, phospholipase C (PLC), Src, MEK, JNK/SAPK, phosphatidylinositol 3-kinase (PI 3-kinase), and protein kinase C (PKC) were used to block EGF-stimulated signaling. Pathway activation was determined by immunoblot analysis. Unlike wild-type EGFR, Y992/1173F and Y1086F EGFR did not stimulate colon epithelial cell chemotaxis toward EGF; Y1045F and Y1068F EGFR partially stimulated chemotaxis. Only wild-type EGFR promoted colonocyte restitution. Inhibition of p38, PLC, and Src, or Grb2 knockdown, blocked chemotaxis; JNK, PI 3-kinase, and PKC inhibitors or c-Cbl knockdown blocked restitution but not chemotaxis. All four EGFR mutants stimulated downstream signaling in response to EGF, but Y992/1173F EGFR was partially defective in PLCγ activation whereas both Y1068F and Y1086F EGFR failed to activate Src. We conclude that specific EGFR tyrosines play key roles in determining cellular responses to ligand. Chemotaxis and restitution, which have different migration phenotypes and physiological consequences, have overlapping but not identical EGFR signaling requirements.

  5. Neurosteroid Binding Sites on the GABAA Receptor Complex as Novel Targets for Therapeutics to Reduce Alcohol Abuse and Dependence

    PubMed Central

    Hulin, Mary W.; Amato, Russell J.; Porter, Johnny R.; Filipeanu, Catalin M.; Winsauer, Peter J.

    2011-01-01

    Despite the prevalence of alcohol abuse and dependence in the US and Europe, there are only five approved pharmacotherapies for alcohol dependence. Moreover, these pharmacotherapeutic options have limited clinical utility. The purpose of this paper is to present pertinent literature suggesting that both alcohol and the neurosteroids interact at the GABAA receptor complex and that the neurosteroid sites on this receptor complex could serve as new targets for the development of novel therapeutics for alcohol abuse. This paper will also present data collected by our laboratory showing that one neurosteroid in particular, dehydroepiandrosterone (DHEA), decreases ethanol intake in rats under a variety of conditions. In the process, we will also mention relevant studies from the literature suggesting that both particular subtypes and subunits of the GABAA receptor play an important role in mediating the interaction of neurosteroids and ethanol. PMID:22110489

  6. Pharmacology and Structural Analysis of Ligand Binding to the Orthosteric Site of Glutamate-Like GluD2 Receptors

    PubMed Central

    Kristensen, Anders S.; Hansen, Kasper B.; Naur, Peter; Olsen, Lars; Kurtkaya, Natalie L.; Dravid, Shashank M.; Kvist, Trine; Yi, Feng; Pøhlsgaard, Jacob; Clausen, Rasmus P.; Gajhede, Michael

    2016-01-01

    The GluD2 receptor is a fundamental component of postsynaptic sites in Purkinje neurons, and is required for normal cerebellar function. GluD2 and the closely related GluD1 are classified as members of the ionotropic glutamate receptor (iGluR) superfamily on the basis of sequence similarity, but do not bind l-glutamate. The amino acid neurotransmitter D-Ser is a GluD2 receptor ligand, and endogenous D-Ser signaling through GluD2 has recently been shown to regulate endocytosis of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid–type iGluRs during synaptic plasticity in the cerebellum, such as long-term depression. Here, we investigate the pharmacology of the orthosteric binding site in GluD2 by examining the activity of analogs of D-Ser and GluN1 glycine site competitive antagonists at GluD2 receptors containing the lurcher mutation (GluD2LC), which promotes spontaneous channel activation. We identify several compounds that modulate GluD2LC, including a halogenated alanine analog as well as the kynurenic acid analog 7-chloro-4-oxo-1H-quinoline-2-carboxylic acid (7-chlorokynurenic acid; 7-CKA). By correlating thermodynamic and structural data for 7-CKA binding to the isolated GluD2 ligand binding domain (GluD2-LBD), we find that binding 7-CKA to GluD2-LBD differs from D-Ser by inducing an intermediate cleft closure of the clamshell-shaped LBD. The GluD2 ligands identified here can potentially serve as a starting point for development of GluD2-selective ligands useful as tools in studies of the signaling role of the GluD2 receptor in the brain. PMID:26661043

  7. Identification and functional analysis of tomato BRI1 and BAK1 receptor kinase phosphorylation sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassinosteroids (BRs) are essential plant hormones that are perceived at the cell surface by a membrane bound receptor kinase, BRASSINOSTEROID INSENSITIVE 1 (BRI1). BRI1 interacts with BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) to initiate a signal transduction pathway in which autophosphorylation an...

  8. Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor.

    PubMed

    Bahadur, Urvashi; Ganjam, Goutham K; Vasudevan, Nandini; Kondaiah, Paturu

    2005-02-28

    Estrogen is an important steroid hormone that mediates most of its effects on regulation of gene expression by binding to intracellular receptors. The consensus estrogen response element (ERE) is a 13bp palindromic inverted repeat with a three nucleotide spacer. However, several reports suggest that many estrogen target genes are regulated by diverse elements, such as imperfect EREs and ERE half sites (ERE 1/2), which are either the proximal or the distal half of the palindrome. To gain more insight into ERE half site-mediated gene regulation, we used a region from the estrogen-regulated chicken riboflavin carrier protein (RCP) gene promoter that contains ERE half sites. Using moxestrol, an analogue of estrogen and transient transfection of deletion and mutation containing RCP promoter/reporter constructs in chicken hepatoma (LMH2A) cells, we identified an estrogen response unit (ERU) composed of two consensus ERE 1/2 sites and one non-consensus ERE 1/2 site. Mutation of any of these sites within this ERU abolishes moxestrol response. Further, the ERU is able to confer moxestrol responsiveness to a heterologous promoter. Interestingly, RCP promoter is regulated by moxestrol in estrogen responsive human MCF-7 cells, but not in other cell lines such as NIH3T3 and HepG2 despite estrogen receptor-alpha (ER-alpha) co transfection. Electrophoretic mobility shift assays (EMSAs) with promoter regions encompassing the half sites and nuclear extracts from LMH2A cells show the presence of a moxestrol-induced complex that is abolished by a polyclonal anti-ERalpha antibody. Surprisingly, estrogen receptor cannot bind to these promoter elements in isolation. Thus, there appears to be a definite requirement for some other factor(s) in addition to estrogen receptor, for the generation of a suitable response of this promoter to estrogen. Our studies therefore suggest a novel mechanism of gene regulation by estrogen, involving ERE half sites without direct binding of ER to the

  9. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex

    PubMed Central

    Žáková, Lenka; Kletvíková, Emília; Lepšík, Martin; Collinsová, Michaela; Watson, Christopher J.; Turkenburg, Johan P.; Jiráček, Jiří; Brzozowski, Andrzej M.

    2014-01-01

    The structural characterization of the insulin–insulin receptor (IR) interaction still lacks the conformation of the crucial B21–B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms. PMID:25286859

  10. Investigation of the histamine H3 receptor binding site. Design and synthesis of hybrid agonists with a lipophilic side chain.

    PubMed

    Ishikawa, Makoto; Watanabe, Takashi; Kudo, Toshiaki; Yokoyama, Fumikazu; Yamauchi, Miki; Kato, Kazuhiko; Kakui, Nobukazu; Sato, Yasuo

    2010-09-09

    As a part of our search for novel histamine H3 receptor agonists, we designed and synthesized hybrid compounds in which the lipophilic (4'-alkylphenylthio)ethyl moiety of a novel H3 receptor agonist, 4-(2-(4'-tert-butylphenylthio)ethyl)-1H-imidazole (1), was incorporated into N(alpha)-methylhistamine, immepip, and immethridine derivatives. These hybrid compounds were expected to interact concurrently with the histamine-binding site and a putative hydrophobic region in the H3 receptor. Among them, piperidine- and pyridine-type derivatives displayed partial agonist activity, and (S)-4-(1-(1H-imidazol-4-yl)-2-(4-(trifluoromethyl)phenylthio)ethyl)piperidine (36) was identified as a potent H3 agonist. We performed computational docking studies to examine the binding mode of the agonists. The results indicated that immepip interacts with the key residues, Asp114 and Glu206, in a different manner from histamine. The binding mode of 36 to these residues is similar to that of immepip, and the lipophilic tail of 36 has an additional interaction with a hydrophobic region in transmembrane helix 6 of the receptor. These results indicated that 36 served as a useful tool for studies on receptor-agonist interactions and drug design.

  11. The internalization signal and the phosphorylation site of transferrin receptor are distinct from the main basolateral sorting information.

    PubMed Central

    Dargemont, C; Le Bivic, A; Rothenberger, S; Iacopetta, B; Kühn, L C

    1993-01-01

    Wild-type human transferrin receptor (hTfR), like endogenous canine receptor, is expressed almost exclusively (97%) at the basolateral membrane of transfected Madin-Darbey canine kidney (MDCK) cells. We investigated the role of two distinct features of the hTfR cytoplasmic domain, namely the endocytic signal and the unique phosphorylation site, in polarized cell surface delivery. Basolateral location was not altered by point mutation of Ser24-->Ala24, indicating that phosphorylation is not involved in vectorial sorting of hTfR. The steady state distribution of hTfR was partially affected by a deletion of 36 cytoplasmic residues encompassing the internalization sequence. However, 80% of the receptors were still basolateral. As assessed by pulse-chase experiments in combination with biotinylation, newly synthesized wild-type and deletion mutant receptors were directly sorted to the domain of their steady state residency. Although both receptors could bind human transferrin, endocytosis of the deletion mutant was strongly impaired at either surface. These data indicate that the predominant basolateral targeting signal of hTfR is independent of the internalization sequence. Images PMID:8467813

  12. The N-methyl D-aspartate receptor glycine site and D-serine metabolism: an evolutionary perspective.

    PubMed Central

    Schell, Michael J

    2004-01-01

    The N-methyl D-aspartate (NMDA) type of glutamate receptor requires two distinct agonists to operate. Glycine is assumed to be the endogenous ligand for the NMDA receptor glycine site, but this notion has been challenged by the discovery of high levels of endogenous d-serine in the mammalian forebrain. I have outlined an evolutionary framework for the appearance of a glycine site in animals and the metabolic events leading to high levels of D-serine in brain. Sequence alignments of the glycine-binding regions, along with the scant experimental data available, suggest that the properties of invertebrate NMDA receptor glycine sites are probably different from those in vertebrates. The synthesis of D-serine in brain is due to a pyridoxal-5'-phosphate (B(6))-requiring serine racemase in glia. Although it remains unknown when serine racemase first evolved, data concerning the evolution of B(6) enzymes, along with the known occurrences of serine racemases in animals, point to D-serine synthesis arising around the divergence time of arthropods. D-Serine catabolism occurs via the ancient peroxisomal enzyme d-amino acid oxidase (DAO), whose ontogenetic expression in the hindbrain of mammals is delayed until the postnatal period and absent from the forebrain. The phylogeny of D-serine metabolism has relevance to our understanding of brain ontogeny, schizophrenia and neurotransmitter dynamics. PMID:15306409

  13. Glucocorticoid--receptor interactions. Studies of the negative co-operativity induced by steroid interactions with a secondary, hydrophobic, binding site.

    PubMed Central

    Jones, T R; Bell, P A

    1980-01-01

    The effects of steroids on the binding of [1,2-3H]dexamethasone and [1,2-3H]progesterone to the glucocorticoid receptor of rat thymus cytosol were studied. Although both glucocorticoid agonists and antagonists competed with [1,2-3H]dexamethasone for binding to the receptor under equilibrium conditions, only glucocorticoid antagonists of partial agonists, at micromolar concentrations, were capable of accelerating the rate of dissociation of previously bound [1,2-3H]dexamethasone from the receptor. Antagonists or partial agonists also enhanced the rate of dissociation of [1,2-3H]progesterone from the glucocorticoid receptor, with identical specificity and concentration--response characteristics. These effects are attributed to the presence on the receptor of a secondary, low-affinity, binding site for glucocorticoid antagonists, the occupancy of which produces negatively co-operative interactions with the primary glucocorticoid-binding site. In contrast with the interactions with the primary site, the interactions of steroids with the negatively co-operative site appear to be primarily hydrophobic in nature, and the site resembles the steroid-binding site of progestin-binding proteins in its specificity, though not its affinity. The results also suggest that the initial interactions of both glucocorticoid agonists and antagonists with the receptor under equilibrium conditions are with one primary site on a receptor existing in one conformation only. PMID:7406882

  14. Mutation of Tyr697, a GRB2-binding site, and Tyr721, a PI 3-kinase binding site, abrogates signal transduction by the murine CSF-1 receptor expressed in Rat-2 fibroblasts.

    PubMed Central

    van der Geer, P; Hunter, T

    1993-01-01

    The receptor for the myeloid cell growth factor colony stimulating factor 1 (CSF-1) is a protein tyrosine kinase that is closely related to the PDGF receptor. Ligand binding results in kinase activation and autophosphorylation. Three autophosphorylation sites, Tyr697, Tyr706 and Tyr721, have been mapped to the kinase insert domain. Deletion of the entire kinase insert domain completely abrogates signal transduction by the CSF-1 receptor expressed in Rat-2 fibroblasts. To investigate the function of individual phosphorylation sites present in the CSF-1 receptor kinase insert domain, a number of phosphorylation site mutants were expressed in Rat-2 fibroblasts. Mutation of either Tyr697 or Tyr721 compromised signal transduction by the CSF-1 receptor. A mutant receptor, in which both Tyr697 and Tyr721 were replaced by phenylalanine, has lost all ability to induce changes in morphology or to increase cell growth rate in response to CSF-1. Tyr721 has been identified recently as the binding site for PI 3-kinase. Here we report that GRB2 associates with the CSF-1 receptor upon ligand binding. The phosphorylation on tyrosine of SHC and several other GRB2-associated proteins increased upon stimulation with CSF-1. Tyr697 was identified as a binding site for GRB2. We suggest that PI 3-kinase, GRB2 and some of the GRB2-associated proteins could play an important role in signal transduction by the CSF-1 receptor. Images PMID:8262059

  15. Rapid agonist-induced loss of sup 125 I-. beta. -endorphin opioid receptor sites in NG108-15, but not SK-N-SH neuroblastoma cells

    SciTech Connect

    Cone, R.I.; Lameh, J.; Sadee, W. )

    1991-01-01

    The authors have measured {mu} and {delta} opioid receptor sites on intact SK-N-SH and NG108-15 neuroblastoma cells, respectively, in culture. Use of {sup 125}I-{beta}-endorphin ({beta}E) as a tracer, together with {beta}E(6-31) to block high-affinity non-opioid binding in both cell lines, permitted the measurement of cell surface {mu} and {delta} opioid receptor sites. Labeling was at {delta} sites in NG108-15 cells and predominantly at {mu} sites in SK-N-SH cells. Pretreatment with the {mu} and {delta} agonist, DADLE, caused a rapid loss of cell surface {delta} receptor sites in NG108-15 cells, but failed to reduce significantly {mu} receptor density in SK-N-SH cells.

  16. Agonists binding nicotinic receptors elicit specific channel-opening patterns at αγ and αδ sites

    PubMed Central

    Stock, Patrick; Ljaschenko, Dmitrij; Heckmann, Manfred; Dudel, Josef

    2014-01-01

    ‘Embryonic’ muscle-type nicotinic acetylcholine receptor channels (nAChRs) bind ligands at interfaces of α- and γ- or δ-subunits. αγ and αδ sites differ in affinity, but their contributions to opening the channel have remained elusive. We compared high-resolution patch clamp currents evoked by epibatidine (Ebd), carbamylcholine (CCh) and acetylcholine (ACh). Ebd binds with 75-fold higher affinity at αγ than at αδ sites, whereas CCh and ACh prefer αδ sites. Similar short (τO1), intermediate (τO2) and long (τO3) types of opening were observed with all three agonists. τO2 openings were maximally prevalent at low Ebd concentrations, binding at αγ sites. By contrast, τO1 openings appear to be generated at αδ sites. In addition, two types of burst appeared: short bursts of an average of 0.75 ms (τB1) that should arise from the αγ site, and long bursts of 12–25 ms (τB2) in duration arising from double liganded receptors. Limited by the temporal resolution, the closings within bursts were invariant at 3 μs. Corrected for missed closings, in the case of ACh the openings within long bursts lasted 170 μs and those in short bursts about 30 μs. Blocking αδ sites with α-conotoxin M1 (CTx) eliminated both τO1 and τB2 and left only τO2 and the short τB1 bursts, as expected. Furthermore we found desensitization when the receptors bound ACh only at the αγ site. When CTx was applied to ‘embryonic’ mouse endplates, monoquantal current rise times were increased, and amplitude and decay time constants were reduced, as expected. Thus the αγ and αδ sites of nAChRs elicit specific channel-opening patterns. PMID:24665094

  17. Evidence for novel caffeine and Ca2+ binding sites on the lobster skeletal ryanodine receptor

    PubMed Central

    Zhang, Jin Jun; Williams, Alan J; Sitsapesan, Rebecca

    1999-01-01

    The effects of Ca2+, ATP and caffeine on the gating of lobster skeletal muscle ryanodine receptors (RyR) was investigated after reconstitution of the channels into planar phospholipid bilayers and by using [3H]-ryanodine binding studies. The single channel studies reveal that the EC50 (60 μM) for activation of the lobster skeletal RyR by Ca2+ as the sole ligand is higher than for any other isoform of RyR studied. Inactivation of the channel by Ca2+ (EC50=1 mM) occurs at concentrations slightly higher than those required to inactivate mammalian skeletal RyR (RyR1) but lower than those required to inactivate mammalian cardiac RyR (RyR2). Lifetime analysis demonstrates that cytosolic Ca2+, as the sole activating ligand, cannot fully open the lobster skeletal RyR (maximum Po approximately 0.2). The mechanism for the increase in open probability (Po) is an increase in both the frequency and the duration of the open events. ATP is a very effective activator of the lobster RyR and can almost fully open the channel in the presence of activating cytosolic [Ca2+]. In the presence of 700 μM Ca2+, 1 mM ATP increased Po to approximately 0.8. Caffeine, often used as a tool to identify the presence of RyR channels, is relatively ineffective and cannot increase Po above the level that can be attained with Ca2+ alone. The results reveal that caffeine increases Po by a different mechanism to that of cytosolic Ca2+ demonstrating that the mechanism for channel activation by caffeine is not ‘sensitization' to cytosolic Ca2+. By studying the mechanisms involved in the activation of the lobster RyR we have demonstrated that the channel responds in a unique manner to Ca2+ and to caffeine. The results strongly indicate that these ligand binding sites on the channel are different to those on mammalian isoforms of RyR. PMID:10193789

  18. Discovery of new small molecules targeting the vitronectin-binding site of the urokinase receptor that block cancer cell invasion.

    PubMed

    Rea, Vincenza Elena Anna; Lavecchia, Antonio; Di Giovanni, Carmen; Rossi, Francesca Wanda; Gorrasi, Anna; Pesapane, Ada; de Paulis, Amato; Ragno, Pia; Montuori, Nunzia

    2013-08-01

    Besides focusing urokinase (uPA) proteolytic activity on the cell membrane, the uPA receptor (uPAR) is able to bind vitronectin, via a direct binding site. Furthermore, uPAR interacts with other cell surface receptors, such as integrins, receptor tyrosine kinases, and chemotaxis receptors, triggering cell-signaling pathways that promote tumor progression. The ability of uPAR to coordinate binding and degradation of extracellular matrix (ECM) and cell signaling makes it an attractive therapeutic target in cancer. We used structure-based virtual screening (SB-VS) to search for small molecules targeting the uPAR-binding site for vitronectin. Forty-one compounds were identified and tested on uPAR-negative HEK-293 epithelial cells transfected with uPAR (uPAR-293 cells), using the parental cell line transfected with the empty vector (V-293 cells) as a control. Compounds 6 and 37 selectively inhibited uPAR-293 cell adhesion to vitronectin and the resulting changes in cell morphology and signal transduction, without exerting any effect on V-293 cells. Compounds 6 and 37 inhibited uPAR-293 cell binding to vitronectin with IC50 values of 3.6 and 1.2 μmol/L, respectively. Compounds 6 and 37 targeted S88 and R91, key residues for uPAR binding to vitronectin but also for uPAR interaction with the fMLF family of chemotaxis receptors (fMLF-Rs). As a consequence, compounds 6 and 37 impaired uPAR-293 cell migration toward fetal calf serum (FCS), uPA, and fMLF, likely by inhibiting the interaction between uPAR and FPR1, the high affinity fMLF-R. Both compounds blocked in vitro ECM invasion of several cancer cell types, thus representing new promising leads for pharmaceuticals in cancer.

  19. Synthesis of GABAA Receptor Agonists and Evaluation of their α-Subunit Selectivity and Orientation in the GABA Binding Site

    PubMed Central

    Jansen, Michaela; Rabe, Holger; Strehle, Axelle; Dieler, Sandra; Debus, Fabian; Dannhardt, Gerd; Akabas, Myles H.; Lüddens, Hartmut

    2008-01-01

    Drugs used to treat various disorders target GABAA receptors. To develop α subunit selective compounds, we synthesized 5-(4-piperidyl)-3-isoxazolol (4-PIOL) derivatives. The 3-isoxazolol moiety was substituted by 1,3,5-oxadiazol-2-one, 1,3,5-oxadiazol-2-thione, and substituted 1,2,4-triazol-3-ol heterocycles with modifications to the basic piperidine substituent as well as substituents without basic nitrogen. Compounds were screened by [3H]muscimol binding and in patch-clamp experiments with heterologously expressed GABAA αiβ3γ2 receptors (i = 1–6). The effects of 5-aminomethyl-3H-[1,3,4]oxadiazol-2-one 5d were comparable to GABA for all α subunit isoforms. 5-piperidin-4-yl-3H-[1,3,4]oxadiazol-2-one 5a and 5-piperidin-4-yl-3H- [1,3,4]oxadiazol-2-thione 6a were weak agonists at α3–, α3–, and α5–containing receptors. When coapplied with GABA they were antagonistic inα2–, α4–, and α6–containing receptors and potentiated α3-containing receptors. 6a protected GABA binding site cysteine-substitution mutants α1F64C and α1S68C from reacting with methanethiosulfonate-ethylsulfonate. 6a specifically covalently modified the α1R66C thiol, in the GABA binding site, through its oxadiazolethione sulfur. These results demonstrate the feasibility of synthesizing α subtype selective GABA mimetic drugs. PMID:18651727

  20. A Novel Voltage Sensor in the Orthosteric Binding Site of the M2 Muscarinic Receptor.

    PubMed

    Barchad-Avitzur, Ofra; Priest, Michael F; Dekel, Noa; Bezanilla, Francisco; Parnas, Hanna; Ben-Chaim, Yair

    2016-10-04

    G protein-coupled receptors (GPCRs) mediate many signal transduction processes in the body. The discovery that these receptors are voltage-sensitive has changed our understanding of their behavior. The M2 muscarinic acetylcholine receptor (M2R) was found to exhibit depolarization-induced charge movement-associated currents, implying that this prototypical GPCR possesses a voltage sensor. However, the typical domain that serves as a voltage sensor in voltage-gated channels is not present in GPCRs, making the search for the voltage sensor in the latter challenging. Here, we examine the M2R and describe a voltage sensor that is comprised of tyrosine residues. This voltage sensor is crucial for the voltage dependence of agonist binding to the receptor. The tyrosine-based voltage sensor discovered here constitutes a noncanonical by which membrane proteins may sense voltage.

  1. Modulation of epidermal growth factor receptor proto-oncogene transcription by a promoter site sensitive to S1 nuclease.

    PubMed Central

    Johnson, A C; Jinno, Y; Merlino, G T

    1988-01-01

    The epidermal growth factor (EGF) receptor is the functional target of the mitogen EGF and the cellular homolog of the avian erythroblastosis virus erbB oncogene product. Regulation of expression of the proto-oncogene encoding the EGF receptor can be elucidated by studying the structure and function of the gene promoter outside the confines of the cell. Previously, we reported the isolation of the human EGF receptor gene promoter. The promoter is highly GC rich, contains no TATA or CAAT box, and has multiple transcription start sites. An S1 nuclease-sensitive site has now been found 80 to 110 base pairs (bp) upstream from the major in vivo transcription initiation site. Two sets of direct repeat sequences were found in this area; both conform to the motif TCCTCCTCC. When deletion mutations were made in this region of the promoter by using either Bal 31 exonuclease or S1 nuclease, we found that in vivo activity dropped three- to fivefold, on the basis of transient-transfection analysis. Examination of nuclear protein binding to normal and mutated promoter DNAs by gel retardation analysis and DNase I footprinting revealed that two specific factors bind to the direct repeat region but cannot bind to the S1 nuclease-mutated promoter. One of the specific factors is the transcription factor Sp1. The results suggest that these nuclear trans-acting factors interact with the S1 nuclease-sensitive region of the EGF receptor gene promoter and either directly or indirectly stimulate transcription. Images PMID:2847030

  2. A ligand peptide motif selected from a cancer patient is a receptor-interacting site within human interleukin-11.

    PubMed

    Cardó-Vila, Marina; Zurita, Amado J; Giordano, Ricardo J; Sun, Jessica; Rangel, Roberto; Guzman-Rojas, Liliana; Anobom, Cristiane D; Valente, Ana P; Almeida, Fábio C L; Lahdenranta, Johanna; Kolonin, Mikhail G; Arap, Wadih; Pasqualini, Renata

    2008-01-01

    Interleukin-11 (IL-11) is a pleiotropic cytokine approved by the FDA against chemotherapy-induced thrombocytopenia. From a combinatorial selection in a cancer patient, we isolated an IL-11-like peptide mapping to domain I of the IL-11 (sequence CGRRAGGSC). Although this motif has ligand attributes, it is not within the previously characterized interacting sites. Here we design and validate in-tandem binding assays, site-directed mutagenesis and NMR spectroscopy to show (i) the peptide mimics a receptor-binding site within IL-11, (ii) the binding of CGRRAGGSC to the IL-11R alpha is functionally relevant, (iii) Arg4 and Ser8 are the key residues mediating the interaction, and (iv) the IL-11-like motif induces cell proliferation through STAT3 activation. These structural and functional results uncover an as yet unrecognized receptor-binding site in human IL-11. Given that IL-11R alpha has been proposed as a target in human cancer, our results provide clues for the rational design of targeted drugs.

  3. Measles Virus (MV) Hemagglutinin: Evidence that Attachment Sites for MV Receptors SLAM and CD46 Overlap on the Globular Head

    PubMed Central

    Massé, Nicolas; Ainouze, Michelle; Néel, Benjamin; Wild, T. Fabian; Buckland, Robin; Langedijk, Johannes P. M.

    2004-01-01

    Measles virus hemagglutinin (MVH) residues potentially responsible for attachment to the wild-type (wt) MV receptor SLAM (CD150) have been identified and localized on the MVH globular head by reference to a revised hypothetical structural model for MVH (www.pepscan.nl/downloads/measlesH.pdb). We show that the mutation of five charged MVH residues which are conserved among morbillivirus H proteins has major effects on both SLAM downregulation and SLAM-dependent fusion. In the three-dimensional surface representation of the structural model, three of these residues (D505, D507, and R533) align the rim on one side of the cavity on the top surface of the MVH globular head and form the basis of a single continuous site that overlaps with the 546-548-549 CD46 binding site. We show that the overlapping sites fall within the footprint of an anti-MVH monoclonal antibody that neutralizes both wt and laboratory-vaccine MV strains and whose epitope contains R533. Our study does not exclude the possibility that Y481 binds CD46 directly but suggests that the N481Y mutation of wt MVH could influence, at a distance, the conformation of the overlapping sites so that affinity to CD46 increases. The relevance of these results to present concepts of MV receptor usage is discussed, and an explanation is proposed as to why morbillivirus attachment proteins are H, whereas those from the other paramyxoviruses are HN (hemagglutinin-neuraminidase). PMID:15308701

  4. A Specific Cholesterol Binding Site Is Established by the 2.8 Å Structure of the Human [beta][subscript 2]-Adrenergic Receptor

    SciTech Connect

    Hanson, Michael A.; Cherezov, Vadim; Griffith, Mark T.; Roth, Christopher B.; Jaakola, Veli-Pekka; Chien, Ellen Y.T.; Velasquez, Jeffrey; Kuhn, Peter; Stevens, Raymond C.

    2008-07-08

    The role of cholesterol in eukaryotic membrane protein function has been attributed primarily to an influence on membrane fluidity and curvature. We present the 2.8 {angstrom} resolution crystal structure of a thermally stabilized human {beta}{sub 2}-adrenergic receptor bound to cholesterol and the partial inverse agonist timolol. The receptors pack as monomers in an antiparallel association with two distinct cholesterol molecules bound per receptor, but not in the packing interface, thereby indicating a structurally relevant cholesterol-binding site between helices I, II, III, and IV. Thermal stability analysis using isothermal denaturation confirms that a cholesterol analog significantly enhances the stability of the receptor. A consensus motif is defined that predicts cholesterol binding for 44% of human class A receptors, suggesting that specific sterol binding is important to the structure and stability of other G protein-coupled receptors, and that this site may provide a target for therapeutic discovery.

  5. Sigma ligands indirectly modulate the NMDA receptor-ion channel complex on intact neuronal cells via sigma 1 site.

    PubMed

    Yamamoto, H; Yamamoto, T; Sagi, N; Klenerová, V; Goji, K; Kawai, N; Baba, A; Takamori, E; Moroji, T

    1995-01-01

    To investigate the modulatory effects of sigma ligands on the N-methyl-D-aspartate (NMDA) receptor-ion channel complex in vivo, we examined the intact cell binding of 3H-N-[1-(2-thienyl)cyclohexyl]piperidine (3H-TCP) to cultured neuronal cells prepared from fetal rat telencephalon. The 3H-TCP binding was saturable, reversible, and inhibited by a selective NMDA receptor antagonist, D-amino-5-phosphonovaleric acid. MII-limolar Mg2+ inhibited 3H-TCP binding both in the absence and presence of L-glutamate. 5-Methyl-10,11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine maleate (MK801) inhibited 3H-TCP intact cell binding in a competitive manner, while haloperidol inhibited it in a noncompetitive manner. The effect of the test drugs to inhibit 3H-TCP intact cell binding was in the order of dextromethorphan, haloperidol > (+/-)MK 801 > (+)pentazocine > (-)pentazocine > DTG > PCP > (+)-N-allylnormetazocine [(+)SKF 10047] > (+)3-(3-hydroxyphenyl)-N- (1-propyl)piperidine [(+)3-PPP] > (-)SKF 10047 > (-)3-PPP. The IC50 values of the six sigma ligands for 3H-TCP binding were closely correlated with the Ki values of the corresponding drugs for DTG site 1 in the guinea pig brain reported by Rothman et al. (1991). These findings suggest that the sigma ligand indirectly modulates the NMDA receptor ion channel complex, presumably through sigma 1 sites in vivo as well as in vitro.

  6. Pulsed Electron Spin Resonance Resolves the Coordination Site of Cu2+ Ions in α1-Glycine Receptor

    PubMed Central

    Ruthstein, Sharon; Stone, Katherine M.; Cunningham, Timothy F.; Ji, Ming; Cascio, Michael; Saxena, Sunil

    2010-01-01

    Herein, we identify the coordination environment of Cu2+ in the human α1-glycine receptor (GlyR). GlyRs are members of the pentameric ligand-gated ion channel superfamily (pLGIC) that mediate fast signaling at synapses. Metal ions like Zn2+ and Cu2+ significantly modulate the activity of pLGICs, and metal ion coordination is essential for proper physiological postsynaptic inhibition by GlyR in vivo. Zn2+ can either potentiate or inhibit GlyR activity depending on its concentration, while Cu2+ is inhibitory. To better understand the molecular basis of the inhibitory effect we have used electron spin resonance to directly examine Cu2+ coordination and stoichiometry. We show that Cu2+ has one binding site per α1 subunit, and that five Cu2+ can be coordinated per GlyR. Cu2+ binds to E192 and H215 in each subunit of GlyR with a 40 μM apparent dissociation constant, consistent with earlier functional measurements. However, the coordination site does not include several residues of the agonist/antagonist binding site that were previously suggested to have roles in Cu2+ coordination by functional measurements. Intriguingly, the E192/H215 site has been proposed as the potentiating Zn2+ site. The opposing modulatory actions of these cations at a shared binding site highlight the sensitive allosteric nature of GlyR. PMID:20959090

  7. Novel NFAT sites that mediate activation of the interleukin-2 promoter in response to T-cell receptor stimulation.

    PubMed Central

    Rooney, J W; Sun, Y L; Glimcher, L H; Hoey, T

    1995-01-01

    The transcription factors NFAT and AP-1 have been shown to be essential for inducible interleukin-2 (IL-2) expression in activated T cells. NFAT has been previously reported to bind to two sites in the IL-2 promoter: in association with AP-1 at the distal antigen response element at -280 and at -135. On the basis of DNase I footprinting with recombinant NFAT and AP-1 proteins, gel shift assays, and transfection experiments, we have identified three additional NFAT sites in the IL-2 promoter. Strikingly, all five NFAT sites are essential for the full induction of promoter activity in response to T-cell receptor stimulation. Four of the five NFAT sites are part of composite elements able to bind AP-1 in association with NFAT. These sites display a diverse range of cooperativity and interdependency on NFAT and AP-1 proteins for binding. One of the NFAT sites directly overlaps the CD28-responsive element. We present evidence that CD28 inducibility is conferred by the AP-1 component in NFAT-AP-1 composite elements. These findings provide further insight into the mechanisms involved in the regulation of the IL-2 promoter. PMID:7565783

  8. Separate domains of the insulin receptor contain sites of autophosphorylation and tyrosine kinase activity

    SciTech Connect

    Goren, H.J.; White, M.F.; Khan, C.R.

    1987-04-21

    The authors have studied the structure and function of the solubilized insulin receptor before and after partial proteolytic digestion to define domains in the ..beta..-subunit that undergo autophosphorylation and contain the tyrosine kinase activity. Wheat germ agglutinin purified insulin receptor from Fao cells was digested briefly at 22/sup 0/C with low concentrations of trypsin, staphylococcal V8 protease, or elastase. Autophosphorylation of the ..beta..-subunit was carried out before and after digestion, and the (/sup 32/P)phosphoproteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, detected by autoradiography, and analyzed by tryptic peptide mapping by use of reverse-phase high-performance liquid chromatography. The 85-kDa fragment was not immunoprecipitated by an antibody directed against the C-terminal domain of the ..beta..-subunit (..cap alpha..Pep-1), indicating that this region of the receptor was lost. The 85-kDa fragment contained about half of the (/sup 32/P)phosphate originally found in the ..beta..-subunit, and tryptic peptide mapping showed that two major tryptic phosphopeptides (previously called pY2 and pY3) were removed. Three other tryptic phosphopeptides (pY1, pY1a, and pY4) were found in the 85- and 70-kDa fragments. To determined the structural requirements for kinase activity, the insulin receptor was subjected to tryptic digestion for 30 s-30 min, such that the receptor was composed exclusively of 85- and 70-kDa fragments of the ..beta..-subunit. The 85-kDa fragment exhibited autophosphorylation at pY1, pY1a, and pY4. Both the 85- and 70-kDa fragments phosphorylated tyrosine residues in a synthetic decapeptide that has the sequence of the C-terminal domain of the ..beta..-subunit of human insulin rare in the receptor.

  9. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    SciTech Connect

    Bennion, B J; Kulp, K S; Cosman, M; Lightstone, F C

    2005-08-26

    Many carcinogens have been shown to cause tissue specific tumors in animal models. The mechanism for this specificity has not been fully elucidated and is usually attributed to differences in organ metabolism. For heterocyclic amines, potent carcinogens that are formed in well-done meat, the ability to either bind to the estrogen receptor and activate or inhibit an estrogenic response will have a major impact on carcinogenicity. Here we describe our work with the human estrogen receptor alpha (hERa) and the mutagenic/carcinogenic heterocyclic amines PhIP, MeIQx, IFP, and the hydroxylated metabolite of PhIP, N2-hydroxy-PhIP. We found that PhIP, in contrast to the other heterocyclic amines, increased cell-proliferation in MCF-7 human breast cancer cells and activated the hERa receptor. We show mechanistic data supporting this activation both computationally by homology modeling and docking, and by NMR confirmation that PhIP binds with the ligand binding domain (LBD). This binding competes with estradiol (E2) in the native E2 binding cavity of the receptor. We also find that other heterocyclic amines and N2-hydroxy-PhIP inhibit ER activation presumably by binding into another cavity on the LBD. Moreover, molecular dynamics simulations of inhibitory heterocyclic amines reveal a disruption of the surface of the receptor protein involved with protein-protein signaling. We therefore propose that the mechanism for the tissue specific carcinogenicity seen in the rat breast tumors and the presumptive human breast cancer associated with the consumption of well-done meat maybe mediated by this receptor activation.

  10. GABA(A) receptors implicated in REM sleep control express a benzodiazepine binding site.

    PubMed

    Nguyen, Tin Quang; Liang, Chang-Lin; Marks, Gerald A

    2013-08-21

    It has been reported that non-subtype-selective GABAA receptor antagonists injected into the nucleus pontis oralis (PnO) of rats induced long-lasting increases in REM sleep. Characteristics of these REM sleep increases were identical to those resulting from injection of muscarinic cholinergic agonists. Both actions were blocked by the muscarinic antagonist, atropine. Microdialysis of GABAA receptor antagonists into the PnO resulted in increased acetylcholine levels. These findings were consistent with GABAA receptor antagonists disinhibiting acetylcholine release in the PnO to result in an acetylcholine-mediated REM sleep induction. Direct evidence has been lacking for localization in the PnO of the specific GABAA receptor-subtypes mediating the REM sleep effects. Here, we demonstrated a dose-related, long-lasting increase in REM sleep following injection (60 nl) in the PnO of the inverse benzodiazepine agonist, methyl-6,7-dimethoxy-4-ethyl-β-carboline (DMCM, 10(-2)M). REM sleep increases were greater and more consistently produced than with the non-selective antagonist gabazine, and both were blocked by atropine. Fluorescence immunohistochemistry and laser scanning confocal microscopy, colocalized in PnO vesicular acetylcholine transporter, a presynaptic marker of cholinergic boutons, with the γ2 subunit of the GABAA receptor. These data provide support for the direct action of GABA on mechanisms of acetylcholine release in the PnO. The presence of the γ2 subunit at this locus and the REM sleep induction by DMCM are consistent with binding of benzodiazepines by a GABAA receptor-subtype in control of REM sleep.

  11. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  12. ( sup 3 H)opipramol labels a novel binding site and sigma receptors in rat brain membranes

    SciTech Connect

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.; Snowman, A.M.; Snyder, S.H. )

    1991-02-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. ({sup 3}H)Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). ({sup 3}H)Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-({sup 3}H)3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to any known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects.

  13. Computational Characterization and Prediction of Estrogen Receptor Coactivator Binding Site Inhibitors

    DTIC Science & Technology

    2005-09-01

    Gutendorf, andJ. Westendorf. 2000. Endocrine disruptors in fried meat: PhIP is an estrogen. Proceedings of the American Association for Cancer...binding site of the ERa LBD [3-5]. Because these studies have focused on the estradiol binding site, new potential ER disruptors that bind in the co...activator site have been missed. Our proposal focuses on developing a new computational approach to predict therapeutically useful ERa disruptors by

  14. Short-term desensitization of muscarinic cholinergic receptors in mouse neuroblastoma cells: selective loss of agonist low-affinity and pirenzepine high-affinity binding sites

    SciTech Connect

    Cioffi, C.L.; el-Fakahany, E.E.

    1986-09-01

    The effects of brief incubation with carbamylcholine on subsequent binding of (/sup 3/H)N-methylscopolamine were investigated in mouse neuroblastoma cells (clone N1E-115). This treatment demonstrated that the muscarinic receptors in this neuronal clone can be divided into two types; one which is readily susceptible to regulation by receptor agonists, whereas the other is resistant in this regard. In control cells, both pirenzepine and carbamylcholine interacted with high- and low-affinity subsets of muscarinic receptors. Computer-assisted analysis of the competition between pirenzepine and carbamylcholine with (/sup 3/H)N-methylscopolamine showed that the receptor sites remaining upon desensitization are composed mainly of pirenzepine low-affinity and agonist high-affinity binding sites. Furthermore, there was an excellent correlation between the ability of various muscarinic receptor agonists to induce a decrease in consequent (/sup 3/H)N-methylscopolamine binding and their efficacy in stimulating cyclic GMP synthesis in these cells. Thus, only the agonists that are known to recognize the receptor's low-affinity conformation in order to elicit increases in cyclic GMP levels were capable of diminishing ligand binding. Taken together, our present results suggest that the receptor population that is sensitive to regulation by agonists includes both the pirenzepine high-affinity and the agonist low-affinity receptor binding states. In addition, the sensitivity of these receptor subsets to rapid regulation by agonists further implicates their involvement in desensitization of muscarinic receptor-mediated cyclic GMP formation.

  15. MAPkinase: a second site of G-protein regulation of B-cell activation via the antigen receptors.

    PubMed Central

    Deehan, M R; Klaus, G G; Holman, M J; Harnett, W; Harnett, M M

    1998-01-01

    Ligation of the antigen receptors on B cells transduces transmembrane signals leading to the induction of DNA synthesis. We now show that a pertussis toxin-sensitive heterotrimeric G-protein(s) of the Gi class plays a key role in the regulation of surface immunoglobulin (sIg)-mediated DNA synthesis in B cells. This site of G-protein regulation is distinct from that we have previously reported to govern the coupling of the antigen receptors on B cells to the phospholipase C-mediated hydrolysis of phosphatidylinositol-4,5-bisphosphate. We have, moreover, identified a candidate target for this new G-protein regulation by showing that mitogen-activating protein kinase (MAPkinase) activity, which plays a key role in the transduction of sIg-mediated proliferative signals in B cells, is abrogated by pre-exposure to pertussis toxin that covalently modifies and inactivates heterotrimeric G-proteins of the Gi class. Furthermore, our data suggest that this pertussis toxin-sensitive G-protein couples the antigen receptors to MAPkinase activation, at least in part, by regulating sIg-coupling to Lyn, Syk and perhaps Blk and Fyn activity, results consistent with studies in other systems which show that classical G-protein-coupled receptors recruit such protein tyrosine kinases to tranduce MAPkinase activation. Interestingly, however, this G-protein plays no apparent role in the control of up-regulation of major histocompatibility complex class II expression on B cells, suggesting that such G-protein-regulated-tyrosine kinase and MAPkinase activation is not required for the induction of this biological response following antigen receptor ligation. Images Figure 5 PMID:9824472

  16. Monoclonal antibodies and synthetic peptides define the active site of FcepsilonRI and a potential receptor antagonist.

    PubMed

    Rigby, L J; Trist, H; Snider, J; Hulett, M D; Hogarth, P M; Rigby, L J; Epa, V C

    2000-07-01

    Defining the structure of the human high-affinity receptor for IgE, Fc,RI, is crucial to understand the receptor:ligand interaction, and to develop drugs to prevent IgE-dependent allergic diseases. To this end, a series of four anti-FcepsilonRI monoclonal antibodies (mAbs), including three new mAbs, 47, 54, and 3B4, were used in conjunction with synthetic FcepsilonRI peptides to define functional regions of the Fc IgE-binding site and identify an antagonist of IgE binding. The spatial orientation of the epitopes detected by these antibodies and their relationship to the IgE-binding region of FcepsilonRI was defined by a homology model based on the closely related FcepsilonRIIa. Using recombinant soluble FcRI-alpha as well as FcepsilonRI-alpha expressed on the cell surface, a series of direct and competitive binding experiments indicated that the mAbs detected nonoverlapping epitopes. One antibody (15-1), previously thought to be located close to the IgE-binding site, was precisely mapped to a single loop within the IgE-binding site by both mutagenesis and overlapping synthetic peptides encompassing the entire extracellular domain. A synthetic peptide epsilonRI-11, containing the amino acids 101-120 and the mAb 15-1 epitope, inhibited IgE binding and may form the basis for the development of a useful receptor-based therapy.

  17. Spatial orientation of the antagonist granisetron in the ligand-binding site of the 5-HT3 receptor.

    PubMed

    Yan, Dong; White, Michael M

    2005-08-01

    The serotonin type 3 receptor (5-HT(3)R) is a member of the cys-loop ligand-gated ion channel (LGIC) superfamily. Like almost all membrane proteins, high-resolution structural data are unavailable for this class of receptors. We have taken advantage of the high degree of homology between LGICs and the acetylcholine binding protein (AChBP) from the freshwater snail Lymnea stagnalis, for which high-resolution structural data are available, to create a structural model for the extracellular (i.e., ligand-binding) domain of the 5-HT(3)R and to perform a series of ligand docking experiments to delineate the architecture of the ligand-binding site. Structural models were created using homology modeling with the AChBP as a template. Docking of the antagonist granisetron was carried out using a Lamarckian genetic algorithm to produce models of ligand-receptor complexes. Two energetically similar conformations of granisetron in the binding site were obtained from the docking simulations. In one model, the indazole ring of granisetron is near Trp90 and the tropane ring is near Arg92; in the other, the orientation is reversed. We used double-mutant cycle analysis to determine which of the two orientations is consistent with experimental data and found that the data are consistent with the model in which the indazole ring of granisetron interacts with Arg92 and the tropane ring interacts with Trp90. The combination of molecular modeling with double-mutant cycle analysis offers a powerful approach for the delineation of the architecture of the ligand-binding site.

  18. Site-specific circadian expression of leptin and its receptor in human adipose tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Circadian variability of circulating leptin levels has been well established over the last decade. However, the circadian behavior of leptin in human adipose tissue remains unknown. This also applies to the soluble leptin receptor. We investigated the ex vivo circadian behavior of leptin and its rec...

  19. Novel splice site mutation in the growth hormone receptor gene in Turkish patients with Laron-type dwarfism.

    PubMed

    Arman, Ahmet; Ozon, Alev; Isguven, Pinar S; Coker, Ajda; Peker, Ismail; Yordam, Nursen

    2008-01-01

    Growth hormone (GH) is involved in growth, and fat and carbohydrate metabolism. Interaction of GH with the GH receptor (GHR) is necessary for systemic and local production of insulin-like growth factor-I (IGF-I) which mediates GH actions. Mutations in the GHR cause severe postnatal growth failure; the disorder is an autosomal recessive genetic disease resulting in GH insensitivity, called Laron syndrome. It is characterized by dwarfism with elevated serum GH and low levels of IGF-I. We analyzed the GHR gene for mutations and polymorphisms in eight patients with Laron-type dwarfism from six families. We found three missense mutations (S40L, V125A, I526L), one nonsense mutation (W157X), and one splice site mutation in the extracellular domain of GHR. Furthermore, G168G and exon 3 deletion polymorphisms were detected in patients with Laron syndrome. The splice site mutation, which is a novel mutation, was located at the donor splice site of exon 2/ intron 2 within GHR. Although this mutation changed the highly conserved donor splice site consensus sequence GT to GGT by insertion of a G residue, the intron splicing between exon 2 and exon 3 was detected in the patient. These results imply that the splicing occurs arthe GT site in intron 2, leaving the extra inserted G residue at the end of exon 2, thus changing the open reading frame of GHR resulting in a premature termination codon in exon 3.

  20. Mercury-199 NMR of the Metal Receptor Site in MerR and Its Protein-DNA Complex

    NASA Astrophysics Data System (ADS)

    Utschig, Lisa M.; Bryson, James W.; O'Halloran, Thomas V.

    1995-04-01

    Structural insights have been provided by mercury-199 nuclear magnetic resonance (NMR) into the metal receptor site of the MerR metalloregulatory protein alone and in a complex with the regulatory target, DNA. The one- and two-dimensional NMR data are consistent with a trigonal planar Hg-thiolate coordination environment consisting only of Cys side chains and resolve structural aspects of both metal ion recognition and the allosteric mechanism. These studies establish 199Hg NMR techniques as useful probes of the metal coordination environment of regulatory proteins, copper enzymes, and zinc transcription factor complexes as large as 50 kilodaltons.

  1. Mapping of the C3d receptor (CR2)-binding site and a neoantigenic site in the C3d domain of the third component of complement.

    PubMed Central

    Lambris, J D; Ganu, V S; Hirani, S; Müller-Eberhard, H J

    1985-01-01

    The C3d domain of C3 contains the site that binds to the C3d receptor (CR2) which is expressed on B lymphocytes. It also contains a neoantigenic determinant that is recognized by monoclonal antibody (mAb) 130 and is expressed when C3b is cleaved to iC3b and subsequently to C3dg or C3d. mAb 130 inhibits the binding of C3d to CR2. In this study, the locations of the CR2-binding site and of the neoantigen recognized by mAb 130 within the C3d domain were investigated. Treatment of human C3d with CNBr generated two major fragments with Mrs of 12,500 and 8600. Binding studies showed that only the Mr 8600 fragment was capable of binding to both CR2 and mAb 130. Amino-terminal sequence analysis of the Mr 8600 fragment and comparison with the amino acid sequence derived from human C3 cDNA [de Bruijn, M. H. L. & Fey, G. H. (1985) Proc. Natl. Acad. Sci. USA 82, 708-712] placed it between residues 1199 and 1274 of the C3 sequence. Several peptides were synthesized according to the derived C3 sequence of amino acid residues 1209-1236. Based on their differential binding to CR2 and mAb 130, we localized the CR2-binding site and mAb 130 neoantigenic site, respectively, to residues 1227-1232 and 1217-1232 of the C3 sequence. PMID:2408276

  2. Zolpidem is a potent stoichiometry-selective modulator of α1β3 GABAA receptors: evidence of a novel benzodiazepine site in the α1-α1 interface

    PubMed Central

    Che Has, Ahmad Tarmizi; Absalom, Nathan; van Nieuwenhuijzen, Petra S.; Clarkson, Andrew N.; Ahring, Philip K.; Chebib, Mary

    2016-01-01

    Zolpidem is not a typical GABAA receptor hypnotic. Unlike benzodiazepines, zolpidem modulates tonic GABA currents in the rat dorsal motor nucleus of the vagus, exhibits residual effects in mice lacking the benzodiazepine binding site, and improves speech, cognitive and motor function in human patients with severe brain injury. The receptor by which zolpidem mediates these effects is not known. In this study we evaluated binary α1β3 GABAA receptors in either the 3α1:2β3 or 2α1:3β3 subunit stoichiometry, which differ by the existence of either an α1-α1 interface, or a β3-β3 interface, respectively. Both receptor stoichiometries are readily expressed in Xenopus oocytes, distinguished from each other by using GABA, zolpidem, diazepam and Zn2+. At the 3α1:2β3 receptor, clinically relevant concentrations of zolpidem enhanced GABA in a flumazenil-sensitive manner. The efficacy of diazepam was significantly lower compared to zolpidem. No modulation by either zolpidem or diazepam was detected at the 2α1:3β3 receptor, indicating that the binding site for zolpidem is at the α1-α1 interface, a site mimicking the classical α1-γ2 benzodiazepine site. Activating α1β3 (3α1:2β3) receptors may, in part, mediate the physiological effects of zolpidem observed under distinct physiological and clinical conditions, constituting a potentially attractive drug target. PMID:27346730

  3. The receptor for advanced glycation end products promotes bacterial growth at distant body sites in Staphylococcus aureus skin infection.

    PubMed

    Achouiti, Ahmed; Van't Veer, Cornelis; de Vos, Alex F; van der Poll, Tom

    2015-09-01

    The receptor for advanced glycation endproducts (RAGE) has been implicated in the regulation of skin inflammation. We here sought to study the role of RAGE in host defense during skin infection caused by Staphylococcus (S.) aureus, the most common pathogen in this condition. Wild-type (Wt) and RAGE deficient (rage(-/-)) mice were infected subcutaneously with S. aureus and bacterial loads and local inflammation were quantified at regular intervals up to 8 days after infection. While bacterial burdens were similar in both mouse strains at the primary site of infection, rage(-/-) mice had lower bacterial counts in lungs and liver. Skin cytokine and chemokine levels did not differ between groups. In accordance with the skin model, direct intravenous infection with S. aureus was associated with lower bacterial loads in lungs and liver of rage(-/-) mice. Together these data suggest that RAGE does not impact local host defense during S. aureus skin infection, but facilitates bacterial growth at distant body sites.

  4. Mapping of receptor binding sites on IL-1 beta by reconstruction of IL-1ra-like domains.

    PubMed

    Boraschi, D; Bossù, P; Ruggiero, P; Tagliabue, A; Bertini, R; Macchia, G; Gasbarro, C; Pellegrini, L; Melillo, G; Ulisse, E; Visconti, U; Bizzarri, C; Del Grosso, E; Mackay, A R; Frascotti, G; Frigerio, F; Grifantini, R; Grandi, G

    1995-11-15

    Upon structure comparison between IL-1 beta and its antagonist IL-1ra, single or multiple residues along the IL-1 beta sequence were replaced with the corresponding amino acids present in the IL-1ra protein, in the attempt to identify sites important for receptor binding and for biologic activity on the two molecules. Ten of fifteen mutant proteins had activity comparable to that of wild-type IL-1 beta in three different biologic assays and in receptor binding, indicating that the introduced changes did not influence the functional structure of the protein. Conversely, three mutants (SMIL-9: 127/263 R/T-->W/Y; SMIL-10: 125/127/263/265 T/R/T/Q-->R/W/Y/E; SMIL-15:222/227 I/E-->S/S) showed an increased binding capacity for IL-1RI, not paralleled by increased agonist activity, indicating that the introduced IL-1ra residues could be involved in the nonagonist IL-1RI binding site. On the other hand, two mutants showed diminished binding capacity with concomitant decrease in biologic activity. Both mutants (SMIL-1, five substitutions in the loop 202-214; and SMIL-3, total replacement of the loop 164-173 with the IL-1ra stretch 52-55) included substitutions of residues allegedly important for agonist binding to IL-1RI. Mutant SMIL-3 showed the most profound reduction in binding capacity for IL-1RI (CDw121a) and a more than 1,000-fold reduced biologic activity both in vitro and in vivo, but it retained full capacity of binding to IL-1RII (CDw121b) and acted as a selective antagonist of IL-1RII. From these results the following conclusions can be drawn. IL-1 beta binds to IL-1RI and to IL-1RII through different sites, and the loop 164-173 appears as one of the areas involved in the selective interaction with IL-1RI. Agonist (IL-1 beta) and nonagonist (IL-1ra) binding to IL-1RI occur through distinct sites, with loops 164-173 and 202-214 of IL-1 beta identified as two of the sites selectively involved in agonist binding to the activating receptor.

  5. Effect of protein A and its fragment B on the catabolic and Fc receptor sites of IgG.

    PubMed

    Dima, S; Medeşan, C; Moţa, G; Moraru, I; Sjöquist, J; Gheţie, V

    1983-08-01

    Radiolabeled protein A from Staphylococcus aureus (SpA) injected i.v. into mice and rabbits forms a soluble [(IgG)2-(SpA)1]2 complex (Mr = 684 000) which is identical in composition to that formed by SpA in vitro with an equivalent amount or an excess of IgG. A soluble rabbit IgG-SpA complex injected into a mice or rabbits dissociates completely in vivo and a new complex is formed with the IgG of the recipient animal. The half-life of SpA administered to a mouse or a rabbit is therefore the half-life of the IgG-SpA complex formed in vivo. In mice and rabbits the half-life of the complexes formed is 9 and 30 h, respectively, whereas the half-life of rabbit IgG in these animals is 106 and 153 h, respectively. Fragment B of SpA (fSpA) reacts with IgG of mouse and rabbit and forms an (IgG)1-(fSpA)1 complex. Complexes of identical composition are formed if fSpA is injected i.v. into mice and rabbits. The half-life of the complexes in mice and rabbits are much shorter than those of the corresponding free IgG in these animals (up to 15 times). This result suggests that the binding of fSpA to the CH2 and the CH3 domains of IgG alters the function of the site, which controls the catabolism of IgG and is located in the CH2 domain. By contrast, fSpA does not change the Fc receptor-binding site of IgG, indicating that the Fc receptor site and the catabolic site are unrelated to each other.

  6. Molecular Architecture of the Major Histocompatibility Complex Class I-Binding Site of Ly49 Natural Killer Cell Receptors

    SciTech Connect

    Deng,L.; Cho, S.; Malchiodi, E.; Kerzic, M.; Dam, J.; Mariuzza, R.

    2008-01-01

    Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2Kb complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.

  7. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  8. Development of adrenergic receptor binding sites in brain regions of the neonatal rat: effects of prenatal or postnatal exposure to methylmercury

    SciTech Connect

    Bartolome, J.V.; Kavlock, R.J.; Cowdery, T.; Orband-Miller, L.; Slotkin, T.A.

    1987-01-01

    In order to understand the effects of developmental exposure to methylmercury on the ontogeny of synaptic function, the impact of prenatal or postnatal exposure on acquisition of receptor binding sites for norepinephrine was examined. The actions of the mercurial were both regionally - and receptor subtype-selective and depended upon the maturational profile of each region. Alpha 1 and alpha 2 and Beta-receptor sites in the cerebellum, the region which develops last, were the most vulnerable to methylmercury. In contrast, the same receptor subtypes in the midbrain + brainstem, which develops earliest, were resistant to methylmercury. The cerebal cortex, which matures at a time midway between cerebellum and midbrain + brainstem, also displayed intermediate vulnerability to actions of methylmercury on receptors. Within the cerebellum, prenatal exposure to 1 mg/kg to methylmercury, interfered the most with ontogeny of alpha 1-receptor binding, less so far alpha 2-receptors and least for Beta-receptors. Lower doses of methylmercury tended to increase receptor binding for all subtypes, a fact which may contribute to promotion of neurological development seen in animals exposed to those levels.

  9. Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies.

    PubMed

    Zhang, Wei-Jie; Luo, Xiao; Liu, Ya-Li; Shao, Xiao-Xia; Wade, John D; Bathgate, Ross A D; Guo, Zhan-Yun

    2012-08-01

    Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It has putative roles in the regulation of stress responses, food intake, and reproduction by activation of its cognate G-protein-coupled receptor RXFP3. It also binds and activates the relaxin family peptide receptors RXFP1 and RXFP4 in vitro. To obtain a europium-labeled relaxin-3 as tracer for studying the interaction of these receptors with various ligands, in the present work we propose a novel site-specific labeling strategy for the recombinant human relaxin-3 that has been previously prepared in our laboratory. First, the N-terminal 6 × His-tag of the single-chain relaxin-3 precursor was removed by Aeromonas aminopeptidase and all of the primary amines of the resultant peptide were reversibly blocked by citroconic anhydride. Second, the A-chain N-terminus of the blocked peptide was released by endoproteinase Asp-N cleavage that removed the linker peptide between the B- and A-chains. Third, an alkyne moiety was introduced to the newly released A-chain N-terminus by reaction with the highly active primary amine-specific N-hydroxysuccinimide ester. Fourth, after removal of the reversible blockage under mild acidic condition, europium-loaded DOTA with an azide moiety was introduced to the two-chain relaxin-3 carrying the alkyne moiety through click chemistry. Using this site-specific labeling strategy, homogeneous monoeuropium-labeled human relaxin-3 could be obtained with good overall yield. In contrast, conventional random labeling resulted in a complex mixture that was poorly resolved because human relaxin-3 has four primary amine moieties that all react with the modification reagent. Both saturation and competition binding assays demonstrated that the DOTA/Eu(3+)-labeled relaxin-3 retained high binding affinity for human RXFP3, RXFP4, and RXFP1 and was therefore a suitable non-radioactive and stable tracer to study the interaction of various

  10. Complete androgen insensitivity syndrome caused by a novel splice donor site mutation and activation of a cryptic splice donor site in the androgen receptor gene.

    PubMed

    Infante, Joana B; Alvelos, Maria I; Bastos, Margarida; Carrilho, Francisco; Lemos, Manuel C

    2016-01-01

    The androgen insensitivity syndrome is an X-linked recessive genetic disorder characterized by resistance to the actions of androgens in an individual with a male karyotype. We evaluated a 34-year-old female with primary amenorrhea and a 46,XY karyotype, with normal secondary sex characteristics, absence of uterus and ovaries, intra-abdominal testis, and elevated testosterone levels. Sequence analysis of the androgen receptor (AR) gene revealed a novel splice donor site mutation in intron 4 (c.2173+2T>C). RT-PCR analysis showed that this mutation resulted in the activation of a cryptic splice donor site located in the second half of exon 4 and in the synthesis of a shorter mRNA transcript and an in-frame deletion of 41 amino acids. This novel mutation associated with a rare mechanism of abnormal splicing further expands the spectrum of mutations associated with the androgen insensitivity syndrome and may contribute to the understanding of the molecular mechanisms involved in splicing defects.

  11. Fluorescence histochemical study of the localisation and distribution of beta-adrenergic receptor sites in the spinal cord and cerebellum of the chicken.

    PubMed

    Bondok, A A; Botros, K G; el-Mohandes, E A

    1988-10-01

    The distribution of beta-adrenergic receptor sites has been studied in chicken spinal cord and cerebellum using a fluorescent analogue of propranolol, 9-amino-acridin-propranolol (9-AAP). In the cervical and lumbar regions of the spinal cord, beta-adrenoceptor sites were concentrated on cell bodies of alpha-motor neurons of the dorsolateral and ventrolateral nuclear groups of the ventral horn. In the thoracic region, they were present on cell bodies of the preganglionic sympathetic nucleus (dorsal commissural nucleus). In the dorsal horn, the receptor sites were present mainly on cell bodies of columna dorsalis magnocellularis. Sparse distribution of fluorescence was present in other regions of the gray matter. In the cerebellum, a dense distribution of beta-adrenergic receptor sites was observed on Purkinje cell bodies and their apical dendrites. Sparse distribution of receptor sites was present on fine ramifications of Purkinje cell dendrites in the molecular layer. Receptor sites were absent in the granule cell layer and the white matter. These observations indicate that alpha-motor neurons, preganglionic sympathetic neurons, neurons of columna dorsalis magnocellularis, and Purkinje cells are adrenoceptive, while granule cells are non-adrenoceptive.

  12. Fluorescence histochemical study of the localisation and distribution of beta-adrenergic receptor sites in the spinal cord and cerebellum of the chicken.

    PubMed Central

    Bondok, A A; Botros, K G; el-Mohandes, E A

    1988-01-01

    The distribution of beta-adrenergic receptor sites has been studied in chicken spinal cord and cerebellum using a fluorescent analogue of propranolol, 9-amino-acridin-propranolol (9-AAP). In the cervical and lumbar regions of the spinal cord, beta-adrenoceptor sites were concentrated on cell bodies of alpha-motor neurons of the dorsolateral and ventrolateral nuclear groups of the ventral horn. In the thoracic region, they were present on cell bodies of the preganglionic sympathetic nucleus (dorsal commissural nucleus). In the dorsal horn, the receptor sites were present mainly on cell bodies of columna dorsalis magnocellularis. Sparse distribution of fluorescence was present in other regions of the gray matter. In the cerebellum, a dense distribution of beta-adrenergic receptor sites was observed on Purkinje cell bodies and their apical dendrites. Sparse distribution of receptor sites was present on fine ramifications of Purkinje cell dendrites in the molecular layer. Receptor sites were absent in the granule cell layer and the white matter. These observations indicate that alpha-motor neurons, preganglionic sympathetic neurons, neurons of columna dorsalis magnocellularis, and Purkinje cells are adrenoceptive, while granule cells are non-adrenoceptive. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:2855328

  13. Mapping of the high affinity Fc epsilon receptor binding site to the third constant region domain of IgE.

    PubMed Central

    Nissim, A; Jouvin, M H; Eshhar, Z

    1991-01-01

    Identification of the precise region(s) on the IgE molecule that take part in the binding of IgE to its high affinity receptor (Fc epsilon RI) may lead to the design of IgE analogues able to block the allergic response. To localize the Fc epsilon RI-binding domain of mouse IgE, we attempted to confer on human IgE, which normally does not bind to the rodent receptor, the ability to bind to the rat Fc epsilon RI. Employing exon shuffling, we have expressed chimeric epsilon-heavy chain genes composed of a mouse (4-hydroxy-3-nitrophenyl)acetic acid (NP)-binding VH domain, and human C epsilon in which various domains were replaced by their murine counterparts. This has enabled us to test the Fc epsilon RI-binding of each mouse IgE domain while maintaining the overall conformation of the molecule. All of the chimeric IgE molecules which contain the murine C epsilon 3, bound equally to both the rodent and human receptor, as well as to monoclonal antibodies recognizing a site on IgE which is identical or very close to the Fc epsilon RI binding site. Deletion of the second constant region domain did not impair either the binding capacity of the mutated IgE or its ability to mediate mast cell degradation. These results assign the third epsilon domain of IgE as the principal region involved in the interaction with the Fc epsilon RI. Images PMID:1824934

  14. Elucidation of strain-specific interaction of a GII-4 norovirus with HBGA receptors by site-directed mutagenesis study

    SciTech Connect

    Tan Ming |; Xia Ming; Cao Sheng; Huang Pengwei; Farkas, Tibor |; Meller, Jarek |; Hegde, Rashmi S. |; Li Xuemei; Rao Zihe; Jiang Xi |

    2008-09-30

    Noroviruses interact with histo-blood group antigen (HBGA) receptors in a strain-specific manner probably detecting subtle structural differences in the carbohydrate receptors. The specific recognition of types A and B antigens by various norovirus strains is a typical example. The only difference between the types A and B antigens is the acetamide linked to the terminal galactose of the A but not to the B antigen. The crystal structure of the P dimer of a GII-4 norovirus (VA387) bound to types A and B trisaccharides has elucidated the A/B binding site on the capsid but did not explain the binding specificity of the two antigens. In this study, using site-directed mutagenesis, we have identified three residues on the VA387 capsid that are sterically close to the acetamide and are required for binding to A but not B antigens, indicating that the acetamide determines the binding specificity between the A and B antigens. Further mutational analysis showed that a nearby open cavity may also be involved in binding specificity to HBGAs. In addition, a systematic mutational analysis of residues in and around the binding interface has identified a group of amino acids that are required for binding but do not have direct contact with the carbohydrate antigens, implying that these residues may be involved in the structural integrity of the receptor binding interface. Taken together, our study provides new insights into the carbohydrate/capsid interactions which are a valuable complement to the atomic structures in understanding the virus/host interaction and in the future design of antiviral agents.

  15. Multiple Ca2+ Binding Sites in the Extracellular Domain of Ca2+-Sensing Receptor Corresponding to Cooperative Ca2+ Response†

    PubMed Central

    Huang, Yun; Zhou, Yubin; Castiblanco, Adriana; Yang, Wei; Brown, Edward M.; Yang, Jenny J.

    2009-01-01

    A small change in the extracellular Ca2+ concentration ([Ca2+]o) integrates cell signaling responses in multiple cellular and tissue networks and functions via activation of Ca2+-sensing receptors (CaSR). Mainly through binding of Ca2+ to the large extracellular domain (ECD) of the dimeric CaSR, intracellular Ca2+ responses are highly cooperative with an apparent Hill coefficient ranging from 2 to 4. We have previously reported the identification of two continuous putative Ca2+-binding sites by grafting CaSR-derived, Ca2+-binding peptides to a scaffold protein, CD2, that does not bind Ca2+. In this paper, we predict more potential non-continuous Ca2+-binding sites in the ECD. We dissect the intact CaSR into three globular subdomains, each of which contains 2 to 3 predicted Ca2+-binding sites. This approach enables us to further understand the mechanisms underlying the binding of multiple metal ions to extended polypeptides derived from within the ECD of the CaSR, which would be anticipated to more closely mimic the structure of the native CaSR ECD. Tb3+-luminescence energy transfer, ANS fluorescence, and NMR studies show biphasic metal-binding components and Ca2+-dependent conformational changes in these subdomains. Removing the predicted Ca2+-binding ligands in site 1 and site 3 abolishes the first binding step and second binding step, respectively. Studies on these subdomains suggest the existence of multiple metal-binding sites and metal-induced conformational changes that might be responsible for switching on/off the CaSR by transition between its open inactive form and closed active form. PMID:19102677

  16. Modular Insulators: Genome Wide Search for Composite CTCF/Thyroid Hormone Receptor Binding Sites

    PubMed Central

    Weth, Oliver; Weth, Christine; Bartkuhn, Marek; Leers, Joerg; Uhle, Florian; Renkawitz, Rainer

    2010-01-01

    The conserved 11 zinc-finger protein CTCF is involved in several transcriptional mechanisms, including insulation and enhancer blocking. We had previously identified two composite elements consisting of a CTCF and a TR binding site at the chicken lysozyme and the human c-myc genes. Using these it has been demonstrated that thyroid hormone mediates the relief of enhancer blocking even though CTCF remains bound to its binding site. Here we wished to determine whether CTCF and TR combined sites are representative of a general feature of the genome, and whether such sites are functional in regulating enhancer blocking. Genome wide analysis revealed that about 18% of the CTCF regions harbored at least one of the four different palindromic or repeated sequence arrangements typical for the binding of TR homodimers or TR/RXR heterodimers. Functional analysis of 10 different composite elements of thyroid hormone responsive genes was performed using episomal constructs. The episomal system allowed recapitulating CTCF mediated enhancer blocking function to be dependent on poly (ADP)-ribose modification and to mediate histone deacetylation. Furthermore, thyroid hormone sensitive enhancer blocking could be shown for one of these new composite elements. Remarkably, not only did the regulation of enhancer blocking require functional TR binding, but also the basal enhancer blocking activity of CTCF was dependent on the binding of the unliganded TR. Thus, a number of composite CTCF/TR binding sites may represent a subset of other modular CTCF composite sites, such as groups of multiple CTCF sites or of CTCF/Oct4, CTCF/Kaiso or CTCF/Yy1 combinations. PMID:20404925

  17. Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (. mu. ) and enkephalin (delta) binding sites

    SciTech Connect

    Kazmi, S.M.I.; Mishra, R.K.

    1986-06-13

    Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of ..mu.. and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of (/sup 3/H)-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin (DADLE) in the presence of 10/sup -5/M D-Pro/sup 4/-morphiceptin (to block the ..mu.. receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of (/sup 3/H)-dihydromorphine, together with the higher potency of morphine analogues to displace (/sup 3/H)-naloxone binding established the presence of ..mu.. sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of (/sup 3/H)-DADLE binding.

  18. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases.

  19. Spatial modeling of receptor species for ecological risk assessment activities on the Department of Energy's Savannah River Site

    NASA Astrophysics Data System (ADS)

    Gaines, Karen Frances

    To assist risk assessors on the Department of Energy's Savannah River Site (SRS), a Geographic Information System (GIS) was developed to provide relevant information about specific receptor species that can be used for ecological risk assessment (ERA). Although this GIS is a useful tool, it is limited in that it can only provide information about a species if it was studied in that particular area and does not describe the site-wide spatial distribution or life history of a receptor species, which may be crucial when developing an ecological impact assessment. The GIS was expanded by modeling wildlife species on the SRS to provide information regarding their over-all distribution (probability of being in an area) and habitat utilization. Each model is a stand-alone tool consisting of algorithms that are applied within a GIS and therefore dynamic enough to respond to stochastic events such as natural and anthropogenic habitat disturbances and/or long-term changes such as natural succession. Spatial analyses suggest toxicant exposure and accumulation risk in relation to the species probability of occurrence in the area. This modeling effort provides the tools that are crucial for the Department of Energy to conduct ERA activities for specific contaminants on the SRS. Further, it serves as a template for DOE managed lands and other large government facilities to establish a framework for site-specific ecological impact assessments that use wildlife species as endpoints. Predictive distribution models for the raccoon (Procyon lotor) and wild hog (Sus scrofa ) are used to demonstrate the construction and utilization of these models to: (1) estimate wildlife toxicant exposure, (2) identify possible contaminant vectors, and (3) construct human-based risk assessments from consuming wild game.

  20. Epidermal Growth Factor Receptor Fate Is Controlled by Hrs Tyrosine Phosphorylation Sites That Regulate Hrs Degradation▿

    PubMed Central

    Stern, Kathryn A.; Visser Smit, Gina D.; Place, Trenton L.; Winistorfer, Stanley; Piper, Robert C.; Lill, Nancy L.

    2007-01-01

    Hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) is an endosomal protein essential for the efficient sorting of activated growth factor receptors into the lysosomal degradation pathway. Hrs undergoes ligand-induced tyrosine phosphorylation on residues Y329 and Y334 downstream of epidermal growth factor receptor (EGFR) activation. It has been difficult to investigate the functional roles of phosphoHrs, as only a small proportion of the cellular Hrs pool is detectably phosphorylated. Using an HEK 293 model system, we found that ectopic expression of the protein Cbl enhances Hrs ubiquitination and increases Hrs phosphorylation following cell stimulation with EGF. We exploited Cbl's expansion of the phosphoHrs pool to determine whether Hrs tyrosine phosphorylation controls EGFR fate. In structure-function studies of Cbl and EGFR mutants, the level of Hrs phosphorylation and rapidity of apparent Hrs dephosphorylation correlated directly with EGFR degradation. Differential expression of wild-type versus Y329,334F mutant Hrs in Hrs-depleted cells revealed that one or both tyrosines regulate ligand-dependent Hrs degradation, as well as EGFR degradation. By modulating Hrs ubiquitination, phosphorylation, and protein levels, Cbl may control the composition of the endosomal sorting machinery and its ability to target EGFR for lysosomal degradation. PMID:17101784

  1. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor

    PubMed Central

    Williamson, P. T. F.; Verhoeven, A.; Miller, K. W.; Meier, B. H.; Watts, A.

    2007-01-01

    The conformation of the neurotransmitter acetylcholine bound to the fully functional nicotinic acetylcholine receptor embedded in its native membrane environment has been characterized by using frequency-selective recoupling solid-state NMR. Six dipolar couplings among five resolved 13C-labeled atoms of acetylcholine were measured. Bound acetylcholine adopts a bent conformation characterized with a quaternary ammonium-to-carbonyl distance of 5.1 Å. In this conformation, and with its orientation constrained to that previously determined by us, the acetylcholine could be docked satisfactorily in the agonist pocket of the agonist-bound, but not the agonist-free, crystal structure of a soluble acetylcholine-binding protein from Lymnaea stagnali. The quaternary ammonium group of the acetylcholine was determined to be within 3.9 Å of five aromatic residues and its acetyl group close to residues C187/188 of the principle and residue L112 of the complementary subunit. The observed >CO chemical shift is consistent with H bonding to the nicotinic acetylcholine receptor residues γY116 and δT119 that are homologous to L112 in the soluble acetylcholine-binding protein. PMID:17989232

  2. Characterization of Naphthaleneacetic Acid Binding to Receptor Sites on Cellular Membranes of Maize Coleoptile Tissue 1

    PubMed Central

    Ray, Peter M.; Dohrmann, Ulrike; Hertel, Rainer

    1977-01-01

    Characteristics of and optimum conditions for saturable (“specific”) binding of [14C]naphthaleneacetic acid to sites located on membranous particles from maize (Zea mays L.) coleoptiles are described. Most, if not all, of the specific binding appears to be due to a single kinetic class of binding sites having a KD of 5 to 7 × 10−7m for naphthalene-1-acetic acid (NAA). Binding of NAA is insensitive to high monovalent salt concentrations, indicating that binding is not primarily ionic. However, specific binding is inhibited by Mg2+ or Ca2+ above 5 mm. Specific binding is improved by organic acids, especially citrate. Binding is heat-labile and is sensitive to agents that act either on proteins or on lipids. Specific binding is reversibly inactivated by reducing agents such as dithioerythritol; a reducible group, possibly a disulfide group, may be located at the binding site and required for its function. The affinity of the specific binding sites for auxins is modified by an unidentified dialyzable, heat-stable, apparently amphoteric, organic factor (“supernatant factor”) found in maize tissue. PMID:16659851

  3. An autophosphorylation site database for leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a family-wide study to identify and characterize sites of autophosphorylation in 73 representative LRR RLKs of the 223 member LRR RLK family in Arabidopsis thaliana. His-tagged constructs of intact cytoplasmic domains (CDs) for 73 of 223 A. thaliana LRR RLKs were cloned into E. coli BL-...

  4. Characterization and distribution of binding sites for a new neurotensin receptor antagonist ligand, [3H]SR 48692, in the guinea pig brain1

    PubMed Central

    Betancur, Catalina; Canton, Maryse; Gully, Danielle; Vela, Gema; Pélaprat, Didier; Rostène, William

    1995-01-01

    SR 48692, a selective non-peptide antagonist of neurotensin (NT) receptors was recently developed. In the present work we studied the binding properties of the corresponding radioligand, 3H-SR 48692, in the adult guinea-pig brain. The characterization of 3H-SR 48692 binding was carried out on brain membrane preparations and the distribution of 3H-SR 48692 binding sites was determined by receptor autoradiography, and compared to that of 125I-NT binding sites. In brain homogenates, 3H-SR 48692 bound to a single population of sites with a Kd of 2.19 nM and a Bmax of 1.15 pmol/mg protein. This Bmax value was 20 times higher than that observed for 125I-NT. NT agonists were able to competitively interact with the entire population of binding sites labeled by 3H-SR 48692, but their affinities were much lower than those observed for 125I-NT. By contrast, NT antagonists exhibited similar abilities to inhibit the binding of both radioligands. The addition of unlabeled NT in saturation assays revealed a competitive inhibition of 3H-SR 48692 binding, suggesting that agonist and antagonists ligands bind to overlapping domains of the NT receptor. The autoradiographic distribution of the low-affinity NT binding sites detected by 3H-SR 48692 (96% of the receptors) was very similar to the distribution of high-affinity receptors labeled with 125I-NT (4% of the receptors). In addition, the binding of 3H-SR 48692 was insensitive to guanyl nucleotides. Taken together, these findings suggest that the binding sites detected by 3H-SR 48692 in the guinea-pig brain mainly represent the uncoupled form of the NT receptor. PMID:7791120

  5. Differences in Glycoprotein Complex Receptor Binding Site Accessibility Prompt Poor Cross-Reactivity of Neutralizing Antibodies between Closely Related Arenaviruses.

    PubMed

    Brouillette, Rachel B; Phillips, Elisabeth K; Ayithan, Natarajan; Maury, Wendy

    2017-04-01

    The glycoprotein complex (GPC) of arenaviruses, composed of stable signal peptide, GP1, and GP2, is the only antigen correlated with antibody-mediated neutralization. However, despite strong cross-reactivity of convalescent antisera between related arenavirus species, weak or no cross-neutralization occurs. Two closely related clade B viruses, Machupo virus (MACV) and Junín virus (JUNV), have nearly identical overall GPC architecture and share a host receptor, transferrin receptor 1 (TfR1). Given structural and functional similarities of the GP1 receptor binding site (RBS) of these viruses and the recent demonstration that the RBS is an important target for neutralizing antibodies, it is not clear how these viruses avoid cross-neutralization. To address this, MACV/JUNV chimeric GPCs were assessed for interaction with a group of α-JUNV GPC monoclonal antibodies (MAbs) and mouse antisera against JUNV or MACV GPC. All six MAbs targeted GP1, with those that neutralized JUNV GPC-pseudovirions competing with each other for RBS binding. However, these MAbs were unable to bind to a chimeric GPC composed of JUNV GP1 containing a small disulfide bonded loop (loop 10) unique to MACV GPC, suggesting that this loop may block MAbs interaction with the GP1 RBS. Consistent with this loop causing interference, mouse anti-JUNV GPC antisera that solely neutralized pseudovirions bearing autologous GP1 provided enhanced neutralization of MACV GPC when this loop was removed. Our studies provide evidence that loop 10, which is unique to MACV GP1, is an important impediment to binding of neutralizing antibodies and contributes to the poor cross-neutralization of α-JUNV antisera against MACV.IMPORTANCE Multiple New World arenaviruses can cause severe disease in humans, and some geographic overlap exists among these viruses. A vaccine that protects against a broad range of New World arenaviruses is desirable for purposes of simplicity, cost, and broad protection against multiple National

  6. Use of antibodies specific to defined regions of scorpion. cap alpha. -toxin to study its interaction with its receptor site on the sodium channel

    SciTech Connect

    Ayeb, M.E.; Bahraoui, E.M.; Granier, C.; Rochat, H.

    1986-10-21

    Five antibody populations selected by immunoaffinity chromatography for the specificity toward various regions of toxin II of the scorpion Androctonus australis Hector were used to probe the interaction of this protein with its receptor site on the sodium channel. These studies indicate that two antigenic sites, one located around the disulfide bridge 12-63 and one encompassing residues 50-59, are involved in the molecular mechanisms of toxicity neutralization. Fab fragments specific to the region around disulfide bridge 12-63 inhibit binding of the /sup 125/I-labeled toxin to its receptor site. Also, these two antigenic regions are inaccessible to the antibodies when the toxin is bound to its receptor site. In contrast, the two other antigenic sites encompassing the only ..cap alpha..-helix region (residues 23-32) and a ..beta..-turn structure (residues 32-35) are accessible to the respective antibodies when the toxin is bound to its receptor. Together, these data support the recent proposal that a region made of residues that are conserved in the scorpion toxin family is involved in the binding of the toxin to the receptor.

  7. Identification of Thyroid Hormone Receptor Binding Sites and Target Genes Using ChIP-on-Chip in Developing Mouse Cerebellum

    PubMed Central

    Dong, Hongyan; Yauk, Carole L.; Rowan-Carroll, Andrea; You, Seo-Hee; Zoeller, R. Thomas; Lambert, Iain; Wade, Michael G.

    2009-01-01

    Thyroid hormone (TH) is critical to normal brain development, but the mechanisms operating in this process are poorly understood. We used chromatin immunoprecipitation to enrich regions of DNA bound to thyroid receptor beta (TRβ) of mouse cerebellum sampled on post natal day 15. Enriched target was hybridized to promoter microarrays (ChIP-on-chip) spanning −8 kb to +2 kb of the transcription start site (TSS) of 5000 genes. We identified 91 genes with TR binding sites. Roughly half of the sites were located in introns, while 30% were located within 1 kb upstream (5′) of the TSS. Of these genes, 83 with known function included genes involved in apoptosis, neurodevelopment, metabolism and signal transduction. Two genes, MBP and CD44, are known to contain TREs, providing validation of the system. This is the first report of TR binding for 81 of these genes. ChIP-on-chip results were confirmed for 10 of the 13 binding fragments using ChIP-PCR. The expression of 4 novel TH target genes was found to be correlated with TH levels in hyper/hypothyroid animals providing further support for TR binding. A TRβ binding site upstream of the coding region of myelin associated glycoprotein was demonstrated to be TH-responsive using a luciferase expression system. Motif searches did not identify any classic binding elements, indicating that not all TR binding sites conform to variations of the classic form. These findings provide mechanistic insight into impaired neurodevelopment resulting from TH deficiency and a rich bioinformatics resource for developing a better understanding of TR binding. PMID:19240802

  8. Response Element Composition Governs Correlations between Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops.

    PubMed

    Sasse, Sarah K; Zuo, Zheng; Kadiyala, Vineela; Zhang, Liyang; Pufall, Miles A; Jain, Mukesh K; Phang, Tzu L; Stormo, Gary D; Gerber, Anthony N

    2015-08-07

    Combinatorial gene regulation through feed-forward loops (FFLs) can bestow specificity and temporal control to client gene expression; however, characteristics of binding sites that mediate these effects are not established. We previously showed that the glucocorticoid receptor (GR) and KLF15 form coherent FFLs that cooperatively induce targets such as the amino acid-metabolizing enzymes AASS and PRODH and incoherent FFLs exemplified by repression of MT2A by KLF15. Here, we demonstrate that GR and KLF15 physically interact and identify low affinity GR binding sites within glucocorticoid response elements (GREs) for PRODH and AASS that contribute to combinatorial regulation with KLF15. We used deep sequencing and electrophoretic mobility shift assays to derive in vitro GR binding affinities across sequence space. We applied these data to show that AASS GRE activity correlated (r(2) = 0.73) with predicted GR binding affinities across a 50-fold affinity range in transfection assays; however, the slope of the linear relationship more than doubled when KLF15 was expressed. Whereas activity of the MT2A GRE was even more strongly (r(2) = 0.89) correlated with GR binding site affinity, the slope of the linear relationship was sharply reduced by KLF15, consistent with incoherent FFL logic. Thus, GRE architecture and co-regulator expression together determine the functional parameters that relate GR binding site affinity to hormone-induced transcriptional responses. Utilization of specific affinity response functions and GR binding sites by FFLs may contribute to the diversity of gene expression patterns within GR-regulated transcriptomes.

  9. Novel Monoclonal Antibody Directed at the Receptor Binding Site on the Avian Sarcoma and Leukosis Virus Env Complex

    PubMed Central

    Ochsenbauer-Jambor, Christina; Delos, Sue E.; Accavitti, Mary Ann; White, Judith M.; Hunter, Eric

    2002-01-01

    We report here on the generation of a mouse monoclonal antibody directed against Rous sarcoma virus (RSV) subgroup A Env that will be useful in functional and structural analysis of RSV Env, as well as in approaches employing the RCAS/Tva system for gene targeting. BALB/c mice were primed and given boosters twice with EnvA-expressing NIH 3T3 cells. Resulting hybridomas were tested by enzyme-linked immunosorbent assay against RCANBP virions and SU-A-immunoglobulin G immunoadhesin. One highly reactive hybridoma clone, mc8C5, was subcloned and tested in immunofluorescence, immunoprecipitation (IP), and Western blotting assays. In all three assays, mc8C5-4 subgroup-specifically recognizes SR-A Env, through the SU domain, expressed from different vectors in both avian and mammalian cells. This multifunctionality is notable for a mouse monoclonal. We furthermore observed a preference for binding to terminally glycosylated Env over core-glycosylated Env precursor in IPs, suggesting that the epitope is at least partially conformational and dependent on glycosylation. Most importantly, we found mc8C5-4 inhibited Env function: in vitro, the monoclonal not only interferes with binding of the EnvA receptor, Tva, but it also blocks the Tva-induced conformational change required for activation of the fusion peptide, without inducing that change itself. Infection of Tva-expressing avian or mammalian cells by avian sarcoma and leukosis virus (ASLV) or EnvA-pseudotyped murine leukemia virus, respectively, is efficiently inhibited by mc8C5-4. The apparent interference of the monoclonal with the EnvA-Tva complex formation suggests that the epitope seen by mc8C5 overlaps with the receptor binding site. This is supported by the observation that mutations of basic residues in hr2 or of the downstream glycosylation site, which both impair Tva-binding to EnvA, have similar effects on the binding of mc8C5. Thus, anti-ASLV-SU-A mc8C5-4 proves to be a unique new immunoreagent that targets

  10. Novel nootropic drug sunifiram enhances hippocampal synaptic efficacy via glycine-binding site of N-methyl-D-aspartate receptor.

    PubMed

    Moriguchi, Shigeki; Tanaka, Tomoya; Narahashi, Toshio; Fukunaga, Kohji

    2013-10-01

    Sunifiram is a novel pyrrolidone nootropic drug structurally related to piracetam, which was developed for neurodegenerative disorder like Alzheimer's disease. Sunifiram is known to enhance cognitive function in some behavioral experiments such as Morris water maze task. To address question whether sunifiram affects N-methyl-D-aspartate receptor (NMDAR)-dependent synaptic function in the hippocampal CA1 region, we assessed the effects of sunifiram on NMDAR-dependent long-term potentiation (LTP) by electrophysiology and on phosphorylation of synaptic proteins by immunoblotting analysis. In mouse hippocampal slices, sunifiram at 10-100 nM significantly enhanced LTP in a bell-shaped dose-response relationship which peaked at 10 nM. The enhancement of LTP by sunifiram treatment was inhibited by 7-chloro-kynurenic acid (7-ClKN), an antagonist for glycine-binding site of NMDAR, but not by ifenprodil, an inhibitor for polyamine site of NMDAR. The enhancement of LTP by sunifilam was associated with an increase in phosphorylation of α-amino-3-hydroxy-5-methylisozazole-4-propionate receptor (AMPAR) through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) and an increase in phosphorylation of NMDAR through activation of protein kinase Cα (PKCα). Sunifiram treatments at 1-1000 nM increased the slope of field excitatory postsynaptic potentials (fEPSPs) in a dose-dependent manner. The enhancement was associated with an increase in phosphorylation of AMPAR receptor through activation of CaMKII. Interestingly, under the basal condition, sunifiram treatments increased PKCα (Ser-657) and Src family (Tyr-416) activities with the same bell-shaped dose-response curve as that of LTP peaking at 10 nM. The increase in phosphorylation of PKCα (Ser-657) and Src (Tyr-416) induced by sunifiram was inhibited by 7-ClKN treatment. The LTP enhancement by sunifiram was significantly inhibited by PP2, a Src family inhibitor. Finally, when pretreated with a high

  11. Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites.

    PubMed

    Gaburjakova, Jana; Gaburjakova, Marta

    2016-06-01

    A growing body of evidence suggests that the regulation of cardiac ryanodine receptor (RYR2) by luminal Ca(2+) is mediated by luminal binding sites located on the RYR2 channel itself and/or its auxiliary protein, calsequestrin. The localization and structure of RYR2-resident binding sites are not known because of the lack of a high-resolution structure of RYR2 luminal regions. To obtain the first structural insight, we probed the RYR2 luminal face stripped of calsequestrin by alkaline earth metal divalents (M(2+): Mg(2+), Ca(2+), Sr(2+) or Ba(2+)). We show that the RYR2 response to caffeine at the single-channel level is significantly modified by the nature of luminal M(2+). Moreover, we performed competition experiments by varying the concentration of luminal M(2+) (Mg(2+), Sr(2+) or Ba(2+)) from 8 mM to 53 mM and investigated its ability to compete with 1mM luminal Ca(2+). We demonstrate that all tested M(2+) bind to exactly the same RYR2 luminal binding sites. Their affinities decrease in the order: Ca(2+)>Sr(2+)>Mg(2+)~Ba(2+), showing a strong correlation with the M(2+) affinity of the EF-hand motif. This indicates that the RYR2 luminal binding regions and the EF-hand motif likely share some structural similarities because the structure ties directly to the function.

  12. The histamine H1-receptor antagonist binding site. Part I: Active conformation of cyproheptadine

    NASA Astrophysics Data System (ADS)

    van Drooge, Marc J.; Donné-op den Kelder, Gabriëlle M.; Timmerman, Hendrik

    1991-08-01

    The active conformation of several histamine H1-antagonists is investigated. As a template molecule we used the antagonist cyproheptadine, which consists of a piperidylene ring connected to a tricyclic system. The piperidylene moiety is shown to be flexible. The global minimum is a chair conformation but, additionally, a second chair and various boat conformations have to be considered, as their energies are less than 5 kcal/mol above the energy of the global minimum. Two semi-rigid histamine H1-antagonists, phenindamine and triprolidine, were fitted onto the various conformations of cyproheptadine in order to derive the pharmacologically active conformation of cyproheptadine. At the same time, the active conformation of both phenindamine and triprolidine was derived. It is demonstrated that, within the receptor-bound conformation of cyproheptadine, the piperidylene ring most probably exists in a boat form.

  13. Receptor modelling of secondary and carbonaceous particulate matter at a southern UK site

    NASA Astrophysics Data System (ADS)

    Charron, A.; Degrendele, C.; Laongsri, B.; Harrison, R. M.

    2013-02-01

    Complementary approaches have been taken to better understand the sources and their spatial distribution for secondary inorganic (nitrate and sulphate) and secondary organic aerosol sampled at a rural site (Harwell) in the southern United Kingdom. A concentration field map method was applied to 1581 daily samples of chloride, nitrate and sulphate from 2006 to 2010, and 982 samples for organic carbon and elemental carbon from 2007 to 2010. This revealed a rather similar pattern of sources for nitrate, sulphate and secondary organic carbon within western/central Europe, which in the case of nitrate, sulphate, organic carbon and secondary organic carbon, correlated significantly with EMEP emissions maps of NOx, SO2, and VOC respectively. A slightly more southerly source emphasis for secondary organic carbon may reflect the contribution of biogenic sources. Trajectory clusters confirm this pattern of behaviour with a major contribution from mainland European sources. Similar behaviours of, on the one hand, sulphate and organic carbon and, on the other hand, EC and nitrate showed that the former are more subject to regional influence than the latter in agreement with the slower atmospheric formation of sulphate and secondary organic aerosol than for nitrate, and the local/mesoscale influences upon primary EC. However, careful analysis of back trajectories and Concentration Field Maps indicates a strong contribution of mainland European sites to EC concentrations at Harwell. In a separate study, measurements of sulphate, nitrate, elemental and organic carbon were made in 100 simultaneously collected samples at Harwell and at a suburban site in Birmingham (UK). This showed a significant correlation in concentrations between the two sites for all of the secondary constituents, further indicating secondary organic aerosol to be a regional pollutant behaving similarly to sulphate and nitrate.

  14. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    SciTech Connect

    Taguchi, J.; Kuriyama, K. )

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  15. Subdomain 2 of the Autotransporter Pet Is the Ligand Site for Recognizing the Pet Receptor on the Epithelial Cell Surface

    PubMed Central

    Chavez-Dueñas, Lucia; Serapio-Palacios, Antonio; Nava-Acosta, Raul

    2016-01-01

    Most autotransporter passenger domains, regardless of their diversity in function, fold or are predicted to fold as right-handed β-helices carrying various loops that are presumed to confer functionality. Our goal here was to identify the subdomain (loop) or amino acid sequence of the Pet passenger domain involved in the receptor binding site on the host cell for Pet endocytosis. Here, we show that d1 and d2 subdomains, as well as the amino acid sequence linking the subdomain d2 and the adjacent β-helix (PDWET), are not required for Pet secretion through the autotransporter system and that none of our deletion mutants altered the predicted long right-handed β-helical structure. Interestingly, Pet lacking the d2 domain (PetΔd2) was unable to bind on the epithelial cell surface, in contrast to Pet lacking d1 (PetΔd1) subdomain or PDWET sequences. Moreover, the purified d1 subdomain, the biggest subdomain (29.8 kDa) containing the serine protease domain, was also unable to bind the cell surface. Thus, d2 sequence (54 residues without the PDWET sequence) was required for Pet binding to eukaryotic cells. In addition, this d2 sequence was also needed for Pet internalization but not for inducing cell damage. In contrast, PetΔd1, which was able to bind and internalize inside the cell, was unable to cause cell damage. Furthermore, unlike Pet, PetΔd2 was unable to bind cytokeratin 8, a Pet receptor. These data indicate that the surface d2 subdomain is essential for the ligand-receptor (Pet-Ck8) interaction for Pet uptake and to start the epithelial cell damage by this toxin. PMID:27113356

  16. Incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer

    PubMed Central

    Dawood, Shaheenah; Lei, Xiudong; Litton, Jennifer K.; Buchholz, Thomas A.; Hortobagyi, Gabriel N.; Gonzalez-Angulo, Ana M.

    2014-01-01

    Background The aim of this retrospective study was to define the incidence of brain metastases as a first site of recurrence among women with triple receptor-negative breast cancer (TNBC). Methods 2448 patients with stage I–III TNBC diagnosed between 1990 and 2010 were identified. We computed the cumulative incidence of developing brain metastases as a first site of recurrence at 2 and 5 years. Cox proportional hazards models were fitted to determine factors that could predict for the development of brain metastases as a first site of recurrence. Kaplan-Meier product limit method was used to compute survival following a diagnosis of brain metastases. Results At a median follow up of 39 months 115 (4.7%) patients had developed brain metastases as a first site of recurrence. The cumulative incidence at 2 and 5 years was 3.7% (95% CI 2.9%–4.5%) and 5.4% (95% CI 4.4%–6.5%), respectively. Among patients with stage I, II and III disease, the 2-year cumulative incidence of brain metastases was 0.8%, 3.1% and 8%, respectively (p<0.0001). 5-year cumulative incidence was 2.8%, 4.6% and 9.6% among patients with stage I, II and III disease, respectively (p<0.0001). In the multivariable model, patients with stage III disease had a significant increase in the risk of developing brain metastases as a first site of recurrence (HR = 3.51; 95% CI 1.85 – 6.67; p = .0001) compared to patients with stage I disease. Those with stage II disease had a non significant increased risk of developing brain metastases as a first site of recurrence (HR = 1.61; 95% CI 0.92 – 2.81; p = .10) compared to patients with stage I disease. Median survival following a diagnosis of brain metastases was 7.2 months (range 5.7 to 9.4 months). Conclusion Patients with non metastatic TNBC have a high early incidence of developing brain metastases as a first site of recurrence, which is associated with subsequent poor survival. Patients with stage III TNBC in particular would be an ideal cohort to

  17. Progesterone receptor gene maps to human chromosome band 11q13, the site of the mammary oncogene int-2

    SciTech Connect

    Law, M.L.; Kao, F.T.; Wei, Q.; Hartz, J.A.; Greene, G.L.; Zarucki-Schulz, T.; Conneely, O.M.; Jones, C.; Puck, T.T.; O'Malley, B.W.; Horwitz, K.B.

    1987-05-01

    Progesterone is involved in the development and progression of breast cancers, and progesterone receptors (PR) are important markers of hormone dependence and disease prognosis. The authors have used a human PR cDNA probe, genomic DNA blotting of a series of Chinese hamster-human cell hybrids, and in situ hybridization to map the human PR gene to chromosome 11, band q13. This band also contains the human homolog of the mouse mammary tumor virus integration site, int-2, which surrounds a protooncogene thought to be involved in the development of murine mammary cancers. That these two genes share the same chromosomal location raises important questions about their possible linkage and about the relationship between the mammary-specific oncogene and the steroid hormone in the development, growth, and hormone dependence of human breast cancers.

  18. A study of the source-receptor relationships influencing the acidity of precipitation collected at a rural site in France

    NASA Astrophysics Data System (ADS)

    Charron, Aurélie; Plaisance, Hervé; Sauvage, Stéphane; Coddeville, Patrice; Galloo, Jean-Claude; Guillermo, René

    In order to examine the qualitative and quantitative source-receptor relationships responsible for acid rains at a background site in France, a receptor-oriented model was applied to the precipitation data collected from 1992 to 1995. Origins of acidic and alkaline species in precipitations have been investigated. The methodology combines precipitation chemical data with air parcel backward trajectories to establish concentration field maps of likely contributing sources. Highest acidities and concentrations of sulfate and nitrate in precipitation were associated with transport from the high emission areas of central Europe. Alkaline events were associated with air masses originating from Mediterranean basin or northern Africa. The quantitative relationships between the maps of potential sources and the European emissions of SO 2 and NO x were examined performing a correlation analysis. Good correlations were found between computed concentrations of acidic species and emissions of SO 2 and NO x. Substantial seasonal variations of acidic species were revealed. The highest concentrations occurred during the warm season. These seasonal variations are the effect of change of meteorological conditions and of the strength atmospheric processes according to the season.

  19. Two suramin binding sites are present in guinea pig but only one in murine native P2X myenteric receptors.

    PubMed

    Guerrero-Alba, Raquel; Valdez-Morales, Eduardo; Juárez, Esri H; Miranda-Morales, Marcela; Ramírez-Martínez, Juan F; Espinosa-Luna, Rosa; Barajas-López, Carlos

    2010-01-25

    Whole-cell patch clamp recordings were used to characterise the physiological and pharmacological properties of P2X receptors of mouse and guinea pig myenteric neurons from the small intestine. ATP application induced a rapid inward current in 95% of recorded neurons of both species when were voltage clamped at -60 mV. Concentration-response curves for ATP (1-3000 microM) yielded EC(50) values of 114 and 115 microM for mouse and guinea pig myenteric neurons, respectively, with a Hill coefficient value of 1.02 and 0.79, respectively, which were not significantly different of unity. alpha,beta-methylene ATP (100 microM) was virtually inactive in both species. Pyridoxalphophate-6-azophenyl-2',4'-disulphonic acid (0.01-30 microM) inhibited the ATP-induced currents (I(ATP)) with a different potency; being the IC(50) 0.6 and 1.8 microM in mouse and guinea pig, respectively. In mouse myenteric neurons, I(ATP) were inhibited by suramin whereas in guinea pig neurons we observed two effects, potentiation and inhibition of these currents. On guinea pig, both effects of suramin had different recovering kinetics and concentration dependency, indicating that they are mediated by at least two different binding sites. Our observations indicate that myenteric P2X receptors in these two species have different pharmacological properties.

  20. Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor.

    PubMed

    Lenselink, Eelke B; Beuming, Thijs; Sherman, Woody; van Vlijmen, Herman W T; IJzerman, Adriaan P

    2014-06-23

    A major challenge in structure-based virtual screening (VS) involves the treatment of explicit water molecules during docking in order to improve the enrichment of active compounds over decoys. Here we have investigated this in the context of the adenosine A2A receptor, where water molecules have previously been shown to be important for achieving high enrichment rates with docking, and where the positions of some binding site waters are known from a high-resolution crystal structure. The effect of these waters (both their presence and orientations) on VS enrichment was assessed using a carefully curated set of 299 high affinity A2A antagonists and 17,337 decoys. We show that including certain crystal waters greatly improves VS enrichment and that optimization of water hydrogen positions is needed in order to achieve the best results. We also show that waters derived from a molecular dynamics simulation - without any knowledge of crystallographic waters - can improve enrichments to a similar degree as the crystallographic waters, which makes this strategy applicable to structures without experimental knowledge of water positions. Finally, we used decision trees to select an ensemble of structures with different water molecule positions and orientations that outperforms any single structure with water molecules. The approach presented here is validated against independent test sets of A2A receptor antagonists and decoys from the literature. In general, this water optimization strategy could be applied to any target with waters-mediated protein-ligand interactions.

  1. Escape variants of the XPR1 gammaretrovirus receptor are rare due to reliance on a splice donor site and a short hypervariable loop

    PubMed Central

    Lu, Xiaoyu; Martin, Carrie; Bouchard, Christelle; Kozak, Christine A.

    2014-01-01

    Entry determinants in the XPR1 receptor for the xenotropic/polytropic mouse leukemia viruses (XP-MLVs) lie in its third and fourth putative extracellular loops (ECLs). The critical ECL3 receptor determinant overlies a splice donor and is evolutionarily conserved in vertebrate XPR1 genes; 2 of the 3 rare replacement mutations at this site destroy this receptor determinant. The 13 residue ECL4 is hypervariable, and replacement mutations carrying an intact ECL3 site alter but do not abolish receptor activity, including replacement of the entire loop with that of a jellyfish (Cnidaria) XPR1. Because ECL4 deletions are found in all X-MLV-infected Mus subspecies, we deleted each ECL4 residue to determine if deletion-associated restriction is residue-specific or is effected by loop size. All deletions influence receptor function, although different deletions affect different XP-MLVs. Thus, receptor usage of a constrained splice site and a loop that tolerates mutations severely limits the likelihood of host escape mutations. PMID:25151060

  2. Contractile 5-HT1 receptors in human isolated pial arterioles: correlation with 5-HT1D binding sites.

    PubMed Central

    Hamel, E.; Bouchard, D.

    1991-01-01

    1. The 5-hydroxytryptamine (5-HT) receptor responsible for inducing vasoconstriction in human isolated pial arterioles has been pharmacologically characterized. 2. Of several 5-HT agonists tested, 5-carboxamidotryptamine (5-CT) was the most potent and the rank order of agonist potency can be summarized as: 5-CT greater than 5-HT greater than RU 24969 = alpha-methyl-5-HT = methysergide much greater than MDL 72832 = 2-methyl-5-HT much greater than 2-dipropylamino-8-hydroxy-1,2,3,4-tetrahydro-naphthalene (8-OH-DPAT). With few exceptions, the maximal contractile responses of these agonists were comparable to that induced by 5-HT. 3. A correlation analysis performed between the agonists vascular potency (pD2 values) and their affinities (pKD values) published at various subtypes of 5-HT binding sites showed a positive significant correlation with rat cortical 5-HT1B (r = 0.86; P less than 0.01) and human caudate 5-HT1D (r = 0.98; P less than 0.005) subtypes. 4. Selective antagonists at 5-HT2 (ketanserin, mianserin, MDL 11939) and 5-HT3 (MDL 72222) sites were totally devoid of inhibitory activity on the 5-HT-induced contraction, an observation which agreed with the agonist data and further excluded activation of these receptors. In contrast, the 5-HT1-like/5-HT2 antagonist methiothepin and the non-selective 5-HT1D compound metergoline inhibited with high affinity the contraction induced by 5-HT with respective pA2 values of 8.55 +/- 0.16 and 6.88 +/- 0.05. This contractile response was, however, insensitive to 5-HT1B (propranolol) and 5-HT1C (mesulergine, mianserin) antagonists.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043924

  3. Localization of Receptor Site on Insect Sodium Channel for Depressant β-toxin BmK IT2

    PubMed Central

    Dong, Bangqian; Zhang, Jianwei; Shu, Xueqin; Zhou, Jingjing; Ji, Yonghua

    2011-01-01

    Background BmK IT2 is regarded as a receptor site-4 modulator of sodium channels with depressant insect toxicity. It also displays anti-nociceptive and anti-convulsant activities in rat models. In this study, the potency and efficacy of BmK IT2 were for the first time assessed and compared among four sodium channel isoforms expressed in Xenopus oocytes. Combined with molecular approach, the receptor site of BmK IT2 was further localized. Principal Findings 2 µM BmK IT2 strongly shifted the activation of DmNav1, the sodium channel from Drosophila, to more hyperpolarized potentials; whereas it hardly affected the gating properties of rNav1.2, rNav1.3 and mNav1.6, three mammalian central neuronal sodium channel subtypes. (1) Mutations of Glu896, Leu899, Gly904 in extracellular loop Domain II S3–S4 of DmNav1 abolished the functional action of BmK IT2. (2) BmK IT2-preference for DmNav1 could be conferred by Domain III. Analysis of subsequent DmNav1 mutants highlighted the residues in Domain III pore loop, esp. Ile1529 was critical for recognition and binding of BmK IT2. Conclusions/Significance In this study, BmK IT2 displayed total insect-selectivity. Two binding regions, comprising domains II and III of DmNav1, play separated but indispensable roles in the interaction with BmK IT2. The insensitivity of Nav1.2, Nav1.3 and Nav1.6 to BmK IT2 suggests other isoforms or mechanism might be involved in the suppressive activity of BmK IT2 in rat pathological models. PMID:21264295

  4. Identification of the binding site in intercellular adhesion molecule 1 for its receptor, leukocyte function-associated antigen 1.

    PubMed Central

    Fisher, K L; Lu, J; Riddle, L; Kim, K J; Presta, L G; Bodary, S C

    1997-01-01

    Intercellular adhesion molecule 1 (ICAM-1, CD54) is a member of the Ig superfamily and is a counterreceptor for the beta 2 integrins: lymphocyte function-associated antigen 1 (LFA-1, CD11a/CD18), complement receptor 1 (MAC-1, CD11b/CD18), and p150,95 (CD11c/CD18). Binding of ICAM-1 to these receptors mediates leukocyte-adhesive functions in immune and inflammatory responses. In this report, we describe a cell-free assay using purified recombinant extracellular domains of LFA-1 and a dimeric immunoadhesin of ICAM-1. The binding of recombinant secreted LFA-1 to ICAM-1 is divalent cation dependent (Mg2+ and Mn2+ promote binding) and sensitive to inhibition by antibodies that block LFA-1-mediated cell adhesion, indicating that its conformation mimics that of LFA-1 on activated lymphocytes. We describe six novel anti-ICAM-1 monoclonal antibodies, two of which are function blocking. Thirty-five point mutants of the ICAM-1 immunoadhesin were generated and residues important for binding of monoclonal antibodies and purified LFA-1 were identified. Nineteen of these mutants bind recombinant LFA-1 equivalently to wild type. Sixteen mutants show a 66-2500-fold decrease in LFA-1 binding yet, with few exceptions, retain binding to the monoclonal antibodies. These mutants, along with modeling studies, define the LFA-1 binding site on ICAM-1 as residues E34, K39, M64, Y66, N68, and Q73, that are predicted to lie on the CDFG beta-sheet of the Ig fold. The mutant G32A also abrogates binding to LFA-1 while retaining binding to all of the antibodies, possibly indicating a direct interaction of this residue with LFA-1. These data have allowed the generation of a highly refined model of the LFA-1 binding site of ICAM-1. Images PMID:9188101

  5. Identification of the Docking Site for CD3 on the T Cell Receptor β Chain by Solution NMR*

    PubMed Central

    He, Yanan; Rangarajan, Sneha; Kerzic, Melissa; Luo, Ming; Chen, Yihong; Wang, Qian; Yin, Yiyuan; Workman, Creg J.; Vignali, Kate M.; Vignali, Dario A. A.; Mariuzza, Roy A.; Orban, John

    2015-01-01

    The T cell receptor (TCR)-CD3 complex is composed of a genetically diverse αβ TCR heterodimer associated noncovalently with the invariant CD3 dimers CD3ϵγ, CD3ϵδ, and CD3ζζ. The TCR mediates peptide-MHC recognition, whereas the CD3 molecules transduce activation signals to the T cell. Although much is known about downstream T cell signaling pathways, the mechanism whereby TCR engagement by peptide-MHC initiates signaling is poorly understood. A key to solving this problem is defining the spatial organization of the TCR-CD3 complex and the interactions between its subunits. We have applied solution NMR methods to identify the docking site for CD3 on the β chain of a human autoimmune TCR. We demonstrate a low affinity but highly specific interaction between the extracellular domains of CD3 and the TCR constant β (Cβ) domain that requires both CD3ϵγ and CD3ϵδ subunits. The mainly hydrophilic docking site, comprising 9–11 solvent-accessible Cβ residues, is relatively small (∼400 Å2), consistent with the weak interaction between TCR and CD3 extracellular domains, and devoid of glycosylation sites. The docking site is centered on the αA and αB helices of Cβ, which are located at the base of the TCR. This positions CD3ϵγ and CD3ϵδ between the TCR and the T cell membrane, permitting us to distinguish among several possible models of TCR-CD3 association. We further correlate structural results from NMR with mutational data on TCR-CD3 interactions from cell-based assays. PMID:26109064

  6. Exonic Sp1 sites are required for neural-specific expression of the glycine receptor beta subunit gene.

    PubMed Central

    Tintrup, H; Fischer, M; Betz, H; Kuhse, J

    2001-01-01

    The gene encoding the beta subunit of the inhibitory glycine receptor (GlyR) is widely expressed throughout the mammalian central nervous system. To unravel the elements regulating its transcription, we isolated its 5' non-coding and upstream flanking regions from mouse. Sequence analysis revealed significant differences between the 5' region of the beta subunit gene and the corresponding regions of the homologous GlyR alpha subunit genes; it also identified a novel exon (exon 0) that encodes most of the 5'-untranslated portion of the GlyR beta mRNA. Primer extension experiments disclosed multiple transcriptional start sites. Transfection experiments with luciferase reporter gene constructs showed that sequences encompassing 1.58 kb of upstream flanking region and 180 bp of exon 0 displayed high promoter activity in two neuroblastoma cell lines but not in non-neural cells. Analysis of various deletion constructs showed that the 5' flanking region preceding the transcriptional start sites silences expression in non-neural cells but is not essential for general promoter activity. In contrast, the deletion of sequences within exon 0 drastically decreased or abolished transcription; the removal of sequences harbouring Sp1 consensus sequences within exon 0 decreased expression specifically in a neuroblastoma cell line. Band-shift assays confirmed the binding of Sp1 to sites within the deleted sequence. Our results indicate that neural-specific expression of the GlyR beta subunit gene might depend on a direct interaction of Sp1 transcription factors with cis elements located downstream from transcription initiation sites. PMID:11256962

  7. Identification of residues in transmembrane regions III and VI that contribute to the ligand binding site of the serotonin 5-HT6 receptor.

    PubMed

    Boess, F G; Monsma, F J; Sleight, A J

    1998-11-01

    We have examined the ligand binding site of the serotonin 5-HT6 receptor using site-directed mutagenesis. Replacing the highly conserved Asp106 in transmembrane region III by asparagine eliminated D-[3H]-lysergic acid diethylamide ([3H]LSD) binding to the mutant receptor transiently expressed in HEK293 cells. The potency of 5-HT and LSD to stimulate adenylyl cyclase was reduced by 3,600- and 500-fold, respectively, suggesting that an ionic interaction between the positively charged amino group of 5-HT and D106 is essential for high-affinity binding and important for receptor activation. In addition, basal cyclic AMP levels in cells expressing this mutant were increased. Mutation of a tryptophan residue one helix turn toward the extracellular side of transmembrane region III (Trp102) to phenylalanine produced significant changes in the binding affinity and potency of several ligands, consistent with a role of this residue in the formation of the ligand binding site. The exchange of two neighboring residues in the carboxy-terminal half of transmembrane region VI (Ala287 and Asn288) for leucine and serine resulted in a mutant receptor with increased affinities (seven- to 30-fold) for sumatriptan and several ergopeptine ligands. The identification of these interactions will help to improve models of the 5-HT6 receptor ligand binding site.

  8. Shisa6 traps AMPA receptors at postsynaptic sites and prevents their desensitization during synaptic activity

    PubMed Central

    Klaassen, Remco V.; Stroeder, Jasper; Coussen, Françoise; Hafner, Anne-Sophie; Petersen, Jennifer D.; Renancio, Cedric; Schmitz, Leanne J. M.; Normand, Elisabeth; Lodder, Johannes C.; Rotaru, Diana C.; Rao-Ruiz, Priyanka; Spijker, Sabine; Mansvelder, Huibert D.; Choquet, Daniel; Smit, August B.

    2016-01-01

    Trafficking and biophysical properties of AMPA receptors (AMPARs) in the brain depend on interactions with associated proteins. We identify Shisa6, a single transmembrane protein, as a stable and directly interacting bona fide AMPAR auxiliary subunit. Shisa6 is enriched at hippocampal postsynaptic membranes and co-localizes with AMPARs. The Shisa6 C-terminus harbours a PDZ domain ligand that binds to PSD-95, constraining mobility of AMPARs in the plasma membrane and confining them to postsynaptic densities. Shisa6 expressed in HEK293 cells alters GluA1- and GluA2-mediated currents by prolonging decay times and decreasing the extent of AMPAR desensitization, while slowing the rate of recovery from desensitization. Using gene deletion, we show that Shisa6 increases rise and decay times of hippocampal CA1 miniature excitatory postsynaptic currents (mEPSCs). Shisa6-containing AMPARs show prominent sustained currents, indicating protection from full desensitization. Accordingly, Shisa6 prevents synaptically trapped AMPARs from depression at high-frequency synaptic transmission. PMID:26931375

  9. Significant Association of Estrogen Receptor Binding Site Variation with Bipolar Disorder in Females

    PubMed Central

    Graae, Lisette; Karlsson, Robert; Paddock, Silvia

    2012-01-01

    Major depression is nearly twice as prevalent in women compared to men. In bipolar disorder, depressive episodes have been reported to be more common amongst female patients. Furthermore, periods of depression often correlate with periods of hormonal fluctuations. A link between hormone signaling and these mood disorders has, therefore, been suggested to exist in many studies. Estrogen, one of the primary female sex hormones, mediates its effect mostly by binding to estrogen receptors (ERs). Nuclear ERs function as transcription factors and regulate gene transcription by binding to specific DNA sequences. A nucleotide change in the binding sequence might alter the binding efficiency, which could affect transcription levels of nearby genes. In order to investigate if variation in ER DNA-binding sequences may be involved in mood disorders, we conducted a genome-wide study of ER DNA-binding in patients diagnosed with major depression or bipolar disorder. Association studies were performed within each gender separately and the results were corrected for multiple testing by the Bonferroni method. In the female bipolar disorder material a significant association result was found for rs6023059 (corrected p-value = 0.023; odds ratio (OR) 0.681, 95% confidence interval (CI) 0.570–0.814), a single nucleotide polymorphism (SNP) placed downstream of the gene coding for transglutaminase 2 (TGM2). Thus, females with a specific genotype at this SNP may be more vulnerable to fluctuating estrogen levels, which may then act as a triggering factor for bipolar disorder. PMID:22389694

  10. Comparative neuroprotective properties of stilbene and catechin analogs: action via a plasma membrane receptor site?

    PubMed

    Bastianetto, Stéphane; Dumont, Yvan; Han, Yingshan; Quirion, Rémi

    2009-01-01

    Various studies have reported on the neuroprotective effects of polyphenols, widely present in food, beverages, and natural products. For example, we have shown that resveratrol, a polyphenol enriched in red wine and other foods such as peanuts, protects hippocampal cells against beta-amyloid (Abeta)-induced toxicity, a key protein involved in the neuropathology of Alzheimer disease. This effect involves, at least in part, the capacity of resveratrol to activate the phosphorylation of delta isoform of protein kinase C (PKC-delta). The neuroprotective action of resveratrol is shared by piceatannol, a stilbene derivative, as well as by tea-derived catechin gallate esters. The thioflavin T assay indicated that all these polyphenols inhibited the formation of Abeta fibrils, suggesting that this action likely also contributes to their neuroprotective effects. Binding and autoradiographic studies revealed that the effects of polyphenols might involve specific binding sites that are particularly enriched in the choroid plexus in the rat brain. Interestingly, the choroid plexus secretes transthyretin, a protein that has been shown to modulate Abeta aggregation and that may be critical to the maintenance of normal learning capacities in aging. Taken together, these data suggest that polyphenols target multiple enzymes/proteins, leading to their neuroprotective actions, possibly through action via specific plasma membrane binding sites.

  11. Molecular analysis of the sea anemone toxin Av3 reveals selectivity to insects and demonstrates the heterogeneity of receptor site-3 on voltage-gated Na+ channels

    PubMed Central

    Moran, Yehu; Kahn, Roy; Cohen, Lior; Gur, Maya; Karbat, Izhar; Gordon, Dalia; Gurevitz, Michael

    2007-01-01

    Av3 is a short peptide toxin from the sea anemone Anemonia viridis shown to be active on crustaceans and inactive on mammals. It inhibits inactivation of Navs (voltage-gated Na+ channels) like the structurally dissimilar scorpion α-toxins and type I sea anemone toxins that bind to receptor site-3. To examine the potency and mode of interaction of Av3 with insect Navs, we established a system for its expression, mutagenized it throughout, and analysed it in toxicity, binding and electrophysiological assays. The recombinant Av3 was found to be highly toxic to blowfly larvae (ED50=2.65±0.46 pmol/100 mg), to compete well with the site-3 toxin LqhαIT (from the scorpion Leiurus quinquestriatus) on binding to cockroach neuronal membranes (Ki=21.4±7.1 nM), and to inhibit the inactivation of Drosophila melanogaster channel, DmNav1, but not that of mammalian Navs expressed in Xenopus oocytes. Moreover, like other site-3 toxins, the activity of Av3 was synergically enhanced by ligands of receptor site-4 (e.g. scorpion β-toxins). The bioactive surface of Av3 was found to consist mainly of aromatic residues and did not resemble any of the bioactive surfaces of other site-3 toxins. These analyses have portrayed a toxin that might interact with receptor site-3 in a different fashion compared with other ligands of this site. This assumption was corroborated by a D1701R mutation in DmNav1, which has been shown to abolish the activity of all other site-3 ligands, except Av3. All in all, the present study provides further evidence for the heterogeneity of receptor site-3, and raises Av3 as a unique model for design of selective anti-insect compounds. PMID:17492942

  12. Distinction between high-affinity (/sup 3/H)phencyclidine binding sites and muscarinic receptors in guinea-pig ileum muscle

    SciTech Connect

    El-Fakahany, E.E.; Triggle, D.J.; Eldefrawi, A.T.; Eldefrawi, M.E.

    1984-05-01

    (/sup 3/H)Phencyclidine ((/sup 3/H)PCP) binding was studied in guinea-pig ileum muscle membranes. Specific binding of (/sup 3/H)PCP was time dependent, reversible and saturable, with an equilibrium dissociation constant of 154 nM and maximum binding of 12.9 pmol/mg of protein at pH 9. Its pH dependency suggests that the un-ionized PCP is the pharmacologically active form. The binding site was on a protein which was sensitive to heat, proteolytic enzymes and the carboxylic group reagent dicyclohexylcarbodiimide, but insensitive to phospholipase A and C, concanavalin A, dithiothreitol and N-ethylmaleimide. Specific (/sup 3/H)PCP binding was displaced effectively by several PCP analogs and Ca/sup + +/ channel antagonists including verapamil, to which these sites had a high affinity. These high-affinity PCP-binding sites were found at a much higher concentration in the same membrane preparation than muscarinic receptor sites identified by their specific binding of (/sup 3/H)quinuclidinyl benzilate. PCP bound to both sites, but with a lower affinity to the muscarinic receptor sites. The PCP and muscarinic receptor sites differed in their sensitivities to pH and drug specifities.

  13. Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site.

    PubMed

    Taiwo, A M; Beddows, D C S; Calzolai, G; Harrison, Roy M; Lucarelli, F; Nava, S; Shi, Z; Valli, G; Vecchi, R

    2014-08-15

    In this study, the Multilinear Engine (ME-2) receptor model was applied to speciated particulate matter concentration data collected with two different measuring instruments upwind and downwind of a steelworks complex in Port Talbot, South Wales, United Kingdom. Hourly and daily PM samples were collected with Streaker and Partisol samplers, respectively, during a one month sampling campaign between April 18 and May 16, 2012. Daily samples (PM10, PM2.5, PM2.5-10) were analysed for trace metals and water-soluble ions using standard procedures. Hourly samples (PM2.5 and PM2.5-10) were assayed for 22 elements by Particle Induced X-ray Emission (PIXE). PM10 data analysis using ME-2 resolved 6 factors from both datasets identifying different steel processing units including emissions from the blast furnaces (BF), the basic oxygen furnace steelmaking plant (BOS), the coke-making plant, and the sinter plant. Steelworks emissions were the main contributors to PM10 accounting for 45% of the mass when including also secondary aerosol. The blast furnaces were the largest emitter of primary PM10 in the study area, explaining about one-fifth of the mass. Other source contributions to PM10 were from marine aerosol (28%), traffic (16%), and background aerosol (11%). ME-2 analysis was also performed on daily PM2.5 and PM2.5-10 data resolving 7 and 6 factors, respectively. The largest contributions to PM2.5-10 were from marine aerosol (30%) and blast furnace emissions (28%). Secondary components explained one-half of PM2.5 mass. The influence of steelworks sources on ambient particulate matter at Port Talbot was distinguishable for several separate processing sections within the steelworks in all PM fractions.

  14. The predicted 3D structure of the human D2 dopamine receptor and the binding site and binding affinities for agonists and antagonists

    NASA Astrophysics Data System (ADS)

    Kalani, M. Yashar S.; Vaidehi, Nagarajan; Hall, Spencer E.; Trabanino, Rene J.; Freddolino, Peter L.; Kalani, Maziyar A.; Floriano, Wely B.; Tak Kam, Victor Wai; Goddard, William A., III

    2004-03-01

    Dopamine neurotransmitter and its receptors play a critical role in the cell signaling process responsible for information transfer in neurons functioning in the nervous system. Development of improved therapeutics for such disorders as Parkinson's disease and schizophrenia would be significantly enhanced with the availability of the 3D structure for the dopamine receptors and of the binding site for dopamine and other agonists and antagonists. We report here the 3D structure of the long isoform of the human D2 dopamine receptor, predicted from primary sequence using first-principles theoretical and computational techniques (i.e., we did not use bioinformatic or experimental 3D structural information in predicting structures). The predicted 3D structure is validated by comparison of the predicted binding site and the relative binding affinities of dopamine, three known dopamine agonists (antiparkinsonian), and seven known antagonists (antipsychotic) in the D2 receptor to experimentally determined values. These structures correctly predict the critical residues for binding dopamine and several antagonists, identified by mutation studies, and give relative binding affinities that correlate well with experiments. The predicted binding site for dopamine and agonists is located between transmembrane (TM) helices 3, 4, 5, and 6, whereas the best antagonists bind to a site involving TM helices 2, 3, 4, 6, and 7 with minimal contacts to TM helix 5. We identify characteristic differences between the binding sites of agonists and antagonists.

  15. Piracetam Defines a New Binding Site for Allosteric Modulators of α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors§

    PubMed Central

    Ahmed, Ahmed H.; Oswald, Robert E.

    2010-01-01

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to both GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators. PMID:20163115

  16. Piracetam defines a new binding site for allosteric modulators of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors.

    PubMed

    Ahmed, Ahmed H; Oswald, Robert E

    2010-03-11

    Glutamate receptors are the most prevalent excitatory neurotransmitter receptors in the vertebrate central nervous system and are important potential drug targets for cognitive enhancement and the treatment of schizophrenia. Allosteric modulators of AMPA receptors promote dimerization by binding to a dimer interface and reducing desensitization and deactivation. The pyrrolidine allosteric modulators, piracetam and aniracetam, were among the first of this class of drugs to be discovered. We have determined the structure of the ligand binding domain of the AMPA receptor subtypes GluA2 and GluA3 with piracetam and a corresponding structure of GluA3 with aniracetam. Both drugs bind to GluA2 and GluA3 in a very similar manner, suggesting little subunit specificity. However, the binding sites for piracetam and aniracetam differ considerably. Aniracetam binds to a symmetrical site at the center of the dimer interface. Piracetam binds to multiple sites along the dimer interface with low occupation, one of which is a unique binding site for potential allosteric modulators. This new site may be of importance in the design of new allosteric regulators.

  17. Localization of the binding site on IgG for solubilized placental Fc gamma receptor.

    PubMed

    Matre, R; Tönder, O

    1984-01-01

    Placental Fc gamma R (FcR) inhibited the rosette formation between monocytes and rabbit IgG-sensitized erythrocytes (EA), whereas the rosette formation with granulocytes was not impaired. Staphylococcal protein A (SpA) inhibited the rosette formation with both cell types. Results obtained in absorption and agglutination experiments showed that SpA blocked the binding of FcR to IgG, and Cl did not. Furthermore, FcR did not interfere with the binding of SpA to IgG, whereas C1 affected this binding. FcR apparently bind to the C gamma 3 region. Since FcR inhibited the binding of EA to monocytes, the monocyte FcR binding site is probably also located within the C gamma 3 region.

  18. Binding Sites for Acylated Trehalose Analogs of Glycolipid Ligands on an Extended Carbohydrate Recognition Domain of the Macrophage Receptor Mincle*

    PubMed Central

    Feinberg, Hadar; Rambaruth, Neela D. S.; Jégouzo, Sabine A. F.; Jacobsen, Kristian M.; Djurhuus, Rasmus; Poulsen, Thomas B.; Weis, William I.; Taylor, Maureen E.; Drickamer, Kurt

    2016-01-01

    The macrophage receptor mincle binds to trehalose dimycolate on the surface of Mycobacterium tuberculosis. Signaling initiated by this interaction leads to cytokine production, which underlies the ability of mycobacteria to evade the immune system and also to function as adjuvants. In previous work the mechanism for binding of the sugar headgroup of trehalose dimycolate to mincle has been elucidated, but the basis for enhanced binding to glycolipid ligands, in which hydrophobic substituents are attached to the 6-hydroxyl groups, has been the subject of speculation. In the work reported here, the interaction of trehalose derivatives with bovine mincle has been probed with a series of synthetic mimics of trehalose dimycolate in binding assays, in structural studies by x-ray crystallography, and by site-directed mutagenesis. Binding studies reveal that, rather than reflecting specific structural preference, the apparent affinity of mincle for ligands with hydrophobic substituents correlates with their overall size. Structural and mutagenesis analysis provides evidence for interaction of the hydrophobic substituents with multiple different portions of the surface of mincle and confirms the presence of three Ca2+-binding sites. The structure of an extended portion of the extracellular domain of mincle, beyond the minimal C-type carbohydrate recognition domain, also constrains the way the binding domains may interact on the surface of macrophages. PMID:27542410

  19. Delineation of the complement receptor type 2-C3d complex by site-directed mutagenesis and molecular docking.

    PubMed

    Shaw, Craig D; Storek, Michael J; Young, Kendra A; Kovacs, James M; Thurman, Joshua M; Holers, V Michael; Hannan, Jonathan P

    2010-12-10

    The interactions between the complement receptor type 2 (CR2) and the C3 complement fragments C3d, C3dg, and iC3b are essential for the initiation of a normal immune response. A crystal-derived structure of the two N-terminal short consensus repeat (SCR1-2) domains of CR2 in complex with C3d has previously been elucidated. However, a number of biochemical and biophysical studies targeting both CR2 and C3d appear to be in conflict with these structural data. Previous mutagenesis and heteronuclear NMR spectroscopy studies directed toward the C3d-binding site on CR2 have indicated that the CR2-C3d cocrystal structure may represent an encounter/intermediate or nonphysiological complex. With regard to the CR2-binding site on C3d, mutagenesis studies by Isenman and coworkers [Isenman, D. E., Leung, E., Mackay, J. D., Bagby, S. & van den Elsen, J. M. H. (2010). Mutational analyses reveal that the staphylococcal immune evasion molecule Sbi and complement receptor 2 (CR2) share overlapping contact residues on C3d: Implications for the controversy regarding the CR2/C3d cocrystal structure. J. Immunol. 184, 1946-1955] have implicated an electronegative "concave" surface on C3d in the binding process. This surface is discrete from the CR2-C3d interface identified in the crystal structure. We generated a total of 18 mutations targeting the two (X-ray crystallographic- and mutagenesis-based) proposed CR2 SCR1-2 binding sites on C3d. Using ELISA analyses, we were able to assess binding of mutant forms of C3d to CR2. Mutations directed toward the concave surface of C3d result in substantially compromised CR2 binding. By contrast, targeting the CR2-C3d interface identified in the cocrystal structure and the surrounding area results in significantly lower levels of disruption in binding. Molecular modeling approaches used to investigate disparities between the biochemical data and the X-ray structure of the CR2-C3d cocrystal result in highest-scoring solutions in which CR2 SCR1-2 is

  20. Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export.

    PubMed

    Hayashi, Teruo; Su, Tsung-Ping

    2003-08-01

    The brain sigma-1 receptors can bind neurosteroids and psychotropic drugs, including neuroleptics and cocaine and are implicated in schizophrenia, depression, and drug dependence. In this study, we found that sigma-1 receptors specifically target lipid storage sites (lipid droplets) on the endoplasmic reticulum by forming a distinct class of lipid microdomains. Both endogenously expressing sigma-1 receptors and transfected C-terminally enhanced yellow fluorescent protein (EYFP)-tagged sigma-1 receptors (Sig-1R-EYFP) target unique "ring-like" structures associated with endoplasmic reticulum reticular networks in NG108-15 cells. The ring-like structures contain neutral lipids and are enlarged by the oleate treatment, indicating that they are endoplasmic reticulum-associated lipid droplets (ER-LDs). sigma-1 receptors colocalize with caveolin-2, a cholesterol-binding protein in lipid rafts on the ER-LDs, but not with adipocyte differentiation-related protein (ADRP), a cytosolic lipid droplet (c-LD)-specific protein. When the double-arginine ER retention signal on the N terminus of sigma-1 receptors is truncated, sigma-1 receptors no longer exist on ER-LDs, but predominantly target c-LDs, which contain ADRP. sigma-1 receptors on ER-LDs form detergent-resistant raft-like lipid microdomains, the buoyancy of which is different from that of plasma membrane lipid rafts. (+)-Pentazocine causes sigma-1 receptors to disappear from the microdomains. N-Terminally EYFP-tagged sigma-1 receptors (EYFP-Sig-1R) failed to target ER-LDs. EYFP-Sig-1R-transfected cells showed an unrestricted distribution of neutral lipids all over the endoplasmic reticulum network, decreases in c-LDs and cholesterol in plasma membranes, and the bulbous aggregation of endoplasmic reticulum. Thus, sigma-1 receptors are unique endoplasmic reticulum proteins that regulate the compartmentalization of lipids on the endoplasmic reticulum and their export from the endoplasmic reticulum to plasma membrane and c-LDs.

  1. Positive allosteric modulation of the GHB high-affinity binding site by the GABAA receptor modulator monastrol and the flavonoid catechin.

    PubMed

    Eghorn, Laura F; Hoestgaard-Jensen, Kirsten; Kongstad, Kenneth T; Bay, Tina; Higgins, David; Frølund, Bente; Wellendorph, Petrine

    2014-10-05

    γ-Hydroxybutyric acid (GHB) is a metabolite of γ-aminobutyric acid (GABA) and a proposed neurotransmitter in the mammalian brain. We recently identified α4βδ GABAA receptors as possible high-affinity GHB targets. GABAA receptors are highly sensitive to allosteric modulation. Thus to investigate whether GHB high-affinity binding sites are also sensitive to allosteric modulation, we screened both known GABAA receptor ligands and a library of natural compounds in the rat cortical membrane GHB specific high-affinity [3H]NCS-382 binding assay. Two hits were identified: Monastrol, a positive allosteric modulator of GABA function at δ-containing GABAA receptors, and the naturally occurring flavonoid catechin. These compounds increased [3H]NCS-382 binding to 185-272% in high micromolar concentrations. Monastrol and (+)-catechin significantly reduced [3H]NCS-382 dissociation rates and induced conformational changes in the binding site, demonstrating a positive allosteric modulation of radioligand binding. Surprisingly, binding of [3H]GHB and the GHB high-affinity site-specific radioligands [125I]BnOPh-GHB and [3H]HOCPCA was either decreased or only weakly increased, indicating that the observed modulation was critically probe-dependent. Both monastrol and (+)-catechin were agonists at recombinant α4β3δ receptors expressed in Xenopus laevis oocytes. When monastrol and GHB were co-applied no changes were seen compared to the individual responses. In summary, we have identified the compounds monastrol and catechin as the first allosteric modulators of GHB high-affinity binding sites. Despite their relatively weak affinity, these compounds may aid in further characterization of the GHB high-affinity sites that are likely to represent certain GABAA receptors.

  2. Anticonvulsive action of (+/-)-kavain estimated from its properties on stimulated synaptosomes and Na+ channel receptor sites.

    PubMed

    Gleitz, J; Friese, J; Beile, A; Ameri, A; Peters, T

    1996-11-07

    Kava pyrones are constituents of the intoxicating pepper (Piper methysticum Forst), which has been shown to be anticonvulsive. The question of how the excitability of neurons is affected was investigated by determining the interaction of (+/-)-kavain with epitopes (site 1, site 2) of voltage-dependent Na+ channels and the action of (+/-)-kavain on 4-aminopyridine-stimulated synaptosomes as model of repetitive firing neurons. [3H]Saxitoxin and [3H]batrachotoxin were used for radioligand-binding assays performed with synaptosomal membranes. Gultamate released from 4-aminopyridine-stimulated cerebrocortical synaptosomes and the cytosolic concentrations of Na+ and Ca2+ ([Na+]i, [Ca+]i) were detected fluorometrically by using an enzyme-linked assay, sodium-binding benzofuranisophthalate (SBFI) and Fura-2, respectively. (+/-)-Kavain failed to compete with [3H]saxitoxin up to 400 mumol/l but dose-dependently suppressed binding of [3H]batrachotoxin with an IC50 value of 88 mumol/l (Ki = 72 mumol/l) although displacement of [3H]batrachotoxin was restricted to 33% of control at 400 mumol/l (+/-)-kavain. In stimulated synaptosomes, 5 mmol/l 4-aminopyridine provoked an increase in [Na+]i and [Ca2+]i by 9 mmol/l Na+ and 235 nmol/l Ca2+. Comparable to the reduction in [3H]batrachotoxin binding, 400 mumol/l (+/-)-kavain suppressed the increase in [Na+]i and [Ca2+]i to 38 and 29% of control, respectively. Consistent with the increase in [Na+]i and [Ca2+]i, 5 mmol/l 4-aminopyridine provoked glutamate release (rate: 38 pmol/s*mg protein) which was dose-dependently diminished to 60% of control by 400 mumol/l (+/-)-kavain. KCl depolarization (40 mmol/l) provoked an increase in [Ca2+]i and glutamate release almost identical to the responses elicited by 4-aminopyridine but 400 mumol/l (+/-)-kavain suppressed only the rate of glutamate release by 9% of control. The data suggest an interaction of (+/-)-kavain with voltage-dependent Na+ and Ca2+ channels, thereby suppressing the 4

  3. Intracellular signaling of the Ufo/Axl receptor tyrosine kinase is mediated mainly by a multi-substrate docking-site.

    PubMed

    Braunger, J; Schleithoff, L; Schulz, A S; Kessler, H; Lammers, R; Ullrich, A; Bartram, C R; Janssen, J W

    1997-06-05

    Ufo/Axl belongs to a new family of receptor tyrosine kinases with an extracellular structure similar to that of neural cell adhesion molecules. In order to elucidate intracellular signaling, the cytoplasmic moiety of Ufo/Axl was used to screen an expression library according to the CORT (cloning of receptor targets) method. Three putative Ufo substrates were identified: phospholipase Cgamma1 (PLCgamma), as well as p85alpha and p85beta subunits of phosphatidylinositol 3'-kinase (PI3-kinase). Subsequently, chimeric EGFR/Ufo receptors consisting of the extracellular domains of the epidermal growth factor receptor (EGFR) and the transmembrane and intracellular moiety of Ufo were engineered. Using different far-Western blot analyses and coimmunoprecipitation assays, receptor binding of PLCgamma and p85 proteins as well as GRB2, c-src and lck was examined in vitro and in vivo. Competitive inhibition of substrate binding and mutagenesis experiments with EGFR/Ufo constructs revealed C-terminal tyrosine 821 (EILpYVNMDEG) as a docking site for multiple effectors, namely PLCgamma, p85 proteins, GRB2, c-src and lck. Tyrosine 779 (DGLpYALMSRC) demonstrated an additional, but lower binding affinity for the p85 proteins in vitro. In addition, binding of PLCgamma occurred through tyrosine 866 (AGRpYVLCPST). Moreover, our in vivo data indicate that further direct or indirect binding sites for PLCgamma, GRB2, c-src and lck on the human Ufo receptor may exist.

  4. Naloxone's pentapeptide binding site on filamin A blocks Mu opioid receptor-Gs coupling and CREB activation of acute morphine.

    PubMed

    Wang, Hoau-Yan; Burns, Lindsay H

    2009-01-01

    Chronic morphine causes the mu opioid receptor (MOR) to switch its coupling from Gi/o to Gs, resulting in excitatory signaling via both Galphas and its Gbetagamma dimer. Ultra-low-dose naloxone (NLX) prevents this switch and attenuates opioid tolerance and dependence. This protective effect is mediated via a high-affinity interaction of NLX to a pentapeptide region in c-terminal filamin A (FLNA), a scaffolding protein interacting with MOR. In organotypic striatal slice cultures, we now show that acute morphine induces a dose-dependent Go-to-Gs coupling switch at 5 and 15 min that resolves by 1 hr. The acute Gs coupling induced by 100 microM morphine was completely prevented by co-treatment with 100 pM NLX, (+)NLX, or naltrexone (NTX), or their pentapeptide binding site (FLNA(2561-2565)), which we show can act as a decoy for MOR or bind to FLNA itself. All of these co-treatments presumably prevent the MOR-FLNA interaction. Since ultra-low-dose NTX also attenuates the addictive properties of opioids, we assessed striatal cAMP production and CREB phosphorylation at S(133). Correlating with the Gs coupling, acute morphine induced elevated cAMP levels and a several-fold increase in pS(133)CREB that were also completely blocked by NLX, NTX or the FLNA pentapeptide. We propose that acute, robust stimulation of MOR causes an interaction with FLNA that allows an initially transient MOR-Gs coupling, which recovers with receptor recycling but persists when MOR stimulation is repeated or prolonged. The complete prevention of this acute, morphine-induced MOR-Gs coupling by 100 pM NLX/NTX or 10 microM pentapeptide segment of FLNA further elucidates both MOR signaling and the mechanism of action of ultra-low-dose NLX or NTX in attenuating opioid tolerance, dependence and addictive potential.

  5. Glycine site N-methyl-d-aspartate receptor antagonist 7-CTKA produces rapid antidepressant-like effects in male rats

    PubMed Central

    Zhu, Wei-Li; Wang, Shen-Jun; Liu, Meng-Meng; Shi, Hai-Shui; Zhang, Ruo-Xi; Liu, Jian-Feng; Ding, Zeng-Bo; Lu, Lin

    2013-01-01

    Background Glutamate N-methyl-d-aspartate (NMDA) receptor antagonists exert fast-acting antidepressant effects, providing a promising way to develop a new classification of antidepressant that targets the glutamatergic system. In the present study, we examined the potential antidepressant action of 7-chlorokynurenic acid (7-CTKA), a glycine recognition site NMDA receptor antagonist, in a series of behavioural models of depression and determined the molecular mechanisms that underlie the behavioural actions of 7-CTKA. Methods We administered the forced swim test, novelty-suppressed feeding test, learned helplessness paradigm and chronic mild stress (CMS) paradigm in male rats to evaluate the possible rapid antidepressant-like actions of 7-CTKA. In addition, we assessed phospho-glycogen synthase kinase-3β (p-GSK3β) level, mammalian target of rapamycin (mTOR) function, and postsynaptic protein expression in the medial prefrontal cortex (mPFC) and hippocampus. Results Acute 7-CTKA administration produced rapid antidepressant-like actions in several behavioural tests. It increased p-GSK3β, enhanced mTOR function and increased postsynaptic protein levels in the mPFC. Activation of GSK3β by LY294002 completely blocked the antidepressant-like effects of 7-CTKA. Moreover, 7-CTKA did not produce rewarding properties or abuse potential. Limitations It is possible that 7-CTKA modulates glutamatergic transmission, thereby causing enduring alterations of GSK3β and mTOR signalling, although we did not provide direct evidence to support this possibility. Thus, the therapeutic involvement of synaptic adaptions engaged by 7-CTKA requires further study. Conclusion Our findings demonstrate that acute 7-CTKA administration produced rapid antidepressant-like effects, indicating that the behavioural response to 7-CTKA is mediated by GSK3β and mTOR signalling function in the mPFC. PMID:23611177

  6. Human Siglec-5 Inhibitory Receptor and Immunoglobulin A (IgA) Have Separate Binding Sites in Streptococcal β Protein*

    PubMed Central

    Nordström, Therése; Movert, Elin; Olin, Anders I.; Ali, Syed R.; Nizet, Victor; Varki, Ajit; Areschoug, Thomas

    2011-01-01

    Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors believed to be important for regulation of cellular activation and inflammation. Several pathogenic microbes bind specific Siglecs via sialic acid-containing structures at the microbial surface, interactions that may result in modulation of host responses. Recently, it was shown that the group B Streptococcus (GBS) binds to human Siglec-5 (hSiglec-5), an inhibitory receptor expressed on macrophages and neutrophils, via the IgA-binding surface β protein, providing the first example of a protein/protein interaction between a pathogenic microbe and a Siglec. Here we show that the hSiglec-5-binding part of β resides in the N-terminal half of the protein, which also harbors the previously determined IgA-binding region. We constructed bacterial mutants expressing variants of the β protein with non-overlapping deletions in the N-terminal half of the protein. Using these mutants and recombinant β fragments, we showed that the hSiglec-5-binding site is located in the most N-terminal part of β (B6N region; amino acids 1–152) and that the hSiglec-5- and IgA-binding domains in β are completely separate. We showed with BIAcoreTM analysis that tandem variants of the hSiglec-5- and IgA-binding domains bind to their respective ligands with high affinity. Finally, we showed that the B6N region, but not the IgA-binding region of β, triggers recruitment of the tyrosine phosphatase SHP-2 to hSiglec-5 in U937 monocytes. Taken together, we have identified and isolated the first microbial non-sialic acid Siglec-binding region that can be used as a tool in studies of the β/hSiglec-5 interaction. PMID:21795693

  7. The novel alpha 2-adrenoceptor agonist [3H]mivazerol binds to non-adrenergic binding sites in human striatum membranes that are distinct from imidazoline receptors.

    PubMed

    Flamez, A; Gillard, M; De Backer, J P; Vauquelin, G; Noyer, M

    1997-07-01

    The alpha 2 adrenergic agonist [3H]mivazerol labelled two populations of binding sites in membranes from the human striatum. Forty per cent of the sites labelled by 3 nM [3H]mivazerol corresponded to alpha 2 adrenergic receptors as they displayed a high affinity for (-)-adrenaline and for rauwolscine. The remaining binding was displaced by mivazerol with a pIC50 of 6.5 +/- 0.1. These sites displayed higher affinity for dexmedetomidine (pIC50 = 7.1 +/- 0.1), but much lower affinity for clonidine (pIC50 < 5.0) and for idazoxan (pIC50 = 5.1 +/- 0.1). Mivazerol also showed low affinity for the [3H]clonidine-labelled I1 imidazoline receptors and for the [3H]idazoxan-labelled I2 receptors (pIC50 = 5.1 and 3.9, respectively). These results suggest that the non-adrenergic [3H]mivazerol binding sites are distinct from the imidazoline receptors in the human striatum.

  8. Receptor modelling of both particle composition and size distribution from a background site in London, UK

    NASA Astrophysics Data System (ADS)

    Beddows, D. C. S.; Harrison, R. M.; Green, D. C.; Fuller, G. W.

    2015-09-01

    Positive matrix factorisation (PMF) analysis was applied to PM10 chemical composition and particle number size distribution (NSD) data measured at an urban background site (North Kensington) in London, UK, for the whole of 2011 and 2012. The PMF analyses for these 2 years revealed six and four factors respectively which described seven sources or aerosol types. These included nucleation, traffic, urban background, secondary, fuel oil, marine and non-exhaust/crustal sources. Urban background, secondary and traffic sources were identified by both the chemical composition and particle NSD analysis, but a nucleation source was identified only from the particle NSD data set. Analysis of the PM10 chemical composition data set revealed fuel oil, marine, non-exhaust traffic/crustal sources which were not identified from the NSD data. The two methods appear to be complementary, as the analysis of the PM10 chemical composition data is able to distinguish components contributing largely to particle mass, whereas the number particle size distribution data set - although limited to detecting sources of particles below the diameter upper limit of the SMPS (604 nm) - is more effective for identifying components making an appreciable contribution to particle number. Analysis was also conducted on the combined chemical composition and NSD data set, revealing five factors representing urban background, nucleation, secondary, aged marine and traffic sources. However, the combined analysis appears not to offer any additional power to discriminate sources above that of the aggregate of the two separate PMF analyses. Day-of-the-week and month-of-the-year associations of the factors proved consistent with their assignment to source categories, and bivariate polar plots which examined the wind directional and wind speed association of the different factors also proved highly consistent with their inferred sources. Source attribution according to the air mass back trajectory showed, as

  9. Betaglycan can act as a dual modulator of TGF-beta access to signaling receptors: mapping of ligand binding and GAG attachment sites

    PubMed Central

    1994-01-01

    Betaglycan, also known as the TGF-beta type III receptor, is a membrane- anchored proteoglycan that presents TGF-beta to the type II signaling receptor, a transmembrane serine/threonine kinase. The betaglycan extracellular region, which can be shed by cells into the medium, contains a NH2-terminal domain related to endoglin and a COOH-terminal domain related to uromodulin, sperm receptors Zp2 and 3, and pancreatic secretory granule GP-2 protein. We identified residues Ser535 and Ser546 in the uromodulin-related region as the glycosaminoglycan (GAG) attachment sites. Their mutation to alanine prevents GAG attachment but does not interfere with betaglycan stability or ability to bind and present TGF-beta to receptor II. Using a panel of deletion mutants, we found that TGF-beta binds to the NH2-terminal endoglin-related region of betaglycan. The remainder of the extracellular domain and the cytoplasmic domain are not required for presentation of TGF-beta to receptor II; however, membrane anchorage is required. Soluble betaglycan can bind TGF-beta but does not enhance binding to membrane receptors. In fact, recombinant soluble betaglycan acts as potent inhibitor of TGF-beta binding to membrane receptors and blocks TGF-beta action, this effect being particularly pronounced with the TGF-beta 2 isoform. The results suggest that release of betaglycan into the medium converts this enhancer of TGF-beta action into a TGF-beta antagonist. PMID:8106553

  10. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Hamouda, Ayman K.; Wang, Ze-Jun; Stewart, Deirdre S.; Jain, Atul D.; Glennon, Richard A.

    2015-01-01

    Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([3H]phencyclidine; IC50 = 4 μM) than in the resting state ([3H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([3H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [3H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [3H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. PMID:25870334

  11. Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile.

    PubMed

    Jiang, Jie; Zhou, Yubin; Zou, Jin; Chen, Yanyi; Patel, Priya; Yang, Jenny J; Balog, Edward M

    2010-11-15

    The skeletal muscle isoform of the ryanodine receptor Ca²(+)-release channel (RyR1) is regulated by Ca²(+) and CaM (calmodulin). CaM shifts the biphasic Ca²(+)-dependence of RyR1 activation leftward, effectively increasing channel opening at low Ca²(+) and decreasing channel opening at high Ca²(+). The conversion of CaM from a RyR1 activator into an inhibitor is due to the binding of Ca²(+) to CaM; however, which of CaM's four Ca²(+)-binding sites serves as the switch for this conversion is unclear. We engineered a series of mutant CaMs designed to individually increase the Ca²(+) affinity of each of CaM's EF-hands by increasing the number of acidic residues in Ca²(+)-chelating positions. Domain-specific Ca²(+) affinities of each CaM variant were determined by equilibrium fluorescence titration. Mutations in sites I (T26D) or II (N60D) in CaM's N-terminal domain had little effect on CaM Ca²(+) affinity and regulation of RyR1. However, the site III mutation N97D increased the Ca²(+)-binding affinity of CaM's C-terminal domain and caused CaM to inhibit RyR1 at a lower Ca²(+) concentration than wild-type CaM. Conversely, the site IV mutation Q135D decreased the Ca²(+)-binding affinity of CaM's C-terminal domain and caused CaM to inhibit RyR1 at higher Ca²(+) concentrations. These results support the hypothesis that Ca²(+) binding to CaM's C-terminal acts as the switch converting CaM from a RyR1 activator into a channel inhibitor. These results indicate further that targeting CaM's Ca²(+) affinity may be a valid strategy to tune the activation profile of CaM-regulated ion channels.

  12. Temporal variability of Polycyclic Aromatic Hydrocarbons in a receptor site of Puebla -Tlaxcala Valley.

    NASA Astrophysics Data System (ADS)

    Padilla Barrera, Zuhelen; Torres Jardón, Ricardo; Gerardo Ruiz, Luis; Castro, Telma

    2015-04-01

    surface area was 81.9 mm2/m3and the maximum of 176.8 mm2/m3. Peak concentrations occurred at dawn and in the early hours of the morning then decreasing in the morning and evening. Particularly notable was the drop in the concentration of both PAHs and DC between 8 and 10 am , this period is when the vehicular activity peaks as the use of fuels for heating homes is intense. Additionally, this period is when the boundary layer is fully established favoring the accumulation of newly issued pollutants and remnants of the night. The breaking of the layer precisely between 8 am and 9am resulting in a rapid decrease in the concentrations of all pollutants favored the vertical mixing them with cleaner air masses previously located above the boundary layer. Once broken the boundary layer , the new layer grows and pollutants are mixed with air masses that are being transported to other sites which establishes the dominant concentrations and in the day. By 7 pm there is an increase in vehicular traffic and even dominates the regional wind ventilation, a slight increase was observed in the concentrations of CO , NOx and DC.

  13. Dimensional and chemical characterization of particles at a downwind receptor site of a waste-to-energy plant

    SciTech Connect

    Buonanno, G.; Stabile, L.; Avino, P.; Vanoli, R.

    2010-07-15

    In the last years numerous epidemiological studies were carried out to evaluate the effects of particulate matter on human health. In industrialized areas, anthropogenic activities highly contribute to the fine and ultrafine particle concentrations. Then, it is important to characterize the evolution of particle size distribution and chemical composition near these emission points. Waste incineration represents a favorable technique for reducing the waste volume. However, in the past, municipal waste incinerators (MWIs) had a bad reputation due to the emission of toxic combustion byproducts. Consequently, the risk perception of the people living near MWIs is very high even if in Western countries waste incineration has nowadays to be considered a relatively clean process from a technical point of view. The study here presented has an exemplary meaning for developing appropriate management and control strategies for air quality in the surrounding of MWIs and to perform exposure assessment for populations involved. Environment particles were continuously measured through a SMPS/APS system over 12 months. The monitoring site represents a downwind receptor of a typical MWI. Furthermore, elements and organic fractions were measured by means of the Instrumental Neutron Activation Analysis and using dichotomous and high volume samplers. Annual mean values of 8.6 x 10{sup 3} +- 3.7 x 10{sup 2} part. cm{sup -3} and 31.1 +- 9.0 mug m{sup -3} were found for number and mass concentration, typical of a rural site. Most of the elements can be attributed to long-range transport from other natural and/or anthropogenic sources. Finally, the Polycyclic Aromatic Hydrocarbons present low concentrations with a mean value of 24.6 ng m{sup -3}.

  14. GABAA receptor sites modulating catecholamine secretion in the rat adrenal gland: evidence from 3H-muscimol autoradiography and in vivo functional studies.

    PubMed

    Amenta, F; Collier, W L; Erdö, S L; Giuliani, S; Maggi, C A; Meli, A

    1988-01-01

    The occurrence and distribution of specific 3H-muscimol binding sites, most probably identical with A type gamma-aminobutyric acid (GABA) receptors, were studied in sections of the rat adrenal gland by light microscope autoradiography. Specific binding was found primarily in the adrenal medulla, in association with chromaffin cells. A limited number of binding sites was also observed within the adrenal cortex. In urethane-anaesthetized hexamethonium-pretreated rats, intravenous GABA produced a set of 'excitatory' cardiovascular effects (increase in heart rate, force of contraction and blood pressure) which were mimicked by intravenous muscimol but not by intravenous baclofen, and were antagonized by pretreatment with bicuculline. The cardiovascular excitatory effects of intravenous GABA were unaffected by reserpine pretreatment, markedly reduced by administration of phentolamine plus propranolol, and almost completely abolished by adrenalectomy. Our findings indicate the presence of GABA receptor sites on adrenal chromaffin cells, whose excitation can produce changes in cardiovascular function.

  15. Antibody Treatment of Ebola and Sudan Virus Infection via a Uniquely Exposed Epitope within the Glycoprotein Receptor-Binding Site.

    PubMed

    Howell, Katie A; Qiu, Xiangguo; Brannan, Jennifer M; Bryan, Christopher; Davidson, Edgar; Holtsberg, Frederick W; Wec, Anna Z; Shulenin, Sergey; Biggins, Julia E; Douglas, Robin; Enterlein, Sven G; Turner, Hannah L; Pallesen, Jesper; Murin, Charles D; He, Shihua; Kroeker, Andrea; Vu, Hong; Herbert, Andrew S; Fusco, Marnie L; Nyakatura, Elisabeth K; Lai, Jonathan R; Keck, Zhen-Yong; Foung, Steven K H; Saphire, Erica Ollmann; Zeitlin, Larry; Ward, Andrew B; Chandran, Kartik; Doranz, Benjamin J; Kobinger, Gary P; Dye, John M; Aman, M Javad

    2016-05-17

    Previous efforts to identify cross-neutralizing antibodies to the receptor-binding site (RBS) of ebolavirus glycoproteins have been unsuccessful, largely because the RBS is occluded on the viral surface. We report a monoclonal antibody (FVM04) that targets a uniquely exposed epitope within the RBS; cross-neutralizes Ebola (EBOV), Sudan (SUDV), and, to a lesser extent, Bundibugyo viruses; and shows protection against EBOV and SUDV in mice and guinea pigs. The antibody cocktail ZMapp™ is remarkably effective against EBOV (Zaire) but does not cross-neutralize other ebolaviruses. By replacing one of the ZMapp™ components with FVM04, we retained the anti-EBOV efficacy while extending the breadth of protection to SUDV, thereby generating a cross-protective antibody cocktail. In addition, we report several mutations at the base of the ebolavirus glycoprotein that enhance the binding of FVM04 and other cross-reactive antibodies. These findings have important implications for pan-ebolavirus vaccine development and defining broadly protective antibody cocktails.

  16. Comparison of dopamine receptor sites labeled by (/sup 3/H)-S-sulpiride and (/sup 3/H)-spiperone in striatum

    SciTech Connect

    Zahniser, N.R.; Dubocovich, M.L.

    1983-12-01

    Binding of the radiolabeled active isomer of the neuroleptic sulpiride, (/sup 3/H)-S-sulpiride, to rat and rabbit striatal membranes was characterized. Regardless of whether the specific binding of (/sup 3/H)-S-sulpiride was defined with spiperone or the active isomers of butaclamol or flupenthixol, a single homogeneous++ population of binding sites (rat: Kd . 5.6 nM, maximum binding . 590 fmol/mg of protein; rabbit: Kd . 8.3 nM, maximum binding . 540 fmol/mg of protein) was detected. The pharmacological profile of these sites was characteristic of that described for the dopaminergic D-2 receptor subtype. To determine whether (/sup 3/H)-S-sulpiride and (/sup 3/H)spiperone label common sites in the striatum, the binding of these two radioligands was compared under similar assay conditions. When specific binding of (/sup 3/H)spiperone was defined with S-sulpiride, (/sup 3/H)spiperone labeled the same number of binding sites as (/sup 3/H)-S-sulpiride despite the fact that the affinity of the sites for (/sup 3/H)spiperone was 80- to 90-fold higher than for (/sup 3/H)-S-sulpiride. When specific binding of (/sup 3/H)spiperone was defined with either (+)-butaclamol or (alpha)-flupenthixol, however, approximately 30% more sites were labeled. The predominant site labeled by (/sup 3/H)spiperone also possessed the characteristics of the D-2 receptor. It is concluded that (/sup 3/H)-S-sulpiride under the conditions used is a selective radioligand with which dopamine receptors of the D-2 subtype can be directly measured and localized. (/sup 3/H)Spiperone can be used to detect the same sites only if specific binding is defined with S-sulpiride.

  17. Allosteric binding site in a Cys-loop receptor ligand-binding domain unveiled in the crystal structure of ELIC in complex with chlorpromazine

    PubMed Central

    Nys, Mieke; Wijckmans, Eveline; Farinha, Ana; Yoluk, Özge; Andersson, Magnus; Brams, Marijke; Spurny, Radovan; Peigneur, Steve; Tytgat, Jan; Lindahl, Erik; Ulens, Chris

    2016-01-01

    Pentameric ligand-gated ion channels or Cys-loop receptors are responsible for fast inhibitory or excitatory synaptic transmission. The antipsychotic compound chlorpromazine is a widely used tool to probe the ion channel pore of the nicotinic acetylcholine receptor, which is a prototypical Cys-loop receptor. In this study, we determine the molecular determinants of chlorpromazine binding in the Erwinia ligand-gated ion channel (ELIC). We report the X-ray crystal structures of ELIC in complex with chlorpromazine or its brominated derivative bromopromazine. Unexpectedly, we do not find a chlorpromazine molecule in the channel pore of ELIC, but behind the β8–β9 loop in the extracellular ligand-binding domain. The β8–β9 loop is localized downstream from the neurotransmitter binding site and plays an important role in coupling of ligand binding to channel opening. In combination with electrophysiological recordings from ELIC cysteine mutants and a thiol-reactive derivative of chlorpromazine, we demonstrate that chlorpromazine binding at the β8–β9 loop is responsible for receptor inhibition. We further use molecular-dynamics simulations to support the X-ray data and mutagenesis experiments. Together, these data unveil an allosteric binding site in the extracellular ligand-binding domain of ELIC. Our results extend on previous observations and further substantiate our understanding of a multisite model for allosteric modulation of Cys-loop receptors. PMID:27791038

  18. Mapping the binding site pocket of the serotonin 5-Hydroxytryptamine2A receptor. Ser3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin.

    PubMed

    Almaula, N; Ebersole, B J; Zhang, D; Weinstein, H; Sealfon, S C

    1996-06-21

    Like other amine neurotransmitters that activate G-protein-coupled receptors, 5-hydroxytryptamine (5-HT) binds to the 5-HT2A receptor through the interaction of its cationic primary amino group with the conserved Asp3.32(155) in transmembrane helix 3. Computational experiments with a 5-HT2A receptor model suggest that the same functional group of 5-hydroxytryptamine also forms a hydrogen bond with the side chain of Ser3.36(159), which is adjacent in space to Asp3.32(155). However, other 5-HT2A receptor ligands like lysergic acid diethylamide (LSD), in which the amine nitrogen is embedded in a heterocycle, or N,N-dimethyl 5-HT, in which the side chain is a tertiary amine, are found in the computational simulations to interact with the aspartate but not with the serine, due mainly to steric hindrance. The predicted difference in the interaction of various ligands in the same receptor binding pocket was tested with site-directed mutagenesis of Ser3.36(159) --> Ala and Ser3.36(159) --> Cys. The alanine substitution led to an 18-fold reduction in 5-HT affinity and the cysteine substitution to an intermediate 5-fold decrease. LSD affinity, in contrast, was unaffected by either mutation. N,N-Dimethyl 5-HT affinity was unaffected by the cysteine mutation and had a comparatively small 3-fold decrease in affinity for the alanine mutant. These findings identify a mode of ligand-receptor complexation that involves two receptor side chains interacting with the same functional group of specific serotonergic ligands. This interaction serves to orient the ligands in the binding pocket and may influence the degree of receptor activation.

  19. Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1.

    PubMed

    Xu, Huifang; Raynal, Nicolas; Stathopoulos, Stavros; Myllyharju, Johanna; Farndale, Richard W; Leitinger, Birgit

    2011-01-01

    The discoidin domain receptors, DDR1 and DDR2 are cell surface receptor tyrosine kinases that are activated by triple-helical collagen. While normal DDR signalling regulates fundamental cellular processes, aberrant DDR signalling is associated with several human diseases. We previously identified GVMGFO (O is hydroxyproline) as a major DDR2 binding site in collagens I-III, and located two additional DDR2 binding sites in collagen II. Here we extend these studies to the homologous DDR1 and the identification of DDR binding sites on collagen III. Using sets of overlapping triple-helical peptides, the Collagen II and Collagen III Toolkits, we located several DDR2 binding sites on both collagens. The interaction of DDR1 with Toolkit peptides was more restricted, with DDR1 mainly binding to peptides containing the GVMGFO motif. Triple-helical peptides containing the GVMGFO motif induced DDR1 transmembrane signalling, and DDR1 binding and receptor activation occurred with the same amino acid requirements as previously defined for DDR2. While both DDRs exhibit the same specificity for binding the GVMGFO motif, which is present only in fibrillar collagens, the two receptors display distinct preferences for certain non-fibrillar collagens, with the basement membrane collagen IV being exclusively recognised by DDR1. Based on our recent crystal structure of a DDR2-collagen complex, we designed mutations to identify the molecular determinants for DDR1 binding to collagen IV. By replacing five amino acids in DDR2 with the corresponding DDR1 residues we were able to create a DDR2 construct that could function as a collagen IV receptor.

  20. Salt bridges overlapping the gonadotropin-releasing hormone receptor agonist binding site reveal a coincidence detector for G protein-coupled receptor activation.

    PubMed

    Janovick, Jo Ann; Pogozheva, Irina D; Mosberg, Henry I; Conn, P Michael

    2011-08-01

    G protein-coupled receptors (GPCRs) play central roles in most physiological functions, and mutations in them cause heritable diseases. Whereas crystal structures provide details about the structure of GPCRs, there is little information that identifies structural features that permit receptors to pass the cellular quality control system or are involved in transition from the ground state to the ligand-activated state. The gonadotropin-releasing hormone receptor (GnRHR), because of its small size among GPCRs, is amenable to molecular biological approaches and to computer modeling. These techniques and interspecies comparisons are used to identify structural features that are important for both intracellular trafficking and GnRHR activation yet distinguish between these processes. Our model features two salt (Arg(38)-Asp(98) and Glu(90)-Lys(121)) and two disulfide (Cys(14)-Cys(200) and Cys(114)-Cys(196)) bridges, all of which are required for the human GnRHR to traffic to the plasma membrane. This study reveals that both constitutive and ligand-induced activation are associated with a "coincidence detector" that occurs when an agonist binds. The observed constitutive activation of receptors lacking Glu(90)-Lys(121), but not Arg(38)-Asp(98) ionic bridge, suggests that the role of the former connection is holding the receptor in the inactive conformation. Both the aromatic ring and hydroxyl group of Tyr(284) and the hydrogen bonding of Ser(217) are important for efficient receptor activation. Our modeling results, supported by the observed influence of Lys(191) from extracellular loop 2 (EL2) and a four-residue motif surrounding this loop on ligand binding and receptor activation, suggest that the positioning of EL2 within the seven-α-helical bundle regulates receptor stability, proper trafficking, and function.

  1. Crystal Structure and Pharmacological Characterization of a Novel N-Methyl-d-aspartate (NMDA) Receptor Antagonist at the GluN1 Glycine Binding Site*

    PubMed Central

    Kvist, Trine; Steffensen, Thomas Bielefeldt; Greenwood, Jeremy R.; Mehrzad Tabrizi, Fatemeh; Hansen, Kasper B.; Gajhede, Michael; Pickering, Darryl S.; Traynelis, Stephen F.; Kastrup, Jette Sandholm; Bräuner-Osborne, Hans

    2013-01-01

    NMDA receptors are ligand-gated ion channels that mediate excitatory neurotransmission in the brain. They are tetrameric complexes composed of glycine-binding GluN1 and GluN3 subunits together with glutamate-binding GluN2 subunits. Subunit-selective antagonists that discriminate between the glycine sites of GluN1 and GluN3 subunits would be valuable pharmacological tools for studies on the function and physiological roles of NMDA receptor subtypes. In a virtual screening for antagonists that exploit differences in the orthosteric binding site of GluN1 and GluN3 subunits, we identified a novel glycine site antagonist, 1-thioxo-1,2-dihydro-[1,2,4]triazolo[4,3-a]quinoxalin-4(5H)-one (TK40). Here, we show by Schild analysis that TK40 is a potent competitive antagonist with Kb values of 21–63 nm at the GluN1 glycine-binding site of the four recombinant GluN1/N2A-D receptors. In addition, TK40 displayed >100-fold selectivity for GluN1/N2 NMDA receptors over GluN3A- and GluN3B-containing NMDA receptors and no appreciable effects at AMPA receptors. Binding experiments on rat brain membranes and the purified GluN1 ligand-binding domain using glycine site GluN1 radioligands further confirmed the competitive interaction and high potency. To delineate the binding mechanism, we have solved the crystal structure of the GluN1 ligand-binding domain in complex with TK40 and show that TK40 binds to the orthosteric binding site of the GluN1 subunit with a binding mode that was also predicted by virtual screening. Furthermore, the structure reveals that the imino acetamido group of TK40 acts as an α-amino acid bioisostere, which could be of importance in bioisosteric replacement strategies for future ligand design. PMID:24072709

  2. Similarities between the Binding Sites of SB-206553 at Serotonin Type 2 and Alpha7 Acetylcholine Nicotinic Receptors: Rationale for Its Polypharmacological Profile.

    PubMed

    Möller-Acuña, Patricia; Contreras-Riquelme, J Sebastián; Rojas-Fuentes, Cecilia; Nuñez-Vivanco, Gabriel; Alzate-Morales, Jans; Iturriaga-Vásquez, Patricio; Arias, Hugo R; Reyes-Parada, Miguel

    2015-01-01

    Evidence from systems biology indicates that promiscuous drugs, i.e. those that act simultaneously at various protein targets, are clinically better in terms of efficacy, than those that act in a more selective fashion. This has generated a new trend in drug development called polypharmacology. However, the rational design of promiscuous compounds is a difficult task, particularly when the drugs are aimed to act at receptors with diverse structure, function and endogenous ligand. In the present work, using docking and molecular dynamics methodologies, we established the most probable binding sites of SB-206553, a drug originally described as a competitive antagonist of serotonin type 2B/2C metabotropic receptors (5-HT2B/2CRs) and more recently as a positive allosteric modulator of the ionotropic α7 nicotinic acetylcholine receptor (nAChR). To this end, we employed the crystal structures of the 5-HT2BR and acetylcholine binding protein as templates to build homology models of the 5-HT2CR and α7 nAChR, respectively. Then, using a statistical algorithm, the similarity between these binding sites was determined. Our analysis showed that the most plausible binding sites for SB-206553 at 5-HT2Rs and α7 nAChR are remarkably similar, both in size and chemical nature of the amino acid residues lining these pockets, thus providing a rationale to explain its affinity towards both receptor types. Finally, using a computational tool for multiple binding site alignment, we determined a consensus binding site, which should be useful for the rational design of novel compounds acting simultaneously at these two types of highly different protein targets.

  3. Similarities between the Binding Sites of SB-206553 at Serotonin Type 2 and Alpha7 Acetylcholine Nicotinic Receptors: Rationale for Its Polypharmacological Profile

    PubMed Central

    Möller-Acuña, Patricia; Contreras-Riquelme, J. Sebastián; Rojas-Fuentes, Cecilia; Nuñez-Vivanco, Gabriel; Alzate-Morales, Jans; Iturriaga-Vásquez, Patricio; Arias, Hugo R.; Reyes-Parada, Miguel

    2015-01-01

    Evidence from systems biology indicates that promiscuous drugs, i.e. those that act simultaneously at various protein targets, are clinically better in terms of efficacy, than those that act in a more selective fashion. This has generated a new trend in drug development called polypharmacology. However, the rational design of promiscuous compounds is a difficult task, particularly when the drugs are aimed to act at receptors with diverse structure, function and endogenous ligand. In the present work, using docking and molecular dynamics methodologies, we established the most probable binding sites of SB-206553, a drug originally described as a competitive antagonist of serotonin type 2B/2C metabotropic receptors (5-HT2B/2CRs) and more recently as a positive allosteric modulator of the ionotropic α7 nicotinic acetylcholine receptor (nAChR). To this end, we employed the crystal structures of the 5-HT2BR and acetylcholine binding protein as templates to build homology models of the 5-HT2CR and α7 nAChR, respectively. Then, using a statistical algorithm, the similarity between these binding sites was determined. Our analysis showed that the most plausible binding sites for SB-206553 at 5-HT2Rs and α7 nAChR are remarkably similar, both in size and chemical nature of the amino acid residues lining these pockets, thus providing a rationale to explain its affinity towards both receptor types. Finally, using a computational tool for multiple binding site alignment, we determined a consensus binding site, which should be useful for the rational design of novel compounds acting simultaneously at these two types of highly different protein targets. PMID:26244344

  4. Site-selective conjugation of an anticoagulant aptamer to recombinant albumins and maintenance of neonatal Fc receptor binding.

    PubMed

    Schmøkel, Julie; Voldum, Anders; Tsakiridou, Georgia; Kuhlmann, Matthias; Cameron, Jason; Sørensen, Esben; Wengel, Jesper; Howard, Kenneth A

    2017-03-31

    Aptamers are an attractive molecular medicine that offers high target specificity. Nucleic acid-based aptamers however, are prone to nuclease degradation and rapid renal excretion that require blood circulatory half-life extension enabling technologies. The long circulatory half-life, predominately facilitated by engagement with the cellular recycling neonatal Fc receptor (FcRn), and ligand transport properties of albumin promote it as an attractive candidate to improve the pharmacokinetic profile of aptamers. This study investigates the effect of Cys34 site-selective covalent attachment of a factor IXa anticoagulant aptamer on aptamer functionality and FcRn engagement using recombinant human albumin (rHA) of either a wild type (WT) or an engineered human FcRn high binding variant (HB). Aptamer-albumin conjugates, connected covalently through a heterobifunctional succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate linker, were successfully prepared and purified by high performance liquid chromatography as confirmed by gel electrophoresis band-shift analysis and matrix-assisted laser desorption/ionization time of flight. Minimal reduction (~ 25%) in activity of WT-linked aptamer to that of aptamer alone was found using an anticoagulant activity assay measuring temporal levels of activated partial thrombin. Covalent aptamer-albumin conjugation, however, substantially compromised binding to FcRn, to 10% affinity of that of non-conjugated WT, determined by biolayer interferometry. Binding could be rescued by aptamer conjugation to recombinant albumin engineered for higher FcRn affinity (HB) that exhibited an 8-fold affinity compared to WT alone. This work describes a novel albumin-based aptamer delivery system whose FcRn binding can be increased using a high binding engineered albumin.

  5. Evolution of secondary inorganic and organic aerosols during transport: A case study at a regional receptor site.

    PubMed

    Peng, Jianfei; Hu, Min; Gong, Zhaoheng; Tian, Xudong; Wang, Ming; Zheng, Jing; Guo, Qingfeng; Cao, Wei; Lv, Wei; Hu, Weiwei; Wu, Zhijun; Guo, Song

    2016-11-01

    Understanding the evolution of aerosols in the atmosphere is of great importance for improving air quality and reducing aerosol-related uncertainties in global climate simulations. Here, a unique haze episode at a regional receptor site near the East China Sea was examined as a case study of the aging process of atmospheric aerosols during transport. An increase in photochemical age from 5 h to more than 25 h and a progressive increase in the fitted mean particle diameter from 70 nm to approximately 300 nm were observed. According to the pollution features and meteorology conditions involved, pollution accumulation (PA), sea breeze (SB), and land breeze (LB) periods were identified. Concentrations of black carbon (BC), hydrocarbon-like organic aerosols (HOA), semi-volatile oxidized organic aerosols (SV-OOA), and nitrate increased by 7-fold up to 39-fold when the air masses passed through Taizhou, a nearby city. In addition, nitrate and SV-OOA dominated the aerosol composition in the urban outflow plumes (52% and 18%, respectively), yet they gradually decreased in concentration during transport. In contrast, sulfate and the low-volatile oxidized organic aerosols (LV-OOA) exhibited more regional footprints and potentially have similar formation mechanisms. The atomic oxygen-to-carbon (O/C) ratio also increased from 0.45 to 0.9, thereby suggesting that rapid formation of highly oxidized secondary organic aerosols (SOA) occurred during transport. Overall, these results provide valuable insight into the evolution of the chemical and physical features of aerosol pollution during transport and also highlight the need for regulatory controls of nitrogen oxides, sulfur dioxide, and VOCs to improve air quality on different scales.

  6. Nordimaprit, homodimaprit, clobenpropit and imetit: affinities for H3 binding sites and potencies in a functional H3 receptor model.

    PubMed

    Kathmann, M; Schlicker, E; Detzner, M; Timmerman, H

    1993-11-01

    We determined the affinities of nordimaprit, homodimaprit, clobenpropit and imetit for H3 binding sites (labelled by 3H-N alpha-methylhistamine) in rat brain cortex homogenates and their potencies at presynaptic H3A receptors on noradrenergic nerve endings in mouse brain cortex slices. 3H-N alpha-Methylhistamine bound saturably to rat brain cortex homogenates with a Kd of 0.70 nmol/l and a Bmax of 98 fmol/mg protein. Binding of 3H-N alpha-methylhistamine was displaced monophasically by dimaprit (pKi 6.55), nordimaprit (5.94), homodimaprit (6.44), clobenpropit (9.16), imetit (9.83), R-(-)-alpha-methylhistamine (8.87) and histamine (8.20), and biphasically by burimamide (pKi high 7.73, pKi low 5.97). In superfused mouse brain cortex slices preincubated with 3H-noradrenaline, the electrically (0.3 Hz) evoked tritium overflow was inhibited by imetit (pIC35 8.93), R-(-)-alpha-methylhistamine (7.87) and histamine (7.03). The effect of histamine was attenuated by nordimaprit, homodimaprit, clobenpropit and N-ethoxycarbonyl-2- ethoxy-1,2-dihydroquinoline (EEDQ); EEDQ (but not nordimaprit, homodimaprit and clobenpropit) attenuated the effect of histamine also in slices pre-exposed to the drug 60-30 min prior to superfusion. The concentration-response curve of histamine was shifted to the right by homodimaprit and clobenpropit; Schild plots yielded straight lines with a slope of unity for both drugs (pA2 5.94 and 9.55, respectively). Nordimaprit depressed the maximum effect of histamine (pD'2 5.55) and also slightly increased the concentration of histamine producing the half-maximum effect.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. High-resolution definition of vaccine-elicited B cell responses against the HIV primary receptor binding site

    PubMed Central

    Sundling, Christopher; Li, Yuxing; Huynh, Nick; Poulsen, Christian; Wilson, Richard; O’Dell, Sijy; Feng, Yu; Mascola, John R.; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2017-01-01

    The high overall genetic homology between human and rhesus macaques, coupled with the phenotypic conservation of lymphocyte populations, highlights the potential utility of non-human primates (NHPs) for the preclinical evaluation of vaccine candidates. For HIV-1, experimental models are needed to identify vaccine regimens capable of eliciting desired immune responses, such as broadly neutralizing antibodies. One important neutralization target on the HIV-1 envelope glycoproteins (Env) is the conserved primary CD4 receptor binding site (CD4bs). The isolation and characterization of CD4bs-specific neutralizing monoclonal antibodies (MAbs) from HIV-1 infected individuals has provided insights into how broadly reactive antibodies target this conserved epitope. In contrast, and for reasons that are not understood, current Env immunogens elicit CD4bs-directed antibodies with limited neutralization breadth. To facilitate the use of the NHP model to address this and other questions relevant to human humoral immunity, we defined features of the rhesus macaque immunoglobulin (Ig) loci and compared these to the human Ig loci. We then studied Env immunized rhesus macaques, identified single B-cells expressing CD4bs-specific antibodies, and sequenced and expressed a panel of functional MAbs. Comparison of vaccine-elicited MAbs with HIV-1 infection-induced MAbs revealed differences in the degree of somatic hypermutation of the Abs, as well as in the fine specificities targeted within the CD4bs. These data support the use of the preclinical NHP model to characterize vaccine-induced B cell responses at high resolution. PMID:22786681

  8. Interaction of pyracetam with specific /sup 3/H-imipramine binding sites and GABA-benzodiazepine receptor complex of brain membranes

    SciTech Connect

    Rozhanets, V.V.; Chakhbra, K.K.; Danchev, N.D.; Malin, K.M.; Rusakov, D.Yu.; Val'dman, A.V.

    1986-06-01

    This paper studies the effect of pyracetam on parameters of specific binding of tritium-imipramine and GABA-activated binding of tritium-flunitrazepam with rat brain membranes. The experimental method is described and it is shown that pyracetam and mebicar in experiments in vivo on normal animals can exert their anxiolytic action without the participation of bensodiazepine receptors. Either the interaction of pyracetam and mebicar with benzodiazeprine receptors has a different interpretation than competition of these compounds with specific binding sites of tritium-flunitrazepam, or in experiments on normal animals in vivo GABA-benzodiazepine receptor complex does not accept pyracetam and mebicar, for it contains endogenous inhibitors of GABA-modulating action.

  9. Binding site characterization of G protein-coupled receptor by alanine-scanning mutagenesis using molecular dynamics and binding free energy approach: application to C-C chemokine receptor-2 (CCR2).

    PubMed

    Chavan, Swapnil; Pawar, Shirishkumar; Singh, Rajesh; Sobhia, M Elizabeth

    2012-05-01

    The C-C chemokine receptor 2 (CCR2) was proved as a multidrug target in many diseases like diabetes, inflammation and AIDS, but rational drug design on this target is still lagging behind as the information on the exact binding site and the crystal structure is not yet available. Therefore, for a successful structure-based drug design, an accurate receptor model in ligand-bound state is necessary. In this study, binding-site residues of CCR2 was determined using in silico alanine scanning mutagenesis and the interactions between TAK-779 and the developed homology model of CCR2. Molecular dynamic simulation and Molecular Mechanics-Generalized Born Solvent Area method was applied to calculate binding free energy difference between the template and mutated protein. Upon mutating 29 amino acids of template protein and comparison of binding free energy with wild type, six residues were identified as putative hot spots of CCR2.

  10. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens.

    PubMed

    Titeler, M; Lyon, R A; Glennon, R A

    1988-01-01

    Alterations in brain serotonergic function have been implicated in the mechanism of action of LSD, mescaline, and other similarly acting hallucinogenic drugs of abuse such as STP (2,5-dimethoxyphenylisopropylamine; DOM). In order to test the hypothesis that the mechanism of action of LSD and phenylisopropylamine hallucinogens is through stimulation of a specific brain serotonin receptor sub-type, the affinities of these compounds for radiolabelled 5-HT2, 5-HT1A, 5-HT1B, and 5-HT1C receptors have been determined using recently developed in vitro radioligand binding methodologies. The 5-HT2 receptor was labelled with the agonist/hallucinogen radioligand 3H-DOB (4-bromo-2,5-dimethoxyphenylisopropylamine). The 5-HT1A, 5-HT1B, and 5-HT1C receptors were labelled with 3H-OH-DPAT, 3H-5-HT, and 3H-mesulergine, respectively. In general, the phenylisopropylamines displayed 10-100 fold higher affinities for the 5-HT2 receptor than for the 5-HT1C receptor and 100-1000 fold higher affinities for the 5-HT2 receptor than for the 5-HT1A or 5-HT1B receptor. There was a strong correlation between hallucinogenic potencies and 5-HT2 receptor affinities of the phenylisopropylamines (r = 0.90); the correlation coefficients for the 5-HT1A, 5-HT1B, and 5-HT1C were 0.73, 0.85, and 0.78, respectively. Because there is no evidence that 5-HT1A-selective or 5-HT1B-selective agonists are hallucinogenic and because the phenylisopropylamines are potent hallucinogens, a 5-HT2 receptor interaction is implicated and supports our previous suggestions to this effect. A secondary role for 5-HT1C receptors cannot be discounted at this time.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    SciTech Connect

    Ogawa, H.; Qiu, Y; Philo, J; Arakawa, T; Ogata, C; Misono, K

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  12. Structure of the Fab fragment of the anti-murine EGFR antibody 7A7 and exploration of its receptor binding site.

    PubMed

    Talavera, Ariel; Mackenzie, Jenny; Garrido, Greta; Friemann, Rosmarie; López-Requena, Alejandro; Moreno, Ernesto; Krengel, Ute

    2011-07-01

    The EGF receptor is an important target of cancer immunotherapies. The 7A7 monoclonal antibody has been raised against the murine EGFR, but it cross-reacts with the human receptor. The results from experiments using immune-competent mice can therefore, in principle, be extrapolated to the corresponding scenario in humans. In this work we report the crystal structure of the 7A7 Fab at an effective resolution of 1.4Å. The antibody binding site comprises a deep pocket, located at the interface between the light and heavy chains, with major contributions from CDR loops H1, H2, H3 and L1. Binding experiments show that 7A7 recognizes a site on the EGFR extracellular domain that is not accessible in its most stable conformations, but that becomes exposed upon treatment with a tyrosine kinase inhibitor. This suggests a recognition mechanism similar to that proposed for mAb 806.

  13. EVALUATING THE NMDA-GLUTAMATE RECEPTOR AS A SITE OF ACTION FOR TOLUENE USING PATTERN ELICITED VISUAL EVOKED POTENTIALS.

    EPA Science Inventory

    In vitro studies have demonstrated that toluene disrupts the function of NMDA-glutamate receptors, as well as other channels. This has led to the hypothesis that effects on NMDA receptor function may contribute to toluene neurotoxicity, CNS depression, and altered visual evoked ...

  14. In Vivo Estradiol, Tamoxifen and Raloxifene Modulation of Association/Dissociation Kinetics for Estrogen Receptor, Interacting Co-Factors and DNA Binding Sites

    DTIC Science & Technology

    2002-06-01

    is preferred clinically (3, 5 , 7 , 13). It is our goal to understand the molecular and cellular basis of the tissue-specific actions of these...IFinal (14 May 01 - 23 May 02) 4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS In Vivo Estradiol, Tamoxifen and Raloxifene Modulation of DAMDl7-01-1-0498...Association/Dissociation Kinetics for Estrogen Receptor, Interacting Co-Factors and DNA Binding Sites 6. AUTHOR(S) Fred J. Schaufele, Ph.D. 7

  15. Two types of scorpion receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel.

    PubMed

    Couraud, F; Jover, E; Dubois, J M; Rochat, H

    1982-01-01

    The action of the neurotoxin in Buthinae scorpion venoms (Androctonus, Buthus or Leiurus genera) has been extensively studied. These proteins induce a prolongation of the action potential of nerves and muscles by slowing down inactivation of the sodium channel. Their affinity for their receptor site depends on membrane potential. In the present report we describe a toxin from a Centrurinae scorpion, Centruroides suffusus, which binds rat brain synaptosomes at a receptor site distinct from the Buthinae scorpion site independently of voltage. We name Androctonus-like toxins, alpha-scorpion toxins (alpha-ScTX), and Centruroides-like toxins, beta-scorpion toxins (beta-ScTX). We further report that beta-ScTX induces repetitive firing in frog myelinated nerve fibres by producing an abnormal sodium permeability. The beta-toxin binds specifically to rat brain synaptosomes (Kd = 3 nM) and induces an inhibition of the uptake and a stimulation of the release of GABA at concentrations which are in good agreement with the Kd value. These effects are blocked by tetrodotoxin. The binding site of beta -ScTX is distinct from those of other neurotoxins acting on the sodium channel like tetrodotoxin, alpha-ScTX and veratridine. The alpha-ScTX/beta-ScTX binding site capacities decreases as development of rat brain synaptosomes progresses ; at day 7 after birth, it is 1.1. and at day 39, 0.3.

  16. Modelling and mutation studies on the histamine H1-receptor agonist binding site reveal different binding modes for H1-agonists: Asp116 (TM3) has a constitutive role in receptor stimulation

    NASA Astrophysics Data System (ADS)

    ter Laak, Anton M.; Timmerman, Hendrik; Leurs, Rob; Nederkoorn, Paul H. J.; Smit, Martine J.; Donné-Op den Kelder, Gabriëlle M.

    1995-08-01

    A modelling study has been carried out, investigating the binding of histamine (Hist), 2-methylhistamine (2-MeHist) and 2-phenylhistamine (2-PhHist) at two postulated agonistic binding sites on transmembrane domain 5 (TM5) of the histamine H1-receptor. For this purpose a conformational analysis study was performed on three particular residues of TM5, i.e., Lys200, Thr203 and Asn207, for which a functional role in binding has been proposed. The most favourable results were obtained for the interaction between Hist and the Lys200/Asn207 pair. Therefore, Lys200 was subsequently mutated and converted to an alanine, resulting in a 50-fold decrease of H1-receptor stimulation by histamine. Altogether, the data suggest that the Lys200/Asn207 pair is important for activation of the H1-receptor by histamine. In contrast, analogues of 2-PhHist seem to belong to a distinct subclass of histamine agonists and an alternative mode of binding is proposed in which the 2-phenyl ring binds to the same receptor location as one of the aromatic rings of classical histamine H1-antagonists. Subsequently, the binding modes of the agonists Hist, 2-MeHist and 2-PhHist and the H1-antagonist cyproheptadine were evaluated in three different seven-α-helical models of the H1-receptor built in homology with bacteriorhodopsin, but using three different alignments. Our findings suggest that the position of the carboxylate group of Asp116 (TM3) within the receptor pocket depends on whether an agonist or an antagonist binds to the protein; a conformational change of this aspartate residue upon agonist binding is expected to play an essential role in receptor stimulation.

  17. Strychnine activates neuronal α7 nicotinic receptors after mutations in the leucine ring and transmitter binding site domains

    PubMed Central

    Palma, Eleonora; Fucile, Sergio; Barabino, Benedetta; Miledi, Ricardo; Eusebi, Fabrizio

    1999-01-01

    Recent work has shown that strychnine, the potent and selective antagonist of glycine receptors, is also an antagonist of nicotinic acetylcholine (AcCho) receptors including neuronal homomeric α7 receptors, and that mutating Leu-247 of the α7 nicotinic AcCho receptor-channel domain (L247Tα7; mut1) converts some nicotinic antagonists into agonists. Therefore, a study was made of the effects of strychnine on Xenopus oocytes expressing the chick wild-type α7 or L247Tα7 receptors. In these oocytes, strychnine itself did not elicit appreciable membrane currents but reduced the currents elicited by AcCho in a reversible and dose-dependent manner. In sharp contrast, in oocytes expressing L247Tα7 receptors with additional mutations at Cys-189 and Cys-190, in the extracellular N-terminal domain (L247T/C189–190Sα7; mut2), micromolar concentrations of strychnine elicited inward currents that were reversibly inhibited by the nicotinic receptor blocker α-bungarotoxin. Single-channel recordings showed that strychnine gated mut2-channels with two conductance levels, 56 pS and 42 pS, and with kinetic properties similar to AcCho-activated channels. We conclude that strychnine is a modulator, as well as an activator, of some homomeric nicotinic α7 receptors. After injecting oocytes with mixtures of cDNAs encoding mut1 and mut2 subunits, the expressed hybrid receptors were activated by strychnine, similar to the mut2, and had a high affinity to AcCho like the mut1. A pentameric symmetrical model yields the striking conclusion that two identical α7 subunits may be sufficient to determine the functional properties of α7 receptors. PMID:10557336

  18. Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors

    PubMed Central

    Járai, Zoltán; Wagner, Jens A.; Varga, Károly; Lake, Kristy D.; Compton, David R.; Martin, Billy R.; Zimmer, Anne M.; Bonner, Tom I.; Buckley, Nancy E.; Mezey, Eva; Razdan, Raj K.; Zimmer, Andreas; Kunos, George

    1999-01-01

    Cannabinoids, including the endogenous ligand arachidonyl ethanolamide (anandamide), elicit not only neurobehavioral but also cardiovascular effects. Two cannabinoid receptors, CB1 and CB2, have been cloned, and studies with the selective CB1 receptor antagonist SR141716A have implicated peripherally located CB1 receptors in the hypotensive action of cannabinoids. In rat mesenteric arteries, anandamide-induced vasodilation is inhibited by SR141716A, but other potent CB1 receptor agonists, such as HU-210, do not cause vasodilation, which implicates an as-yet-unidentified receptor in this effect. Here we show that “abnormal cannabidiol” (Abn-cbd) is a neurobehaviorally inactive cannabinoid that does not bind to CB1 receptors, yet causes SR141716A-sensitive hypotension and mesenteric vasodilation in wild-type mice and in mice lacking CB1 receptors or both CB1 and CB2 receptors. Hypotension by Abn-cbd is also inhibited by cannabidiol (20 μg/g), which does not influence anandamide- or HU-210-induced hypotension. In the rat mesenteric arterial bed, Abn-cbd-induced vasodilation is unaffected by blockade of endothelial NO synthase, cyclooxygenase, or capsaicin receptors, but it is abolished by endothelial denudation. Mesenteric vasodilation by Abn-cbd, but not by acetylcholine, sodium nitroprusside, or capsaicine, is blocked by SR141716A (1 μM) or by cannabidiol (10 μM). Abn-cbd-induced vasodilation is also blocked in the presence of charybdotoxin (100 nM) plus apamin (100 nM), a combination of K+-channel toxins reported to block the release of an endothelium-derived hyperpolarizing factor (EDHF). These findings suggest that Abn-cbd and cannabidiol are a selective agonist and antagonist, respectively, of an as-yet-unidentified endothelial receptor for anandamide, activation of which elicits NO-independent mesenteric vasodilation, possibly by means of the release of EDHF. PMID:10570211

  19. HPLC-based activity profiling: discovery of piperine as a positive GABA(A) receptor modulator targeting a benzodiazepine-independent binding site.

    PubMed

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2010-02-26

    A plant extract library was screened for GABA(A) receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 microg/mL] potentiated GABA-induced chloride currents through GABA(A) receptors (composed of alpha(1), beta(2), and gamma(2S) subunits) by 169.1 +/- 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1-4, 6-13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 +/- 26.5% with an EC(50) of 52.4 +/- 9.4 microM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABA(A) receptor modulation. The stimulation of chloride currents through GABA(A) receptors by compound 5 was not antagonized by flumazenil (10 microM). These data show that piperine (5) represents a new scaffold of positive allosteric GABA(A) receptor modulators targeting a benzodiazepine-independent binding site.

  20. HPLC-Based Activity Profiling: Discovery of Piperine as a Positive GABAA Receptor Modulator Targeting a Benzodiazepine-Independent Binding Site

    PubMed Central

    Zaugg, Janine; Baburin, Igor; Strommer, Barbara; Kim, Hyun-Jung; Hering, Steffen; Hamburger, Matthias

    2011-01-01

    A plant extract library was screened for GABAA receptor activity making use of a two-microelectrode voltage clamp assay on Xenopus laevis oocytes. An ethyl acetate extract of black pepper fruits [Piper nigrum L. (Piperaceae) 100 μg/mL] potentiated GABA-induced chloride currents through GABAA receptors (composed of α1, β2, and γ2S subunits) by 169.1 ± 2.4%. With the aid of an HPLC-based activity profiling approach, piperine (5) was identified as the main active compound, together with 12 structurally related less active or inactive piperamides (1–4, 6–13). Identification was achieved by on-line high-resolution mass spectrometry and off-line microprobe 1D and 2D NMR spectroscopy, using only milligram amounts of extract. Compound 5 induced a maximum potentiation of the chloride currents by 301.9 ± 26.5% with an EC50 of 52.4 ± 9.4 μM. A comparison of the modulatory activity of 5 and other naturally occurring piperamides enabled insights into structural features critical for GABAA receptor modulation. The stimulation of chloride currents through GABAA receptors by compound 5 was not antagonized by flumazenil (10 μM). These data show that piperine (5) represents a new scaffold of positive allosteric GABAA receptor modulators targeting a benzodiazepine-independent binding site. PMID:20085307

  1. A second gene for the African green monkey poliovirus receptor that has no putative N-glycosylation site in the functional N-terminal immunoglobulin-like domain.

    PubMed Central

    Koike, S; Ise, I; Sato, Y; Yonekawa, H; Gotoh, O; Nomoto, A

    1992-01-01

    Using cDNA of the human poliovirus receptor (PVR) as a probe, two types of cDNA clones of the monkey homologs were isolated from a cDNA library prepared from an African green monkey kidney cell line. Either type of cDNA clone rendered mouse L cells permissive for poliovirus infection. Homologies of the amino acid sequences deduced from these cDNA sequences with that of human PVR were 90.2 and 86.4%, respectively. These two monkey PVRs were found to be encoded in two different loci of the genome. Evolutionary analysis suggested that duplication of the PVR gene in the monkey genome had occurred after the species differentiation between humans and monkeys. The NH2-terminal immunoglobulin-like domain, domain 1, of the second monkey PVR, which lacks a putative N-glycosylation site, mediated poliovirus infection. In addition, a human PVR mutant without N-glycosylation sites in domain 1 also promoted viral infection. These results suggest that domain 1 of the monkey receptor also harbors the binding site for poliovirus and that sugar moieties possibly attached to this domain of human PVR are dispensable for the virus-receptor interaction. Images PMID:1331508

  2. The E Loop of the Transmitter Binding Site Is a Key Determinant of the Modulatory Effects of Physostigmine on Neuronal Nicotinic α4β2 Receptors.

    PubMed

    Jin, Xiaochun; McCollum, Megan M; Germann, Allison L; Akk, Gustav; Steinbach, Joe Henry

    2017-02-01

    Physostigmine is a well known inhibitor of acetylcholinesterase, which can also activate, potentiate, and inhibit acetylcholine receptors, including neuronal nicotinic receptors comprising α4 and β2 subunits. We have found that the two stoichiometric forms of this receptor differ in the effects of physostigmine. The form containing three copies of α4 and two of β2 was potentiated at low concentrations of acetylcholine chloride (ACh) and physostigmine, whereas the form containing two copies of α4 and three of β2 was inhibited. Chimeric constructs of subunits indicated that the presence of inhibition or potentiation depended on the source of the extracellular ligand binding domain of the subunit. Further sets of chimeric constructs demonstrated that a portion of the ACh binding domain, the E loop, is a key determinant. Transferring the E loop from the β2 subunit to the α4 subunit resulted in strong inhibition, whereas the reciprocal transfer reduced inhibition. To control the number and position of the incorporated chimeric subunits, we expressed chimeric constructs with subunit dimers. Surprisingly, incorporation of a subunit with an altered E loop had similar effects whether it contributed either to an intersubunit interface containing a canonical ACh binding site or to an alternative interface. The observation that the α4 E loop is involved suggests that physostigmine interacts with regions of subunits that contribute to the ACh binding site, whereas the lack of interface specificity indicates that interaction with a particular ACh binding site is not the critical factor.

  3. Calcium Occupancy of N-terminal Sites within Calmodulin Induces Inhibition of the Ryanodine Receptor Calcium Release Channel

    SciTech Connect

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-08-01

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614 – N3643) located within the central portion of the primary sequence. However, it is currently unclear whether the identified CaM-binding sequence a) senses calcium over the physiological range of calcium-concentrations associated with RyR1 regulation or b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene) maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association between both apo- and calcium-activated CaM and RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-activation of these individual domains. Fluorescence changes upon calcium-activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM bound to RyRp at resting calcium levels and the activation of the N-terminal domain at levels of calcium associated cellular activation. In comparison, occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium-dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 0.4 μM, suggesting a direct regulation of Ry

  4. Calcium occupancy of N-terminal sites within calmodulin induces inhibition of the ryanodine receptor calcium release channel.

    PubMed

    Boschek, Curt B; Jones, Terry E; Squier, Thomas C; Bigelow, Diana J

    2007-09-18

    Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614-N3643) located within the central portion of the primary sequence. However, it is presently unclear whether the identified CaM-binding sequence in association with CaM (a) senses calcium over the physiological range of calcium concentrations associated with RyR1 regulation or alternatively, (b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene)maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association of both apo-CaM and calcium-activated CaM with RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-dependent activation of these individual domains. Fluorescence changes upon calcium activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM at resting calcium levels; at calcium levels associated with muscle contraction, activation of the N-terminal domain occurs with concomitant increases in the fluorescence intensity of PyC-CaM that is associated with structural changes within the CaM-binding sequence of RyR1. Occupancy of calcium-binding sites in the N

  5. Development of a radioligand, [(3)H]LY2119620, to probe the human M(2) and M(4) muscarinic receptor allosteric binding sites.

    PubMed

    Schober, Douglas A; Croy, Carrie H; Xiao, Hongling; Christopoulos, Arthur; Felder, Christian C

    2014-07-01

    In this study, we characterized a muscarinic acetylcholine receptor (mAChR) potentiator, LY2119620 (3-amino-5-chloro-N-cyclopropyl-4-methyl-6-[2-(4-methylpiperazin-1-yl)-2-oxoethoxy]thieno[2,3-b]pyridine-2-carboxamide) as a novel probe of the human M2 and M4 allosteric binding sites. Since the discovery of allosteric binding sites on G protein-coupled receptors, compounds targeting these novel sites have been starting to emerge. For example, LY2033298 (3-amino-5-chloro-6-methoxy-4-methyl-thieno(2,3-b)pyridine-2-carboxylic acid cyclopropylamid) and a derivative of this chemical scaffold, VU152100 (3-amino-N-(4-methoxybenzyl)-4,6-dim​ethylthieno[2,3-b]pyridine carboxamide), bind to the human M4 mAChR allosteric pocket. In the current study, we characterized LY2119620, a compound similar in structure to LY2033298 and binds to the same allosteric site on the human M4 mAChRs. However, LY2119620 also binds to an allosteric site on the human M2 subtype. [(3)H]NMS ([(3)H]N-methylscopolamine) binding experiments confirm that LY2119620 does not compete for the orthosteric binding pocket at any of the five muscarinic receptor subtypes. Dissociation kinetic studies using [(3)H]NMS further support that LY2119620 binds allosterically to the M2 and M4 mAChRs and was positively cooperative with muscarinic orthosteric agonists. To probe directly the allosteric sites on M2 and M4, we radiolabeled LY2119620. Cooperativity binding of [(3)H]LY2119620 with mAChR orthosteric agonists detects significant changes in Bmax values with little change in Kd, suggesting a G protein-dependent process. Furthermore, [(3)H]LY2119620 was displaced by compounds of similar chemical structure but not by previously described mAChR allosteric compounds such as gallamine or WIN 62,577 (17-β-hydroxy-17-α-ethynyl-δ-4-androstano[3,2-b]pyrimido[1,2-a]benzimidazole). Our results therefore demonstrate the development of a radioligand, [(3)H]LY2119620 to probe specifically the human M2 and M4 muscarinic

  6. Binding sites for. alpha. -bungarotoxin and the noncompetitive inhibitor phencyclidine on a synthetic peptide comprising residues 172-227 of the. alpha. -subunit of the nicotinic acetylcholine receptor

    SciTech Connect

    Donnelly-Roberts, D.L.; Lentz, T.L. )

    1991-07-30

    The binding of the competitive antagonist {alpha}-bungarotoxin ({alpha}-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the {alpha}-subunit of the Torpedo acetylcholine receptor has been characterized. {sup 125}I-{alpha}-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by {alpha}-Btx d-tubocurarine and NaCl. In the presence of 0.02% sodium dodecyl sulfate, {sup 125}I-{alpha}-Btx bound to the 56-residue peptide with a K{sub D} of 3.5 nM, as determined by equilibrium saturation binding studies. Because {alpha}Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, ({sup 3}H)PCP was bound to the 172-227 peptide. ({sup 3}H)PCP binding was inhibited by chlorpromazine, tetracaine, and dibucaine. It is concluded that a high-affinity binding site for PCP is located between residues 205 and 227, which includes the first 18 residues of transmembrane segment M1, and that a low-affinity site is located in the competitive antagonist binding site between residues 173 and 204. These results show that a synthetic peptide comprising residues 172-227 of the {alpha} subunit contains three binding sites, one for {alpha}-Btx and two for PCP. Previous studies on the intact receptor indicate high-affinity PCP binding occurs in the receptor channel.

  7. Reconstitution of high-affinity binding of a beta-scorpion toxin to neurotoxin receptor site 4 on purified sodium channels.

    PubMed

    Thomsen, W; Martin-Eauclaire, M F; Rochat, H; Catterall, W A

    1995-09-01

    Reconstitution of purified sodium channels into phospholipid vesicles restores many aspects of sodium channel function including high-affinity neurotoxin binding and action at neurotoxin receptor sites 1-3 and 5, but neurotoxin binding and action at receptor site 4 has not previously been demonstrated in purified and reconstituted preparations. Toxin IV from the venom of the American scorpion Centruroides suffusus suffusus (Css IV), a beta-scorpion toxin, shifts the voltage dependence of sodium channel activation by binding with high affinity to neurotoxin receptor site 4. Sodium channels were purified from rat brain and reconstituted into phospholipid vesicles composed of phosphatidylcholine and phosphatidylethanolamine (65:35). 125I-Css IV, purified by reversed-phase HPLC, bound rapidly and specifically to reconstituted sodium channels. Dissociation of the bound toxin was biphasic with half-times of 0.22 min-1 and 0.015 min-1. At equilibrium, the toxin bound to two classes of specific high-affinity sites, a variable minor class with KD of approximately 0.1 nM and a major class with a KD of approximately 5 nM. Approximately 0.8 mol 125I-Css IV was bound per mole of reconstituted, right-side-out sodium channels, as assessed from comparison of binding of saxitoxin and Css IV. Binding of Css IV was unaffected by membrane potential or by neurotoxins that bind at sites 1-3 or 5, consistent with the characteristics of binding of beta-scorpion toxins to sodium channels in cells and membrane preparations.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    SciTech Connect

    Gundlach, A.L.; Largent, B.L.; Snyder, S.H.

    1986-06-01

    (+)3H-3-PPP ((+)3H-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine) binds with high affinity to brain membranes with a pharmacological profile consistent with that of sigma receptors. The distribution of (+)3H-3-PPP binding sites in brain and spinal cord of both guinea pig and rat has been determined by in vitro autoradiography with binding densities quantitated by computer-assisted densitometry. (+)3H-3-PPP binding to slide-mounted brain sections is saturable and displays high affinity and a pharmacological specificity very similar to sites labeled in homogenates. (+)3H-3-PPP binding sites are heterogeneously distributed. Highest concentrations of binding sites occur in spinal cord, particularly the ventral horn and dorsal root ganglia; the pons-medulla, associated with the cranial nerve and pontine nuclei and throughout the brain stem reticular formation; the cerebellum, over the Purkinje cell layer; the midbrain, particularly the central gray and red nucleus; and hippocampus, over the pyramidal cell layer. Lowest levels are seen in the basal ganglia and parts of the thalamus, while all other areas, including hypothalamus and cerebral cortex, exhibit moderate grain densities. Quinolinic acid-induced lesions of the hippocampus indicate that (+)3H-3-PPP labels hippocampal pyramidal cells and granule cells in the dentate gyrus. Intrastriatal injection of ibotenic acid dramatically reduces (+)3H-3-PPP binding in this area, while injection of 6-hydroxydopamine produces a relatively slight decrease. The distribution of (+)3H-3-PPP binding sites does not correlate with the receptor distribution of any recognized neurotransmitter or neuropeptide, including dopamine. However, there is a notable similarity between the distribution of (+)3H-3-PPP sites and high-affinity binding sites for psychotomimetic opioids, such as the benzomorphan (+)SKF 10,047.

  9. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of Central Eastern China

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Hu, M.; Yuan, B.; Jimenez, J. L.; Tang, Q.; Peng, J. F.; Hu, W.; Shao, M.; Wang, M.; Zeng, L. M.; Wu, Y. S.; Gong, Z. H.; Huang, X. F.; He, L. Y.

    2013-04-01

    In order to understand the aging and processing of organic aerosols (OA), an intensive field campaign (Campaign of Air Pollution at Typical Coastal Areas In Eastern China, CAPTAIN) was conducted in March-April at a receptor site (Changdao Island) in Central Eastern China. Multiple fast aerosol and gas measurement instruments were used during the campaign, including a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was applied to measure mass concentrations and non-refractory chemical components of submicron particles (PM1nr). The average mass concentration of PM1 (PM1nr + black carbon) was 47 ± 36 μg m-3 during the campaign and showed distinct variation depending on back trajectories and their overlap with source regions. Organic aerosol (OA) is the largest component of PM1 (30%), followed by nitrate (28%), sulfate (19%), ammonium (15%), black carbon (6%), and chloride (3%). Four OA components were resolved by Positive Matrix Factorization (PMF) of the high-resolution spectra, including low-volatility oxygenated organic aerosol (LV-OOA), semi-volatile oxygenated OA (SV-OOA), hydrocarbon-like OA (HOA) and a coal combustion OA (CCOA), reported here for the first time. The mass spectrum of CCOA has high abundance of fragments from polycyclic aromatic hydrocarbons (PAHs) (m/z 128, 152, 178 etc.). The average atomic ratio of oxygen to carbon in OA (O/C) at Changdao is 0.59, which is comparable to other field studies reported at locations downwind of large pollution sources, indicating the oxidized nature of most OA during the campaign. The evolution of OA elemental composition in the Van Krevelen diagram (H/C vs. O/C) shows a slope of -0.63, however, the OA influenced by coal combution exhibits a completely different evolution that appears dominated by physical mixing. The aging of organic aerosols vs. with photochemical age was investigated. It is shown that OA/ΔCO, as well as LV-OOA/ΔCO and SV-OOA/ΔCO, positively correlated with

  10. Insights on organic aerosol aging and the influence of coal combustion at a regional receptor site of central eastern China

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Hu, M.; Yuan, B.; Jimenez, J. L.; Tang, Q.; Peng, J. F.; Hu, W.; Shao, M.; Wang, M.; Zeng, L. M.; Wu, Y. S.; Gong, Z. H.; Huang, X. F.; He, L. Y.

    2013-10-01

    In order to understand the aging and processing of organic aerosols (OA), an intensive field campaign (Campaign of Air Pollution at Typical Coastal Areas IN Eastern China, CAPTAIN) was conducted March-April at a receptor site (a Changdao island) in central eastern China. Multiple fast aerosol and gas measurement instruments were used during the campaign, including a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) that was applied to measure mass concentrations and non-refractory chemical components of submicron particles (PM1nr). The average mass concentration of PM1(PM1nr+black carbon) was 47 ± 36 μg m-3 during the campaign and showed distinct variation, depending on back trajectories and their overlap with source regions. Organic aerosol (OA) is the largest component of PM1 (30%), followed by nitrate (28%), sulfate (19%), ammonium (15%), black carbon (6%), and chloride (3%). Four OA components were resolved by positive matrix factorization (PMF) of the high-resolution spectra, including low-volatility oxygenated organic aerosol (LV-OOA), semi-volatile oxygenated OA (SV-OOA), hydrocarbon-like OA (HOA) and a coal combustion OA (CCOA). The mass spectrum of CCOA had high abundance of fragments from polycyclic aromatic hydrocarbons (PAHs) (m/z 128, 152, 178, etc.). The average atomic ratio of oxygen to carbon in OA (O / C) at Changdao was 0.59, which is comparable to other field studies reported at locations downwind of large pollution sources, indicating the oxidized nature of most OA during the campaign. The evolution of OA elemental composition in the van Krevelen diagram (H / C vs. O / C) showed a slope of -0.63; however, the OA influenced by coal combustion exhibits a completely different evolution that appears dominated by physical mixing. The aging of organic aerosols vs. photochemical age was investigated. It was shown that OA / ΔCO, as well as LV-OOA / ΔCO and SV-OOA / ΔCO, positively correlated with photochemical age. LV

  11. Amino acids outside of the loops that define the agonist binding site are important for ligand binding to insect nicotinic acetylcholine receptors.

    PubMed

    Liu, Zewen; Han, Zhaojun; Liu, Shuhua; Zhang, Yixi; Song, Feng; Yao, Xiangmei; Gu, Jianhua

    2008-07-01

    Nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several kinds of insecticides. Based on the mutagenesis studies of Torpedo californica nAChRs and solved structure of a molluscan, glial-derived soluble ACh-binding protein, a model of the agonist site was constructed with contributing amino acids from three distinct loops (A, B, and C) of the alpha subunits and another three loops (D, E, and F) of the non-alpha subunits. According to this model, most insect nAChR subunits can form the functional heteromeric or homomeric receptors. Actually, insect subunits themselves did not form any functional receptor at various combinations as yet, and only part of them can form the functional receptors with vertebrate non-alpha subunits. These findings suggested that the agonist binding for insect nAChRs was not only contributed by those key amino acids in six loops, but also some unidentified amino acids from other regions. In our previous studies on nAChRs for Nilaparvata lugens, a target-site mutation (Y151S) was found within two alpha subunits (Nlalpha1 and Nlalpha3). In Drosophila S2 cells and Xenopus oocytes, Nlalpha1 can form functional receptors with rat beta2 subunit. However, the same thing was not observed in Nlalpha3. In the present paper, by exchanging the corresponding regions between Nlalpha1 and Nlalpha3 to generate different chimeras, amino acid residues or residue clusters in the regions outside the six loops were found to play essential roles in agonist binding, especially for the amino acid clusters between loop B and C. This result indicated that the residues in the six loops could be necessary, but not enough for the activity of agonist binding.

  12. Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2.

    PubMed

    Leitinger, Birgit

    2003-05-09

    The widely expressed mammalian discoidin domain receptors (DDRs), DDR1 and DDR2, are unique among receptor tyrosine kinases in that they are activated by the extracellular matrix protein collagen. Various collagen types bind to and activate the DDRs, but the molecular details of collagen recognition have not been well defined. In this study, recombinant extracellular domains of DDR1 and DDR2 were produced to explore DDR-collagen binding in detail. In solid phase assays, both DDRs bound collagen I with high affinity. DDR1 recognized collagen I only as a dimeric and not as a monomeric construct, indicating a requirement for receptor dimerization in the DDR1-collagen interaction. The DDRs contain a discoidin homology domain in their extracellular domains, and the isolated discoidin domain of DDR2 bound collagen I with high affinity. Furthermore, the discoidin domain of DDR2, but not of DDR1, was sufficient for transmembrane receptor signaling. To map the collagen binding site within the discoidin domain of DDR2, mutant constructs were created, in which potential surface-exposed loops in DDR2 were exchanged for the corresponding loops of functionally unrelated discoidin domains. Three spatially adjacent surface loops within the DDR2 discoidin domain were found to be critically involved in collagen binding of the isolated DDR2 extracellular domain. In addition, the same loops were required for collagen-dependent receptor activation. It is concluded that the loop region opposite to the polypeptide chain termini of the DDR2 discoidin domain constitutes the collagen recognition site.

  13. Evaluating Ecological Risk to Invertebrate Receptors from PAHs in Sediments at Hazardous Waste Sites (External Review Draft)

    EPA Science Inventory

    In March 2004, ORD's Ecological Risk Assessment Support Center (ERASC) received a request from the Ecological Risk Assessment Forum (ERAF) relating to the evaluation of ecological risk to vertebrate and benthic invertebrate receptors from polycyclic aromatic hydrocarbon compounds...

  14. Sh-I-048A, an in vitro non-selective super-agonist at the benzodiazepine site of GABAA receptors: the approximated activation of receptor subtypes may explain behavioral effects.

    PubMed

    Obradović, Aleksandar Lj; Joksimović, Srđan; Poe, Michael M; Ramerstorfer, Joachim; Varagic, Zdravko; Namjoshi, Ojas; Batinić, Bojan; Radulović, Tamara; Marković, Bojan; Roth, Brian L; Sieghart, Werner; Cook, James M; Savić, Miroslav M

    2014-03-20

    Enormous progress in understanding the role of four populations of benzodiazepine-sensitive GABAA receptors was paralleled by the puzzling findings suggesting that substantial separation of behavioral effects may be accomplished by apparently non-selective modulators. We report on SH-I-048A, a newly synthesized chiral positive modulator of GABAA receptors characterized by exceptional subnanomolar affinity, high efficacy and non-selectivity. Its influence on behavior was assessed in Wistar rats and contrasted to that obtained with 2mg/kg diazepam. SH-I-048A reached micromolar concentrations in brain tissue, while the unbound fraction in brain homogenate was around 1.5%. The approximated electrophysiological responses, which estimated free concentrations of SH-I-048A or diazepam are able to elicit, suggested a similarity between the 10mg/kg dose of the novel ligand and 2mg/kg diazepam; however, SH-I-048A was relatively more active at α1- and α5-containing GABAA receptors. Behaviorally, SH-I-048A induced sedative, muscle relaxant and ataxic effects, reversed mechanical hyperalgesia 24h after injury, while it was devoid of clear anxiolytic actions and did not affect water-maze performance. While lack of clear anxiolytic actions may be connected with an enhanced potentiation at α1-containing GABAA receptors, the observed behavior in the rotarod, water maze and peripheral nerve injury tests was possibly affected by its prominent action at receptors containing the α5 subunit. The current results encourage further innovative approaches aimed at linking in vitro and in vivo data in order to help define fine-tuning mechanisms at four sensitive receptor populations that underlie subtle differences in behavioral profiles of benzodiazepine site ligands.

  15. Dopaminergic activities in the human striatum: rostrocaudal gradients of uptake sites and of D1 and D2 but not of D3 receptor binding or dopamine.

    PubMed

    Piggott, M A; Marshall, E F; Thomas, N; Lloyd, S; Court, J A; Jaros, E; Costa, D; Perry, R H; Perry, E K

    1999-05-01

    The human striatum, which receives dopaminergic innervation from the substantia nigra and ventral tegmental area (cell groups A8, A9 and A10), has structural and functional subdivisions both rostrocaudally and dorsoventrally. These relate to motor and non-motor origins of cortical projections and the specific areas of the substantia nigra and ventral tegmental area providing dopaminergic innervation. In the present study, we have evaluated the distribution of a number of dopaminergic parameters in the caudate, putamen and nucleus accumbens at separate coronal levels in a post mortem study in a series of elderly normal individuals aged 55-94 years, with analysis of the effect of post mortem variables. Dopamine D1 receptor density displayed a rostrocaudally declining gradient in the putamen but not in the caudate, such that at levels posterior to the anterior commissure, there was significantly lower D1 binding in the putamen compared to the caudate. The density of dopamine D2 receptors was similar in the putamen and caudate, increasing rostrocaudally. The density of dopamine uptake sites exhibited an increasing rostrocaudal gradient in the caudate, especially ventrally, but not in the putamen, where binding was more constant. The dopamine D3 receptor was concentrated in the ventral striatum, particularly the nucleus accumbens, although there was no evidence of a rostrocaudal gradient. With respect to striosome-matrix compartmentalization, there was no complete segregation, although D1 and D3 receptors were concentrated in striosomes, whereas D2 receptors and uptake sites showed higher density in the matrix. Levels of dopamine were similar in the caudate and putamen, and were significantly elevated at levels including the nucleus accumbens and the anterior commissure. Homovanillic acid and the metabolic index (homovanillic acid/dopamine ratio) were significantly higher in the putamen compared to the caudate, especially at levels from and caudal to the anterior

  16. Constraining the factor analytical solutions obtained from multiple-year receptor modeling of ambient PM2.5 data from five speciation sites in Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Sofowote, Uwayemi M.; Su, Yushan; Dabek-Zlotorzynska, Ewa; Rastogi, Ankit K.; Brook, Jeff; Hopke, Philip K.

    2015-05-01

    Rotational ambiguity in factor analyses leads to solutions that are not always consistent with reality. The inherent non-negativity constraints in positive matrix factorization (PMF) help to prevent factor solutions from becoming overly unrealistic, but they are not sufficient to prevent unwanted rotations that could manifest in factors that should have similar compositions varying across multiple sites. The Canadian National Air Pollution Surveillance (NAPS) network operates five fine particulate matter (PM2.5) speciation sites in Ontario. Data from these sites from 2005 to 2010 were subjected to PMF to obtain factors representing sources of particulate matter. Eight factors were found to be common across these sites. These factors had profiles that varied greatly from one site to the other, suggesting that the PMF solutions were impacted by some rotational ambiguity. New features in the EPA PMF V5 program allow the use of a priori information to impose mathematical constraints that guide the evolution of the factor solutions. These constraints reduce the rotational space. In situations where major emissions sources are known and located in the neighborhood of receptors, or emissions inventories and literature source profiles exist, it is easy to use these profiles to force the factor solutions to conform to the expected signatures. In our case, reported source profiles were neither available nor applicable due to the large spatial span of potential sources and receptor sites. This work describes how such constraints can be generated and used in these complex situations. The fundamental principle explored in this work is the concept of 'stiffness' of PMF solutions to identify the desirable non-rotating factors.

  17. Development and utilization of a fluorescence-based receptor-binding assay for the site 5 voltage-sensitive sodium channel ligands brevetoxin and ciguatoxin.

    PubMed

    McCall, Jennifer R; Jacocks, Henry M; Niven, Susan C; Poli, Mark A; Baden, Daniel G; Bourdelais, Andrea J

    2014-01-01

    Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

  18. Identification of the fur-binding site in regulatory region of the vulnibactin-receptor gene in Vibrio vulnificus.

    PubMed

    Lee, Hyun-Jung; Lee, Kyu-Ho

    2012-01-01

    The Vibrio vulnificus vuuA gene, of which expression is repressed by a complex of iron and ferric uptake regulator (Fur), was characterized to localize the Fur-binding site in its upstream regulatory region. In silico analysis suggested the presence of two possible Fur-binding sites; one is a classical Fur-box and the other is a previously reported distinct Fur-binding site. Site-directed mutagenesis and DNase I protection assays revealed the binding site for the iron-Fur complex, which includes an extended inverted repeat containing a homologous sequence to the classical Fur-box.

  19. Structure-function relationships of the major neurotoxin from the sea anemone Stichodactyla helianthus with a new sodium channel receptor site

    SciTech Connect

    Pennington, M.W.

    1988-01-01

    We have determined that ShN I, a 48-residue type 2 sea anemone toxin, delays the inactivation of the Na channel in lobster olfactory somas. The receptor for ShN I was identified in vesicle preparations of neuronal tissues from both crustaceans and mammals; however, the K{sub D} values for the former is more than 1,000 fold lower for the later. The binding of ({sup 125}I)-ShN I to this receptor was determined to be unaffected by Anemonia sulcata II, depolarization of the membrane, or veratridine. ShN I was unable to displace ({sup 125}I)-Androctonus austrialis Hector II, whereas unlabeled AaH II and As II displaced the labeled scorpion toxin from rat brain synaptosomes. This is the first characterization of a new Na channel receptor site which specifically binds type 2 anemone toxins. To study the interactions that specific amino acid residues of ShN I have with this receptor, we developed a strategy using solid phase peptide synthesis. Prior to the synthesis of analogs to ShN I, we assembled the native ShN I sequence and reoxidized the three intramolecular disulfide bonds. Chemical, physical, and pharmacological characterization of the purified synthetic ShN I showed it to be indistinguishable from the natural toxin.

  20. Effect of mutations in the cyclic AMP receptor protein-binding site on araBAD and araC expression.

    PubMed

    Stoltzfus, L; Wilcox, G

    1989-02-01

    Maximum expression of the adjacent but divergently transcribed araBAD operon and araC gene requires the presence of cyclic AMP (cAMP) and the cAMP receptor protein (CRP). DNase I protection studies have previously revealed a high-affinity CRP-binding site in the ara regulatory region. Deletion mutations introduced into this site resulted in reduced expression of araBAD and araC. However, other experiments have demonstrated that spacing changes in the ara regulatory region may have multiple effects due to disruption of a DNA loop. Thus, the deletions could have destroyed the CRP-binding site, the ability to form a loop, or both. In the present study, substitution mutations were introduced into the CRP site in order to avoid creating spacing changes. We found that a 3-base-pair substitution resulted in a 30% reduction in araBAD expression, whereas a 6-base-pair substitution resulted in an 80% reduction. Both of these substitution mutations reduced araC expression threefold. We conclude that CRP bound to this site regulates expression in both directions. We found that a spacing change in the CRP site does not alter araBAD expression any more than does a substitution mutation.

  1. Cleavage of the NR2B subunit amino terminus of N-methyl-D-aspartate (NMDA) receptor by tissue plasminogen activator: identification of the cleavage site and characterization of ifenprodil and glycine affinities on truncated NMDA receptor.

    PubMed

    Ng, Kay-Siong; Leung, How-Wing; Wong, Peter T-H; Low, Chian-Ming

    2012-07-20

    Thrombolysis using tissue plasminogen activator (tPA) has been the key treatment for patients with acute ischemic stroke for the past decade. Recent studies, however, suggest that this clot-busting protease also plays various roles in brain physiological and pathophysiological glutamatergic-dependent processes, such as synaptic plasticity and neurodegeneration. In addition, increasing evidence implicates tPA as an important neuromodulator of the N-methyl-d-aspartate (NMDA) receptors. Here, we demonstrate that recombinant human tPA cleaves the NR2B subunit of NMDA receptor. Analysis of NR2B in rat brain lysates and cortical neurons treated with tPA revealed concentration- and time-dependent degradation of NR2B proteins. Peptide sequencing studies performed on the cleaved-off products obtained from the tPA treatment on a recombinant fusion protein of the amino-terminal domain of NR2B revealed that tPA-mediated cleavage occurred at arginine 67 (Arg(67)). This cleavage is tPA-specific, plasmin-independent, and removes a predicted ~4-kDa fragment (Arg(27)-Arg(67)) from the amino-terminal domain of the NR2B protein. Site-directed mutagenesis of putative cleavage site Arg(67) to Ala(67) impeded tPA-mediated degradation of recombinant protein. This analysis revealed that NR2B is a novel substrate of tPA and suggested that an Arg(27)-Arg(67)-truncated NR2B-containing NMDA receptor could be formed. Heterologous expression of NR2B with Gln(29)-Arg(67) deleted is functional but exhibits reduced ifenprodil inhibition and increased glycine EC(50) with no change in glutamate EC(50). Our results confirmed NR2B as a novel proteolytic substrate of tPA, where tPA may directly interact with NR2B subunits leading to a change in pharmacological properties of NR2B-containing NMDA receptors.

  2. Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum.

    PubMed

    Tebano, Maria Teresa; Pintor, Annita; Frank, Claudio; Domenici, Maria Rosaria; Martire, Alberto; Pepponi, Rita; Potenza, Rosa Luisa; Grieco, Rosa; Popoli, Patrizia

    2004-07-01

    Adenosine A(2A) receptor antagonists are being regarded as potential neuroprotective drugs, although the mechanisms underlying their effects need to be better studied. The aim of this work was to investigate further the mechanism of the neuroprotective action of A(2A) receptor antagonists in models of pre- and postsynaptic excitotoxicity. In microdialysis studies, the intrastriatal perfusion of the A(2A) receptor antagonist ZM 241385 (5 and 50 nM) significantly reduced, in an inversely dose-dependent way, the raise in glutamate outflow induced by 5 mM quinolinic acid (QA). In rat corticostriatal slices, ZM 241385 (30-100 nM) significantly reduced 4-aminopyridine (4-AP)-induced paired-pulse inhibition (PPI; an index of neurotransmitter release), whereas it worsened the depression of field potential amplitude elicited by N-methyl-D-aspartate (NMDA; 12.5 and 50 microM). The A(2A) antagonist SCH 58261 (30 nM) mimicked the effects of ZM 241385, whereas the A(2A) agonist CGS 21680 (100 nM) showed a protective influence toward 50 microM NMDA. In rat striatal neurons, 50 nM ZM 241385 did not affect the increase in [Ca(2+)](i) or the release of lactate dehydrogenase (LDH) induced by 100 and 300 microM NMDA, respectively. The ability of ZM 241385 to prevent QA-induced glutamate outflow and 4-AP-induced effects confirms that A(2A) receptor antagonists have inhibitory effects on neurotransmitter release, whereas the results obtained toward NMDA-induced effects suggest that A(2A) receptor blockade does not reduce, or even amplifies, excitotoxic mechanisms due to direct NMDA receptor stimulation. This indicates that the neuroprotective potential of A(2A) antagonists may be evident mainly in models of neurodegeneration in which presynaptic mechanisms play a major role.

  3. Differentiating enantioselective actions of GABOB: a possible role for threonine 244 in the binding site of GABA(C) ρ(1) receptors.

    PubMed

    Yamamoto, Izumi; Absalom, Nathan; Carland, Jane E; Doddareddy, Munikumar R; Gavande, Navnath; Johnston, Graham A R; Hanrahan, Jane R; Chebib, Mary

    2012-09-19

    Designing potent and subtype-selective ligands with therapeutic value requires knowledge about how endogenous ligands interact with their binding site. 4-Amino-3-hydroxybutanoic acid (GABOB) is an endogenous ligand found in the central nervous system in mammals. It is a metabolic product of GABA, the major inhibitory neurotransmitter. Homology modeling of the GABA(C) ρ(1) receptor revealed a potential H-bond interaction between the hydroxyl group of GABOB and threonine 244 (T244) located on loop C of the ligand binding site of the ρ(1) subunit. Using site-directed mutagenesis, we examined the effect of mutating T244 on the efficacy and pharmacology of GABOB and various ligands. It was found that mutating T244 to amino acids that lacked a hydroxyl group in their side chains produced GABA insensitive receptors. Only by mutating ρ(1)T244 to serine (ρ(1)T244S) produced a GABA responsive receptor, albeit 39-fold less sensitive to GABA than ρ(1)wild-type. We also observed changes in the activities of the GABA(C) receptor partial agonists, muscimol and imidazole-4-acetic acid (I4AA). At the concentrations we tested, the partial agonists antagonized GABA-induced currents at ρ(1)T244S mutant receptors (Muscimol: ρ(1)wild-type, EC(50) = 1.4 μM; ρ(1)T244S, IC(50) = 32.8 μM. I4AA: ρ(1)wild-type, EC(50) = 8.6 μM; ρ(1)T244S, IC(50) = 21.4 μM). This indicates that T244 is predominantly involved in channel gating. R-(-)-GABOB and S-(+)-GABOB are full agonists at ρ(1)wild-type receptors. In contrast, R-(-)-GABOB was a weak partial agonist at ρ(1)T244S (1 mM activates 26% of the current produced by GABA EC(50) versus ρ(1)wild-type, EC(50) = 19 μM; I(max) 100%), and S-(+)-GABOB was a competitive antagonist at ρ(1)T244S receptors (ρ(1)wild-type, EC(50) = 45 μM versus ρ(1)T244S, IC(50) = 417.4 μM, K(B) = 204 μM). This highlights that the interaction of GABOB with T244 is enantioselective. In contrast, the potencies of a range of antagonists tested, 3-aminopropyl

  4. Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe.

    PubMed

    Laprairie, Robert B; Kulkarni, Abhijit R; Kulkarni, Pushkar M; Hurst, Dow P; Lynch, Diane; Reggio, Patricia H; Janero, David R; Pertwee, Roger G; Stevenson, Lesley A; Kelly, Melanie E M; Denovan-Wright, Eileen M; Thakur, Ganesh A

    2016-06-15

    One of the most abundant G-protein coupled receptors (GPCRs) in brain, the cannabinoid 1 receptor (CB1R), is a tractable therapeutic target for treating diverse psychobehavioral and somatic disorders. Adverse on-target effects associated with small-molecule CB1R orthosteric agonists and inverse agonists/antagonists have plagued their translational potential. Allosteric CB1R modulators offer a potentially safer modality through which CB1R signaling may be directed for therapeutic benefit. Rational design of candidate, druglike CB1R allosteric modulators requires greater understanding of the architecture of the CB1R allosteric endodomain(s) and the capacity of CB1R allosteric ligands to tune the receptor's information output. We have recently reported the synthesis of a focused library of rationally designed, covalent analogues of Org27569 and PSNCBAM-1, two prototypic CB1R negative allosteric modulators (NAMs). Among the novel, pharmacologically active CB1R NAMs reported, the isothiocyanate GAT100 emerged as the lead by virtue of its exceptional potency in the [(35)S]GTPγS and β-arrestin signaling assays and its ability to label CB1R as a covalent allosteric probe with significantly reduced inverse agonism in the [(35)S]GTPγS assay as compared to Org27569. We report here a comprehensive functional profiling of GAT100 across an array of important downstream cell-signaling pathways and analysis of its potential orthosteric probe-dependence and signaling bias. The results demonstrate that GAT100 is a NAM of the orthosteric CB1R agonist CP55,940 and the endocannabinoids 2-arachidonoylglycerol and anandamide for β-arrestin1 recruitment, PLCβ3 and ERK1/2 phosphorylation, cAMP accumulation, and CB1R internalization in HEK293A cells overexpressing CB1R and in Neuro2a and STHdh(Q7/Q7) cells endogenously expressing CB1R. Distinctively, GAT100 was a more potent and efficacious CB1R NAM than Org27569 and PSNCBAM-1 in all signaling assays and did not exhibit the inverse

  5. Temporal variability of Polycyclic Aromatic Hydrocarbons (PAHs) in a receptor site of the Puebla-Tlaxcala Valley

    NASA Astrophysics Data System (ADS)

    Padilla, Z. V.; Torres, R.; Ruiz Suarez, L.; Molina, L. T.

    2013-05-01

    This contribution documents the presence and possible origin of PAHs, their temporal concentration patterns and correlations with other air pollutants in the so-called Puebla-Tlaxcala valley. This valley is located to the east of the Mexico City Metropolitan Area and is a very populated region which suffers of air pollution problems. Emission sources of PAHs include open burning, industrial boilers, automobiles and trucks, but vehicle emissions vary significantly depending on the use of: fuel, engine type and catalytic converter. An important emission source in the Puebla-Tlaxcala region is wood burning for cooking. Therefore, it is expected to have contributions of PAHS from this type of sources. PAHs measurements were performed in an air pollution semi-rural receptor site (Chipilo) southwest the City of Puebla, using an aerosol photoelectric sensor (PAS 2000 CE) to measure the concentration of PAHs and a diffuser charger (DC 2000 CE) to evaluate the active surface (DC) of the particles. The measuring period included March and April of 2012 during the ozne season in central Mexico. The use of these two sensors in parallel has been identified as a fingerprint technique to identify different types of particles from several combustion processes and is a useful tool to identify quantitatively the major source of emissions, as well as to describe thephysical and chemical characteristics of the particles. Correlations between PAHs and DC, with NOx and CO, together with an analysis of atmospheric transport may approximate the possible origin of these particles. The coefficient PAHs / DC associated with backward trajectory analysis represents a tool to identify potential areas of emission. The correlation between PAHs and NOx emissions reflects association with diesel combustion, while the correlation between PAHs and CO, the combustion of gasoline. The results show that vehicle emissions are the major source of PAHs with an associated increase in the concentration of

  6. Structure-Based Mutagenesis of the Substrate-Recognition Domain of Nrdp1/FLRF Identifies the Binding Site for the Receptor Tyrosine Kinase ErbB3

    SciTech Connect

    Bouyain,S.; Leahy, D.

    2007-01-01

    The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.

  7. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3

    PubMed Central

    Bouyain, Samuel; Leahy, Daniel J.

    2007-01-01

    The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 Å crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species. PMID:17384230

  8. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3.

    PubMed

    Bouyain, Samuel; Leahy, Daniel J

    2007-04-01

    The E3 ubiquitin ligase neuregulin receptor degrading protein 1 (Nrdp1) mediates the ligand-independent degradation of the epidermal growth factor receptor family member ErbB3/HER3. By regulating cellular levels of ErbB3, Nrdp1 influences ErbB3-mediated signaling, which is essential for normal vertebrate development. Nrdp1 belongs to the tripartite or RBCC (RING, B-box, coiled-coil) family of ubiquitin ligases in which the RING domain is responsible for ubiquitin ligation and a variable C-terminal region mediates substrate recognition. We report here the 1.95 A crystal structure of the C-terminal domain of Nrdp1 and show that this domain is sufficient to mediate ErbB3 binding. Furthermore, we have used site-directed mutagenesis to map regions of the Nrdp1 surface that are important for interacting with ErbB3 and mediating its degradation in transfected cells. The ErbB3-binding site localizes to a region of Nrdp1 that is conserved from invertebrates to vertebrates, in contrast to ErbB3, which is only found in vertebrates. This observation suggests that Nrdp1 uses a common binding site to recognize its targets in different species.

  9. A surface membrane protein of Entamoeba histolytica functions as a receptor for human chemokine IL-8: its role in the attraction of trophozoites to inflammation sites.

    PubMed

    Diaz-Valencia, J Daniel; Pérez-Yépez, Eloy Andrés; Ayala-Sumuano, Jorge Tonatiuh; Franco, Elizabeth; Meza, Isaura

    2015-12-01

    Entamoeba histolytica trophozoites respond to the presence of IL-8, moving by chemotaxis towards the source of the chemokine. IL-8 binds to the trophozoite membrane and triggers a response that activates signaling pathways that in turn regulate actin/myosin cytoskeleton organisation to initiate migration towards the chemokine, suggesting the presence of a receptor for IL-8 in the parasite. Antibodies directed to the human IL-8 receptor (CXCR1) specifically recognised a 29 kDa protein in trophozoite membrane fractions. The same protein was immunoprecipitated by this antibody from total amebic extracts. Peptide analysis of the immunoprecipitated protein revealed a sequence with high homology to a previously identified amebic outer membrane peroxiredoxin and a motif within the third loop of human CXCR1, which is an important site for IL-8 binding and activation of signaling processes. Immunodetection assays demonstrated that the anti-human CXCR1 antibody binds to the 29 kDa protein in a different but close site to where IL-8 binds to the trophozoite surface membrane, suggesting that human and amebic receptors for this chemokine share common epitopes. In the context of the human intestinal environment, a receptor for IL-8 could be a great advantage for E. histolytica trophozoite survival, as they could reach an inflammatory milieu containing abundant nutrients. In addition, it has been suggested that the high content of accessible thiol groups of the protein and its peroxidase activity could provide protection in the oxygen rich milieu of colonic lesions, allowing trophozoite invasion of other tissues and escape from the host immune response.

  10. A NMDA receptor glycine site partial agonist, GLYX-13, that simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus

    PubMed Central

    Zhang, Xiao-lei; Sullivan, John A.; Moskal, Joseph R.; Stanton, Patric K.

    2008-01-01

    N-methyl-D-aspartate glutamate receptors (NMDAR) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low-frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high-frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist D-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD. PMID:18796308

  11. A NMDA receptor glycine site partial agonist, GLYX-13, simultaneously enhances LTP and reduces LTD at Schaffer collateral-CA1 synapses in hippocampus.

    PubMed

    Zhang, Xiao-lei; Sullivan, John A; Moskal, Joseph R; Stanton, Patric K

    2008-12-01

    N-methyl-D-aspartate glutamate receptors (NMDARs) are a key route for Ca2+ influx into neurons important to both activity-dependent synaptic plasticity and, when uncontrolled, triggering events that cause neuronal degeneration and death. Among regulatory binding sites on the NMDAR complex is a glycine binding site, distinct from the glutamate binding site, which must be co-activated for NMDAR channel opening. We developed a novel glycine site partial agonist, GLYX-13, which is both nootropic and neuroprotective in vivo. Here, we assessed the effects of GLYX-13 on long-term synaptic plasticity and NMDAR transmission at Schaffer collateral-CA1 synapses in hippocampal slices in vitro. GLYX-13 simultaneously enhanced the magnitude of long-term potentiation (LTP) of synaptic transmission, while reducing long-term depression (LTD). GLYX-13 reduced NMDA receptor-mediated synaptic currents in CA1 pyramidal neurons evoked by low frequency Schaffer collateral stimulation, but enhanced NMDAR currents during high frequency bursts of activity, and these actions were occluded by a saturating concentration of the glycine site agonist d-serine. Direct two-photon imaging of Schaffer collateral burst-evoked increases in [Ca2+] in individual dendritic spines revealed that GLYX-13 selectively enhanced burst-induced NMDAR-dependent spine Ca2+ influx. Examining the rate of MK-801 block of synaptic versus extrasynaptic NMDAR-gated channels revealed that GLYX-13 selectively enhanced activation of burst-driven extrasynaptic NMDARs, with an action that was blocked by the NR2B-selective NMDAR antagonist ifenprodil. Our data suggest that GLYX-13 may have unique therapeutic potential as a learning and memory enhancer because of its ability to simultaneously enhance LTP and suppress LTD.

  12. Identification of a Negative Allosteric Site on Human α4β2 and α3β4 Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Pavlovicz, Ryan E.; Henderson, Brandon J.; Bonnell, Andrew B.; Boyd, R. Thomas; McKay, Dennis B.; Li, Chenglong

    2011-01-01

    Acetylcholine-based neurotransmission is regulated by cationic, ligand-gated ion channels called nicotinic acetylcholine receptors (nAChRs). These receptors have been linked to numerous neurological diseases and disorders such as Alzheimer's disease, Parkinson's disease, and nicotine addiction. Recently, a class of compounds has been discovered that antagonize nAChR function in an allosteric fashion. Models of human α4β2 and α3β4 nicotinic acetylcholine receptor (nAChR) extracellular domains have been developed to computationally explore the binding of these compounds, including the dynamics and free energy changes associated with ligand binding. Through a blind docking study to multiple receptor conformations, the models were used to determine a putative binding mode for the negative allosteric modulators. This mode, in close proximity to the agonist binding site, is presented in addition to a hypothetical mode of antagonism that involves obstruction of C loop closure. Molecular dynamics simulations and MM-PBSA free energy of binding calculations were used as computational validation of the predicted binding mode, while functional assays on wild-type and mutated receptors provided experimental support. Based on the proposed binding mode, two residues on the β2 subunit were independently mutated to the corresponding residues found on the β4 subunit. The T58K mutation resulted in an eight-fold decrease in the potency of KAB-18, a compound that exhibits preferential antagonism for human α4β2 over α3β4 nAChRs, while the F118L mutation resulted in a loss of inhibitory activity for KAB-18 at concentrations up to 100 µM. These results demonstrate the selectivity of KAB-18 for human α4β2 nAChRs and validate the methods used for identifying the nAChR modulator binding site. Exploitation of this site may lead to the development of more potent and subtype-selective nAChR antagonists which may be used in the treatment of a number of neurological diseases and

  13. CsTNF1, a teleost tumor necrosis factor that promotes antibacterial and antiviral immune defense in a manner that depends on the conserved receptor binding site.

    PubMed

    Li, Mo-fei; Zhang, Jian

    2016-02-01

    Tumor necrosis factor (TNF) is one of the most important cytokines involved in inflammation, apoptosis, cell proliferation, and stimulation of the immune system. The TNF gene has been cloned in teleost fish; however, the in vivo function of fish TNF is essentially unknown. In this study, we report the identification of a TNF homologue, CsTNF1, from tongue sole (Cynoglossus semilaevis) and analysis of its expression and biological effect. CsTNF1 is composed of 242 amino acid residues and possesses a TNF domain and conserved receptor binding sites. Expression of CsTNF1 was detected in a wide range of tissues and up-regulated in a time-dependent manner by experimental challenge with bacterial and viral pathogens. Bacterial infection of peripheral blood leukocytes (PBL) caused extracellular secretion of CsTNF1. Purified recombinant CsTNF1 (rCsTNF1) was able to bind to PBL and stimulate the respiratory burst activity of PBL. In contrast, rCsTNF1M1 and rCsTNF1M2, the mutant CsTNF1 bearing substitutions at the receptor binding site, failed to activate PBL. Fish administered with rCsTNF1, but not with rCsTNF1M1 and rCsTNF1M2, exhibited enhanced expression of IL-1, IL-6, IL-8, IL-27, TLR9 and G3BP in a time-dependent manner and augmented resistance against bacterial and viral infection. These results provide the first evidence that the receptor binding sites are essential to a fish TNF, and that CsTNF1 is involved in the innate immune defense of fish against microbial pathogens.

  14. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site.

    PubMed Central

    Nicholson, C. D.; Jackman, S. A.; Wilke, R.

    1989-01-01

    1. Denbufylline has been examined for its ability to inhibit cyclic nucleotide phosphodiesterase isoenzymes from rat cardiac ventricle and cerebrum, as well as for its affinity for adenosine A1 and A2 receptors and the re-uptake site. For comparison, SK&F 94120, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX) were examined as phosphodiesterase inhibitors whilst N6-cyclohexyladenosine, R(-)-N6-(2-phenylisopropyl)-adenosine, 5'-N-ethylcarboxamido-adenosine, 2-nitrobenzylthioinosine, theophylline and IBMX were examined for their affinity for adenosine binding sites. 2. This investigation confirmed the presence of four phosphodiesterase activities in rat cardiac ventricle; in rat cerebrum only three were present. 3. Denbufylline selective inhibited one form of Ca2+-independent, low Km cyclic AMP phosphodiesterase. The form inhibited was one of two present in cardiac ventricle and the sole one in cerebrum. This form was not inhibited by cyclic GMP. The inotropic agent SK&F 94120 selectively inhibited the form of cyclic AMP phosphodiesterase which was inhibited by cyclic GMP present in cardiac ventricle. Theophylline and IBMX were relatively non-selective phosphodiesterase inhibitors. 4. Denbufylline was a less potent inhibitor of ligand binding to adenosine receptors than of cyclic AMP phosphodiesterase. This contrasted with theophylline, which had a higher affinity for adenosine receptors, and IBMX which showed no marked selectivity. Denbufylline, theophylline and IBMX all had a low affinity for the adenosine re-uptake site. 5. Denbufylline is being developed as an agent for the therapy of multi-infarct dementia. The selective inhibition of a particular low Km cyclic AMP phosphodiesterase may account for the activity of this compound. PMID:2474352

  15. Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail.

    PubMed

    Hayashi, M K; Haga, T

    1997-04-15

    A putative palmitoylation site, Cys457, of muscarinic acetylcholine receptor m2 subtype (m2 receptor) was eliminated by conversion to alanine or stop codon by site-directed mutagenesis. The mutant m2 receptor C457A was not metabolically labeled with [3H] palmitic acid when expressed in Sf9 cells, whereas the wild-type m2 receptor was labeled under the same conditions. These results confirm that the Cys457 is the palmitoylation site. The rate of palmitoylation was markedly accelerated by addition of agonist, indicating that the palmitoylation reaction is affected by conformational changes of the receptor induced by agonist binding. The m2 receptor mutants without palmitoylation were purified and reconstituted with G proteins into phospholipid vesicles. Both mutants were good substrates of G protein-coupled receptor kinase 2 and the phosphorylation was stimulated by agonist and G protein beta gamma subunits, as was the case for wild-type receptors. The mutant receptors interacted with and activate Gi2 and G(o). However, the rate of [35S] GTP gamma S binding to Gi2 was half as much for the mutants as that for the wild type, and the proportion of guanine nucleotide-sensitive high-affinity agonist binding sites was significantly less for mutants (42-42%) compared to wild type (62%). These results indicate that the palmitoylation of m2 receptors is not an absolute requirement for their interaction with G proteins but enhances the ability of the receptors to interact with G proteins.

  16. Coupling between agonist and chloride ionophore sites of the GABA(A) receptor: agonist/antagonist efficacy of 4-PIOL.

    PubMed

    Rabe, H; Picard, R; Uusi-Oukari, M; Hevers, W; Lüddens, H; Korpi, E R

    2000-12-15

    Eight gamma-aminobutyric acid (GABA) mimetics were tested on their ability to differentiate native GABA(A) receptor subtypes present in various rat brain regions. In rat brain cryostat sections, little regional variations by the agonistic actions of muscimol, thiomuscimol, 4,5,6,7-tetrahydroisoazolo(5,4-c)pyridin-3-ol, piperidine-4-sulphonic acid, taurine and beta-alanine on [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding to GABA(A) receptor channels were found. They were very similar to those found for GABA itself and indicated no direct correlation with single subunit distributions for any of these compounds. Only the low-efficacy GABA mimetic 5-(4-piperidyl)isoxazol-3-ol (4-PIOL) acted like a weak partial agonist or antagonist depending on the brain area. As the cerebellar granule cell layer was relatively insensitive to both modes of action, we tested 4-PIOL in recombinant alpha1beta2gamma2 (widespread major subtype) and alpha6beta2gamma2 (cerebellar granule cell restricted) receptors where it had different effects on GABA-modulated [35S]TBPS binding and on electrophysiological responses. 4-PIOL may thus serve as a potential lead for receptor subtype selective compounds.

  17. Inducible Prophage Mutant of Escherichia coli Can Lyse New Host and the Key Sites of Receptor Recognition Identification

    PubMed Central

    Chen, Mianmian; Zhang, Lei; Xin, Sipei; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2017-01-01

    The use of bacteriophages as therapeutic agents is hindered by their narrow and specific host range, and by a lack of the knowledge concerning the molecular mechanism of receptor recognition. Two P2-like coliphages, named P88 and pro147, were induced from Escherichia coli strains K88 and DE147, respectively. A comparison of the genomes of these two and other P2-like coliphages obtained from GenBank showed that the tail fiber protein genes, which are the key genes for receptor recognition in other myoviridae phages, showed more diversity than the conserved lysin, replicase, and terminase genes. Firstly, replacing hypervariable region 2 (HR2: amino acids 716–746) of the tail fiber protein of P88 with that of pro147 changed the host range of P88. Then, replacing six amino acids in HR2 with the corresponding residues from pro147 altered the host range only in these mutants with changes at position 730 (leucine) and 744 (glutamic acid). Thus, we predicted that these amino acids are vital to establish the host range of P88. This study provided a vector of lysogenic bacteria that could be used to change or expand the phage host range of P88. These results illustrated that, in P2-like phage P88, the tail fiber protein determined the receptor recognition. Amino acids 716–746 and the amino acids at positions 730 and 744 were important for receptor recognition. PMID:28203234

  18. Mechanism and site of inhibition of AMPA receptors: substitution of one and two methyl groups at the 4-aminophenyl ring of 2,3-benzodiazepine and implications in the "E" site.

    PubMed

    Wang, Congzhou; Wu, Andrew; Shen, Yu-Chuan; Ettari, Roberta; Grasso, Silvana; Niu, Li

    2015-08-19

    2,3-Benzodiazepines are a well-known group of compounds for their potential antagonism against AMPA receptors. It has been previously reported that the inhibitory effect of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety can be enhanced by simply adding a chlorine atom at position 3 of the 4-aminophenyl ring. Here we report that adding a methyl group at position 3 on the 4-aminophenyl ring, termed as BDZ-11-7, can similarly enhance the inhibitory activity, as compared with the unsubstituted one or BDZ-11-2. Our kinetic studies have shown that BDZ-11-7 is a noncompetitive antagonist of GluA2Q homomeric receptors and prefers to inhibit the closed-channel state. However, adding another methyl group at position 5 on the 4-aminophenyl ring, termed as BDZ-11-6, fails to yield extra inhibition on GluA2Q receptors. Instead, BDZ-11-6 exhibits a diminished inhibition of GluA2Q. Site interaction test indicates the two compounds, BDZ-11-6 and BDZ-11-7, bind to the same site on GluA2Q, which is also the binding site for their prototype, BDZ-11-2. Based on the results from this and our earlier studies, we propose that the binding site that accommodates the 4-aminophenyl ring must contain two interactive points, with one preferring polar groups like chlorine and the other preferring nonpolar groups such as a methyl group. Either adding a chlorine or a methyl group may enhance the inhibitory activity of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety. Adding any two of the same group on positions 3 and 5 of the 4-aminophenyl ring, however, significantly reduces the interaction between these 2,3-benzodiazepines and their binding site, because one group is always repelled by one interactive point. We predict therefore that adding a chlorine atom at position 3 and a methyl group at position 5 of the 4-aminophenyl ring of 2,3-benzodiazepine derivatives with a 7,8-ethylenedioxy moiety may produce a new compound that is more potent.

  19. Q/R site editing in kainate receptor GluR5 and GluR6 pre-mRNAs requires distant intronic sequences.

    PubMed Central

    Herb, A; Higuchi, M; Sprengel, R; Seeburg, P H

    1996-01-01

    RNA editing by adenosine deamination in brain-expressed pre-mRNAs for glutamate receptor (GluR) subunits alters gene-specified codons for functionally critical positions, such as the channel's Q/R site. We show by transcript analysis of minigenes transiently expressed in PC-12 cells that, in contrast to GluR-B pre-mRNA, where the two editing sites (Q/R and R/G) require base pairing with nearby intronic editing site complementary sequences (ECSs), editing in GluR5 and GluR6 pre-mRNAs recruits an ECS located as far as 1900 nucleotides distal to the Q/R site. The exon-intron duplex structure of the GluR5 and GluR6 pre-mRNAs appears to be a substrate of double-stranded RNA-specific adenosine deaminase. This enzyme when coexpressed in HEK 293 cells preferentially targets the adenosine of the Q/R site and of an unpaired position in the ECS which is highly edited in brain. Images Fig. 2 PMID:8700852

  20. Analysis of multiple nuclear receptor binding sites for CAR/RXR in the phenobarbital responsive unit of CYP2B2.

    PubMed

    Zhang, Quanyuan; Bae, Yangjin; Kemper, Jongsook Kim; Kemper, Byron

    2006-07-15

    The phenobarbital (PB) responsive enhancers in CYP2B genes contain a core of two direct repeat-4 nuclear receptor binding sites, NR-1 and NR-2, which flank an NF-1 site and appear to be most important for PB responsiveness. Additional sequences outside the core are required for maximal PB responsiveness, including a third direct repeat-4 site, NR-3. The PB response is mediated by constitutive androstane receptor (CAR) which binds as a CAR/RXR heterodimer to the NR sites. To determine the relative importance of the third NR site, each of the NR sites was mutated individually and in all combinations in the rat PB responsive unit (PBRU). Mutation of NR-3 resulted in similar effects on transactivation of the PBRU by CAR in HepG2 cells as did mutations of NR-1 and NR-2. The recruitment of GRIP1/SRC-2 by CAR/RXR to the PBRU assessed by gel shift assays was cooperatively enhanced if more than one NR site in the PBRU was occupied by CAR/RXR. NR-3 in combination with NR-1 or NR-2 was equal to NR-1 and NR-2 in mediating this cooperative recruitment. Recruitment of SRC-1 and GRIP1/SRC-2 was similar for all NR sites, while some selectivity of NR-1 for SRC-3 was observed. SRC-3 also exhibited CAR-independent activation of the PBRU in HepG2 cells. Micrococcal nuclease mapping of nucleosomes revealed that the NR-1/NR-2 core of the PBRU is present in a nucleosome while NR-3 is present in the linker adjacent to the nucleosome. In the linear sequence NR-3 is further from NR-1 than NR-2 is, but in a nucleosomal structure, NR-3 is well positioned for cooperative recruitment of GRIP1/SRC-2 by CAR/RXR that is bound to NR-3 and either NR-1 or NR-2, while NR-1 and NR-2 are on opposite sides of the nucleosome separated by the histone core. These results demonstrate that NR-3 is functionally similar to NR-1 and NR-2 in CAR transactivation of the PBRU in vitro and suggest that NR-3 may have a greater role in a chromatin context in vivo than is apparent from transient transfection studies.

  1. Allosteric modulation of [3H]-CGP39653 binding through the glycine site of the NMDA receptor: further studies in rat and human brain

    PubMed Central

    Mugnaini, Manolo; Meoni, Paolo; Bunnemann, Bernd; Corsi, Mauro; Bowery, Norman G

    2001-01-01

    Binding of D,L-(E)-2-amino-4-[3H]-propyl-5-phosphono-3-pentenoic acid ([3H]-CGP39653), a selective antagonist at the glutamate site of the NMDA receptor, is modulated by glycine in rat brain tissue. We have further investigated this phenomenon in rodent and human brain by means of receptor binding and quantitative autoradiography techniques.In rat cerebral cortical membranes the glycine antagonist 3-[2-(Phenylaminocarbonyl)ethenyl]-4,6-dichloro-indole-2-carboxylic acid sodium salt (GV150526A) did not change basal [3H]-CGP39653 binding, but competitively reversed the high affinity component of [3H]-CGP39653 binding inhibition by glycine, with a pKB value of 8.38, in line with its affinity for the glycine site (pKi=8.49 vs [3H]-glycine). Glycine (10 μM) significantly decreased [3H]-CGP39653 affinity for the NMDA receptor (with no change in the Bmax), whereas enhanced L-glutamate affinity (P<0.05, paired-samples Student's t-test).In rat brain sections the addition of GV150526A (30 μM) to the incubation medium increased [3H]-CGP39653 binding to 208% of control (average between areas), indicating the presence of endogenous glycine. The enhancement presented significant regional differences (P<0.05, two-way ANOVA), with striatum higher than cerebral cortex (282 and 187% of control, respectively; P<0.05, Fisher's LSD). On the contrary, there was not any significant variation in affinity values of [3H]-CGP39653, L-glutamate, glycine and GV150526A in striatal and cortical membranes. These results confirmed the existence of regionally distinct NMDA receptors subtypes with different glycine/glutamate allosteric modulation.Whole brain autoradiography revealed an uneven distribution of [3H]-CGP39653 binding sites in human brain. High levels of binding were determined in hippocampus and in cingulate, frontoparietal and insular cortex. Intermediate to low levels of binding were found in diencephalic nuclei and basal ganglia. [3H]-CGP39653 binding was increased to 216% of

  2. Laminar and regional distribution of galanin binding sites in cat and monkey visual cortex determined by in vitro receptor autoradiography

    SciTech Connect

    Rosier, A.M.; Vandesande, F.; Orban, G.A. )

    1991-03-08

    The distribution of galanin (GAL) binding sites in the visual cortex of cat and monkey was determined by autoradiographic visualization of ({sup 125}I)-GAL binding to tissue sections. Binding conditions were optimized and, as a result, the binding was saturable and specific. In cat visual cortex, GAL binding sites were concentrated in layers I, IVc, V, and VI. Areas 17, 18, and 19 exhibited a similar distribution pattern. In monkey primary visual cortex, the highest density of GAL binding sites was observed in layers II/III, lower IVc, and upper V. Layers IVA and VI contained moderate numbers of GAL binding sites, while layer I and the remaining parts of layer IV displayed the lowest density. In monkey secondary visual cortex, GAL binding sites were mainly concentrated in layers V-VI. Layer IV exhibited a moderate density, while the supragranular layers contained the lowest proportion of GAL binding sites. In both cat and monkey, we found little difference between regions subserving central and those subserving peripheral vision. Similarities in the distribution of GAL and acetylcholine binding sites are discussed.

  3. Identification and characterization of two nuclear factor-kappaB sites in the regulatory region of the dopamine D2 receptor.

    PubMed

    Bontempi, Sandra; Fiorentini, Chiara; Busi, Chiara; Guerra, Nicoletta; Spano, PierFranco; Missale, Cristina

    2007-05-01

    Regulation of D2 receptor (D2R) expression is crucial in the function of dopaminergic systems. Because alterations of D2R expression may contribute to the development of different disorders, it is important to elucidate the mechanisms regulating D2R gene transcription. We report the characterization of two putative nuclear factor-kappaB (NF-kappaB) motifs, referred to as D2-kappaB sites, in the human D2R promoter, and demonstrate that they bind NF-kappaB subunits and stimulate D2R promoter activity. D2-kappaB sites show different degrees of conservation and specificity, when compared with canonical kB sites. The D2-kappaB1 site (from -407 to -398) is highly conserved and binds p50/p65 and p50/c-Rel complexes, whereas D2-kappaB2 (from -513 to -504) is more degenerated and only binds p50/p65 heterodimers. Activation of D2-kappaB sites in COS-7 cells expressing a luciferase reporter vector containing the D2R promoter resulted in increased transcriptional activity. Site-directed mutagenesis of each D2-kappaB site differentially modified D2R promoter activity. In particular, mutation of the D2-kappaB1 motif did not affect D2R promoter response to p50/c-Rel complexes, whereas inactivation of the D2-kappaB2 site decreased it. Mutations of either D2-kappaB1 or D2-kappaB2 sites attenuated the D2R promoter transcriptional efficiency induced by p50/p65 complexes. Thus, D2R transcription mediated by p50/c-Rel is supported mainly by the D2-kappaB2 site, whereas both sites are necessary to support the full transcriptional activity mediated by p50/p65 complexes. A correlation was found between NF-kappaB activity and D2R expression in the pituitary and pituitary-derived cells but not in the striatum, suggesting that NF-kappaB regulation of D2R expression could be a pituitary-specific mechanism.

  4. Tolerance to LSD and DOB induced shaking behaviour: differential adaptations of frontocortical 5-HT(2A) and glutamate receptor binding sites.

    PubMed

    Buchborn, Tobias; Schröder, Helmut; Dieterich, Daniela C; Grecksch, Gisela; Höllt, Volker

    2015-03-15

    Serotonergic hallucinogens, such as lysergic acid diethylamide (LSD) and dimethoxy-bromoamphetamine (DOB), provoke stereotype-like shaking behaviour in rodents, which is hypothesised to engage frontocortical glutamate receptor activation secondary to serotonin2A (5-HT2A) related glutamate release. Challenging this hypothesis, we here investigate whether tolerance to LSD and DOB correlates with frontocortical adaptations of 5-HT2A and/or overall-glutamate binding sites. LSD and DOB (0.025 and 0.25 mg/kg, i.p.) induce a ketanserin-sensitive (0.5 mg/kg, i.p., 30-min pretreatment) increase in shaking behaviour (including head twitches and wet dog shakes), which with repeated application (7× in 4 ds) is undermined by tolerance. Tolerance to DOB, as indexed by DOB-sensitive [(3)H]spiroperidol and DOB induced [(35)S]GTP-gamma-S binding, is accompanied by a frontocortical decrease in 5-HT2A binding sites and 5-HT2 signalling, respectively; glutamate-sensitive [(3)H]glutamate binding sites, in contrast, remain unchanged. As to LSD, 5-HT2 signalling and 5-HT2A binding, respectively, are not or only marginally affected, yet [(3)H]glutamate binding is significantly decreased. Correlation analysis interrelates tolerance to DOB to the reduced 5-HT2A (r=.80) as well as the unchanged [(3)H]glutamate binding sites (r=.84); tolerance to LSD, as opposed, shares variance with the reduction in [(3)H]glutamate binding sites only (r=.86). Given that DOB and LSD both induce tolerance, one correlating with 5-HT2A, the other with glutamate receptor adaptations, it might be inferred that tolerance can arise at either level. That is, if a hallucinogen (like LSD in our study) fails to induce 5-HT2A (down-)regulation, glutamate receptors (activated postsynaptic to 5-HT2A related glutamate release) might instead adapt and thus prevent further overstimulation of the cortex.

  5. Myosin II-dependent exclusion of CD45 from the site of Fcγ receptor activation during phagocytosis.

    PubMed

    Yamauchi, Shota; Kawauchi, Keiko; Sawada, Yasuhiro

    2012-09-21

    Fcγ receptor (FcγR)-mediated phagocytosis requires myosin II activity. Here we show that myosin II contributes to FcγR activation and subsequent F-actin assembly at the nascent phagocytic cup. Inhibition of myosin II attenuates phosphorylation of the immunoreceptor tyrosine-based activation motif (ITAM) of FcγR and binding of Syk to the ITAM. Furthermore, FcγR clusters independently of myosin II activity at the phagocytic cup, from which the receptor-like protein tyrosine phosphatase CD45 is excluded depending on myosin II activity. These findings suggest that myosin II-dependent segregation of CD45 from FcγR facilitates phosphorylation of the ITAM and triggers phagocytosis.

  6. Identification of Canonical Tyrosine-dependent and Non-canonical Tyrosine-independent STAT3 Activation Sites in the Intracellular Domain of the Interleukin 23 Receptor*

    PubMed Central

    Floss, Doreen M.; Mrotzek, Simone; Klöcker, Tobias; Schröder, Jutta; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2013-01-01

    Signaling of interleukin 23 (IL-23) via the IL-23 receptor (IL-23R) and the shared IL-12 receptor β1 (IL-12Rβ1) controls innate and adaptive immune responses and is involved in the differentiation and expansion of IL-17-producing CD4+ T helper (TH17) cells. Activation of signal transducer and activator of transcription 3 (STAT3) appears to be the major signaling pathway of IL-23, and STAT binding sites were predicted in the IL-23R but not in the IL-12Rβ1 chain. Using site-directed mutagenesis and deletion variants of the murine and human IL-23R, we showed that the predicted STAT binding sites (pYXXQ; including Tyr-504 and Tyr-626 in murine IL-23R and Tyr-484 and Tyr-611 in human IL-23R) mediated STAT3 activation. Furthermore, we identified two uncommon STAT3 binding/activation sites within the murine IL-23R. First, the murine IL-23R carried the Y542PNFQ sequence, which acts as an unusual Src homology 2 (SH2) domain-binding protein activation site of STAT3. Second, we identified a non-canonical, phosphotyrosine-independent STAT3 activation motif within the IL-23R. A third predicted site, Tyr-416 in murine and Tyr-397 in human IL-23R, is involved in the activation of PI3K/Akt and the MAPK pathway leading to STAT3-independent proliferation of Ba/F3 cells upon stimulation with IL-23. In contrast to IL-6-induced short term STAT3 phosphorylation, cellular activation by IL-23 resulted in a slower but long term STAT3 phosphorylation, indicating that the IL-23R might not be a major target of negative feedback inhibition by suppressor of cytokine signaling (SOCS) proteins. In summary, we characterized IL-23-dependent signal transduction with a focus on STAT3 phosphorylation and identified canonical tyrosine-dependent and non-canonical tyrosine-independent STAT3 activation sites in the IL-23R. PMID:23673666

  7. Isopropylamino and isobutylamino groups as recognition sites for carbohydrates: acyclic receptors with enhanced binding affinity toward β-galactosides.

    PubMed

    Mazik, Monika; Sonnenberg, Claudia

    2010-10-01

    Binding motifs observed in the crystal structures of protein-carbohydrate complexes, in particular the participation of the isopropyl/isobutyl side chain of valine/leucine in the formation of van der Waals contacts, have inspired the design of new artificial carbohydrate receptors. The new compounds, containing a trisubstituted triethylbenzene core, were expected to recognize sugar molecules through a combination of NH···O and OH···N hydrogen bonds, CH···π interactions, and numerous van der Waals contacts. (1)H NMR spectroscopic titrations in competitive and noncompetitive media, as well as binding studies in two-phase systems, such as dissolution of solid carbohydrates in apolar media and phase transfer of sugars from aqueous into organic solvents, revealed effective recognition of neutral carbohydrates and β- vs α-anomer binding preferences in the recognition of glycosides as well as significantly increased binding affinity of the receptors toward β-galactoside in comparison with the previously described receptors.

  8. Synergistic and compensatory effects of two point mutations conferring target-site resistance to fipronil in the insect GABA receptor RDL

    PubMed Central

    Zhang, Yixi; Meng, Xiangkun; Yang, Yuanxue; Li, Hong; Wang, Xin; Yang, Baojun; Zhang, Jianhua; Li, Chunrui; Millar, Neil S.; Liu, Zewen

    2016-01-01

    Insecticide resistance can arise from a variety of mechanisms, including changes to the target site, but is often associated with substantial fitness costs to insects. Here we describe two resistance-associated target-site mutations that have synergistic and compensatory effects that combine to produce high and persistent levels of resistance to fipronil, an insecticide targeting on γ-aminobytyric acid (GABA) receptors. In Nilaparvata lugens, a major pest of rice crops in many parts of Asia, we have identified a single point mutation (A302S) in the GABA receptor RDL that has been identified previously in other species and which confers low levels of resistance to fipronil (23-fold) in N. lugans. In addition, we have identified a second resistance-associated RDL mutation (R300Q) that, in combination with A302S, is associated with much higher levels of resistance (237-fold). The R300Q mutation has not been detected in the absence of A302S in either laboratory-selected or field populations, presumably due to the high fitness cost associated with this mutation. Significantly, it appears that the A302S mutation is able to compensate for deleterious effects of R300Q mutation on fitness cost. These findings identify a novel resistance mechanism and may have important implications for the spread of insecticide resistance. PMID:27557781

  9. Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor.

    PubMed

    Kim, J K; Tsen, M F; Ghetie, V; Ward, E S

    1994-10-01

    Site-directed mutagenesis of a recombinant Fc hinge fragment has recently been used to localize the site of the murine IgG1 molecule that is involved in the control of catabolism (the "catabolic site"). In the current study, the effects of these CH2 and CH3 domain mutations (Ile 253 to Ala 253, His 310 to Ala 310, Gln 311 to Asn 311, His 433 to Ala 433 and Asn 434 to Gln 434) on intestinal transfer of Fc hinge fragments in neonatal mice have been analyzed. Studies using direct transfer and competition assays demonstrate that the mutations affect the transmission from intestinal lumen into serum in a way that correlates closely with the effects of the mutations on pharmacokinetics. Binding studies of several of the Fc hinge fragments to isolated neonatal brush borders have been used to confirm the in vivo transmission data. These analyses have resulted in the localization of the binding site for the intestinal transfer receptor, FcRn, to specific residues of the murine Fc hinge fragment. These residues are located at the CH2-CH3 domain interface and overlap with both the catabolic site and staphylococcal protein A (SpA) binding site. The pH dependence of IgG1 or Fc fragment binding to FcRn is consistent with the localization of the FcRn interaction site to a region of the Fc that encompasses two histidine residues (His 310 and His 433). To assess whether one or two FcRn binding sites per Fc hinge are required for intestinal transfer, a hybrid Fc hinge fragment comprising a heterodimer of one Fc hinge with the wild-type IgG1 sequence and a mutant Fc hinge with a defective catabolic site (mutated at His 310, Gln 311, His 433 and Asn 434) has been analyzed in direct and competition transmission assays. The studies demonstrate that the Fc hybrid is transferred with significantly reduced efficiency compared to the wild type Fc hinge homodimer and indicate that the binding to FcRn, and possibly subsequent transfer, is enhanced by the presence of two FcRn binding sites per

  10. Orphan Nuclear Receptor NR4A1 Binds a Novel Protein Interaction Site on Anti-apoptotic B Cell Lymphoma Gene 2 Family Proteins.

    PubMed

    Godoi, Paulo H C; Wilkie-Grantham, Rachel P; Hishiki, Asami; Sano, Renata; Matsuzawa, Yasuko; Yanagi, Hiroko; Munte, Claudia E; Chen, Ya; Yao, Yong; Marassi, Francesca M; Kalbitzer, Hans R; Matsuzawa, Shu-Ichi; Reed, John C

    2016-07-01

    B cell lymphoma gene 2 (Bcl-2) family proteins are key regulators of programmed cell death and important targets for drug discovery. Pro-apoptotic and anti-apoptotic Bcl-2 family proteins reciprocally modulate their activities in large part through protein interactions involving a motif known as BH3 (Bcl-2 homology 3). Nur77 is an orphan member of the nuclear receptor family that lacks a BH3 domain but nevertheless binds certain anti-apoptotic Bcl-2 family proteins (Bcl-2, Bfl-1, and Bcl-B), modulating their effects on apoptosis and autophagy. We used a combination of NMR spectroscopy-based methods, mutagenesis, and functional studies to define the interaction site of a Nur77 peptide on anti-apoptotic Bcl-2 family proteins and reveal a novel interaction surface. Nur77 binds adjacent to the BH3 peptide-binding crevice, suggesting the possibility of cross-talk between these discrete binding sites. Mutagenesis of residues lining the identified interaction site on Bcl-B negated the interaction with Nur77 protein in cells and prevented Nur77-mediated modulation of apoptosis and autophagy. The findings establish a new protein interaction site with the potential to modulate the apoptosis and autophagy mechanisms governed by Bcl-2 family proteins.

  11. Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites.

    PubMed

    Kim, Yeon-Jin; Bahn, Minjin; Kim, Yong Hwan; Shin, Jee-Yoon; Cheong, Seon-Woo; Ju, Bong-Gun; Kim, Won-Sun; Yeo, Chang-Yeol

    2015-01-01

    Members of the fibroblast growth factor (FGF) family play important roles during various developmental processes including eye development. FRS (FGF receptor substrate) proteins bind to FGFR and serve as adapters for coordinated assembly of multi-protein complexes involved in Ras/MAPK and PI3 kinase/Akt pathways. Here, we identified Xenopus laevis Frs3 (XFrs3), a homolog of vertebrate Frs3, and investigated its roles during embryogenesis. XFrs3 is expressed maternally and zygotically with specific expression patterns throughout the early development. Knockdown of XFrs3 using a specific antisense morpholino oligonucleotide (MO) caused reduction of Pax6 expression in the lens placode, and defects in the eye ranging from microphthalmia to anophthalmia. XFrs3 MO-induced defects were alleviated by wild type XFrs3 or a mutant XFrs3 (XFrs3-4YF), in which the putative tyrosine phosphorylation sites served as Grb2-binding sites are mutated. However, another XFrs3 mutant (XFrs3-2YF), in which the putative Shp2-binding sites are mutated, could not rescue the defects of XFrs3 morphants. In addition, we found that XFrs3 is important for FGF or IGF-induced ERK activation in ectodermal tissue. Taken together, our results suggest that signaling through Shp2-binding sites of XFrs3 is necessary for the eye development in Xenopus laevis.

  12. A functional variant at miR-34a binding site in toll-like receptor 4 gene alters susceptibility to hepatocellular carcinoma in a Chinese Han population.

    PubMed

    Jiang, Zi-Cheng; Tang, Xian-Mei; Zhao, Ying-Ren; Zheng, Lei

    2014-12-01

    Toll-like receptor 4 (TLR4) plays a key role in prompting the innate or immediate response. A growing body of evidence suggests that genetic variants of TLR4 gene were associated with the development of cancers. This study aimed to investigate the relationship of a functional variant (rs1057317) at microRNA-34a (miR-34a) binding site in toll-like receptor 4 gene and the risk of hepatocellular carcinoma. A single center-based case-control study was conducted. In this study, the polymerase chain reaction (PCR) and direct sequencing were used to genotype sequence variants of TLR4 in 426 hepatocellular carcinoma cases and 438 controls. The modification of rs1057317 on the binding of hsa-miR-34a to TLR4 messenger RNA (mRNA) was measured by luciferase activity assay. Individuals carrying the AA genotypes for the rs1057317 were associated significantly with increased risk of hepatocellular carcinoma comparing with those carrying wild-type homozygous CC genotypes (adjusted odds ratio [OR] by sex and age, from 1.116 to 2.452, P = 0.013). The activity of the reporter vector was lower in the reporter vector carrying C allele than the reporter vector carrying A allele. Furthermore, the expression of TLR4 was detected in the peripheral blood mononucleated cell of hepatocellular carcinoma (HCC) patients, suggesting that mRNA and protein levels of TLR4 might be associated with SNP rs1057317. Collectively, these results suggested that the risk of hepatocellular carcinoma was associated with a functional variant at miR-34a binding site in toll-like receptor 4 gene. miR-34a/TLR4 axis may play an important role in the development of hepatocellular carcinoma.

  13. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    PubMed

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  14. Pigment epithelium-derived factor (PEDF) prevents retinal cell death via PEDF Receptor (PEDF-R): identification of a functional ligand binding site.

    PubMed

    Subramanian, Preeti; Locatelli-Hoops, Silvia; Kenealey, Jason; DesJardin, Jacqueline; Notari, Luigi; Becerra, S Patricia

    2013-08-16

    The extracellular pigment epithelium-derived factor (PEDF) displays retina survival activity by interacting with receptor proteins on cell surfaces. We have previously reported that PEDF binds and stimulates PEDF receptor (PEDF-R), a transmembrane phospholipase. However, the PEDF binding site of PEDF-R and its involvement in survival activity have not been identified. The purpose of this work is to identify a biologically relevant ligand-binding site on PEDF-R. PEDF bound the PEDF-R ectodomain L4 (Leu(159)-Met(325)) with affinity similar to the full-length PEDF-R (Met(1)-Leu(504)). Binding assays using synthetic peptides spanning L4 showed that PEDF selectively bound E5b (Ile(193)-Leu(232)) and P1 (Thr(210)-Leu(249)) peptides. Recombinant C-terminal truncated PEDF-R4 (Met(1)-Leu(232)) and internally truncated PEDF-R and PEDF-R4 (ΔHis(203)-Leu(232)) retained phospholipase activity of the full-length PEDF-R. However, PEDF-R polypeptides without the His(203)-Leu(232) region lost the PEDF affinity that stimulated their enzymatic activity. Cell surface labeling showed that PEDF-R is present in the plasma membranes of retina cells. Using siRNA to selectively knock down PEDF-R in retina cells, we demonstrated that PEDF-R is essential for PEDF-mediated cell survival and antiapoptotic activities. Furthermore, preincubation of PEDF with P1 and E5b peptides blocked the PEDF·PEDF-R-mediated retina cell survival activity, implying that peptide binding to PEDF excluded ligand-receptor interactions on the cell surface. Our findings establish that PEDF-R is required for the survival and antiapoptotic effects of PEDF on retina cells and has determinants for PEDF binding within its L4 ectodomain that are critical for enzymatic stimulation.

  15. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    PubMed

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-09

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  16. Identification of a hexapeptide that mimics a conformation-dependent binding site of acetylcholine receptor by use of a phage-epitope library.

    PubMed Central

    Balass, M; Heldman, Y; Cabilly, S; Givol, D; Katchalski-Katzir, E; Fuchs, S

    1993-01-01

    Monoclonal antibody (mAb) 5.5 is directed against the ligand-binding site of the nicotinic acetylcholine receptor. The epitope for this antibody is conformation-dependent, and the antibody does not react with synthetic peptides derived from the receptor sequence. We have identified a ligand peptide that mimics this conformation-dependent epitope from a phage-epitope library composed of filamentous phage displaying random hexapeptides. Among 38 positive phage clones, individually selected from the library, 34 positive clones carried the sequence Asp-Leu-Val-Trp-Leu-Leu (DLVWLL), 1 positive clone had the sequence Asp-Ile-Val-Trp-Leu-Leu (DIVWLL), and 3 positive clones expressed the sequence Leu-Ile-Glu-Trp-Leu-Leu (LIEWLL), none of which are significantly homologous with the nicotinic acetylcholine receptor alpha subunit sequence. All of these phages bind specifically to mAb 5.5. The synthetic peptide DLVWLL inhibits binding of mAb 5.5 to the related peptide-presenting phage and to the nicotinic acetylcholine receptor in a concentration-dependent manner; the IC50 value is of the order of 10(-4) M. Bioactivity of the peptide "mimotope" DLVWLL was demonstrated in vivo in hatched chickens by inhibition of the mAb 5.5 effect by the peptide. The neuromuscular block and myasthenia gravis-like symptoms that are induced in chicken by passive transfer of mAb 5.5 were specifically abolished by DLVWLL. This study shows the potential of a random peptide phage-epitope library for selecting a mimotope for an antibody that recognizes a folded form of the protein, where peptides from the linear amino acid sequence of the protein are not applicable. Images Fig. 5 PMID:7504273

  17. Glycine transport accounts for the differential role of glycine vs. D-serine at NMDA receptor coagonist sites in the salamander retina

    PubMed Central

    Stevens, Eric R.; Gustafson, Eric C.; Miller, Robert F.

    2010-01-01

    In this study, we demonstrate that D-serine interacts with N-methyl-D-aspartate receptor (NMDAR) coagonist sites of retinal ganglion cells of the tiger salamander retina by showing that exogenous D-serine overcomes the competitive antagonism of 7-chlorokynurenic acid for this site. Additionally, we show that exogenous D-serine was more than 30 times as effective at potentiating NMDAR currents compared with glycine. We thus examined the importance of glycine transport through the application of selective antagonists of the GlyT1 (NFPS) and GlyT2 (ALX-5670) transport systems, while simultaneously evaluating the degree of occupancy of the NMDAR coagonist binding sites. Analysis was carried out with electrophysiological recordings from the inner retina, including whole-cell recordings from retinal ganglion cells and extracellular recordings of the proximal negative field potential. Blocking the GlyT2 transport system had no effect on the light-evoked NMDAR currents or on the sensitivity of these currents to exogenous D-serine. In contrast, when the GlyT1 system was blocked, the coagonist sites of NMDARs showed full occupancy. These findings clearly establish the importance of the GlyT1 transporter as an essential component for maintaining the coagonist sites of NMDARs in a non-saturated state. The normal, unsaturated state of the NMDAR coagonist binding sites allows modulation of the NMDAR currents, by release of either D-serine or glycine. These results are discussed in light of contemporary findings which favor D-serine over glycine as the major coagonist of the NMDARs found in ganglion cells of the tiger salamander retina. PMID:20374282

  18. Mutagenic analysis of a receptor contact site on interleukin-2: preparation of an IL-2 analog with increased potency.

    PubMed

    Berndt, W G; Chang, D Z; Smith, K A; Ciardelli, T L

    1994-05-31

    Interleukin-2 (IL-2) is a 133 amino acid alpha-helical protein secreted by activated T-cells. Combinatorial cassette mutagenesis was used to investigate the functional role of a continuous five amino acid region of IL-2 suspected to interact with the intermediate-affinity IL-2 receptor. A limited random library of IL-2 mutants was constructed in which residues 17-21 (Leu-Leu-Leu-Asp-Leu) were simultaneously mutated. The proteins were produced in an Escherichia coli expression system and screened in a biological assay for their ability to mediate the proliferation of a murine IL-2-dependent cell line. From the over 2600 clones examined, only 42 exhibited significant activity, confirming the functional importance of this region. Selected clones were purified and further characterized by biological and receptor binding assays. Viewed in the context of the recently revised 2.5-A crystal structure for IL-2, these results suggest the following conclusions: both Asp20 and Leu21, as shown by their sensitivity to mutation, are the functionally more important residues in this region, but for different reasons. Asp20 is solvent-accessible and likely plays a direct receptor contact role as previous studies have indicated. Leu21, in contrast, is completely buried in the hydrophobic core of the protein. Substitutions at this position, even a conservative Leu-->Val substitution, were found to perturb the precise hydrophobic packing arrangements that are critical for activity, resulting in a significant loss of function. In addition, one of the analogs identified in the screen was found to be 2-3 times more potent than the wild-type protein.

  19. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain.

    PubMed

    Mitrirattanakul, Somsak; Ramakul, Navapoln; Guerrero, Andre V; Matsuka, Yoshizo; Ono, Takeshi; Iwase, Hirotate; Mackie, Ken; Faull, Kym F; Spigelman, Igor

    2006-12-15

    Selective activation of the peripheral cannabinoid receptor 1 (CB1R) has been shown to suppress neuropathic pain symptoms in rodents. However, relatively little is known about changes in CB1R and its endogenous ligands during development or maintenance of neuropathic pain. Using immunohistochemistry, Western blot, real-time reverse transcription polymerase chain reaction, as well as liquid chromatography/mass spectrometry, we studied the changes in CB1Rs and endocannabinoids N-arachidonoylethanolamine/anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in rat lumbar (L4 and L5) dorsal root ganglia (DRG) after neuropathic pain induction (L5 spinal nerve ligation: SNL). Immunohistochemistry revealed that in control rats, CB1R is expressed in the majority (76-83%) of nociceptive neurons as indicated by co-labeling with isolectin B4 (IB4) or antibodies recognizing transient receptor potential vanilloid (TRPV1), calcitonin gene related peptide (CGRP), and the NR2C/2D subunits of the N-methyl-D-aspartate receptor. After L5 SNL, CB1R mRNA and protein increases in the ipsilateral uninjured L4 DRG whereas the percentages of CB1R immunoreactive (CB1R-ir) neurons remain unchanged in L4 and L5 DRG. However, for these CB1R-ir neurons, we observe significant increases in percentage of TRPV1-ir cells in ipsilateral L4 DRG, and decreases in percentage of IB4- and CGRP-co-labeled cells in ipsilateral L5 DRG. Levels of both AEA and 2-AG increase significantly only in the ipsilateral L5 DRG. These results are consistent with the preserved analgesic effects of cannabinoids in neuropathic pain and provide a rational framework for the development of peripherally acting endocannabinoid-based therapeutic interventions for neuropathic pain.

  20. Molecular pharmacology of the calcium channel: evidence for subtypes, multiple drug-receptor sites, channel subunits, and the development of a radioiodinated 1,4-dihydropyridine calcium channel label, (/sup 125/I)iodipine

    SciTech Connect

    Glossmann, H.; Ferry, D.R.; Goll, A.; Rombusch, M.

    1984-01-01

    Radiolabeled Ca2+ antagonists (1,4-dihydropyridines, verapamil, and D-cis-diltiazem) were used to study voltage-operated Ca2+ channels in different excitable tissues. The concept of three subtypes of Ca2+ channels, represented by brain, heart, and skeletal-muscle isoreceptors for 1,4-dihydropyridines, is developed. The three subtypes are characterized by a variety of criteria. Despite the biochemical differences between the subtypes, they have the same Mr in situ by target-size analysis (Mr approximately equal to 180,000, when evaluated by (/sub 3/H)nimodipine). The concept of the metalloprotein nature of the channel and the interaction of channel drugs with the Me2+ binding sites of the ionic pore is demonstrated. Distinct but interacting drug-receptor sites of the Ca2+ channel are found by direct labeling as well as indirectly by drug competition studies. The authors distinguish between the 1,4-dihydropyridine site, the verapamil site, and the D-cis-diltiazem site. Each receptor site can exist in high and low-affinity state; the distribution of receptor sites in these states is regulated by temperature, ions, and drugs. The concept of intrinsic activity of drugs to stabilize the high-affinity state is exemplified for the 1,4-dihydropyridines. A change in the channel architecture is induced by binding of D-cis-diltiazem to its drug receptor site. This is proven by target-size analysis of the channel in situ. Partially purified t-tubule membranes from skeletal muscle are an extremely rich source of Ca2+ channel drug-receptor sites. The stoichiometry was determined in this preparation and found to be four verapamil:two 1,4-dihydropyridine:one D-cis-diltiazem site. A novel Ca2+ channel probe, (/sup 125/I)iodipine (2,200 Ci/mmol), was synthetized, and the properties of this ligand are presented.

  1. Receptor-associated protein (RAP) has two high-affinity binding sites for the low-density lipoprotein receptor-related protein (LRP): consequences for the chaperone functions of RAP.

    PubMed

    Jensen, Jan K; Dolmer, Klavs; Schar, Christine; Gettins, Peter G W

    2009-06-26

    RAP (receptor-associated protein) is a three domain 38 kDa ER (endoplasmic reticulum)-resident protein that is a chaperone for the LRP (low-density lipoprotein receptor-related protein). Whereas RAP is known to compete for binding of all known LRP ligands, neither the location, the number of binding sites on LRP, nor the domains of RAP involved in binding is known with certainty. We have systematically examined the binding of each of the three RAP domains (D1, D2 and D3) to tandem and triple CRs (complement-like repeats) that span the principal ligand-binding region, cluster II, of LRP. We found that D3 binds with low nanomolar affinity to all (CR)2 species examined. Addition of a third CR domain increases the affinity for D3 slightly. A pH change from 7.4 to 5.5 gave only a 6-fold increase in Kd for D3 at 37 degrees C, whereas temperature change from 22 degrees C to 37 degrees C has a similar small effect on affinity, raising questions about the recently proposed D3-destabilization mechanism of RAP release from LRP. Surprisingly, and in contrast to literature suggestions, D1 and D2 also bind to most (CR)2 and (CR)3 constructs with nanomolar affinity. Although this suggested that there might be three high-affinity binding sites in RAP for LRP, studies with intact RAP showed that only two binding sites are available in the intact chaperone. These findings suggest a new model for RAP to function as a folding chaperone and also for the involvement of YWTD domains in RAP release from LRP in the Golgi.

  2. Expression of the alpha-bungarotoxin binding site of the nicotinic acetylcholine receptor by Escherichia coli transformants.

    PubMed Central

    Gershoni, J M

    1987-01-01

    Restriction fragments of DNA derived from a cDNA clone of the alpha subunit of the acetylcholine receptor were subcloned in Escherichia coli by using the trpE fusion vector, pATH2. Transformants expressing the amino acid sequences 166-315 or 166-200 are shown to produce a chimeric protein that bound alpha-bungarotoxin. Moreover, it is shown that sufficient amounts of toxin-binding proteins can be generated by individual colonies of bacteria. This provides a new approach for gene selection via functional expression--i.e., ligand overlays of colony blots. Images PMID:3295881

  3. Identification of a functional NF-kappa B binding site in the murine T cell receptor beta 2 locus

    PubMed Central

    1989-01-01

    We have identified a sequence in the TCR beta 2 locus that is homologous to the kappa B site in the Ig kappa light chain enhancer. This element, TCR beta-B, is located in the vicinity of previously identified T cell-specific DNase1 hypersensitive sites. Transfection analysis shows that a 60-bp fragment encompassing this site is preferentially active in T cells stimulated with phorbol esters or the HTLV-1 tax gene product compared with a B cell line that constitutively expresses NF-kappa B. Our results provide the first evidence for transcriptional regulatory sequences residing within the J beta 2-C beta 2 intron and suggest the possible involvement of these sequences in modulation of TCR beta gene expression upon cellular activation. PMID:2530301

  4. Improved efficacy of soluble human receptor activator of nuclear factor kappa B (RANK) fusion protein by site-directed mutagenesis.

    PubMed

    Son, Young Jun; Han, Jihye; Lee, Jae Yeon; Kim, HaHyung; Chun, Taehoon

    2015-06-01

    Soluble human receptor activator of nuclear factor kappa B fusion immunoglobulin (hRANK-Ig) has been considered as one of the therapeutic agents to treat osteoporosis or diseases associated with bone destruction by blocking the interaction between RANK and the receptor activator of nuclear factor kappa B ligand (RANKL). However, no scientific record showing critical amino acid residues within the structural interface between the human RANKL and RANK complex is yet available. In this study, we produced several mutants of hRANK-Ig by replacement of amino acid residue(s) and tested whether the mutants had increased binding affinity to human RANKL. Based on the results from flow cytometry and surface plasmon resonance analyses, the replacement of E(125) with D(125), or E(125) and C(127) with D(125) and F(127) within loop 3 of cysteine-rich domain 3 of hRANK-Ig increases binding affinity to human RANKL over the wild-type hRANK-Ig. This result may provide the first example of improvement in the efficacy of hRANK-Ig by protein engineering and may give additional information to understand a more defined structural interface between hRANK and RANKL.

  5. Mutations increasing exposure of a receptor binding site epitope in the soluble and oligomeric forms of the caprine arthritis-encephalitis lentivirus envelope glycoprotein

    SciTech Connect

    Hoetzel, Isidro . E-mail: ihotzel@gene.com; Cheevers, William P.

    2005-09-01

    The caprine arthritis-encephalitis (CAEV) and ovine maedi-visna (MVV) viruses are resistant to antibody neutralization, a feature shared with all other lentiviruses. Whether the CAEV gp135 receptor binding site(s) (RBS) in the functional surface envelope glycoprotein (Env) is protected from antibody binding, allowing the virus to resist neutralization, is not known. Two CAEV gp135 regions were identified by extrapolating a gp135 structural model that could affect binding of antibodies to the RBS: the V1 region and a short sequence analogous in position to the human immunodeficiency virus type 1 gp120 loop B postulated to be located between two major domains of CAEV gp135. Mutation of isoleucine-166 to alanine in the putative loop B of gp135 increased the affinity of soluble gp135 for the CAEV receptor(s) and goat monoclonal antibody (Mab) F7-299 which recognizes an epitope overlapping the gp135 RBS. The I166A mutation also stabilized or exposed the F7-299 epitope in anionic detergent buffers, indicating that the I166A mutation induces conformational changes and stabilizes the RBS of soluble gp135 and enhances Mab F7-299 binding. In contrast, the affinity of a V1 deletion mutant of gp135 for the receptor and Mab F7-299 and its structural stability did not differ from that of the wild-type gp135. However, both the I166A mutation and the V1 deletion of gp135 increased cell-to-cell fusion activity and binding of Mab F7-299 to the oligomeric Env. Therefore, the CAEV gp135 RBS is protected from antibody binding by mechanisms both dependent and independent of Env oligomerization which are disrupted by the V1 deletion and the I166A mutation, respectively. In addition, we found a correlation between side-chain {beta}-branching at amino acid position 166 and binding of Mab F7-299 to oligomeric Env and cell-to-cell fusion, suggesting local secondary structure constraints in the region around isoleucine-166 as one determinant of gp135 RBS exposure and antibody binding.

  6. The Startle Disease Mutation E103K Impairs Activation of Human Homomeric α1 Glycine Receptors by Disrupting an Intersubunit Salt Bridge across the Agonist Binding Site*

    PubMed Central

    Safar, Fatemah; Hurdiss, Elliot; Erotocritou, Marios; Greiner, Timo; Irvine, Mark W.; Fang, Guangyu; Jane, David; Yu, Rilei; Dämgen, Marc A.

    2017-01-01

    Glycine receptors (GlyR) belong to the pentameric ligand-gated ion channel (pLGIC) superfamily and mediate fast inhibitory transmission in the vertebrate CNS. Disruption of glycinergic transmission by inherited mutations produces startle disease in man. Many startle mutations are in GlyRs and provide useful clues to the function of the channel domains. E103K is one of few startle mutations found in the extracellular agonist binding site of the channel, in loop A of the principal side of the subunit interface. Homology modeling shows that the side chain of Glu-103 is close to that of Arg-131, in loop E of the complementary side of the binding site, and may form a salt bridge at the back of the binding site, constraining its size. We investigated this hypothesis in recombinant human α1 GlyR by site-directed mutagenesis and functional measurements of agonist efficacy and potency by whole cell patch clamp and single channel recording. Despite its position near the binding site, E103K causes hyperekplexia by impairing the efficacy of glycine, its ability to gate the channel once bound, which is very high in wild type GlyR. Mutating Glu-103 and Arg-131 caused various degrees of loss-of-function in the action of glycine, whereas mutations in Arg-131 enhanced the efficacy of the slightly bigger partial agonist sarcosine (N-methylglycine). The effects of the single charge-swapping mutations of these two residues were largely rescued in the double mutant, supporting the possibility that they interact via a salt bridge that normally constrains the efficacy of larger agonist molecules. PMID:28174298

  7. Purinergic P2Y2 Receptor Control of Tissue Factor Transcription in Human Coronary Artery Endothelial Cells: NEW AP-1 TRANSCRIPTION FACTOR SITE AND NEGATIVE REGULATOR.

    PubMed

    Liu, Yiwei; Zhang, Lingxin; Wang, Chuan; Roy, Shama; Shen, Jianzhong

    2016-01-22

    We recently reported that the P2Y2 receptor (P2Y2R) is the predominant nucleotide receptor expressed in human coronary artery endothelial cells (HCAEC) and that P2Y2R activation by ATP or UTP induces dramatic up-regulation of tissue factor (TF), a key initiator of the coagulation cascade. However, the molecular mechanism of this P2Y2R-TF axis remains unclear. Here, we report the role of a newly identified AP-1 consensus sequence in the TF gene promoter and its original binding components in P2Y2R regulation of TF transcription. Using bioinformatics tools, we found that a novel AP-1 site at -1363 bp of the human TF promoter region is highly conserved across multiple species. Activation of P2Y2R increased TF promoter activity and mRNA expression in HCAEC. Truncation, deletion, and mutation of this distal AP-1 site all significantly suppressed TF promoter activity in response to P2Y2R activation. EMSA and ChIP assays further confirmed that upon P2Y2R activation, c-Jun, ATF-2, and Fra-1, but not the typical c-Fos, bound to the new AP-1 site. In addition, loss-of-function studies using siRNAs confirmed a positive transactivation role of c-Jun and ATF-2 but unexpectedly revealed a strong negative role of Fra-1 in P2Y2R-induced TF up-regulation. Furthermore, we found that P2Y2R activation promoted ERK1/2 phosphorylation through Src, leading to Fra-1 activation, whereas Rho/JNK mediated P2Y2R-induced activation of c-Jun and ATF-2. These findings reveal the molecular basis for P2Y G protein-coupled receptor control of endothelial TF expression and indicate that targeting the P2Y2R-Fra-1-TF pathway may be an attractive new strategy for controlling vascular inflammation and thrombogenicity associated with endothelial dysfunction.

  8. Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone

    SciTech Connect

    Shabanpoor, Fazel; Bathgate, Ross A.D.; Belgi, Alessia; Chan, Linda J.; Nair, Vinojini B.; Wade, John D.; Hossain, Mohammed Akhter

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer A mono-Eu-DTPA conjugated peptide ligand, Eu-DTPA-(A)-H2, has been developed. Black-Right-Pointing-Pointer The choice of a site for incorporation of a chelator is critical. Black-Right-Pointing-Pointer The labeled peptide retains full activity at the RXFP1 receptor. Black-Right-Pointing-Pointer It is markedly cheaper to produce and easier to use than radioactive probes. -- Abstract: Diethylenetriamine pentaacetic acid (DTPA) is a popular chelator agent for enabling the labeling of peptides for their use in structure-activity relationship study and biodistribution analysis. Solid phase peptide synthesis was employed to couple this commercially available chelator at the N-terminus of either the A-chain or B-chain of H2 relaxin. The coupling of the DTPA chelator at the N-terminus of the B-chain and subsequent loading of a lanthanide (europium) ion into the chelator led to a labeled peptide (Eu-DTPA-(B)-H2) in low yield and having very poor water solubility. On the other hand, coupling of the DTPA and loading of Eu at the N-terminus of the A-chain led to a water-soluble peptide (Eu-DTPA-(A)-H2) with a significantly improved final yield. The conjugation of the DTPA chelator at the N-terminus of the A-chain did not have any impact on the secondary structure of the peptide determined by circular dichroism spectroscopy (CD). On the other hand, it was not possible to determine the secondary structure of Eu-DTPA-(B)-H2 because of its insolubility in phosphate buffer. The B-chain labeled peptide Eu-DTPA-(B)-H2 required solubilization in DMSO prior to carrying out binding assays, and showed lower affinity for binding to H2 relaxin receptor, RXFP1, compared to the water-soluble A-chain labeled peptide Eu-DTPA-(A)-H2. The mono-Eu-DTPA labeled A-chain peptide, Eu-DTPA-(A)-H2, thus can be used as a valuable probe to study ligand-receptor interactions of therapeutically important H2 relaxin analogs. Our results show that it is critical to

  9. Distinct phosphorylation sites on the ghrelin receptor, GHSR1a, establish a code that determines the functions of ß-arrestins

    PubMed Central

    Bouzo-Lorenzo, Monica; Santo-Zas, Icía; Lodeiro, Maria; Nogueiras, Rubén; Casanueva, Felipe F.; Castro, Marian; Pazos, Yolanda; Tobin, Andrew B; Butcher, Adrian J.; Camiña, Jesús P.

    2016-01-01

    The growth hormone secretagogue receptor, GHSR1a, mediates the biological activities of ghrelin, which includes the secretion of growth hormone, as well as the stimulation of appetite, food intake and maintenance of energy homeostasis. Mapping phosphorylation sites on GHSR1a and knowledge of how these sites control specific functional consequences unlocks new strategies for the development of therapeutic agents targeting individual functions. Herein, we have identified the phosphorylation of different sets of sites within GHSR1a which engender distinct functionality of ß-arrestins. More specifically, the Ser362, Ser363 and Thr366 residues at the carboxyl-terminal tail were primarily responsible for ß-arrestin 1 and 2 binding, internalization and ß-arrestin-mediated proliferation and adipogenesis. The Thr350 and Ser349 are not necessary for ß-arrestin recruitment, but are involved in the stabilization of the GHSR1a-ß-arrestin complex in a manner that determines the ultimate cellular consequences of ß-arrestin signaling. We further demonstrated that the mitogenic and adipogenic effect of ghrelin were mainly dependent on the ß-arrestin bound to the phosphorylated GHSR1a. In contrast, the ghrelin function on GH secretion was entirely mediated by G protein signaling. Our data is consistent with the hypothesis that the phosphorylation pattern on the C terminus of GHSR1a determines the signaling and physiological output. PMID:26935831

  10. Channel-lining residues of the AMPA receptor M2 segment: structural environment of the Q/R site and identification of the selectivity filter.

    PubMed

    Kuner, T; Beck, C; Sakmann, B; Seeburg, P H

    2001-06-15

    In AMPA receptor channels, a single amino acid residue (Q/R site) of the M2 segment controls permeation of calcium ions, single-channel conductance, blockade by intracellular polyamines, and permeation of anions. The structural environment of the Q/R site and its positioning with regard to a narrow constriction were probed with the accessibility of substituted cysteines to positively and negatively charged methanethiosulfonate reagents, applied from the extracellular and cytoplasmic sides of the channel. The accessibility patterns confirm that the M2 segment forms a pore loop with the Q/R site positioned at the tip of the loop (position 0) facing the extracellular vestibule. Cytoplasmically accessible residues on the N- and C-terminal sides of position 0 form the ascending alpha-helical (-8 to -1) and descending random coil (+1 to +6) components of the loop, respectively. Substitution of a glycine residue at position +2 with alanine strongly decreased the permeability of organic cations, indicating that position +2 contributes to the narrow constriction. The anionic 2-sulfonatoethyl-methanethiosufonate reacted with a cysteine at position 0 only from the external side and with cysteines at positions +1 to +4 only from the cytoplasmic side. These results suggest that charge selectivity occurs external to the constriction (+2) and possibly involves interactions of ions with the negative electrostatic potential created by the dipole of the alpha-helix formed by the ascending limb of the loop.

  11. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    SciTech Connect

    Middleton, R.E.; Cohen, J.B. )

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.

  12. Antibody binding site mapping of SARS-CoV spike protein receptor-binding domain by a combination of yeast surface display and phage peptide library screening.

    PubMed

    Zhang, Xiaoping; Wang, Jingxue; Wen, Kun; Mou, Zhirong; Zou, Liyun; Che, Xiaoyan; Ni, Bing; Wu, Yuzhang

    2009-12-01

    The receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus (SARS-CoV) spike (S) protein plays an important role in viral infection, and is a potential major neutralizing determinant. In this study, three hybridoma cell lines secreting specific monoclonal antibodies against the RBD of the S protein were generated and their exact binding sites were identified. Using yeast surface display, the binding sites of these antibodies were defined to two linear regions on the RBD: S(337-360) and S(380-399). Using these monoclonal antibodies in phage peptide library screening identified 10 distinct mimotopes 12 amino acids in length. Sequence comparison between native epitopes and these mimotopes further confirmed the binding sites, and revealed key amino acid residues involved in antibody binding. None of these antibodies could neutralize the murine leukemia virus pseudotyped expressing the SARS-CoV spike protein (MLV/SARS-CoV). However, these mAbs could be useful in the diagnosis of SARS-CoV due to their exclusive reactivity with SARS-CoV. Furthermore, this study established a feasible platform for epitope mapping. Yeast surface display combined with phage peptide library screening provides a convenient strategy for the identification of epitope peptides from certain antigenic proteins.

  13. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling.

    PubMed

    Kuo, Taiyi; Lew, Michelle J; Mayba, Oleg; Harris, Charles A; Speed, Terence P; Wang, Jen-Chywan

    2012-07-10

    Glucocorticoids elicit a variety of biological responses in skeletal muscle, including inhibiting protein synthesis and insulin-stimulated glucose uptake and promoting proteolysis. Thus, excess or chronic glucocorticoid exposure leads to muscle atrophy and insulin resistance. Glucocorticoids propagate their signal mainly through glucocorticoid receptors (GR), which, upon binding to ligands, translocate to the nucleus and bind to genomic glucocorticoid response elements to regulate the transcription of nearby genes. Using a combination of chromatin immunoprecipitation sequencing and microarray analysis, we identified 173 genes in mouse C2C12 myotubes. The mouse genome contains GR-binding regions in or near these genes, and gene expression is regulated by glucocorticoids. Eight of these genes encode proteins known to regulate distinct signaling events in insulin/insulin-like growth factor 1 pathways. We found that overexpression of p85α, one of these eight genes, caused a decrease in C2C12 myotube diameters, mimicking the effect of glucocorticoids. Moreover, reducing p85α expression by RNA interference in C2C12 myotubes significantly compromised the ability of glucocorticoids to inhibit Akt and p70 S6 kinase activity and reduced glucocorticoid induction of insulin receptor substrate 1 phosphorylation at serine 307. This phosphorylation is associated with insulin resistance. Furthermore, decreasing p85α expression abolished glucocorticoid inhibition of protein synthesis and compromised glucocorticoid-induced reduction of cell diameters in C2C12 myotubes. Finally, a glucocorticoid response element was identified in the p85α GR-binding regions. In summary, our studies identified GR-regulated transcriptional networks in myotubes and showed that p85α plays a critical role in glucocorticoid-induced insulin resistance and muscle atrophy in C2C12 myotubes.

  14. Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies.

    PubMed

    McGuire, Andrew T; Hoot, Sam; Dreyer, Anita M; Lippy, Adriana; Stuart, Andrew; Cohen, Kristen W; Jardine, Joseph; Menis, Sergey; Scheid, Johannes F; West, Anthony P; Schief, William R; Stamatatos, Leonidas

    2013-04-08

    Broadly neutralizing antibodies (bnAbs) against HIV are believed to be a critical component of the protective responses elicited by an effective HIV vaccine. Neutralizing antibodies against the evolutionarily conserved CD4-binding site (CD4-BS) on the HIV envelope glycoprotein (Env) are capable of inhibiting infection of diverse HIV strains, and have been isolated from HIV-infected individuals. Despite the presence of anti-CD4-BS broadly neutralizing antibody (bnAb) epitopes on recombinant Env, Env immunization has so far failed to elicit such antibodies. Here, we show that Env immunogens fail to engage the germline-reverted forms of known bnAbs that target the CD4-BS. However, we found that the elimination of a conserved glycosylation site located in Loop D and two glycosylation sites located in variable region 5 of Env allows Env-binding to, and activation of, B cells expressing the germline-reverted BCRs of two potent broadly neutralizing antibodies, VRC01 and NIH45-46. Our results offer a possible explanation as to why Env immunogens have been ineffective in stimulating the production of such bNAbs. Importantly, they provide key information as to how such immunogens can be engineered to initiate the process of antibody-affinity maturation against one of the most conserved Env regions.

  15. Effects of heterocyclic aromatic substituents on binding affinities at two distinct sites of somatostatin receptors. Correlation with the electrostatic potential of the substituents.

    PubMed

    Prasad, Vidya; Birzin, Elizabeth T; McVaugh, Cheryl T; Van Rijn, Rachel D; Rohrer, Susan P; Chicchi, Gary; Underwood, Dennis J; Thornton, Edward R; Smith, Amos B; Hirschmann, Ralph

    2003-05-08

    In our continuing program exploring glucose-based peptidomimetics of somatostatin (SRIF-14), we sought to improve the water solubility of our glycosides. This led to insights into the nature of the ligand binding sites at the SRIF receptor. Replacement of the C4 benzyl substituent in glucoside (+)-2 with pyridinylmethyl or pyrazin-2-ylmethyl congeners increased water solubility and enhanced affinity for the human SRIF subtype receptor 4 (sst4). We attribute this effect to hydrogen bond formation. The pyridin-3-ylmethyl substituent at C4, when combined with the imidazol-4-ylmethyl group at C2, generated (-)-19, which has the highest affinity of a glucose-based peptidomimetic at a human SRIF receptor to date (K(i) 53 +/- 23 nM, n = 6 at sst4). The C4 heterocyclic congeners of glucosides bearing a 1-methoxy substituent rather than an indole side chain at the anomeric carbon, such as (+)-16, also provided information about the Trp(8) binding pocket. We correlated the SARs at both the C4 and the Trp(8) binding pockets with calculations of the electrostatic potentials of the diverse C4 aromatic substituents using Spartan 3-21G(*) MO analysis. These calculations provide an approximate analysis of a molecule's ability to interact within a receptor binding site. Our binding studies show that benzene and indole rings, but not pyridinylmethyl nor pyrazin-2-ylmethyl rings, can bind the hydrophobic Trp(8) binding pocket of sst4. The Spartan 3-21G(*) MO analysis reveals significant negative electrostatic potential in the region of the pi-clouds for the benzene and indole rings but not for the pyridinylmethyl or pyrazin-2-ylmethyl congeners. Our data further demonstrate that the replacement of benzene or indole side chains by heterocyclic aromatic rings typified by pyridine and pyrazine not only enhances water solubility and hydrogen bonding capacity as expected, but can also profoundly diminish the ability of the pi-cloud of the aromatic substituent to interact with side chains

  16. Mutation of the palmitoylation site of estrogen receptor α in vivo reveals tissue-specific roles for membrane versus nuclear actions

    PubMed Central

    Adlanmerini, Marine; Solinhac, Romain; Abot, Anne; Fabre, Aurélie; Raymond-Letron, Isabelle; Guihot, Anne-Laure; Boudou, Frédéric; Sautier, Lucile; Vessières, Emilie; Kim, Sung Hoon; Lière, Philippe; Fontaine, Coralie; Krust, Andrée; Chambon, Pierre; Katzenellenbogen, John A.; Gourdy, Pierre; Shaul, Philip W.; Henrion, Daniel; Arnal, Jean-François; Lenfant, Françoise

    2014-01-01

    Estrogen receptor alpha (ERα) activation functions AF-1 and AF-2 classically mediate gene transcription in response to estradiol (E2). A fraction of ERα is targeted to plasma membrane and elicits membrane-initiated steroid signaling (MISS), but the physiological roles of MISS in vivo are poorly understood. We therefore generated a mouse with a point mutation of the palmitoylation site of ERα (C451A-ERα) to obtain membrane-specific loss of function of ERα. The abrogation of membrane localization of ERα in vivo was confirmed in primary hepatocytes, and it resulted in female infertility with abnormal ovaries lacking corpora lutea and increase in luteinizing hormone levels. In contrast, E2 action in the uterus was preserved in C451A-ERα mice and endometrial epithelial proliferation was similar to wild type. However, E2 vascular actions such as rapid dilatation, acceleration of endothelial repair, and endothelial NO synthase phosphorylation were abrogated in C451A-ERα mice. A complementary mutant mouse lacking the transactivation function AF-2 of ERα (ERα-AF20) provided selective loss of function of nuclear ERα actions. In ERα-AF20, the acceleration of endothelial repair in response to estrogen–dendrimer conjugate, which is a membrane-selective ER ligand, was unaltered, demonstrating integrity of MISS actions. In genome-wide analysis of uterine gene expression, the vast majority of E2-dependent gene regulation was abrogated in ERα-AF20, whereas in C451A-ERα it was nearly fully preserved, indicating that membrane-to-nuclear receptor cross-talk in vivo is modest in the uterus. Thus, this work genetically segregated membrane versus nuclear actions of a steroid hormone receptor and demonstrated their in vivo tissue-specific roles. PMID:24371309

  17. Novel point mutation in the splice donor site of exon-intron junction 6 of the androgen receptor gene in a patient with partial androgen insensitivity syndrome.

    PubMed

    Sammarco, I; Grimaldi, P; Rossi, P; Cappa, M; Moretti, C; Frajese, G; Geremia, R

    2000-09-01

    Androgen receptor (AR) gene mutations have been shown to cause androgen insensitivity syndrome with altered sexual differentiation in XY individuals, ranging from a partial insensitivity with male phenotype and azoospermia to a complete insensitivity with female phenotype and the absence of pubic and axillary sexual hair after puberty. In this study we present an 11-yr-old XY girl, with clinical manifestations peculiar for impaired androgen biological action, including female phenotype, blind-ending vagina, small degree of posterior labial fusion, and absence of uterus, fallopian tubes, and ovaries. At the time of the diagnosis the patient had a FSH/LH ratio according to the puberal stage, undetectable 17beta-estradiol, and high levels of testosterone (80.1 ng/mL). After bilateral gonadectomy, performed at the age of 11 yr, histological examination showed small embryonic seminiferous tubules containing prevalently Sertoli cells and occasional spermatogonia together with abundant fibrous tissue. Molecular study of the patient showed a guanine to thymine transversion in position +5 of the donor splice site in the junction between exon 6 and intron 6 of the AR gene. The result of RT-PCR amplification of the AR messenger ribonucleic acid from cultured genital skin fibroblasts of the patient suggests that splicing is defective, and intron 6 is retained in most of the receptor messenger ribonucleic acid molecules. We show by immunoblotting that most of the expressed protein lacks part of the C-terminal hormone-binding domain, and a small amount of normal receptor is observed. This is probably responsible for the reduced binding capacity in genital skin fibroblasts of the patient. The molecular basis of the alteration in this case is a novel, uncommon mutation, leading to a phenotype indicative of a partial androgen insensitivity syndrome, Quigley's grade 5.

  18. Differential α4(+)/(−)β2 Agonist-binding Site Contributions to α4β2 Nicotinic Acetylcholine Receptor Function within and between Isoforms*

    PubMed Central

    Lucero, Linda M.; Weltzin, Maegan M.; Eaton, J. Brek; Cooper, John F.; Lindstrom, Jon M.; Lukas, Ronald J.; Whiteaker, Paul

    2016-01-01

    Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(−)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(−)α4 site with lower agonist affinity than the α4(+)/(−)β2 sites. However, the relative roles of the conserved α4(+)/(−)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2*-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (−)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with 125I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(−)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(−)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect. PMID:26644472

  19. Differential α4(+)/(-)β2 Agonist-binding Site Contributions to α4β2 Nicotinic Acetylcholine Receptor Function within and between Isoforms.

    PubMed

    Lucero, Linda M; Weltzin, Maegan M; Eaton, J Brek; Cooper, John F; Lindstrom, Jon M; Lukas, Ronald J; Whiteaker, Paul

    2016-01-29

    Two α4β2 nicotinic acetylcholine receptor (α4β2-nAChR) isoforms exist with (α4)2(β2)3 and (α4)3(β2)2 subunit stoichiometries and high versus low agonist sensitivities (HS and LS), respectively. Both isoforms contain a pair of α4(+)/(-)β2 agonist-binding sites. The LS isoform also contains a unique α4(+)/(-)α4 site with lower agonist affinity than the α4(+)/(-)β2 sites. However, the relative roles of the conserved α4(+)/(-)β2 agonist-binding sites in and between the isoforms have not been studied. We used a fully linked subunit concatemeric nAChR approach to express pure populations of HS or LS isoform α4β2*-nAChR. This approach also allowed us to mutate individual subunit interfaces, or combinations thereof, on each isoform background. We used this approach to systematically mutate a triplet of β2 subunit (-)-face E-loop residues to their non-conserved α4 subunit counterparts or vice versa (β2HQT and α4VFL, respectively). Mutant-nAChR constructs (and unmodified controls) were expressed in Xenopus oocytes. Acetylcholine concentration-response curves and maximum function were measured using two-electrode voltage clamp electrophysiology. Surface expression was measured with (125)I-mAb 295 binding and was used to define function/nAChR. If the α4(+)/(-)β2 sites contribute equally to function, making identical β2HQT substitutions at either site should produce similar functional outcomes. Instead, highly differential outcomes within the HS isoform, and between the two isoforms, were observed. In contrast, α4VFL mutation effects were very similar in all positions of both isoforms. Our results indicate that the identity of subunits neighboring the otherwise equivalent α4(+)/(-)β2 agonist sites modifies their contributions to nAChR activation and that E-loop residues are an important contributor to this neighbor effect.

  20. Platelet-derived growth factor triggers translocation of the insulin-regulatable glucose transporter (type 4) predominantly through phosphatidylinositol 3-kinase binding sites on the receptor.

    PubMed Central

    Kamohara, S; Hayashi, H; Todaka, M; Kanai, F; Ishii, K; Imanaka, T; Escobedo, J A; Williams, L T; Ebina, Y

    1995-01-01

    Insulin is the only known hormone which rapidly stimulates glucose uptake in target tissues, mainly by translocation to the cell surface of the intracellular insulin-regulatable glucose transporter (glucose transporter type 4, GLUT4). We have developed a cell line for direct, sensitive detection of GLUT4 on the cell surface. We have suggested that insulin-activated phosphatidylinositol (PI) 3-kinase may be involved in the signaling pathway of insulin-stimulated GLUT4 translocation. We report that platelet-derived growth factor (PDGF), which stimulates PI 3-kinase activity, triggers GLUT4 translocation in Chinese hamster ovary (CHO) cells stably overexpressing the PDGF receptor and in 3T3-L1 mouse adipocytes. Using mutant PDGF receptors that cannot bind to Ras-GTPase-activating protein, phospholipase C-gamma, and PI 3-kinase, respectively, we obtained evidence that PI 3-kinase binding sites play a key role in the signaling pathway of PDGF-stimulated GLUT4 translocation in the CHO cell system. Images Fig. 1 Fig. 4 PMID:7862637

  1. SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome

    PubMed Central

    2012-01-01

    Specific peptide ligand recognition by modular interaction domains is essential for the fidelity of information flow through the signal transduction networks that control cell behavior in response to extrinsic and intrinsic stimuli. Src homology 2 (SH2) domains recognize distinct phosphotyrosine peptide motifs, but the specific sites that are phosphorylated and the complement of available SH2 domains varies considerably in individual cell types. Such differences are the basis for a wide range of available protein interaction microstates from which signaling can evolve in highly divergent ways. This underlying complexity suggests the need to broadly map the signaling potential of systems as a prerequisite for understanding signaling in specific cell types as well as various pathologies that involve signal transduction such as cancer, developmental defects and metabolic disorders. This report describes interactions between SH2 domains and potential binding partners that comprise initial signaling downstream of activated fibroblast growth factor (FGF), insulin (Ins), and insulin-like growth factor-1 (IGF-1) receptors. A panel of 50 SH2 domains screened against a set of 192 phosphotyrosine peptides defines an extensive potential interactome while demonstrating the selectivity of individual SH2 domains. The interactions described confirm virtually all previously reported associations while describing a large set of potential novel interactions that imply additional complexity in the signaling networks initiated from activated receptors. This study of pTyr ligand binding by SH2 domains provides valuable insight into the selectivity that underpins complex signaling networks that are assembled using modular protein interaction domains. PMID:22974441

  2. Lack of Ligand-Selective Binding of the Aryl Hydrocarbon Receptor to Putative DNA Binding Sites Regulating Expression of Bax and Paraoxonase 1 Genes

    PubMed Central

    DeGroot, Danica E.; Hayashi, Ai; Denison, Michael S.

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals through its ability to bind specific DNA recognition sites (dioxin responsive elements (DREs)), and activate transcription of adjacent genes. While the DRE has a highly conserved consensus sequence, it has been suggested that the nucleotide specificity of AhR DNA binding may be ligand-dependent. The upstream regulatory regions of the murine Bax and human paraoxonase 1 (PON1) genes reportedly contain unique DRE-like sequences that respond to AhRs activated by some ligands but not others. Given the significant implications of this observation to understanding the diversity in AhR responses and that of other ligand-dependent nuclear receptors, a combination of DNA binding, nuclear translocation and gene expression analysis was used to investigate the molecular mechanisms underlying these ligand-selective responses. Although known AhR agonists stimulated AhR nuclear translocation, DRE binding and gene expression, the ligand-selective DRE-like DNA elements identified in the Bax and PON1 upstream regulatory regions failed to bind ligand-activated AhR or confer AhR-responsiveness upon a reporter gene. These results argue against the reported ligand-selectivity of AhR DNA binding and suggest DNA binding by ligand activated AhR involves DRE-containing DNA. PMID:24200861

  3. Inactivation of influenza virus haemagglutinin by chlorine dioxide: oxidation of the conserved tryptophan 153 residue in the receptor-binding site.

    PubMed

    Ogata, Norio

    2012-12-01

    Airborne influenza virus infection of mice can be prevented by gaseous chlorine dioxide (ClO(2)). This study demonstrated that ClO(2) abolished the function of the haemagglutinin (HA) of influenza A virus (H1N1) in a concentration-, time- and temperature-dependent manner. The IC(50) during a 2 min reaction with ClO(2) at 25 °C was 13.7 µM, and the half-life time of HA with 100 µM ClO(2) at 25 °C was 19.5 s. Peptides generated from a tryptic digest of ClO(2)-treated virus were analysed by mass spectrometry. An HA fragment, (150)NLLWLTGK(157) was identified in which the tryptophan residue (W153) was 32 mass units greater than expected. The W153 residue of this peptide, which is derived from the central region of the receptor-binding site of HA, is highly conserved. It was shown that W153 was oxidized to N-formylkynurenine in ClO(2)-treated virus. It was concluded that the inactivation of influenza virus by ClO(2) is caused by oxidation of W153 in HA, thereby abolishing its receptor-binding ability.

  4. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site.

    PubMed

    Shimomura, Masaru; Yokota, Maiko; Ihara, Makoto; Akamatsu, Miki; Sattelle, David B; Matsuda, Kazuhiko

    2006-10-01

    The insecticide imidacloprid and structurally related neonicotinoids act selectively on insect nicotinic acetylcholine receptors (nAChRs). To investigate the mechanism of neonicotinoid selectivity, we have examined the effects of mutations to basic amino acid residues in loop D of the nAChR acetylcholine (ACh) binding site on the interactions with imidacloprid. The receptors investigated are the recombinant chicken alpha4beta2 nAChR and Drosophila melanogaster Dalpha2/chicken beta2 hybrid nAChR expressed in Xenopus laevis oocytes. Although mutations of Thr77 in loop D of the beta2 subunit resulted in a barely detectable effect on the imidacloprid concentration-response curve for the alpha4beta2 nAChR, T77R;E79V double mutations shifted the curve dramatically to higher affinity binding of imidacloprid. Likewise, T77K;E79R and T77N;E79R double mutations in the Dalpha2beta2 nAChR also resulted in a shift to a higher affinity for imidacloprid, which exceeded that observed for a single mutation of Thr77 to basic residues. By contrast, these double mutations scarcely influenced the ACh concentration-response curve, suggesting selective interactions with imidacloprid of the newly introduced basic residues. Computational, homology models of the agonist binding domain of the wild-type and mutant alpha4beta2 and Dalpha2beta2 nAChRs with imidacloprid bound were generated based on the crystal structures of acetylcholine binding proteins of Lymnaea stagnalis and Aplysia californica. The models indicate that the nitro group of imidacloprid interacts directly with the introduced basic residues at position 77, whereas those at position 79 either prevent or permit such interactions depending on their electrostatic properties, thereby explaining the observed functional changes resulting from site-directed mutagenesis.

  5. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and tracazolate, and a diaryltriazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin and LY81067 on the saturable binding of /sup 35/S-TBPS in cortical membranes are compared. The present findings are consistent with the interpretation that /sup 35/S-TBPS bind at or near the picrotoxin-sensitive anion recognition sites of the GABA/benzodiazepine/picrotoxin receptor complex.

  6. Activation of α7 Nicotinic Acetylcholine Receptor Decreases On-site Mortality in Crush Syndrome through Insulin Signaling-Na/K-ATPase Pathway

    PubMed Central

    Fan, Bo-Shi; Zhang, En-Hui; Wu, Miao; Guo, Jin-Min; Su, Ding-Feng; Liu, Xia; Yu, Jian-Guang

    2016-01-01

    On-site mortality in crush syndrome remains high due to lack of effective drugs based on definite diagnosis. Anisodamine (Ani) is widely used in China for treatment of shock, and activation of α7 nicotinic acetylcholine receptor (α7nAChR) mediates such antishock effect. The present work was designed to test whether activation of α7nAChR with Ani decreased mortality in crush syndrome shortly after decompression. Sprague-Dawley rats and C57BL/6 mice with crush syndrome were injected with Ani (20 mg/kg and 28 mg/kg respectively, i.p.) 30 min before decompression. Survival time, serum potassium, insulin, and glucose levels were observed shortly after decompression. Involvement of α7nAChR was verified with methyllycaconitine (selective α7nAChR antagonist) and PNU282987 (selective α7nAChR agonist), or in α7nAChR knockout mice. Effect of Ani was also appraised in C2C12 myotubes. Ani reduced mortality and serum potassium and enhanced insulin sensitivity shortly after decompression in animals with crush syndrome, and PNU282987 exerted similar effects. Such effects were counteracted by methyllycaconitine or in α7nAChR knockout mice. Mortality and serum potassium in rats with hyperkalemia were also reduced by Ani. Phosphorylation of Na/K-ATPase was enhanced by Ani in C2C12 myotubes. Inhibition of tyrosine kinase on insulin receptor, phosphoinositide 3-kinase, mammalian target of rapamycin, signal transducer and activator of transcription 3, and Na/K-ATPase counteracted the effect of Ani on extracellular potassium. These findings demonstrated that activation of α7nAChR could decrease on-site mortality in crush syndrome, at least in part based on the decline of serum potassium through insulin signaling-Na/K-ATPase pathway. PMID:27065867

  7. Identification of the high affinity binding site in the Streptococcus intermedius toxin intermedilysin for its membrane receptor, the human complement regulator CD59.

    PubMed

    Hughes, Timothy R; Ross, Kirsty S; Cowan, Graeme J M; Sivasankar, Baalasubramanian; Harris, Claire L; Mitchell, Timothy J; Morgan, B Paul

    2009-04-01

    The unique species specificity of the bacterial cytolysin intermedilysin is explained by its requirement for the human complement regulator CD59 as the primary receptor. Binding studies using individual domains of intermedilysin mapped the CD59-binding site to domain 4 and swap mutants between human and rabbit (non-intermedilysin-binding) CD59 implicated a short sequence (residues 42-59) in human CD59 in binding intermedilysin. We set out to map more closely the CD59 binding site in intermedilysin. We first looked for regions of homology between domain 4 in intermedilysin and the terminal complement components that bind CD59, C8 and C9. A nine amino acid sequence immediately adjacent the undecapeptide segment in intermedilysin domain 4 matched (5 of 9 identical, 3 of 9 conserved) a sequence in C9. A peptide containing this sequence caused dose-dependent inhibition of intermedilysin-mediated lysis of human erythrocytes and rendered erythrocytes more susceptible to complement lysis. Surface plasmon resonance analysis of intermedilysin binding to immobilized CD59 revealed saturable fast-on, fast-off binding and a calculated affinity of 4.9 nM. Substitution of three residues from the putative binding site caused a 5-fold reduction in lytic potency of intermedilysin and reduced affinity for immobilized CD59 by 2.5-fold. The demonstration that a peptide modeled on the CD59-binding site inhibits intermedilysin-mediated haemolysis leads us to suggest that such peptides might be useful in treating infections caused by intermedilysin-producing bacteria.

  8. Isolating the Epstein-Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21).

    PubMed

    Young, Kendra A; Chen, Xiaojiang S; Holers, V Michael; Hannan, Jonathan P

    2007-12-14

    Complement receptor type 2 (CR2/CD21) is essential for the attachment of Epstein-Barr virus (EBV) to the surface of B-lymphocytes in an interaction mediated by the viral envelope glycoprotein gp350. The heavily glycosylated structure of EBV gp350 has recently been elucidated by x-ray crystallography, and the CR2 binding site on this protein has been characterized. To identify the corresponding gp350 binding site on CR2, we have undertaken a site-directed mutagenesis study targeting regions of CR2 that have previously been implicated in the binding of CR2 to the C3d/C3dg fragments of complement component C3. Wild-type or mutant forms of CR2 were expressed on K562 cells, and the ability of these CR2-expressing cells to bind gp350 was measured using flow cytometry. Mutations directed toward the two N-terminal extracellular domains of CR2 (SCR1-2) reveal that a large contiguous surface of CR2 SCR1-2 is involved in gp350 binding, including a number of positively charged residues (Arg-13, (Arg-28, (Arg-36, Lys-41, Lys-57, Lys-67, and Arg-83). These data appear to complement the CR2 binding site on gp350, which is characterized by a preponderance of negative charge. In addition to identifying the importance of charge in the formation of a CR2-gp350 complex, we also provide evidence that both SCR1 and SCR2 make contact with gp350. Specifically, two anti-CR2 monoclonal antibodies, designated as monoclonal antibodies 171 and 1048 whose primary epitopes are located within SCR2, inhibit binding of wild-type CR2 to EBV gp350; with regard to SCR1, both K562 cells expressing an S15P mutation and recombinant S15P CR2 proteins exhibit diminished gp350 binding.

  9. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site

    PubMed Central

    Le François, Brice; Soo, Jeremy; Millar, Anne M.; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R.

    2015-01-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of the conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  10. Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation [corrected and republished article originally printed in J Cell Biol 1988 May;106(5):1723-34

    PubMed Central

    1988-01-01

    Using digitally analyzed fluorescence videomicroscopy, we have examined the behavior of acetylcholine receptors and concanavalin A binding sites in response to externally applied electric fields. The distributions of these molecules on cultured Xenopus myoballs were used to test a simple model which assumes that electrophoresis and diffusion are the only important processes involved. The model describes the distribution of concanavalin A sites quite well over a fourfold range of electric field strengths; the results suggest an average diffusion constant of approximately 2.3 X 10(-9) cm2/s. At higher electric field strengths, the asymmetry seen is substantially less than that predicted by the model. Acetylcholine receptors subjected to electric fields show distributions substantially different from those predicted on the basis of simple electrophoresis and diffusion, and evidence a marked tendency to aggregate. Our results suggest that this aggregation is due to lateral migration of surface acetylcholine receptors, and is dependent on surface interactions, rather than the rearrangement of microfilaments or microtubules. The data are consistent with a diffusion-trap mechanism of receptor aggregation, and suggest that the event triggering receptor localization is a local increase in the concentration of acetylcholine receptors, or the electrophoretic concentration of some other molecular species. These observations suggest that, whatever mechanism(s) trigger initial clustering events in vivo, the accumulation of acetylcholine receptors can be substantially enhanced by passive, diffusion-mediated aggregation. PMID:3170634

  11. The Synonymous Ala87 Mutation of Estrogen Receptor Alpha Modifies Transcriptional Activation Through Both ERE and AP1 Sites.

    PubMed

    Fernández-Calero, Tamara; Flouriot, Gilles; Marín, Mónica

    2016-01-01

    Estrogen receptor α (ERα) exerts regulatory actions through genomic mechanisms. In the classical pathway, ligand-activated ERα binds directly to DNA through estrogen response elements (ERE) located in the promoter of target genes. ERα can also exert indirect regulation of transcription via protein-protein interaction with other transcription factors such as AP-1.S everal ERα synonymous polymorphisms have been identified and efforts to understand their implications have been made. Nevertheless effects of synonymous polymorphisms are still neglected. This chapter focuses on the experimental procedure employed in order to characterize the transcriptional activity of a synonymous polymorphism of the ERα (rs746432) called Alanine 87 (Ala87). Activity of both WT and Ala87 ERα isoforms on transcriptional pathways can be analyzed in transiently transfected cells using different reporter constructs. ERα efficiency on the classical genomic pathway can be analyzed by determining its transactivation activity on an ERE-driven thymidine kinase (TK) promoter controlling the expression of the luciferase reporter gene. Transcriptional activity through the indirect genomic pathway can be analyzed by employing an AP-1 DNA response element-driven promoter also controlling the expression of luciferase reporter gene.

  12. Interaction of SR 33557 with skeletal muscle calcium channel blocker receptors in the baboon: characterization of its binding sites

    SciTech Connect

    Sol-Rolland, J.; Joseph, M.; Rinaldi-Carmona, M. )

    1991-05-01

    A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca{sup 2}{sup +},Mg({sup 2}{sup +})-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca{sup 2}{sup +} channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with ({sup 3}H)(+)-PN 200-110, ({sup 3}H)(-)-desmethoxyverapamil (( {sup 3}H)(-)-D888) and ({sup 3}H)-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand binding studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca{sup 2}{sup +} channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle.

  13. A soluble deletion mutant of the human complement receptor type 1, which lacks the C4b binding site, is a selective inhibitor of the alternative complement pathway.

    PubMed

    Scesney, S M; Makrides, S C; Gosselin, M L; Ford, P J; Andrews, B M; Hayman, E G; Marsh, H C

    1996-08-01

    The human complement receptor type 1 (CR1, CD35), is a single-chain glycoprotein consisting of 30 repeating homologous protein domains known as short consensus repeats (SCR) followed by transmembrane and cytoplasmic domains. The SCR themselves, considered in groups of seven, form long homologous repeats (LHR) which have been designated LHR-A, -B, -C, and -D for the most common human allotype of CR1. A soluble deletion mutant of CR1 which lacks the first seven N-terminal SCR (LHR-A) as well as the transmembrane and cytoplasmic domains was produced and characterized. The resulting protein, designated sCR1[desLHR-A], lacks the C4b binding site found in LHR-A, but retains the two C3b binding sites found in LHR-B and -C, respectively. The functional activities of sCR1[desLHR-A] were quantitatively compared in vitro to those of soluble complement receptor type 1 (sCR1) which has been shown to retain all known functions of the native cell surface receptor. sCR1[desLHR-A] and sCR1 competed equally for the binding of dimeric C3b to erythrocyte CR1. sCR1[desLHR-A] and sCR1 were similar in their capacity to serve as a cofactor in the factor I-mediated degradation of the C3b and C4b alpha chains. sCR1[desLHR-A] and sCR1 were comparable in their capacity to inhibit erythrocyte lysis and anaphylatoxin production mediated by the alternative complement pathway. sCR1[desLHR-A], however, was significantly less effective an inhibitor of erythrocyte lysis and anaphylatoxin production than sCR1 under conditions which allow classical pathway activation. These results demonstrate sCR1[desLHR-A] to be a selective inhibitor of the alternative complement pathway in vitro.

  14. Bupropion Binds to Two Sites in the Torpedo Nicotinic Acetylcholine Receptor Transmembrane Domain: A Photoaffinity Labeling Study with the Bupropion Analog [125I]-SADU-3-72

    PubMed Central

    Pandhare, Akash; Hamouda, Ayman K.; Staggs, Brandon; Aggarwal, Shaili; Duddempudi, Phaneendra K.; Lever, John R.; Lapinsky, David J.; Jansen, Michaela; Cohen, Jonathan B.; Blanton, Michael P.

    2012-01-01

    Bupropion, a clinically-used antidepressant and smoking-cessation drug, acts as a noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). To identify its binding site(s) in nAChRs, we developed a photoreactive bupropion analog, (±)-2-(N-tert-butylamino)-3′-[125I]-iodo-4′-azidopropiophenone (SADU-3-72). Based upon inhibition of [125I]SADU-3-72 binding, SADU-3-72 binds with high affinity (IC50 = 0.8 μM) to the Torpedo nAChR in the resting (closed channel) state and in the agonist-induced desensitized state, and bupropion binds to that site with three-fold higher affinity in the desensitized (IC50 = 1.2 μM) than in the resting state. Photolabeling of Torpedo nAChRs with [125I]SADU-3-72 followed by limited in-gel digestion of nAChR subunits with endoproteinase Glu-C established the presence of [125I]SADU-3-72 photoincorporation within nAChR subunit fragments containing M1-M2-M3 helices (αV8-20K, βV8-22/23K and γV8-24K) or M1-M2 helices (δV8-14). Photolabeling within βV8-22/23K, γV8-24K and δV8-14 was reduced in the desensitized state and inhibited by ion channel blockers selective for the resting (tetracaine) or desensitized (thienycyclohexylpiperidine (TCP)) state, and this pharmacologically specific photolabeling was localized to the M2-9 leucine ring (δLeu265, βLeu257) within the ion channel. In contrast, photolabeling within the αV8-20K was enhanced in the desensitized state and not inhibited by TCP, but was inhibited by bupropion. This agonist-enhanced photolabeling was localized to αTyr213 in αM1. These results establish the presence of two distinct bupropion binding sites within the Torpedo nAChR transmembrane domain: a high affinity site at the middle (M2-9) of the ion channel and a second site near the extracellular end of αM1 within a previously described halothane (general anesthetic) binding pocket. PMID:22394379

  15. Competitive antagonists and partial agonists at the glycine modulatory site of the mouse N-methyl-D-aspartate receptor.

    PubMed Central

    Henderson, G; Johnson, J W; Ascher, P

    1990-01-01

    1. Kynurenate (Kyn), 7-chlorokynurenate (7-Cl-Kyn), 3-amino-1-hydroxypyrrolid-2-one (HA-966) and D-cycloserine are known to bind to the glycine site that modulates the N-methyl-D-aspartate (NMDA) response of vertebrate central neurones. The effects of these compounds were investigated with patch-clamp and fast-perfusion techniques on mouse cortical neurones in primary culture in an effort to establish whether they act as antagonists, partial agonists and/or inverse agonists of glycine. A fast drug application method allowed the study of both steady-state and transient responses. 2. The analysis of steady-state responses indicates that the main effects of Kyn and 7-Cl-Kyn are those expected from competitive antagonists of glycine, with a dissociation constant of 15 microM for Kyn, and of 0.3 microM for 7-Cl-Kyn. Concentration jumps indicate that at all concentrations of glycine, and in particular in the absence of added glycine, the blockade by Kyn and 7-Cl-Kyn develops at a rate which is close to the rate of dissociation of glycine from its binding site and is independent of antagonist concentration. 3. The main effects of D-cycloserine and of HA-966 are those of partial agonists of high and low efficacy, respectively. In the absence of added glycine, D-cycloserine always produced a potentiation, while HA-966 produced either a potentiation or an inhibition. This can be explained by assuming the presence of a variable level of contaminating glycine. With both D-cycloserine and HA-966, concentration jumps produced biphasic relaxations in which the onset rate of the slow component was, here again, close to the rate of dissociation of glycine from its binding site. 4. These results can be interpreted by assuming that (1) Kyn and 7-Cl-Kyn are competitive antagonists of glycine, (2) HA-966 and D-cycloserine are partial agonists, (3) in the absence of added glycine some glycine is present in the extracellular solution and (4) the response in the total absence of glycine

  16. Ligand Binding at the α4-α4 Agonist-Binding Site of the α4β2 nAChR Triggers Receptor Activation through a Pre-Activated Conformational State

    PubMed Central

    Indurthi, Dinesh C.; Lewis, Trevor M.; Ahring, Philip K.; Balle, Thomas; Chebib, Mary; Absalom, Nathan L.

    2016-01-01

    The α4β2 nicotinic acetylcholine receptor (nAChR) is the most abundant subtype in the brain and exists in two functional stoichiometries: (α4)3(β2)2 and (α4)2(β2)3. A distinct feature of the (α4)3(β2)2 receptor is the biphasic activation response to the endogenous agonist acetylcholine, where it is activated with high potency and low efficacy when two α4-β2 binding sites are occupied and with low potency/high efficacy when a third α4-α4 binding site is occupied. Further, exogenous ligands can bind to the third α4-α4 binding site and potentiate the activation of the receptor by ACh that is bound at the two α4-β2 sites. We propose that perturbations of the recently described pre-activation step when a third binding site is occupied are a key driver of these distinct activation properties. To investigate this, we used a combination of simple linear kinetic models and voltage clamp electrophysiology to determine whether transitions into the pre-activated state were increased when three binding sites were occupied. We separated the binding at the two different sites with ligands selective for the α4-β2 site (Sazetidine-A and TC-2559) and the α4-α4 site (NS9283) and identified that when a third binding site was occupied, changes in the concentration-response curves were best explained by an increase in transitions into a pre-activated state. We propose that perturbations of transitions into a pre-activated state are essential to explain the activation properties of the (α4)3(β2)2 receptor by acetylcholine and other ligands. Considering the widespread clinical use of benzodiazepines, this discovery of a conserved mechanism that benzodiazepines and ACh potentiate receptor activation via a third binding site can be exploited to develop therapeutics with similar properties at other cys-loop receptors. PMID:27552221

  17. Point mutations at the catalytic site of PCSK9 inhibit folding, autoprocessing, and interaction with the LDL receptor.

    PubMed

    Garvie, Colin W; Fraley, Cara V; Elowe, Nadine H; Culyba, Elizabeth K; Lemke, Christopher T; Hubbard, Brian K; Kaushik, Virendar K; Daniels, Douglas S

    2016-11-01

    Circulating low-density lipoprotein cholesterol (LDLc) is regulated by membrane-bound LDL receptor (LDLr). Upon LDLc and LDLr interaction the complex is internalized by the cell, leading to LDLc degradation and LDLr recycling back to the cell surface. The proprotein convertase subtilisin/kexin type 9 (PCSK9) protein regulates this cycling. PCSK9 is secreted from the cell and binds LDLr. When the complex is internalized, PCSK9 prevents LDLr from shuttling back to the surface and instead targets it for degradation. PCSK9 is a serine protease expressed as a zymogen that undergoes autoproteolysis, though the two resulting protein domains remain stably associated as a heterodimer. This PCSK9 autoprocessing is required for the protein to be secreted from the cell. To date, direct analysis of PCSK9 autoprocessing has proven challenging, as no catalytically active zymogen has been isolated. A PCSK9 loss-of-function point mutation (Q152H) that reduces LDLc levels two-fold was identified in a patient population. LDLc reduction was attributed to a lack of PCSK9(Q152H) autoprocessing preventing secretion of the protein. We have isolated a zymogen form of PCSK9, PCSK9(Q152H), and a related mutation (Q152N), that can undergo slow autoproteolysis. We show that the point mutation prevents the formation of the mature form of PCSK9 by hindering folding, reducing the rate of autoproteolysis, and destabilizing the heterodimeric form of the protein. In addition, we show that the zymogen form of PCSK9 adopts a structure that is distinct from the processed form and is unable to bind a mimetic peptide based on the EGF-A domain of the LDLr.

  18. The α-bungarotoxin binding site on the nicotinic acetylcholine receptor: Analysis using a phage–epitope library

    PubMed Central

    Balass, Moshe; Katchalski-Katzir, Ephraim; Fuchs, Sara

    1997-01-01

    The nicotinic acetylcholine receptor (AcChoR) is a ligand-gated ion channel that is activated upon binding of acetylcholine. α-Neurotoxins, in particular α-bungarotoxin (α-BTX), bind specifically and with high affinity to the AcChoR and compete with binding of the natural ligand. We employed a 15-mer phage-display peptide library to select epitopes reacting with α-BTX. Phages bearing the motif YYXSSL as a consensus sequence were found to bind with high affinity to α-BTX. The library-derived peptide (MRYYESSLKSYPD) bears amino acid sequence sim