Sample records for le graphite comme

  1. Évaluation des caractéristiques mécaniques du polissoir en polyuréthanne utilisé comme porte abrasifs durant le processus du polissage du verre optique

    NASA Astrophysics Data System (ADS)

    Aliouane, T.; Bouzid, D.; Belkhir, N.; Bouzid, S.; Herold, V.

    2005-05-01

    La fabrication des composants en verre optique nécessite des moyens de grande précision dans les procédés de finition vue l'importance accordée à leur qualité.
Durant le processus de polissage des verres optiques, le polissoir est un élément clé et a un impact direct sur les performances des composants optiques, non seulement il est utilisé comme support de grains abrasifs mais il doit posséder la fonction de transmission de la pression aux grains. La connaissance de ses propriétés, essentiellement mécanique, est impérative afin d'obtenir un état de surface optimal des composants optiques destinés à remplir des fonctions très précises dans des appareils optiques très performants.
Dans cette étude, nous avons constaté que les propriétés des polissoirs en polyuréthanne tel que la dureté, le module d'élasticité et la densité varient au cours du polissage. Ce changement a des effets sur l'état de surface de verre optique, causé par le changement microstructural de la surface du polissoir (distribution et dimensions des pores) et par conséquent sur la quantité des abrasifs (en oxyde de cérium) insérée dans les pores, ce qui influe sur la quantité de verre enlevée et sur l'état de surface du composant.
Sur la base des résultats obtenus, il a été prouvé que le polissoir subit des modifications très importantes ce qui influe considérablement sur son efficacité de polissage.

  2. Les Hemorragies Gastroduodenales de Stress Chez le Brule Grave

    PubMed Central

    Siah, S.; Fouadi, F.E.; Ababou, K.; Nassim Sabah, T.; Ihrai, I.

    2008-01-01

    Summary Les Auteurs rapportent trois observations d'hémorragies gastroduodénales de stress chez le brûlé grave. Ils rappellent l'importance des mesures thérapeutiques qui doivent être prises chez le brûlé grave, comme le traitement du choc, du sepsis, des plaies et de la douleur, la nutrition entérale précoce et l'oxygénothérapie. Tout cela permet de réduire les facteurs de risque de survenue d'une hémorragie gastroduodénale de stress. PMID:21991137

  3. L'ethique de l'environnement comme dimension transversale de l'education en sciences et en technologies: Proposition d'un modele educationnel

    NASA Astrophysics Data System (ADS)

    Chavez, Milagros

    Cette these presente la trajectoire et les resultats d'une recherche dont l'objectif global est de developper un modele educationnel integrant l'ethique de l'environnement comme dimension transversale de l'education en sciences et en technologies. Face au paradigme positiviste toujours dominant dans l'enseignement des sciences, il a semble utile d'ouvrir un espace de reflexion et de proposer, sous forme d'un modele formel, une orientation pedagogique qui soit plus en resonance avec quelques-unes des preoccupations fondamentales de notre epoque: en particulier celle qui concerne la relation de humain avec son environnement et plus specifiquement, le role de la science dans le faconnement d'une telle relation, par sa contribution a la transformation des conditions de vie, au point de compromettre les equilibres naturels. En fonction de cette problematique generale, les objectifs de la recherche sont les suivants: (1) definir les elements paradigmatiques, theoriques et axiologiques du modele educationnel a construire et (2) definir ses composantes strategiques. De caractere theorico-speculatif, cette recherche a adopte la demarche de l'anasynthese, en la situant dans la perspective critique de la recherche en education. Le cadre theorique de cette these s'est construit autour de quatre concepts pivots: modele educationnel, education en sciences et en technologies, transversalite educative et ethique de l'environnement. Ces concepts ont ete clarifies a partir d'un corpus textuel, puis, sur cette base, des choix theoriques ont ete faits, a partir desquels un prototype du modele a ete elabore. Ce prototype a ensuite ete soumis a une double validation (par des experts et par une mise a l'essai), dans le but d'y apporter des ameliorations et, a partir de la, de construire un modele optimal. Ce dernier comporte deux dimensions: theorico-axiologique et strategique. La premiere s'appuie sur une conception de l'education en sciences et en technologies comme appropriation d

  4. Burn/Blast Tests of Miscellaneous Graphite Composite Parts.

    DTIC Science & Technology

    1979-11-01

    accommodate the size of the test fixture sample holder. The QCSEE fan blade consisted of various layers of KEVLAR (polyaramid fiber), S-glass, AS graphite...panel tested was a 14-ply laminate of W-134 graphite and MXG 6070 modified phenolic resin. This was an experimental formulation pro- posed as an...166/X-130 T-Section T-300/5209 epoxy 17 x 26 20 1122 skin-to-spar ST-163/X-127 QCSEE Kevlar /AS/Glass/B/PR 24 x 29 20 1204 fan blade BT-164/X-128 Le1C

  5. Le ciment brûle toujours

    PubMed Central

    Lebreton, T.; Fontaine, M.; Le Floch, R.

    2017-01-01

    Summary Les brûlures chimiques par ciment représentent une cause fréquente de corrosion cutanée en France. Elles nécessitent fréquemment un traitement chirurgical. Notre étude rétrospective concerne tous les patients admis pour une brûlure par ciment dans le service entre 2004 et 2016. Quarante-neuf patients âgés de 21 à 71 ans ont été pris en charge dans le centre des brûlés du Centre Hospitalier Saint Joseph Saint Luc à Lyon entre 2004 et 2016. La population concernée était majoritairement masculine, relativement jeune (44 ans en moyenne) et professionnellement active. Les brûlures survenaient principalement dans le cadre d’accidents domestiques (78%). Elles étaient profondes et atteignaient majoritairement les membres inférieurs, de façon bilatérale. La surface brûlée représentait 3% de la surface cutanée totale. Presque tous les patients (98%) ont nécessité une prise en charge chirurgicale pour excision et autogreffe de peau mince. Un seul patient a bénéficié d’une cicatrisation dirigée. Le délai moyen entre la brûlure et la chirurgie était de 13 jours et la durée moyenne d’hospitalisation de 8 jours. Sept patients ont nécessité une prise en charge en centre de rééducation à leur sortie du service. Cette étude confirme la sévérité des brûlures chimiques par ciment. Elle met également en avant l’impact que peut avoir ce type de brûlure en terme de retentissement socio-économique dans une population de patients majoritairement jeune et active. Elle insiste sur le fait que des mesures doivent être prises afin d’informer cette population rarement professionnelle sur les risques encourus lors du mésusage du ciment. La réglementation actuelle, classant le ciment comme irritant, ne prend pas en compte son caractère corrosif et devrait être amendée. PMID:28592929

  6. Le changement comme tradition dans la recherche et la formation a la recherche en biotechnologie et en peripherie Etude de cas en sciences de la sante, sciences naturelles et genie

    NASA Astrophysics Data System (ADS)

    Bourque, Claude Julie

    luttes universitaires que scientifiques, concentrees sur la negociation du capital scientifique, symbolique et economique en jeu dans la formation doctorale, dans les carrieres auxquelles elle mene, et dans les qualites du titre de Ph.D. Au final, la confusion entre des logiques opposees peut etre reduite en reinterpretant le changement comme tradition du champ scientifique. Mots-cles Sociologie, education, enseignement superieur, science et technologie, biotechnologie, formation doctorale, champ scientifique, reseaux sociaux

  7. Brazing graphite to graphite

    DOEpatents

    Peterson, George R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.

  8. Le continu contre l'espace

    NASA Astrophysics Data System (ADS)

    Salanskis, Jean-Michel

    Disons pour conclure que, en tout état de cause, la façon de concevoir philosophiquement le conflit du continu et de l'espace que nous avons trouvée chez Hegel n'est pas homogène avec le style et les modalités de la pensée mathématique: 1) d'une part, le lien classique, le lien de référence entre continu et espace en mathématiques n'est pas que l'espace serait premier et privé de pensée, et le continu second, venant dissoudre l'espace en apportant la qualité, l'infini et la pensée, mais tout au contraire, il consiste en ce que l'espace est fondé sur l'abîme infinitaire du continu ; 2) d'autre part, l'éventuel divorce entre l'espace et le continu dans l'aire mathématique n'est pas celui d'une réflexivité purement conceptuelle du continu avec un positivisme géométrique, n'équivaut pas à une rupture disciplinaire ; il est plutôt le symptôme de la dérive d'une herméneutique à l'égard d'une autre, au sein d'un continent juridique commun définissant la discipline (la mathématique ensembliste), cette dérive pouvant, à la limite, induire une refonte de ce sol juridique, sans que jamais il soit question pour autant de nier l'unité des mathématiques, à comprendre ici comme l'unité ultime de responsabilité de la communauté mathématique à l'égard des trois questions Qu'est-ce que l'espace?”, “Qu'est-ce que le continu?” et “Qu'est-ce que l'infini?”.

  9. Entrevue avec le Dr Charley Zeanah

    PubMed Central

    2013-01-01

    Le Dr Charles Zeanah est titulaire de la chaire de psychiatrie Mary K. Sellars-Polchow, professeur de pédiatrie clinique et vice-président de la pédopsychiatrie au département de psychiatrie et des sciences du comportement de la faculté de médecine de l’Université Tulane, à la Nouvelle-Orléans. Il est également directeur général de l’institut de la santé mentale des nourrissons et des jeunes enfants de Tulane. Il est récipiendaire de nombreux prix, notamment le prix de prévention Irving Phillips (AACAP), la mention élogieuse présidentielle pour sa recherche et son leadership exceptionnels en santé mentale des nourrissons (American Orthopsychiatric Association), le prix d’excellence clinique Sarah Haley Memorial (International Society for Traumatic Stress Studies), le prix de recherche en pédopsychiatrie Blanche F. Ittelson (APA), et le prix Serge Lebovici Award soulignant les contributions internationales à la santé mentale des nourrissons (World Association for Infant Mental Health). Le Dr Zeanah est fellow distingué de l’AACAP, fellow distingué de l’APA et membre du conseil d’administration de Zero to Three. Il est l’éditeur scientifique de Handbook of Infant Mental Health (3e édition) qui est considéré comme étant le manuel de pointe et la référence de base du domaine de la santé mentale des nourrissons.

  10. Impact de la varicocèle sur le volume testiculaire et les paramètres spermatiques

    PubMed Central

    Benazzouz, Mohamed Hicham; Essatara, Younes; El Sayegh, Hachem; Iken, Ali; Benslimane, Lounis; Nouini, Yassine

    2014-01-01

    Introduction La varicocèle est une pathologie masculine fréquente dont l'incidence est encore plus importante dans dans la population des hommes infertiles. Si ses mécanismes sont à ce jour incomplètement expliqués il semble acquis que la varicocèle peut être associée a une dysfonction testiculaire avec diminution du volume testiculaire et de la concentration en spermatozoïde de l’éjaculat. Méthodes Dans un premier temps nous exposons les résultats d'une étude rétrospective sur 5 ans (de Mars 2009 à Mars 2014), réalisée au service d'urologie A de l'hôpital Ibn Sina de Rabat et ayant comme objectif d’évaluer l'impact de la varicocèle palpable sur le volume testiculaire et les paramètres spermatiques. Tous les patients inclus dans notre étude avaient une varicocèle palpable. Dans un deuxième temps, et à travers une revue de la littérature nous discutons l'impact du traitement de la varicocèle sur la fertilité. Résultats 39 patients ont été inclus dans notre étude. L’âge moyen était de 29,71 ans et la varicocèle siégeait dans 89,74% des cas du coté gauche. Une atrophie testiculaire homolatérale à la varicocèle était retrouvée dans 7% des cas alors que des anomalies du spermogramme se voyaient dans 69,23% des cas. Conclusion L'impact de la varicocèle sur l'altération des paramètres spermatiques a été clairement établi bien que sa physio pathogénie ne soit pas bien élucidée. Le traitement chirurgical de la varicocèle semble indiqué chez les hommes infertiles présentant une varicocèle clinique et une altération significative du sperme. PMID:25918574

  11. Use of Data Comm by Flight Crew in High-Density Terminal Areas

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Norman, Robert M.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R.; Adams, Cathy A.

    2010-01-01

    This paper describes a collaborative FAA and NASA experiment using 22 commercial airline pilots to determine the effect of using Datalink Communication (Data Comm) to issue messages in busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage levels (voice communication only, Data Comm only, Data Comm with Moving Map Display, Data Comm with Moving Map displaying taxi route), and each condition was used to create an arrival and a departure scenario at the Boston Logan Airport. These eight scenarios were repeated twice for a total of 16 scenarios for each of the eleven crews. Quantitative data was collected on subject reaction time and eye tracking information. Questionnaires collected subjective feedback on workload and acceptability to the flight crew for using Data Comm in a busy terminal area. 95% of the Data Comm messages were responded to by the flight crew within one minute; however, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Eye tracking data indicated an insignificant decrease in head-up time for the Pilot Flying when Data Comm was introduced; however, the Pilot Monitoring had significantly less head-up time. Data Comm workload was rated as operationally acceptable by both crew members in all conditions in flight at any altitude above the Final Approach Fix in terms of response time and workload. Results also indicate the use of Data Comm during surface operations was acceptable, the exception being the simultaneous use of voice, Data Comm, and audio chime required for an aircraft to cross an active runway. Many crews reported they believed Data Comm messages would be acceptable after the Final Approach Fix or to cross a runway if the message was not accompanied by a chime and there was not a requirement to immediately respond to the uplink message.

  12. Suivi après le traitement du cancer du sein

    PubMed Central

    Sisler, Jeffrey; Chaput, Geneviève; Sussman, Jonathan; Ozokwelu, Emmanuel

    2016-01-01

    Résumé Objectif Offrir aux médecins de famille un résumé des recommandations fondées sur les données probantes pour guider les soins aux survivantes traitées pour le cancer du sein. Qualité des données Une recherche documentaire a été effectuée dans MEDLINE entre 2000 et 2016 à l’aide des mots-clés anglais suivants : breast cancer, survivorship, follow-up care, aftercare, guidelines et survivorship care plans, en se concentrant sur la revue des lignes directrices publiées récemment par les organismes nationaux de cancérologie. Les données étaient de niveaux I à III. Message principal Les soins aux survivantes comportent 4 facettes : surveillance et dépistage, prise en charge des effets à long terme, promotion de la santé et coordination des soins. La surveillance des récidives ne se traduit que par une mammographie annuelle, et le dépistage d’autres cancers doit suivre les lignes directrices basées sur la population. La prise en charge des effets à long terme du cancer et de son traitement aborde des problèmes courants tels la douleur, la fatigue, le lymphœdème, la détresse et les effets indésirables des médicaments, de même que les préoccupations à long terme comme la santé du cœur et des os. La promotion de la santé met en relief les bienfaits de l’activité chez les survivantes du cancer, avec l’accent mis sur l’activité physique. Les soins aux survivantes sont de meilleure qualité lorsque divers services et professionnels de la santé participent aux soins, et le médecin de famille joue un rôle important dans la coordination des soins. Conclusion Les médecins de famille sont de plus en plus souvent les principaux fournisseurs de soins de suivi après le traitement du cancer du sein. Le cancer du sein doit être considéré comme une affection médicale chronique, même chez les femmes en rémission, et les patientes profitent de la même approche que celle utilisée pour les autres affections chroniques en

  13. Graphite

    USGS Publications Warehouse

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  14. NextGen flight deck data comm: auxiliary synthetic speech - phase I

    DOT National Transportation Integrated Search

    2012-10-22

    Data Comma digital, text-based controller-pilot communication systemis critical to many NextGen improvements. With Data Comm, communication becomes a visual task. Although Data Comm brings many advantages, interacting with a visual display may ...

  15. CommServer: A Communications Manager For Remote Data Sites

    NASA Astrophysics Data System (ADS)

    Irving, K.; Kane, D. L.

    2012-12-01

    CommServer is a software system that manages making connections to remote data-gathering stations, providing a simple network interface to client applications. The client requests a connection to a site by name, and the server establishes the connection, providing a bidirectional channel between the client and the target site if successful. CommServer was developed to manage networks of FreeWave serial data radios with multiple data sites, repeaters, and network-accessed base stations, and has been in continuous operational use for several years. Support for Iridium modems using RUDICS will be added soon, and no changes to the application interface are anticipated. CommServer is implemented on Linux using programs written in bash shell, Python, Perl, AWK, under a set of conventions we refer to as ThinObject.

  16. Data Comm Flight Deck Human-in-the-Loop Simulation

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Martin, Lynne Hazel; Sharma, Shivanjli; Kaneshige, John T.; Dulchinos, Victoria

    2012-01-01

    This presentation discusses an upcoming simulation for data comm in the terminal area. The purpose of the presentation is to provide the REDAC committee with a summary of some of the work in Data Comm that is being sponsored by the FAA. The focus of the simulation is upon flight crew human performance variables, such as crew procedures, timing and errors. The simulation is scheduled to be conducted in Sept 2012.

  17. NextGen flight deck Data Comm : auxiliary synthetic speech phase I

    DOT National Transportation Integrated Search

    2012-12-31

    Data Comma text-based controller-pilot communication systemis critical to many NextGen improvements. With Data Comm, communication becomes a visual task. Interacting with a visual Data Comm display may yield an unsafe increase in head-down time...

  18. Consortium for Algal Biofuel Commercialization (CAB-COMM) Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayfield, Stephen P.

    The Consortium for Algal Biofuel Commercialization (CAB-Comm) was established in 2010 to conduct research to enable commercial viability of alternative liquid fuels produced from algal biomass. The main objective of CAB-Comm was to dramatically improve the viability of algae as a source of liquid fuels to meet US energy needs, by addressing several significant barriers to economic viability. To achieve this goal, CAB-Comm took a diverse set of approaches on three key aspects of the algal biofuels value chain: crop protection; nutrient utilization and recycling; and the development of genetic tools. These projects have been undertaken as collaboration between sixmore » academic institutions and two industrial partners: University of California, San Diego; Scripps Institution of Oceanography; University of Nebraska, Lincoln; Rutgers University; University of California, Davis; Johns Hopkins University; Sapphire Energy; and Life Technologies.« less

  19. Amélioration de la brillance d'un OPO nanoseconde par le profilage spatio-temporel du faisceau de pompage

    NASA Astrophysics Data System (ADS)

    Kermène, V.; Chabanol, M.; Mugnier, A.; Barthélémy, A.

    2002-06-01

    Nous présentons une nouvelle méthode de pompage pour augmenter la brillance d'un Oscillateur Paramétrique Optique nanoseconde. Cette méthode est basée sur le profilage spatio-temporel du faisceau de pompage conduisant POPO à ce comporter comme une source auto-injectée.

  20. DataComm in Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by 'preview' information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  1. CommWalker: correctly evaluating modules in molecular networks in light of annotation bias.

    PubMed

    Luecken, M D; Page, M J T; Crosby, A J; Mason, S; Reinert, G; Deane, C M

    2018-03-15

    Detecting novel functional modules in molecular networks is an important step in biological research. In the absence of gold standard functional modules, functional annotations are often used to verify whether detected modules/communities have biological meaning. However, as we show, the uneven distribution of functional annotations means that such evaluation methods favor communities of well-studied proteins. We propose a novel framework for the evaluation of communities as functional modules. Our proposed framework, CommWalker, takes communities as inputs and evaluates them in their local network environment by performing short random walks. We test CommWalker's ability to overcome annotation bias using input communities from four community detection methods on two protein interaction networks. We find that modules accepted by CommWalker are similarly co-expressed as those accepted by current methods. Crucially, CommWalker performs well not only in well-annotated regions, but also in regions otherwise obscured by poor annotation. CommWalker community prioritization both faithfully captures well-validated communities and identifies functional modules that may correspond to more novel biology. The CommWalker algorithm is freely available at opig.stats.ox.ac.uk/resources or as a docker image on the Docker Hub at hub.docker.com/r/lueckenmd/commwalker/. deane@stats.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  2. Method for producing dustless graphite spheres from waste graphite fines

    DOEpatents

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  3. Structural disorder of graphite and implications for graphite thermometry

    NASA Astrophysics Data System (ADS)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  4. Structure post-flambée pour la locomotion d'un microrobot intratubulaire: comparaison modèle-expérience de l'effort de serrage dans le tube

    NASA Astrophysics Data System (ADS)

    Libersa, C.; Arsicault, M.; Lallemand, J.-P.

    2002-12-01

    Ces travaux entrent dans le cadre des études nécessaires à la mise au point d'une structure déformable actionnée par fils en alliage à mémoire de forme. L'application visée est son utilisation comme module de locomotion d'un microrobot intratubulaire autonome de type “ lombric ”. Un module est constitué d'un cadre élastique carré forcé en post-flambement sur un squelette rigide, de manière à obtenir deux configurations symétriques d'équilibre stable correspondant au premier mode de flambage. Le passage d'un état d'équilibre à l'autre est obtenu par la contraction de fils AMF éduqués disposés sur le cadre post-flambé. Un assemblage par juxtaposition de cinq modules identiques compose le corps du microrobot. Suivant un cycle de locomotion adéquat, chacun de ces actionneurs “ tout ou rien ” permet la prise d'appui sur les parois du tube ou l'allongement local nécessaire à l'avance du microrobot. Nous présentons ici les résultats obtenus lors d'un chargement transversal d'un module, et en particulier les courbes reliant l'effort de réaction et le déplacement du point en contact avec le tube. L'influence du serrage subit par le module sur le maintien du microrobot dans un tube vertical est déterminée. Les résultats expérimentaux obtenus sont comparés avec les résultats numériques.

  5. DataComm in Flight Deck Surface Trajectory-Based Operations. Chapter 20

    NASA Technical Reports Server (NTRS)

    Bakowski, Deborah L.; Foyle, David C.; Hooey, Becky L.; Meyer, Glenn R.; Wolter, Cynthia A.

    2012-01-01

    The purpose of this pilot-in-the-loop aircraft taxi simulation was to evaluate a NextGen concept for surface trajectory-based operations (STBO) in which air traffic control (ATC) issued taxi clearances with a required time of arrival (RTA) by Data Communications (DataComm). Flight deck avionics, driven by an error-nulling algorithm, displayed the speed needed to meet the RTA. To ensure robustness of the algorithm, the ability of 10 two-pilot crews to meet the RTA was tested in nine experimental trials representing a range of realistic conditions including a taxi route change, an RTA change, a departure clearance change, and a crossing traffic hold scenario. In some trials, these DataComm taxi clearances or clearance modifications were accompanied by preview information, in which the airport map display showed a preview of the proposed route changes, including the necessary speed to meet the RTA. Overall, the results of this study show that with the aid of the RTA speed algorithm, pilots were able to meet their RTAs with very little time error in all of the robustness-testing scenarios. Results indicated that when taxi clearance changes were issued by DataComm only, pilots required longer notification distances than with voice communication. However, when the DataComm was accompanied by graphical preview, the notification distance required by pilots was equivalent to that for voice.

  6. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    PubMed

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Visual Data Comm: A Tool for Visualizing Data Communication in the Multi Sector Planner Study

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo Eric

    2010-01-01

    Data comm is a new technology proposed in future air transport system as a potential tool to provide comprehensive data connectivity. It is a key enabler to manage 4D trajectory digitally, potentially resulting in improved flight times and increased throughput. Future concepts with data comm integration have been tested in a number of human-in-the-loop studies but analyzing the results has proven to be particularly challenging because future traffic environment in which data comm is fully enabled has assumed high traffic density, resulting in data set with large amount of information. This paper describes the motivation, design, current and potential future application of Visual Data Comm (VDC), a tool for visualizing data developed in Java using Processing library which is a tool package designed for interactive visualization programming. This paper includes an example of an application of VDC on data pertaining to the most recent Multi Sector Planner study, conducted at NASA s Airspace Operations Laboratory in 2009, in which VDC was used to visualize and interpret data comm activities

  8. Flight Crew Workload, Acceptability, and Performance When Using Data Comm in a High-Density Terminal Area Simulation

    NASA Technical Reports Server (NTRS)

    Norman, R. Michael; Baxley, Brian T.; Adams, Cathy A.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R., Jr.

    2013-01-01

    This document describes a collaborative FAA/NASA experiment using 22 commercial airline pilots to determine the effect of using Data Comm to issue messages during busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage: Voice communication only, Data Comm only, Data Comm with Moving Map Display, and Data Comm with Moving Map displaying taxi route. Each condition was used in an arrival and a departure scenario at Boston Logan Airport. Of particular interest was the flight crew response to D-TAXI, the use of Data Comm by Air Traffic Control (ATC) to send taxi instructions. Quantitative data was collected on subject reaction time, flight technical error, operational errors, and eye tracking information. Questionnaires collected subjective feedback on workload, situation awareness, and acceptability to the flight crew for using Data Comm in a busy terminal area. Results showed that 95% of the Data Comm messages were responded to by the flight crew within one minute and 97% of the messages within two minutes. However, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Flight crews reported that Expected D-TAXI messages were useful, and employment of these messages acceptable at all altitude bands evaluated during arrival scenarios. Results also indicate that the use of Data Comm for all evaluated message types in the terminal area was acceptable during surface operations, and during arrivals at any altitude above the Final Approach Fix, in terms of response time, workload, situation awareness, and flight technical performance. The flight crew reported the use of Data Comm as implemented in this experiment as unacceptable in two instances: in clearances to cross an active runway, and D-TAXI messages between the Final Approach Fix and 80 knots during landing roll. Critical cockpit tasks and the urgency of out-the window scan made the

  9. GRAPHITE EXTRUSIONS

    DOEpatents

    Benziger, T.M.

    1959-01-20

    A new lubricant for graphite extrusion is described. In the past, graphite extrusion mixtures have bcen composed of coke or carbon black, together with a carbonaceous binder such as coal tar pitch, and a lubricant such as petrolatum or a colloidal suspension of graphite in glycerin or oil. Sinee sueh a lubricant is not soluble in, or compatible with the biiider liquid, such mixtures were difficult to extrude, and thc formed pieees lacked strength. This patent teaches tbe use of fatty acids as graphite extrusion lubricants and definite improvemcnts are realized thereby since the fatty acids are soluble in the binder liquid.

  10. Strategic graphite, a survey

    USGS Publications Warehouse

    Cameron, Eugene N.; Weis, Paul L.

    1960-01-01

    Strategic graphite consists of certain grades of lump and flake graphite for which the United States is largely or entirely dependent on sources abroad. Lump graphite of high purity, necessary in the manufacture of carbon brushes, is imported from Ceylon, where it occurs in vein deposits. Flake graphite, obtained from deposits consisting of graphite disseminated in schists and other metamorphic rocks, is an essential ingredient of crucibles used in the nonferrous metal industries and in the manufacture of lubricants and packings. High-quality flake graphite for these uses has been obtained mostly from Madagascar since World War I. Some flake graphite of strategic grade has been produced, however, from deposits in Texas, Alabama, and Pennsylvania. The development of the carbon-bonded crucible, which does not require coarse flake, should lessen the competitive advantage of the Madagascar producers of crucible flake. Graphite of various grades has been produced intermittently in the United States since 1644. The principal domestic deposits of flake graphite are in Texas, Alabama, Pennsylvania, and New York. Reserves of flake graphite in these four States are very large, but production has been sporadic and on the whole unprofitable since World War I, owing principally to competition from producers in Madagascar. Deposits in Madagascar are large and relatively high in content of flake graphite. Production costs are low and the flake produced is of high quality. Coarseness of flake and uniformity of the graphite products marketed are cited as major advantages of Madagascar flake. In addition, the usability of Madagascar flake for various purposes has been thoroughly demonstrated, whereas the usability of domestic flake for strategic purposes is still in question. Domestic graphite deposits are of five kinds: deposits consisting of graphite disseminated in metamorphosed siliceous sediments, deposits consisting of graphite disseminated in marble, deposits formed by

  11. Lele de l’omalizumab dans le traitement de l’asthme allergique grave

    PubMed Central

    Chapman, Kenneth R; Cartier, André; Hébert, Jacques; McIvor, R Andrew; Schellenberg, R Robert

    2006-01-01

    les patients traités par l’omalizumab que chez les sujets témoins. Des analyses rétrospectives ont permis d’identifier les caractéristiques des patients les plus susceptibles de répondre au traitement par l’omalizumab. RECOMMANDATIONS : L’omalizumab pourrait être envisagé comme traitement d’appoint dans les cas atopiques d’asthme grave non maîtrisé avec des traitements classiques par des doses optimales de CSI et un traitement d’appoint approprié (p. ex. : agonistes bêta-2 à action prolongée). En général, les patients sont classés en fonction de leur recours – traitement court et fréquent ou continu et oral – aux corticostéroïdes. Il ne faut amorcer le traitement qu’après avoir consulté un spécialiste pour confirmer le diagnostic et s’assurer que le traitement classique est optimal.

  12. Tubular graphite cones.

    PubMed

    Zhang, Guangyu; Jiang, Xin; Wang, Enge

    2003-04-18

    We report the synthesis of tubular graphite cones using a chemical vapor deposition method. The cones have nanometer-sized tips, micrometer-sized roots, and hollow interiors with a diameter ranging from about 2 to several tens of nanometers. The cones are composed of cylindrical graphite sheets; a continuous shortening of the graphite layers from the interior to the exterior makes them cone-shaped. All of the tubular graphite cones have a faceted morphology. The constituent graphite sheets have identical chiralities of a zigzag type across the entire diameter, imparting structural control to tubular-based carbon structures. The tubular graphite cones have potential for use as tips for scanning probe microscopy, but with greater rigidity and easier mounting than currently used carbon nanotubes.

  13. Thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  14. Retour vers le futur: l'expérience des patients et le lien avec la qualité, la sécurité et le rendement financier.

    PubMed

    Cochrane, Bonnie S; Hagins, Mitch; King, John A; Picciano, Gino; McCafferty, Maureen M; Nelson, Brian

    2015-11-01

    Au Canada, l'amélioration de l'expérience des patients est devenue une priorité des politiques de santé. Le perfectionnement et la normalisation des outils et systèmes pour surveiller les mesures de l'expérience des patients augmentent, tandis que la tendance vers une plus grande reddition de compte sur des améliorations durables et abordables se confirme. Pour de nombreux professionnels de la santé, ce phénomène fait foi d'un intérêt renouvelé pour les besoins et priorités fondamentaux des patients, après des décennies où les changements structurels et technologiques ont dominé les programmes de santé. Pour les leaders en santé canadiens, l'amélioration de l'expérience des patients comporte actuellement de grands défis et de belles possibilités. À cet égard, l'expérience des organisations partenaires du groupe Studer au Canada est à la fois pertinente et instructive. Ces organisations ont adopté un modèle, du nom de Evidence-Based Leadership (EBL, ou leadership fondé sur des données probantes), qui favorise et soutient l'harmonisation de l'ensemble des activités et des comportements, conformément à des objectifs organisationnels précis, y compris des améliorations mesurables de l'expérience des patients. Le présent article expose des études de cas d'organisations qui ont adopté l'EBL. Ces organisations ont réalisé des progrès rapides en matière d'indicateurs de l'expérience des patients, ainsi que dans des secteurs essentiels comme les résultats cliniques, la sécurité et le rendement financier. Les données émergentes sur les facteurs et processus qui sous-tendent ces améliorations sont également abordées. © 2015 Collège canadien des leaders en santé

  15. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  16. Purification and preparation of graphite oxide from natural graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphitemore » is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.« less

  17. Sérologie palustre: quel apport dans un pays d’endémie palustre comme la Côte d’Ivoire?

    PubMed Central

    Goran-Kouacou, Amah Patricia Victorine; Dou, Gonat Serge; Zika, Kalou Dibert; Adou, Adjoumanvoulé Honoré; Yéboah, Oppong Richard; Aka, Rita Ahou; Hien, Sansan; Siransy, Kouabla Liliane; N’Guessan, Koffi; Djibangar, Tariam Agnès; Dassé, Séry Romuald; Adoubryn, Koffi Daho

    2017-01-01

    Introduction La sérologie palustre semble avoir peu d’intérêt dans les pays d’endémie comme la Côte d’Ivoire. Cependant cet examen a été régulièrement réalisé au laboratoire de Parasitologie de l’Unité de Formation et de Recherche Sciences Médicales d’Abidjan. Le but de notre étude était d’apprécier l’apport de la sérologie palustre dans notre contexte de pays endémique. Méthodes Nous avons réalisé une étude rétrospective portant sur la sérologie palustre qui a utilisé le kit Falciparum spot-IF de Biomérieux à la recherche d’anticorps antiplasmodiaux d’isotype IgG. Elle a concerné les sérologies réalisées de janvier 2007 à février 2011 et dont les résultats étaient disponibles dans le registre. Résultats Au total, 136 patients ont été sélectionnés. L’âge moyen était de 36,3 ans avec des extrêmes de 1 an et 81 ans et un sex-ratio de 0,97. Les indications de sérologie palustre étaient variées, dominées par la splénomégalie (49,3%), les cytopénies (14,7%), la fièvre d’origine indéterminée (13,2%). La quasi-totalité des patients (98,5%) avaient des anticorps antiplasmodiaux avec un titre moyen élevé à 1057,35UI/ml. Il n’existait pas de lien entre l’âge et le titre d’Ac qui était plus élevé pour les cytopénies, les fièvres prolongées et la splénomégalie. Conclusion La sérologie palustre a peu d’intérêt dans notre pratique courante en zone d’endémie car quelque soit le motif de la prescription, les titres étaient élevés. PMID:28690735

  18. Quatrième conférence consensuelle sur le diagnostic et le traitement de la démence

    PubMed Central

    Moore, Ainsley; Patterson, Christopher; Lee, Linda; Vedel, Isabelle; Bergman, Howard

    2014-01-01

    Résumé Objectif Revoir les stratégies diagnostiques de la maladie d’Alzheimer, actualiser les recommandations concernant le traitement des symptômes de démence et proposer une approche thérapeutique à la démence d’apparition précoce et d’évolution rapide. Composition du comité Des spécialistes et des délégués de diverses régions du Canada et représentant diverses disciplines pertinentes ont discuté et se sont mis d’accord sur les révisions à apporter aux lignes directrices de 2006. Méthodologie On a eu recours au système GRADE (grading of recommendations, assessment, development, and evaluation) pour évaluer le consensus concernant les recommandations, lequel était défini comme suit : lorsque 80 % ou plus des participants ont voté en faveur de la recommandation. La cote des données probantes est rapportée lorsque cela est possible. Rapport important pour les médecins de famille, malgré les progrès effectués dans les domaines des biomarqueurs liquidiens et de la neuro-imagerie, le diagnostic de démence au Canada demeure fondamentalement clinique. De nouveaux critères cliniques essentiels de diagnostic de la maladie d’Alzheimer en reconnaissent dorénavant les formes moins fréquentes et non amnestiques. La démence précoce, une affection rare, mais importante, devrait inciter les médecins à aiguiller les patients vers un spécialiste ayant accès à des conseillers en génétique. La démence d’évolution rapide, mal définie dans la littérature, faciliterait le dépistage de cette affection rare, mais importante. Les inhibiteurs de la cholinestérase sont maintenant indiqués pour le traitement d’affections autres que la maladie d’Alzheimer. Des lignes directrices concernant l’arrêt du traitement, lesquelles n’existaient pas auparavant, sont également apparues. De nouvelles données probantes sur le recours à la mémantine, aux antidépresseurs et à d’autres agents psychotropes dans le traitement de la

  19. Graphene prepared by thermal reduction–exfoliation of graphite oxide: Effect of raw graphite particle size on the properties of graphite oxide and graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dao, Trung Dung; Jeong, Han Mo, E-mail: hmjeong@mail.ulsan.ac.kr

    Highlights: • Effect of raw graphite particle size on properties of GO and graphene is reported. • Size of raw graphite affects oxidation degree and chemical structure of GO. • Highly oxidized GO results in small-sized but well-exfoliated graphene. • GO properties affect reduction degree, structure, and conductivity of graphene. - Abstract: We report the effect of raw graphite size on the properties of graphite oxide and graphene prepared by thermal reduction–exfoliation of graphite oxide. Transmission electron microscope analysis shows that the lateral size of graphene becomes smaller when smaller size graphite is used. X-ray diffraction analysis confirms that graphitemore » with smaller size is more effectively oxidized, resulting in a more effective subsequent exfoliation of the obtained graphite oxide toward graphene. X-ray photoelectron spectroscopy demonstrates that reduction of the graphite oxide derived from smaller size graphite into graphene is more efficient. However, Raman analysis suggests that the average size of the in-plane sp{sup 2}-carbon domains on graphene is smaller when smaller size graphite is used. The enhanced reduction degree and the reduced size of sp{sup 2}-carbon domains contribute contradictively to the electrical conductivity of graphene when the particle size of raw graphite reduces.« less

  20. Monolithic porous graphitic carbons obtained through catalytic graphitization of carbon xerogels

    NASA Astrophysics Data System (ADS)

    Kiciński, Wojciech; Norek, Małgorzata; Bystrzejewski, Michał

    2013-01-01

    Pyrolysis of organic xerogels accompanied by catalytic graphitization and followed by selective-combustion purification was used to produce porous graphitic carbons. Organic gels impregnated with iron(III) chloride or nickel(II) acetate were obtained through polymerization of resorcinol and furfural. During the pyrolysis stage graphitization of the gel matrix occurs, which in turn develops mesoporosity of the obtained carbons. The evolution of the carbon into graphitic structures is strongly dependent on the concentrations of the transition metal. Pyrolysis leads to monoliths of carbon xerogel characterized by substantially enhanced mesoporosity resulting in specific surface areas up to 400 m2/g. Removal of the amorphous carbon by selective-combustion purification reduces the xerogels' mesoporosity, occasionally causing loss of their mechanical strength. The graphitized carbon xerogels were investigated by means of SEM, XRD, Raman scattering, TG-DTA and N2 physisorption. Through this procedure well graphitized carbonaceous materials can be obtained as bulk pieces.

  1. Producing graphite with desired properties

    NASA Technical Reports Server (NTRS)

    Dickinson, J. M.; Imprescia, R. J.; Reiswig, R. D.; Smith, M. C.

    1971-01-01

    Isotropic or anisotropic graphite is synthesized with precise control of particle size, distribution, and shape. The isotropic graphites are nearly perfectly isotropic, with thermal expansion coefficients two or three times those of ordinary graphites. The anisotropic graphites approach the anisotropy of pyrolytic graphite.

  2. B{sub 4}C-SiC reaction-sintered coatings on graphite plasma facing components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valentine, P.G.; Trester, P.W.; Winter, J.

    1994-05-01

    Boron carbide plus silicon carbide (B{sub 4}C-SiC) reaction-sintered coatings for use on graphite plasma-facing components were developed. Such coatings are of interest in TEXTOR tokamak limiter-plasma interactions as a means of reducing carbon erosion, of providing a preferred release of boron for oxygen gettering, and of investigating silicon`s effect on radiative edge phenomena. Specimens evaluated had (a) either Ringsdorfwerke EK 98 graphite or Le Carbon Lorraine felt-type AEROLOR A05 CFC substrates; (b) multiphase coatings, comprised of B{sub 4}C, Sic, and graphite; (c) nominal coating compositions of 69 wt.-% B{sub 4}C + 31 wt.-% SiC; and (d) nominal coating thicknesses betweenmore » 250 and 775 {mu}m. Coated coupons were evaluated by high heat flux experiments in the JUDITH (electron beam) test facility at KFA. Simulated disruptions, with energy densities up to 10 MJm{sup {minus}2}, and normal operation simulations, with power densities up to 12 MWm{sup {minus}2}, were conducted. The coatings remained adherent; at the highest levels tested, minor changes occurred, including localized remelting, modification of the crystallographic phases, occasional microcracking, and erosion.« less

  3. Preparation of graphitic articles

    DOEpatents

    Phillips, Jonathan; Nemer, Martin; Weigle, John C.

    2010-05-11

    Graphitic structures have been prepared by exposing templates (metal, metal-coated ceramic, graphite, for example) to a gaseous mixture that includes hydrocarbons and oxygen. When the template is metal, subsequent acid treatment removes the metal to yield monoliths, hollow graphitic structures, and other products. The shapes of the coated and hollow graphitic structures mimic the shapes of the templates.

  4. Les perceptions des femmes tunisiennes selon le modèle des croyances liées à la santé et leurs pratiques relativement à l'ostéoporose

    PubMed Central

    Belgacem, Amina; Nouira, Amel; Soussi, Sonia

    2016-01-01

    Introduction L'étude a pour objectif de décrire les croyances des femmes et leurs pratiques liées à la santé et à l'ostéoporose, afin d'élaborer des interventions efficaces et ciblées pour la prévention de cette maladie dans le contexte tunisien. Méthodes Une étude descriptive transversale a été effectuée auprès de 100 femmes tunisiennes, âgées de 45 ans et plus, qui consultent au centre de santé de base d'une zone périurbaine de la région de Sousse (Tunisie). La collecte de l'information a été réalisée à l'aide de « l'échelle des croyances relatives à la santé sur l'ostéoporose» développée par Kim et ses collègues traduit en arabe et validé en Tunisie et le questionnaire de «Calcul des apports calciques quotidiens» développé par Fardellone Patrice. L'interprétation des résultants s'est basée sur le «Health Belief Model ». Résultats La perception des participantes pourrait être considérée comme au dessus de la moyenne pour la vulnérabilité de l'ostéoporose (58%), la gravité de la maladie, les avantages de la pratique de l'activité physique, les avantages de l'apport en calcium et la motivation à la santé; par contre, elle pourrait être considérée comme modérée concernant les obstacles à la prévention. Cependant, les pratiques exposant au risque de la maladie sont relativement fréquentes et ceci essentiellement en rapport avec des facteurs socio-économiques et culturels. Conclusion Les programmes de promotion doivent viser la création d'un environnement physique et social favorable à l'adoption des comportements à moindre risque et viser l'éducation ciblée de la population. PMID:27217868

  5. Bridged graphite oxide materials

    NASA Technical Reports Server (NTRS)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  6. Les fluctuations supraconductrices dans le compose praseodyme-cerium-oxyde de cuivre

    NASA Astrophysics Data System (ADS)

    Renaud, Jacques

    , les effets du desordre semblent etre tres importants. Une analyse detaillee de tous ces resultats semble indiquer que les signatures 2D in identifiees proviennent vraisemblablement de plans paralleles decouples formes d'environ 4 plans CuO2 couples. On discute de cette mise en ordre partielle comme une possible consequence d'une separation de phase isolante antiferromagnetique/supraconducteur. La largeur de la transition en fonction du dopage est aussi analysee dans le but de mettre en lumiere un possible effet du pseudogap. On montre que nos mesures ne supportent pas une telle interpretation.

  7. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  8. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  9. Conductivite dans le modele de Hubbard bi-dimensionnel a faible couplage

    NASA Astrophysics Data System (ADS)

    Bergeron, Dominic

    Le modele de Hubbard bi-dimensionnel (2D) est souvent considere comme le modele minimal pour les supraconducteurs a haute temperature critique a base d'oxyde de cuivre (SCHT). Sur un reseau carre, ce modele possede les phases qui sont communes a tous les SCHT, la phase antiferromagnetique, la phase supraconductrice et la phase dite du pseudogap. Il n'a pas de solution exacte, toutefois, plusieurs methodes approximatives permettent d'etudier ses proprietes de facon numerique. Les proprietes optiques et de transport sont bien connues dans les SCHT et sont donc de bonne candidates pour valider un modele theorique et aider a comprendre mieux la physique de ces materiaux. La presente these porte sur le calcul de ces proprietes pour le modele de Hubbard 2D a couplage faible ou intermediaire. La methode de calcul utilisee est l'approche auto-coherente a deux particules (ACDP), qui est non-perturbative et inclue l'effet des fluctuations de spin et de charge a toutes les longueurs d'onde. La derivation complete de l'expression de la conductivite dans l'approche ACDP est presentee. Cette expression contient ce qu'on appelle les corrections de vertex, qui tiennent compte des correlations entre quasi-particules. Pour rendre possible le calcul numerique de ces corrections, des algorithmes utilisant, entre autres, des transformees de Fourier rapides et des splines cubiques sont developpes. Les calculs sont faits pour le reseau carre avec sauts aux plus proches voisins autour du point critique antiferromagnetique. Aux dopages plus faibles que le point critique, la conductivite optique presente une bosse dans l'infrarouge moyen a basse temperature, tel qu'observe dans plusieurs SCHT. Dans la resistivite en fonction de la temperature, on trouve un comportement isolant dans le pseudogap lorsque les corrections de vertex sont negligees et metallique lorsqu'elles sont prises en compte. Pres du point critique, la resistivite est lineaire en T a basse temperature et devient

  10. Effect of graphite target power density on tribological properties of graphite-like carbon films

    NASA Astrophysics Data System (ADS)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  11. Histoire d’un itinéraire épidémiologique entre le Burkina Faso et la Côte d’Ivoire : le cas des foyers de maladie du sommeil de Koudougou

    PubMed Central

    Kiendrébéogo, D.; Kambiré, R.; Jamonneau, V.; Lingué, K.; Solano, P.; Courtin, F.

    2012-01-01

    Dans la première moitié du XXème siècle, alors que la Haute-Volta (actuel Burkina Faso) subissait une terrible épidémie de maladie du sommeil, l’administration coloniale française a orchestré des déplacements massifs de populations de la Haute-Volta vers la Côte d’Ivoire, pour exploiter le territoire. Cela a conduit à la mise en place de villages de colonisation Mossi en zone forestière ivoirienne, comme ceux de Koudougou, issus de l’une des régions les plus peuplées de Haute-Volta, mais aussi l’une des plus touchées par la maladie du sommeil. Depuis 2000, au Burkina Faso, c’est dans le district sanitaire de Koudougou que sont dépistés passivement le plus grand nombre de trypanosomés en provenance de Côte d’Ivoire. Qui sont-ils ? Où habitent-ils au Burkina Faso ? D’où viennent-ils de Côte d’Ivoire ? Après avoir retracé l’histoire épidémiologique des villages de Koudougou au Burkina Faso et en Côte d’Ivoire, nous avons recherché les trypanosomés dépistés passivement depuis 2000 dans le district sanitaire de Koudougou au Burkina Faso. Au total, dix trypanosomés ont été enquêtés. Le processus de propagation de la maladie du sommeil dans l’espace ivoiro-burkinabé a été mis en évidence et des zones à risque de la maladie identifiées dans ce même espace. PMID:23193525

  12. EXPLORATORY DEVELOPMENT OF GRAPHITE MATERIALS.

    DTIC Science & Technology

    COMPOSITE MATERIALS), (* GRAPHITE , (*FIBERS, GRAPHITE ), (*LAMINATED PLASTICS, GRAPHITE ), MOLDINGS, EXTRUSION, VACUUM, EPOXY RESINS, FILAMENTS, STRESSES, TENSILE PROPERTIES, OXIDATION, PHYSICAL PROPERTIES.

  13. Mars Comm/Nav MicroSat Network Using the Multi-Mission Bus Launched Piggyback by Ariane 5

    NASA Technical Reports Server (NTRS)

    Hastrup, R. C.; Cesarone, R. J.; Morabito, D. D.

    1999-01-01

    Recently, NASA's Jet Propulsion Laboratory completed a Mars Exploration Program Architecture Definition Study with strong international participation. The recommendations of this study include establishment of a low cost in-situ communications and navigation satellite network to provide enabling and enhancing support for the international exploration of Mars. This would be the first step toward establishing a "virtual presence throughout the solar system" as called for in NASA's Strategic Plan. Response to the proposed comm/nav satellite network has been very favorably received, as reflected by the inclusion of a line item in NASA's budget submittal to Congress, which provides funding for implementation of the network with first launch in the 2003 opportunity. Funding has already been provided for a phase A study being conducted this year. This paper presents the planned implementation of the comm/nav network, which will utilize microsats based on a multi-mission spacecraft bus being designed for launch by the Ariane 5 as a secondary payload. A companion paper at this conference, entitled "The Multi-Purpose Mars Micro-Mission System Design Utilizing Ariane 5 Piggyback Launch", describes the multimission bus design. This paper addresses the application of the multi-mission bus to the comm/nav microsat mission. Following an introduction, which provides the background that has led to the proposed comm/nav network, the paper discusses the projected user needs with emphasis on the various possible robotic missions (landers, rovers, ascent vehicles, balloons, aircraft, etc.) progressing toward eventual piloted missions. Next, the paper describes the concept for an evolving network of comm/nav microsats and the expected capability to satisfy the user needs. Results of communications and navigation performance analysis are summarized for attractive satellite constellation configurations. The important comm/nav microsat functional requirements on the multi

  14. Ferrix Chloride-Graphite Intercalation Compounds Prepared From Graphite Flouride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1995-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp(sup 3) electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp(sup 2) electronic structure and are electrical conductors. They contain first-stage FeCl3 intercalated graphite. Some of the products contain FeCl2 (center dot) 2H2O, others contain FeF3, in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearance of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol%), this new GIC deintercalates without losing its molecular structure. However, when the compounds are exposed to 800 C N2, in a quartz tube, they lost most of their halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber.

  15. Graphite-based photovoltaic cells

    DOEpatents

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  16. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    NASA Astrophysics Data System (ADS)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  17. NEW METHOD OF GRAPHITE PREPARATION

    DOEpatents

    Stoddard, S.D.; Harper, W.T.

    1961-08-29

    BS>A method is described for producing graphite objects comprising mixing coal tar pitch, carbon black, and a material selected from the class comprising raw coke, calcined coke, and graphite flour. The mixture is placed in a graphite mold, pressurized to at least 1200 psi, and baked and graphitized by heating to about 2500 deg C while maintaining such pressure. (AEC)

  18. NextGen Flight Deck Data Comm : Auxiliary Synthetic Speech Phase II

    DOT National Transportation Integrated Search

    2015-07-01

    Data Comma text-based controller-pilot communication systemis expected to yield several NextGen safety and efficiency benefits. With Data Comm, communication becomes a visual task, and may potentially increase head-down time on the flight deck ...

  19. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  20. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, Albert J.; Dykes, Norman L.

    1984-01-01

    The present invention is directed to a brazing material for joining graphite structures that can be used at temperatures up to about 2800.degree. C. The brazing material formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600.degree. C. with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800.degree. C. so as to provide a brazed joint consisting essentially of hafnium carbide. This brazing temperature for hafnium carbide is considerably less than the eutectic temperature of hafnium carbide of about 3150.degree. C. The brazing composition also incorporates the thermosetting resin so that during the brazing operation the graphite structures may be temporarily bonded together by thermosetting the resin so that machining of the structures to final dimensions may be completed prior to the completion of the brazing operation. The resulting brazed joint is chemically and thermally compatible with the graphite structures joined thereby and also provides a joint of sufficient integrity so as to at least correspond with the strength and other properties of the graphite.

  1. Le surpoids, l’obésité et le contrôle glycémique chez les diabétiques du centre de référence provincial de diabète (CRD), Kénitra, Maroc

    PubMed Central

    Lotfi, Zeghari; Aboussaleh, Youssef; Sbaibi, Rachid; Achouri, Imane; Benguedour, Rachid

    2017-01-01

    Introduction Le diabète est définit comme un trouble de l'assimilation, de l'utilisation et du stockage des sucres apportés par l'alimentation, sa prise en charge est assurée par le suivi du surpoids et l'obésité et le contrôle glycémique régulier. L'objectif de ce travail était l'étude du surpoids, l'obésité et le contrôle glycémique chez 2227 diabétiques de différent type (type 1, 2 et gestationnel), consultants le centre de référence provincial de diabète (CRD), Kénitra-Maroc. Méthodes L'étude s'est déroulée sur une période d'une année du mois janvier au mois décembre 2015, L'évaluation du surpoids et l'obésité a été effectuée par le calcul de l'Indice de Masse Corporelle (IMC=Poids/Taille2 (Kg/m2)), elles sont définit respectivement par IMC > 25 Kg/m2, et IMC > 30 Kg/m2, le poids et la taille ont été mesurés selon les recommandations de l'organisation mondiale de santé (OMS), Le contrôle glycémique a été effectué par l'analyse sanguine de l'Hémoglobine glycosylée et de la Glycémie à jeun. Les normes sont 7% pour l'Hémoglobine glycosylée et 0,70g/l à 1,10g/l pour la Glycémie à jeun. Résultats L'intervalle d'âges des patients est compris entre 8 mois et 80 ans, avec une dominance des diabétiques provenant du milieu urbain (74%) par rapport à ceux provenant du milieu rural (26%). Le surpoids touche l'ensemble de cette population. L'IMC moyen des femmes tends vers l'obésité (IMC≈30): (29,21 Kg/m2 ± 3,1) pour le diabète gestationnel et (29,15 Kg/m2 ± 3,2) pour le diabète de type 2. Les valeurs du contrôle glycémique sont supérieures aux normes: avec 8,5% ± 2,6 > 7% pour l'hémoglobine glycosylée et 1,5 g/l ± 1,3 > 1,10g/l pour la Glycémie à jeun. La différence entre les valeurs de l'hémoglobine glycosylée entre les hommes (8,5 7% ± 2,6) et les femmes (8,1% ± 2,3) n'est pas significative (P > 0,05), même chose pour la Glycémie capillaire à jeun: pour les hommes (1,44 g/l ± 1,1) et les

  2. Systems and methods for forming defects on graphitic materials and curing radiation-damaged graphitic materials

    DOEpatents

    Ryu, Sunmin; Brus, Louis E.; Steigerwald, Michael L.; Liu, Haitao

    2012-09-25

    Systems and methods are disclosed herein for forming defects on graphitic materials. The methods for forming defects include applying a radiation reactive material on a graphitic material, irradiating the applied radiation reactive material to produce a reactive species, and permitting the reactive species to react with the graphitic material to form defects. Additionally, disclosed are methods for removing defects on graphitic materials.

  3. Development of the LaComm 1.0, A French medical communication analysis software: A study assessing its sensitivity to change.

    PubMed

    Gibon, Anne-Sophie; Durieux, Jean-François; Merckaert, Isabelle; Delvaux, Nicole; Farvacques, Christine; Libert, Yves; Marchal, Serge; Moucheux, Angélique; Slachmuylder, Jean-Louis; Razavi, Darius

    2017-02-01

    To test and compare the sensitivity to change of a communication analysis software, the LaComm 1.0, to the CRCWEM's using data from a randomized study assessing the efficacy of a communication skills training program designed for nurses. The program assessment included the recording of two-person simulated interviews at baseline and after training or 3 months later. Interview transcripts were analyzed using the CRCWEM and the LaComm 1.0 tools. One hundred and nine oncology nurses (mainly graduated or certified) were included in the study. The CRCWEM detected 5 changes out of 13 expected changes (38%) (e.g., more open directive questions after training) and the LaComm 1.0, 4 changes out of 7 expected changes (57%) (e.g., more empathic statements after training). For open directive question, the effect sizes of the group-by-time changes were slightly different between tools (CRCWEM: Cohen's d=0.97; LaComm 1.0: Cohen's d=0.67). This study shows that the LaComm 1.0 is sensitive to change. The LaComm 1.0 is a valid method to assess training effectiveness in French. The use of the Lacomm 1.0 in future French communication skills training programs will allow comparisons of studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. VibeComm: radio-free wireless communication for smart devices using vibration.

    PubMed

    Hwang, Inhwan; Cho, Jungchan; Oh, Songhwai

    2014-11-10

    This paper proposes VibeComm, a novel communication method for smart devices using a built-in vibrator and accelerometer. The proposed approach is ideal for low-rate off-line communication, and its communication medium is an object on which smart devices are placed, such as tables and desks. When more than two smart devices are placed on an object and one device wants to transmit a message to the other devices, the transmitting device generates a sequence of vibrations. The vibrations are propagated through the object on which the devices are placed. The receiving devices analyze their accelerometer readings to decode incoming messages. The proposed method can be the alternative communication method when general types of radio communication methods are not available. VibeComm is implemented on Android smartphones, and a comprehensive set of experiments is conducted to show its feasibility.

  5. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Navak, R. C.

    1977-01-01

    The results of a program designed to optimize the fabrication procedures for graphite thermoplastic composites are described. The properties of the composites as a function of temperature were measured and graphite thermoplastic fan exit guide vanes were fabricated and tested. Three thermoplastics were included in the investigation: polysulfone, polyethersulfone, and polyarylsulfone. Type HMS graphite was used as the reinforcement. Bending fatigue tests of HMS graphite/polyethersulfone demonstrated a gradual shear failure mode which resulted in a loss of stiffness in the specimens. Preliminary curves were generated to show the loss in stiffness as a function of stress and number of cycles. Fan exit guide vanes of HMS graphite polyethersulfone were satisfactorily fabricated in the final phase of the program. These were found to have stiffness and better fatigue behavior than graphite epoxy vanes which were formerly bill of material.

  6. FennoFlakes: a project for identifying flake graphite ores in the Fennoscandian shield and utilizing graphite in different applications

    NASA Astrophysics Data System (ADS)

    Palosaari, Jenny; Eklund, O.; Raunio, S.; Lindfors, T.; Latonen, R.-M.; Peltonen, J.; Smått, J.-H.; Kauppila, J.; Lund, S.; Sjöberg-Eerola, P.; Blomqvist, R.; Marmo, J.

    2016-04-01

    Natural graphite is a strategic mineral, since the European Commission stated (Report on critical raw materials for the EU (2014)) that graphite is one of the 20 most critical materials for the European Union. The EU consumed 13% of all flake graphite in the world but produced only 3%, which stresses the demand of the material. Flake graphite, which is a flaky version of graphite, forms under high metamorphic conditions. Flake graphite is important in different applications like batteries, carbon brushes, heat sinks etc. Graphene (a single layer of graphite) can be produced from graphite and is commonly used in many nanotechnological applications, e.g. in electronics and sensors. The steps to obtain pure graphene from graphite ore include fragmentation, flotation and exfoliation, which can be cumbersome and resulting in damaging the graphene layers. We have started a project named FennoFlakes, which is a co-operation between geologists and chemists to fill the whole value chain from graphite to graphene: 1. Exploration of graphite ores (geological and geophysical methods). 2. Petrological and geochemical analyses on the ores. 3. Development of fragmentation methods for graphite ores. 4. Chemical exfoliation of the enriched flake graphite to separate flake graphite into single and multilayer graphene. 5. Test the quality of the produced material in several high-end applications with totally environmental friendly and disposable material combinations. Preliminary results show that flake graphite in high metamorphic areas has better qualities compared to synthetic graphite produced in laboratories.

  7. Improved Graphite Fiber.

    DTIC Science & Technology

    1982-10-01

    The purpose of the program was to develop a production method for improved graphite fibers. A goal of 750 x 10 to the 3rd power psi tensile strength...at 60-65 x 10 to the 6th power psi modulus was set for the program. Improved 3-4 micron diameter boron strengthened graphite fibers were successfully... graphite fiber. An average tensile strength of 550 x 10 to the 3rd power psi at the 60 x 10 to the 6th power psi modulus level was achieved through a preliminary optimization of the plant processing conditions.

  8. Preparation of graphite dispersed copper composite with intruding graphite particles in copper plate

    NASA Astrophysics Data System (ADS)

    Noor, Abdul Muizz Mohd; Ishikawa, Yoshikazu; Yokoyama, Seiji

    2017-01-01

    In this study, it was attempted that copper-graphite composite was prepared locally on the surface of a copper plate with using a spot welding machine. Experiments were carried out with changing the compressive load, the repetition number of the compression and the electrical current in order to study the effect of them on carbon content and Vickers hardness on the copper plate surface. When the graphite was pushed into copper plate only with the compressive load, the composite was mainly hardened by the work hardening. The Vickers hardness increased linearly with an increase in the carbon content. When an electrical current was energized through the composite at the compression, the copper around the graphite particles were heated to the temperature above approximately 2100 K and melted. The graphite particles partially or entirely dissolved into the melt. The graphite particles were precipitated from the melt under solidification. In addition, this high temperature caused the improvement of wetting of copper to graphite. This high temperature caused the annealing, and reduced the Vickers hardness. Even in this case, the Vickers hardness increased with an increase in the carbon content. This resulted from the dispersion hardening.

  9. Formation mechanism of graphite hexagonal pyramids by argon plasma etching of graphite substrates

    NASA Astrophysics Data System (ADS)

    Glad, X.; de Poucques, L.; Bougdira, J.

    2015-12-01

    A new graphite crystal morphology has been recently reported, namely the graphite hexagonal pyramids (GHPs). They are hexagonally-shaped crystals with diameters ranging from 50 to 800 nm and a constant apex angle of 40°. These nanostructures are formed from graphite substrates (flexible graphite and highly ordered pyrolytic graphite) in low pressure helicon coupling radiofrequency argon plasma at 25 eV ion energy and, purportedly, due to a physical etching process. In this paper, the occurrence of peculiar crystals is shown, presenting two hexagonal orientations obtained on both types of samples, which confirms such a formation mechanism. Moreover, by applying a pretreatment step with different time durations of inductive coupling radiofrequency argon plasma, for which the incident ion energy decreases at 12 eV, uniform coverage of the surface can be achieved with an influence on the density and size of the GHPs.

  10. Technique distribuee de gestion de la charge sur le reseau electrique et ring-tree: Un nouveau systeme de communication P2P

    NASA Astrophysics Data System (ADS)

    Ayoub, Simon

    suffisant pour les besoins des applications visees. Les protocoles de communication s'appuient sur un protocole de transport qui peut etre un de ceux utilises sur l'Internet comme TCP ou UDP. Pour valider le fonctionnement de de la technique de controle distribuee et le systeme de communiction Ring-Tree, un simulateur a ete developpe; un modele de chauffe-eau, comme exemple de charge, a ete integre au simulateur. La simulation d'une communaute de chauffe-eaux intelligents a montre que la technique de gestion de la charge combinee avec du stockage d'energie sous forme thermique permet d'obtenir, sans affecter le confort de l'utilisateur, des profils de consommation varies dont un profil de consommation uniforme qui represente un facteur de charge de 100%. Mots-cles : Algorithme Distribue, Demand Response, Gestion de la Charge Electrique, M2M (Machine-to-Machine), P2P (Peer-to-Peer), Reseau Electrique Intelligent, Ring-Tree, Smart Grid

  11. High speed hydrogen/graphite interaction

    NASA Technical Reports Server (NTRS)

    Kelly, A. J.; Hamman, R.; Sharma, O. P.; Harrje, D. T.

    1974-01-01

    Various aspects of a research program on high speed hydrogen/graphite interaction are presented. Major areas discussed are: (1) theoretical predictions of hydrogen/graphite erosion rates; (2) high temperature, nonequilibrium hydrogen flow in a nozzle; and (3) molecular beam studies of hydrogen/graphite erosion.

  12. Chemical stabilization of graphite surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bistrika, Alexander A.; Lerner, Michael M.

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditionsmore » for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.« less

  13. Le syndrome d’alcoolisme foetal

    PubMed Central

    2002-01-01

    anomalies pouvant être reliées à l’alcool sont soulignées. L’intervention est axée sur l’optimisation du développement, la prise en charge des troubles de comportement et la prestation d’un programme scolaire convenable. Il est capital d’intervenir le plus tôt possible pour prévenir les incapacités secondaires susceptibles de découler d’un délai causé par l’attente d’un diagnostic définitif de SAF. Ce n’est que depuis 1973, lorsque Jones et Smith (1) ont donné des descriptions classiques des malformations reliées à l’exposition du foetus à l’alcool, qu’on a compris toute l’étendue de la dévastation provoquée par la consommation d’alcool pendant la grossesse. Un diagnostic de syndrome d’alcoolisme foetal (SAF) dépend d’un historique de consommation prénatale d’alcool par la mère, combiné à un ensemble de caractéristiques chez le nourrisson : croissance médiocre, traits caractéristiques du visage et anomalies neurodéveloppementales. À l’origine, l’effet de l’alcool sur le foetus (SAF atypique) était décrit comme une exposition à l’alcool accompagnée d’un schéma incomplet de manifestations physiques et psychologiques non spécifiques. Cette nomenclature a largement été remplacée par un système de classification qui précise si les effets sont physiques (anomalies congénitales reliées à l’alcool [ACRA]) ou reliés au développement du système nerveux ou du cerveau (anomalies neurodéveloppementales reliées à l’alcool [ANRA]) (2). Bien que les ACRA et les ANRA n’accompagnent pas nécessairement le SAF complet, leurs effets peuvent être tout aussi graves (3). Récemment, Astley et Clarren (4) ont suggéré de limiter la nomenclature aux termes SAF et SAF atypique.

  14. Le stéréorestituteur Kelsh

    USGS Publications Warehouse

    Kelsh, H.T.

    1949-01-01

    Le ste??re??orestituteur Kelsh est un appareil de restitution a?? double projection base?? sur le principe des anaglyphes, comme le Multiplex par exemple, mais il a une plus grande pre??cision que ce dernier, vu que les ne??gatifs sont utilise??s directement pour la restitution, sans que l'on soit oblige?? de les re??duire au pre??alable. Une telle solution devient possible lorsque l'e??chelle de l'image plastique (mode??le) est au moins 7 fois plus grande que celle des cliche??s. L'appareil comprend un support reposant par 4 pieds sur la table a?? dessin. Sa partie supe??rieure porte, par l'interme??diaire de trois vis calantes, un cadre dans lequel les deux chambres de projection sont suspendues. Des leviers de commande, agissant sur les chambres, permettent d'introduire la base, le de??versement et les inclinaisons transversale et longitudinale. Les cliche??s conjugue??s ou des diapositifs sont directement place??s dans les chambres de projection munies d'objectifs. En projetant les deux cliche??s au moyen de couleurs comple??mentaires, l'observateur - muni de lunettes a?? verres colore??s (couleurs comple??mentaires) - observe l'image plastique audessus de la table a?? dessin, l'orientation relative des chambres ayant e??te?? e??tablie au pre??alable. Pour le report des points de l'image plastique sur la minute, l'ope??rateur dispose d'une tablette amovible a?? marque-repe??re lumineuse qu'il de??place a?? la main et dont la hauteur au-dessus de la table a?? dessin peut e??tre commande??e par une molette. Pour e??tablir l'orientation absolue de l'image plastique, il suffit d'incliner convenablement le cadre de suspension a?? l'aide des vis calantes, l'orientation relative n'e??tant pas de??truite par cette ope??ration. Les deux cliche??s sont e??claire??s par des projecteurs munis d'une suspension a?? la cardan et relie??s a?? la tablette de restitution par des tiges te??lescopiques. Moyennant ce dispositif, l'e??clairage est concentre?? sur deux petites re

  15. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less

  16. ComM is a hexameric helicase that promotes branch migration during natural transformation in diverse Gram-negative species.

    PubMed

    Nero, Thomas M; Dalia, Triana N; Wang, Joseph Che-Yen; Kysela, David T; Bochman, Matthew L; Dalia, Ankur B

    2018-05-02

    Acquisition of foreign DNA by natural transformation is an important mechanism of adaptation and evolution in diverse microbial species. Here, we characterize the mechanism of ComM, a broadly conserved AAA+ protein previously implicated in homologous recombination of transforming DNA (tDNA) in naturally competent Gram-negative bacterial species. In vivo, we found that ComM was required for efficient comigration of linked genetic markers in Vibrio cholerae and Acinetobacter baylyi, which is consistent with a role in branch migration. Also, ComM was particularly important for integration of tDNA with increased sequence heterology, suggesting that its activity promotes the acquisition of novel DNA sequences. In vitro, we showed that purified ComM binds ssDNA, oligomerizes into a hexameric ring, and has bidirectional helicase and branch migration activity. Based on these data, we propose a model for tDNA integration during natural transformation. This study provides mechanistic insight into the enigmatic steps involved in tDNA integration and uncovers the function of a protein required for this conserved mechanism of horizontal gene transfer.

  17. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    NASA Astrophysics Data System (ADS)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  18. Stable dispersions of polymer-coated graphitic nanoplatelets

    NASA Technical Reports Server (NTRS)

    Nguyen, Sonbinh T. (Inventor); Stankovich, Sasha (Inventor); Ruoff, Rodney S. (Inventor)

    2011-01-01

    A method of making a dispersion of reduced graphite oxide nanoplatelets involves providing a dispersion of graphite oxide nanoplatelets and reducing the graphite oxide nanoplatelets in the dispersion in the presence of a reducing agent and a polymer. The reduced graphite oxide nanoplatelets are reduced to an extent to provide a higher C/O ratio than graphite oxide. A stable dispersion having polymer-treated reduced graphite oxide nanoplatelets dispersed in a dispersing medium, such as water or organic liquid is provided. The polymer-treated, reduced graphite oxide nanoplatelets can be distributed in a polymer matrix to provide a composite material.

  19. Recompressed exfoliated graphite articles

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  20. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    Preliminary results of the research on carbon and graphite accomplished during this report period are presented. Included are: particle characteristics of Santa Maria fillers, compositions and density data for hot-molded Santa Maria graphites, properties of hot-molded Santa Maria graphites, and properties of hot-molded anisotropic graphites. Ablation-resistant graphites are also discussed.

  1. METHOD OF FABRICATING A GRAPHITE MODERATED REACTOR

    DOEpatents

    Kratz, H.R.

    1963-05-01

    S>A nuclear reactor formed of spaced bodies of uranium and graphite blocks is improved by diffusing helium through the graphite blocks in order to replace the air in the pores of the graphite with helium. The helium-impregnated graphite conducts heat better, and absorbs neutrons less, than the original air- impregnated graphite. (AEC)

  2. Mineral resource of the month: graphite

    USGS Publications Warehouse

    ,

    2008-01-01

    The article presents facts about graphite ideal for industrial applications. Among the characteristics of graphite are its metallic luster, softness, perfect basal cleavage and electrical conductivity. Batteries, brake linings and powdered metals are some of the products that make use of graphite. It attributes the potential applications for graphite in high-technology fields to innovations in thermal technology and acid-leaching techniques.

  3. Biopolymer-modified graphite oxide nanocomposite films based on benzalkonium chloride-heparin intercalated in graphite oxide

    NASA Astrophysics Data System (ADS)

    Meng, Na; Zhang, Shuang-Quan; Zhou, Ning-Lin; Shen, Jian

    2010-05-01

    Heparin is a potent anticoagulant agent that interacts strongly with antithrombin III to prevent the formation of fibrin clots. In the present work, poly(dimethylsiloxane)(PDMS)/graphite oxide-benzalkonium chloride-heparin (PDMS/modified graphite oxide) nanocomposite films were obtained by the solution intercalation technique as a possible drug delivery system. The heparin-benzalkonium chloride (BAC-HEP) was intercalated into graphite oxide (GO) layers to form GO-BAC-HEP (modified graphite oxide). Nanocomposite films were characterized by XRD, SEM, TEM, ATR-FTIR and TGA. The modified graphite oxide was observed to be homogeneously dispersed throughout the PDMS matrix. The effect of modified graphite oxide on the mechanical properties of the nanocomposite film was investigated. When the modified graphite oxide content was lower than 0.2 wt%, the nanocomposites showed excellent mechanical properties. Furthermore, nanocomposite films become delivery systems that release heparin slowly to make the nanocomposite films blood compatible. The in vitro studies included hemocompatibility testing for effects on platelet adhesion, platelet activation, plasma recalcification profiles, and hemolysis. Results from these studies showed that the anticoagulation properties of PDMS/GO-BCA-HEP nanocomposite films were greatly superior to those for no treated PDMS. Cell culture assay indicated that PDMS/GO-BCA-HEP nanocomposite films showed enhanced cell adhesion.

  4. Le domaine des co-infections et des maladies concomitantes du Réseau canadien pour les essais VIH des IRSC : lignes directrices canadiennes pour la prise en charge et le traitement de la co-infection par le VIH et l’hépatite C chez les adultes

    PubMed Central

    Hull, Mark; Giguère, Pierre; Klein, Marina; Shafran, Stephen; Tseng, Alice; Côté, Pierre; Poliquin, Marc; Cooper, Curtis

    2014-01-01

    il y a clairance virologique à la semaine 4 ou, pour les génotypes 2 à 6, à 48 semaines. On peut envisager de reporter le traitement chez les personnes ayant une maladie hépatique légère. Le VIH ne devrait pas être considéré comme un obstacle à la transplantation hépatique chez les patients co-infectés. EXPOSÉ : Les recommandations ne se substituent pas au jugement clinique personnel. PMID:24634688

  5. Heat exchanger using graphite foam

    DOEpatents

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  6. Low-energy electron diffraction study of potassium adsorbed on single-crystal graphite and highly oriented pyrolytic graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferralis, N.; Diehl, R.D.; Pussi, K.

    2004-12-15

    Potassium adsorption on graphite has been a model system for the understanding of the interaction of alkali metals with surfaces. The geometries of the (2x2) structure of potassium on both single-crystal graphite (SCG) and highly oriented pyrolytic graphite (HOPG) were investigated for various preparation conditions for graphite temperatures between 55 and 140 K. In all cases, the geometry was found to consist of K atoms in the hollow sites on top of the surface. The K-graphite average perpendicular spacing is 2.79{+-}0.03 A , corresponding to an average C-K distance of 3.13{+-}0.03 A , and the spacing between graphite planes ismore » consistent with the bulk spacing of 3.35 A. No evidence was observed for a sublayer of potassium. The results of dynamical LEED studies for the clean SCG and HOPG surfaces indicate that the surface structures of both are consistent with the truncated bulk structure of graphite.« less

  7. Graphitized-carbon fiber/carbon char fuel

    DOEpatents

    Cooper, John F [Oakland, CA

    2007-08-28

    A method for recovery of intact graphitic fibers from fiber/polymer composites is described. The method comprises first pyrolyzing the graphite fiber/polymer composite mixture and then separating the graphite fibers by molten salt electrochemical oxidation.

  8. Method of Joining Graphite Fibers to a Substrate

    NASA Technical Reports Server (NTRS)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  9. Synthesis of soluble graphite and graphene.

    PubMed

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: COMM ENGINEERING, USA ENVIRONMENTAL VAPOR RECOVERY UNIT (EVRU)

    EPA Science Inventory

    This report documents the testing of a new technology that recovers and utilizes vapors from crude oil storage tanks employed in the oil production and processing industry. The COMM Engineering, USA Environmental Vapor Recovery Unit (EVRU) is a non-mechanical eductor, or jet pump...

  11. Study of high resistance inorganic coatings on graphite fibers. [for graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Veltri, R. D.; Scola, D. A.

    1979-01-01

    Coatings made of boron, silicon carbide, silica, and silica-like materials were studied to determine their ability to increase resistance of graphite fibers. The most promising results were attained by chemical vapor depositing silicon carbide on graphite fiber followed by oxidation, and drawing graphite fiber through ethyl silicate followed by appropriate heat treatments. In the silicon carbide coating studies, no degradation of the graphite fibers was observed and resistance values as high as three orders of magnitude higher than that of the uncoated fiber was attained. The strength of a composite fabricated from the coated fiber had a strength which compared favorably with those of composites prepared from uncoated fiber. For the silica-like coated fiber prepared by drawing the graphite fiber through an ethyl silicate solution followed by heating, coated fiber resistances about an order of magnitude greater than that of the uncoated fiber were attained. Composites prepared using these fibers had flexural strengths comparable with those prepared using uncoated fibers, but the shear strengths were lower.

  12. Graphite pneumoconiosis

    PubMed Central

    Ranasinha, K. W.; Uragoda, C. G.

    1972-01-01

    Ranasinha, K. W., and Uragoda, C. G. (1972).Brit. J. industr. Med.,29, 178-183. Graphite pneumoconiosis. In this survey, which is the first of its kind in the graphite industry, 344 workers in a large mine in Ceylon were investigated for pulmonary lesions; 22·7% of them had radiographic abnormalities, which included small rounded and irregular opacities, large opacities, and significant enlargement of hilar shadows. They had worked considerably longer in the industry and were, on average, older than the rest. Only 19·2% of the affected workers had respiratory symptoms, of which dyspnoea and cough were the most frequent. Digital clubbing was seen in 21·9%. In an age and sex matched control group, comprising 327 persons from a neighbouring village, only 8 (2·4%) showed radiographic abnormalities. Graphite pneumoconiosis closely resembles coal miners' pneumoconiosis in many respects. It does not appear to be a pure silicosis, neither could it be considered a true carbon pneumoconiosis. It is likely that massive fibrosis is associated with tuberculous infection. Images PMID:5021997

  13. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.

    1977-01-01

    The results of research for the origination of graphite-fiber reinforced glass matrix composites are presented. The method selected to form the composites consisted of pulling the graphite fiber through a slurry containing powdered glass, winding up the graphite fiber and the glass it picks up on a drum, drying, cutting into segments, loading the tape segment into a graphite die, and hot pressing. During the course of the work, composites were made with a variety of graphite fibers in a glass matrix.

  14. Coating method for graphite

    DOEpatents

    Banker, John G.; Holcombe, Jr., Cressie E.

    1977-01-01

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided comprising coating the graphite surface with a suspension of Y.sub.2 O.sub.3 particles in water containing about 1.5 to 4% by weight sodium carboxymethylcellulose.

  15. Coating method for graphite

    DOEpatents

    Banker, J.G.; Holcombe, C.E. Jr.

    1975-11-06

    A method of limiting carbon contamination from graphite ware used in induction melting of uranium alloys is provided. The graphite surface is coated with a suspension of Y/sub 2/O/sub 3/ particles in water containing about 1.5 to 4 percent by weight sodium carboxymethylcellulose.

  16. International strategic minerals inventory summary report; natural graphite

    USGS Publications Warehouse

    Krauss, U.H.; Schmidt, H.W.; Taylor, H.A.; Sutphin, D.M.

    1989-01-01

    Natural graphite is a crystalline mineral of pure carbon which normally occurs in the form of platelet-shaped crystals. It has important properties, such as chemical inertness, low thermal expansion, and lubricity, that make it almost irreplaceable for certain uses such as refractories and steelmaking. Graphite ore types are crystalline (flake and lump} or 'amorphous' (cryptocrystalline}. Refractory applications use the largest total amount of natural graphite, while the most important use of crystalline graphite is in crucibles for handling molten metals. All graphite deposits being mined today are found in the following metamorphic environments: (1) contact metamorphosed coal generally is a source of amorphous graphite; (2)disseminated crystalline flake graphite comes from syngenetic metasediments; and (3) crystalline lump graphite is found in epigenetic veins in high-grade metamorphic regions. Graphite may also occur as a trace mineral in ultrabasic rocks and pegmatites, but these are economically insignificant. The world's identified economically exploitable resources of crystalline graphite in major deposits are estimated to be about 9.7 million metric tons of concentrate. In-place resources of amorphous graphite are about 11.5 million metric tons. Of these, less than 2 percent of the crystalline ore and less than 1 percent of the amorphous ore are in western industrial countries. World mining production of natural graphite rose from 347,000 metric tons in 1973 to 659,000 metric tons in 1986, while the proportion produced by central economy countries increased from about 50 percent for the period from 1973 to 1978 to more than 64 percent in 1979 to 1986. It is estimated that crystalline flake graphite accounts for at least 180,000 metric tons of total annual world mining production of natural graphite, and amorphous graphite makes up the rest.

  17. Method of Obtaining Uniform Coatings on Graphite

    DOEpatents

    Campbell, I. E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  18. METHOD OF OBTAINING UNIFORM COATINGS ON GRAPHITE

    DOEpatents

    Campbell, I.E.

    1961-04-01

    A method is given for obtaining uniform carbide coatings on graphite bodies. According to the invention a metallic halide in vapor form is passed over the graphite body under such conditions of temperature and pressure that the halide reacts with the graphite to form a coating of the metal carbide on the surface of the graphite.

  19. Contribution a l'etude et au developpement de nouvelles poudres de fonte

    NASA Astrophysics Data System (ADS)

    Boisvert, Mathieu

    L'obtention de graphite libre dans des pieces fabriquees par metallurgie des poudres (M/P) est un defi auquel plusieurs chercheurs se sont attardes. En effet, la presence de graphite apres frittage ameliore l'usinabilite des pieces, permettant donc de reduire les couts de production, et peut aussi engendrer une amelioration des proprietes tribologiques. L'approche utilisee dans cette these pour tenter d'obtenir du graphite libre apres frittage est par l'utilisation de nouvelles poudres de fontes atomisees a l'eau. L'atomisation a l'eau etant un procede de production de poudres relativement peu couteux qui permet de grandes capacites de production, le transfert des decouvertes de ce doctorat vers des applications industrielles sera donc economiquement plus favorable. En plus de l'objectif d'obtenir du graphite libre apres frittage, un autre aspect important des travaux est le controle de la morphologie du graphite libre apres frittage. En effet, il est connu dans la litterature des fontes coulees/moulees que la morphologie du graphite influencera les proprietes des fontes, ce qui est aussi vrai pour les pieces de M/P. Les fontes ductiles, pour lesquelles le graphite est sous forme de nodules spheroidaux isoles les uns des autres, possedent des proprietes mecaniques superieures aux fontes grises pour lesquelles le graphite est sous forme lamellaire et continu dans la matrice. Les resultats presentes dans cette these montrent qu'il est possible, dans des melanges contenant des poudres de fontes, d'avoir un controle sur la morphologie du graphite et donc sur les proprietes des pieces. Le controle de la morphologie du graphite a principalement ete realise par le type de frittage et le phenomene de diffusion " uphill " du carbone cause par des gradients en silicium. En effet, pour les frittages en phase solide, tous les nodules de graphite sont presents a l'interieur des grains de poudre apres frittage. Pour les frittages en phase liquide, l'intensite de la diffusion

  20. Interlayer interactions in graphites.

    PubMed

    Chen, Xiaobin; Tian, Fuyang; Persson, Clas; Duan, Wenhui; Chen, Nan-xian

    2013-11-06

    Based on ab initio calculations of both the ABC- and AB-stacked graphites, interlayer potentials (i.e., graphene-graphene interaction) are obtained as a function of the interlayer spacing using a modified Möbius inversion method, and are used to calculate basic physical properties of graphite. Excellent consistency is observed between the calculated and experimental phonon dispersions of AB-stacked graphite, showing the validity of the interlayer potentials. More importantly, layer-related properties for nonideal structures (e.g., the exfoliation energy, cleave energy, stacking fault energy, surface energy, etc.) can be easily predicted from the interlayer potentials, which promise to be extremely efficient and helpful in studying van der Waals structures.

  1. METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES

    DOEpatents

    Steinberg, M.A.

    1960-03-22

    A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.

  2. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  3. Composition and method for brazing graphite to graphite

    DOEpatents

    Taylor, A.J.; Dykes, N.L.

    1982-08-10

    A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.

  4. Modeles numeriques de la stimulation optique de neurones assistee par nanoparticules plasmoniques

    NASA Astrophysics Data System (ADS)

    Le Hir, Nicolas

    La stimulation de neurones par laser emerge depuis plusieurs annees comme une alternative aux techniques plus traditionnelles de stimulation artificielle. Contrairement a celles-ci, la stimulation lumineuse ne necessite pas d'interagir directement avec le tissu organique, comme c'est le cas pour une stimulation par electrodes, et ne necessite pas de manipulation genetique comme c'est le cas pour les methodes optogenetiques. Plus recemment, la stimulation lumineuse de neurones assistee par nanoparticules a emerge comme un complement a la stimulation simplement lumineuse. L'utilisation de nanoparticules complementaires permet d'augmenter la precision spatiale du procede et de diminuer la fluence necessaire pour observer le phenomene. Ceci vient des proprietes d'interaction entre les nanoparticules et le faisceau laser, comme par exemple les proprietes d'absorption des nanoparticules. Deux phenomenes princpaux sont observes. Dans certains cas, il s'agit d'une depolarisation de la membrane, ou d'un potentiel d'action. Dans d'autres experiences, un influx de calcium vers l'interieur du neurone est detecte par une augmentation de la fluorescence d'une proteine sensible a la concentration calcique. Certaines stimulations sont globales, c'est a dire qu'une perturbation se propage a l'ensemble du neurone : c'est le cas d'un potentiel d'action. D'autres sont, au contraire, locales et ne se propagent pas a l'ensemble de la cellule. Si une stimulation lumineuse globale est rendue possible par des techniques relativement bien maitrisees a l'heure actuelle, comme l'optogenetique, une stimulation uniquement locale est plus difficile a realiser. Or, il semblerait que les methodes de stimulation lumineuse assistees par nanoparticules puissent, dans certaines conditions, offrir cette possibilite. Cela serait d'une grande aide pour conduire de nouvelles etudes sur le fonctionnement des neurones, en offrant de nouvelles possibilites experimentales en complement des possibilites

  5. RECOVERY OF VALUABLE MATERIAL FROM GRAPHITE BODIES

    DOEpatents

    Fromm, L.W. Jr.

    1959-09-01

    An electrolytic process for recovering uranium from a graphite fuel element is described. The uraniumcontaining graphite body is disposed as the anode of a cell containing a nitric acid electrolyte and a 5 amp/cm/sup 2/ current passed to induce a progressive disintegration of the graphite body. The dissolved uranium is quickly and easily separated from the resulting graphite particles by simple mechanical means, such as centrifugation, filtration, and decontamination.

  6. Treatment of irradiated graphite from French Bugey reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Howard; Laurent, Gerard

    In 2008, following the general French plan for nuclear waste management, Electricite de France attempted to find for irradiated graphite an alternative solution to direct storage at the low-activity long-life storage center in France managed by the national agency for wastes (ANDRA). EDF management requested that its engineering arm, EDF CIDEN, study the graphite treatment alternatives to direct storage. In mid-2008, this study revealed the potential advantage for EDF to use a steam reforming process known as Thermal Organic Reduction, 'THOR' (owned by Studsvik, Inc., USA), to treat or destroy the graphite matrix and limit the quantity of secondary wastemore » to be stored. In late 2009, EDF began a test program with Studsvik to determine if the THOR steam reforming process could be used to destroy the graphite. The program also sought to determine if the graphite could be treated to release the bulk of activity while minimizing the gasification of the bulk mass of the graphite. In October 2009, tests with non-irradiated graphite were completed and demonstrated destruction of a graphite matrix by the THOR process at satisfactory rates. After gasifying the graphite, focus shifted to the effect of roasting graphite at high temperatures in inert gases with low concentrations of oxidizing gases to preferentially remove volatile radionuclides while minimizing the graphite mass loss to 5%. A radioactive graphite sleeve was imported from France to the US for these tests. Completed in April 2010, 'Phase I' of testing showed that the process removed >99% of H-3 and 46% of C-14 with <6% mass loss. Completed in September 2011, 'Phase II' testing achieved increased removals as high as 80% C-14. During Phase II, it was also discovered that roasting in a reducing atmosphere helped to limit the oxidation of the graphite. Future work seeks to explore the effects of reducing gases to limit the bulk oxidation of graphite. If the graphite could be decontaminated of long

  7. Thermal expansion behavior of graphite/glass and graphite/magnesium

    NASA Technical Reports Server (NTRS)

    Tompkins, Stephen S.; Ard, K. E.; Sharp, G. Richard

    1986-01-01

    The thermal expansion behavior of n (+/- 8)s graphite fiber reinforced magnesium laminate and four graphite reinforced glass-matrix laminates (a unidirectional laminate, a quasi-isotropic laminate, a symmetric low angle-ply laminate, and a random chopped-fiber mat laminate) was determined, and was found, in all cases, to not be significantly affected by thermal cycling. Specimens were cycled up to 100 times between -200 F and 100 F, and the thermal expansion coefficients determined for each material as a function of temperature were found to be low. Some dimensional changes as a function of thermal cycling, and some thermal-strain hysteresis, were observed.

  8. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    The research on graphite and carbon for this period is reported. Topics discussed include: effects of grinding on the Santa Marie graphites, properties and purities of coal-tar, resin-bonded graphite, carbonization of resin components, and glass-like carbon filler.

  9. Postbuckling behavior of graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.

    1984-01-01

    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.

  10. Structures formed by a cell membrane-associated arabinogalactan-protein on graphite or mica alone and with Yariv phenylglycosides

    PubMed Central

    Zhou, Li Hong; Weizbauer, Renate A.; Singamaneni, Srikanth; Xu, Feng; Genin, Guy M.; Pickard, Barbara G.

    2014-01-01

    Background Certain membrane-associated arabinogalactan-proteins (AGPs) with lysine-rich sub-domains participate in plant growth, development and resistance to stress. To complement fluorescence imaging of such molecules when tagged and introduced transgenically to the cell periphery and to extend the groundwork for assessing molecular structure, some behaviours of surface-spread AGPs were visualized at the nanometre scale in a simplified electrostatic environment. Methods Enhanced green fluorescent protein (EGFP)-labelled LeAGP1 was isolated from Arabidopsis thaliana leaves using antibody-coated magnetic beads, deposited on graphite or mica, and examined with atomic force microscopy (AFM). Key Results When deposited at low concentration on graphite, LeAGP can form independent clusters and rings a few nanometres in diameter, often defining deep pits; the aperture of the rings depends on plating parameters. On mica, intermediate and high concentrations, respectively, yielded lacy meshes and solid sheets that could dynamically evolve arcs, rings, ‘pores’ and ‘co-pores’, and pits. Glucosyl Yariv reagent combined with the AGP to make very large and distinctive rings. Conclusions Diverse cell-specific nano-patterns of native lysine-rich AGPs are expected at the wall–membrane interface and, while there will not be an identical patterning in different environmental settings, AFM imaging suggests protein tendencies for surficial organization and thus opens new avenues for experimentation. Nanopore formation with Yariv reagents suggests how the reagent might bind with AGP to admit Ca2+ to cells and hints at ways in which AGP might be structured at some cell surfaces. PMID:25164699

  11. Pyrolytic graphite gauge for measuring heat flux

    NASA Technical Reports Server (NTRS)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  12. Influence du comportement des accompagnants sur le vécu des patients admis pour hémorragies digestives hautes au CHU campus de Lomé (Togo)

    PubMed Central

    Bagny, Aklesso; Dusabe, Angelique; Bouglouga, Oumboma; Lawson-ananisoh, Mawuli Late; Kaaga, Yeba Laconi; Djibril, Mohaman Awalou; Soedje, Kokou Mensah; Dassa, Simliwa Kolou; Redah, Datouda

    2014-01-01

    Introduction L'hémorragie digestive haute est une urgence, qui constitue souvent pour les patients un danger mortel suscitant inquiétude et agitation. Dans cet état, le patient dépend de ses accompagnants pour ses soins et pour honorer le traitement; mais souvent, il a été observé une discordance entre l'urgence et les comportements des accompagnants. Le but de cette étude était de décrire les facteurs socioéconomiques et psychologiques pouvant influencer les comportements des accompagnants des patients admis pour HDH, estimer l'indice de relation entre ces comportements et les facteurs associés d'une part et le vécu des patients admis pour HDH d'autre part. Méthodes Il s'agit d'une étude prospective menée de Septembre 2010 à Juin 2011 (soit 10 mois). Nous avions utilisé l'entretien semi-dirigé et l'observation directe pour collecter nos données, ces dernières avaient été traitées par les méthodes statistiques et d'analyse de contenu. Résultats Dans la présente étude, les comportements des accompagnants des patients admis pour HDH sont en majorité marqués par l'abandon (84%) et le manque de sollicitude (80,2%). Ces comportements sont souvent stimulés par les facteurs socioéconomiques tels que les difficultés économiques (83,2%), des conflits intrafamiliaux (85,1%) et des représentations (maladie incurable ou envoûtement) de la maladie par les accompagnants (73,3%) des cas. Quant aux patients, ils vivent ces comportements comme étant des menaces de mort ou des rejets (77,20%) et comme étant une dévalorisation ou une humiliation de la part de leurs accompagnants (70,30%). Les résultats confirment l'existence de lien significatif entre les comportements des accompagnants et les facteurs socio économiques, entre les comportements des accompagnants et des facteurs psychologiques, et entre le vécu des patients admis pour l'HDH et les comportements des accompagnants. Conclusion Des études ultérieures devraient aborder les points

  13. AC induction field heating of graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  14. Graphite for the nuclear industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, T.D.; Fuller, E.L.; Romanoski, G.R.

    Graphite finds applications in both fission and fusion reactors. Fission reactors harness the energy liberated when heavy elements, such as uranium or plutonium, fragment or fission''. Reactors of this type have existed for nearly 50 years. The first nuclear fission reactor, Chicago Pile No. 1, was constructed of graphite under a football stand at Stagg Field, University of Chicago. Fusion energy devices will produce power by utilizing the energy produced when isotopes of the element hydrogen are fused together to form helium, the same reaction that powers our sun. The role of graphite is very different in these two reactormore » systems. Here we summarize the function of the graphite in fission and fusion reactors, detailing the reasons for their selection and discussing some of the challenges associated with their application in nuclear fission and fusion reactors. 10 refs., 15 figs., 1 tab.« less

  15. CALANDRIA TYPE SODIUM GRAPHITE REACTOR

    DOEpatents

    Peterson, R.M.; Mahlmeister, J.E.; Vaughn, N.E.; Sanders, W.J.; Williams, A.C.

    1964-02-11

    A sodium graphite power reactor in which the unclad graphite moderator and fuel elements are contained within a core tank is described. The core tank is submersed in sodium within the reactor vessel. Extending longitudinally through the core thnk are process tubes with fuel elements positioned therein. A bellows sealing means allows axial expansion and construction of the tubes. Within the core tank, a leakage plenum is located below the graphite, and above the graphite is a gas space. A vent line regulates the gas pressure in the space, and another line removes sodium from the plenum. The sodium coolant flows from the lower reactor vessel through the annular space between the fuel elements and process tubes and out into the reactor vessel space above the core tank. From there, the heated coolant is drawn off through an outlet line and sent to the heat exchange. (AEC)

  16. Coatings for Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Several approaches for applying high resistance coatings continuously to graphite yarn were investigated. Two of the most promising approaches involved (1) chemically vapor depositing (CVD) SiC coatings on the surface of the fiber followed by oxidation, and (2) drawing the graphite yarn through an organo-silicone solution followed by heat treatments. In both methods, coated fibers were obtained which exhibited increased electrical resistances over untreated fibers and which were not degraded. This work was conducted in a previous program. In this program, the continuous CVD SiC coating process used on HTS fiber was extended to the coating of HMS, Celion 6000, Celion 12000 and T-300 graphite fiber. Electrical resistances three order of magnitude greater than the uncoated fiber were measured with no significant degradation of the fiber strength. Graphite fibers coated with CVD Si3N4 and BN had resistances greater than 10(exp 6) ohm/cm. Lower pyrolysis temperatures were used in preparing the silica-like coatings also resulting in resistances as high as three orders of magnitude higher than the uncoated fiber. The epoxy matrix composites prepared using these coated fibers had low shear strengths indicating that the coatings were weak.

  17. Measurement of the cleavage energy of graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wen; Dai, Shuyang; Li, Xide

    Here, the basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m –2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitivemore » to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m –2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.« less

  18. Measurement of the cleavage energy of graphite

    DOE PAGES

    Wang, Wen; Dai, Shuyang; Li, Xide; ...

    2015-08-28

    Here, the basal plane cleavage energy (CE) of graphite is a key material parameter for understanding many of the unusual properties of graphite, graphene and carbon nanotubes. Nonetheless, a wide range of values for the CE has been reported and no consensus has yet emerged. Here we report the first direct, accurate experimental measurement of the CE of graphite using a novel method based on the self-retraction phenomenon in graphite. The measured value, 0.37±0.01 J m –2 for the incommensurate state of bicrystal graphite, is nearly invariant with respect to temperature (22 °C≤T≤198 °C) and bicrystal twist angle, and insensitivemore » to impurities from the atmosphere. The CE for the ideal ABAB graphite stacking, 0.39±0.02 J m –2, is calculated based on a combination of the measured CE and a theoretical calculation. These experimental measurements are also ideal for use in evaluating the efficacy of competing theoretical approaches.« less

  19. Approaches to Deal with Irradiated Graphite in Russia - Proposal for New IAEA CRP on Graphite Waste Management - 12364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg

    The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shownmore » the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)« less

  20. Structural features of the adsorption layer of pentacene on the graphite surface and the PMMA/graphite hybrid surface

    NASA Astrophysics Data System (ADS)

    Fadeeva, A. I.; Gorbunov, V. A.; Litunenko, T. A.

    2017-08-01

    Using the molecular dynamics and the Monte Carlo methods, we have studied the structural features and growth mechanism of the pentacene film on graphite and polymethylmethacrylate /graphite surfaces. Monolayer capacity and molecular area, optimal angles between the pentacene molecules and graphite and PMMA/graphite surfaces as well as the characteristic angles between the neighboring pentacene molecules in the adsorption layer were estimated. It is shown that the orientation of the pentacene molecules in the film is determined by a number of factors, including the surface concentration of the molecules, relief of the surface, presence or absence of the polymer layer and its thickness. The pentacene molecules adsorbed on the graphite surface keep a horizontal position relative to the long axis at any surface coverage/thickness of the film. In the presence of the PMMA layer on the graphite, the increase of the number of pentacene molecules as well as the thickness of the PMMA layer induce the change of molecular orientation from predominantly horizontal to vertical one. The reason for such behavior is supposed to be the roughness of the PMMA surface.

  1. Low temperature vapor phase digestion of graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  2. Sealing nuclear graphite with pyrolytic carbon

    NASA Astrophysics Data System (ADS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-10-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR).

  3. Status of Chronic Oxidation Studies of Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I.; Mee, Robert W.

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elementsmore » needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce

  4. The origin of epigenetic graphite: evidence from isotopes

    USGS Publications Warehouse

    Weis, P.L.; Friedman, I.; Gleason, J.P.

    1981-01-01

    Stable carbon isotope ratios measured in syngenetic graphite, epigenetic graphite, and graphitic marble suggests that syngenetic graphite forms only by the metamorphism of carbonaceous detritus. Metamorphism of calcareous rocks with carbonaceous detritus is accompanied by an exchange of carbon between the two, which may result in large changes in isotopic composition of the non-carbonate phase but does not affect the relative proportions of the two reactants in the rock. Epigenetic graphite forms only from carbonaceous material or preexisting graphite. The reactions involved are the water gas reaction (C + H2O ??? CO + H2) at 800-900??C, and the Boudouard reaction (2CO ??? C + CO2), which probably takes place at temperatures about 50-100??C lower. ?? 1982.

  5. Graphite oral tattoo: case report.

    PubMed

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  6. The Fracture Toughness of Nuclear Graphites Grades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D.; Erdman, III, Donald L.; Lowden, Rick R.

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  7. Modeling Fission Product Sorption in Graphite Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributionsmore » of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission

  8. Graphene-graphite oxide field-effect transistors.

    PubMed

    Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc

    2012-03-14

    Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society

  9. Optical motion control of maglev graphite.

    PubMed

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  10. Effects of Oxidation on Oxidation-Resistant Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William; Smith, Rebecca; Carroll, Mark

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidationmore » rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.« less

  11. Fabrication and testing of non-graphitic superhybrid composites

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Sinclair, J. H.; Chamis, C. C.

    1979-01-01

    A study was conducted to determine the fabrication feasibility and the mechanical properties of adhesively-bonded boron aluminum/titanium and non-graphitic fiber/epoxy resin superhybrid (NGSH) composite laminates for potential aerospace applications. The major driver for this study was the elimination of a potential graphite fiber release problem in the event of a fire. The results of the study show that non-graphitic fibers, such as S-glass and Kevlar 49, may be substituted for the graphite fibers used in superhybrid (SH) composites for some applications. As is to be expected, however, the non-graphitic superhybrids have lower stiffness properties than the graphitic superhybrids. In-plane and flexural moduli of the laminates studied in this program can be predicted reasonably well using linear laminate theory while nonlinear laminate theory is required for strength predictions.

  12. Structure and functionality of bromine doped graphite.

    PubMed

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  13. Separation medium containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  14. Interface Character of Aluminum-Graphite Metal Matrix Composites.

    DTIC Science & Technology

    1983-01-27

    studied included the commer- cial A/graphite composites; layered model systems on single crystal and poly- crystalline graphite substrates as well as...composition and thickness of the composite interface, and graphite crystal orientation. 3 For the model systems in this study , single crystal graphite...been reviewed by Kingcry. Segregation at surfaces in single- crystal MgO of Fe, Cr and Sc, which were Dresent in concentrations within the single- 3phase

  15. Quenchable compressed graphite synthesized from neutron-irradiated highly oriented pyrolytic graphite in high pressure treatment at 1500 °C

    NASA Astrophysics Data System (ADS)

    Niwase, Keisuke; Terasawa, Mititaka; Honda, Shin-ichi; Niibe, Masahito; Hisakuni, Tomohiko; Iwata, Tadao; Higo, Yuji; Hirai, Takeshi; Shinmei, Toru; Ohfuji, Hiroaki; Irifune, Tetsuo

    2018-04-01

    The super hard material of "compressed graphite" (CG) has been reported to be formed under compression of graphite at room temperature. However, it returns to graphite under decompression. Neutron-irradiated graphite, on the other hand, is a unique material for the synthesis of a new carbon phase, as reported by the formation of an amorphous diamond by shock compression. Here, we investigate the change of structure of highly oriented pyrolytic graphite (HOPG) irradiated with neutrons to a fluence of 1.4 × 1024 n/m2 under static pressure. The neutron-irradiated HOPG sample was compressed to 15 GPa at room temperature and then the temperature was increased up to 1500 °C. X-ray diffraction, high-resolution transmission electron microscopy on the recovered sample clearly showed the formation of a significant amount of quenchable-CG with ordinary graphite. Formation of hexagonal and cubic diamonds was also confirmed. The effect of irradiation-induced defects on the synthesis of quenchable-CG under high pressure and high temperature treatment was discussed.

  16. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Bacon, J. F.; Prewo, K. M.; Thompson, E. R.

    1978-01-01

    A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.

  17. The action of macrosounds on graphite ore and derived products

    NASA Technical Reports Server (NTRS)

    Bradeteanu, C.; Dragan, O.

    1974-01-01

    A suspension of graphite ore, floated graphite, and the gangue left over from flotation were subjected to the action of macrosounds under determinant conditions. The following was found: (1) The graphite ore undergoes an efficient settling action. (2) The floated graphite is strongly crushed down to the dimensions of colloidal graphite. (3) The gangue left over from flotation can be further processed to recuperate graphite from its nuclei.

  18. Fire test method for graphite fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidential fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified rate of heat release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

  19. Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Thuyet; Kim, Jin-Hyung; Lee, Jung-Goo; Kim, Jin-Chun

    2018-03-01

    The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.

  20. Le syndrome des jambes sans repos: fréquence et facteurs de risque chez l'hémodialysé

    PubMed Central

    Soumeila, Illiassou; Keita, Salia; Elhassani, Anis; Sidibé, Mohamed; Alaoui, Khadija; Kabbali, Nadia; Arrayhani, Mohamed; Sqalli, Tarik

    2015-01-01

    Le syndrome des jambes sans repos (SJSR) ou syndrome d'impatience musculaire est un trouble moteur caractérisé par des sensations désagréables dans les jambes. Les causes sont mal connues et sa fréquence est estimée entre 25% et 75% chez les hémodialysés. Il s'agit d'une étude transversale monocentrique menée au centre d'hémodialyse du CHU Hassan II de Fès (hôpital Al Ghassani) entre décembre 2012 et janvier 2013. Nous avons défini le syndrome de jambes sans repos selon la définition de l'international restless legs study group de 2003 reposant sur 4 critères essentiels au diagnostic. L'international restless legs syndrome scale (IRLES) a été coté par un même néphrologue pour mesurer la sévérité du syndrome des jambes sans repos. 84 hémodialysés ont répondu au questionnaire avec 41,7% de cas de SJSR dont 6,6% de formes graves. Nous avons retrouvé une association entre le SJSR et la carence martiale p(0,018), la néphropathie initiale p(0,041), l'HTA p(0,026) et le sexe féminin p(0,024). Dans notre série, il ressort que la carence martiale et l'HTA sont les principaux facteurs de risque modifiables de ce syndrome chez nos patients. Les facteurs traditionnels comme le tabagisme, l’âge supérieur à 50 ans et la dialyse inadéquate ne sont pas associés à ce trouble dans notre série. PMID:26015849

  1. Le premier examen gynécologique idéal imaginé par les jeunes filles

    PubMed Central

    Freyens, Anne; Dejeanne, Mélanie; Fabre, Elise; Rouge-Bugat, Marie-Eve; Oustric, Stéphane

    2017-01-01

    Résumé Objectif Explorer les représentations sur l’examen gynécologique (EG) et identifier les critères nécessaires à son bon déroulement chez des adolescentes n’ayant pas encore vécu cet examen. Type d’étude Enquête qualitative par entrevues semi-dirigées. Contexte Midi-Pyrénées (France) et Auvergne (France). Participants Jeunes filles de 15 à 19 ans qui n’ayant pas vécu l’EG. Méthodes Le mode de recrutement de l’échantillon a été double : sélection des jeunes filles par la technique boule-de-neige et sélection par la technique d’échantillonnage ciblé jusqu’à l’obtention de la saturation des données tout en cherchant la variation maximale dans les profils des sujets. Les questions ouvertes portaient sur les sources d’informations, les connaissances, les critères de bon déroulement et l’imaginaire autour de l’EG. Le verbatim a fait l’objet d’une analyse longitudinale immédiate rassemblant le contexte (notes des chercheurs) et les idées principales de l’entretien. Une analyse transversale thématique a été réalisée. Principales constatations Une méconnaissance générale des jeunes filles sur l’EG entretenait l’imaginaire autour de cet examen perçu comme obligatoire. L’EG idéal, selon les jeunes filles interrogées, aurait lieu chez une jeune fille qui se sentirait prête, informée préalablement, pouvant être accompagnée selon son souhait. Cet examen se déroulerait dans un environnement chaleureux et confortable afin de diminuer le sentiment de vulnérabilité. La qualité du lien avec le médecin conditionnerait l’acceptation de cet examen par les jeunes filles. Conclusion Une consultation dédiée à l’information, préalable à la consultation où a lieu l’EG, permettrait de diminuer les appréhensions, d’améliorer les connaissances des jeunes filles et de favoriser le bon déroulement du futur premier EG tant pour le médecin que pour la patiente. PMID:28807971

  2. METHOD FOR COATING GRAPHITE WITH NIOBIUM CARBIDE

    DOEpatents

    Kane, J.S.; Carpenter, J.H.; Krikorian, O.H.

    1962-01-16

    A method is given for coating graphite with a hard, tenacious layer of niobium carbide up to 30 mils or more thick. The method makes use of the discovery that niobium metal, if degassed and heated rapidly below the carburization temperature in contact with graphite, spreads, wets, and penetrates the graphite without carburization. The method includes the obvious steps of physically contacting niobium powders or other physical forms of niobium with graphite, degassing the assembly below the niobium melting point, e.g., 1400 deg C, heating to about 2200 to 2400 deg C within about 15 minutes while outgassing at a high volume throughput, and thereafter carburizing the niobium. (AEC)

  3. ShopComm: Community-Supported Online Shopping for Older Adults.

    PubMed

    Gorkovenko, Katerina; Tigwell, Garreth W; Norrie, Christopher S; Waite, Miriam; Herron, Daniel

    2017-01-01

    The United Kingdom has an ageing population whose members experience significant life transitions as they grow older, for example, losing mobility due to deteriorating health. For these adults, digital technology has the potential to sustain their independence and improve their quality of life. However older adults can be reluctant to use digital solutions. In this paper, we review a local charity providing a grocery shopping service for older adults who are unable to go themselves. We explore how older adults perceive the benefits and drawbacks of both physical and digital shopping. Using these insights, we designed ShopComm to enable and support older adults with mobility impairments to shop online.

  4. Feasibility of intercalated graphite railgun armatures

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Gooden, Clarence E.; Yashan, Doreen; Naud, Steven

    1990-01-01

    Graphite intercalation compounds may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have the desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations were performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading are addressed for the case of highly oriented pyrolytic graphite.

  5. Pertinence de l'implantation de la filiere granule de bois pour le Quebec

    NASA Astrophysics Data System (ADS)

    Tremblay, Stephan

    Les spécialistes avancent que le marché mondial de l'énergie en forte demande et en offre limitée nécessitera bientôt toutes les formes d'énergie disponibles. Le granulé de bois est une forme de bioénergie principalement utilisée pour le chauffage des bâtiments et pourrait être davantage considéré dans l'offre énergétique du Québec. Comme le Québec est un territoire où il fait froid et donc susceptible de pouvoir se tourner vers cette forme d'énergie, l'objectif de ce mémoire est d'en analyser les avantages. Pour ce faire, nous commencerons par démontrer la croissance des besoins énergétiques sur les plans national et international et dresser un portrait des différentes formes d'énergies consommées au Québec. Puisque la majorité des Québécois chauffent leurs bâtiments à l'hydroélectricité, nous analyserons à travers le plan d'approvisionnement d'Hydro-Québec le portrait de la production et de la consommation de cette forme d'énergie renouvelable. Cela nous permettra de constater le défi face à la gestion de surplus importants, sauf pendant la période hivernale, et ce faisant, l'obligation de la société d'État d'utiliser davantage ses centrales au gaz ou de se tourner vers l'importation de l'électricité. Dans la même lignée, un regard sera porté sur les perspectives d'utilisation de l'hydroélectricité sur les plans de la production d'aluminium, de l'exportation et de l'utilisation dans l'électrification des transports au Québec. Cette analyse se fera dans l'objectif de s'interroger sur la pertinence d'utiliser cette source d'énergie dans le chauffage plutôt que dans des secteurs plus créateurs de richesse. Nous poserons ensuite l'hypothèse que le granulé de bois pourrait être un bon substitut à une autre forme d'énergie utilisée dans le chauffage, soit le mazout. Avant de dresser un portrait de ce combustible fossile, nous ferons celui de la production et de la consommation de granulés sur les plans r

  6. Fire test method for graphite fiber reinforced plastics

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    A potential problem in the use of graphite fiber reinforced resin matrix composites is the dispersal of graphite fibers during accidental fires. Airborne, electrically conductive fibers originating from the burning composites could enter and cause shorting in electrical equipment located in surrounding areas. A test method for assessing the burning characteristics of graphite fiber reinforced composites and the effectiveness of the composites in retaining the graphite fibers has been developed. The method utilizes a modified Ohio State University Rate of Heat Release apparatus. The equipment and the testing procedure are described. The application of the test method to the assessment of composite materials is illustrated for two resin matrix/graphite composite systems.

  7. Méthodes de type éléments finis pour le calcul des champs électriques et magnétiques en électroencéphalographie et magnétoencéphalographie

    NASA Astrophysics Data System (ADS)

    Guérin, Christophe; Marin, Gildas; Garnero, Line; Meunier, Gérard

    1997-12-01

    So as to compute the electric potential and the flux density generated by the electrical activity of the brain, numerical methods based on the Finite Element Method have been developed. These methods, which can treat realistic head models and can take into account anisotropy of conductivity, for instance in the skull, are presented. Then two numerical examples are described: a spherical model and a realistic head model. Afin de calculer le potentiel électrique et l'induction créés par l'activité électrique du cerveau, nous avons développé des méthodes utilisant la Méthode des Éléments Finis. Ces méthodes, qui peuvent s'appliquer à des modèles réalistes de tête et qui permettent de tenir compte de la conductivité anisotrope de certains tissus comme l'os, sont présentées. Puis deux exemples numériques sont décrits : un modèle de sphères concentriques et un modèle réaliste de tête.

  8. Fabrication of graphite/polyimide composite structures.

    NASA Technical Reports Server (NTRS)

    Varlas, M.

    1972-01-01

    Selection of graphite/polyimide composite as a prime candidate for high-temperature structural applications involving long-duration temperature environments of 400 to 600 F. A variety of complex graphite/polyimide components has been fabricated, using a match-metal die approach developed for making fiber-reinforced resin composites. Parts produced include sections of a missile adapter skin flange, skin frame section, and I-beam and hat-section stringers, as well as unidirectional (0 deg) and plus or minus 45 deg oriented graphite/polyimide tubes in one-, two-, and six-inch diameters.

  9. Le pompage optique naturel dans le milieu astrophysique

    NASA Astrophysics Data System (ADS)

    Pecker, J.-C.

    The title of this lecture abstracts only a part of it : the importance in astrophysics of the study of non-LTE situations has become considerable, as well in the stellar atmospheres as, still more, in the study of fortuitous coincidences as a mechanism of formation of emission line nebular spectra, or of molecular interstellar « masers ». Another part of this talk underlines the role of Kastler in his time, and describes his warm personality through his public reactions in front of the nuclear armement, of the Viet-Nam and Algerian wars, of the problems of political refugees... Kastler was a great scientist ; he was also a courageous humanist. 1976 : Les accords nucléaires du Brésil : allocution d'ouverture (19 mars). Colloque sur le sujet ci-dessus. 1976 : La promotion de la culture dans le nouvel ordre économique international, allocution à l'occasion d'une table ronde sur ce thème par l'UNESCO (23-27 juin 1976) ; « Sciences et Techniques », octobre 1976. 1979 : La bête immonde (avec J.-C. Pecker), « Le Matin », 20 mars. 1979 : Appel à nos ministres (avec J.-C. Pecker), « Le Monde », 13 décembre. 1979 : Le flou, le ténébreux, l'irrationnel (avec J.-C. Pecker), « Le Monde », 14 septembre. 1980 : Education à la paix, Préface, in : Publ. UNESCO. 1981 : Le vrai danger, « Le Monde », 6 août 1981. 1982 : Nucléaire civil et militaire, « Le Monde », 1er juin 1982. 1982 : Les scientifiques face à la perspective d'holocauste nucléaire (texte inédit). Le titre de cette communication en résume seulement une partie : l'importance prise en astrophysique par l'analyse des situations hors ETL est devenue considérable, qu'il s'agisse des atmosphères stellaires, ou plus encore, des coïncidences fortuites de la formation des spectres d'émission nébulaires, ou des « masers » moléculaires interstellaires. Une autre partie de cet exposé souligne lele de Kastler dans son époque, et décrit sa personnalité généreuse à travers ses r

  10. Fabrication of TREAT Fuel with Increased Graphite Loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luther, Erik Paul; Leckie, Rafael M.; Dombrowski, David E.

    2014-02-05

    As part of the feasibility study exploring the replacement of the HEU fuel core of the TREAT reactor at Idaho National Laboratory with LEU fuel, this study demonstrates that it is possible to increase the graphite content of extruded fuel by reformulation. The extrusion process was use to fabricate the “upgrade” core1 for the TREAT reactor. The graphite content achieved is determined by calculation and has not been measured by any analytical method. In conjunction, a technique, Raman Spectroscopy, has been investigated for measuring the graphite content. This method shows some promise in differentiating between carbon and graphite; however, standardsmore » that would allow the technique to be calibrated to quantify the graphite concentration have yet to be fabricated. Continued research into Raman Spectroscopy is on going. As part of this study, cracking of graphite extrusions due to volatile evolution during heat treatment has been largely eliminated. Continued research to optimize this extrusion method is required.« less

  11. Method for producing thin graphite flakes with large aspect ratios

    DOEpatents

    Bunnell, L. Roy

    1993-01-01

    A method for making graphite flakes of high aspect ratio by the steps of providing a strong concentrated acid and heating the graphite in the presence of the acid for a time and at a temperature effective to intercalate the acid in the graphite; heating the intercalated graphite at a rate and to a temperature effective to exfoliate the graphite in discrete layers; subjecting the graphite layers to ultrasonic energy, mechanical shear forces, or freezing in an amount effective to separate the layes into discrete flakes.

  12. REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-06-24

    Refractory coating for graphite molds used in the casting of uranium is described. The coating is an alumino-silicate refractory composition which may be used as a mold surface in solid form or as a coating applied to the graphite mold. The composition consists of a mixture of ball clay, kaolin, alumina cement, alumina, water, sodium silicate, and sodium carbonate.

  13. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  14. Irradiation Creep in Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less

  15. PROCESS OF COATING GRAPHITE WITH NIOBIUM-TITANIUM CARBIDE

    DOEpatents

    Halden, F.A.; Smiley, W.D.; Hruz, F.M.

    1961-07-01

    A process of coating graphite with niobium - titanium carbide is described. It is found that the addition of more than ten percent by weight of titanium to niobium results in much greater wetting of the graphite by the niobium and a much more adherent coating. The preferred embodiment comprises contacting the graphite with a powdered alloy or mixture, degassing simultaneously the powder and the graphite, and then heating them to a high temperature to cause melting, wetting, spreading, and carburization of the niobium-titanium powder.

  16. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOEpatents

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  17. Experimental high temperature carbon isotope fractionation involving graphite

    NASA Astrophysics Data System (ADS)

    Kueter, N.; Schmidt, M. W.; Lilley, M. D.; Bernasconi, S. M.

    2016-12-01

    Graphite/carbonate carbon isotope fractionation was mainly investigated at 400- 800°C and is based on empirical calibrations, theoretical calculations and few experiments [1,2]. Own work on COH-fluid/graphite isotope fractionation shows that in experiments up to 1000oC a fluid phase is always enriched in 13C compared to coexisting graphitic carbon. The eventual kinetic isotope effect in these experiments is best displayed by the graphitic carbon being at least 3 ‰ lighter than methane. Only few experiments done in the graphite/carbonate pair dealt with higher temperatures reaching 1400°C, indicating a fractionation of up to 2 ‰ at temperatures of the Earth's mantle [2-4]. To better understand carbon isotope fractionation in crustal systems and still overcome kinetic effects, we study the graphite/carbonatite pair with piston cylinder experiments in the Na2CO3-CaCO3-CaO-COH system. Tartaric acid (C4H6O6) supplies reduced carbon, time series are performed at 10 kbar, 1300-1800°C. Initial experiments at 1300°C produce well-ordered, micron-sized graphite flakes growing attached to the capsule walls while the Na-Ca-carbonatite-melt quenches to dendritic textures. No gaseous phase was observed. Conditions well above the liquidus of the Na2CO3-CaCO3-binary lead to dissolution of the H2O from tartaric acid decomposition in the melt, any CO2-component is bound by the excess CaO to CaCO3melt while in the relatively oxidizing capsule environment any CH4-component reacts with CO2 to carbon and H2O. The graphite and the carbonatite quench are measured for their δ13C composition using a GasBench II (carbonate-dissolution in phosphoric acid) and TC/EA (residual graphite combusted in oxygen atmosphere) system coupled to a Thermo Fischer IRMS. Our results expand from the graphite-carbonate system to graphite-fluid system when adding available fluid-carbonate fractionation factors, but are also directly applicable to diamond synthesis as graphite is often found as a

  18. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart are applicable to the mining and processing of naturally occurring graphite. ...

  19. THE FUEL ELEMENT GRAPHITE. Project DRAGON.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, L.W.; Price, M.S.T.

    1963-01-15

    The main requirements of a fuel element graphite for reactors based on the Dragon concept are low transmission coefficient for fission products, dimensional stability under service conditions, high strength, high thermal conductivity, high purity, and high resistance to oxidation. Since conclusions reached in early 1960, a considerable amount of information has accumulated concerning the likely behaviour of graphites in high temperature reactor systems, particularly data on dimensional stability under irradiation. The influence of this new knowledge on the development of fuel element graphite with the Dragon Project is discussed in detail in the final section of this paper.

  20. Adsorption of lead over Graphite Oxide

    PubMed Central

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M.; Oki, Aderemi

    2014-01-01

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb2+ was found to be 98, 91 and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. PMID:24152870

  1. New Occurrence of Shocked Graphite Aggregates at Barringer Crater

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Noma, Y.; Iancu, O. G.

    1993-07-01

    High-pressure carbon minera]s are considered to be formed by solid-solid transformation under static or impact high-pressure condition, but shocked quartz aggregates of impact craters are considered to be formed by quenched accretion of various aggregates by dynamic impact process [1-3]. The main purpose of this study is to elucidate new findings and occurrences of shocked graphite (SG) aggregates [2,3] at the Barringer meteorite crater. The graphite nodule block of Barringer Crater used in this study is collected near the rim. The sample is compared with standard graphite samples of Korea, Madagascar, and artificial impact graphites. There are four different mineral aggregates of the Barringer graphite nodule sample: (1) shocked graphite-1, (2) shocked graphite-2 and hexagonal diamond in the vein, (3) shocked quartz-1 (with kamacite) in the rim, and (4) calcite in the rim (Table 1). X-ray diffraction peaks of shocked graphite reveal low X-ray intensity, high Bragg-angle shift of X-ray diffraction peak, and multiple splitting of X-ray diffraction peaks. X-ray calculated density (rho) has been determined by X-ray diffractometer by the equation of density deviation Delta rho (%) = 100 x {(rho-rho(sub)0)/rho(sub)0}, where standard density rho(sub)0 is 2.255 g/cm^3 in Korean graphite [2,3]. The high-density value of shocked graphite grain obtained in Barringer is Delta rho = +0.6 +/- 0.1%. Shocked hexagonal diamonds (chaoite) show a high value of Delta rho = +0.6 +/- 0.9%. Analytical electron microscopy data reveal three different aggregates in the graphite nodule samples (Table 1): (1) shocked graphite-1 in the matrix, which contains uniformly Fe and Ca elements formed under gas state; (2) shocked graphite-2 in the vein, where crystallized shocked graphites and hexagonal diamonds are surrounded by kamacite-rich metals formed under gas-melt states of mixed compositions from iron meteorite and target rocks; and (3) shocked quartz-1 and kamacite in the rim, where

  2. Pillared graphite anodes for reversible sodiation.

    PubMed

    Zhang, Hanyang; Li, Zhifei; Xu, Wei; Chen, Yicong; Ji, Xiulei; Lerner, Michael M

    2018-08-10

    There has been a major effort recently to develop new rechargeable sodium-ion electrodes. In lithium ion batteries, LiC 6 forms from graphite and desolvated Li cations during the first charge. With sodium ions, graphite only shows a significant capacity when Na + intercalates as a solvated complex, resulting in ternary graphite intercalation compounds (GICs). Although this chemistry has been shown to be highly reversible and to support high rates in small test cells, these GICs can require >250% volume expansion and contraction during cycling. Here we demonstrate the first example of GICs that reversibly sodiate/desodiate without any significant volume change. These pillared GICs are obtained by electrochemical reduction of graphite in an ether/amine co-solvent electrolyte. The initial gallery expansion, 0.36 nm, is less than half of that in diglyme-based systems, and shows a similar capacity. Thermal analyses suggest the pillaring phenomenon arises from stronger co-intercalate interactions in the GIC galleries.

  3. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, Mark A.; Alford, Craig S.; Makowiecki, Daniel M.; Chen, Chih-Wen

    1994-01-01

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface.

  4. Modelling the graphite fracture mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacquemoud, C.; Marie, S.; Nedelec, M.

    2012-07-01

    In order to define a design criterion for graphite components, it is important to identify the physical phenomena responsible for the graphite fracture, to include them in a more effective modelling. In a first step, a large panel of experiments have been realised in order to build up an important database; results of tensile tests, 3 and 4 point bending tests on smooth and notched specimens have been analysed and have demonstrated an important geometry related effects on the behavior up to fracture. Then, first simulations with an elastic or an elastoplastic bilinear constitutive law have not made it possiblemore » to simulate the experimental fracture stress variations with the specimen geometry, the fracture mechanisms of the graphite being at the microstructural scale. That is the reason why a specific F.E. model of the graphite structure has been developed in which every graphite grain has been meshed independently, the crack initiation along the basal plane of the particles as well as the crack propagation and coalescence have been modelled too. This specific model has been used to test two different approaches for fracture initiation: a critical stress criterion and two criteria of fracture mechanic type. They are all based on crystallographic considerations as a global critical stress criterion gave unsatisfactory results. The criteria of fracture mechanic type being extremely unstable and unable to represent the graphite global behaviour up to the final collapse, the critical stress criterion has been preferred to predict the results of the large range of available experiments, on both smooth and notched specimens. In so doing, the experimental observations have been correctly simulated: the geometry related effects on the experimental fracture stress dispersion, the specimen volume effects on the macroscopic fracture stress and the crack propagation at a constant stress intensity factor. In addition, the parameters of the criterion have been related to

  5. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    Thin, uniform coats of titanium carbide, deposited on graphite fibers by chemical vapor deposition with thicknesses up to approximately 0.1 microns were shown to improve fiber strength significantly. For greater thicknesses, strength was degraded. The coats promote wetting of the fibers and infiltration of the fiber yarns with aluminum alloys, and act as protective barriers to inhibit reaction between the fibers and the alloys. Chemical vapor deposition was used to produce silicon carbide coats on graphite fibers. In general, the coats were nonuniform and were characterized by numerous surface irregularities. Despite these irregularities, infiltration of these fibers with aluminum alloys was good. Small graphite-aluminum composite samples were produced by vacuum hot-pressing of aluminum-infiltrated graphite yarn at temperatures above the metal liquidus.

  6. Method of making segmented pyrolytic graphite sputtering targets

    DOEpatents

    McKernan, M.A.; Alford, C.S.; Makowiecki, D.M.; Chen, C.W.

    1994-02-08

    Anisotropic pyrolytic graphite wafers are oriented and bonded together such that the graphite's high thermal conductivity planes are maximized along the back surface of the segmented pyrolytic graphite target to allow for optimum heat conduction away from the sputter target's sputtering surface and to allow for maximum energy transmission from the target's sputtering surface. 2 figures.

  7. Applications Of Graphite Fluoride Fibers In Outer Space

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheng; Long, Martin; Dever, Therese

    1993-01-01

    Report characterizes graphite fluoride fibers made from commercially available graphitized carbon fibers and discusses some potential applications of graphite fluoride fibers in outer space. Applications include heat-sinking printed-circuit boards, solar concentrators, and absorption of radar waves. Other applications based on exploitation of increased resistance to degradation by atomic oxygen, present in low orbits around Earth.

  8. New insights into canted spiro carbon interstitial in graphite

    NASA Astrophysics Data System (ADS)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  9. Adsorption behavior of bisphenol A on CTAB-modified graphite

    NASA Astrophysics Data System (ADS)

    Wang, Li-Cong; Ni, Xin-jiong; Cao, Yu-Hua; Cao, Guang-qun

    2018-01-01

    In this work, the adsorption behavior of BPA on CTAB-modified graphite was investigated thoroughly to develop a novel absorbent material. Atomic force microscopy revealed that conical admicelles formed on the surface of graphite. The surface area of graphite decreased significantly from 1.46 to 0.95 m2 g-1, which confirmed the formation of the larger size admicelle instead of the original smaller particle on the surface. CTAB concentration and incubation time affected the progress of admicelle formation on the surface of graphite. Adsolubilization is key in BPA adsorption by CTAB-modified graphite. An extraordinary cation-π electron interaction between CTAB and BPA, revealed by a red-shift in the ultraviolet spectrum, as well as a hydrophobic interaction contribute substantially to BPA adsolubilization. The equilibrium adsorption capacity of the modified graphite for BPA was 125.01 mg g-1. The adsorption kinetic curves of BPA on modified graphite were shown to follow a pseudosecond-order rate. The adsorption process was observed to be both spontaneous and exothermic complied with the Freundlich model.

  10. Disseminated flake graphite and amorphous graphite deposit types. An analysis using grade and tonnage models

    USGS Publications Warehouse

    Sutphin, David M.; Bliss, James D.

    1990-01-01

    On the basis of differences derived from genetic, descriptive, and grade-tonnage data, graphite deposits are classified here into three deposit types: disseminated flake, amorphous (microcrystalline), or graphite veins. Descriptive models have been constructed for each of these deposit types, and grade-tonnage models are constructed for disseminated flake and amorphous deposit types. Grade and tonnage data are used also to construct grade-tonnage models that assist in predicting the size and grade of undiscovered graphite deposits. The median tonnage and carbon grade of disseminated flake deposits are 240 000 tonnes and 9% carbon and for amorphous deposits, 130 000 tonnes and 40% carbon. The differences in grade between disseminated flake and amorphous deposit types are statistically significant, whereas the differences in amount of contained carbon are not.

  11. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ma, Zhen; Zhuang, Yuchan; Deng, Yaoming; Song, Xiaona; Zuo, Xiaoxi; Xiao, Xin; Nan, Junmin

    2018-02-01

    Today, with the massive application of lithium ion batteries (LIBs) in the portable devices and electric vehicles, to supply the active materials with high-performances and then to recycle their wastes are two core issues for the development of LIBs. In this paper, the spent graphite (SG) in LIBs is used as raw materials to fabricate two comparative high-capacity graphite anode materials. Based on a microsurgery-like physical reconstruction, the reconstructed graphite (RG) with a sp2+sp3 carbon surface is prepared through a microwave exfoliation and subsequent spray drying process. In contrast, the neural-network-like amorphous sp2+sp3 carbon-coated graphite (AC@G) is synthesized using a self-reconfigurable chemical reaction strategy. Compared with SG and commercial graphite (CG), both RG and AC@G have enhanced specific capacities, from 311.2 mAh g-1 and 360.7 mAh g-1 to 409.7 mAh g-1 and 420.0 mAh g-1, at 0.1C after 100 cycles. In addition, they exhibit comparable cycling stability, rate capability, and voltage plateau with CG. Because the synthesis of RG and AC@G represents two typical physical and chemical methods for the recycling of SG, these results on the sp2+sp3 carbon layer coating bulk graphite also reveal an approach for the preparation of high-performance graphite anode materials derived from SG.

  12. Adsorption of lead over graphite oxide.

    PubMed

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  13. Interface structure between tetraglyme and graphite

    NASA Astrophysics Data System (ADS)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  14. Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang H. Oh; Eung Kim; Jong Lim

    2009-05-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internalmore » pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is

  15. Analysis of Picosecond Pulsed Laser Melted Graphite

    DOE R&D Accomplishments Database

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M. S.; Huang, C. Y.; Malvezzi, A. M.; Bloembergen, N.

    1986-12-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm{sup -1} and the disorder-induced mode at 1360 cm{sup -1}, the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nanosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence.

  16. Nuclear Graphite - Fracture Behavior and Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Battiste, Rick; Strizak, Joe P

    2011-01-01

    Evidence for the graphite fracture mechanism is reviewed and discussed. The roles of certain microstructural features in the graphite fracture process are reported. The Burchell fracture model is described and its derivation reported. The successful application of the fracture model to uniaxial tensile data from several graphites with widely ranging structure and texture is reported. The extension of the model to multiaxial loading scenarios using two criteria is discussed. Initially, multiaxial strength data for H-451 graphite were modeled using the fracture model and the Principle of Independent Action. The predicted 4th stress quadrant failure envelope was satisfactory but the 1stmore » quadrant predictions were not conservative and thus were unsatisfactory. Multiaxial strength data from the 1st and 4th stress quadrant for NBG-18 graphite are reported. To improve the conservatism of the predicted 1st quadrant failure envelope for NBG-18 the Shetty criterion has been applied to obtain the equivalent critical stress intensity factor, KIc (Equi), for each applied biaxial stress ratio. The equivalent KIc value is used in the Burchell fracture model to predict the failure envelope. The predicted 1st stress quadrant failure envelope is conservative and thus more satisfactory than achieved previously using the fracture model combined with the Principle of Independent Action.« less

  17. Tire containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  18. Late-time particle emission from laser-produced graphite plasma

    NASA Astrophysics Data System (ADS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-09-01

    We report a late-time "fireworks-like" particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  19. Graphite in an Apollo 17 impact melt breccia.

    PubMed

    Steele, A; McCubbin, F M; Fries, M; Glamoclija, M; Kater, L; Nekvasil, H

    2010-07-02

    We report on the detection of discrete grains of crystalline graphite and graphite whiskers (GWs) in an Apollo 17 impact melt breccia. Multiple instances of graphite and GWs within a discrete area of the sample imply that these grains are not terrestrial contamination. Both graphite and GWs are indicative of high-temperature conditions and are probably the result of the impact processes responsible for breccia formation. This suggests that impact processes may be an additional formation mechanism for GWs in the solar system and indicates that the Moon contains a record of ancient carbonaceous material delivered at the time of the Late Heavy Bombardment.

  20. Developments in Hollow Graphite Fiber Technology

    NASA Technical Reports Server (NTRS)

    Stallcup, Michael; Brantley, Lott W., Jr. (Technical Monitor)

    2002-01-01

    Hollow graphite fibers will be lighter than standard solid graphite fibers and, thus, will save weight in optical components. This program will optimize the processing and properties of hollow carbon fibers developed by MER and to scale-up the processing to produce sufficient fiber for fabricating a large ultra-lightweight mirror for delivery to NASA.

  1. Preparation and Characterization of Graphite Waste/CeO2 Composites

    NASA Astrophysics Data System (ADS)

    Kusrini, E.; Utami, C. S.; Nasruddin; Prasetyanto, E. A.; Bawono, Aji A.

    2018-03-01

    In this research, the chemical modification of graphite waste with CeO2 was developed and characterized. Graphite waste was pretreated with mechanical to obtain the size 200 mesh (75 μm), and thermal methods at 110°C oven for 6 hours. Here, we demonstrate final properties of graphite before modification (GBM), activated graphite (GA) and graphite/CeO2 composite with variation of 0.5, 1 and 2 g of CeO2 (G0.5; G1; G2). The effect of CeO2 concentration was observed. The presence of cerium in modified graphite samples (G0.5; G1; G2) were analyzed using SEM-EDX. The results show that the best surface area was found in G2 is 26.82 m2/g. The presence of CeO2 onto graphite surface does not significantly increase the surface area of composites.

  2. Phosphomolybdic acid immobilized on graphite as an environmental photoelectrocatalyst.

    PubMed

    Aber, Soheil; Yaghoubi, Zeynab; Zarei, Mahmoud

    2016-10-01

    A new phosphomolybdic acid (PMA)/Graphite surface was prepared based on electrostatic interactions between phosphomolybdic acid and graphite surface. The PMA/Graphite was characterized by cyclic voltammetry (CV) analysis and scanning electron microscope (SEM). SEM images showed that the phosphomolybdic acid particles were well stabilized on the graphite surface and they were evidenced the size of particles (approximately 10 nm). The CV results not only showed that the modified surface has good electrochemical activity toward the removal of the dyestuff, but also exhibits long term stability. The PMA/Graphite was used as a photoanode for decolorization of Reactive Yellow 39 by photoelectrocatalytic system under UV irradiation. The effects of parameters such as the amount of phosphomolybdic acid used in preparation of PMA/Graphite surface, applied potential on anode electrode and solution pH were studied by response surface methodology. The optimum conditions were obtained as follows: dye solution pH 3, 1.5 g of immobilized PMA on graphite surface and applied potential on anode electrode 1 V. Under optimum conditions after 90 min of reaction time, the decolorization efficiency was 95%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Improved graphite furnace atomizer

    DOEpatents

    Siemer, D.D.

    1983-05-18

    A graphite furnace atomizer for use in graphite furnace atomic absorption spectroscopy is described wherein the heating elements are affixed near the optical path and away from the point of sample deposition, so that when the sample is volatilized the spectroscopic temperature at the optical path is at least that of the volatilization temperature, whereby analyteconcomitant complex formation is advantageously reduced. The atomizer may be elongated along its axis to increase the distance between the optical path and the sample deposition point. Also, the atomizer may be elongated along the axis of the optical path, whereby its analytical sensitivity is greatly increased.

  4. Nondestructive evaluation of nuclear-grade graphite

    NASA Astrophysics Data System (ADS)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  5. Powder properties of hydrogenated ball-milled graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y., E-mail: y.zhang062012@gmail.com; Wedderburn, J.; Harris, R.

    2014-12-15

    Ball milling is an effective way of producing defective and nanostructured graphite. In this work, the hydrogen storage properties of graphite, ball-milled in a tungsten carbide milling pot under 3 bar hydrogen for various times (0–40 h), were investigated by TGA-Mass Spectrometry, XRD, SEM and laser diffraction particle size analysis. For the conditions used in this study, 10 h is the optimum milling time resulting in desorption of 5.5 wt% hydrogen upon heating under argon to 990 °C. After milling for 40 h, the graphite became significantly more disordered, and the amount of desorbed hydrogen decreased. After milling up tomore » 10 h, the BET surface area increased while particle size decreased; however, there is no apparent correlation between these parameters, and the hydrogen storage properties of the hydrogenated ball-milled graphite.« less

  6. Method for molding threads in graphite panels

    DOEpatents

    Short, W.W.; Spencer, C.

    1994-11-29

    A graphite panel with a hole having a damaged thread is repaired by drilling the hole to remove all of the thread and making a new hole of larger diameter. A bolt with a lubricated thread is placed in the new hole and the hole is packed with graphite cement to fill the hole and the thread on the bolt. The graphite cement is cured, and the bolt is unscrewed therefrom to leave a thread in the cement which is at least as strong as that of the original thread. 8 figures.

  7. Mineral Resource of the Month: Graphite

    USGS Publications Warehouse

    Olson, Donald W.

    2008-01-01

    Graphite, a grayish black opaque mineral with a metallic luster, is one of four forms of pure crystalline carbon (the others are carbon nanotubes, diamonds and fullerenes). It is one of the softest minerals and it exhibits perfect basal (one-plane) cleavage. Graphite is the most electrically and thermally conductive of the nonmetals, and it is chemically inert.

  8. Lightweight, Fire-Resistant Graphite Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Parker, J. A.; MING-TA-HSU

    1986-01-01

    Aircraft safety improved with interior paneling made of new laminate with good thermophysical properties. Featuring lightweight graphite composite, laminate more heat-and flame-resistant and produces much less smoke in fire than commonly used epoxy-resin-containing laminates. New laminate prepared without epoxy resin. Graphite unidirectional cloth preimpregnated with blend of vinyl polystyrylpyridine and bismaleimide (VPSP-BMI). Either of two types of VPSP-BMI blend used, depending on method of preparation of chemicals and technique used to fabricate panel.

  9. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    PubMed

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermal Pyrolytic Graphite Enhanced Components

    NASA Technical Reports Server (NTRS)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  11. Spin-density wave state in simple hexagonal graphite

    NASA Astrophysics Data System (ADS)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  12. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    USGS Publications Warehouse

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  13. An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung

    The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less

  14. An Ultrahigh Capacity Graphite/Li 2S Battery with Holey-Li 2S Nanoarchitectures

    DOE PAGES

    Ye, Fangmin; Noh, Hyungjun; Lee, Hongkyung; ...

    2018-05-07

    The pairing of high-capacity Li 2S cathode (1166 mAh g -1) and lithium-free anode (LFA) provides an unparalleled potential in developing safe and energy-dense next-generation secondary batteries. However, the low utilization of the Li 2S cathode and the lack of electrolytes compatible to both electrodes are impeding the development. Here, a novel graphite/Li 2S battery system, which features a self-assembled, holey-Li 2S nanoarchitecture and a stable solid electrolyte interface (SEI) on the graphite electrode, is reported. The holey structure on Li 2S is beneficial in decomposing Li 2S at the first charging process due to the enhanced Li ion extractionmore » and transfer from the Li 2S to the electrolyte. In addition, the concentrated dioxolane (DOL)-rich electrolyte designed lowers the irreversible capacity loss for SEI formation. By using the combined strategies, the graphite/holey-Li 2S battery delivers an ultrahigh discharge capacity of 810 mAh g -1 at 0.1 C (based on the mass of Li 2S) and of 714 mAh g -1 at 0.2 C. Moreover, it exhibits a reversible capacity of 300 mAh g -1 after a record lifecycle of 600 cycles at 1 C. These results suggest the great potential of the designed LFA/holey-Li 2S batteries for practical use.« less

  15. Insuffisance rénale aigüe: présentation rare d’une maladie d’Addison

    PubMed Central

    Salhi, Houda

    2016-01-01

    La maladie d’Addison est une pathologie rare, qui se manifeste fréquemment par des signes cliniques non spécifiques. Ce qui peut causer un retard diagnostic et thérapeutique. Cette maladie peut se présenter comme un tableau d’insuffisance rénale aigue. Nous rapportons le cas d’un patient présentant une maladie d’Addison qui a été pris en charge initialement comme une insuffisance rénale aigue secondaire à un myélome multiple et dont le diagnostic a été redressé par la suite. Le patient s’est spectaculairement amélioré après mis en place de traitement par réhydratation par voie intraveineuse; hydrocortisone injectable. PMID:27800088

  16. [Raman spectrum of nano-graphite synthesized by explosive detonation].

    PubMed

    Wen, Chao; Li, Xun; Sun, De-Yu; Guan, Jin-Qing; Liu, Xiao-Xin; Lin, Ying-Rui; Tang, Shi-Ying; Zhou, Gang; Lin, Jun-De; Jin, Zhi-Hao

    2005-01-01

    The nano-graphite powder synthesized by the detonation of explosives with negative oxygen balance is a new powder material with potential applications. In this work, the preparation of nano-graphite powder in steel chamber by pure TNT (trinitrotoluene) explosives has been introduced. In the synthesis process, the protective gases in the steel chamber are N2, CO2 and Ar, and the pressure is 0.25-2 atm. Raman spectrum of the nano-graphite was measured. The characteristic Raman band assigned to sp2 of graphite has been observed at about 1 585 cm(-1) with half-peak width of 22 cm(-1). The peak shifted to a higher frequency by 5 cm(-1) compared with that of bulk graphite. The authors explain this blue shift phenomenon by size effect. The average size of nanographite from Raman measurement is 2.97-3.97 nm. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to measure the structure and particle size of the nano-graphite. The crystallite size of nano-graphite estimated from XRD andTEM are 2.58 nm (acid untreated) and 1.86 nm (acid treated) respectively, which is in accord with the results of the measurement approximately.

  17. Research and Development on Advanced Graphite Materials. Volume 34- Oxidation-Resistance Coatings for Graphite

    DTIC Science & Technology

    1963-06-01

    RESISTANCE COATINGS "FOR GRAPHITE TECHNICAL DOCUMENTARY REPORT NO. WADD TR 61-72, Volume XXXIV ELECT" June 1963 D-I’C a AUý 0 219940 -14 0u c 94Air Force... coating on\\ Ex.: C (substrate’) + SiC1 R. SiC + graphite, + 4HCI (gas) oo flush Z000C 2 277I I I Deposition of coatings by plasma spraying also has...materials to withstand high tem- peratures has led to the investigation of the plasma torch as a means for 3 depositing protective coatings

  18. Pyrolytic graphite collector development program

    NASA Technical Reports Server (NTRS)

    Wilkins, W. J.

    1982-01-01

    Pyrolytic graphite promises to have significant advantages as a material for multistage depressed collector electrodes. Among these advantages are lighter weight, improved mechanical stiffness under shock and vibration, reduced secondary electron back-streaming for higher efficiency, and reduced outgassing at higher operating temperatures. The essential properties of pyrolytic graphite and the necessary design criteria are discussed. This includes the study of suitable electrode geometries and methods of attachment to other metal and ceramic collector components consistent with typical electrical, thermal, and mechanical requirements.

  19. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    NASA Astrophysics Data System (ADS)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  20. Friction and wear of carbon-graphite materials for high-energy brakes

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  1. Synthesis of monolithic graphene-graphite integrated electronics.

    PubMed

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M

    2011-11-20

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems with functions defined by synthesis. Graphene has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous metal catalysts permits the selective growth of graphene and graphite, with a controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from the synthesis. These functional, all-carbon structures were transferable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent substantial progress towards encoding electronic functionality through chemical synthesis and suggest the future promise of one-step integration of graphene-graphite based electronics.

  2. Graphite Recycling from Spent Lithium-Ion Batteries.

    PubMed

    Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2016-12-20

    The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO 2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO 2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO 2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Science and Society

    ScienceCinema

    None

    2017-12-09

    Dans une période d'un mois, 2me conférence sur le contrôle d'armes. Le conférencier Drell, américain, parle comme son collègue Worden (AUDIO-1985-005) des problèmes de défense stratégique.

  4. Functional interface of polymer modified graphite anode

    NASA Astrophysics Data System (ADS)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  5. Comparison of irradiation behaviour of HTR graphite grades

    NASA Astrophysics Data System (ADS)

    Heijna, M. C. R.; de Groot, S.; Vreeling, J. A.

    2017-08-01

    The INNOGRAPH irradiations were executed in the High Flux Reactor (HFR) in Petten by NRG supported by the European Framework programs HTR-M, RAPHAEL, and ARCHER to generate data on the irradiation behaviour of graphite grades for High Temperature Reactor (HTR) application available at that time. Samples of the graphite grades NBG-10, NBG-17, NBG-18, NBG-20, NBG-25, PCEA, PPEA, PCIB, and IG-110 have been irradiated at 750 °C and 950 °C. The inherent scatter induced by the probabilistic material behaviour of graphite requires uncertainty and scatter induced by test conditions and post-irradiation examination to be minimized. The INNOGRAPH irradiations supplied an adequate number of irradiated samples to enable accurate determination of material properties and their evolution under irradiation. This allows comparison of different graphite grades and a qualitative assessment of their appropriateness for HTR applications, as a basis of selection, design and core component lifetime. The results indicate that coarse grained graphite grades exhibit more favourable behaviour for application in HTRs due to their low dimensional anisotropy and fracture propagation resilience.

  6. Method for wetting a boron alloy to graphite

    DOEpatents

    Storms, E.K.

    1987-08-21

    A method is provided for wetting a graphite substrate and spreading a a boron alloy over the substrate. The wetted substrate may be in the form of a needle for an effective ion emission source. The method may also be used to wet a graphite substrate for subsequent joining with another graphite substrate or other metal, or to form a protective coating over a graphite substrate. A noneutectic alloy of boron is formed with a metal selected from the group consisting of nickel (Ni), palladium (Pd), and platinum (Pt) with excess boron, i.e., and atomic percentage of boron effective to precipitate boron at a wetting temperature of less than the liquid-phase boundary temperature of the alloy. The alloy is applied to the substrate and the graphite substrate is then heated to the wetting temperature and maintained at the wetting temperature for a time effective for the alloy to wet and spread over the substrate. The excess boron is evenly dispersed in the alloy and is readily available to promote the wetting and spreading action of the alloy. 1 fig.

  7. Graphite filament wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Feldman, A.; Damico, J. J.

    1972-01-01

    Filament wound NOL rings, 4-inch and 8-inch diameter closed-end vessels involving three epoxy resin systems and three graphite fibers were tested to develop property data and fabrication technology for filament wound graphite/epoxy pressure vessels. Vessels were subjected to single-cycle burst tests at room temperature. Manufacturing parameters were established for tooling, winding, and curing that resulted in the development of a pressure/vessel performance factor (pressure x volume/weight) or more than 900,000 in. for an oblate spheroid specimen.

  8. LeEix1 functions as a decoy receptor to attenuate LeEix2 signaling.

    PubMed

    Bar, Maya; Sharfman, Miya; Avni, Adi

    2011-03-01

    The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.

  9. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...

  10. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...

  11. Study of evaporating the irradiated graphite in equilibrium low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Bespala, E. V.; Novoselov, I. Yu.; Pavlyuk, A. O.; Kotlyarevskiy, S. G.

    2018-01-01

    The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems "irradiated graphite-argon" and "irradiated graphite-helium" for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.

  12. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    NASA Astrophysics Data System (ADS)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-10-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.

  13. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, D.M.; Ramsey, P.B.; Juntz, R.S.

    1995-07-04

    An improved method is disclosed for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite`s high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding. 11 figs.

  14. Friction and wear of metals in contact with pyrolytic graphite

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.; Brainard, W. A.

    1975-01-01

    Sliding friction experiments were conducted with gold, iron, and tantalum single crystals sliding on prismatic and basal orientations of pyrolytic graphite in various environments, including vacuum, oxygen, water vapor, nitrogen, and hydrogen bromide. Surfaces were examined in the clean state and with various adsorbates present on the graphite surfaces. Auger and LEED spectroscopy, SEM, and EDXA were used to characterize the graphite surfaces. Results indicate that the prismatic and basal orientations do not contain nor do they chemisorb oxygen, water vapor, acetylene, or hydrogen bromide. All three metals exhibited higher friction on the prismatic than on the basal orientation and these metals transferred to the atomically clean prismatic orientation of pyrolytic graphite. No metal transfer to the graphite was observed in the presence of adsorbates at 760 torr. Ion bombardment of the graphite surface with nitrogen ions resulted in the adherence of nitrogen to the surface.

  15. GRAPHITE BONDING METHOD

    DOEpatents

    King, L.D.P.

    1964-02-25

    A process for bonding or joining graphite members together in which a thin platinum foil is placed between the members, heated in an inert atmosphere to a temperature of 1800 deg C, and then cooled to room temperature is described. (AEC)

  16. Method for molding threads in graphite panels

    DOEpatents

    Short, William W.; Spencer, Cecil

    1994-01-01

    A graphite panel (10) with a hole (11) having a damaged thread (12) is repaired by drilling the hole (11) to remove all of the thread and make a new hole (13) of larger diameter. A bolt (14) with a lubricated thread (17) is placed in the new hole (13) and the hole (13) is packed with graphite cement (16) to fill the hole and the thread on the bolt. The graphite cement (16) is cured, and the bolt is unscrewed therefrom to leave a thread (20) in the cement (16) which is at least as strong as that of the original thread (12).

  17. Graphite based Schottky diodes formed semiconducting substrates

    NASA Astrophysics Data System (ADS)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  18. Friction and wear of carbon-graphite materials for high energy brakes

    NASA Technical Reports Server (NTRS)

    Bill, R. C.

    1975-01-01

    Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.

  19. Chemical Characterization and Removal of C-14 from Irradiated Graphite-12010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleaver, James; McCrory, Shilo; Smith, Tara E.

    2012-07-01

    Quantities of irradiated graphite waste are expected to drastically increase, which indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research described here is to identify the chemical form of C-14 in irradiated graphite and develop a practical method by which C-14 can be removed. Characterization of pre- and post-irradiation graphite was conducted to determine bond type, functionalmore » groups, location and concentration of C-14 and its precursors via the use of surface sensitive characterization techniques. Because most surface C-14 originates from neutron activation of nitrogen, an understanding of nitrogen bonding to graphite may lead to a greater understanding of the formation pathway of C-14. However, no single technique provides a complete picture. Therefore, a portfolio of techniques has been developed, with each technique providing another piece to the puzzle that is the chemical nature of the C-14. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), and Raman Spectroscopy were used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Auger and Energy Dispersive X-ray Analysis Spectroscopy (EDX). High-surface-area graphite foam, POCOFoam{sup R}, was exposed to liquid nitrogen and irradiated. Characterization of this material has shown C-14 to C-12 ratios of 0.035. This information was used to optimize the thermal treatment of graphite. Thermal treatment of irradiated graphite as reported by Fachinger et al. (2007) uses naturally adsorbed oxygen complexes

  20. Developpement d'outils quantitatifs pour le suivi par imagerie TEP/TDM de la reponse a la chimiotherapie et de sa toxicite

    NASA Astrophysics Data System (ADS)

    Croteau, Etienne

    L'objectif de ce projet de doctorat est de developper des outils quantitatifs pour le suivi des traitements de chimiotherapie pour le cancer du sein et de leurs effets cardiotoxiques a l'aide de l'imagerie TEP dynamique. L'analyse cinetique en TEP dynamique permet l'evaluation de parametres biologiques in vivo. Cette analyse peut etre utilise pour caracteriser la reponse tumorale a la chimiotherapie et les effets secondaires nefastes qui peuvent en resulter. Le premier article de cette these decrit la mise au point des techniques d'analyse cinetique qui utilisent la fonction d'entree d'un radiotraceur derive de l'image dynamique. Des corrections de contamination radioactive externe (epanchement) et de l'effet de volume partiel ont ete necessaires pour standardiser l'analyse cinetique et la rendre quantitative. Le deuxieme article porte sur l'evaluation d'un nouveau radiotraceur myocardique. Le 11C-acetoacetate, un nouveau radiotraceur base sur un corps cetonique, a ete compare au 11C-acetate, couramment utilise en imagerie cardiaque TEP. L'utilisation de 3H-acetate et 14C-acetoacetate ont permis d'elucider la cinetique de ces traceurs depuis la fonction d'entree et la captation par les mitochondries cardiaques qui reflete la consommation en oxygene, jusqu'a la liberation de leurs principaux metabolites reciproques (3H20 et 14CO2). Le troisieme et dernier article de cette these presente l'integration d'un modele qui evalue la reserve cardiaque de perfusion et de consommation en oxygene. Un modele de cardiomyopathie a ete etabli a l'aide d'un agent chimiotherapeutique contre le cancer du sein, la doxorubicine, reconnu comme etant cardiotoxique. Un protocole de repos/effort a permis d'evaluer la capacite d'augmentation de perfusion et de consommation en oxygene par le coeur. La demonstration d'une reserve cardiaque reduite caracterise la cardiotoxicite. La derniere contribution de cette these porte sur la mise au point de methodes peu invasives pour mesurer la

  1. Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin

    DOE PAGES

    Demir, Muslum; Kahveci, Zafer; Aksoy, Burak; ...

    2015-10-09

    Lignin is a high-volume byproduct from the pulp and paper industry and is currently burned to generate electricity and process heat. Moreover, the industry has been searching for high value-added uses of lignin to improve the process economics. In addition, battery manufacturers are seeking nonfossil sources of graphitic carbon for environmental sustainability. In our work, lignin (which is a cross-linked polymer of phenols, a component of biomass) is converted into graphitic porous carbon using a two-step conversion. Lignin is first carbonized in water at 300 °C and 1500 psi to produce biochar, which is then graphitized using a metal nitratemore » catalyst at 900–1100 °C in an inert gas at 15 psi. Graphitization effectiveness of three different catalysts—iron, cobalt, and manganese nitrates—is examined. The product is analyzed for morphology, thermal stability, surface properties, and electrical conductivity. Both temperature and catalyst type influenced the degree of graphitization. A good quality graphitic carbon was obtained using catalysis by Mn(NO 3) 2 at 900 °C and Co(NO 3) 2 at 1100 °C.« less

  2. Characterization of Graphite Oxide and Reduced Graphene Oxide Obtained from Different Graphite Precursors and Oxidized by Different Methods Using Raman Spectroscopy.

    PubMed

    Muzyka, Roksana; Drewniak, Sabina; Pustelny, Tadeusz; Chrubasik, Maciej; Gryglewicz, Grażyna

    2018-06-21

    In this paper, the influences of the graphite precursor and the oxidation method on the resulting reduced graphene oxide (especially its composition and morphology) are shown. Three types of graphite were used to prepare samples for analysis, and each of the precursors was oxidized by two different methods (all samples were reduced by the same method of thermal reduction). Each obtained graphite oxide and reduced graphene oxide was analysed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy (RS).

  3. Fission Product Sorptivity in Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tompson, Jr., Robert V.; Loyalka, Sudarshan; Ghosh, Tushar

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodatemore » the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to

  4. Press conference

    ScienceCinema

    None

    2017-12-09

    Exposés de plusieurs intervenants de la direction et du conseil, comme le Prof.Ramsey, président du conseil sur l'adhésion récente de la Finlande et le "boom" scientifique des pays de l'est.

  5. Eddy-Current Inspection Of Graphite-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1993-01-01

    NASA technical memorandum describes initial research on, and proposed development of, automated system for nondestructive eddy-current inspection of parts made of graphite-fiber/epoxy-matrix composite materials. Sensors in system E-shaped or U-shaped eddy-current probes like those described in "Eddy-Current Probes For Inspecting Graphite-Fiber Composites" (MFS-26129).

  6. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1988-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  7. Comparison of the tribological properties of fluorinated cokes and graphites

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1987-01-01

    The friction, wear, endurance life, and surface morphology of rubbed (burnished) fluorinated graphite and fluorinated coke materials were studied. Two different coke powders, a graphitic carbon powder, and a graphite powder were fluorinated and then tribologically investigated. In addition, one of the coke powders was reduced in size before fluorinating to evaluate the effect of a finer particle size on the tribological properties. For comparison, graphite and coke powders which were not fluorinated were also tribologically evaluated. Elemental analysis by emission spectroscopy was performed on each sample to determine the impurity content and X-ray diffraction analysis was performed to determine the crystallinity. Coke was found to have very little lubricating ability, but fluorinated coke did possess good lubricating properties. However, the fluorinated graphite and fluorinated graphitic carbon (which gave equivalent results) gave superior results to those obtained with the fluorinated cokes. No tribological benefit was found for using small versus a larger particle size of coke, at least when evaluated as a rubbed film.

  8. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    PubMed

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  9. Treatment of Irradiated Graphite from French Bugey Reactor - 13424

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Thomas; Poncet, Bernard

    2013-07-01

    Beginning in 2009, in order to determine an alternative to direct disposal for decommissioned irradiated graphite from EDF's Bugey NPP, Studsvik and EDF began a test program to determine if graphite decontamination and destruction were practicable using Studsvik's thermal organic reduction (THOR) technology. The testing program focused primarily on the release of C-14, H-3, and Cl-36 and also monitored graphite mass loss. For said testing, a bench-scale steam reformer (BSSR) was constructed with the capability of flowing various compositions of gases at temperatures up to 1300 deg. C over uniformly sized particles of graphite for fixed amounts of time. Themore » BSSR was followed by a condenser, thermal oxidizer, and NaOH bubbler system designed to capture H-3 and C-14. Also, in a separate series of testing, high concentration acid and peroxide solutions were used to soak the graphite and leach out and measure Cl-36. A series of gasification tests were performed to scope gas compositions and temperatures for graphite gasification using steam and oxygen. Results suggested higher temperature steam (1100 deg. C vs. 900 deg. C) yielded a practicable gasification rate but that lower temperature (900 deg. C) gasification was also a practicable treatment alternative if oxygen is fed into the process. A series of decontamination tests were performed to determine the release behavior of and extent to which C-14 and H-3 were released from graphite in a high temperature (900-1300 deg. C), low flow roasting gas environment. In general, testing determined that higher temperatures and longer roasting times were efficacious for releasing H-3 completely and the majority (80%) of C-14. Manipulating oxidizing and reducing gas environments was also found to limit graphite mass loss. A series of soaking tests was performed to measure the amount of Cl-36 in the samples of graphite before and after roasting in the BSSR. Similar to C-14 release, these soaking tests revealed that 70

  10. Carbon Nanotubes Growth on Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Muntele, I.; Ila, D.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanotubes (CNT) were synthesized on graphite fibers by thermal Chemical Vapor Deposition (CVD). On the fiber surface, iron nanoparticles are coated and act as catalysts for CNT growth. The growth temperature ranges from 550 to 1000 C at an ambient pressure. Methane and hydrogen gases with methane contents of 10% to 100% are used for the CNT synthesis. At high growth temperatures (greater than 800 C), the rapid inter-diffusion of the transition metal iron on the graphite surface results in a rough fiber surface with no CNT grown on the surface. When the growth temperature is relatively low (650 - 800 C), CNT are fabricated on the graphite surface with catalytic particles on the nanotube top ends. Using micro Raman spectroscopy in the breath mode region, single-walled or multi-walled CNT can be determined, depending on methane concentrations.

  11. Electrostatic Manipulation of Graphene On Graphite

    NASA Astrophysics Data System (ADS)

    Untiedt, Carlos; Rubio-Verdu, Carmen; Saenz-Arce, Giovanni; Martinez-Asencio, Jesús; Milan, David C.; Moaied, Mohamed; Palacios, Juan J.; Caturla, Maria Jose

    2015-03-01

    Here we report the use of a Scanning Tunneling Microscope (STM) under ambient and vacuum conditions to study the controlled exfoliation of the last layer of a graphite surface when an electrostatic force is applied from a STM tip. In this work we have focused on the study of two parameters: the applied voltage needed to compensate the graphite interlayer attractive force and the one needed to break atomic bonds to produce folded structures. Additionally, we have studied the influence of edge structure in the breaking geometry. Independently of the edge orientation the graphite layer is found to tear through the zig-zag direction and the lifled layer shows a zig-zag folding direction. Molecular Dinamics simulations and DFT calculations have been performed to understand our results, showing a strong correlation with the experiments. Comunidad Valenciana through Prometeo project.

  12. Reaction rates of graphite with ozone measured by etch decoration

    NASA Technical Reports Server (NTRS)

    Hennig, G. R.; Montet, G. L.

    1968-01-01

    Etch-decoration technique of detecting vacancies in graphite has been used to determine the reaction rates of graphite with ozone in the directions parallel and perpendicular to the layer planes. It consists essentially of peeling single atom layers off graphite crystals without affecting the remainder of the crystal.

  13. TEM Study of Internal Crystals in Supernova Graphites

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Bernatowicz, T.; Stadermann, F. J.; Messenger, S.; Amari, S.

    2003-03-01

    A coordinated TEM and isotopic study of ten supernova (SN) graphites from the Murchison meteorite has revealed many internal grains, mostly titanium carbides (TiCs) and TiC-kamacite composite grains, which were accreted during the graphite growth.

  14. Effective Thermal Conductivity of Graphite Materials with Cracks

    NASA Astrophysics Data System (ADS)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  15. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spicer, James

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data andmore » do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have

  16. Induction graphitizing furnace acceptance test report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The induction furnace was designed to provide the controlled temperature and environment required for the post-cure, carbonization and graphitization processes for the fabrication of a fibrous graphite NERVA nozzle extension. The acceptance testing required six tests and a total operating time of 298 hrs. Low temperature mode operations, 120 to 850 C, were completed in one test run. High temperature mode operations, 120 to 2750 C, were completed during five tests.

  17. Is Water at the Graphite Interface Vapor-like or Ice-like?

    PubMed

    Qiu, Yuqing; Lupi, Laura; Molinero, Valeria

    2018-04-05

    Graphitic surfaces are the main component of soot, a major constituent of atmospheric aerosols. Experiments indicate that soots of different origins display a wide range of abilities to heterogeneously nucleate ice. The ability of pure graphite to nucleate ice in experiments, however, seems to be almost negligible. Nevertheless, molecular simulations with the monatomic water model mW with water-carbon interactions parameterized to reproduce the experimental contact angle of water on graphite predict that pure graphite nucleates ice. According to classical nucleation theory, the ability of a surface to nucleate ice is controlled by the binding free energy between ice immersed in liquid water and the surface. To establish whether the discrepancy in freezing efficiencies of graphite in mW simulations and experiments arises from the coarse resolution of the model or can be fixed by reparameterization, it is important to elucidate the contributions of the water-graphite, water-ice, and ice-water interfaces to the free energy, enthalpy, and entropy of binding for both water and the model. Here we use thermodynamic analysis and free energy calculations to determine these interfacial properties. We demonstrate that liquid water at the graphite interface is not ice-like or vapor-like: it has similar free energy, entropy, and enthalpy as water in the bulk. The thermodynamics of the water-graphite interface is well reproduced by the mW model. We find that the entropy of binding between graphite and ice is positive and dominated, in both experiments and simulations, by the favorable entropy of reducing the ice-water interface. Our analysis indicates that the discrepancy in freezing efficiencies of graphite in experiments and the simulations with mW arises from the inability of the model to simultaneously reproduce the contact angle of liquid water on graphite and the free energy of the ice-graphite interface. This transferability issue is intrinsic to the resolution of the

  18. Nanostructured carbon films with oriented graphitic planes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teo, E. H. T.; Kalish, R.; Kulik, J.

    2011-03-21

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphiticmore » planes under different conditions.« less

  19. Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling

    This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.

  20. Structure and Performance of Epoxy Resin Cladded Graphite Used as Anode

    NASA Astrophysics Data System (ADS)

    Zhou, Zhentao; Li, Haijun

    This paper is concerning to prepare modified natural graphite which is low-cost and advanced materials used as lithium ion battery anode using the way of cladding natural graphite with epoxy resin. The results shows that the specific capacity and circular performance of the modified natural graphite, which is prepared in the range of 600°C and 1000°C, have been apparently improved compare with the not-modified natural graphite. The first reversible capacity of the modified natural graphite is 338mAh/g and maintain more than 330mAh/g after 20 charge/discharge circles.

  1. Temperature effect of friction and wear characteristics for solid lubricating graphite

    NASA Astrophysics Data System (ADS)

    Kim, Yeonwook; Kim, Jaehoon

    2015-03-01

    Graphite is one of the effective lubricant additives due to its excellent high-temperature endurance and self-lubricating properties. In this study, wear behavior of graphite used as sealing materials to cut off hot gas is evaluated at room and elevated temperature. Wear occurs on graphite seal due to the friction of driving shaft and graphite. Thus, a reciprocating wear test to evaluate the wear generated for the graphite by means of the relative motion between a shaft material and a graphite seal was carried out. The friction coefficient and specific wear rate for the changes of applied load and sliding speed were compared under different temperature conditions considering the actual operating environment. Through SEM observation of the worn surface, the lubricating film was observed and compared with test conditions.

  2. Forming gas treatment of lithium ion battery anode graphite powders

    DOEpatents

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  3. The PD COMM trial: a protocol for the process evaluation of a randomised trial assessing the effectiveness of two types of SLT for people with Parkinson's disease.

    PubMed

    Masterson-Algar, Patricia; Burton, Christopher R; Brady, Marian C; Nicoll, Avril; Clarke, Carl E; Rick, Caroline; Hughes, Max; Au, Pui; Smith, Christina H; Sackley, Catherine M

    2017-08-29

    The PD COMM trial is a phase III multi-centre randomised controlled trial whose aim is to evaluate the effectiveness and cost-effectiveness of two approaches to speech and language therapy (SLT) compared with no SLT intervention (control) for people with Parkinson's disease who have self-reported or carer-reported problems with their speech or voice. Our protocol describes the process evaluation embedded within the outcome evaluation whose aim is to evaluate what happened at the time of the PD COMM intervention implementation and to provide findings that will assist in the interpretation of the PD COMM trial results. Furthermore, the aim of the PD COMM process evaluation is to investigate intervention complexity within a theoretical model of how the trialled interventions might work best and why. Drawing from the Normalization Process Theory and frameworks for implementation fidelity, a mixed method design will be used to address process evaluation research questions. Therapists' and participants' perceptions and experiences will be investigated via in-depth interviews. Critical incident reports, baseline survey data from therapists, treatment record forms and home practice diaries also will be collected at relevant time points throughout the running of the PD COMM trial. Process evaluation data will be analysed independently of the outcome evaluation before the two sets of data are then combined. To date, there are a limited number of published process evaluation protocols, and few are linked to trials investigating rehabilitation therapies. Providing a strong theoretical framework underpinning design choices and being tailored to meet the complex characteristics of the trialled interventions, our process evaluation has the potential to provide valuable insight into which components of the interventions being delivered in PD COMM worked best (and what did not), how they worked well and why. ISRCTN Registry, ISRCTN12421382 . Registered on 18 April 2016.

  4. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  5. Controle optique de qubits lies a des centres isoelectroniques d'azote dans le GaAs

    NASA Astrophysics Data System (ADS)

    Ethier-Majcher, Gabriel

    Le traitement de l'information quantique est un domaine de recherche actuellement en pleine effervescence car il laisse entrevoir une revolution dans notre facon de traiter et d'echanger de l'information. D'une part, l'ordinateur quantique promet de resoudre des problemes comme la factorisation d'un polynome de facon beaucoup plus efficace qu'un ordinateur classique. D'autre part, les communications quantiques promettent l'echange d'information de facon fondamentalement inviolable. Afin de tirer pleinement profit de ces nouvelles technologies, il sera avantageux de construire des reseaux quantiques. Dans un tel reseau, des processeurs quantiques, les noeuds, seront connectes par des photons voyageant dans des fibres optiques. Les reseaux quantiques permettront de deployer les communications quantiques a grande echelle et de creer des super-ordinateurs quantiques. La realisation de reseaux quantiques necessitera des interfaces optiques pouvant echanger l'information de facon coherente entre un qubit (bit d'information quantique) et un photon. L'implementation de telles interfaces dans un systeme physique s'avere un important defi scientifique et technologique. Or, les systemes actuellement envisages a cette fin souffrent d'un faible couplage avec la lumiere ou encore de grandes inhomogeneites, constituant des obstacles a la realisation de reseaux a grande echelle. Dans cette these, le potentiel des centres isoelectroniques pour realiser des interfaces optiques est evalue. Deux types de qubits lies a des paires d'azote dans le GaAs sont consideres : les qubits excitoniques et les qubits de spin electronique, controlables par l'intermediaire d'excitons charges. Le controle optique complet des qubits excitoniques est demontre, ce qui constitue la premiere realisation du genre dans les centres isoelectroniques. L'observation d'excitons charges dans ce systeme, liant a la fois des trous lourds et des trous legers, laisse entrevoir de nouvelles possibilites afin de

  6. Graphite fluoride fibers and their applications in the space industry

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Chen; Long, Martin; Dever, Therese

    1990-01-01

    Characterization and potential space applications of graphite fluoride fibers from commercially available graphitized carbon fibers are presented. Graphite fluoride fibers with fluorine to carbon ratios of 0.65 and 0.68 were found to have electrical resistivity values of 10(exp 4) and 10(exp 11) Ohms-cm, respectively, and thermal conductivity values of 24 and 5 W/m-K, respectively. At this fluorine content range, the fibers have tensile strength of 0.25 + or - 0.10 GPa (36 + or - 14 ksi), Young's modulus of 170 + or - 30 GPa (25 + or - 5 Msi). The coefficient of thermal expansion value of a sample with fluorine to carbon ratio of 0.61 was found to be 7 ppm/C. These properties change and approach the graphite value as the fluorine content approach 0. Electrically insulative graphite fluoride fiber is at least five times more thermally conductive than fiberglass. Therefore, it can be used as a heat sinking printed circuit board material for low temperature, long life power electronics in spacecraft. Also, partially fluorinated fiber with tailor-made physical properties to meet the requirements of certain engineering design can be produced. For example, a partially fluorinated fiber could have a predetermined CTE value in -1.5 to 7 ppm/C range and would be suitable for use in solar concentrators in solar dynamic power systems. It could also have a predetermined electrical resistivity value suitable for use as a low observable material. Experimental data indicate that slightly fluorinated graphite fibers are more durable in the atomic oxygen environment than pristine graphite. Therefore, fluorination of graphite used in the construction of spacecraft that would be exposed to the low Earth orbit atomic oxygen may protect defect sites in atomic oxygen protective coatings and therefore decrease the rate of degradation of graphite.

  7. Capacitive behavior of highly-oxidized graphite

    NASA Astrophysics Data System (ADS)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  8. Effects of sequential treatment with fluorine and bromine on graphite fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Stahl, Mark; Maciag, Carolyn; Slabe, Melissa

    1987-01-01

    Three pitch based graphite fibers with different degrees of graphitization and one polyacryonitrile (PAN) based carbon fiber from Amoco Corporation were treated with 1 atm, room temperature fluorine gas for 90 hrs. Fluorination resulted in higher electrical conductivity for all pitch fibers. Further bromination after ambient condition defluorination resulted in further increases in electrical defluorination conductivity for less graphitized, less structurally ordered pitch fibers (P-55) which contain about 3% fluorine by weight before bromination. This product can be stable in 200 C air, or 100% humidity at 60 C. Due to its low cost, this less graphitized fiber may be useful for industrial application, such as airfoil deicer materials. The same bromination process, however, resulted in conductivity decreases for fluorine rich, more graphitized, structurally oriented pitch fibers (P-100 and P-75). Such decreases in electrical conductivity were partially reversed by heating the fibers at 185 C in air. Differential scanning calorimetric (DSC) data indicated that the more graphitized fibers (P-100) contained BrF3, whereas the less graphitized fibers (P-55) did not.

  9. Modelling deformation and fracture of Gilsocarbon graphite subject to service environments

    NASA Astrophysics Data System (ADS)

    Šavija, Branko; Smith, Gillian E.; Heard, Peter J.; Sarakinou, Eleni; Darnbrough, James E.; Hallam, Keith R.; Schlangen, Erik; Flewitt, Peter E. J.

    2018-02-01

    Commercial graphites are used for a wide range of applications. For example, Gilsocarbon graphite is used within the reactor core of advanced gas-cooled reactors (AGRs, UK) as a moderator. In service, the mechanical properties of the graphite are changed as a result of neutron irradiation induced defects and porosity arising from radiolytic oxidation. In this paper, we discuss measurements undertaken of mechanical properties at the micro-length-scale for virgin and irradiated graphite. These data provide the necessary inputs to an experimentally-informed model that predicts the deformation and fracture properties of Gilsocarbon graphite at the centimetre length-scale, which is commensurate with laboratory test specimen data. The model predictions provide an improved understanding of how the mechanical properties and fracture characteristics of this type of graphite change as a result of exposure to the reactor service environment.

  10. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    DOEpatents

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  11. Automotive body panel containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor); Prud'Homme, Robert K. (Inventor); Adamson, Douglas (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  12. Industrial Applications of Graphite Fluoride Fibers

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1991-01-01

    Based on fluorination technology developed during 1934 to 1959, and the fiber technology developed during the 1970s, a new process was developed to produce graphite fluoride fibers. In the process, pitch based graphitized carbon fibers are at first intercalated and deintercalated several times by bromine and iodine, followed by several cycles of nitrogen heating and fluorination at 350 to 370 C. Electrical, mechanical, and thermal properties of this fiber depend on the fluorination process and the fluorine content of the graphite fluoride product. However, these properties are between those of graphite and those of PTFE (Teflon). Therefore, it is considered to be a semiplastic. The physical properties suggest that this new material may have many new and unexplored applications. For example, it can be a thermally conductive electrical insulator. Its coefficient of thermal expansion (CTE) can be adjusted to match that of silicon, and therefore, it can be a heat sinking printed circuit board which is CTE compatible with silicon. Using these fibers in printed circuit boards may provide improved electrical performance and reliability of the electronics on the board over existing designs. Also, since it releases fluorine at 300 C or higher, it can be used as a material to store fluorine and to conduct fluorination. This application may simplify the fluorination process and reduce the risk of handling fluorine.

  13. Analysis of Graphite-Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    2002-01-01

    Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.

  14. Eléments traces dans le sérum des enfants malnutris et bien nourris vivants à Lubumbashi et Kawama dans un contexte d'un environnement de pollution minière

    PubMed Central

    Musimwa, Aimée Mudekereza; Kanteng, Gray Wakamb; Kitoko, Hermann Tamubango; Luboya, Oscar Numbi

    2016-01-01

    Introduction La place des éléments traces métalliques essentiels en nutrition humaine ne peut plus être ignorée. Les déficits d'apports, les carences secondaires souvent sous – estimées, et les carences iatrogènes font le lit de pathologies telles que les infections et autres. D'où leurs dosages ont une importance particulière pour en évaluer la gravité et faciliter une prise en charge précoce ou améliorer le régime alimentaire. Cette étude a eu pour objectif de déterminer le profil sanguin en éléments traces (cuivre, sélénium, zinc, fer, chrome, cobalt, etc) chez les enfants malnutris et biens nourris dans un milieu minier à Lubumbashi. Méthodes Trois cents onze cas ont été colligés, 182 malnutris et 129 biens nourris, dans une étude descriptive transversale, effectuée de juillet 2013 à décembre 2014. Pour lequel un échantillonnage exhaustif a été réalisé. Le dosage des métaux dans le sérum s'est fait à l’ ICP-OES (spectrométrie de masse à plasma gon induit) au laboratoire de l'Office Congolais de Contrôle de Lubumbashi. Résultats Les oligoéléments essentiels (cuivre, zinc, sélénium et fer) se retrouvent à des concentrations très basses chez les enfants malnutris comme chez les biens nourris. L'arsenic, le cadmium, le magnésium et le manganèse se présentent à des concentrations normales par rapport aux valeurs de références chez les enfants biens nourris. L'antimoine, le chrome, le plomb et le cobalt se retrouvent élevés chez les malnutris et biens nourris. Le nickel est normal chez les malnutris et les biens nourris. Le magnésium, manganèse se sont présentés à des taux très bas chez les enfants malnutris. Conclusion Les enfants malnutris et biens nourris présentent une malnutrition aux oligo-éléments essentiels associés aux éléments traces métalliques. Ce qui permet de supposer qu'une carence en micronutriments essentiel favorise l'absorption des métaux lourds. PMID:27583075

  15. Preparation of Conductive Polymer Graphite (PG) Composites

    NASA Astrophysics Data System (ADS)

    Munirah Abdullah, Nur; Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Abdullah, M. F. L.

    2017-08-01

    The preparation of conductive polymer graphite (PG) composites thin film is described. The thickness of the PG composites due to slip casting method was set approximately ~0.1 mm. The optical microscope (OM) and fourier transform infra-red spectroscopy (FTIR) has been operated to distinguish the structure-property relationships scheme of PG composites. It shows that the graphite is homogenously dispersed in polymer matrix composites. The electrical characteristics of the PG composite were measured at room temperature and the electrical conductivity (σ) was discovered with respect of its resistivity (Ω). By achieving conductivity of 103 S/m, it is proven that at certain graphite weight loading (PG20, PG25 and PG30) attributes to electron pathway in PG composites.

  16. Structural, chemical, and isotopic microanalytical investigations of graphite from supernovae

    NASA Astrophysics Data System (ADS)

    Croat, T. Kevin; Bernatowicz, Thomas; Amari, Sachiko; Messenger, Scott; Stadermann, Frank J.

    2003-12-01

    We report the results of coordinated ion microprobe and transmission electron microscope (TEM) studies of presolar graphites from the KE3 separate (1.65-1.72 g/cm 3) of the Murchison CM2 meteorite. Isotopic analysis of individual graphites (1-12 μm) with the ion microprobe shows many to have large 18O excesses combined with large silicon isotopic anomalies, indicative of a supernova (SN) origin. Transmission electron microscopy (TEM) of ultramicrotome slices of these SN graphites revealed a high abundance (25-2400 ppm) of internal titanium carbides (TiCs), with a single graphite in some cases containing hundreds of TiCs. Isotopic compositions of individual TiCs by nanoscale resolution secondary ion mass spectrometry (NanoSIMS) confirmed their presolar origin. In addition to TiCs, composite TiC/Fe grains (TiCs with attached iron-nickel subgrains) and solitary kamacite internal grains were found. In the composite grains, the attached iron phase (kamacite [0-24 at. % Ni] or taenite [up to 60 at. % Ni]) was epitaxially grown onto one or more TiC faces. In contrast to the denser Murchison KFC1 graphites, no Zr-Ti-Mo carbides were observed. The average TiC diameters were quite variable among the SN graphites, from 30 to 232 nm, and were generally independent of the host graphite size. TiC grain morphologies ranged from euhedral to anhedral, with the grain surfaces exhibiting variable degrees of corrosion, and sometimes partially amorphous rims (3 to 15 nm thick). Partially amorphous rims of similar thickness were also observed on some solitary kamacite grains. We speculate that the rims on the internal grains are most plausibly the result of atom bombardment caused by drift of grains with respect to the ambient gas, requiring relative outflow speeds ˜100 km/s (i.e., a few percent of the SN mass outflow speed). Energy dispersive X-ray spectrometry (EDXS) of TiCs revealed significant V in solid solution, with an average V/Ti ratio over all TiCs of ˜83% of the solar

  17. Reinforcement of cement-based matrices with graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  18. Micro-fabrication method of graphite mesa microdevices based on optical lithography technology

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Wen, Donghui; Zhu, Huamin; Zhang, Xiaorui; Yang, Xing; Shi, Yunsheng; Zheng, Tianxiang

    2017-12-01

    Graphite mesa microdevices have incommensurate contact nanometer interfaces, superlubricity, high-speed self-retraction, and other characteristics, which have potential applications in high-performance oscillators and micro-scale switches, memory devices, and gyroscopes. However, the current method of fabricating graphite mesa microdevices is mainly based on high-cost, low efficiency electron beam lithography technology. In this paper, the processing technologies of graphite mesa microdevices with various shapes and sizes were investigated by a low-cost micro-fabrication method, which was mainly based on optical lithography technology. The characterization results showed that the optical lithography technology could realize a large-area of patterning on the graphite surface, and the graphite mesa microdevices, which have a regular shape, neat arrangement, and high verticality could be fabricated in large batches through optical lithography technology. The experiments and analyses showed that the graphite mesa microdevices fabricated through optical lithography technology basically have the same self-retracting characteristics as those fabricated through electron beam lithography technology, and the maximum size of the graphite mesa microdevices with self-retracting phenomenon can reach 10 µm  ×  10 µm. Therefore, the proposed method of this paper can realize the high-efficiency and low-cost processing of graphite mesa microdevices, which is significant for batch fabrication and application of graphite mesa microdevices.

  19. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.

    PubMed

    Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang

    2018-05-01

    Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Development of design data for graphite reinforced epoxy and polyimide composites

    NASA Technical Reports Server (NTRS)

    Scheck, W. G.

    1974-01-01

    Processing techniques and design data were characterized for a graphite/epoxy composite system that is useful from 75 K to 450 K, and a graphite/polyimide composite system that is useful from 75 K to 589 K. The Monsanto 710 polyimide resin was selected as the resin to be characterized and used with the graphite fiber reinforcement. Material was purchased using the prepreg specification for the design data generation for both the HT-S/710 and HM-S/710 graphite/polyimide composite system. Lamina and laminate properties were determined at 75 K, 297 K, and 589 K. The test results obtained on the skin-stringer components proved that graphite/polyimide composites can be reliably designed and analyzed much like graphite/epoxy composites. The design data generated in the program includes the standard static mechanical properties, biaxial strain data, creep, fatigue, aging, and thick laminate data.

  1. Graphite fiber/copper composites prepared by spontaneous infiltration

    NASA Astrophysics Data System (ADS)

    Wang, Hongbao; Tao, Zechao; Li, Xiangfen; Yan, Xi; Liu, Zhanjun; Guo, Quangui

    2018-05-01

    The major bottleneck in developing graphite fiber reinforced copper (GF/Cu) composites is the poor wettability of Cu/graphite system. Alloying element of chromium (Cr) is introduced to improve the wettability of liquid copper on graphite. Sessile drop method experiments illustrate that the contact angle of liquid Cu-Cr (1.0 wt.%) alloy on graphite substrate decreases to 43° at 1300 °C. The improvement of wettability is related to the formation of chromium carbide layer at interface zone. Based on the wetting experiment, a spontaneous infiltration method for preparing GF/Cu composites is proposed. Unidirectional GF preforms are infiltrated by Cu-Cr alloys without external pressure in a tubular furnace. Results reveal that the GF preform can be fully infiltrated by Cu-Cr alloy (8 wt.%) spontaneously when fiber volume fraction is 40%. The coefficient of thermal expansion (CTE) of GF/Cu-Cr (8.0 wt.%) composites is 4.68 × 10-6/K along the longitudinal direction.

  2. Review of thermal properties of graphite composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1987-01-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  3. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, Willaim; Strydom, G.; Kane, J.

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of coremore » environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.« less

  4. Method for making hot-pressed fiber-reinforced carbide-graphite composite

    DOEpatents

    Riley, Robert E.; Wallace Sr., Terry C.

    1979-01-01

    A method for the chemical vapor deposition of a uniform coating of tantalum metal on fibers of a woven graphite cloth is described. Several layers of the coated cloth are hot pressed to produce a tantalum carbide-graphite composite having a uniformly dispersed, fine grained tantalum carbide in graphite with compositions in the range of 15 to 40 volume percent tantalum carbide.

  5. Development of polyphenylquinoxaline graphite composites

    NASA Technical Reports Server (NTRS)

    Hoggatt, J. T.; Hergenrother, P. M.; Shdo, J. G.

    1973-01-01

    The potential of polyphenylquinoxaline (PPQ)/graphite composites to serve as structural material at 316 C (600 F)has been demonstrated using a block copolymer, BlCo(13), PPQ derivative. Initially, thirteen polyphenylquinoxalines were evaluated. From this work, four candidate polymers were selected for preliminary evaluation as matrices for HMS graphite fiber reinforced composites. The preliminary composite evaluation enabled selection of one of the four polymers for advanced composite preparation and testing. Using an experimentally established cure schedule for each of the four polymers, preliminary laminates of 50% resin volume content, prepared without postcure, were tested for flexure strength and modulus, interlaminar shear strength (short beam), and tensile strength and modulus at ambient temperature. A block copolymer (Bl Co 13) derived from one mole p-bis (phenylglyoxalyl) benzene, one fourth mole 3,3'-diaminobenzidine and three-fourths mole 3,3', 4,4'-tetraminobenzophenone was selected for extensive study. Tensile, flexural, and interlaminar shear values were obtained after aging and testing postcured BlCo(13) laminates at 316 C (600 F). The potential of PPQ/graphite laminates to serve as short term structural materials at temperatures up to 371 C (700 F) was demonstrated through weight loss experiments.

  6. Graphite Nanoreinforcements for Aerospace Nanocomposites

    NASA Technical Reports Server (NTRS)

    Drzal, Lawrence T.

    2005-01-01

    New advances in the reinforcement of polymer matrix composite materials are critical for advancement of the aerospace industry. Reinforcements are required to have good mechanical and thermal properties, large aspect ratio, excellent adhesion to the matrix, and cost effectiveness. To fulfill the requirements, nanocomposites in which the matrix is filled with nanoscopic reinforcing phases having dimensions typically in the range of 1nm to 100 nm show considerably higher strength and modulus with far lower reinforcement content than their conventional counterparts. Graphite is a layered material whose layers have dimensions in the nanometer range and are held together by weak Van der Waals forces. Once these layers are exfoliated and dispersed in a polymer matrix as nano platelets, they have large aspect ratios. Graphite has an elastic modulus that is equal to the stiffest carbon fiber and 10-15 times that of other inorganic reinforcements, and it is also electrically and thermally conductive. If the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with excellent mechanical properties, superior thermal stability, and very good electrical and thermal properties at very low reinforcement loadings.

  7. Resistivity of Rotated Graphite-Graphene Contacts.

    PubMed

    Chari, Tarun; Ribeiro-Palau, Rebeca; Dean, Cory R; Shepard, Kenneth

    2016-07-13

    Robust electrical contact of bulk conductors to two-dimensional (2D) material, such as graphene, is critical to the use of these 2D materials in practical electronic devices. Typical metallic contacts to graphene, whether edge or areal, yield a resistivity of no better than 100 Ω μm but are typically >10 kΩ μm. In this Letter, we employ single-crystal graphite for the bulk contact to graphene instead of conventional metals. The graphite contacts exhibit a transfer length up to four-times longer than in conventional metallic contacts. Furthermore, we are able to drive the contact resistivity to as little as 6.6 Ω μm(2) by tuning the relative orientation of the graphite and graphene crystals. We find that the contact resistivity exhibits a 60° periodicity corresponding to crystal symmetry with additional sharp decreases around 22° and 39°, which are among the commensurate angles of twisted bilayer graphene.

  8. Tuberculose chez le personnel de santé du secteur public au Burundi: fréquence et facteurs de risque

    PubMed Central

    Mukuku, Olivier; Ruhindiza, Bienvenu Mukuku; Mupepe, Alexis Kumba; Sawadogo, Michel

    2013-01-01

    Introduction Le but de cette étude était de déterminer la fréquence de la tuberculose (TB) chez le personnel de santé du secteur public en charge des patients tuberculeux et d’évaluer les facteurs de risque de contracter la tuberculose chez ce personnel au Burundi. Méthodes Il s’agit d’une étude transversale à visée analytique réalisée auprès de 300 travailleurs prestant dans 30 centres de dépistage et de traitement de la TB (CDT) au Burundi du 16 octobre au 15 novembre 2012. Les paramètres sociodémographiques et professionnels ainsi que l’antécédent de vaccination BCG de travailleurs ayant été touché par la TB ont été analysé et comparé à ceux de travailleurs qui ne l’ont pas été. Le seuil de signification a été fixé à p < 0,05. Résultats La fréquence de la TB chez le personnel de santé est de 15%. Le risque de souffrir de la TB est de près de 4 fois chez les travailleurs âgés d’au moins 50 ans (OR=3,73; 1,53-9,08), chez ceux qui n’ont jamais reçu de vaccin de BCG (OR=3,73; 1,24-11,03), chez ceux qui n’ont pas de cicatrice vaccinale de BCG (OR=3,80; 1,67-8,62) et chez ceux qui travaillent depuis au moins 6 ans dans un CDT (OR=3,79; 1,44-9,96); ce risque est de 9 fois chez ceux qui sont mariés (OR=9,42; 1,26-70,23), de 8 fois chez ceux qui n’aèrent pas leurs salles de travail (OR=8,20; 1,48-48,23) et de 6 fois chez ceux qui ont comme profession nettoyeur ou aide-soignant (OR=6,12; 2,92-12,82). Par contre, aucune corrélation statistiquement significative n’a été observée entre le fait de souffrir de la TB et le sexe mais aussi le nombre d’heures de contact d’un travailleur avec un patient tuberculeux (p>0,05). Conclusion L’âge, l’antécédent de vaccination de BCG ainsi que la majorité de paramètres professionnels sont en association avec la maladie TB des travailleurs de CDT. D’où, la maîtrise de certains facteurs de risque s’avère important pour faire face au fardeau de la TB parmi

  9. Graphite-ceramic rf Faraday-thermal shield and plasma limiter

    DOEpatents

    Hwang, D.L.Q.; Hosea, J.C.

    1983-05-05

    The present invention is directed to a brazing procedure for joining a ceramic or glass material (e.g., Al/sub 2/O/sub 3/ or Macor) to graphite. In particular, the present invention is directed to a novel brazing procedure for the production of a brazed ceramic graphite product useful as a Faraday shield. The brazed ceramic graphite Faraday shield of the present invention may be used in Magnetic Fusion Devices (e.g., Princeton Large Torus Tokamak) or other high temperature resistant apparatus.

  10. Development and fabrication of a graphite polyimide box beam

    NASA Technical Reports Server (NTRS)

    Nadler, M. A.; Darms, F. J.

    1972-01-01

    The state-of-the-art of graphite/polyimide structures was evaluated and key design and fabrication issues to be considered in future hardware programs are defined. The fabrication and testing at 500 F of a graphite/polyimide center wing box beam using OV-10A aircraft criteria was accomplished. The baseline design of this box was developed in a series of studies of other advanced composite materials: glass/epoxy, boron/epoxy, and boron/polyimide. The use of this basic design permits ready comparison of the performance of graphite/polyimide with these materials. Modifications to the baseline composite design were made only in those areas effected by the change of materials. Processing studies of graphite fiber polyimide resins systems resulted in the selection of a Modmor II/Gemon L material.

  11. Graphitic Carbon Nitride Supported Catalysts for Polymer Electrolyte Fuel Cells

    PubMed Central

    2014-01-01

    Graphitic carbon nitrides are investigated for developing highly durable Pt electrocatalyst supports for polymer electrolyte fuel cells (PEFCs). Three different graphitic carbon nitride materials were synthesized with the aim to address the effect of crystallinity, porosity, and composition on the catalyst support properties: polymeric carbon nitride (gCNM), poly(triazine) imide carbon nitride (PTI/Li+Cl–), and boron-doped graphitic carbon nitride (B-gCNM). Following accelerated corrosion testing, all graphitic carbon nitride materials are found to be more electrochemically stable compared to conventional carbon black (Vulcan XC-72R) with B-gCNM support showing the best stability. For the supported catalysts, Pt/PTI-Li+Cl– catalyst exhibits better durability with only 19% electrochemical surface area (ECSA) loss versus 36% for Pt/Vulcan after 2000 scans. Superior methanol oxidation activity is observed for all graphitic carbon nitride supported Pt catalysts on the basis of the catalyst ECSA. PMID:24748912

  12. Effect of friction on oxidative graphite intercalation and high-quality graphene formation.

    PubMed

    Seiler, Steffen; Halbig, Christian E; Grote, Fabian; Rietsch, Philipp; Börrnert, Felix; Kaiser, Ute; Meyer, Bernd; Eigler, Siegfried

    2018-02-26

    Oxidative wet-chemical delamination of graphene from graphite is expected to become a scalable production method. However, the formation process of the intermediate stage-1 graphite sulfate by sulfuric acid intercalation and its subsequent oxidation are poorly understood and lattice defect formation must be avoided. Here, we demonstrate film formation of micrometer-sized graphene flakes with lattice defects down to 0.02% and visualize the carbon lattice by transmission electron microscopy at atomic resolution. Interestingly, we find that only well-ordered, highly crystalline graphite delaminates into oxo-functionalized graphene, whereas other graphite grades do not form a proper stage-1 intercalate and revert back to graphite upon hydrolysis. Ab initio molecular dynamics simulations show that ideal stacking and electronic oxidation of the graphite layers significantly reduce the friction of the moving sulfuric acid molecules, thereby facilitating intercalation. Furthermore, the evaluation of the stability of oxo-species in graphite sulfate supports an oxidation mechanism that obviates intercalation of the oxidant.

  13. Direct Preparation of Few Layer Graphene Epoxy Nanocomposites from Untreated Flake Graphite.

    PubMed

    Throckmorton, James; Palmese, Giuseppe

    2015-07-15

    The natural availability of flake graphite and the exceptional properties of graphene and graphene-polymer composites create a demand for simple, cost-effective, and scalable methods for top-down graphite exfoliation. This work presents a novel method of few layer graphite nanocomposite preparation directly from untreated flake graphite using a room temperature ionic liquid and laminar shear processing regimen. The ionic liquid serves both as a solvent and initiator for epoxy polymerization and is incorporated chemically into the matrix. This nanocomposite shows low electrical percolation (0.005 v/v) and low thickness (1-3 layers) graphite/graphene flakes by TEM. Additionally, the effect of processing conditions by rheometry and comparison with solvent-free conditions reveal the interactions between processing and matrix properties and provide insight into the theory of the chemical and physical exfoliation of graphite crystals and the resulting polymer matrix dispersion. An interaction model that correlates the interlayer shear physics of graphite flakes and processing parameters is proposed and tested.

  14. Development of CIP/graphite composite additives for electromagnetic wave absorption applications

    NASA Astrophysics Data System (ADS)

    Woo, Soobin; Yoo, Chan-Sei; Kim, Hwijun; Lee, Mijung; Quevedo-Lopez, Manuel; Choi, Hyunjoo

    2017-09-01

    In this study, the electromagnetic (EM) wave absorption ability of carbonyl iron powder (CIP)/graphite composites produced by ball milling were studied in a range of 28.5 GHz to examine the effects of the morphology and volume fraction of graphite on EM wave absorption ability. The results indicated that a ball milling technique was effective in exfoliating the graphite and covering it with CIP, thereby markedly increasing the specific surface area of the hybrid powder. The increase in the surface area and hybridization with dielectric loss materials (i.e., graphite) improved EM absorbing properties of CIP in the range of S and X bands. Specifically, the CIP/graphite composite containing 3 wt% graphite exhibited electromagnetic wave absorption of -13 dB at 7 GHz, -21 dB at 5.8 GHz, and -29 dB at 4.3 GHz after 1 h, 8 h, and 16 h of milling, respectively. [Figure not available: see fulltext.

  15. Arc ignition at heating of graphite by fixed current

    NASA Astrophysics Data System (ADS)

    Polistchook, V. P.; Samoylov, I. S.; Amirov, R. Kh; Kiselev, V. I.

    2017-11-01

    Arc ignition after the destruction of graphite samples under prolonged heating by electric current was described. Evidences of liquid film formation on the graphite surface at a temperature of 3.3 kK were presented.

  16. Development of lightweight graphite/polyimide sandwich panels.

    NASA Technical Reports Server (NTRS)

    Poesch, J. G.

    1972-01-01

    Lightweight graphite/polyimide composite honeycomb core and sandwich panels were fabricated and tested. Honeycomb cores of 1/4-in. and 3/8-in. cell sizes of hexagonal configuration were produced from thin plus or minus 45 deg cross plied sheets of prepreg producing core weights between 1.8 and 3.6 lb/cu ft. Thin gauge prepreg using Hercules graphite tow and Monsanto Skybond 710 polyimide resin were manufactured to produce cured ply thicknesses of 0.001 to 0.002 in. Graphite core properties measured at temperatures from -150 to 600 F are reported. Core properties which are superior to available materials were obtained. Sandwich panels weighing less than 0.5 lb/sq ft were designed and fabricated which meet the support structure loads for the shuttle orbiter thermal protection system.

  17. METHOD OF COATING GRAPHITE WITH STABLE METAL CARBIDES AND NITRIDES

    DOEpatents

    Gurinsky, D.H.

    1959-10-27

    A method is presented for forming protective stable nitride and carbide compounds on the surface of graphite. This is accomplished by contacting the graphite surface with a fused heavy liquid metal such as bismuth or leadbismuth containing zirconium, titanium, and hafnium dissolved or finely dispersed therein to form a carbide and nitride of at least one of the dissolved metals on the graphite surface.

  18. Internal graphite moderator forces study, C and K Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooley, D.E.

    1963-10-28

    The purpose of this study was to determine the maximum forces that can be imposed by the graphite moderator on prospective VSR channel sleeves. In order to do this, both the origins and modes of transmission of the forces were determined. Forces in the moderator stack that are capable of acting on a block or group of blocks may originate from any of the following primary effects: Contraction of graphite due to irradiation; thermal expansion of graphite; frictional resistance to motion; resistance from keys; gravity; and other.

  19. Infrared signal generation from AC induction field heating of graphite foam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klett, James W.; Rios, Orlando

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam to produce light. An energy conversion device utilizes light energy from the heated graphite foam to perform a light energy consuming function. A device for producing light and a method of converting energy are also disclosed.

  20. Synthesis of monolithic graphene – graphite integrated electronics

    PubMed Central

    Park, Jang-Ung; Nam, SungWoo; Lee, Mi-Sun; Lieber, Charles M.

    2013-01-01

    Encoding electronic functionality into nanoscale elements during chemical synthesis has been extensively explored over the past decade as the key to developing integrated nanosystems1 with functions defined by synthesis2-6. Graphene7-12 has been recently explored as a two-dimensional nanoscale material, and has demonstrated simple device functions based on conventional top-down fabrication13-20. However, the synthetic approach to encoding electronic functionality and thus enabling an entire integrated graphene electronics in a chemical synthesis had not previously been demonstrated. Here we report an unconventional approach for the synthesis of monolithically-integrated electronic devices based on graphene and graphite. Spatial patterning of heterogeneous catalyst metals permits the selective growth of graphene and graphite, with controlled number of graphene layers. Graphene transistor arrays with graphitic electrodes and interconnects were formed from synthesis. These functional, all-carbon structures were transferrable onto a variety of substrates. The integrated transistor arrays were used to demonstrate real-time, multiplexed chemical sensing, and more significantly, multiple carbon layers of the graphene-graphite device components were vertically assembled to form a three-dimensional flexible structure which served as a top-gate transistor array. These results represent a substantial progress towards encoding electronic functionality via chemical synthesis and suggest future promise for one-step integration of graphene-graphite based electronics. PMID:22101813

  1. Graphit-ceramic RF Faraday-thermal shield and plasma limiter

    DOEpatents

    Hwang, David L.; Hosea, Joel C.

    1989-01-01

    The present invention is directed to a process of brazing a ceramic mater to graphite. In particular, the brazing procedure is directed to the production of a novel brazed ceramic graphite product useful as a Faraday shield.

  2. Development of graphite/polyimide honeycomb core materials

    NASA Technical Reports Server (NTRS)

    Stone, R. H.

    1978-01-01

    Honeycomb panel constructions consisting entirely of graphite/polyimide composites were developed and evaluated. Graphite/polyimide composites, were used in the honeycomb core webs and in pre-cured sandwich skins. Polyimide adhesives were also developed and evaluated for use in skin-core bonding. The purpose of this program was to develop light weight sandwich constructions for high temperature applications which could provide comparable shear strength and stiffness to metallic honeycomb constructions.

  3. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    PubMed Central

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; Winey, J. M.; Gupta, Yogendra M.

    2017-01-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events. PMID:29098183

  4. Nucleation and Growth of Graphite in Eutectic Spheroidal Cast Iron: Modeling and Testing

    NASA Astrophysics Data System (ADS)

    Carazo, Fernando D.; Dardati, Patricia M.; Celentano, Diego J.; Godoy, Luis A.

    2016-06-01

    A new model of graphite growth during the continuous cooling of eutectic spheroidal cast iron is presented in this paper. The model considers the nucleation and growth of graphite from pouring to room temperature. The microstructural model of solidification accounts for the eutectic as divorced and graphite growth rate as a function of carbon gradient at the liquid in contact with the graphite. In the solid state, the microstructural model takes into account three stages for graphite growth, namely (1) from the end of solidification to the upper bound of intercritical stable eutectoid, (2) during the intercritical stable eutectoid, and (3) from the lower bound of intercritical stable eutectoid to room temperature. The micro- and macrostructural models are coupled using a sequential multiscale approach. Numerical results for graphite fraction and size distribution are compared with experimental results obtained from a cylindrical cup, in which the graphite volumetric fraction and size distribution were obtained using the Schwartz-Saltykov approach. The agreements between the experimental and numerical results for the fraction of graphite and the size distribution of spheroids reveal the importance of numerical models in the prediction of the main aspects of graphite in spheroidal cast iron.

  5. Thermal Properties of G-348 Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEligot, Donald; Swank, W. David; Cottle, David L.

    2016-05-01

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08. Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  6. Thermal Properties of G-348 Graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEligot, Donald M.; Swank, W. David; Cottle, David L.

    Fundamental measurements have been obtained in the INL Graphite Characterization Laboratory to deduce the temperature dependence of thermal conductivity for G-348 isotropic graphite, which has been used by City College of New York in thermal experiments related to gas-cooled nuclear reactors. Measurements of thermal diffusivity, mass, volume and thermal expansion were converted to thermal conductivity in accordance with ASTM Standard Practice C781-08 (R-2014). Data are tabulated and a preliminary correlation for the thermal conductivity is presented as a function of temperature from laboratory temperature to 1000C.

  7. Dynamic Mechanical Properties of Bio-Polymer Graphite Thin Films

    NASA Astrophysics Data System (ADS)

    Saddam Kamarudin, M.; Rus, Anika Zafiah M.; Munirah Abdullah, Nur; Abdullah, M. F. L.

    2017-08-01

    Waste cooking oil is used as the main substances in producing graphite biopolymer thin films. Biopolymer is produce from the reaction of bio-monomer and cross linker with the ratio of 2:1 and addition of graphite with an increment of 2% through a slip casting method. The morphological surface properties of the samples are observed by using Scanning Electron Microscope (SEM). It is shown that the graphite particle is well mixed and homogenously dispersed in biopolymer matrix. Meanwhile, the mechanical response of materials by monitoring the change in the material properties in terms of frequency and temperature of the samples were determined using Dynamic Mechanical Analysis (DMA). The calculated cross-linked density of biopolymer composites revealed the increment of graphite particle loading at 8% gives highest results with 260.012 x 103 M/m3.

  8. Graphite-reinforced bone cement

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1976-01-01

    Chopped graphite fibers added to surgical bone cement form bonding agent with mechanical properties closely matched to those of bone. Curing reaction produces less heat, resulting in reduced traumatization of body tissues. Stiffness is increased without affecting flexural strength.

  9. Structural and Kinetic Properties of Graphite Intercalation Compounds

    DTIC Science & Technology

    1983-04-29

    The exfoliation of graphite-FeCl 3NH has been used for making blankets for the extinction of metal fires [12). In addition. exfoliated graphite is...FeCl3-oH3 has been used (Aerotech GCma, 0.5 MHz wideband) equipped with for making blankets for the extinction of metal fires (3). In addition

  10. Strain Rate Sensitivity of Graphite/Polymer Laminate Composites

    NASA Astrophysics Data System (ADS)

    Syed, Izhar H.; Brar, N. S.

    2002-07-01

    Strain rate sensitivities of Graphite/Epoxy and Graphite/Peek laminate composites are investigated by measuring their stress-strain response at strain rates of 0.001/s, 0.1/s, and 400/s. Tension specimens of the composite laminates are fabricated in a dog-bone shape. Stress-strain data at quasi-static rates of 0.001/s and 0.1/s are obtained using a servohydraulic test system. High strain rate data are produced with a Direct Tension Split Hopkinson Bar (DTSHB). A tensile stress pulse is generated in the DTSHB by impacting a stopper flange at the end of the incident bar with an aluminum/polymeric tube launched around the incident bar. The failure (flow) tensile stress of Graphite/Epoxy increases from 240 MPa to 280±10 MPa (ɛ = 0.06) when the strain rate is raised from 0.001/s to 400/s. For Graphite/Peek, failure (flow) tension stress increases from 175 MPa at a strain rate of 0.001/s to 270±20 MPa at a strain rate of 400/s.

  11. Damage tolerance of nuclear graphite at elevated temperatures

    DOE PAGES

    Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; ...

    2017-06-30

    Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp 2-bonded graphene layers atmore » higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing.« less

  12. Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Seokjoon; Gallagher, James R.; Miller, Jeffrey T.

    2016-02-17

    Condensation of fac-Re(5,6-diamino-1,10-phenanthroline)(CO)(3)Cl to o-quinone edge defects on graphitic carbon surfaces generates graphite-conjugated rhenium (GCC-Re) catalysts that are highly active for CO2 reduction to CO in acetonitrile electrolyte. X-ray photo-electron and X-ray absorption spectroscopies establish the formation of surface-bound Re centers with well-defined coordination environments. GCC-Re species on glassy carbon surfaces display catalytic currents greater than 50 mA cm(-2) with 96 +/- 3% Faradaic efficiency for CO production. Normalized for the number of Re active sites, GCC-Re catalysts exhibit higher turnover frequencies than that of a soluble molecular analogue, fac-Re(1,10-phenanthroline)(CO)(3)Cl, and turnover numbers greater than 12,000. In contrast to themore » molecular analogue, GCC-Re surfaces display a Tafel slope of 150 mV/decade, indicative of a catalytic mechanism involving rate-limiting one-electron transfer. This work establishes graphite conjugation as a powerful strategy for generating well-defined, tunable, heterogeneous electrocatalysts on ubiquitous graphitic carbon surfaces.« less

  13. Damage tolerance of nuclear graphite at elevated temperatures

    PubMed Central

    Liu, Dong; Gludovatz, Bernd; Barnard, Harold S.; Kuball, Martin; Ritchie, Robert O.

    2017-01-01

    Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800–1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are ‘frozen-in’ following processing. PMID:28665405

  14. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Contescu, Cristian I; Burchell, Timothy D; Mee, Robert

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetimemore » of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.« less

  15. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    EPA Science Inventory

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  16. Trace analysis of high-purity graphite by LA-ICP-MS.

    PubMed

    Pickhardt, C; Becker, J S

    2001-07-01

    Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a very efficient and sensitive technique for the direct analysis of solids. In this work the capability of LA-ICP-MS was investigated for determination of trace elements in high-purity graphite. Synthetic laboratory standards with a graphite matrix were prepared for the purpose of quantifying the analytical results. Doped trace elements, concentration 0.5 microg g(-1), in a laboratory standard were determined with an accuracy of 1% to +/- 7% and a relative standard deviation (RSD) of 2-13%. Solution-based calibration was also used for quantitative analysis of high-purity graphite. It was found that such calibration led to analytical results for trace-element determination in graphite with accuracy similar to that obtained by use of synthetic laboratory standards for quantification of analytical results. Results from quantitative determination of trace impurities in a real reactor-graphite sample, using both quantification approaches, were in good agreement. Detection limits for all elements of interest were determined in the low ng g(-1) concentration range. Improvement of detection limits by a factor of 10 was achieved for analyses of high-purity graphite with LA-ICP-MS under wet plasma conditions, because the lower background signal and increased element sensitivity.

  17. Defect induced electronic states and magnetism in ball-milled graphite.

    PubMed

    Milev, Adriyan; Dissanayake, D M A S; Kannangara, G S K; Kumarasinghe, A R

    2013-10-14

    The electronic structure and magnetism of nanocrystalline graphite prepared by ball milling of graphite in an inert atmosphere have been investigated using valence band spectroscopy (VB), core level near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and magnetic measurements as a function of the milling time. The NEXAFS spectroscopy of graphite milled for 30 hours shows simultaneous evolution of new states at ~284.0 eV and at ~290.5 eV superimposed upon the characteristic transitions at 285.4 eV and 291.6 eV, respectively. The modulation of the density of states is explained by evolution of discontinuities within the sheets and along the fracture lines in the milled graphite. The magnetic measurements in the temperature interval 2-300-2 K at constant magnetic field strength show a correlation between magnetic properties and evolution of the new electronic states. With the reduction of the crystallite sizes of the graphite fragments, the milled material progressively changes its magnetic properties from diamagnetic to paramagnetic with contributions from both Pauli and Curie paramagnetism due to the evolution of new states at ~284 and ~290.5 eV, respectively. These results indicate that the magnetic behaviour of ball-milled graphite can be manipulated by changing the milling conditions.

  18. Le sevrage de l’allaitement

    PubMed Central

    Grueger, Barbara

    2013-01-01

    RÉSUMÉ L’allaitement exclusif assure une alimentation optimale aux nourrissons jusqu’à l’âge de six mois. Par la suite, les nourrissons ont besoin d’aliments complémentaires pour répondre à leurs besoins nutritionnels. C’est alors que le sevrage commence. Le sevrage désigne le processus graduel d’introduction d’aliments complémentaires au régime du nourrisson, tout en poursuivant l’allaitement. Il n’y a pas de moment universellement accepté ou scientifiquement démontré pour mettre un terme à l’allaitement. Le moment et le processus de sevrage doivent être adaptés par la mère et l’enfant. Le sevrage peut être soudain ou graduel, prendre plusieurs semaines ou plusieurs mois, être dirigé par l’enfant ou par la mère. Les médecins doivent orienter et soutenir les mères tout au long du processus de sevrage. Le présent document remplace le document de principes sur le sevrage qu’a publié la Société canadienne de pédiatrie en 2004.

  19. A graphite-lined regeneratively cooled thrust chamber

    NASA Technical Reports Server (NTRS)

    Stubbs, V. R.

    1972-01-01

    Design concepts, based on use of graphite as a thermal barrier for regeneratively cooled FLOX-methane thrust chambers, have been screened and concepts selected for detailed thermodynamic, stress, and fabrication analyses. A single design employing AGCarb-101, a fibrous graphite composite material, for a thermal barrier liner and an electroformed nickel structure with integral coolant passages was selected for fabrication and testing. The fabrication processes and the test results are described and illustrated.

  20. Polyfunctional epoxies. I - Rubber-toughened brominated and nonbrominated formulations for graphite composites. II - Nonrubber versus rubber-toughened brominated formulations for graphite composites

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.

    1985-01-01

    A new trifunctional epoxy resin, Tris-(hydroxyphenyl) methane triglycidyl ether, is compared to a state-of-the-art tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM), in graphite composites. Rubber-toughened brominated formulations of the epoxy resin are compared to nonbrominated ones in terms of their mechanical performance, environmental stability, thermochemical behavior, and flame retardancy. It is shown that the new resin performs almost the same way as the TGDDM does, but has improved glass transition temperature and environmental properties. Brominated polymeric additives (BPA) of different molecular weights are tested as a Br source to flame retardant graphite epoxy composites. The optimal molecular weight of the BPA and its polymeric backbone length are derived and compared with a 10 percent rubber-toughened formulation of the epoxy resin. Results indicate that when the Br content in the graphite composite is increased without the use of rubber, the mechanical properties improved. The use of BPAs as tougheners for graphite composites is also considered.

  1. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Fan W; Han, Karen; Olasov, Lauren R

    2015-01-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have beenmore » made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements« less

  2. Preparation, quantitative surface analysis, intercalation characteristics and industrial implications of low temperature expandable graphite

    NASA Astrophysics Data System (ADS)

    Peng, Tiefeng; Liu, Bin; Gao, Xuechao; Luo, Liqun; Sun, Hongjuan

    2018-06-01

    Expandable graphite is widely used as a new functional carbon material, especially as fire-retardant; however, its practical application is limited due to the high expansion temperature. In this work, preparation process of low temperature and highly expandable graphite was studied, using natural flake graphite as raw material and KMnO4/HClO4/NH4NO3 as oxidative intercalations. The structure, morphology, functional groups and thermal properties were characterized during expanding process by Fourier transform infrared spectroscopy (FTIR), Raman spectra, thermo-gravimetry differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope (SEM). The analysis showed that by oxidation intercalation, some oxygen-containing groups were grafted on the edge and within the graphite layer. The intercalation reagent entered the graphite layer to increase the interlayer spacing. After expansion, the original flaky expandable graphite was completely transformed into worm-like expanded graphite. The order of graphite intercalation compounds (GICs) was proposed and determined to be 3 for the prepared expandable graphite, based on quantitative XRD peak analysis. Meanwhile, the detailed intercalation mechanisms were also proposed. The comprehensive investigation paved a benchmark for the industrial application of such sulfur-free expanded graphite.

  3. Reduced graphite oxide in supercapacitor electrodes.

    PubMed

    Lobato, Belén; Vretenár, Viliam; Kotrusz, Peter; Hulman, Martin; Centeno, Teresa A

    2015-05-15

    The current energy needs have put the focus on highly efficient energy storage systems such as supercapacitors. At present, much attention focuses on graphene-like materials as promising supercapacitor electrodes. Here we show that reduced graphite oxide offers a very interesting potential. Materials obtained by oxidation of natural graphite and subsequent sonication and reduction by hydrazine achieve specific capacitances as high as 170 F/g in H2SO4 and 84F/g in (C2H5)4NBF4/acetonitrile. Although the particle size of the raw graphite has no significant effect on the physico-chemical characteristics of the reduced materials, that exfoliated from smaller particles (<75 μm) result more advantageous for the release of the stored electrical energy. This effect is particularly evident in the aqueous electrolyte. Graphene-like materials may suffer from a drop in their specific surface area upon fabrication of electrodes with features of the existing commercial devices. This should be taken into account for a reliable interpretation of their performance in supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Design development of graphite primary structures enables SSTO success

    NASA Astrophysics Data System (ADS)

    Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.

    1997-01-01

    This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.

  5. Chemical Characterization and Removal of Carbon-14 from Irradiated Graphite II - 13023

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunzik-Gougar, Mary Lou; Cleaver, James; LaBrier, Daniel

    2013-07-01

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented last year and updated here is to identify the chemical form of C-14more » in irradiated graphite and develop a practical method by which C-14 can be removed. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoam{sup R}, were exposed to liquid nitrogen (to increase the quantity of C-14 precursor) and neutron-irradiated (10{sup 13} neutrons/cm{sup 2}/s). Finer grained NBG-25 was not exposed to liquid nitrogen prior to irradiation at a neutron flux on the order of 10{sup 14} /cm{sup 2}/s. Characterization of pre- and post-irradiation graphite was conducted to determine the chemical environment and quantity of C-14 and its precursors via the use of surface sensitive characterization techniques. Scanning Electron Microscopy (SEM) was used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Energy Dispersive X-ray Analysis Spectroscopy (EDX). Results of post-irradiation characterization of these materials indicate a variety of surface functional groups containing carbon, oxygen, nitrogen and hydrogen. During thermal treatment, irradiated graphite samples are heated in the presence of an inert carrier gas (with or without oxidant gas

  6. From Graphite to Graphene via Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Dejun

    The primary objective of this dissertation is to study both graphene on graphite and pristine freestanding grapheme using scanning tunneling microscopy (STM) and density functional theory (DFT) simulation technique. In the experiment part, good quality tungsten metalic tips for experiment were fabricated using our newly developed tip making setup. Then a series of measurements using a technique called electrostatic-manipulation scanning tunneling microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale movement of the graphite surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic transition between two distinct patterns can be systematically controlled. DFT calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Evidence for horizontal shifts in the top layer of graphite is also presented. Excellent agreement is found between experimental STM images and those simulated using DFT. In addition, the EM-STM technique was also used to controllably and reversibly pull freestanding graphene membranes up to 35 nm from their equilibrium height. Atomic-scale corrugation amplitudes 20 times larger than the STM electronic corrugation for graphene on a substrate were observed. The freestanding graphene membrane responds to a local attractive force created at the STM tip as a highly conductive yet flexible grounding plane with an elastic restoring force.

  7. Le bégaiement

    PubMed Central

    Perez, Hector R.; Stoeckle, James H.

    2016-01-01

    Résumé Objectif Fournir une mise à jour sur l’épidémiologie, l’hérédité, la physiopathologie, le diagnostic et le traitement du bégaiement développemental. Qualité des données Une recherche d’études récentes ou non portant sur l’épidémiologie, l’hérédité, la physiopathologie, le diagnostic et le traitement du bégaiement développemental a été effectuée dans les bases de données MEDLINE et Cochrane. La plupart des recommandations s’appuient sur des études de petite envergure, des données probantes de qualité limitée ou des consensus. Message principal Le bégaiement est un trouble d’élocution fréquent chez les personnes de tous âges, il altère la fluidité verbale normale et l’enchaînement du discours. Le bégaiement a été lié à des différences de l’anatomie, du fonctionnement et de la régulation dopaminergique du cerveau qui seraient de source génétique. Il importe de poser le diagnostic avec attention et de faire les recommandations qui conviennent chez les enfants, car de plus en plus, le consensus veut que l’intervention précoce par un traitement d’orthophonie soit cruciale chez les enfants bègues. Chez les adultes, le bégaiement est lié à une morbidité psychosociale substantielle, dont l’anxiété sociale et une piètre qualité de vie. Les traitements pharmacologiques ont soulevé l’intérêt depuis quelques années, mais les données cliniques sont limitées. Le traitement des enfants et des adultes repose sur l’orthophonie. Conclusion De plus en plus de recherches ont tenté de lever le voile sur la physiopathologie du bégaiement. La meilleure solution pour les enfants et les adultes bègues demeure la recommandation à un traitement d’orthophonie.

  8. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  9. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simos, N.; Nocera, P.; Zhong, Z.

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the

  10. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE PAGES

    Simos, N.; Nocera, P.; Zhong, Z.; ...

    2017-07-24

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×10 20 p/cm 2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use asmore » a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~10 20 cm -2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the

  11. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    NASA Astrophysics Data System (ADS)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  12. Graphite fluoride as a solid lubricant in a polyimide binder

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Sliney, H. E.

    1972-01-01

    Polyimide resin (PI) was shown to be a suitable binder material for the solid lubricant graphite fluoride, (CF(1.1))n. Comparisons were made to similar tests using PI-bonded MOS2 films, graphite fluoride rubbed films, and MOS2 rubbed films. The results showed that, at any one specific temperature between 25 and 400 C, the wear life of PI-bonded graphite fluoride films exceeded those of the other three films by at least a factor of 2 and by as much as a factor of 60. Minimum friction coefficients for the PI-bonded films were 0.08 for graphite fluoride and 0.04 for MOS2. The rider wear rates for the two PI-bonded films at 25 C were nearly equal.

  13. Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Xu, Wu; Choi, Daiwon

    2012-04-27

    In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life.more » After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.« less

  14. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.

    Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less

  15. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries

    DOE PAGES

    Chen, Shuru; Yu, Zhaoxin; Gordin, Mikhail L.; ...

    2017-02-03

    Lithium/sulfur (Li/S) batteries have attracted great attention as a promising energy storage technology, but so far their practical applications are greatly hindered by issues of polysulfide shuttling and unstable lithium/electrolyte interface. To address these issues, a feasible strategy is to construct a rechargeable prelithiated graphite/sulfur batteries. In this study, a fluorinated ether of bis(2,2,2-trifluoroethyl) ether (BTFE) was reported to blend with 1,3-dioxolane (DOL) for making a multifunctional electrolyte of 1.0 M LiTFSI DOL/BTFE (1:1, v/v) to enable high performance prelithiated graphite/S batteries. First, the electrolyte significantly reduces polysulfide solubility to suppress the deleterious polysulfide shuttling and thus improves capacity retentionmore » of sulfur cathodes. Second, thanks to the low viscosity and good wettability, the fluorinated electrolyte dramatically enhances the reaction kinetics and sulfur utilization of high-areal-loading sulfur cathodes. More importantly, this electrolyte forms a stable solid-electrolyte interphase (SEI) layer on graphite surface and thus enables remarkable cyclability of graphite anodes. Lastly, by coupling prelithiated graphite anodes with sulfur cathodes with high areal capacity of ~3 mAh cm -2, we demonstrate prelithiated graphite/sulfur batteries that show high sulfur-specific capacity of ~1000 mAh g -1 and an excellent capacity retention of >65% after 450 cycles at C/10.« less

  16. Measurements of print-through in graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  17. Prévention de la transmission mère-enfant du VIH/sida au Bénin: le consentement des femmes au dépistage est-il libre et éclairé ?

    PubMed Central

    Kêdoté, N.M.; Brousselle, A.; Champagne, F.; Laudy, D.

    2016-01-01

    Résumé Introduction Dans les politiques internationales et nationales sur le VIH/sida, le consentement libre et éclairé est reconnu comme une composante essentielle des programmes de dépistage. Le consentement libre et éclairé implique pour les femmes enceintes d’obtenir des informations sur le programme de prévention de la transmission du VIH de la mère à l’enfant (PTME), de les comprendre et de faire un choix autonome après avoir évalué les risques et avantages. Cependant, aucune évaluation du programme de PTME ne s’est intéressée au consentement. L’objectif de cet article est d’explorer le caractère libre et éclairé du consentement des femmes enceintes quant au dépistage et à leurs motivations à faire le test. Méthode Nous avons utilisé des données récoltées dans le cadre d’une analyse d’implantation du programme de PTME au Bénin. Cette analyse s’appuie sur un devis d’étude de cas multiples incluant six maternités choisies parmi les 56 sites fonctionnels. Spécifiquement pour l’analyse du consentement, nous avons associé les données provenant d’une enquête à celles d’une recherche qualitative. Résultats Hormis trois cas de dépistage à l’insu, le caractère volontaire du consentement au test est respecté sur les sites de PTME. Vingt-neuf cas de refus ont été identifiés. Les raisons les plus souvent évoquées par les femmes enceintes sont la peur du résultat positif et de ses conséquences sur la vie familiale dans 55,2 % des cas et l’attente de l’accord ou du désaccord du mari dans 27,6 % des cas. Si globalement le consentement a été volontaire sur tous les sites, son caractère éclairé est moins probant. PMID:27840660

  18. Exit Presentation: Infrared Thermography on Graphite/Epoxy

    NASA Technical Reports Server (NTRS)

    Comeaux, Kayla

    2010-01-01

    This slide presentation reports on the internship project that was accomplished during the summer of 2010. The objectives of the project were to: (1) Simulate Flash Thermography on Graphite/Epoxy Flat Bottom hole Specimen and thin void specimens, (2) Obtain Flash Thermography data on Graphite/Epoxy flat bottom hole specimens, (3) Compare experimental results with simulation results, Compare Flat Bottom Hole Simulation with Thin Void Simulation to create a graph to determine size of IR Thermography detected defects

  19. Filament-wound graphite/epoxy rocket motor case

    NASA Technical Reports Server (NTRS)

    Humphrey, W. D.; Schmidt, W. W.

    1972-01-01

    The fabrication procedures are described for a filament-wound rocket motor case, approximately 56 cm long x 71 cm diameter, utilizing high tensile strength graphite fibers. The process utilized Fiberite Hy-E-1330B prepreg tape which consists of Courtaulds HTS fibers in a temperature-sensitive epoxy matrix. This fabrication effort, with resultant design, material and process recommendations, substantiates the manufacturing feasibility of graphite/epoxy rocket motor cases in the 56 cm x 71 cm size range.

  20. Silicone modified resins for graphite fiber laminates

    NASA Technical Reports Server (NTRS)

    Frost, L. W.; Bower, G. M.

    1979-01-01

    The development of silicon modified resins for graphite fiber laminates which will prevent the dispersal of graphite fibers when the composites are burned is discussed. Eighty-five silicone modified resins were synthesized and evaluated including unsaturated polyesters, thermosetting methacrylates, epoxies, polyimides, and phenolics. Neat resins were judged in terms of Si content, homogeneity, hardness, Char formation, and thermal stability. Char formation was estimated by thermogravimetry to 1,000 C in air and in N2. Thermal stability was evaluated by isothermal weight loss measurements for 200 hrs in air at three temperatures. Four silicone modified epoxies were selected for evaluation in unidirectional filament wound graphite laminates. Neat samples of these resins had 1,000 C char residues of 25 to 50%. The highest flexural values measured for the laminates were a strength of 140 kpsi and a modulus of 10 Mpsi. The highest interlaminar shear strength was 5.3 kpsi.

  1. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham

    Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less

  2. Selecting the Best Graphite for Long-Life, High-Energy Li-Ion Batteries

    DOE PAGES

    Mao, Chengyu; Wood, Marissa; David, Lamuel Abraham; ...

    2018-06-16

    Here, most lithium-ion batteries still rely on intercalation-type graphite materials for anodes, so it is important to consider their role in full cells for applications in electric vehicles. Here, we systematically evaluate the chemical and physical properties of six commercially-available natural and synthetic graphites to establish which factors have the greatest impact on the cycling stability of full cells with nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes. Electrochemical data and post-mortem characterization explain the origin of capacity fade. The NMC811 cathode shows large irreversible capacity loss and impedance growth, accounting for much of full cell degradation. However, six graphite anodes demonstrate significant differencesmore » with respect to structural change, surface area, impedance growth, and SEI chemistry, which impact overall capacity retention. We found long cycle life correlated most strongly with stable graphite crystallite size. In addition, graphites with lower surface area generally had higher coulombic efficiencies during formation cycles, which led to more stable long-term cycling. The best graphite screened here enables a capacity retention around 90% in full pouch cells over extensive long-term cycling compared to only 82% for cells with the lowest performing graphite. The results show that optimal graphite selection improves cycling stability of high energy lithium-ion cells.« less

  3. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less

  4. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE PAGES

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.; ...

    2017-10-27

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane. These findings contradict recent molecular dynamics simulation results for the shock-induced graphite-to-diamond transformation and provide a benchmark for future theoretical simulations. Additionally, our results show that an earlier report of HD forming only above 170 GPa for shocked pyrolytic graphite may lead to incorrect interpretations of meteorite impact events.« less

  5. Graphitization in Carbon MEMS and Carbon NEMS

    NASA Astrophysics Data System (ADS)

    Sharma, Swati

    Carbon MEMS (CMEMS) and Carbon NEMS (CNEMS) are an emerging class of miniaturized devices. Due to the numerous advantages such as scalable manufacturing processes, inexpensive and readily available precursor polymer materials, tunable surface properties and biocompatibility, carbon has become a preferred material for a wide variety of future sensing applications. Single suspended carbon nanowires (CNWs) integrated on CMEMS structures fabricated by electrospinning of SU8 photoresist on photolithographially patterned SU8 followed by pyrolysis are utilized for understanding the graphitization process in micro and nano carbon materials. These monolithic CNW-CMEMS structures enable the fabrication of very high aspect ratio CNWs of predefined length. The CNWs thus fabricated display core---shell structures having a graphitic shell with a glassy carbon core. The electrical conductivity of these CNWs is increased by about 100% compared to glassy carbon as a result of enhanced graphitization. We explore various tunable fabrication and pyrolysis parameters to improve graphitization in the resulting CNWs. We also suggest gas-sensing application of the thus fabricated single suspended CNW-CMEMS devices by using the CNW as a nano-hotplate for local chemical vapor deposition. In this thesis we also report on results from an optimization study of SU8 photoresist derived carbon electrodes. These electrodes were applied to the simultaneous detection of traces of Cd(II) and Pb(II) through anodic stripping voltammetry and detection limits as low as 0.7 and 0.8 microgL-1 were achieved. To further improve upon the electrochemical behavior of the carbon electrodes we elucidate a modified pyrolysis technique featuring an ultra-fast temperature ramp for obtaining bubbled porous carbon from lithographically patterned SU8. We conclude this dissertation by suggesting the possible future works on enhancing graphitization as well as on electrochemical applications

  6. Detecting aberrant opioid behavior in the emergency department: a prospective study using the screener and Opioid Assessment for Patients with Pain-Revised (SOAPP®-R), Current Opioid Misuse Measure (COMM)™, and provider gestalt.

    PubMed

    Varney, Shawn M; Perez, Crystal A; Araña, Allyson A; Carey, Katherine R; Ganem, Victoria J; Zarzabal, Lee A; Ramos, Rosemarie G; Bebarta, Vikhyat S

    2018-03-03

    Emergency department (ED) providers have limited time to evaluate patients at risk for opioid misuse. A validated tool to assess the risk for aberrant opioid behavior may mitigate adverse sequelae associated with prescription opioid misuse. We sought to determine if SOAPP-R, COMM, and provider gestalt were able to identify patients at risk for prescription opioid misuse as determined by pharmacy records at 12 months. We conducted a prospective observational study of adult patients in a high volume US ED. Patients completed the SOAPP-R and COMM, and treating EM providers evaluated patients' opioid misuse risk. We performed variable-centered, person-centered, and hierarchical cluster analyses to determine whether provider gestalt, SOAPP-R, or COMM, or a combination, predicted higher misuse risk. The primary outcome was the number of opioid prescriptions at 12 months according to pharmacy records. For 169 patients (mean age 43 years, 51% female, 73% white), correlation analysis showed a strong relationship between SOAPP-R and COMM with predicting the number of opioid prescriptions dispensed at 12 months. Provider scores estimating opioid misuse were not related to SOAPP-R and only weakly associated with COMM. In our adjusted regression models, provider gestalt and SOAPP-R uniquely predicted opioid prescriptions at 6 and 12 months. Using designated cutoff scores, only SOAPP-R detected a difference in the number of opioid prescriptions. Cluster analysis revealed that provider gestalt, SOAPP-R, and COMM scores jointly predicted opioid prescriptions. Provider gestalt and self-report instruments uniquely predicted the number of opioid prescriptions in ED patients. A combination of gestalt and self-assessment scores can be used to identify at-risk patients who otherwise miss the cutoff scores for SOAPP-R and COMM.

  7. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, R.A.; Lewis, I.C.

    1998-05-26

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (1) the electrode, (2) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (3) a counter electrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes. 3 figs.

  8. Chemically modified graphite for electrochemical cells

    DOEpatents

    Greinke, Ronald Alfred; Lewis, Irwin Charles

    1998-01-01

    This invention relates to chemically modified graphite particles: (a) that are useful in alkali metal-containing electrode of a electrochemical cell comprising: (i) the electrode, (ii) a non-aqueous electrolytic solution comprising an organic aprotic solvent which solvent tends to decompose when the electrochemical cell is in use, and an electrically conductive salt of an alkali metal, and (iii) a counterelectrode; and (b) that are chemically modified with fluorine, chlorine, iodine or phosphorus to reduce such decomposition. This invention also relates to electrodes comprising such chemically modified graphite and a binder and to electrochemical cells containing such electrodes.

  9. Method of forming impermeable carbide coats on graphite

    DOEpatents

    Wohlberg, C.

    1973-12-11

    A method of forming an impermeable refractory metal carbide coating on graphite is described in which a metal containing oxidant and a carbide former are applied to the surface of the graphite, heated to a temperature of between 1200 and 1500 deg C in an inert gas, under a vacuum and continuing to heat to about 2300 deg C. (Official Gazette)

  10. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  11. Ionic liquids at the surface of graphite: Wettability and structure

    NASA Astrophysics Data System (ADS)

    Bordes, Emilie; Douce, Laurent; Quitevis, Edward L.; Pádua, Agílio A. H.; Costa Gomes, Margarida

    2018-05-01

    The aim of this work is to provide a better understanding of the interface between graphite and different molecular and ionic liquids. Experimental measurements of the liquid surface tension and of the graphite-liquid contact angle for sixteen ionic liquids and three molecular liquids are reported. These experimental values allowed the calculation of the solid/liquid interfacial energy that varies, for the ionic liquids studied, between 14.5 mN m-1 for 1-ethyl-3-methylimidazolium dicyanamide and 37.8 mN m-1 for 3-dodecyl-1-(naphthalen-1-yl)-1H-imidazol-3-ium tetrafluoroborate. Imidazolium-based ionic liquids with large alkyl side-chains or functionalized with benzyl groups seem to interact more favourably with freshly peeled graphite surfaces. Even if the interfacial energy seems a good descriptor to assess the affinity of a liquid for a carbon-based solid material, we conclude that both the surface tension of the liquid and the contact angle between the liquid and the solid can be significant. Molecular dynamics simulations were used to investigate the ordering of the ions near the graphite surface. We conclude that the presence of large alkyl side-chains in the cations increases the ordering of ions at the graphite surface. Benzyl functional groups in the cations lead to a large affinity towards the graphite surface.

  12. GRAFEC: A New Spanish Program to Investigate Waste Management Options for Radioactive Graphite - 12399

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez, Eva; Pina, Gabriel; Rodriguez, Marina

    Spain has to manage about 3700 tons of irradiated graphite from the reactor Vandellos I as radioactive waste. 2700 tons are the stack of the reactor and are still in the reactor core waiting for retrieval. The rest of the quantities, 1000 tons, are the graphite sleeves which have been already retrieved from the reactor. During operation the graphite sleeves were stored in a silo and during the dismantling stage a retrieval process was carried out separating the wires from the graphite, which were crushed and introduced into 220 cubic containers of 6 m{sup 3} each and placed in interimmore » storage. The graphite is an intermediate level radioactive waste but it contains long lived radionuclides like {sup 14}C which disqualifies disposal at the low level waste repository of El Cabril. Therefore, a new project has been started in order to investigate two new options for the management of this waste type. The first one is based on a selective decontamination of {sup 14}C by thermal methods. This method is based on results obtained at the Research Centre Juelich (FZJ) in the Frame of the EC programs 'Raphael' and 'Carbowaste'. The process developed at FZJ is based on a preferential oxidation of {sup 14}C in comparison to the bulk {sup 12}C. Explanations for this effect are the inhomogeneous distribution and a weaker bounding of {sup 14}C which is not incorporated in the graphite lattice. However these investigations have only been performed with graphite from the high temperature reactor Arbeitsgemeinschaft Versuchsreaktor Juelich AVR which has been operated in a non-oxidising condition or research reactor graphite operated at room temperature. The reactor Vandellos I has been operated with CO{sub 2} as coolant and significant amounts of graphite have been already oxidised. The aim of the project is to validate whether a {sup 14}C decontamination can also been achieved with graphite from Vandellos I. A second possibility under investigation is the encapsulation of

  13. 1. LOOKING WEST ON LEHIGH CANAL, GRAPHITE MILL IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING WEST ON LEHIGH CANAL, GRAPHITE MILL IN FOREGROUND - Pettinos Brothers Graphite Manufacturing Mill, On Sand Island, south side of Lehigh Canal, west of Hill-to-Hill Bridge, Bethlehem, Northampton County, PA

  14. Computational investigation of spin-polarization in cobalt/graphite superlattices

    NASA Astrophysics Data System (ADS)

    Goto, Kim F.; Hill, Nicola A.; Sanvito, Stefano

    2003-03-01

    We present results of a computational investigation of the magnetic properties of cobalt/ graphite superlattices. This work was motivated by experimental data showing spin injection into carbon nanotubes via cobalt contacts [1] as well as the discovery of a magnetic meteorite made from graphite and magnetic particles, in which part of the magnetization is on the carbon atoms [2]. Using density functional theory within the local spin-density approximation (the SIESTA implementation), we show that cobalt induces both n-doping and a magnetic moment in the graphite layers adjacent to the cobalt-carbon interface. We also show that the magnetic properties are strongly affected by the orientation of the graphite. Finally, implications for spin injection and spin-polarized transport are discussed. [1] K. Tsukagoshi, B.W. Alphenaar, and H. Ago, Nature (London) 401, 572 (1999) [2] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, A.P. Douvalis and I.S. Sanders, Nature (London) 420, 156 (2002)

  15. Hydrothermal flake graphite mineralisation in Paleoproterozoic rocks of south-east Greenland

    NASA Astrophysics Data System (ADS)

    Rosing-Schow, Nanna; Bagas, Leon; Kolb, Jochen; Balić-Žunić, Tonči; Korte, Christoph; Fiorentini, Marco L.

    2017-06-01

    Flake graphite mineralisation is hosted in the Kuummiut Terrane of the Paleoproterozoic Nagssugtoqidian Orogen, south-east Greenland. Eclogite-facies peak-metamorphic assemblages record temperatures of 640-830 °C and pressures of 22-25 kbar, and are retrogressed in the high-pressure amphibolite-facies during ca. 1870-1820 Ma. Graphite occurs as lenses along cleavage planes in breccia and as garnet-quartz-graphite veins in various metamorphic host rocks in the Tasiilaq area at Auppaluttoq, Kangikajik, and Nuuk-Ilinnera. Graphite contents reach >30 vol% in 0.2-4 × 20 m wide semi-massive mineralisation (Auppaluttoq, Kangikajik). Supergene alteration formed 1- to 2-m-thick and up to a 2.5 × 2.5 km wide loose limonitic gravel containing graphite flakes in places. The flake size ranges from 1 to 6 mm in diameter with an average of 3 mm. Liberation efficiency is at minimum 60%. Hydrothermal fluids at 600 °C, transporting carbon as CO2 and CH4, formed the mineralisation commonly hosted by shear zones, which acted as pathways for the mineralising fluids. The hydrothermal alteration assemblage is quartz-biotite-grunerite-edenite-pargasite-K-feldspar-titanite. The δ13C values of graphite, varying from -30 to -18‰ PDB, indicate that the carbon was derived from organic matter most likely from metasedimentary sources. Devolatilisation of marble may have contributed a minor amount of carbon by fluid mixing. Precipitation of graphite involved retrograde hydration reactions, depleting the fluid in H2O and causing graphite saturation. Although the high-grade mineralisation is small, it represents an excellent example of hydrothermal mineralisation in an eclogite-facies terrane during retrograde exhumation.

  16. Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.

    PubMed

    Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo

    2016-08-30

    The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.

  17. Recent advances in graphite powder-based electrodes.

    PubMed

    Bellido-Milla, Dolores; Cubillana-Aguilera, Laura Ma; El Kaoutit, Mohammed; Hernández-Artiga, Ma Purificación; Hidalgo-Hidalgo de Cisneros, José Luis; Naranjo-Rodríguez, Ignacio; Palacios-Santander, José Ma

    2013-04-01

    Graphite powder-based electrodes have the electrochemical performance of quasi-noble metal electrodes with intrinsic advantages related to the possibility of modification to enhance selectivity and their easily renewable surface, with no need for hazardous acids or bases for their cleaning. In contrast with commercial electrodes, for example screen-printed or sputtered-chip electrodes, graphite powder-based electrodes can also be fabricated in any laboratory with the form and characteristics desired. They are also readily modified with advanced materials, with relatively high reproducibility. All these characteristics make them a very interesting option for obtaining a large variety of electrodes to resolve different kinds of analytical problems. This review summarizes the state-of-the-art, advantages, and disadvantages of graphite powder-based electrodes in electrochemical analysis in the 21st century. It includes recent trends in carbon paste electrodes, devoting special attention to the use of emergent materials as new binders and to the development of other composite electrodes. The most recent advances in the use of graphite powder-modified sol-gel electrodes are also described. The development of sonogel-carbon electrodes and their use in electrochemical sensors and biosensors is included. These materials extend the possibilities of applications, especially for industrial technology-transfer purposes, and their development could affect not only electroanalytical green chemistry but other interesting areas also, for example catalysis and energy conversion and storage.

  18. EFFECT OF MASSIVE NEUTRON EXPOSURE ON THE DISTORTION OF REACTOR GRAPHITE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helm, J.W.; Davidson, J.M.

    1963-05-28

    Distortion of reactor-grade graphites was studied at varying neutron exposures ranging up to 14 x 10/sup 21/ neutrons per cm/sup 2/ (nvt)/sup */ at temperatures of irradiation ranging from 425 to 800 deg C. This exposure level corresponds to approximately 100,000 megawatt days per adjacent ton of fuel (Mwd/ At) in a graphite-moderated reactor. A conventionalcoke graphite, CSF, and two needle-coke graphites, NC-7 and NC-8, were studied. At all temperatures of irradiation the contraction rate of the samples cut parallel to the extrusion axis increased with increasing neutron exposure. For parallel samples the needle- coke graphites and the CSF graphitemore » contracted approximately the same amount. In the transverse direction the rate of cortraction at the higher irradiation temperntures appeared to be decreasing. Volume contractions derived from the linear contractions are discussed. (auth)« less

  19. Design of Modern Reactors for Synthesis of Thermally Expanded Graphite.

    PubMed

    Strativnov, Eugene V

    2015-12-01

    One of the most progressive trends in the development of modern science and technology is the creation of energy-efficient technologies for the synthesis of nanomaterials. Nanolayered graphite (thermally exfoliated graphite) is one of the key important nanomaterials of carbon origin. Due to its unique properties (chemical and thermal stability, ability to form without a binder, elasticity, etc.), it can be used as an effective absorber of organic substances and a material for seal manufacturing for such important industries as gas transportation and automobile. Thermally expanded graphite is a promising material for the hydrogen and nuclear energy industries. The development of thermally expanded graphite production is resisted by high specific energy consumption during its manufacturing and by some technological difficulties. Therefore, the creation of energy-efficient technology for its production is very promising.

  20. Large Scale Reduction of Graphite Oxide Project

    NASA Technical Reports Server (NTRS)

    Calle, Carlos; Mackey, Paul; Falker, John; Zeitlin, Nancy

    2015-01-01

    This project seeks to develop an optical method to reduce graphite oxide into graphene efficiently and in larger formats than currently available. Current reduction methods are expensive, time-consuming or restricted to small, limited formats. Graphene has potential uses in ultracapacitors, energy storage, solar cells, flexible and light-weight circuits, touch screens, and chemical sensors. In addition, graphite oxide is a sustainable material that can be produced from any form of carbon, making this method environmentally friendly and adaptable for in-situ reduction.

  1. CMB-13 research on carbon and graphite

    NASA Technical Reports Server (NTRS)

    Smith, M. C.

    1972-01-01

    The effects of grinding on Santa Maria coke are considered, as well as the production of resin-bonded graphite from the coke. Kynol fibers, properties and purities of coal tar pitches, carbonization of resin components, synthesis of gamma BL (4-furfuryl 2-pentenoic acid gamma lactone), and a glass-like carbon powder for use as a filler are also discussed. The hydrogen contents of commercial cokes and graphites are tabulated, and a quantimet image-analyzing computer and its operation are described.

  2. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOEpatents

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  3. Industry technology assessment of graphite-polymide composite materials. [conferences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

  4. Effect of airborne contaminants on the wettability of supported graphene and graphite

    NASA Astrophysics Data System (ADS)

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P.; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  5. Graphite fluoride lubrication: The effect of fluorine content, atmosphere, and burnishing technique

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1975-01-01

    Eight different graphite fluoride compounds with fluorine to carbon ratios varying from x = 0.25 to 1.1 were evaluated as burnished films in order to determine the effect of fluorine content on the solid lubricant properties of graphite fluoride. For comparison, similar experiments were conducted on graphite burnished films. It was found that even a small amount of fluorine in graphite fluoride (CF sub 0.25) sub n improved the lubricating properties of graphite. Such factors as burnishing atmosphere, burnishing technique, test atmosphere, and specimen temperature affected the results as much as varying the fluorine to carbon ratio of the compound. Best life was found for films that were machine-burnished in moist air and tested in moist air.

  6. Effect of airborne contaminants on the wettability of supported graphene and graphite.

    PubMed

    Li, Zhiting; Wang, Yongjin; Kozbial, Andrew; Shenoy, Ganesh; Zhou, Feng; McGinley, Rebecca; Ireland, Patrick; Morganstein, Brittni; Kunkel, Alyssa; Surwade, Sumedh P; Li, Lei; Liu, Haitao

    2013-10-01

    It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite. Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air. By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment. Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air.

  7. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression.

    PubMed

    Mundy, Christopher J; Curioni, Alessandro; Goldman, Nir; Will Kuo, I-F; Reed, Evan J; Fried, Laurence E; Ianuzzi, Marcella

    2008-05-14

    We report herein ab initio molecular dynamics simulations of graphite under shock compression in conjunction with the multiscale shock technique. Our simulations reveal that a novel short-lived layered diamond intermediate is formed within a few hundred of femtoseconds upon shock loading at a shock velocity of 12 kms (longitudinal stress>130 GPa), followed by formation of cubic diamond. The layered diamond state differs from the experimentally observed hexagonal diamond intermediate found at lower pressures and previous hydrostatic calculations in that a rapid buckling of the graphitic planes produces a mixture of hexagonal and cubic diamond (layered diamond). Direct calculation of the x-ray absorption spectra in our simulations reveals that the electronic structure of the final state closely resembles that of compressed cubic diamond.

  8. Developpement d'un montage simulant l'erosion par la pluie pour l'evaluation des revetements glaciophobes dans le domaine aerospatial

    NASA Astrophysics Data System (ADS)

    Tremblay, Sarah-Eve

    Ce memoire presente le developpement d’un montage simulant l’erosion par la pluie afin d’effectuer l’evaluation de differents revetements glaciophobes dans le domaine aerospatial. Bien que plusieurs revetements presentent une bonne efficacite a reduire l’adherence et/ou l’accumulation de glace, ils ne repondent pas necessairement aux normes de resistance a l’erosion simulee par les gouttes de pluie les frappant a grande vitesse. Il n’existe qu’une installation en Amerique du Nord offrant un service d’essai qui evalue la resistance a l’erosion par la pluie suivant les normes aerospatiales. Etant l’unique institution pouvant faire la certification de peintures utilisees sur les avions en ce qui a trait a l’erosion par la pluie, ce service est donc difficile d’acces et couteux. Le laboratoire international des materiaux antigivre (LIMA) a developpe un essai plus rapide et moins couteux, facilitant ainsi le developpement de revetements glaciophobes devant resister a l’erosion par la pluie. Dans cette etude, le developpement du montage d’erosion par la pluie effectue au laboratoire des materiaux antigivre (LIMA) est presente. En particulier, des essais sur quatre (4) revetements dont la resistance a l’erosion est connue, et sur trois revetements industriels, ont ete effectues afin d’ajuster les differents parametres du montage comme la pression et la temperature de l’eau ainsi que la robustesse du montage. Ensuite, des essais de sensibilite et de reproductibilite des resultats ont egalement ete effectues pour fin de validation du montage et du protocole experimental. Pour ce faire, le montage de type jet d’eau developpe consiste principalement en une pompe a haute pression qui projette un jet d’eau continu passant par les orifices d’un disque tournant. Cette operation permet de generer une goutte de pluie simulee qui est projetee sur un echantillon de revetement statique. L’essai est base sur la norme standard ASTM (Liquid

  9. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  10. Carbide coated fibers in graphite-aluminum composites

    NASA Technical Reports Server (NTRS)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  11. Physical, electrochemical, and thermal properties of granulated natural graphite as anodes for Li-ion batteries.

    PubMed

    Jo, Yong Nam; Park, Min-Sik; Kim, Jae-Hun; Kim, Young-Jun

    2013-05-01

    Two different types of granulated graphites were synthesized by blending and kneading of natural graphite with pitch followed by sintering methods. The electrochemical performances of granulated graphites were investigated as anode materials for use in Li-ion batteries. The blending type granulated graphite possesses a large amount of cavities and voids, while the kneading type granulated graphite has a relatively compact microstructure, which is responsible for a high tap density. Both granulated graphites show improved the initial coulombic efficiencies as a result of decrease of surface area by the granulations. In particular, the kneading type granulated graphite exhibits an excellent rate-capability without significant capacity loss. In addition, the thermal stabilities of both granulated graphites were also improved, which could be attributed to the decrease of active surface area due to pitch coating.

  12. Electroless Cu/Ni Plating on Graphite Flake and the Effects to the Properties of Graphite Flake/Si/Al Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Peng, Xuanyi; Yang, Yiwen; Wu, Haiwei; Sun, Xu; Han, Xiaopeng

    2018-03-01

    Proper process and parameter were investigated to coat Cu or Ni on graphite flake (Gf) by electroless plating. Microstructural characterization indicated that the Cu/Ni was coated on the Gf uniformly and comprehensively. Then aluminum matrix composites reinforced with Si and graphite were fabricated by a unique vacuum gas pressure infiltration. The thermal conductivity and mechanical properties of the composites, both with and without Cu or Ni coating layers on the graphite surface, have been studied. The obtained results indicated that the mechanical property of the Cu or Ni coated Gf/Si/Al composites dramatically increased, as compared with the non-coated Gf/Si/Al composite. In the meantime, Cu or Ni coated Gf proved to have better wettability and interfacial bonding with the aluminum matrix, which were expected to be a highly sustainable and dispersible reinforcement for metal matrix composites.

  13. Coordinated Isotopic and TEM Studies of Presolar Graphites from Murchison

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Stadermann, F. J.; Zinner, E.; Bernatowicz, T. J.

    2004-03-01

    TEM and NanoSIMS investigations of the same presolar Murchison KFC graphites revealed high Zr, Mo, and Ru content in refractory carbides within the graphites. Along with isotopically light carbon, these suggest a low-metallicity AGB source.

  14. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

    PubMed

    Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

  15. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    DOE PAGES

    Kraus, D.; Ravasio, A.; Gauthier, M.; ...

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystallinemore » graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less

  16. Critical Heat Flux in Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Yang, Wen-Jei; Chao, David F.; Chao, David F. (Technical Monitor)

    2000-01-01

    A study is conducted on high heat-flux pool boiling of pentane on micro-configured composite surfaces. The boiling surfaces are copper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composites with a fiber volume concentration of 50%. The micro-graphite fibers embedded in the matrix contribute to a substantial enhancement in boiling heat-transfer performance. Correlation equations are obtained for both the isolated and coalesced bubble regimes, utilizing a mathematical model based on a metal-graphite, two-tier configuration with the aid of experimental data. A new model to predict the critical heat flux (CHF) on the composites is proposed to explain the fundamental aspects of the boiling phenomena. Three different factors affecting the CHF are considered in the model. Two of them are expected to become the main agents driving vapor volume detachment under microgravity conditions, using the metal-graphite composite surfaces as the heating surface and using liquids with an unusual Marangoni effect as the working fluid.

  17. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    PubMed Central

    Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.

    2016-01-01

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122

  18. Corrosion and Maintenance Data Sharing (Partage des Donnees de Corrosion et de Maintenance)

    DTIC Science & Technology

    2011-11-01

    la gestion des flottes vieillissantes. Les actions correctives sont généralement considérées comme étant du domaine...conception et la sélection des matériaux adaptés et ont joué un rôle fondamental dans la gestion de la production et la livraison des nouveaux avions. Le même...selon le cas, suivi du numéro de série. Des informations analogues, telles que le titre est la date de publication sont

  19. Rhabdomyosarcome paratesticulaire (RMSP) multimétastatique : à propos d’un cas

    PubMed Central

    Bennani, Hassan; Ziouziou, Imad; El Ghanmi, Jihad; Karmouni, Tarik; El Khader, Khalid; Koutani, Abdellatif; Andaloussi, Ahmed Iben Attya

    2014-01-01

    Résumé Nous rapportons, dans le présent article, le cas clinique d’un RMSP découvert à un stade tardif chez un adolescent, dans le but de confirmer l’évolution fatale de cette pathologie au potentiel métastatique « affreux ». Nous discutons aussi les causes du retard diagnostique, l’implication du sous-type histologique comme facteur pronostique et la place de la chimiothérapie dans le traitement des formes évoluées de la maladie. PMID:25295143

  20. Thermal charging study of compressed expanded natural graphite/phase change material composites

    DOE PAGES

    Mallow, Anne; Abdelaziz, Omar; Graham, Jr., Samuel

    2016-08-12

    The thermal charging performance of paraffin wax combined with compressed expanded natural graphite foam was studied for different graphite bulk densities. Constant heat fluxes between 0.39 W/cm 2 and 1.55 W/cm 2 were applied, as well as a constant boundary temperature of 60 °C. Thermal charging experiments indicate that, in the design of thermal batteries, thermal conductivity of the composite alone is an insufficient metric to determine the influence of the graphite foam on the thermal energy storage. By dividing the latent heat of the composite by the time to end of melt for each applied boundary condition, the energymore » storage performance was calculated to show the effects of composite thermal conductivity, graphite bulk density, and latent heat capacity. For the experimental volume, the addition of graphite beyond a graphite bulk density of 100 kg/m 3 showed limited benefit on the energy storage performance due to the decrease in latent heat storage capacity. These experimental results are used to validate a numerical model to predict the time to melt and for future use in the design of heat exchangers with graphite-foam based phase change material composites. As a result, size scale effects are explored parametrically with the validated model.« less

  1. Porous carbon-coated graphite electrodes for energy production from salinity gradient using reverse electrodialysis

    NASA Astrophysics Data System (ADS)

    Lee, Su-Yoon; Jeong, Ye-Jin; Chae, So-Ryong; Yeon, Kyeong-Ho; Lee, Yunkyu; Kim, Chan-Soo; Jeong, Nam-Jo; Park, Jin-Soo

    2016-04-01

    Performance of graphite foil electrodes coated by porous carbon black (i.e., Vulcan) was investigated in comparison with metal electrodes for reverse electrodialysis (RED) application. The electrode slurry that was used for fabrication of the porous carbon-coated graphite foil is composed of 7.2 wt% of carbon black (Vulcan X-72), 0.8 wt% of a polymer binder (polyvinylidene fluoride, PVdF), and 92.0 wt% of a mixing solvent (dimethylacetamide, DMAc). Cyclic voltammograms of both the porous carbon (i.e., Vulcan)-coated graphite foil electrode and the graphite foil electrode without Vulcan showed good reversibility in the hexacyanoferrate(III) (i.e., Fe(CN)63-) and hexacyanoferrate(II) (i.e., Fe(CN)64-) redox couple and 1 M Na2SO4 at room temperature. However, anodic and cathodic current of the Vulcan-coated graphite foil electrode was much higher than those of the graphite foil electrode. Using a bench-scale RED stack, the current-voltage polarization curve of the Vulcan-coated graphite electrode was compared to that of metal electrodes such as iridium (Ir) and platinum (Pt). From the results, it was confirmed that resistance of four different electrodes increased with the following order: the Vulcan-coated graphite foilgraphite foil. Moreover, the Vulcan-coated graphite foil showed 5-10% higher power density than the metal mesh electrodes. From the polarization curve of the Vulcan-coated graphite foil electrode, it was found that total resistance decreased as thickness and geometric surface area of the electrode increased.

  2. Parametric study of graphite foam fins and application in heat exchangers

    NASA Astrophysics Data System (ADS)

    Collins, Michael

    This thesis focuses on the simulation and experimental studies of finned graphite foam extended surfaces to test their heat transfer characteristics and potential applications in condensers. Different fin designs were developed to conduct a parametric study on the thermal effectiveness with respect to thickness, spacing and fin offset angle. Each fin design was computationally simulated to estimate the heat transfer under specific conditions. The simulations showed that this optimal fin configuration could conduct more than 297% the amount of thermal energy as compared to straight aluminum fins. Graphite foam fins were then implemented into a simulation of the condenser system. The condenser was simulated with six different orientations of baffles to examine the incoming vapor and resulting two-phase flow patterns. The simulations showed that using both horizontal and vertical baffling provided the configuration with the highest heat transfer and minimized the bypass regions where the vapor would circumvent the graphite foam. This baffle configuration increased the amount of vapor flow through the inner graphite fins and cold water pipes, which gave this configuration the highest heat transfer. The results from experimental tests using the condenser system confirmed that using three baffles will increase performance consistent with the simulation results. The experimental data showed that the condenser using graphite foam had five times the heat transfer compared to the condenser using only aluminum fins. Incorporating baffles into the condenser using graphite foam enabled this system to conduct nearly ten times more heat transfer than the condenser system which only had aluminum fins without baffles. The results from this research indicate that graphite foam is a far superior material heat transfer enhancement material for heat transfer compared to aluminum used as an extended surface. The longitudinal and horizontal baffles incorporated into the condenser system

  3. Participation des médecins généralistes de la province de Benimellal (Maroc) dans le dépistage du cancer du col

    PubMed Central

    Nani, Samira; Benallal, Mohamed; Hassoune, Samira; Kissi, Dounia; Maaroufi, Abderrahmane

    2013-01-01

    Introduction Au Maroc, chaque année il y aurait environ 2000 nouveaux cas de cancer du col et les 2/3 des cas sont pris en charge à un stade très avancé. Nous avons mené une étude transversale, exhaustive incluant les 71 médecins généralistes exerçant dans les établissements de soins de santé de base du secteur public et privé de la province de Benimellal. Le but était d’évaluer leurs connaissances et leur participation au dépistage du cancer du col. Méthodes Nous avons mené une étude transversale, exhaustive incluant les 71 médecins généralistes exerçant dans les établissements de soins de santé de base du secteur public et privé de la province de Benimellal. Le but était d’évaluer leurs connaissances et leur participation au dépistage du cancer du col. Résultats Le niveau de connaissance était relativement modeste, 22 médecins généraliste avaient répondu à la question sur l'incidence du cancer du col au Maroc, Parmi eux (81,8%) avaient donné une réponse incorrecte. L'Herpes Papilloma virus comme facteur de risque du cancer du col a été identifié par seulement 21% des médecins généralistes. La participation au dépistage était également défaillante, 92,8% n'avaient jamais pratiqué le FCV chez leurs patientes à cause principalement du manque de formation (95,5%). Conclusion Les résultats montrent la nécessité d'améliorer les connaissances théoriques et pratique des médecins généralistes concernant le dépistage du cancer du col. PMID:23785557

  4. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  5. A First-cut Concept Map: The Irregular Adversary (Insurgent)

    DTIC Science & Technology

    2012-12-01

    conceptuel des AANE aidera le spécialiste du renseignement militaire à brosser pour le commandant un tableau plus global des AANE dans leur...Crandall et al. (2006), « il est sage de toujours considérer les schémas conceptuels comme des représentations « vivantes » plutôt que des « produits

  6. Apparatus for Sizing and Rewinding Graphite Fibers

    NASA Technical Reports Server (NTRS)

    Wilson, M. L.; Stanfield, C. E.

    1986-01-01

    Equipment ideally suited for research and development of new sizing solutions. Designed expecially for applying thermoplastic sizing solutions to graphite tow consisting of 3,000 to 12,000 filaments per tow, but accommodates other solutions, filament counts, and materials other than graphite. Closed system containing highly volatile methylene chloride vapors. Also ventilation system directly over resin reservoir. Concept used to apply sizing compounds on fiber tows or yarn-type reinforcement materials used in composite technology. Sizing solutions consist of compounds compatible with thermosets as well as thermoplastics.

  7. Nitrile crosslinked polyphenyl-quinoxaline/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Alston, W. B.

    1976-01-01

    Studies were performed to reduce the 600 F thermoplasticity of polyphenylquinoxaline (PPQ) matrix resins by introducing crosslinking by the reaction of terminal nitrile groups. Seven solvents and solvent mixtures were studied as the crosslinking catalysts and used to fabricate crosslinked PPQ/HMS graphite fiber composites. The room temperature and 600 F composite mechanical properties after short time and prolonged 600 F air exposure and the 600 F composite weight loss were determined and compared to those properties of high molecular weight, linear PPQ/HMS graphite fiber composites.

  8. HIGH TEMPERATURE REFRACTORY COATING FOR GRAPHITE MOLDS

    DOEpatents

    Stoddard, S.D.

    1958-10-21

    An improved foundry mold coating for use with graphite molds used in the casting of uranium is presented. The refractory mold coating serves to keep the molten uranium from contact with graphite of the mold and thus prevents carbon pickup by the molten metal. The refractory coating is made by dry mixing certain specific amounts of aluminum oxide, bentonite, Tennessee ball clay, and a soluble silicate salt. Water is then added to the mixture and the suspension thus formed is applied by spraying onto the mold.

  9. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    NASA Technical Reports Server (NTRS)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  10. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  11. Burning characteristics and fiber retention of graphite/resin matrix composites

    NASA Technical Reports Server (NTRS)

    Bowles, K. J.

    1980-01-01

    Graphite fiber reinforced resin matrix composites were subjected to controlled burning conditions to determine their burning characteristics and fiber retention properties. Two types of burning equipment were used. Small samples were burned with a natural gas fired torch to study the effects of fiber orientation and structural flaws such as holes and slits that were machined into the laminates. Larger laminate samples were burned in a Heat Release Rate Calorimeter. Unidirectional epoxy/graphite and polyimide/graphite composites and boron powder filled samples of each of the two composite systems were burn tested and exposed to a thermal radiation. The effects of fiber orientation, flaws, and boron filler additives to the resins were evaluated. A high char forming polyimide resin was no more effective in retaining graphite fibers than a low char forming epoxy resin when burning in air.

  12. Preparation and characterization of phase transition/graphite foam composite materials.

    PubMed

    Yu, Jia; Tang, ChenLong; Yu, ZhiChao

    2016-07-04

    Phase transition/graphite foam (PCM/GF) composite materials are a kind of composite materials that fill graphite foam with phase change materials. In this paper, graphite foam was prepared firstly by the soft template method, the heat conductivity of which at room temperature is 5.44 W/(m∙K). Then, four phase change materials including eicosane, acetamide, xylitol, and erythritol were chosen for filling into the prepared graphite foam to obtain PCM/GF composite materials. Among the four kinds of materials, erythritol composite material has the highest melting point (118.5°C) and the highest enthalpy of fusion (266.3J/g), weight loss ratios of xylitol composite material after ten cycles is the lowest (2.1%), the compressive strength of xylitol composite material is the highest (9.08 MPa) and that of eicosane composite material is the lowest (3.32 MPa).

  13. Preparation and characterization of copper-graphite composites by electrical explosion of wire in liquid.

    PubMed

    Bien, T N; Gul, W H; Bac, L H; Kim, J C

    2014-11-01

    Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.

  14. A Highly Efficient and Facile Approach for Fabricating Graphite Nanoplatelets

    NASA Astrophysics Data System (ADS)

    Van Thanh, Dang; Van Thien, Nguyen; Thang, Bui Hung; Van Chuc, Nguyen; Hong, Nguyen Manh; Trang, Bui Thi; Lam, Tran Dai; Huyen, Dang Thi Thu; Hong, Phan Ngoc; Minh, Phan Ngoc

    2016-05-01

    In this study, we report a highly efficient, convenient, and cost-effective technique for producing graphite nanoplatelets (GNPs) from plasma-expanded graphite oxides (PEGOs) obtained directly from low-cost, recycled graphite electrodes of used batteries, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy confirmed the successful preparation of GNPs. Scanning electron microscopy revealed that the GNPs have lateral width from several hundreds of nanometers to 1.5 μm with an approximate thickness of 20-50 nm. These GNPs can serve as a precursor for the preparation of GNPs-based nanocomposite.

  15. Formation of TiC core-graphitic mantle grains from CO gas

    NASA Astrophysics Data System (ADS)

    Kimura, Yuki; Nuth, Joseph A.; Ferguson, Frank T.

    2006-05-01

    We demonstrate a new formation route for TiC core-graphitic mantle spherules that does not require carbon-atom addition and the very long time scales associated with such growth (Bernatowicz et al. 1996). Carbonaceous materials can be formed from C2H2 and its derivatives, as well as from CO gas. In this paper, we will demonstrate that large-cage-structure carbon particles can be produced from CO gas by the Boudouard reaction. Since the sublimation temperature for such fullerenes is low, the large cages can be deposited onto previously nucleated TiC and produce TiC core-graphitic mantle spherules. New constraints for the formation conditions and the time scale for the formation of TiC core-graphitic mantle spherules are suggested by the results of this study. In particular, TiC core-graphitic mantle grains that are found in primitive meteorites that have never experienced hydration could be mantled by fullerenes or carbon nanotubes rather than by graphite. In situ observations of these grains in primitive anhydrous meteoritic matrix could confirm or refute this prediction and would demonstrate that the graphitic mantle on such grains is a metamorphic feature due to interaction of the presolar fullerenes with water within the meteorite matrix.

  16. Formation of TiC-core, Graphitic-mantle Grains from CO Gas

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We demonstrate a new formation route for TiC-core, graphitic-mantle spherules that does not require c-atom addition and the very long timescales associated with such growth (Bernatowicz et al. 1996). Carbonaceous materials can also be formed from C2H2 and its derivatives, as well as from CO gas. In this paper, we will demonstrate that large cage structure carbon particles can be produced from CO gas by the Boudouard reaction. Since the sublimation temperature for such fullerenes is low, the large cages can be deposited onto previously-nucleated TiC and produce TiC-core, graphitic-mantle spherules. New constraints for the formation conditions and the timescale for the formation of TiC-core, graphitic-mantle spherules are suggested by the results of this study. In particular, TiC-core, graphitic-mantle grains found in primitive meteorites that have never experienced hydration could be mantled by fullerenes or carbon nanotubes rather than by graphite. In situ observations of these grains in primitive anhydrous meteoritic matrix could confirm or refute this prediction and would demonstrate that the graphitic mantle on such grains is a metamorphic feature due to interaction of the pre-solar fullerenes with water within the meteorite matrix.

  17. Synthesis of Graphite Oxide with Different Surface Oxygen Contents Assisted Microwave Radiation

    PubMed Central

    Ibarra-Hernández, Adriana

    2018-01-01

    Graphite oxide is synthesized via oxidation reaction using oxidant compounds that have lattice defects by the incorporation of unlike functional groups. Herein, we report the synthesis of the graphite oxide with diverse surface oxygen content through three (B, C, D) different modified versions of the Hummers method assisted microwave radiation compared with the conventional graphite oxide sample obtained by Hummers method (A). These methods allow not only the production of graphite oxide but also reduced graphene oxide, without undergoing chemical, thermal, or mechanical reduction steps. The values obtained of C/O ratio were ~2, 3.4, and ~8.5 for methodologies C, B, and D, respectively, indicating the presence of graphite oxide and reduced graphene oxide, according to X-ray photoelectron spectroscopy. Raman spectroscopy of method D shows the fewest structural defects compared to the other methodologies. The results obtained suggest that the permanganate ion produces reducing species during graphite oxidation. The generation of these species is attributed to a reversible reaction between the permanganate ion with π electrons, ions, and radicals produced after treatment with microwave radiation. PMID:29438280

  18. Degradation Mechanisms of Electrochemically Cycled Graphite Anodes in Lithium-ion Cells

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Sandeep

    This research is aimed at developing advanced characterization methods for studying the surface and subsurface damage in Li-ion battery anodes made of polycrystalline graphite and identifying the degradation mechanisms that cause loss of electrochemical capacity. Understanding microstructural aspects of the graphite electrode degradation mechanisms during charging and discharging of Li-ion batteries is of key importance in order to design durable anodes with high capacity. An in-situ system was constructed using an electrochemical cell with an observation window, a large depth-of-field digital microscope and a micro-Raman spectrometer. It was revealed that electrode damage by removal of the surface graphite fragments of 5-10 mum size is the most intense during the first cycle that led to a drastic capacity drop. Once a solid electrolyte interphase (SEI) layer covered the electrode surface, the rate of graphite particle loss decreased. Yet, a gradual loss of capacity continued by the formation of interlayer cracks adjacent to SEI/graphite interfaces. Deposition of co-intercalation compounds, LiC6, Li2CO3 and Li2O, near the crack tips caused partial closure of propagating graphite cracks during cycling and reduced the crack growth rate. Bridging of crack faces by delaminated graphite layers also retarded crack propagation. The microstructure of the SEI layer, formed by electrochemical reduction of the ethylene carbonate based electrolyte, consisted of ˜5-20 nm sized crystalline domains (containing Li2CO3, Li2O 2 and nano-sized graphite fragments) dispersed in an amorphous matrix. During the SEI formation, two regimes of Li-ion diffusion were identified at the electrode/electrolyte interface depending on the applied voltage scan rate (dV/dt). A low Li-ion diffusion coefficient ( DLi+) at dV/dt < 0.05 mVs-1 produced a tubular SEI that uniformly covered the graphite surface and prevented damage at 25°C. At 60°C, a high D Li+ formed a Li2CO3-enriched SEI and ensued a

  19. Preparation of graphite intercalation compounds containing oligo and polyethers

    NASA Astrophysics Data System (ADS)

    Zhang, Hanyang; Lerner, Michael M.

    2016-02-01

    Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets.Layered host-polymer nanocomposites comprising polymeric guests between inorganic sheets have been prepared with many inorganic hosts, but there is limited evidence for the incorporation of polymeric guests into graphite. Here we report for the first time the preparation, and structural and compositional characterization of graphite intercalation compounds (GICs) containing polyether bilayers. The new GICs are obtained by either (1) reductive intercalation of graphite with an alkali metal in the presence of an oligo or polyether and an electrocatalyst, or (2) co-intercalate exchange of an amine for an oligo or polyether in a donor-type GIC. Structural characterization of products using powder X-ray diffraction, Raman spectroscopy, and thermal analyses supports the formation of well-ordered, first-stage GICs containing alkali metal cations and oligo or polyether bilayers between reduced graphene sheets. Electronic supplementary information (ESI) available: Domain size, additional Raman spectra info, compositional calculation, and packing fractions. See DOI: 10.1039/c5

  20. Dielectric properties of novel polyurethane-PZT-graphite foam composites

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Nelo, Mikko; Juuti, Jari; Jantunen, Heli

    2016-09-01

    Flexible foam composite materials offer multiple benefits to future electronic applications as the rapid development of the electronics industry requires smaller, more efficient, and lighter materials to further develop foldable and wearable applications. The aims of this work were to examine the electrical properties of three- and four-phase novel foam composites in different conditions, find the optimal mixture for four-phase foam composites, and study the combined effects of lead zirconate titanate (PZT) and graphite fillers. The flexible and highly compressible foams were prepared in a room-temperature mixing process using polyurethane, PZT, and graphite components as well as their combinations, in which air acted as one phase. In three-phase foams the amount of PZT varied between 20 and 80 wt% and the amount of graphite, between 1 and 15 wt%. The four-phase foams were formed by adding 40 wt% of PZT while the amount of graphite ranged between 1 and 15 wt%. The presented results and materials could be utilized to develop new flexible and soft sensor applications by means of material technology.

  1. Design development of graphite primary structures enables SSTO success

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagiotti, V.A.; Yahiro, J.S.; Suh, D.E.

    1997-01-01

    This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA{close_quote}s X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman{close_quote}s approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Sectionmore » Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria. {copyright} {ital 1997 American Institute of Physics.}« less

  2. Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite

    NASA Technical Reports Server (NTRS)

    West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.

    2007-01-01

    We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.

  3. Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes

    NASA Astrophysics Data System (ADS)

    Pattisson, Samuel; Nowicka, Ewa; Gupta, Upendra N.; Shaw, Greg; Jenkins, Robert L.; Morgan, David J.; Knight, David W.; Hutchings, Graham J.

    2016-09-01

    Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.

  4. Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene

    NASA Astrophysics Data System (ADS)

    Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk

    2017-07-01

    We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.

  5. ICP-MS measurement of diffusion coefficients of Cs in NBG-18 graphite

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2015-11-01

    Graphite is used in the HGTR/VHTR as moderator and it also functions as a barrier to fission product release. Therefore, an elucidation of transport of fission products in reactor-grade graphite is required. We have measured diffusion coefficients of Cs in graphite NBG-18 using the release method, wherein we infused spheres of NBG-18 with Cs and measured the release rates in the temperature range of 1090-1395 K. We have obtained: These seem to be the first reported values of Cs diffusion coefficients in NBG-18. The values are lower than those reported for other graphites in the literature.

  6. Graphite Sheet Coating for Improved Thermal Oxidative Stability of Carbon Fiber Reinforced/PMR-15 Composites

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Papadopoulos, Demetrios; Heimann, Paula; Inghram, Linda; McCorkle, Linda

    2005-01-01

    Expanded graphite was compressed into graphite sheets and used as a coating for carbon fiber reinforced PMR-15 composites. BET analysis of the graphite indicated an increase in graphite pore size on compression, however the material was proven to be an effective barrier to oxygen when prepegged with PMR-15 resin. Oxygen permeability of the PMR-15/graphite was an order of magnitude lower than the compressed graphite sheet. By providing a barrier to oxygen permeation, the rate of oxidative degradation of PMR-15 was decreased. As a result, the composite thermo-oxidative stability increased by up to 25%. The addition of a graphite sheet as a top ply on the composites yielded little change in the material's flexural strength or interlaminar shear strength.

  7. Compacted graphite iron: Cast iron makes a comeback

    NASA Astrophysics Data System (ADS)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  8. Carbon isotope geochemistry of graphite vein deposits from New Hampshire, U.S.A.

    NASA Astrophysics Data System (ADS)

    Rumble, Douglas, III; Hoering, Thomas C.

    1986-06-01

    Graphite veins of hydrothermal origin occur throughout central New Hampshire. Veins truncate sillimanite-grade, metasedimentary rocks of Early Devonian-Silurian age and range in size from microscopic to meters in thickness. In addition to graphite, veins may contain quartz, tourmaline, ilmenite, rutile, sillimanite, muscovite or chlorite. Vein mineralogy is generally compatible with wall rock mineral assemblages. Mineralization structures include wall-rock alteration zones, coxcomb graphite crystals on vein walls, and botryoidal, concentrically layered graphite-silicate nodules. The δ13C values of graphite in 14 deposits studied range from - 28%. (PDB) to - 9%. Veins whose textures give evidence of a single stage of mineralization have a narrow range of δ13C values (± 0.2%.). Other veins record successive episodes of graphite precipitation and have ranges of 3-6%. In one sample, adjacent layers of graphite differ by 3%. The wide range of δ13C may be explained by mixing carbon from two crustal reservoirs: biogenic, reduced carbon and carbonate. Precipitation of graphite results from mixing two or more aqueous fluids with different CO 2/CH 4 ratios. Parental fluids are produced by devolatilization during metamorphism. Water-rich fluids with CH4 > CO2 and low δ13C are derived from pelites that contained organic matter; whereas fluids with CO2 > CH4 and high δ13C come from siliceous carbonates.

  9. Synthesis of Diamond Nanoplatelets/Carbon Nanowalls on Graphite Substrate by MPCVD

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Lyu, Jilei; Lin, Xiaoqi; Zhu, Jinfeng; Man, Weidong; Jiang, Nan

    2015-07-01

    The films composed of carbon nanowalls and diamond nanoplatelets, respectively, can be simultaneously formed on graphite substrate by controlling the hydrogen etching rate during microwave plasma chemical vapor deposition. To modulate the etching rate, two kinds of substrate design were used: a bare graphite plate and a graphite groove covered with a single crystal diamond sheet. After deposition at 1200°C for 3 hours, we find that dense diamond nanoplatelets were grown on the bare graphite, whereas carbon nanowalls were formed on the grooved surface, indicating that not only reaction temperature but also etching behavior is a key factor for nanostructure formation. supported by the Public Welfare Technology Application Projects of Zhejiang Province, China (No. 2013C33G3220012)

  10. Method of preventing oxidation of graphite fireproof material

    NASA Technical Reports Server (NTRS)

    Yamauchi, S.; Suzuki, H.

    1981-01-01

    A method of preventing oxidation of graphite fireproof material is given. A blend of 1 to 33 weight parts alumina and 3 to 19 parts of K2O + Na2O in 100 parts of SiO2 is pulverized followed by addition of 5 to 160 parts of silicon carbide powder in 100 parts of the mixture. This is thoroughly blended and coated on the surface of graphite fireproof material.

  11. Phonon-assisted indirect transitions in angle-resolved photoemission spectra of graphite and graphene

    NASA Astrophysics Data System (ADS)

    Ayria, Pourya; Tanaka, Shin-ichiro; Nugraha, Ahmad R. T.; Dresselhaus, Mildred S.; Saito, Riichiro

    2016-08-01

    Indirect transitions of electrons in graphene and graphite are investigated by means of angle-resolved photoemission spectroscopy (ARPES) with several different incident photon energies and light polarizations. The theoretical calculations of the indirect transition for graphene and for a single crystal of graphite are compared with the experimental measurements for highly-oriented pyrolytic graphite and a single crystal of graphite. The dispersion relations for the transverse optical (TO) and the out-of-plane longitudinal acoustic (ZA) phonon modes of graphite and the TO phonon mode of graphene can be extracted from the inelastic ARPES intensity. We find that the TO phonon mode for k points along the Γ -K and K -M -K' directions in the Brillouin zone can be observed in the ARPES spectra of graphite and graphene by using a photon energy ≈11.1 eV. The relevant mechanism in the ARPES process for this case is the resonant indirect transition. On the other hand, the ZA phonon mode of graphite can be observed by using a photon energy ≈6.3 eV through a nonresonant indirect transition, while the ZA phonon mode of graphene within the same mechanism should not be observed.

  12. Auger Electrons as Probes for Composite Micro- and Nano- structured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.

    In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less

  13. Auger Electrons as Probes for Composite Micro- and Nano- structured Materials: Application to Solid Electrolyte Interphases in Graphite and Silicon-Graphite Electrodes

    DOE PAGES

    Kalaga, Kaushik; Shkrob, Ilya A.; Haasch, Richard T.; ...

    2017-10-05

    In this study, Auger electron spectroscopy (AES) combined with ion sputtering profilometry, Xray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) have been used in a complementary fashion to examine chemical and microstructural changes in graphite (Gr) and silicon/graphite (Si/Gr) blends contained in the negative electrodes of lithium-ion cells. We demonstrate how AES can be used to characterize morphology of the solid-electrolyte interphase (SEI) deposits in such heterogeneous media, complementing well-established methods, such as XPS and SEM. In this way we demonstrate that the SEI does not consist of uniformly thick layers on the graphite and silicon; the thickness ofmore » the SEI layers in cycle-life aged electrodes follows an exponential distribution with a mean of ca. 13 nm for the graphite and ca. 20-25 nm for the silicon nanoparticles (with a crystalline core of 50-70 nm in diameter). Furthermore, a “sticky-sphere” model, in which Si nanoparticles are covered with a layer of polymer binder (that is replaced by the SEI during cycling) of variable thickness is introduced to account for the features observed.« less

  14. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  15. Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution

    DOE PAGES

    Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...

    2017-06-08

    A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less

  16. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors.

    PubMed

    Ma, Fangwei; Ma, Di; Wu, Guang; Geng, Weidan; Shao, Jinqiu; Song, Shijiao; Wan, Jiafeng; Qiu, Jieshan

    2016-05-10

    A smart and sustainable strategy based on charge-induced self-assembly and nanocrystal-assisted catalytic graphitization is explored for the efficient construction of 3D nanostructure hierarchical porous graphitic carbons from the pectin biopolymer. The electrostatic interaction between the negatively charged pectin chains and magnesium ions plays a crucial role in the formation of 3D architectures. The 3D HPGCs possess a three-dimensional carbon framework with a hierarchical porous structure, flake-like graphitic carbon walls and high surface area (1320 m(2) g(-1)). The 3D HPGCs show an outstanding specific capacitance of 274 F g(-1) and excellent rate capability with a high capacitance retention of 85% at a high current density of 50 A g(-1) for supercapacitor electrodes. This strategy provided a novel approach to effectively construct 3D porous carbon nanostructures from biopolymers.

  17. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    PubMed

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Controlling the Surface Chemistry of Graphite by Engineered Self-Assembled Peptides

    PubMed Central

    Khatayevich, Dmitriy; So, Christopher R.; Hayamizu, Yuhei; Gresswell, Carolyn; Sarikaya, Mehmet

    2012-01-01

    The systematic control over surface chemistry is a long-standing challenge in biomedical and nanotechnological applications for graphitic materials. As a novel approach, we utilize graphite-binding dodecapeptides that self-assemble into dense domains to form monolayer thick long-range ordered films on graphite. Specifically, the peptides are rationally designed through their amino acid sequences to predictably display hydrophilic and hydrophobic characteristics while maintaining their self-assembly capabilities on the solid substrate. The peptides are observed to maintain a high tolerance for sequence modification, allowing the control over surface chemistry via their amino acid sequence. Furthermore, through a single step co-assembly of two different designed peptides, we predictably and precisely tune the wettability of the resulting functionalized graphite surfaces from 44 to 83 degrees. The modular molecular structures and predictable behavior of short peptides demonstrated here give rise to a novel platform for functionalizing graphitic materials that offers numerous advantages, including non-invasive modification of the substrate, bio-compatible processing in an aqueous environment, and simple fusion with other functional biological molecules. PMID:22428620

  19. The graphite deposit at Borrowdale (UK): A catastrophic mineralizing event associated with Ordovician magmatism

    NASA Astrophysics Data System (ADS)

    Ortega, L.; Millward, D.; Luque, F. J.; Barrenechea, J. F.; Beyssac, O.; Huizenga, J.-M.; Rodas, M.; Clarke, S. M.

    2010-04-01

    The volcanic-hosted graphite deposit at Borrowdale in Cumbria, UK, was formed through precipitation from C-O-H fluids. The δ 13C data indicate that carbon was incorporated into the mineralizing fluids by assimilation of carbonaceous metapelites of the Skiddaw Group by andesite magmas of the Borrowdale Volcanic Group. The graphite mineralization occurred as the fluids migrated upwards through normal conjugate fractures forming the main subvertical pipe-like bodies. The mineralizing fluids evolved from CO 2-CH 4-H 2O mixtures (XCO 2 = 0.6-0.8) to CH 4-H 2O mixtures. Coevally with graphite deposition, the andesite and dioritic wall rocks adjacent to the veins were intensely hydrothermally altered to a propylitic assemblage. The initial graphite precipitation was probably triggered by the earliest hydration reactions in the volcanic host rocks. During the main mineralization stage, graphite precipitated along the pipe-like bodies due to CO 2 → C + O 2. This agrees with the isotopic data which indicate that the first graphite morphologies crystallizing from the fluid (cryptocrystalline aggregates) are isotopically lighter than those crystallizing later (flakes). Late chlorite-graphite veins were formed from CH 4-enriched fluids following the reaction CH 4 + O 2 → C + 2H 2O, producing the successive precipitation of isotopically lighter graphite morphologies. Thus, as mineralization proceeded, water-generating reactions were involved in graphite precipitation, further favouring the propylitic alteration. The structural features of the pipe-like mineralized bodies as well as the isotopic homogeneity of graphite suggest that the mineralization occurred in a very short period of time.

  20. Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)

    2000-01-01

    A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.

  1. Design and development of high efficiency 140W space TWT with graphite collector

    NASA Astrophysics Data System (ADS)

    Srivastava, V.; Purohit, G.; Sharma, R. K.; Sharma, S. M.; Bera, A.; Bhaskar, P. V.; Singh, R. R.; Prasad, K.; Kiran, V.

    2008-05-01

    4-stage graphite collector assembly has been designed and developed for a 140W Ku-band space TWT to achieve the collector efficiency more than 80%. The UHV compatible, high density, copper impregnated POCO graphite (DFP-1C) was used to fabricate the four collector electrodes of the 4-stage depressed collector. Copper impregnated graphite material is used for the collector electrodes because of its low secondary electron emission coefficient, high thermal and electrical conductivities, easy machining and brazing, low thermal expansion coefficient and low weight. The graphite material was characterized for the UHV compatibility. The collector electrodes were precisely fabricated by careful machining, and technology was developed for brazing of graphite electrodes with high voltage alumina insulators. Complete TWT with four-stage graphite collector was developed and 140W output power at gain more than 55 dB was achieved. The TWT was pumped from both the gun and the collector ends.

  2. The Nature of Metastable AA’ Graphite: Low Dimensional Nano- and Single-Crystalline Forms

    PubMed Central

    Lee, Jae-Kap; Kim, Jin-Gyu; Hembram, K. P. S. S.; Kim, Yong-Il; Min, Bong-Ki; Park, Yeseul; Lee, Jeon-Kook; Moon, Dong Ju; Lee, Wooyoung; Lee, Sang-Gil; John, Phillip

    2016-01-01

    Over the history of carbon, it is generally acknowledged that Bernal AB stacking of the sp2 carbon layers is the unique crystalline form of graphite. The universal graphite structure is synthesized at 2,600~3,000 °C and exhibits a micro-polycrystalline feature. In this paper, we provide evidence for a metastable form of graphite with an AA’ structure. The non-Bernal AA’ allotrope of graphite is synthesized by the thermal- and plasma-treatment of graphene nanopowders at ~1,500 °C. The formation of AA’ bilayer graphene nuclei facilitates the preferred texture growth and results in single-crystal AA’ graphite in the form of nanoribbons (1D) or microplates (2D) of a few nm in thickness. Kinetically controlled AA’ graphite exhibits unique nano- and single-crystalline feature and shows quasi-linear behavior near the K-point of the electronic band structure resulting in anomalous optical and acoustic phonon behavior. PMID:28000780

  3. Manufacturing processes for fabricating graphite/PMR 15 polyimide structural elements

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.; Symonds, W. A.

    1979-01-01

    Investigations were conducted to obtain commercially available graphite/PMR-15 polyimide prepreg, develop an autoclave manufacturing process, and demonstrate the process by manufacturing structural elements. Controls were established on polymer, prepreg, composite fabrication, and quality assurance, Successful material quality control and processes were demonstrated by fabricating major structural elements including flat laminates, hat sections, I beam sections, honeycomb sandwich structures, and molded graphite reinforced fittings. Successful fabrication of structural elements and simulated section of the space shuttle aft body flap shows that the graphite/PMR-15 polyimide system and the developed processes are ready for further evaluation in flight test hardware.

  4. Method of fabricating graphite for use as a skeletal prosthesis and product thereof

    DOEpatents

    Eatherly, Walter P.; Robbins, J. M.; Rosson, Sr., David E.

    1978-01-01

    A method for producing porous graphite for use as bone replacement with a structure for osteon penetration. Graphite is produced with ordered circular pores of 100 to 1000 microns in diameter covering at least 25% of the exposed surfaces. A cylindrical fiber is coated with a carbon flour-pitch mix and is then wound on a bobbin in a predetermined manner. The product of winding is dried, pressed, carbonized, and then graphitized. The fibers are removed either chemically or by volatilization during carbonization or graphitization.

  5. Beware of ligand efficiency (LE): understanding LE data in modeling structure-activity and structure-economy relationships.

    PubMed

    Polanski, Jaroslaw; Tkocz, Aleksandra; Kucia, Urszula

    2017-09-11

    On the one hand, ligand efficiency (LE) and the binding efficiency index (BEI), which are binding properties (B) averaged versus the heavy atom count (HAC: LE) or molecular weight (MW: BEI), have recently been declared a novel universal tool for drug design. On the other hand, questions have been raised about the mathematical validity of the LE approach. In fact, neither the critics nor the advocates are precise enough to provide a generally understandable and accepted chemistry of the LE metrics. In particular, this refers to the puzzle of the LE trends for small and large molecules. In this paper, we explain the chemistry and mathematics of the LE type of data. Because LE is a weight metrics related to binding per gram, its hyperbolic decrease with an increasing number of heavy atoms can be easily understood by its 1/MW dependency. Accordingly, we analyzed how this influences the LE trends for ligand-target binding, economic big data or molecular descriptor data. In particular, we compared the trends for the thermodynamic ∆G data of a series of ligands that interact with 14 different target classes, which were extracted from the BindingDB database with the market prices of a commercial compound library of ca. 2.5 mln synthetic building blocks. An interpretation of LE and BEI that clearly explains the observed trends for these parameters are presented here for the first time. Accordingly, we show that the main misunderstanding of the chemical meaning of the BEI and LE parameters is their interpretation as molecular descriptors that are connected with a single molecule, while binding is a statistical effect in which a population of ligands limits the formation of ligand-receptor complexes. Therefore, LE (BEI) should not be interpreted as a molecular (physicochemical) descriptor that is connected with a single molecule but as a property (binding per gram). Accordingly, the puzzle of the surprising behavior of LE is explained by the 1/MW dependency. This effect

  6. Cadmium sulfide anchored in three-dimensional graphite cage for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Chen, Liang; Zuo, Yinze; Zhang, Yu; Gao, Yanmin

    2018-05-01

    Cadmium sulfide (CdS) nanoparticles were anchored in a three-dimensional (3D) graphite cage for high performance supercapacitors. Significantly, the graphite cage intensified the construction of electroactive materials and facilitated the transfer of ions. As a result, the 3D-CdS/graphite cage revealed a great thermal stability and high specific capacitance (511 F/g at 5 A/g). Additionally, the 3D-CdS/graphite//reduced graphene oxide (rGO) asymmetric supercapacitor revealed a high energy density (30.4 Wh/kg at a power density of 800 W/kg) and long-term cycling stability (90.1% retention after 5000 cycles at 10 A/g) for practical applications.

  7. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Applicability; description of the graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380...

  8. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Applicability; description of the graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380...

  9. Mechanism and modulation of terahertz generation from a semimetal - graphite

    PubMed Central

    Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li

    2016-01-01

    Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism - surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices. PMID:26972818

  10. Mechanism and modulation of terahertz generation from a semimetal--graphite.

    PubMed

    Ye, Tong; Meng, Sheng; Zhang, Jin; E, Yiwen; Yang, Yuping; Liu, Wuming; Yin, Yan; Wang, Li

    2016-03-14

    Semi-metals might offer a stronger interaction and a better confinement for terahertz wave than semiconductors, while preserve tunability. Particularly, graphene-based materials are envisioned as terahertz modulators, filters and ultra-broadband sources. However, the understanding of terahertz generation from those materials is still not clear, thus limits us recognizing the potential and improving device performances. Graphite, the mother material of graphene and a typical bulk semi-metal, is a good system to study semi-metals and graphene-based materials. Here we experimentally modulate and maximize the terahertz signal from graphite surface, thus reveal the mechanism--surface field driving photon induced carriers into transient current to radiate terahertz wave. We also discuss the differences between graphite and semiconductors; particularly graphite shows very weak temperature dependency from room temperature to 80 °C. Above knowledge will help us understand terahertz generations, achieve maximum output and electric modulation, in semi-metal or graphene based devices.

  11. In-situ thermal cycling in SEM of a graphite-aluminum composite

    NASA Technical Reports Server (NTRS)

    Cheong, Y. M.; Marcus, H. L.

    1987-01-01

    In situ SEM observations of a graphite-aluminum composite (unidirectional P100 graphite-fiber-reinforced 6061 aluminum MMC plates) were used to measure displacements within the graphite fiber relative to the interface between the graphite fiber and the aluminum matrix during thermal cycling. Specimens were thermally cycled from room temperature to 300 C or 500 C in a SEM chamber and then cooled to room temperature. The obtained shear strains within the fiber were then related to anomalous values of measured residual stresses and to the impact on the composite coefficient of expansion and potential damage under thermal fatigue loading. The shear mechanism was proposed as a source of temperature limits on the low coefficient of expansion of these composites, as well as a potential source of thermal fatigue degradation.

  12. Atomization from a tantalum surface in graphite furnace atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Gregoire, D. C.; Chakrabarti, C. L.

    The mechanism of atom formation of U, V, Mo, Ni, Mn, Cu and Mg atomized from pyrolytic graphite and tantalum metal surfaces has been studied. The mechanism of atom formation for U from a graphite tube atomizer is reported for the first time. The peak absorbance for U and Cu is increased by factors of 59.7 and 2.0, respectively, whereas that of V, Mo and Ni is reduced by several orders of magnitude when they are atomized from a tantalum metal surface. The peak absorbance of Mn and Mg is not appreciably affected by the material of the atomization surface. Interaction of Mn and Mg with the graphite surface and formation of their refractory carbides was found to be negligible. Uranium forms a refractory carbide when heated from a graphite surface.

  13. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, Haiqing L.

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  14. Woven graphite epoxy composite test specimens with glass buffer strips

    NASA Technical Reports Server (NTRS)

    Bonnar, G. R.; Palmer, R. J.

    1982-01-01

    Woven unidirectional graphite cloth with bands of fiberglass replacing the graphite in discrete lengthwise locations was impregnated with epoxy resin and used to fabricate a series of composite tensile and shear specimens. The finished panels, with the fiberglass buffer strips, were tested. Details of the fabrication process are reported.

  15. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.

    PubMed

    Figueiredo-Filho, Luiz C S; Brownson, Dale A C; Gómez-Mingot, Maria; Iniesta, Jesús; Fatibello-Filho, Orlando; Banks, Craig E

    2013-11-07

    We report the fabrication, characterisation (SEM, TEM, XPS and Raman spectroscopy) and electrochemical implementation of a graphene paste electrode. The paste electrodes utilised are constructed by simply mixing graphene with mineral oil (which acts as a binder) prior to loading the resultant paste into a piston-driven polymeric-tubing electrode-shell, where this electrode configuration allows for rapid renewal of the electrode surface. The fabricated paste electrode is electrochemically characterised using both inner-sphere and outer-sphere redox probes, namely potassium ferrocyanide(ii), hexaammine-ruthenium(iii) chloride and hexachloroiridate(iii), in addition to the biologically relevant and electroactive analytes, l-ascorbic acid (AA) and uric acid (UA). Comparisons are made with a graphite paste alternative and the benefits of graphene implementation as a paste electrode within electrochemistry are explored, as well as the characterisation of their electroanalytical performances. We reveal no observable differences in the electrochemical performance and thus suggest that there are no advantages of using graphene over graphite in the fabrication of paste electrodes. Such work is highly important and informative for those working in the field of electroanalysis where electrochemistry can provide portable, rapid, reliable and accurate sensing protocols (bringing the laboratory into the field), with particular relevance to those searching for new electrode materials.

  16. Biostereometrics In Art

    NASA Astrophysics Data System (ADS)

    Ferenc, Kovats

    1986-07-01

    Desuis mon enfance je suis un type soidisant visuel. Cette deviation etait toujours profitable pour moi, pour le clinicien , ainsi que pour le rechercheur scientifique.I1 y a trente ans, que dans l'Atlas Radioanatomique du Thorax nous avons deja utilis6 la conception de trois dimensions. Dans les derni6res edition de cet ouvrage nous avons travaille mke avec la guatrieme, le temps facteur. DePuis cette 6poque-la je me suis ori-en-be vers les quatre dimensions, vers les mouvements dans l'espace et le temps. -:tudiant les mouvements,les mouvements ventilatoires mesure par photogrammetrie le tronc humain.En projetant sur la surface du tronc un reseau quadratique, on pent compter de 3oo-400 points d'information, si un carre est 2 This 2 cm. Simultanement on pent ainsi contraler les deplacement relatifs des differents points. Travaillant avec seriophotographie et ces dernieres annees avec Video, nous avons des documents cDntinuellement en trois dimensions sun la position actuelle en espace de notre modele.On pent mesurer, reproduire la position momentan6e du sujet d'une frequence et dans la quantite desiree. Par exemple on peut les reproduire, une a une, comme une sculpture, en domontrant les changements d'un tronc humain pendant les mouvements respiratoires, comme nous avions fait en 1969 avec le sculpteur Istvan Bencsik en realisant nos differents modeles en inspiration et expiration.flais thooriquement on pent construire tant de sculptures qu'on vent entre les deux positions extremes.La methode est tres utilisable pour l'observation des mouvements sportifs on artistiques, comme le ballet par exemple. / Figure 1./ En etudiant en plusieures series la morphometrie des mouvements respiratoires on pent acquerir une certain experience, qui concerne la phase de respiration, on se trouve un corps humain sculpte, dessine on peint. Come le mimique d'un visage explkue toujours l'6tat affectif d'un individu, le corps humain peut expliquer tart des chases entre les mains d

  17. Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides

    NASA Astrophysics Data System (ADS)

    Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang

    2018-05-01

    In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.

  18. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    NASA Astrophysics Data System (ADS)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  19. Hybrid composites that retain graphite fibers on burning

    NASA Technical Reports Server (NTRS)

    House, E. E.

    1980-01-01

    A laboratory scale program was conducted to determine fiber release tendencies of graphite reinforced/resinous matrix composites currently used or projected for use in civil aircraft. In the event of an aircraft crash and burn situation, there is concern that graphite fibers will be released from the composites once the resin matrix is thermally decomposed. Hybridizing concepts aimed at preventing fiber release on burning were postulated and their effectiveness evaluated under fire, impact, and air flow during an aircraft crash.

  20. Plumbrook Hypersonic Tunnel Facility Graphite Furnace Degradation Mechanisms

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.

    1999-01-01

    A recent rebuild revealed extensive degradation to the large graphite induction furnace in the Hypersonic Tunnel Facility (HTF). This damage to the graphite blocks and insulating felt is examined and modeled with thermochemical equilibrium codes. The primary reactions appear to be with water vapor and the nitrogen purge gas. Based on these conclusions, several changes are recommended. An inert purge gas (e.g. argon or helium) and controlling and monitoring water vapor to about 10 ppm should decrease the damage substantially.

  1. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    PubMed

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-07

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.

  2. Development of seal ring carbon-graphite materials (tasks 5, 6, and 7)

    NASA Technical Reports Server (NTRS)

    Fechter, N. J.; Petrunich, P. S.

    1972-01-01

    Carbon-graphite seal ring bodies for operation at air temperatures to 1300 F(704 C) were manufactured from three select formulations. Mechanical and thermal properties, porosities, and oxidation rates were measured. The results have shown that: (1) Major property improvements anticipated from the screening studies were not realized because of processing problems associated with the scale-up in material size and probable deterioration of a phenolic resin binder; (2) the mechanical properties of a phenolic resin-bonded, carbon-graphite material can be improved by applying high pressure during carbonization; and (3) the textile form of graphite fiber used as the minor filler component in a carbon-graphite material can beneficially affect mechanical properties.

  3. ICP-MS measurement of iodine diffusion in IG-110 graphite for HTGR/VHTR

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2016-05-01

    Graphite functions as a structural material and as a barrier to fission product release in HTGR/VHTR designs, and elucidation of transport parameters for fission products in reactor-grade graphite is thus required for reactor source terms calculations. We measured iodine diffusion in spheres of IG-110 graphite using a release method based on Fickain diffusion kinetics. Two sources of iodine were loaded into the graphite spheres; molecular iodine (I2) and cesium iodide (CsI). Measurements of the diffusion coefficient were made over a temperature range of 873-1293 K. We have obtained the following Arrhenius expressions for iodine diffusion:DI , CsI infused =(6 ×10-12 2/s) exp(30,000 J/mol RT) And,DI , I2 infused =(4 ×10-10 m2/s) exp(-11,000 J/mol RT ) The results indicate that iodine diffusion in IG-110 graphite is not well-described by Fickan diffusion kinetics. To our knowledge, these are the first measurements of iodine diffusion in IG-110 graphite.

  4. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    PubMed Central

    2015-01-01

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m2 g–1), large pore volume (2.26 cm–3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications. PMID:27162953

  5. Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    DOE PAGES

    To, John W. F.; Chen, Zheng; Yao, Hongbin; ...

    2015-05-18

    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 °C with record-high surface area (4073 m 2 g –1),more » large pore volume (2.26 cm –3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity >3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium–sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.« less

  6. Tungsten and iridium multilayered structure by DGP as ablation-resistance coatings for graphite

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Chen, Zhaofeng; Cheng, Han; Wang, Liangbing; Zhang, Ying

    2011-06-01

    Oxidation protection of carbon material under ultra-high temperature is a serious problem. In this paper, a newly designed multilayer coating of W/Ir was produced onto the graphite substrate by double glow plasma. As comparison, the Ir single-layer coating on the graphite was also prepared. The ablation property and thermal stability of the coatings were studied at 2000 °C in an oxyacetylene torch flame. Ablation tests showed that the coated graphite substrates were protected more effectively by W/Ir multilayer coating than Ir single-layer coating. Ir single-layer coating after ablation kept the integrality, although there was a poor adhesion of the Ir coating to the graphite substrate because of the thermal expansion mismatch and the non-wetting of the carbon by Ir coating. The mass loss rate of the W/Ir-coated specimen after ablation was about 1.62%. The interface of W/Ir multilayer coating and the graphite substrate exhibited good adherence no evidence of delamination after ablation. W/Ir multilayer coating could be useful for protecting graphite in high-temperature application for a short time.

  7. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    NASA Technical Reports Server (NTRS)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  8. Status of Initial Assessment of Physical and Mechanical Properties of Graphite Grades for NGNP Appkications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strizak, Joe P; Burchell, Timothy D; Windes, Will

    2011-12-01

    Current candidate graphite grades for the core structures of NGNP include grades NBG-17, NBG-18, PCEA and IG-430. Both NBG-17 and NBG-18 are manufactured using pitch coke, and are vibrationally molded. These medium grain products are produced by SGL Carbon SAS (France). Tayo Tanso (Japan) produces IG-430 which is a petroleum coke, isostatically molded, nuclear grade graphite. And PCEA is a medium grain, extruded graphite produced by UCAR Carbon Co. (USA) from petroleum coke. An experimental program has been initiated to develop physical and mechanical properties data for these current candidate graphites. The results will be judged against the requirements formore » nuclear grade graphites set forth in ASTM standard D 7219-05 "Standard Specification for Isotropic and Near-isotropic Nuclear Graphites". Physical properties data including thermal conductivity and coefficient of thermal expansion, and mechanical properties data including tensile, compressive and flexural strengths will be obtained using the established test methods covered in D-7219 and ASTM C 781-02 "Standard Practice for Testing Graphite and Boronated Graphite Components for High-Temperature Gas-Cooled Nuclear Reactors". Various factors known to effect the properties of graphites will be investigated. These include specimen size, spatial location within a graphite billet, specimen orientation (ag and wg) within a billet, and billet-to-billet variations. The current status of the materials characterization program is reported herein. To date billets of the four graphite grades have been procured, and detailed cut up plans for obtaining the various specimens have been prepared. Particular attention has been given to the traceability of each specimen to its spatial location and orientation within a billet.« less

  9. Electrocatalytic N-Doped Graphitic Nanofiber - Metal/Metal Oxide Nanoparticle Composites.

    PubMed

    Tang, Hongjie; Chen, Wei; Wang, Jiangyan; Dugger, Thomas; Cruz, Luz; Kisailus, David

    2018-03-01

    Carbon-based nanocomposites have shown promising results in replacing commercial Pt/C as high-performance, low cost, nonprecious metal-based oxygen reduction reaction (ORR) catalysts. Developing unique nanostructures of active components (e.g., metal oxides) and carbon materials is essential for their application in next generation electrode materials for fuel cells and metal-air batteries. Herein, a general approach for the production of 1D porous nitrogen-doped graphitic carbon fibers embedded with active ORR components, (M/MO x , i.e., metal or metal oxide nanoparticles) using a facile two-step electrospinning and annealing process is reported. Metal nanoparticles/nanoclusters nucleate within the polymer nanofibers and subsequently catalyze graphitization of the surrounding polymer matrix and following oxidation, create an interconnected graphite-metal oxide framework with large pore channels, considerable active sites, and high specific surface area. The metal/metal oxide@N-doped graphitic carbon fibers, especially Co 3 O 4 , exhibit comparable ORR catalytic activity but superior stability and methanol tolerance versus Pt in alkaline solutions, which can be ascribed to the synergistic chemical coupling effects between Co 3 O 4 and robust 1D porous structures composed of interconnected N-doped graphitic nanocarbon rings. This finding provides a novel insight into the design of functional electrocatalysts using electrospun carbon nanomaterials for their application in energy storage and conversion fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Graphite nanoplatelets/multiwalled carbon nanotubes hybrid nanostructure for electrochemical capacitor.

    PubMed

    Mishra, Ashish Kumar; Ramaprabhu, S

    2012-08-01

    Recently, the focus on carbon based nanostructures for various applications has been due to their novel properties such as high electrical conductivity, high mechanical strength and high surface area. In the present work, we have investigated the charge storage capacity of modified graphite nanoplatelets and hybrid structure of graphite nanoplatelets-multiwalled carbon nanotubes (MWNTs). These MWNTs can be used as spacers to reduce the possibility of restacking of graphite nanoplatelets and hence increases the surface area of the hybrid carbon nanostructure thereby high degree of metal oxide decoration is achieved over the hybrid structure. MWNTs were prepared by catalytic chemical vapor deposition technique and further purified with air oxidation and acid treatment. Graphite was treated with conc. nitric acid and sulphuric acid in the volumetric ratio of 1:3 for 3 days and these modified graphite nanoplatelets were further stirred with MWNTs in equal weight ratio to form hybrid nanostructure. Further, ruthenium oxide (RuO2) nanoparticles were decorated on this hybrid structure using chemical route followed by calcination. RuO2 decorated hybrid carbon nanostructure was characterized by using X-ray diffraction, Electron microscopy and Raman spectroscopy. The performance of the hybrid structure based nanocomposite as electrochemical capacitor electrodes was analyzed by studing its capacitive and charge-discharge behaviours using cyclic voltammetry and chronopotentiometry techniques and the results have been discussed.

  11. Pencil graphite leads as simple amperometric sensors for microchip electrophoresis.

    PubMed

    Natiele Tiago da Silva, Eiva; Marques Petroni, Jacqueline; Gabriel Lucca, Bruno; Souza Ferreira, Valdir

    2017-11-01

    In this work we demonstrate, for the first time, the use of inexpensive commercial pencil graphite leads as simple amperometric sensors for microchip electrophoresis. A PDMS support containing one channel was fabricated through soft lithography and sanded pencil graphite leads were inserted into this channel to be used as working electrodes. The electrochemical and morphological characterization of the sensor was carried out. The graphite electrode was coupled to PDMS microchips in end-channel configuration and electrophoretic experiments were performed using nitrite and ascorbate as probe analytes. The analytes were successfully separated and detected in well-defined peaks with satisfactory resolution using the microfluidic platform proposed. The repeatability of the pencil graphite electrode was satisfactory (RSD values of 1.6% for nitrite and 12.3% for ascorbate, regarding the peak currents) and its lifetime was estimated to be ca. 700 electrophoretic runs over a cost of ca. $ 0.05 per electrode. The limits of detection achieved with this system were 2.8 μM for nitrite and 5.7 μM for ascorbate. For proof of principle, the pencil graphite electrode was employed for the real analysis of well water samples and nitrite was successfully quantified at levels below its maximum contaminant level established in Brazil and US. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.

    1991-01-01

    Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.

  13. Evaluation d’une grille de supervision des laboratoires des leishmanioses cutanées au Maroc

    PubMed Central

    El Mansouri, Bouchra; Amarir, Fatima; Hajli, Yamina; Fellah, Hajiba; Sebti, Faiza; Delouane, Bouchra; Sadak, Abderrahim; Adlaoui, El Bachir; Rhajaoui, Mohammed

    2017-01-01

    Introduction Afin d’évaluer une grille de contrôle standardisée de laboratoire de diagnostic des leishmanioses, comme nouveau outil de supervision. Méthodes Un essai pilote a été pratiqué sur sept laboratoires provinciaux, appartenant à quatre provinces au Maroc, en suivant l’évolution de leurs performances tous les deux ans, entre l’année 2006 et 2014. Cette étude détaille la situation des laboratoires provinciaux avant et après la mise en œuvre de la grille de supervision. Au total vingt et une grille sont analysées. Résultats En 2006, les résultats ont montré clairement une insuffisance des performances des laboratoires: besoin en formation (41.6%), personnel pratiquant le prélèvement cutané (25%), pénurie en matériels et réactifs (65%), gestions documentaire et local non conformes (85%). Différentes actions correctives ont été menées par le Laboratoire National de Référence des Leishmanioses (LNRL) durant la période d’étude. En 2014, le LNRL a enregistré une nette amélioration des performances des laboratoires. Les besoins en matière de formation, qualité du prélèvement, dotation en matériels et réactifs ont été comblés et une coordination efficace s’est établie entre le LNRL et les laboratoires provinciaux. Conclusion Ceci montre l'efficacité de la grille comme outil de supervision de grande qualité, et comme pierre angulaire de tout progrès qui doit être obtenu dans les programmes de lutte contre les leishmanioses. PMID:29187922

  14. Energy levels, wavelengths, and radiative transition probabilities for the Na-like ions with 38 [le] Z [le] 45

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ying Zhang; Qiren Zhu; Shoufu Pan

    1992-11-01

    The investigation by Z.-Q Zhang et al. (Acta Optica Sinica 11, 193, 1991) shows that it is possible to realize soft X-ray lasing in the water window 23.3-43.8 [Angstrom] with the Na-like recombination scheme, which requires a lower pumping power at a high-power laser facility than that with other schemes. The fine-structure levels with n [le] 15 and l [le] 6 in Na-like ions with 38 [le] Z [le] 45 and the probabilities for radiative transitions between these levels are calculated using the multiconfiguration Dirac-Fock approach. The calculations show that the wavelengths of the anticipated laser transitions 6 f-4d andmore » 6g-4f in the Na-like ions with 38 [le] Z [le] 43 and 5f-4d and 5g-4f in the Na-like ions with 40 [le] Z [le] 45 lie in the region of the water window.« less

  15. Surface analysis of graphite fiber reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  16. Nanospray mass spectrometry with indirect conductive graphite coating.

    PubMed

    Viberg, Peter; Nilsson, Staffan; Skog, Kerstin

    2004-07-15

    An easy and cost-effective method to manufacture a robust conductive graphite coating for nanospray mass spectrometry (nESI-MS) and capillary electrophoresis (CE)-nESI-MS is described. The method involves graphite coating of a tube sleeve, into which the nESI emitter is inserted and connected to a transfer capillary, instead of coating the actual emitter. The coating, made of graphite from a pencil and epoxy glue, was stable over long periods of use (>80 h) and showed excellent resistance toward various solvents. Stable electrospray was achieved in the investigated flow range (150-900 nL x min(-)(1)), and salbutamol, diphenhydramine, and nortriptyline (M(w): 239-263 g x mol(-)(1)) were detected in the nanomole per liter range during continuous pumping. CE-nESI-MS analysis gave excellent signal-to-noise ratios for 100-fmol injections. The technique allows simple exchange of the nESI emitter to suit a specific flow rate, and it minimizes risk of corona discharge.

  17. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate.

    PubMed

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-12-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy (μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO 4 , K 2 Cr 2 O 7 ) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO 4 and NaClO 3 .

  18. Synthesis and Characterization of Highly Intercalated Graphite Bisulfate

    NASA Astrophysics Data System (ADS)

    Salvatore, Marcella; Carotenuto, Gianfranco; De Nicola, Sergio; Camerlingo, Carlo; Ambrogi, Veronica; Carfagna, Cosimo

    2017-03-01

    Different chemical formulations for the synthesis of highly intercalated graphite bisulfate have been tested. In particular, nitric acid, potassium nitrate, potassium dichromate, potassium permanganate, sodium periodate, sodium chlorate, and hydrogen peroxide have been used in this synthesis scheme as the auxiliary reagent (oxidizing agent). In order to evaluate the presence of delamination, and pre-expansion phenomena, and the achieved intercalation degree in the prepared samples, the obtained graphite intercalation compounds have been characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray powder diffraction (XRD), infrared spectroscopy (FT-IR), micro-Raman spectroscopy ( μ-RS), and thermal analysis (TGA). Delamination and pre-expansion phenomena were observed only for nitric acid, sodium chlorate, and hydrogen peroxide, while the presence of strong oxidizers (KMnO4, K2Cr2O7) led to stable graphite intercalation compounds. The largest content of intercalated bisulfate is achieved in the intercalated compounds obtained from NaIO4 and NaClO3.

  19. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes.

    PubMed

    Li, Jinjin; Gao, Tianyang; Luo, Jianbin

    2018-03-01

    2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions.

  20. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalyticmore » activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.« less

  1. Superlubricity of Graphite Induced by Multiple Transferred Graphene Nanoflakes

    PubMed Central

    Gao, Tianyang; Luo, Jianbin

    2018-01-01

    Abstract 2D or 3D layered materials, such as graphene, graphite, and molybdenum disulfide, usually exhibit superlubricity properties when sliding occurs between the incommensurate interface lattices. This study reports the superlubricity between graphite and silica under ambient conditions, induced by the formation of multiple transferred graphene nanoflakes on the asperities of silica surfaces after the initial frictional sliding. The friction coefficient can be reduced to as low as 0.0003 with excellent robustness and is independent of the surface roughness, sliding velocities, and rotation angles. The superlubricity mechanism can be attributed to the extremely weak interaction and easy sliding between the transferred graphene nanoflakes and graphite in their incommensurate contact. This finding has important implications for developing approaches to achieve superlubricity of layered materials at the nanoscale by tribointeractions. PMID:29593965

  2. 6. VIEW OF INSIDE OF RAIL CAR CONTAINING GRAPHITE DELIVERED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF INSIDE OF RAIL CAR CONTAINING GRAPHITE DELIVERED TO BUILDING 444. THE GRAPHITE WAS FORMED INTO MOLDS AND CRUCIBLE FOR USE IN THE FOUNDRY. (1/12/54) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  3. Biomechanical considerations for distraction of the monobloc, Le Fort III, and Le Fort I segments.

    PubMed

    Figueroa, Alvaro A; Polley, John W; Figueroa, Aaron D

    2010-09-01

    Distraction osteogenesis is effective for correction of severe maxillary and midface hypoplasia. The vectors controlling the segment to be moved must be planned. This requires knowledge of the physical characteristics of the osteotomized bone segment, including the location of the center of mass (free body) and the center of resistance (restrained body). The purpose of this study was to determine the center of mass of the osteotomized monobloc, Le Fort III, and Le Fort I bone segments. A dry human skull was used to sequentially isolate three bone segments: monobloc, Le Fort III, and Le Fort I. Each segment was suspended from three different points, and digital photographs were obtained from each suspension. The photographs were digitally superimposed. The center of mass was determined by calculating the intersection of the suspension lines. The center of mass for the monobloc segment was located at a point 43.5 percent of the total height from the occlusal plane to the superior edge of the frontal bone supraorbital osteotomy. For the Le Fort III, it was located 38 percent of the total height from the occlusal plane to the superior edge of the osteotomized base of the nasal bones. For the Le Fort I, it was 53 percent of the total height from the occlusal plane to the superior edge of the osteotomized maxillary bone. Knowledge of the location of the center of mass in the monobloc, Le Fort III, and Le Fort I segments provides a starting point for the clinician when planning vectors for advancement with distraction.

  4. Modifications of Graphite and Multiwall Carbon Nanotubes in the Presence of Urea

    NASA Astrophysics Data System (ADS)

    Duraia, El-Shazly M.; Fahami, Abbas; Beall, Gary W.

    2018-02-01

    The effect of high-energy ball milling on two carbon allotropes, graphite and multiwall carbon nanotubes (MWCNT) in the presence of urea has been studied. Samples were investigated using Raman spectroscopy, x-ray diffraction, scanning electron microscope (SEM) and x-ray photoelectron spectroscopy (XPS). Nitrogen-doped graphene has been successfully synthesized via a simple scalable mechanochemistry method using urea and graphite powder precursors. XPS results revealed the existence of the different nitrogen atoms configurations including pyridine, pyrrodic and graphitic N. SEM observations showed that the graphene nanosheets morphology become more wrinkles folded and crumbled as the milling time increased. The ID/IG ratio also increased as the milling time rose. The presence of both D' and G + D bands at 1621 cm-1 and 2940 cm-1, respectively, demonstrated the nitrogen incorporation in the graphene lattice Two factors contribute to the used urea: first it helps to exfoliate graphite into graphene, and second it preserves the graphitic structure from damage during the milling process as well as acting as a solid-state nitrogen source. Based on the phase analysis, the d-spacing of MWCNT samples in the presence of urea decreased due to the mechanical force in the milling process as the milling time increased. On the other hand, in the graphite case, due to its open flat surface, the graphite (002) peak shifts toward lower two theta as the milling time increase. Such findings are important and could be used for large-scale production of N-doped graphene, diminishing the use of either dangerous chemicals or sophisticated equipment.

  5. On the origin of the Neoproterozoic Peresopolis graphite deposit, Paraguay Belt, Brazil

    NASA Astrophysics Data System (ADS)

    Manoel, Talitta Nunes; Dexheimer Leite, Jayme Alfredo

    2018-07-01

    The Peresopolis graphite deposit is located northeast of Brasilândia Town in Mato Grosso State (Brazil). It consists of an 1800 m long, 200 m wide low-crystallinity graphite-bearing tabular layer that trends ENE and dips 65°ESE. The deposit is hosted in carbonaceous phyllites, which along with basal metadiamictites and upper metarenites make up the upper unit (Coxipó Formation) of the Cuiabá Group in the late Cryogenian to Cambrian Paraguay Belt (ca. 650-500Ma). The carbonaceous phyllites show a mineral assemblage consisting mostly of graphite-quartz-muscovite-albite and pyrite and dolomite to a lesser extent; alteration minerals include tosudite and kaolinite. XRD analysis confirmed the gangue material and defined the graphite as low-order crystallinity. Carbon isotope data for graphite ore returned a light and very restricted range of δ13Corg between -29 and -28‰ suggesting organic matter as the source of carbon. One hundred and sixty measurements of Raman graphite spectrum returned a well-fit between full width at half maximum parameter (FWHM) which allowed its use as a geothermometer. Resulting temperatures are in the range between 285 and 300 °C ± 30 °C, indicating low-to very-low metamorphic conditions for transformation of organic matter into amorphous graphite. The deposition of the organic matter should have taken place in an outer slope of a glaciomarine system and its transformation into the ore occurred because of deformation and low-grade metamorphism related to the development of the Neoproterozoic Brasiliano/Pan-African Orogeny (850-500Ma).

  6. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    NASA Astrophysics Data System (ADS)

    Johns, Steve; Shin, Wontak; Kane, Joshua J.; Windes, William E.; Ubic, Rick; Karthik, Chinnathambi

    2018-07-01

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. To ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ∼60 μm. Discs 3 mm in diameter were then oxidized at temperatures between 575 °C and 625 °C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575 °C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.

  7. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johns, Steve; Shin, Wontak; Kane, Joshua J.

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less

  8. A new oxidation based technique for artifact free TEM specimen preparation of nuclear graphite

    DOE PAGES

    Johns, Steve; Shin, Wontak; Kane, Joshua J.; ...

    2018-04-03

    Graphite is a key component in designs of current and future nuclear reactors whose in-service lifetimes are dependent upon the mechanical performance of the graphite. Irradiation damage from fast neutrons creates lattice defects which have a dynamic effect on the microstructure and mechanical properties of graphite. Transmission electron microscopy (TEM) can offer real-time monitoring of the dynamic atomic-level response of graphite subjected to irradiation; however, conventional TEM specimen-preparation techniques, such as argon ion milling itself, damage the graphite specimen and introduce lattice defects. It is impossible to distinguish these defects from the ones created by electron or neutron irradiation. Thus,tomore » ensure that TEM specimens are artifact-free, a new oxidation-based technique has been developed. Bulk nuclear grades of graphite (IG-110 and NBG-18) and highly oriented pyrolytic graphite (HOPG) were initially mechanically thinned to ~60μm. Discs 3mm in diameter were then oxidized at temperatures between 575°C and 625°C in oxidizing gasses using a new jet-polisher-like set-up in order to achieve optimal oxidation conditions to create self-supporting electron-transparent TEM specimens. The quality of these oxidized specimens were established using optical and electron microscopy. Samples oxidized at 575°C exhibited large areas of electron transparency and the corresponding lattice imaging showed no apparent damage to the graphite lattice.« less

  9. High strength graphite and method for preparing same

    DOEpatents

    Overholser, Lyle G.; Masters, David R.; Napier, John M.

    1976-01-01

    High strength graphite is manufactured from a mixture of a particulate filler prepared by treating a particulate carbon precursor at a temperature in the range of about 400.degree. to 1000.degree. C., an organic carbonizable binder, and green carbonizable fibers in a concentration of not more than 2 weight per cent of the filler. The use of the relatively small quantity of green fibers provides a substantial increase in the flexural strength of the graphite with only a relatively negligible increase in the modulus of elasticity.

  10. Synthesis and characterization of SiC based composite materials for immobilizing radioactive graphite

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Zhao, Xiaofeng; Hu, Zhuang

    2018-06-01

    In order to immobilize high-level radioactive graphite, silicon carbide based composite materials{ (1-x) SiC· x MgAl2O4 (0.1 ≤ x≤0.4) } were fabricated by solid-state reaction at 1370 °C for 2 h in vacuum. Residual graphite and precipitated corundum were observed in the as-synthesized product, which attributed to the interface reaction of element silicon and magnesium compounds. To further understand the reasons for the presence of graphite and corundum, the effects of mole ratio of Si/C, MgAl2O4 content and non-stoichiometry of MgAl2O4 on the synthesis were investigated. To immobilize graphite better, residual graphite should be eliminated. The target product was obtained when the mole ratio of Si/C was 1.3:1, MgAl2O4 content was x = 0.2, and the mole ratio of Al to Mg in non-stoichiometric MgAl2O4 was 1.7:1. In addition, the interface reaction between magnesium compounds and silicon not graphite was displayed by conducting a series of comparative experiments. The key factor for the occurrence of interface reaction is that oxygen atom is transferred from magnesium compound to SiO gas. Infrared and Raman spectrum revealed the increased disorders of graphite after being synthesized.

  11. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    DOEpatents

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  12. Fabrication of graphite/epoxy cases for orbit insertion motors

    NASA Technical Reports Server (NTRS)

    Schmidt, W. W.

    1973-01-01

    The fabrication procedures are described for filament-wound rocket motor cases, approximately 26.25 inches long by 25.50 inches diameter, utilizing graphite fibers. The process utilized prepreg tape which consists of Fortafil 4-R fibers in the E-759 epoxy resin matrix. This fabrication effect demonstrated an ability to fabricate high quality graphite/epoxy rocket motor cases in the 26.25 inch by 25.50 inch size range.

  13. Influence of solvent species on the charge-discharge characteristics of a natural graphite electrode

    NASA Astrophysics Data System (ADS)

    Fujimoto, Masahisa; Shoji, Yoshihiro; Kida, Yoshinori; Ohshita, Ryuji; Nohma, Toshiyuki; Nishio, Koji

    The charge-discharge characteristics of a natural graphite electrode are examined in a mixed solvent composed of ethylene carbonate (EC) and propylene carbonate (PC). The characteristics are influenced largely by the solvent species. Natural graphite electrode displays good charge-discharge characteristics in an electrolyte containing EC with a high volume fraction. In an electrolyte containing PC, however, the electrode cannot be charged and the solvent is decomposed. X-ray photoelectron spectroscopy is used to obtain information about the surface of natural graphite. A thin LiF layer, the decomposition product of lithium hexafluorophosphate (LiPF 6), is formed on the surface of the natural graphite charged to 0.5 V (vs. Li/Li +) in an electrolyte containing a high volume fraction of EC. On the other hand, LiF and a carbonate compound are formed in the bulk and on the surface of natural graphite when the volume fraction of PC is high. These results suggest that the thin LiF layer, which is produced at a potential higher than 0.5 V (vs. Li/Li +) on the surface of natural graphite, enables the lithium ions to intercalate into the natural graphite without further decomposition of the electrolyte.

  14. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification

    NASA Astrophysics Data System (ADS)

    Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang

    2018-06-01

    Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.

  15. Processing, Microstructure, and Mechanical Properties of Interpenetrating Biomorphic Graphite/Copper Composites

    NASA Astrophysics Data System (ADS)

    Childers, Amanda Esther Sall

    Composite properties can surpass those of the individual phases, allowing for the development of advanced, high-performance materials. Bio-inspired and naturally-derived materials have garnered attention as composite constituents due to their inherently efficient and complex structures. Wood-derived ceramics, produced by converting a wood precursor into a ceramic scaffold, can exhibit a wide range of microstructures depending on the wood species, including porosity, pore size and distribution, and connectivity. The focus of this work was to investigate the processing, microstructure, and properties of graphite/copper composites produced using wood-derived graphite scaffolds. Graphite/copper composites combine low specific gravity, high thermal conductivity, and tailorable thermal expansion properties, and due to the non-wetting behavior of copper to graphite, offer a unique system in which mechanically bonded interfaces in composites can be studied. Graphite scaffolds were produced from red oak, beech, and pine precursors using a catalytic pyrolyzation method, resulting in varying types of pore networks. Two infiltration methods were investigated to overcome challenges associated with non-wetting systems: copper electrodeposition and pressure-assisted melt infiltration. The phase distributions, constituent properties, interfacial characteristics, mechanical behavior, and load partitioning of these biomorphic graphite/copper composites were investigated, and were correlated to the wood species. The multi-domain feature sizes in the graphite scaffolds resulted in composites with copper relegated not only to the large, connected channels produced from the transport features in the wood, but also within the smaller, lower aspect ratio fibrous regions of the scaffold. Both features contributed to the mechanical behavior of the composites to varying degrees depending on the wood species. A multi-component predictive model also was developed and used to guide the additive

  16. Non-activated high surface area expanded graphite oxide for supercapacitors

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G. E.; Boukos, N.; Giannouri, M.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Microwave irradiation of graphite oxide constitutes a facile route toward production of reduced graphene oxide, since during this treatment both exfoliation and reduction of graphite oxide occurs. In this work, the effect of pristine graphite (type, size of flakes), pretreatment and oxidation cycles on the finally produced expanded material was examined. All the types of graphite that were tested afforded materials with high BET surface areas ranging from 940 m2/g to 2490 m2/g, without intervening an activation stage at elevated temperature. SEM and TEM images displayed exfoliated structures, where the flakes were significantly detached and curved. The quality of the reduced graphene oxide sheets was evidenced both by X-ray photoelectron spectroscopy and Raman spectroscopy. The electrode material capacitance was determined via electrochemical impedance spectroscopy and cyclic voltammetry. The materials with PEDOT binder had better performance (∼97 F/g) at low operation rates while those with PVDF binder performed better (∼20 F/g) at higher rates, opening up perspectives for their application in supercapacitors.

  17. A Comparison of the Irradiation Creep Behavior of Several Graphites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Windes, Will

    2016-01-01

    Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpamore » (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.« less

  18. Graphite as a Biomarker in Rocks of the 3.8 Ga Isua Supracrustal Belt

    NASA Astrophysics Data System (ADS)

    Lepland, A.; van Zuilen, M.; Layne, G. D.; Arrhenius, G.

    2002-12-01

    Recent petrographic and isotopic studies of graphite and apatite in supracrustal rocks from the 3.8 Ga Isua belt (ISB) in southern West Greenland [1, 2] have shown inconsistencies in interpreting traces of life in the earliest terrestrial sediment record. Isotopically light graphitic carbon, suggestive of a bioorganic origin, has been previously reported from the carbonate-rich Isua rocks [3, 4] that at the time were recognized as sedimentary deposits. However, these carbonate-rich rocks, that provided the basis for original biologic interpretations, have been shown to have a metasomatic origin [5] not sedimentary as previously believed. This protolith reinterpretation has highlighted the need for assessment of graphite genesis and related isotopic systematics when using graphite as an ancient biomarker. We have, for this purpose, studied graphite in a suite of samples from the ISB including metacarbonates, turbidites, cherts and banded iron formations (BIFs). Graphite is relatively abundant (0.1-2 wt. %) in metacarbonate samples, while the abundances of reduced carbon in metasedimentary BIFs and metacherts are below 100 ppm. Petrographic analyses show that graphite in metacarbonates typically associates with Fe-bearing carbonate and magnetite. This mineral association indicates graphite formation in Isua metacarbonates by thermal-metamorphic reduction of carbonate ion, in which the carbonate ion is reduced to form graphite and ferrous iron is oxidized to form magnetite. Carbon isotopic compositions of graphite (δ13C ca. -2 per mil) and associated Fe-carbonate (δ13C ca. -6 per mil) indicate isotopic equilibrium between these two phases at ca. 500 C, consistent with the metamorphic history of the ISB. Stepped-combustion experiments undertaken on Isua BIFs and metacherts reveal that these sediments contain virtually no graphite, and the small amount of reduced carbon found there represents recent organic contamination. Our stepped-combustion-mass-spectrometry data

  19. Development of seal ring carbon-graphite materials (tasks 8, 9, and 10)

    NASA Technical Reports Server (NTRS)

    Fechter, N. J.; Petrunich, P. S.

    1973-01-01

    A screening study was conducted to develop improved carbon-graphite materials for use in self-acting seals at air temperatures to 1300 F (704 C). Property measurements on materials prepared during this study have shown that: (1) The mechanical properties of a carbon-graphite material were significantly improved by using a fine milled artificial graphite filler material and including intensive mixing, warm molding, and pitch impregnation in the processing; and (2) the oxidation resistance of a carbon-graphite material was improved by including fine milled boron carbide as an oxidation-inhibiting additive. These techniques were employed to develop a material that has 10 times more oxidation resistance than that of a widely used commercial grade and mechanical properties that approach those of the commercial grade.

  20. Les campagnes communautaires de promotion du depistage VIH en Afrique de l’Ouest : perceptions des usagers au Burkina Faso

    PubMed Central

    Desclaux, Alice; Ky-Zerbo, Odette; Somé, Jean-François; Makhlouf-Obermeyer, Carla

    2014-01-01

    Résumé La politique actuelle de lutte contre le sida qui repose sur l’extension de l’accès aux traitements et à la prévention exige qu’une proportion élevée de la population connaisse son statut en matière de VIH. Pour cela, l’OMS a proposé le développement de stratégies communautaires délivrant le dépistage et le conseil au-delà des services de soins, comme le test à domicile ou les campagnes de sensibilisation et dépistage de grande envergure, appliqués en Afrique australe et de l’Est. Pour définir les stratégies pertinentes dans des régions de basse prévalence comme l’Afrique de l’Ouest, les expériences communautaires de promotion du dépistage doivent y être évaluées. Cet article présente une évaluation des campagnes au Burkina Faso du point de vue des usagers. Dans le cadre d’un projet sur les pratiques et l’éthique du dépistage dans quatre pays africains (MATCH), une enquête qualitative spécifique a été menée pendant la campagne de 2008, auprès de personnes ayant fait le test pendant la campagne, ayant fait le test hors campagne ou n’ayant pas fait le test. Les appréciations sont globalement très favorables aux campagnes, notamment à cause de l’information dispensée, l’accessibilité des sites, la gratuité du test, la qualité des services et l’effet d’entrainement. Les limites ou critiques sont essentiellement liées à l’affluence ou à la crainte de ne pas être soutenu en cas de résultat positif. La démarche de recours au test ne fait plus l’objet de suspicion, au moins pendant la campagne. Cette « normalisation » du recours au test et la mobilisation collective facilitent des pratiques en groupe, ce qui peut rendre difficile de garder son statut VIH secret. L’évaluation des campagnes par les usagers les présente comme une opportunité pour accéder facilement au test et pour communiquer à ce sujet dans divers espaces sociaux à partir des informations délivrées sur le VIH

  1. Eddy current inspection of graphite fiber components

    NASA Technical Reports Server (NTRS)

    Workman, G. L.; Bryson, C. C.

    1990-01-01

    The recognition of defects in materials properties still presents a number of problems for nondestructive testing in aerospace systems. This project attempts to utilize current capabilities in eddy current instrumentation, artificial intelligence, and robotics in order to provide insight into defining geometrical aspects of flaws in composite materials which are capable of being evaluated using eddy current inspection techniques. The unique capabilities of E-probes and horseshoe probes for inspecting probes for inspecting graphite fiber materials were evaluated and appear to hold great promise once the technology development matures. The initial results are described of modeling eddy current interactions with certain flaws in graphite fiber samples.

  2. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwilliams, A. J.

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniquesmore » through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.« less

  3. Significance of Graphitic Surfaces in Aurodicyanide Adsorption by Activated Carbon: Experimental and Computational Approach

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Dhiman; Depci, Tolga; Prisbrey, Keith; Miller, Jan D.

    Despite tremendous developments in industrial use of activated carbon (AC) for gold adsorption, specific aurodicyanide [Au(CN)2-] adsorption sites on the carbon have intrigued researchers. The graphitic structure of AC has been well established. Previously radiochemical and now, XPS and Raman characterizations have demonstrated higher site-specific gold adsorption on graphitic edges. Morphological characterizations have revealed the presence of slit-pores (5-10 Å). Molecular-dynamics-simulation (MDS) performed on graphitic slit-pores illustrated gold-cyanide ion-pair preferentially adsorbs on edges. Ab-initio simulations predicted lower barrier for electron sharing in pores with aurodic yanide, indicating tighter bonding than graphitic surface and was well supported by Gibbs energy calculations too. Interaction energy as function of the separation distance indicated tighter bonding of gold cyanide to the graphite edges than water molecules. Selective adsorption of aurodicyanide ion-pair seems to be related to low polarity of gold complex and its accommodation at graphitic edges.

  4. Investigations on Mechanical Behaviour of Micro Graphite Particulates Reinforced Al-7Si Alloy Composites

    NASA Astrophysics Data System (ADS)

    Nagaraj, N.; Mahendra, K. V.; Nagaral, Madeva

    2018-02-01

    Micro particulates reinforced metal matrix composites are finding wide range of applications in automotive and sports equipment manufacturing industries. In the present study, an attempt has been made to develop Al-7Si-micro graphite particulates reinforced composites by using liquid melt method. 3 and 6 wt. % of micro graphite particulates were added to the Al-7Si base matrix. Microstructural characterization was done by using scanning electron microscope and energy dispersive spectroscope. Mechanical behaviour of Al-7Si-3 and 6 wt. % composites were evaluated as per ASTM standards. Scanning electron micrographs revealed the uniform distribution of micro graphite particulates in the Al-7Si alloy matrix. EDS analysis confirmed the presence of B and C elements in graphite reinforced composites. Further, it was noted that ultimate tensile and yield strength of Al-7Si alloy increased with the addition of 3 and 6wt. % of graphite particulates. Hardness of graphite reinforced composites was lesser than the base matrix.

  5. Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms

    PubMed Central

    Anderson, Pamela G.; Rouze, Ned C.; Palmeri, Mark L.

    2011-01-01

    Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms. PMID:21710828

  6. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turneaure, Stefan J.; Sharma, Surinder M.; Volz, Travis J.

    2017-10-01

    The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HDmore » plane parallel to the graphite basal plane.« less

  7. Formulation and Characterization of Epoxy Resin Copolymer for Graphite Composites

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1983-01-01

    Maximum char yield was obtained with a copolymer containing 25% mol fraction DGEBE and 75% mol fraction DGEBA (Epon 828). To achieve the high values (above 40%), a large quantity of catalyst (trimethoxyboroxine) was necessary. Although a graphite laminate 1/8" thick was successfully fabricated, the limited life of the catalyzed epoxy copolymer system precludes commercial application. Char yields of 45% can be achieved with phenolic cured epoxy systems as indicated by data generated under NAS2-10207 contract. A graphite laminate using this type of resin system was fabricated for comparison purposes. The resultant laminate was easier to process and because the graphite prepreg is more stable, the fabrication process could readily be adapted to commercial applications.

  8. On the defect structure due to low energy ion bombardment of graphite

    NASA Astrophysics Data System (ADS)

    Marton, D.; Bu, H.; Boyd, K. J.; Todorov, S. S.; Al-Bayati, A. H.; Rabalais, J. W.

    1995-03-01

    Graphite surfaces cleaved perpendicular to the c axis have been irradiated with low doses of Ar + ions at 50 eV kinetic energy and perpendicular incidence. Scanning tunneling micrographs (STM) of these irradiated surfaces exhibited dome-like features as well as point defects. These dome-like features retain undisturbed graphite periodicity. This finding is attributed to the stopping of ions between the first and second graphite sheets. The possibility of doping semiconductors at extremely shallow depths is raised.

  9. Highly Conducting Graphite Epoxy Composite Demonstrated

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    1999-01-01

    Weight savings as high as 80 percent could be achieved if graphite polymer composites could replace aluminum in structures such as electromagnetic interference shielding covers and grounding planes. This could result in significant cost savings, especially for the mobile electronics found in spacecraft, aircraft, automobiles, and hand-held consumer electronics. However, such composites had not yet been fabricated with conductivity sufficient to enable these applications. To address this lack, a partnership of the NASA Lewis Research Center, Manchester College, and Applied Sciences, Inc., fabricated nonmetallic composites with unprecedented electrical conductivity. For these composites, heat-treated, vapor-grown graphite fibers were selected which have a resistivity of about 80 mW-cm, more than 20 times more conductive than typical carbon fibers. These fibers were then intercalated with iodine bromide (IBr). Intercalation is the insertion of guest atoms or molecules between the carbon planes of the graphite fibers. Since the carbon planes are not highly distorted in the process, intercalation has little effect on mechanical and thermal properties. Intercalation does, however, lower the carbon fiber resistivity to less than 10 mW-cm, which is comparable to that of metal fibers. Scaleup of the reaction was required since the initial intercalation experiments would be carried out on 20-mg quantities of fibers, and tens of grams of intercalated fibers would be needed to fabricate even small demonstration composites. The reaction was first optimized through a time and temperature study that yielded fibers with a resistivity of 8.7 2 mW-cm when exposed to IBr vapor at 114 C for 24 hours. Stability studies indicated that the intercalated fibers rapidly lost their conductivity when exposed to temperatures as low as 40 C in air. They were not, however, susceptible to degradation by water vapor in the manner of most graphite intercalation compounds. The 1000-fold scaleup

  10. Analyses of Failure Mechanisms in Woven Graphite/Polyimide Composites with Medium and High Modulus Graphite Fibers Subjected to In-Plane Shear

    NASA Technical Reports Server (NTRS)

    Kumosa, M.; Armentrout, D.; Rupnowski, P.; Kumosa, L.; Shin, E.; Sutter, J. K.

    2003-01-01

    The application of the Iosipescu shear test for the room and high temperature failure analyses of the woven graphite/polyimide composites with the medium (T-650) and igh (M40J and M60J) modulus graphite fibers is discussed. The M40J/PMR-II-50 and M60J/PMR-II-50 composites were tested as supplied and after thermal conditioning. The effect of temperature and conditioning on the initiation of intralaminar damage and the shear strength of the composites was established.

  11. Reliability Assessment of Graphite Specimens under Multiaxial Stresses

    NASA Technical Reports Server (NTRS)

    Sookdeo, Steven; Nemeth, Noel N.; Bratton, Robert L.

    2008-01-01

    An investigation was conducted to predict the failure strength response of IG-100 nuclear grade graphite exposed to multiaxial stresses. As part of this effort, a review of failure criteria accounting for the stochastic strength response is provided. The experimental work was performed in the early 1990s at the Oak Ridge National Laboratory (ORNL) on hollow graphite tubes under the action of axial tensile loading and internal pressurization. As part of the investigation, finite-element analysis (FEA) was performed and compared with results of FEA from the original ORNL report. The new analysis generally compared well with the original analysis, although some discrepancies in the location of peak stresses was noted. The Ceramics Analysis and Reliability Evaluation of Structures Life prediction code (CARES/Life) was used with the FEA results to predict the quadrants I (tensile-tensile) and quadrant IV (compression-tension) strength response of the graphite tubes for the principle of independent action (PIA), the Weibull normal stress averaging (NSA), and the Batdorf multiaxial failure theories. The CARES/Life reliability analysis showed that all three failure theories gave similar results in quadrant I but that in quadrant IV, the PIA and Weibull normal stress-averaging theories were not conservative, whereas the Batdorf theory was able to correlate well with experimental results. The conclusion of the study was that the Batdorf theory should generally be used to predict the reliability response of graphite and brittle materials in multiaxial loading situations.

  12. Graphite intercalation compound with iodine as the major intercalate

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh; Kucera, Donald

    1994-01-01

    Halogenated graphite CBr(x)I(y) (I less than y/x less than 10) was made by exposing graphite materials to either pure Br2 or an I2/Br2/HBr mixture to initiate the reaction, and then to iodine vapor containing a small amount of Br2/HBr/IBr to complete the intercalation reaction. Wetting of the graphite materials by the I2/Br2/HBr mixture is needed to start the reaction, and a small amount of Br2/HBr/IBr is needed to complete the charge transfer between iodine and carbon. The interplanar spacings for the graphite materials need to be in the 3.35 to 3.41 A range. The X-ray diffraction data obtained from the halogenated HOPG indicate that the distance between the two carbon layers containing intercalate is 7.25 A. Electrical resistivity of the fiber product is from 3 to 6.5 times the pristine value, The presence of a small amount of isoprene rubber in the reaction significantly increased the iodine-to-bromine ratio in the product. In this reaction, rubber is known to generate HBr and to slowly remove bromine from the vapor. The halogenation generally caused a 22 percent to 25 percent weight increase. The halogens were found uniformly distributed in the product interior. However, although the surface contains very little iodine, it has high concentrations of bromine and oxygen. It is believed that the high concentrations of bromine and oxygen in this surface cause the halogenated fiber to be more resistant to structural damage during subsequent fluorination to fabricate graphite fluoride fibers.

  13. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  14. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    PubMed Central

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; Pan, Chun-Jern; Chou, Hung-Lung; Chen, Hsin-An; Gong, Ming; Wu, Yingpeng; Yuan, Chunze; Angell, Michael; Hsieh, Yu-Ju; Chen, Yu-Hsun; Wen, Cheng-Yen; Chen, Chun-Wei; Hwang, Bing-Joe; Chen, Chia-Chun; Dai, Hongjie

    2017-01-01

    Recently, interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. Here, an aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of ∼110 mAh g−1 with Coulombic efficiency ∼98%, at a current density of 99 mA g−1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60 mAh g−1 at 6 C, over 6,000 cycles with Coulombic efficiency ∼ 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Finally, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode. PMID:28194027

  15. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang

    There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less

  16. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode

    DOE PAGES

    Wang, Di-Yan; Wei, Chuan-Yu; Lin, Meng-Chang; ...

    2017-02-13

    There has been some interest in aluminium ion batteries with aluminium anodes, graphite cathodes and ionic liquid electrolytes has increased; however, much remains to be done to increase the cathode capacity and to understand details of the anion–graphite intercalation mechanism. An aluminium ion battery cell made using pristine natural graphite flakes achieves a specific capacity of B110 mAhg -1 with Coulombic efficiency B98%, at a current density of 99mAg -1 (0.9 C) with clear discharge voltage plateaus (2.25–2.0 V and 1.9–1.5 V). The cell has a capacity of 60mAhg -1 at 6 C, over 6,000 cycles with Coulombic efficiency Bmore » 99%. Raman spectroscopy shows two different intercalation processes involving chloroaluminate anions at the two discharging plateaus, while C–Cl bonding on the surface, or edges of natural graphite, is found using X-ray absorption spectroscopy. Lastly, theoretical calculations are employed to investigate the intercalation behaviour of choloraluminate anions in the graphite electrode.« less

  17. Development of a portable graphite calorimeter for radiation dosimetry.

    PubMed

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi

    2008-01-01

    We developed and performance-tested a portable graphite calorimeter designed to measure the absolute dosimetry of various beams including heavy-ion beams, based on a flexible and convenient means of measurement. This measurement system is fully remote-controlled by the GPIB system. This system uses a digital PID (Proportional, Integral, Derivative) control method based on the LabVIEW software. It was possible to attain stable conditions in a shorter time by this system. The standard deviation of the measurements using the calorimeter was 0.79% at a dose rate of 0.8 Gy/min in 17 calorimeter runs for a (60)Co photon beam. The overall uncertainties for the absorbed dose to graphite and water of the (60)Co photon beam using the developed calorimeter were 0.89% and 1.35%, respectively. Estimations of the correction factors due to vacuum gaps, impurities in the core, the dose gradient and the radiation profile were included in the uncertainties. The absorbed doses to graphite and water irradiated by the (60)Co photon beam were compared with dosimetry measurements obtained using three ionization chambers. The absorbed doses to graphite and water estimated by the two dosimetry methods agreed within 0.1% and 0.3%, respectively.

  18. Neutron transmission measurements of poly and pyrolytic graphite crystals

    NASA Astrophysics Data System (ADS)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  19. Quality control developments for graphite/PMR15 polyimide composites materials

    NASA Technical Reports Server (NTRS)

    Sheppard, C. H.; Hoggatt, J. T.

    1979-01-01

    The problem of lot-to-lot and within-lot variability of graphite/PMR-15 prepreg was investigated. The PMR-15 chemical characterization data were evaluated along with the processing conditions controlling the manufacture of PMR-15 resin and monomers. Manufacturing procedures were selected to yield a consistently reproducible graphite prepreg that could be processed into acceptable structural elements.

  20. Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

    PubMed

    Patel, Anisha N; McKelvey, Kim; Unwin, Patrick R

    2012-12-19

    Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

  1. Symetrie en energie des spectres de l'onde de densite de charge dans le 2-hydrogene seleniure de niobium

    NASA Astrophysics Data System (ADS)

    Behmand, Behnaz

    Les mecanismes qui menent a la supraconductivite dans les supraconducteurs a haute temperature critique sont encore aujourd'hui mal compris contrairement a ceux dans les supraconducteurs conventionnels. Dans les hauts-Tc, certaines modulations de la densite d'etats electroniques coexistant avec la phase supraconductrice ont ete observees, ce qui engendre des questionnements sur leur role dans la supraconductivite. En fait, plusieurs types de modulation de la densite d'etats electroniques existent, comme par exemple l'onde de densite de charge et l'onde de densite de paires. Ces deux modulations, d'origines differentes et mesurables avec la technique de spectroscopie par effet tunnel, peuvent etre differenciees avec une etude de leur symetrie. Ce memoire consistera donc a presenter l'etude de la symetrie de l'onde de densite de charge dans le 2H-NbSe2 qui est presente dans la phase supraconductrice a 300 mK. Par contre, certaines difficultes liees au principe de mesure, soit l'effet de normalisation, nuisent a l'identification de cette symetrie. La methode, pour contourner ce probleme sera alors l'element clef de ce travail.

  2. Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Hidayah, N. M. S.; Liu, Wei-Wen; Lai, Chin-Wei; Noriman, N. Z.; Khe, Cheng-Seong; Hashim, U.; Lee, H. Cheun

    2017-10-01

    Graphene oxide (GO) and reduced graphene oxide (RGO) are known to have superior properties for various applications. This work compares the properties of GO and RGO with graphite. GO was prepared by using Improved Hummer's method whereas the produced GO was subjected to chemical reduction with the use of hydrazine hydrate. Graphite, GO and RGO had different morphologies, quality, functionalized groups, UV-Vis absorption peaks and crystallinity. With the removal of oxygen-containing functional group during reduction for RGO, the quality of samples was decreased due to higher intensity of D band than G band was seen in Raman results. In addition, platelet-like surface can be observed on the surface of graphite as compared to GO and RGO where wrinkled and layered flakes, and crumpled thin sheets were observed on GO and RGO surface respectively. Fourier Transform Infra-Red (FTIR) analysis showed the presence of abundant oxygen-containing functional groups in GO as compared to RGO and graphite. The characteristic peaks at 26.62°, 9.03° and 24.10° for graphite, GO and RGO, respectively, can be detected from X-Ray diffraction (XRD). Furthermore, the reduction also caused red shift at 279nm from 238nm, as obtained from ultraviolet visible (UV-Vis) analysis. The results proved that GO was successfully oxidized from graphite whereas RGO was effectively reduced from GO.

  3. Ionic Graphitization of Ultrathin Films of Ionic Compounds.

    PubMed

    Kvashnin, A G; Pashkin, E Y; Yakobson, B I; Sorokin, P B

    2016-07-21

    On the basis of ab initio density functional calculations, we performed a comprehensive investigation of the general graphitization tendency in rocksalt-type structures. In this paper, we determine the critical slab thickness for a range of ionic cubic crystal systems, below which a spontaneous conversion from a cubic to a layered graphitic-like structure occurs. This conversion is driven by surface energy reduction. Using only fundamental parameters of the compounds such as the Allen electronegativity and ionic radius of the metal atom, we also develop an analytical relation to estimate the critical number of layers.

  4. Graphite fiber reinforced structure for supporting machine tools

    DOEpatents

    Knight, Jr., Charles E.; Kovach, Louis; Hurst, John S.

    1978-01-01

    Machine tools utilized in precision machine operations require tool support structures which exhibit minimal deflection, thermal expansion and vibration characteristics. The tool support structure of the present invention is a graphite fiber reinforced composite in which layers of the graphite fibers or yarn are disposed in a 0/90.degree. pattern and bonded together with an epoxy resin. The finished composite possesses a low coefficient of thermal expansion and a substantially greater elastic modulus, stiffness-to-weight ratio, and damping factor than a conventional steel tool support utilized in similar machining operations.

  5. A contrastive study of three graphite anodes in the piperidinium based electrolytes for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Xiao-Tao; Wang, Chen-Yi; Gao, Kun, E-mail: gaokun0451@163.com

    Graphical abstract: The fitting results of R{sub sei} and R{sub ct} of three graphite/Li cells. Besides three graphite/Li cells show the similar R{sub sei}, the NG198/Li cell demonstrates a higher R{sub ct} value in all test temperatures. Especially, the R{sub ct} at 333 K is even up to 355.8 Ω cm{sup 2}. Obviously, the narrow distribution of edge plane for NG198 caused this result, and then greatly restricts its cell capacity. By contrast, CMB with bigger specific surface area and more Li{sup +} insertion points shows lower resistance at room temperature, which should help to improve its capacity. - Highlights:more » • SEI film is closely related to graphite structures and formation temperature. • The graphite with bigger surface area and more Li{sup +} insertion points behaves better. • The graphite with narrow edge plane is uncompetitive for ionic liquid electrolyte. - Abstract: The electrochemical behaviors of natural graphite (NG198), artificial graphite (AG360) and carbon microbeads (CMB) in an ionic liquid based electrolyte are investigated by cyclic voltammetry (CV). The surface and structure of three graphite materials are characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) before and after cycling. It is found that solid electrolyte interface (SEI) is closely related to graphite structure. Benefiting from larger specific surface area and more dispersed Li{sup +} insertion points, CMB shows a better Li{sup +} insertion/de-insertion behavior than NG198 and AG360. Furthermore, electrochemical impedance spectra (EIS) prove that the SEI of different graphite electrodes has different intrinsic resistance and Li{sup +} penetrability. By comparison, CMB behaves better cell performances than AG360, while the narrow edge plane makes NG198 uncompetitive as a potential anode for the ionic liquids (ILs)-type Li-ion battery.« less

  6. La Vie Politique sous la Restauration a Travers ’Le Rouge et le Noir’ de Stendahl (The Political Life during the Restauration as Depicted in Le Rouge et le Noir by Stendahl)

    DTIC Science & Technology

    1989-01-01

    de la classe dirigeante est le clerg6. M. le vicaire de Frilair est le bras droit de l ’&veque dle Besangon et...sympathique effort de recherche ;la documentation contribue bien A 6clairer lanalyse. INTERPRETATION: L 𔄀tude des aspects de la vie politique sous la...References Ouvrages consultes AXccesion For NTIS CRA&I DTIC TA9 El Unanno ’-,’ 1 : By 442.-. - L -- A, _ojes Aof -d/or * A- Dans l’L*tude des

  7. Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites

    NASA Astrophysics Data System (ADS)

    Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.

    2013-01-01

    Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.

  8. Graphite/Cyanate Ester Face Sheets for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bennett, Harold; Shaffer, Joseph; Romeo, Robert

    2008-01-01

    It has been proposed that thin face sheets of wide-aperture deformable mirrors in adaptive-optics systems be made from a composite material consisting of cyanate ester filled with graphite. This composite material appears to offer an attractive alternative to low-thermal-expansion glasses that are used in some conventional optics and have been considered for adaptive-optics face sheets. Adaptive-optics face sheets are required to have maximum linear dimensions of the order of meters or even tens of meters for some astronomical applications. If the face sheets were to be made from low-thermal-expansion glasses, then they would also be required to have thicknesses of the order of a millimeter so as to obtain the optimum compromise between the stiffness needed for support and the flexibility needed to enable deformation to controlled shapes by use of actuators. It is difficult to make large glass sheets having thicknesses less than 3 mm, and 3-mm-thick glass sheets are too stiff to be deformable to the shapes typically required for correction of wavefronts of light that has traversed the terrestrial atmosphere. Moreover, the primary commercially produced candidate low-thermal-expansion glass is easily fractured when in the form of thin face sheets. Graphite-filled cyanate ester has relevant properties similar to those of the low-expansion glasses. These properties include a coefficient of thermal expansion (CTE) of the order of a hundredth of the CTEs of other typical mirror materials. The Young s modulus (which quantifies stiffness in tension and compression) of graphite-filled cyanate ester is also similar to the Young's moduli of low-thermal-expansion glasses. However, the fracture toughness of graphite-filled cyanate ester is much greater than that of the primary candidate low-thermal-expansion glass. Therefore, graphite-filled cyanate ester could be made into nearly unbreakable face sheets, having maximum linear dimensions greater than a meter and thicknesses of

  9. Mineralogical and isotopic characterization of graphite deposits from the Anatectic Complex of Toledo, central Spain

    NASA Astrophysics Data System (ADS)

    Martín-Méndez, Iván; Boixereu, Ester; Villaseca, Carlos

    2016-06-01

    Graphite is found dispersed in high-grade metapelitic rocks of the Anatectic Complex of Toledo (ACT) and was mined during the mid twentieth century in places where it has been concentrated (Guadamur and la Puebla de Montalbán mines). Some samples from these mines show variable but significant alteration intensity, reaching very low-T hydrothermal (supergene) conditions for some samples from the waste heap of the Guadamur site (<100 °C and 1 kbar). Micro-Raman and XRD data indicate that all the studied ACT graphite is of high crystallinity irrespective of the degree of hydrothermal alteration. Chemical differences were obtained for graphite δ13C composition. ACT granulitic graphite shows δ13CPDB values in the range of -20.5 to -27.8 ‰, indicating a biogenic origin. Interaction of graphite with hydrothermal fluids does not modify isotopic compositions even in the most transformed samples from mining sites. The different isotopic signatures of graphite from the mining sites reflect its contrasted primary carbon source. The high crystallinity of studied graphite makes this area of central Spain suitable for graphitic exploration and its potential exploitation, due to the low carbon content required for its viability and its strategic applications in advanced technologies, such as graphene synthesis.

  10. Modelisation par elements finis du muscle strie

    NASA Astrophysics Data System (ADS)

    Leonard, Mathieu

    Ce present projet de recherche a permis. de creer un modele par elements finis du muscle strie humain dans le but d'etudier les mecanismes engendrant les lesions musculaires traumatiques. Ce modele constitue une plate-forme numerique capable de discerner l'influence des proprietes mecaniques des fascias et de la cellule musculaire sur le comportement dynamique du muscle lors d'une contraction excentrique, notamment le module de Young et le module de cisaillement de la couche de tissu conjonctif, l'orientation des fibres de collagene de cette membrane et le coefficient de poisson du muscle. La caracterisation experimentale in vitro de ces parametres pour des vitesses de deformation elevees a partir de muscles stries humains actifs est essentielle pour l'etude de lesions musculaires traumatiques. Le modele numerique developpe est capable de modeliser la contraction musculaire comme une transition de phase de la cellule musculaire par un changement de raideur et de volume a l'aide des lois de comportement de materiau predefinies dans le logiciel LS-DYNA (v971, Livermore Software Technology Corporation, Livermore, CA, USA). Le present projet de recherche introduit donc un phenomene physiologique qui pourrait expliquer des blessures musculaires courantes (crampes, courbatures, claquages, etc.), mais aussi des maladies ou desordres touchant le tissu conjonctif comme les collagenoses et la dystrophie musculaire. La predominance de blessures musculaires lors de contractions excentriques est egalement exposee. Le modele developpe dans ce projet de recherche met ainsi a l'avant-scene le concept de transition de phase ouvrant la porte au developpement de nouvelles technologies pour l'activation musculaire chez les personnes atteintes de paraplegie ou de muscles artificiels compacts pour l'elaboration de protheses ou d'exosquelettes. Mots-cles Muscle strie, lesion musculaire, fascia, contraction excentrique, modele par elements finis, transition de phase

  11. Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries.

    PubMed

    Li, Jia; Wang, Guangxu; Xu, Zhenming

    2016-01-25

    The definite aim of the present paper is to present some novel methods that use oxygen-free roasting and wet magnetic separation to in situ recycle of cobalt, Lithium Carbonate and Graphite from mixed electrode materials. The in situ recycling means to change waste into resources by its own components, which is an idea of "waste+waste→resources." After mechanical scraping the mixed electrode materials enrich powders of LiCoO2 and graphite. The possible reaction between LiCoO2 and graphite was obtained by thermodynamic analysis. The feasibility of the reaction at high temperature was studied with the simultaneous thermogravimetry analysis under standard atmospheric pressure. Then the oxygen-free roasting/wet magnetic separation method was used to transfer the low added value mixed electrode materials to high added value products. The results indicated that, through the serious technologies of oxygen-free roasting and wet magnetic separation, mixture materials consist with LiCoO2 and graphite powders are transferred to the individual products of cobalt, Lithium Carbonate and Graphite. Because there is not any chemical solution added in the process, the cost of treating secondary pollution can be saved. This study provides a theoretical basis for industrial-scale recycling resources from spent LIBs. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Preparation of Crumpled Graphite Oxide from Recycled Graphite Using Plasma Electrolysis and Its Application for Adsorption of Cadmium in Aqueous Environment

    NASA Astrophysics Data System (ADS)

    Hong, Phan Ngoc; Tuoi, Tran Thi; Ngan, Nguyen Thi Kim; Trang, Bui Thi; Minh, Phan Ngoc; Lam, Tran Dai; Hanh, Nguyen Thi; Van Thanh, Dang

    2016-05-01

    Household battery waste is considered hazardous and needs to be collected, managed, and recycled appropriately. In this study, using a plasma electrolysis method, we recycled graphite electrodes of exhausted dry batteries to prepare crumpled graphite oxide (CGO). Scanning electron microscopy revealed that the CGO possessed spherical morphology with average dimensions of 0.5 μm to 5 μm. The as-prepared CGO was then applied to absorb cadmium in aqueous environment. The results showed that CGO appears to be a promising adsorbent for removal of toxic waste from polluted water.

  13. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films.

    PubMed

    Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M

    2011-07-31

    Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.

  14. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films

    NASA Astrophysics Data System (ADS)

    Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M.

    2011-08-01

    Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.

  15. Enhancing thermal conductivity of fluids with graphite nanoparticles and carbon nanotube

    DOEpatents

    Zhang, Zhiqiang [Lexington, KY; Lockwood, Frances E [Georgetown, KY

    2008-03-25

    A fluid media such as oil or water, and a selected effective amount of carbon nanomaterials necessary to enhance the thermal conductivity of the fluid. One of the preferred carbon nanomaterials is a high thermal conductivity graphite, exceeding that of the neat fluid to be dispersed therein in thermal conductivity, and ground, milled, or naturally prepared with mean particle size less than 500 nm, and preferably less than 200 nm, and most preferably less than 100 nm. The graphite is dispersed in the fluid by one or more of various methods, including ultrasonication, milling, and chemical dispersion. Carbon nanotubes with graphitic structure is another preferred source of carbon nanomaterial, although other carbon nanomaterials are acceptable. To confer long term stability, the use of one or more chemical dispersants is preferred. The thermal conductivity enhancement, compared to the fluid without carbon nanomaterial, is proportional to the amount of carbon nanomaterials (carbon nanotubes and/or graphite) added.

  16. Heat Transfer Performances of Pool Boiling on Metal-Graphite Composite Surfaces

    NASA Technical Reports Server (NTRS)

    Zhang, Nengli; Chao, David F.; Yang, Wen-Jei

    2000-01-01

    Nucleate boiling, especially near the critical heat flux (CHF), can provide excellent economy along with high efficiency of heat transfer. However, the performance of nucleate boiling may deteriorate in a reduced gravity environment and the nucleate boiling usually has a potentially dangerous characteristic in CHF regime. That is, any slight overload can result in burnout of the boiling surface because the heat transfer will suddenly move into the film-boiling regime. Therefore, enhancement of nucleate boiling heat transfer becomes more important in reduced gravity environments. Enhancing nucleate boiling and critical heat flux can be reached using micro-configured metal-graphite composites as the boiling surface. Thermocapillary force induced by temperature difference between the graphite-fiber tips and the metal matrix, which is independent of gravity, will play an important role in bubble detachment. Thus boiling heat transfer performance does not deteriorate in a reduced-gravity environment. Based on the existing experimental data, and a two-tier theoretical model, correlation formulas are derived for nucleate boiling on the copper-graphite and aluminum-graphite composite surfaces, in both the isolated and coalesced bubble regimes. Experimental studies were performed on nucleate pool boiling of pentane on cooper-graphite (Cu-Gr) and aluminum-graphite (Al-Gr) composite surfaces with various fiber volume concentrations for heat fluxes up to 35 W per square centimeter. It is revealed that a significant enhancement in boiling heat transfer performance on the composite surfaces is achieved, due to the presence of micro-graphite fibers embedded in the matrix. The onset of nucleate boiling (the isolated bubble regime) occurs at wall superheat of about 10 C for the Cu-Gr surface and 15 C for the Al-Gr surface, much lower than their respective pure metal surfaces. Transition from an isolated bubble regime to a coalesced bubble regime in boiling occurs at a superheat of

  17. Canadian Forces Training and Mental Preparation for Adversity: Empirical Review of Stoltz ’Adversity Quotient (AQ) Training for Optimal Response to Adversity’, A Review of the AQ Literature and Supporting Studies

    DTIC Science & Technology

    2002-07-01

    canadiennes. Enfin, nous faisons des recommandations aux FC sur la mise en ceuvre duS processus de d6veloppement du QA comme mesure proactive. Un examen...critique des ouvrages lies au QA et A d’autres sujets connexes a montr6 que le concept du QA est fond6 sur un certain nombre de thdories sens~es sur la...rdsilience. Cependant, m~me si le cadre th~orique et le programme de d6veloppement du QA pourraicnt 8tre valides dans un contexte industriel

  18. Development of graphite/copper composites utilizing engineered interfaces. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra M.

    1991-01-01

    In situ measurements of graphite/copper alloy contact angles were made using the sessile drop method. The interfacial energy values obtained from these measurements were then applied to a model for the fiber matrix interfacial debonding phenomenon found in graphite/copper composites. The formation obtained from the sessile drop tests led to the development of a copper alloy that suitably wets graphite. Characterization of graphite/copper alloy interfaces subjected to elevated temperatures was conducted using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Auger Electron Spectroscopy, and X Ray Diffraction analyses. These analyses indicated that during sessile drop tests conducted at 1130 C for 1 hour, copper alloys containing greater than 0.98 at pct chromium form continuous reaction layers of approx. 10 microns in thickness. The reaction layers are adherent to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X ray diffraction results indicate that the reaction layer is Cr3C2.

  19. Roll-to-Roll Laser-Printed Graphene-Graphitic Carbon Electrodes for High-Performance Supercapacitors.

    PubMed

    Kang, Sangmin; Lim, Kyungmi; Park, Hyeokjun; Park, Jong Bo; Park, Seong Chae; Cho, Sung-Pyo; Kang, Kisuk; Hong, Byung Hee

    2018-01-10

    Carbon electrodes including graphene and thin graphite films have been utilized for various energy and sensor applications, where the patterning of electrodes is essentially included. Laser scribing in a DVD writer and inkjet printing were used to pattern the graphene-like materials, but the size and speed of fabrication has been limited for practical applications. In this work, we devise a simple strategy to use conventional laser-printer toner materials as precursors for graphitic carbon electrodes. The toner was laser-printed on metal foils, followed by thermal annealing in hydrogen environment, finally resulting in the patterned thin graphitic carbon or graphene electrodes for supercapacitors. The electrochemical cells made of the graphene-graphitic carbon electrodes show remarkably higher energy and power performance compared to conventional supercapacitors. Furthermore, considering the simplicity and scalability of roll-to-roll (R2R) electrode patterning processes, the proposed method would enable cheaper and larger-scale synthesis and patterning of graphene-graphitic carbon electrodes for various energy applications in the future.

  20. Comprendre l'influence des facteurs contextuels sur la participation communautaire à la santé : une étude de cas dans le district sanitaire de Tenkodogo, au Burkina Faso.

    PubMed

    Sombié, Issa; Ilboudo, David O S; Soubeiga, André Kamba; Samuelsen, Helle

    2017-09-01

    Le Burkina Faso met en œuvre depuis plusieurs années la stratégie de la participation communautaire. Des comités de gestion (CoGes) ont été mis en place dans les centres de santé de la première ligne et doivent participer aux prises de décisions. L'objectif principal de cette stratégie est de favoriser l'utilisation des services de santé et une adhésion massive des communautés aux activités de promotion de la santé. Seulement, on constate que les résultats escomptés par les autorités sanitaires tardent à se réaliser. Le présent article convoque les facteurs liés au contexte socioculturel du district sanitaire, pour analyser le phénomène de la participation communautaire. L'étude s'est déroulée dans le district sanitaire de Tenkodogo, situé dans la région administrative du Centre-est, à environ 190 km de la capitale. Cette étude exclusivement qualitative, a utilisé deux méthodes de collecte : les entretiens individuels et les focus groups. Les participants à l'étude sont les chefs de ménage ( n = 48), les membres des CoGes ( n = 10), les agents de santé ( n = 8) et les agents de santé communautaire ( n = 24). La méthode de l'analyse de contenu a été utilisée pour l'analyse des données. Les résultats de l'étude montrent que plusieurs facteurs socioculturels influencent la dynamique de la participation communautaire dans le district. Ce sont les conditions économiques, la perception négative des services de santé, les inégalités sociales de sexe et d'âge, le faible ancrage social des organisations communautaires, les rivalités inter-villages et les conflits coutumiers. L'étude relève également que les communautés ne perçoivent pas leur implication dans le processus décisionnel des services de santé comme une priorité. Leurs principales attentes s'orientent vers la disponibilité de soins de qualité et à coût réduit.