40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...
Bacterial leaching of waste uranium materials.
Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L
1976-01-01
The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.
Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.
Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan
2011-04-01
A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface. Copyright © 2011 Elsevier Ltd. All rights reserved.
Carvalho, Fernando P; Oliveira, João M; Faria, Isabel
2009-11-01
Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.
Code of Federal Regulations, 2013 CFR
2013-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-23
... project employing open pit and underground mining methods and using heap leach methods for uranium...] Notice of Intent To Prepare an Environmental Impact Statement for the Sheep Mountain Uranium Project... comments regarding issues and resource information for the proposed Sheep Mountain Uranium Project (the...
Mkandawire, Martin; Taubert, Barbara; Dudel, E Gert
2004-01-01
The potential of Lemna gibba L. to clean uranium and arsenic contamination from mine surface waters was investigated in wetlands of two former uranium mines in eastern Germany and in laboratory hydroponic culture. Water and plants were sampled and L gibba growth and yield were monitored in tailing ponds from the field study sites. Contaminant accumulation, growth and yield experiments were conducted in the laboratory using synthetic tailing water. Mean background concentrations of the surface waters were 186.0+/-81.2 microg l(-1) uranium and 47.0+/-21.3 microg l(-1) arsenic in Site one and 293.7+/-121.3 microg l(-1) uranium and 41.37+/-24.7 microg l(-1) arsenic in Site two. The initial concentration of both uranium and arsenic in the culture solutions was 100 microg l(-1). The plant samples were either not leached, leached with deionized H2O or ethylenediaminetetracetic (EDTA). The results revealed high bioaccumulation coefficients for both uranium and arsenic. Uranium and arsenic content of L gibba dry biomass of the field samples were as follows: nonleached samples > deionized H2O leached (insignificant ANOVA p = 0.05) > EDTA leached. The difference in both arsenic and uranium enrichment were significantly high between the nonleached and the other two lead samples tested at ANOVA p > 0.001. Estimated mean L gibba density in surface water was 85,344.8+/-1843.4 fronds m(-2) (approximately 1319.7 g m(-2)). The maximum specific growth rate was 0.47+/-0.2 d(-1), which exceeded reported specific growth rates for L gibba in the literature. Average yield was estimated at 20.2+/-6.7 g m(-2) d(-1), giving approximately 73.6+/-21.4 t ha(-1) y(-1) as the annual yield. The highest accumulations observed were 896.9+/-203.8 mg kg(-1) uranium and 1021.7+/-250.8 mg kg(-1) arsenic dry biomass for a 21-d test period in the laboratory steady-state experiments. The potential extractions from surface waters with L gibba L. were estimated to be 662.7 kg uranium ha(-1) yr(-1) and 751.9 kg arsenic ha(-1) yr(-1) under the above conditions.
Factoring uncertainty into restoration modeling of in-situ leach uranium mines
Johnson, Raymond H.; Friedel, Michael J.
2009-01-01
Postmining restoration is one of the greatest concerns for uranium in-situ leach (ISL) mining operations. The ISL-affected aquifer needs to be returned to conditions specified in the mining permit (either premining or other specified conditions). When uranium ISL operations are completed, postmining restoration is usually achieved by injecting reducing agents into the mined zone. The objective of this process is to restore the aquifer to premining conditions by reducing the solubility of uranium and other metals in the ground water. Reactive transport modeling is a potentially useful method for simulating the effectiveness of proposed restoration techniques. While reactive transport models can be useful, they are a simplification of reality that introduces uncertainty through the model conceptualization, parameterization, and calibration processes. For this reason, quantifying the uncertainty in simulated temporal and spatial hydrogeochemistry is important for postremedial risk evaluation of metal concentrations and mobility. Quantifying the range of uncertainty in key predictions (such as uranium concentrations at a specific location) can be achieved using forward Monte Carlo or other inverse modeling techniques (trial-and-error parameter sensitivity, calibration constrained Monte Carlo). These techniques provide simulated values of metal concentrations at specified locations that can be presented as nonlinear uncertainty limits or probability density functions. Decisionmakers can use these results to better evaluate environmental risk as future metal concentrations with a limited range of possibilities, based on a scientific evaluation of uncertainty.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source...
Code of Federal Regulations, 2011 CFR
2011-07-01
... concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent characteristic... provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source subject to...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source...
Code of Federal Regulations, 2010 CFR
2010-07-01
... concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent characteristic... provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source subject to...
Roberts, W.A.; Gude, A.J.
1952-01-01
Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... considered but eliminated from detailed analysis include conventional uranium mining and milling, conventional mining and heap leach processing, alternative site location, alternate lixiviants, and alternate...'s Agencywide Document Access and Management System (ADAMS), which provides text and image files of...
Groundwater Restoration at Uranium In-Situ Recovery Mines, South Texas Coastal Plain
Hall, Susan
2009-01-01
This talk was presented by U.S. Geological Survey (USGS) geologist Susan Hall on May 11, 2009, at the Uranium 2009 conference in Keystone, Colorado, and on May 12, 2009, as part of an underground injection control track presentation at the Texas Commission on Environmental Quality (TCEQ) Environmental Trade Fair and Conference in Austin, Texas. Texas has been the location of the greatest number of uranium in-situ recovery (ISR) mines in the United States and was the incubator for the development of alkaline leach technology in this country. For that reason, the author chose to focus on the effectiveness of restoration at ISR mines by examining legacy mines developed in Texas. The best source for accurate information about restoration at Texas ISR mines is housed at the TCEQ offices in Austin. The bulk of this research is an analysis of those records.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... (ADAMS), which provides text and image files of the NRC's public documents in the NRC Library at http... considered, but eliminated from detailed analysis, include conventional uranium mining and milling, conventional mining and heap leach processing, alternate lixiviants, and alternative wastewater disposal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...
Code of Federal Regulations, 2011 CFR
2011-01-01
... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...
Code of Federal Regulations, 2010 CFR
2010-01-01
... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...
Code of Federal Regulations, 2013 CFR
2013-01-01
... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...
Code of Federal Regulations, 2014 CFR
2014-01-01
... location of a uranium or thorium mine or concentration plant (e.g., in-situ leach mines and activities... holders: (1) A facility, as defined in § 75.4, and the site of the facility; (2) A location performing nuclear fuel cycle-related research and development, as defined in § 75.4; (3) A location manufacturing...
Remediation of uranium in-situ leaching area at Straz Pod Ralskem, Czech Republic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vokal, Vojtech; Muzak, Jiri; Ekert, Vladimir
2013-07-01
A large-scale development in exploration and production of uranium ores in the Czech Republic was done in the 2nd half of the 20. century. Many uranium deposits were discovered in the territory of the Czech Republic. One of the most considerable deposits in the Czech Republic is the site Hamr na Jezere - Straz pod Ralskem where both mining methods - the underground mining and the acidic in-situ leaching - were used. The extensive production of uranium led to widespread environmental impacts and contamination of ground waters. Over the period of 'chemical' leaching of uranium (ca. 32 years), a totalmore » of more than 4 million tons of sulphuric acid and other chemicals have been injected into the ground. Most of the products (approx. 99.5 %) of the acids reactions with the rocks are located in the Cenomanian aquifer. The contamination of Cenomanian aquifer covers the area larger then 27 km{sup 2}. The influenced volume of groundwater is more than 380 million m{sup 3}. The total amount of dissolved SO{sub 4}{sup 2-} is about 3.6 million tons. After 1990 a large-scale environmental program was established and the Czech government decided to liquidate the ISL Mine and start the remediation in 1996. The remediation consists of contaminated groundwater pumping, removing of the contaminants and discharging or reinjection of treated water. Nowadays four main remedial technological installations with sufficient capacity for reaching of the target values of remedial parameters in 2037 are used - the 'Station for Acid Solutions Liquidation No. One', the 'Mother liquor reprocessing' station, the 'Neutralization and Decontamination Station NDS 6' and the 'Neutralization and Decontamination Station NDS 10'. It is expected that the amount of withdrawn contaminants will vary from 80 000 to 120 000 tons per year. Total costs of all remediation activities are expected to be in excess of 2 billion EUR. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.
2007-07-01
Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater ismore » tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)« less
Geology of the Midnite uranium mine area, Washington: maps, description, and interpretation
Nash, J. Thomas
1977-01-01
Bedrock geology of about 12 km2 near the Midnite mine has been mapped at the surface, in mine exposures, and from drilling, at scales from 1:600 to 1:12,000 and is presented here at 1:12,000 to provide description of the setting of uranium deposits. Oldest rocks in the area are metapelitic and metacarbonate rocks of the Precambrian (Y) Togo Formation. The chief host for uranium deposits is graphitic and pyritic mica phyllite and muscovite schist. Ore also occurs in calc-silicate hornfels and marble at the western edge of a calcareous section about 1,150 m thick. Calcareous rocks of the Togo are probably older than the pelitic as they are interpreted to be near the axis of a broad anticline. The composition and structural position of the calcareous unit suggests correlation with less metamorphosed carbonate-bearing rocks of the Lower Wallace Formation, Belt Supergroup, about 200 km to the east. Basic sills intrusive into the Togo have been metamorphosed to amphibolite. Unmetamorphosed rocks in the mine area are Cretaceous(?) and Eocene igneous rocks. Porphyritic quartz monzonite of Cretaceous age, part of the Loon Lake batholith, is exposed over one third of the mine area. It underlies the roof pendant of Precambrian rocks in which the Midnite mine occurs at depths of generally less than 300 m. The pluton is a two-mica granite and exhibits pegmatitic and aplitic textural features indicative of water saturation and pressure quenching. Eocene intrusive and extrusive rocks in the area provide evidence that the Eocene surface was only a short distance above the present uranium deposits. Speculative hypotheses are presented for penesyngenetic, hydrothermal, and supergene modes of uranium emplacement. The Precambrian Stratigraphy, similar in age and pre-metamorphic lithology to that of rocks hosting large uranium deposits in Saskatchewan and Northern Territory, Australia, suggests the possibility of uranium accumulation along with diagenetic pyrite in carbonaceous muds in a marine shelf environment. This hypothesis is not favored by the author because there is no evidence for stratabound uranium such as high regional radioactivity in the Togo. A hydrothermal mode of uranium emplacement is supported by the close apparent ages of mineralization and plutonism, and by petrology of the pluton. I speculate that uranium may have become enriched in postmagmatic fluids at the top of the pluton, possibly by hydrothermal leaching of soluble uranium associated with magnetite, and diffused outward into metasedimentary wall rocks to create an aureole about 100 m thick containing about 100 ppm uranium. Chemistry of the hydrothermal process is not understood, but uranium does not appear to have been transported by an oxidizing fluid, and the fluid did not produce veining and alteration comparable to that of base-metal sulfide deposits. Uranium in the low-grade protore is believed to have been redistributed into permeable zones in the Tertiary to create ore grades. Geologic and isotopic ages of uranium mineralization, and the small volume of porphyritic quartz monzonite available for leaching, are not supportive of supergene emplacement of uranium.
Pereira, R; Barbosa, S; Carvalho, F P
2014-04-01
The history of uranium mining in Portugal during almost one century has followed international demand peaks of both radium and uranium, which in turn were driven by medical, military, and civil applications. Nowadays, following price drop in the 1980s, mining activities decreased and ceased in 2001. The current challenge is to deal with environmental legacies left by old uranium mines, mainly located in Viseu and Guarda districts. In 2001, based on several radiological surveys carried out, the Portuguese government assumed the remediation costs of abandoned mine areas for environmental safety and public health protection. Detailed environmental and public health risk assessments were performed under the scope of studies both requested by the government and by funded research projects. It was found that the existing risks, due to radiological and chemical exposures to metals and radionuclide's, were particularly high at the old milling facilities and mines where in situ and heap leaching of low-grade ore occurred. The different studies, involving both humans and non-human species from different trophic levels, demonstrated the existence of effects at different levels of biological organization (molecular, cellular, tissues, individuals, and populations) and on ecosystem services. To mitigate the risks, the environmental rehabilitation works at the Urgeiriça mine complex are almost complete, while at Cunha Baixa mine, they are presently in progress. These works and environmental improvements achieved and expected are described herein.
Coral, Thomas; Descostes, Michaël; De Boissezon, Hélène; Bernier-Latmani, Rizlan; de Alencastro, Luiz Felippe; Rossi, Pierre
2018-07-01
A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values < 2) mining areas exhibited similarities to those present in acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for natural attenuation or active bioremediation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.
Risk evaluation of uranium mining: A geochemical inverse modelling approach
NASA Astrophysics Data System (ADS)
Rillard, J.; Zuddas, P.; Scislewski, A.
2011-12-01
It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the reactive mineral surface area. The formation of coatings on dissolving mineral surfaces significantly reduces the amount of surface available to react with fluids. Our results show that negatively charged ion complexes, responsible for U transport, decreases when alkalinity and rock buffer capacity is similarly lower. Carbonate ion pairs however, may increase U mobility when radionuclide concentration is high and rock buffer capacity is low. The present work helps to orient future monitoring of this site in Brazil as well as of other sites where uranium is linked to igneous rock formations, without the presence of sulphides. Monitoring SO4 migration (in acidic leaching uranium sites) seems to be an efficient and simple way to track different hazards, especially in tropical conditions, where the succession of dry and wet periods increases the weathering action of the residual H2SO4. Nevertheless, models of risk evaluation should take into account reactive surface areas and neogenic minerals since they determine the U ion complex formation, which in turn, controls uranium mobility in natural systems. Keywords: uranium mining, reactive mineral surface area, uranium complexes, inverse modelling approach, risk evaluation
NASA Astrophysics Data System (ADS)
Clapp, L. W.; Cabezas, J.; Gamboa, Y.; Fernandez, W.
2011-12-01
State and federal regulations require that groundwater at in-situ recovery (ISR) uranium mining operations be restored to pre-mining conditions. Reverse osmosis (RO) filtration of several pore volumes of the post-leached groundwater and reinjection of the clean permeate is the most common technology currently used for restoring groundwater at uranium ISR sites. However, this approach does not revert the formation back to its initial reducing conditions, which can potentially impede timely groundwater restoration. In-situ biostimulation of indigenous iron- and sulfate reducing bacteria by injection of organic electron donors (e.g., ethanol, acetate, and lactate) to promote soluble uranium reduction and immobilization has been the subject of previous studies. However, injection of organic substrates has been observed to cause aquifer clogging near the injection point. In addition, U(VI) solubility may be enhanced through complexation with carbonate generated by organic carbon oxidation. An alternative approach that may overcome these problems involves the use of hydrogen as a reductant to promote microbial reduction and immobilization of U(VI) in situ. To test this approach, approximately 100,000 scf of compressed hydrogen gas was injected into a leached unconsolidated sand zone over two months at an ISR mining site. During this time groundwater was recirculated between injection and extraction wells (separated by 130 ft) at a rate of about 40 gpm and bromide was coinjected as a conservative tracer. A well monitoring program has been executed since June 2009 to evaluate the performance of the hydrogen injection. Current results show that U(VI) has been reduced from 4.2 to 0.05 ppm in the area surrounding the injection well and to 2.0 ± 0.3 ppm in the area surrounding the extraction well and two intermediate monitoring wells. Other water quality changes near the injection well include significant decreases in concentrations of Mo, sulfate, Fe, Mn, bicarbonate, Ca, and Eh, and increases in pH, methane, and sulfide. No significant rebound of soluble uranium concentrations was observed, but significant rebounds in molybdenum and sulfate have been observed. Ongoing studies are evaluating the effective zone of influence of the hydrogen injection.
Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado
Sims, P.K.; Osterwald, F.W.; Tooker, E.W.
1954-01-01
The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these that deposited pitchblende.
Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.
2010-01-01
During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated SSL. Uranium waste dump sites with elevated leachate and total digestible concentrations may need to be further investigated to determine the most appropriate remediation method.
Johnson, S.Y.; Otton, J.K.; Macke, D.L.
1987-01-01
The N fork of Flodelle Creek drainage basin in NE Washington contains the first surficial U deposit to be mined in the US. The U was leached from granitic bedrock and fixed in organic-rich pond sediments. The distribution of these pond sediments and, therefore, the U has been strongly influenced by relict glacial topography, slope proceses, and beaver activity. Ponds in the drainage basin have been sinks for fine-grained, organic-rich sediments. These organic-rich sediments provide a suitable geochemical environment for precipitation and adsorption of uranium leached from granitic bedrock into ground, spring, and surface waters. Processes of pond formation have thus been important in the development of surficial U deposits in the N fork of Flodelle Creek drainage basin and may have similar significance in other areas.-from Authors
Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.
Brown, Steven H; Chambers, Douglas B
2017-07-01
All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.
Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Jesse D.; Bowden, Mark; Tom Resch, C.
2017-01-01
Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less
Krajkó, Judit; Varga, Zsolt; Wallenius, Maria; Mayer, Klaus; Konings, Rudy
The applicability and limitations of sulphur isotope ratio as a nuclear forensic signature have been studied. The typically applied leaching methods in uranium mining processes were simulated for five uranium ore samples and the n ( 34 S)/ n ( 32 S) ratios were measured. The sulphur isotope ratio variation during uranium ore concentrate (UOC) production was also followed using two real-life sample sets obtained from industrial UOC production facilities. Once the major source of sulphur is revealed, its appropriate application for origin assessment can be established. Our results confirm the previous assumption that process reagents have a significant effect on the n ( 34 S)/ n ( 32 S) ratio, thus the sulphur isotope ratio is in most cases a process-related signature.
Biogeochemical aspects of uranium mineralization, mining, milling, and remediation
Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.
2015-01-01
Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide mobilization from them. The second paper (Landa, 1999) includes coverage of research carried out under the U.S. Department of Energy’s Uranium Mill Tailings Remedial Action Program (UMTRA). The third paper (Landa, 2004) reflects the increased focus of researchers on biotic effects in UMT environs. This paper expands the focus to U mining, milling, and remedial actions, and includes extensive coverage of the increasingly important alkaline in situ recovery and groundwater restoration.
Leaching of uranium from glass and ceramic foodware and decorative items
Landa, Edward R.; Councell, Terry B.
1992-01-01
Beginning as early as the first century A. D. and continuing until at least the 1970s, uranium was used as a coloring agent in glass and in ceramic glazes. The leaching of uranium from such items is of interest as some were designed for food storage or serving. Thirty-three glass items and two ceramic items were leached sequentially with deionized water, dilute acetic acid, and 1 M nitric acid to assess realistic and worst-case scenario leaching by foods and beverages. The maximum quantity of uranium leached from the uranium-bearing glasses was about 30 µg L-1, while that from the ceramic-glazed items was about 300,000 µg L-1.
Biomining: metal recovery from ores with microorganisms.
Schippers, Axel; Hedrich, Sabrina; Vasters, Jürgen; Drobe, Malte; Sand, Wolfgang; Willscher, Sabine
2014-01-01
Biomining is an increasingly applied biotechnological procedure for processing of ores in the mining industry (biohydrometallurgy). Nowadays the production of copper from low-grade ores is the most important industrial application and a significant part of world copper production already originates from heap or dump/stockpile bioleaching. Conceptual differences exist between the industrial processes of bioleaching and biooxidation. Bioleaching is a conversion of an insoluble valuable metal into a soluble form by means of microorganisms. In biooxidation, on the other hand, gold is predominantly unlocked from refractory ores in large-scale stirred-tank biooxidation arrangements for further processing steps. In addition to copper and gold production, biomining is also used to produce cobalt, nickel, zinc, and uranium. Up to now, biomining has merely been used as a procedure in the processing of sulfide ores and uranium ore, but laboratory and pilot procedures already exist for the processing of silicate and oxide ores (e.g., laterites), for leaching of processing residues or mine waste dumps (mine tailings), as well as for the extraction of metals from industrial residues and waste (recycling). This chapter estimates the world production of copper, gold, and other metals by means of biomining and chemical leaching (bio-/hydrometallurgy) compared with metal production by pyrometallurgical procedures, and describes new developments in biomining. In addition, an overview is given about metal sulfide oxidizing microorganisms, fundamentals of biomining including bioleaching mechanisms and interface processes, as well as anaerobic bioleaching and bioleaching with heterotrophic microorganisms.
Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy
NASA Astrophysics Data System (ADS)
Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.
2017-01-01
Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.
Stevenson, J.W.; Werkema, R.G.
1959-07-28
The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.
Use of Polyphosphate to Decrease Uranium Leaching in Hanford 300 Area Smear Zone Sediments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szecsody, James E.; Zhong, Lirong; Oostrom, Martinus
2012-09-30
The primary objective of this study is to summarize the laboratory investigations performed to evaluate short- and long-term effects of phosphate treatment on uranium leaching from 300 area smear zone sediments. Column studies were used to compare uranium leaching in phosphate-treated to untreated sediments over a year with multiple stop flow events to evaluate longevity of the uranium leaching rate and mass. A secondary objective was to compare polyphosphate injection, polyphosphate/xanthan injection, and polyphosphate infiltration technologies that deliver phosphate to sediment.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-16
... advisory report related to uranium and thorium in-situ leach recovery and post-closure stability monitoring... . Technical Contact: Technical background information pertaining to the Uranium In-Situ leach recovery--Post... entitled ``Considerations Related to Post-Closure Monitoring of Uranium In-Situ Leach/In-Situ Recovery (ISL...
Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal
2016-08-05
This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.
Reconnaissance for radioactive materials in northeastern United States during 1952
McKeown, Francis A.; Klemic, Harry
1953-01-01
Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.
Critical analysis of world uranium resources
Hall, Susan; Coleman, Margaret
2013-01-01
The U.S. Department of Energy, Energy Information Administration (EIA) joined with the U.S. Department of the Interior, U.S. Geological Survey (USGS) to analyze the world uranium supply and demand balance. To evaluate short-term primary supply (0–15 years), the analysis focused on Reasonably Assured Resources (RAR), which are resources projected with a high degree of geologic assurance and considered to be economically feasible to mine. Such resources include uranium resources from mines currently in production as well as resources that are in the stages of feasibility or of being permitted. Sources of secondary supply for uranium, such as stockpiles and reprocessed fuel, were also examined. To evaluate long-term primary supply, estimates of uranium from unconventional and from undiscovered resources were analyzed. At 2010 rates of consumption, uranium resources identified in operating or developing mines would fuel the world nuclear fleet for about 30 years. However, projections currently predict an increase in uranium requirements tied to expansion of nuclear energy worldwide. Under a low-demand scenario, requirements through the period ending in 2035 are about 2.1 million tU. In the low demand case, uranium identified in existing and developing mines is adequate to supply requirements. However, whether or not these identified resources will be developed rapidly enough to provide an uninterrupted fuel supply to expanded nuclear facilities could not be determined. On the basis of a scenario of high demand through 2035, 2.6 million tU is required and identified resources in operating or developing mines is inadequate. Beyond 2035, when requirements could exceed resources in these developing properties, other sources will need to be developed from less well-assured resources, deposits not yet at the prefeasibility stage, resources that are currently subeconomic, secondary sources, undiscovered conventional resources, and unconventional uranium supplies. This report’s analysis of 141 mines that are operating or are being actively developed identifies 2.7 million tU of in-situ uranium resources worldwide, approximately 2.1 million tU recoverable after mining and milling losses were deducted. Sixty-four operating mines report a total of 1.4 million tU of in-situ RAR (about 1 million tU recoverable). Seventy-seven developing mines/production centers report 1.3 million tU in-situ Reasonably Assured Resources (RAR) (about 1.1 million tU recoverable), which have a reasonable chance of producing uranium within 5 years. Most of the production is projected to come from conventional underground or open pit mines as opposed to in-situ leach mines. Production capacity in operating mines is about 76,000 tU/yr, and in developing mines is estimated at greater than 52,000 tU/yr. Production capacity in operating mines should be considered a maximum as mines seldom produce up to licensed capacity due to operational difficulties. In 2010, worldwide mines operated at 70 percent of licensed capacity, and production has never exceeded 89 percent of capacity. The capacity in developing mines is not always reported. In this study 35 percent of developing mines did not report a target licensed capacity, so estimates of future capacity may be too low. The Organisation for Economic Co-operation and Development’s Nuclear Energy Agency (NEA) and International Atomic Energy Agency (IAEA) estimate an additional 1.4 million tU economically recoverable resources, beyond that identified in operating or developing mines identified in this report. As well, 0.5 million tU in subeconomic resources, and 2.3 million tU in the geologically less certain inferred category are identified worldwide. These agencies estimate 2.2 million tU in secondary sources such as government and commercial stockpiles and re-enriched uranium tails. They also estimate that unconventional uranium supplies (uraniferous phosphate and black shale deposits) may contain up to 7.6 million tU. Although unconventional resources are currently subeconomic, the improvement of extraction techniques or the production of coproducts may make extraction of uranium from these types of deposits profitable. A large undiscovered resource base is reported by these agencies, however this class of resource should be considered speculative and will require intensive exploration programs to adequately define them as mineable. These resources may all contribute to uranium supply that would fuel the world nuclear fleet well beyond that calculated in this report. Production of resources in both operating and developing uranium mines is subject to uncertainties caused by technical, legal, regulatory, and financial challenges that combined to create long timelines between deposit discovery and mine production. This analysis indicates that mine development is proceeding too slowly to fully meet requirements for an expanded nuclear power reactor fleet in the near future (to 2035), and unless adequate secondary or unconventional resources can be identified, imbalances in supply and demand may occur.
The association of uranium with organic matter in Holocene peat: An experimental leaching study
Zielinski, R.A.; Meier, A.L.
1988-01-01
Uraniferous peat was sampled from surface layers of a Holocene U deposit in northeastern Washington State. Dried, sized, and homogenized peat that contained 5980 ??307 ppm U was subjected to a variety of leaching conditions to determine the nature and strength of U-organic bonding in recently accumulated organic matter. The results complement previous experimental studies of U uptake on peat and suggest some natural or anthropogenic disturbances that are favorable for remobilizing U. The fraction of U leached in 24 h experiments at 25??C ranged from 0 to 95%. The most effective leach solutions contained anions capable of forming stable dissolved complexes with uranyl (UO2+2) cation. These included H2SO4 (pH = 1.5) and concentrated (>0.01 M) solutions of sodium bicarbonate-carbonate (pH = 7.0-10.0), or sodium pyrophosphate (pH = 10). Effective leaching by carbonate and pyrophosphate in the absence of added oxidant, and the insignificant effect of added oxidant (as pressurized O2) strongly suggest that U is initially fixed on organic matter as an oxidized U(VI) species. Uranium is more strongly bound than some other polyvalent cations, based on its resistance to exchange in the presence of large excesses of dissolved Ca2+ and Cu2+. Measurements of the rate of U leaching indicate faster rates in acid solution compared to carbonate solution, and are consisten with simultaneous attack of sites with different affinities for U. Sulfuric acid appears a good choice for commercial extraction of U from mined peat. In situ disturbances such as overliming of peat soils, addition of fertilizers containing pyrophosphate, or incursions of natural carbonate-rich waters could produce significant remobilization of U, and possibly compromise the quality of local domestic water supplies. ?? 1988.
Assessing and Minimizing Adversarial Risk in a Nuclear Material Transportation Network
2013-09-01
0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 09-27-2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND...U.S. as of July 2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure A.1 Google Earth routing from Areva to Arkansas Nuclear...Uranium ore is mined or removed from the earth in a leaching process. 2. Conversion (1). Triuranium octoxide (U3O8, “yellowcake”) is converted into ura
ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION
Thunaes, A.; Brown, E.A.; Rabbitts, A.T.
1957-11-12
A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-23
... of EPA's Draft Technical Report Pertaining to Uranium and Thorium In-Situ Leach Recovery and Post... Related to Post-Closure Monitoring of Uranium In-Situ Leach/In-Situ Recovery (ISL/ISR) Sites.'' DATES: The... pertaining to Uranium In-Situ Leach Recovery--Post-Closure Stability Monitoring can be found at http://www...
40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...
40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...
40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vanadium ores are produced; and (b) mills using the acid leach, alkaline leach, or combined acid and alkaline leach process for the extraction of uranium, radium and vanadium. Only vanadium byproduct...
Kaufman, D.
1958-04-15
A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.
Extraction of uranium from tailings by sulfuric acid leaching with oxidants
NASA Astrophysics Data System (ADS)
Huang, Jing; Li, Mi; Zhang, Xiaowen; Huang, Chunmei; Wu, Xiaoyan
2017-06-01
Recovery of uranium have been performed by leaching uranium-containing tailings in sulfuric acid system with the assistance of HF, HClO4, H2O2 and MnO2. The effect of reagent dosage, sulfuric acid concentration, Liquid/solid ratio, reaction temperature and particle size on the leaching of uranium were investigated. The results show that addiction of HF, HClO4, H2O2 and MnO2 significantly increased the extraction of uranium under 1M sulphuric acid condition and under the optimum reaction conditions a dissolution fraction of 85% by HClO4, 90% by HF, 95% by H2O2 can be reached respectively. The variation of technological mineralogy properites of tailings during leaching process show that the assistants can break gangue effectively. These observations suggest that optimum oxidants could potentially influence the extraction of uranium from tailings even under dilute acid condition.
Kosior, Grzegorz; Steinnes, Eiliv; Samecka-Cymerman, Aleksandra; Lierhagen, Syverin; Kolon, Krzysztof; Dołhańczuk-Śródka, Agnieszka; Ziembik, Zbigniew
2017-03-01
The past uranium/polymetallic mining activities in the Sudety (SW Poland) left abandoned mines, pits, and dumps of waste rocks with trace elements and radionuclides which may erode or leach out and create a potential risk for the aquatic ecosystem, among others. In the present work four rivers affected by effluents from such mines were selected to evaluate the application of aquatic mosses for the bioindication of 56 elements. Naturally growing F. antipyretica and P. riparioides were compared with transplanted samples of the same species. The results demonstrate serious pollution of the examined rivers, especially with As, Ba, Fe, Mn, Pb, Ti, U and Zn, reaching extremely high concentrations in native moss samples. In the most polluted rivers native F. antipyretica and P. riparioides samples showed significantly higher concentrations of As, Ba, Cu, Fe, La, Nd, Ni, Pb, U and Zn than corresponding transplanted samples, whereas at less polluted sites a reverse situation was sometimes observed. Transplanted moss moved from clean to extremely polluted rivers probably protects itself against the accumulation of toxic elements by reducing their uptake. Selection of native or transplanted F. antipyretica and P. riparioides depended on the pollution load. Copyright © 2016. Published by Elsevier Ltd.
Otton, James K.; Zielinski, Robert A.; Horton, Robert J.
2010-01-01
The Fry Canyon uranium/copper project site in San Juan County, southeastern Utah, was affected by the historical (1957-68) processing of uranium and copper-uranium ores. Relict uranium tailings and related ponds, and a large copper heap-leach pile at the site represent point sources of uranium and copper to local soils, surface water, and groundwater. This study was designed to establish the nature, extent, and pathways of contaminant dispersion. The methods used in this study are applicable at other sites of uranium mining, milling, or processing. The uranium tailings and associated ponds sit on a bench that is as much as 4.25 meters above the level of the adjacent modern channel of Fry Creek. The copper heap leach pile sits on bedrock just south of this bench. Contaminated groundwater from the ponds and other nearby sites moves downvalley and enters the modern alluvium of adjacent Fry Creek, its surface water, and also a broader, deeper paleochannel that underlies the modern creek channel and adjacent benches and stream terraces. The northern extent of contaminated groundwater is uncertain from geochemical data beyond an area of monitoring wells about 300 meters north of the site. Contaminated surface water extends to the State highway bridge. Some uranium-contaminated groundwater may also enter underlying bedrock of the Permian Cedar Mesa Sandstone along fracture zones. Four dc-resistivity surveys perpendicular to the valley trend were run across the channel and its adjacent stream terraces north of the heap-leach pile and ponds. Two surveys were done in a small field of monitoring wells and two in areas untested by borings to the north of the well field. Bedrock intercepts, salt distribution, and lithologic information from the wells and surface observations in the well field aided interpretation of the geophysical profiles there and allowed interpretation of the two profiles not tested by wells. The geophysical data for the two profiles to the north of the well field suggest that the paleochannel persists at least 900 m to the north of the heap leach and pond sites. Contamination of groundwater beneath the stream terraces may extend at least that far. Fry Creek surface water (six samples), seeps and springs (six samples), and wells (eight samples) were collected during a dry period of April 16-19, 2007. The most uranium-rich (18.7 milligrams per liter) well water on the site displays distinctive Ca-Mg-SO4-dominant chemistry indicating the legacy of heap leaching copper-uranium ores with sulfuric acid. This same water has strongly negative d34S of sulfate (-13.3 per mil) compared to most local waters of -2.4 to -5.4 per mil. Dissolved uranium species in all sampled waters are dominantly U(VI)-carbonate complexes. All waters are undersaturated with respect to U(VI) minerals. The average 234U/238U activity ratio (AR) in four well waters from the site (0.939 + or ? 0.011) is different from that of seven upstream waters (1.235 + or ? 0.069). This isotopic contrast permits quantitative estimates of mixing of site-derived uranium with natural uranium in waters collected downstream. At the time of sampling, uranium in downstream surface water was mostly (about 67 percent) site-derived and subject to further concentration by evaporation. Three monitoring wells located approximately 0.4 kilometer downstream contained dominantly (78-87 percent) site-derived uranium. Distinctive particles of chalcopyrite (CuFeS) and variably weathered pyrite (FeS2) are present in tailings at the stream edge on the site and are identified in stream sediments 1.3 kilometers downstream, based on inspection of polished grain mounts of magnetic mineral separates.
PROCESS FOR RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS BY REDUCTION-PRECIPITATION
Ellis, D.A.; Lindblom, R.O.
1957-09-24
A process employing carbonate leaching of ores and an advantageous methcd of recovering the uranium and vanadium from the leach solution is described. The uranium and vanadium can be precipitated from carbonate leach solutions by reaction with sodium amalgam leaving the leach solution in such a condition that it is economical to replenish for recycling. Such a carbonate leach solution is treated with a dilute sodium amalgam having a sodium concentration within a range of about 0.01 to 0.5% of sodium. Efficiency of the treatment is dependent on at least three additional factors, intimacy of contact of the amalgam with the leach solution, rate of addition of the amalgam and exclusion of oxygen (air).
UTEX LEACHING, THICKENING AND FILTRATION TESTS. Topical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, A.; George, D.R.; Thomas, P.N.
1954-03-15
A series of leaching, thickening, and filtration tests was undertaken to determine minimum conditions for high uranium extractions and obtain thickening and filtration data. The ore represented by the sample responded to cold and hot leaching with the minimum condition for uranium extraction being 500 pounds of H/ sub 2/SO/sub 4/ per ton and five pounds NaClO/sub 3/ per ton leached at room temperature for l6 hours with uranium extraction of over 95%. Thickening and filtration were economical if a reagent such as S-3000 or Guar gum was used. (auth)
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
NASA Astrophysics Data System (ADS)
Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina
2014-05-01
Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.« less
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado. Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...
Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.
1959-02-10
A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.
In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/ 238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/ 238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the potential formation of other poorly defined U(IV/VI) species. We also noted a small contribution from Udouble bond; length as m-dashO at 1.79 Å, which indicates that U is partially oxidized. There is no apparent U–S or U–Fe interaction in any of the U spectra analyzed. However, SEM analysis of thin sections prepared from the same core material reveals surficial U associated with pyrite which is probably a minor fraction of the total U present as thin coatings on the surface of pyrite. Our data show the presence of different structurally variable uranium forms associated with the mined cores. U associated with carbonaceous materials is probably from the original U mobilization that accumulated in the organic matter-rich areas under reducing conditions during shallow burial diagenesis. U associated with pyrite represents a small fraction of the total U and was likely deposited as a result of chemical reduction by pyrite. Our data suggest that areas rich in carbonaceous materials had limited exposure to the lixiviant solution, continue to be reducing, and still hold significant U resources. Because of their limited access to fluid flow, these areas might not contribute significantly to post-mining U release or attenuation. Areas with pyrite that are accessible to fluids seem to be more reactive and could act as reductants and facilitate U reduction and accumulation, limiting its migration.« less
WoldeGabriel, G.; Boukhalfa, H.; Ware, S. D.; ...
2014-10-08
In-situ recovery (ISR) of uranium (U) from sandstone-type roll-front deposits is a technology that involves the injection of solutions that consist of ground water fortified with oxygen and carbonate to promote the oxidative dissolution of U, which is pumped to recovery facilities located at the surface that capture the dissolved U and recycle the treated water. The ISR process alters the geochemical conditions in the subsurface creating conditions that are more favorable to the migration of uranium and other metals associated with the uranium deposit. There is a lack of clear understanding of the impact of ISR mining on themore » aquifer and host rocks of the post-mined site and the fate of residual U and other metals within the mined ore zone. We performed detailed petrographic, mineralogical, and geochemical analyses of several samples taken from about 7 m of core of the formerly the ISR-mined Smith Ranch–Highland uranium deposit in Wyoming. We show that previously mined cores contain significant residual uranium (U) present as coatings on pyrite and carbonaceous fragments. Coffinite was identified in three samples. Core samples with higher organic (> 1 wt.%) and clay (> 6–17 wt.%) contents yielded higher 234U/ 238U activity ratios (1.0–1.48) than those with lower organic and clay fractions. The ISR mining was inefficient in mobilizing U from the carbonaceous materials, which retained considerable U concentrations (374–11,534 ppm). This is in contrast with the deeper part of the ore zone, which was highly depleted in U and had very low 234U/ 238U activity ratios. This probably is due to greater contact with the lixiviant (leaching solution) during ISR mining. EXAFS analyses performed on grains with the highest U and Fe concentrations reveal that Fe is present in a reduced form as pyrite and U occurs mostly as U(IV) complexed by organic matter or as U(IV) phases of carbonate complexes. Moreover, U–O distances of ~ 2.05 Å were noted, indicating the potential formation of other poorly defined U(IV/VI) species. We also noted a small contribution from Udouble bond; length as m-dashO at 1.79 Å, which indicates that U is partially oxidized. There is no apparent U–S or U–Fe interaction in any of the U spectra analyzed. However, SEM analysis of thin sections prepared from the same core material reveals surficial U associated with pyrite which is probably a minor fraction of the total U present as thin coatings on the surface of pyrite. Our data show the presence of different structurally variable uranium forms associated with the mined cores. U associated with carbonaceous materials is probably from the original U mobilization that accumulated in the organic matter-rich areas under reducing conditions during shallow burial diagenesis. U associated with pyrite represents a small fraction of the total U and was likely deposited as a result of chemical reduction by pyrite. Our data suggest that areas rich in carbonaceous materials had limited exposure to the lixiviant solution, continue to be reducing, and still hold significant U resources. Because of their limited access to fluid flow, these areas might not contribute significantly to post-mining U release or attenuation. Areas with pyrite that are accessible to fluids seem to be more reactive and could act as reductants and facilitate U reduction and accumulation, limiting its migration.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... Nominations of Experts for Review of EPA's Draft Technical Report Pertaining to Uranium and Thorium In-Situ... expectation is that In-Situ Leach Recovery (ISL/ISR) operations will be the most common type of new uranium... pertaining to Uranium In-Situ Leach Recovery--Post-Closure Stability Monitoring can be found at the following...
Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg
2008-01-01
During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace-element concentrations for aquatic life water-quality standards. The proximity of the uranium waste dumps in the Tomsich Butte area near Muddy Creek, coupled with the elevated concentration of trace elements, increases the offsite impact potential to water resources. Future assessment and remediation priority of these areas may be done by using GIS-based risk-mapping techniques, such as Sensitive Catchment Integrated Mapping and Analysis Project.
Comparison of mine waste assessment methods at the Rattler mine site, Virginia Canyon, Colorado
Hageman, Phil L.; Smith, Kathleen S.; Wildeman, Thomas R.; Ranville, James F.
2005-01-01
In a joint project, the mine waste-piles at the Rattler Mine near Idaho Springs, Colorado, were sampled and analyzed by scientists from the U.S. Geological Survey (USGS) and the Colorado School of Mines (CSM). Separate sample collection, sample leaching, and leachate analyses were performed by both groups and the results were compared. For the study, both groups used the USGS sampling procedure and the USGS Field Leach Test (FLT). The leachates generated from these tests were analyzed for a suite of elements using ICP-AES (CSM) and ICP-MS (USGS). Leachate geochemical fingerprints produced by the two groups for composites collected from the same mine waste showed good agreement. In another set of tests, CSM collected another set of Rattler mine waste composite samples using the USGS sampling procedure. This set of composite samples was leached using the Colorado Division of Minerals and Geology (CDMG) leach test, and a modified Toxicity Characteristic Leaching Procedure (TCLP) leach test. Leachate geochemical fingerprints produced using these tests showed a variation of more than a factor of two from the geochemical fingerprints produced using the USGS FLT leach test. We have concluded that the variation in the results is due to the different parameters of the leaching tests and not due to the sampling or analytical methods.
Jing, C; Landsberger, S; Li, Y L
2017-09-01
In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO 3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has improved performance compared to NZVI and is a promising technology for the restoration of complex uranium contaminated water resources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Preliminary study of favorability for uranium resources in Juab County, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leedom, S.H.; Mitchell, T.P.
1978-02-01
The best potential for large, low-grade uranium deposits in Juab County is in the hydrothermally altered vitric tuffs of Pliocene age. The lateral extent of the altered tuffs may be determined by subsurface studies around the perimeter of the volcanic centers in the Thomas Range and the Honeycomb Hills. Because the ring-fracture zone associated with collapse of the Thomas caldera was a major control for hydrothermal uranium deposits, delineation of the northern and eastern positions of the ring-fracture zone is critical in defining favorable areas for uranium deposits. A small, medium-grade ore deposit in tuffaceous sand of Pliocene age atmore » the Yellow Chief mine in Dugway Dell is unique in origin, and the probability of discovering another deposit of this type is low. A deposit of this type may be present under alluvial cover in the northwestern Drum Mountains along the southern extension of the ring-fracture zone of the Thomas caldera. Festoonlike iron oxide structures and uranium deposition within permeable sandstone horizons indicate that the Yellow Chief deposit was formed by recent ground-water circulation. Granitic intrusive rocks in the Deep Creek Range and in Desert Mountain contain isolated epigenetic vein-type deposits. These rocks could be a source of arkosic sediments buried in adjacent valleys. The Pleistocene lacustrine sediments and playa lake brines may contain concentrations of uranium leached from uranium-rich rocks.« less
NASA Astrophysics Data System (ADS)
Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina
2015-04-01
The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.
NASA Astrophysics Data System (ADS)
Nitzsche, O.; Merkel, B.
Knowledge of the transport behavior of radionuclides in groundwater is needed for both groundwater protection and remediation of abandoned uranium mines and milling sites. Dispersion, diffusion, mixing, recharge to the aquifer, and chemical interactions, as well as radioactive decay, should be taken into account to obtain reliable predictions on transport of primordial nuclides in groundwater. This paper demonstrates the need for carrying out rehabilitation strategies before closure of the Königstein in-situ leaching uranium mine near Dresden, Germany. Column experiments on drilling cores with uranium-enriched tap water provided data about the exchange behavior of uranium. Uranium breakthrough was observed after more than 20 pore volumes. This strong retardation is due to the exchange of positively charged uranium ions. The code TReAC is a 1-D, 2-D, and 3-D reactive transport code that was modified to take into account the radioactive decay of uranium and the most important daughter nuclides, and to include double-porosity flow. TReAC satisfactorily simulated the breakthrough curves of the column experiments and provided a first approximation of exchange parameters. Groundwater flow in the region of the Königstein mine was simulated using the FLOWPATH code. Reactive transport behavior was simulated with TReAC in one dimension along a 6000-m path line. Results show that uranium migration is relatively slow, but that due to decay of uranium, the concentration of radium along the flow path increases. Results are highly sensitive to the influence of double-porosity flow. Résumé La protection des eaux souterraines et la restauration des sites miniers et de prétraitement d'uranium abandonnés nécessitent de connaître le comportement des radionucléides au cours de leur transport dans les eaux souterraines. La dispersion, la diffusion, le mélange, la recharge de l'aquifère et les interactions chimiques, de même que la décroissance radioactive, doivent être prises en compte pour obtenir des prédictions fiables concernant le transport des nucléides primaires dans les eaux souterraines. Ce papier montre la nécessité d'établir des stratégies de réhabilitation avant la fermeture de la mine d'uranium de Knigstein, près de Dresde (Allemagne). Des expériences de lessivage en colonne sur des carottes avec de l'eau enrichie en uranium fournissent des données sur le comportement de l'échange de l'uranium. La restitution de l'uranium a été observée après un lessivage par un volume supérieur à 20 fois celui des pores. Ce fort retard est dûà l'échange d'ions uranium positifs. Le code TReAC est un code de transport réactif en 1D, 2D et 3D, qui a été modifié pour prendre en compte la décroissance radioactive de l'uranium et les principaux nucléides descendants, et pour introduire l'écoulement dans un milieu à double porosité. TReAC a simulé de façon satisfaisante les courbes de restitution des expériences sur colonne et a fourni une première approche des paramètres de l'échange. L'écoulement souterrain dans la région de la mine de Knigstein a été simulé au moyen du code FLOWPATH. Le comportement du transport réactif a été simulé avec TReAC en une dimension, le long d'un axe d'écoulement long de 6000 m. Les résultats montrent que la migration de l'uranium est relativement lente ; mais du fait de la décroissance radioactive de l'uranium, la concentration en radium le long de cet axe augmente. Les résultats sont très sensibles à l'influence de l'écoulement en milieu à double porosité.
Bioprocessing of ores: Application to space resources
NASA Technical Reports Server (NTRS)
Johansson, Karl R.
1992-01-01
The role of microorganisms in the oxidation and leaching of various ores (especially those of copper, iron, and uranium) is well known. This role is increasingly being applied by the mining, metallurgy, and sewage industries in the bioconcentration of metal ions from natural receiving waters and from waste waters. It is concluded that bioprocessing using bacteria in closed reactors may be a variable option for the recovery of metals from the lunar regolith. Obviously, considerable research must be done to define the process, specify the appropriate bacteria, determine the necessary conditions and limitations, and evaluate the overall feasibility.
Potential Aquifer Vulnerability in Regions Down-Gradient from ...
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies
RECOVERY OF URANIUM VALUES FROM RESIDUES
Schaap, W.B.
1959-08-18
A process is described for the recovery of uranium from insoluble oxide residues resistant to repeated leaching with mineral acids. The residue is treated with gaseous hydrogen fluoride, then with hydrogen and again with hydrogen fluoride, preferably at 500 to 700 deg C, prior to the mineral acid leaching.
Health effects of uranium: new research findings.
Brugge, Doug; Buchner, Virginia
2011-01-01
Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.
Ghauri, Muhammad A; Khalid, Ahmad M; Grant, Susan; Grant, William D; Heaphy, Shaun
2006-06-01
Environmental samples were collected from high-pH sites in Pakistan, including a uranium heap set up for carbonate leaching, the lime unit of a tannery, and the Khewra salt mine. Another sample was collected from a hot spring on the shore of the soda lake, Magadi, in Kenya. Microbial cultures were enriched from Pakistani samples. Phylogenetic analysis of isolates was carried out by sequencing 16S rRNA genes. Genomic DNA was amplified by polymerase chain reaction using integron gene-cassette-specific primers. Different gene-cassette-linked genes were recovered from the cultured strains related to Halomonas magadiensis, Virgibacillus halodenitrificans, and Yania flava and from the uncultured environmental DNA sample. The usefulness of this technique as a tool for gene mining is indicated.
Heavy metal leaching from mine tailings as affected by plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, D.; Schwab, A.P.; Banks, M.K.
A column experiment was conducted to determine the impact of soil cover and plants on heavy metal leaching from mine tailings and heavy metal contaminated soil. Columns made of PVC were constructed with 30 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm subsoil covered by 30 cm of mine tailings followed by 0, 30, or 60 cm of clean topsoil. Two grasses, tall fescue (Festuca arundinacea Schreb.) and big bluestem (Andropogon gerardii), were grown in the columns. The columns were leached at a slow rate for 1 yr with a 0.001 Mmore » CaCl{sub 2} solution under unsaturated conditions. The presence of both tall fescue and big bluestem increased Zn and Cd concentrations in the leachate. Lead concentrations in leachates were not affected by the presence of plants. Although plants generally reduced the total amount of water leached, total mass of Zn and Cd leached generally was not impacted by plants. Total mass of Pb leached was positively correlated with total leachate collected from each column. Covering the mine tailings with 60 cm of topsoil increased the mass of Zn and Cd leached relative to no topsoil. When the subsoil was absent, Zn and Cd leaching increased by as much as 20-fold, verifying the ability of soil to act as a sink for metals. Mine tailing remediation by establishing vegetation can reduce Pb movement but may enhance short-term Cd and Zn leaching. However, the changes were relatively small and do not outweigh the benefits of using vegetation in mine tailings reclamation.« less
Hageman, Philip L.
2004-01-01
Precipitation-induced runoff from historical mine-waste located adjacent to the headwaters of the Snake River, Deer Creek, Saints John Creek, Grizzly Gulch, Stevens Gulch, and Leavenworth Creek contributes to the degradation of water quality in these streams. Because historical mine-waste piles have had long-term exposure to the atmosphere, it is surmised that runoff from these piles, induced by meteorological events such as cloudbursts and snowmelt, may cause mobility of acid and metals into a watershed due to dissolution of soluble minerals. For this study, 13 mine-waste composite samples from various mine-wastes in these drainage basins were leached using both a short-term and a long-term leach test. Analytical results from this combination of leach tests are tools that allow the investigator to quantify (fingerprint) which geochemical components could be expected in runoff from these piles if they were leached by a cloudburst (5-minute leach test), as well as what the ?worst-case? geochemical profile would look like if the material were subject to extended leaching and breakdown of the mine-waste material (18-hour leach test). Also, this combination of leach tests allows the geoscientist the ability to see geochemical changes in the mine-waste leachate over time. That is, does the leachate become more or less acidic over time; does the specific conductance increase or decrease; and are there changes in the concentrations of major or trace elements? Further, use of a ranking scheme described herein will aid in prediction of which historical mine-waste piles have the greatest potential for impact on a watershed should runoff occur. Because of long-term weathering of these historical mine-waste piles, geochemical profiles, leachate time-trends, and relative ranking of the mine-wastes produced from analysis of the leachates are Hageman_SIR_2508.doc 1 7/21/2004 2:50 PM indicative of how the mine-waste piles can be expected to act in the environment and may help to identify the ?bad actors??this may aid in understanding the reasons for water-quality differences between the drainages.
Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.
Mkandawire, Martin
2013-11-01
The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-24
... Environmental Impact Statement for the Lost Creek In-Situ Recovery (ISR) Project in Sweetwater County, WY; Supplement to the Generic Environmental Impact Statement for In-Situ Leach Uranium Milling Facilities AGENCY... Statement (SEIS) to the Generic Environmental Impact Statement for In- Situ Leach Uranium Milling Facilities...
Analysis of radon reduction and ventilation systems in uranium mines in China.
Hu, Peng-hua; Li, Xian-jie
2012-09-01
Mine ventilation is the most important way of reducing radon in uranium mines. At present, the radon and radon progeny levels in Chinese uranium mines where the cut and fill stoping method is used are 3-5 times higher than those in foreign uranium mines, as there is not much difference in the investments for ventilation protection between Chinese uranium mines and international advanced uranium mines with compaction methodology. In this paper, through the analysis of radon reduction and ventilation systems in Chinese uranium mines and the comparison of advantages and disadvantages between a variety of ventilation systems in terms of radon control, the authors try to illustrate the reasons for the higher radon and radon progeny levels in Chinese uranium mines and put forward some problems in three areas, namely the theory of radon control and ventilation systems, radon reduction ventilation measures and ventilation management. For these problems, this paper puts forward some proposals regarding some aspects, such as strengthening scrutiny, verifying and monitoring the practical situation, making clear ventilation plans, strictly following the mining sequence, promoting training of ventilation staff, enhancing ventilation system management, developing radon reduction ventilation technology, purchasing ventilation equipment as soon as possible in the future, and so on.
Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T
2016-12-01
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.
URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, E R; Doyle, R L; Coleman, J R
1954-01-28
A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less
NASA Astrophysics Data System (ADS)
Biswas, Sujoy; Pathak, P. N.; Roy, S. B.
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.
Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui
2015-07-01
Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushedmore » grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.« less
Uranium Mines and Mills | RadTown USA | US EPA
2017-08-07
Uranium is used as nuclear fuel for electric power generation. U.S. mining industries can obtain uranium in two ways: mining or milling. Mining waste and mill tailings can contaminate water, soil and air if not disposed of properly.
2010-01-01
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway. PMID:20491469
Gray, John E; Plumlee, Geoffrey S; Morman, Suzette A; Higueras, Pablo L; Crock, James G; Lowers, Heather A; Witten, Mark L
2010-06-15
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almaden, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 microg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 microg of Hg leached/g), serum-based fluid (as much as 1600 microg of Hg leached/g), and water of pH 5 (as much as 880 microg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.
Gray, John E.; Plumlee, Geoffrey S.; Morman, Suzette A.; Higueras, Pablo L.; Crock, James G.; Lowers, Heather A.; Witten, Mark L.
2010-01-01
In vitro bioaccessibility (IVBA) studies were carried out on samples of mercury (Hg) mine-waste calcine (roasted Hg ore) by leaching with simulated human body fluids. The objective was to estimate potential human exposure to Hg due to inhalation of airborne calcine particulates and hand-to-mouth ingestion of Hg-bearing calcines. Mine waste calcines collected from Hg mines at Almadén, Spain, and Terlingua, Texas, contain Hg sulfide, elemental Hg, and soluble Hg compounds, which constitute primary ore or compounds formed during Hg retorting. Elevated leachate Hg concentrations were found during calcine leaching using a simulated gastric fluid (as much as 6200 μg of Hg leached/g sample). Elevated Hg concentrations were also found in calcine leachates using a simulated lung fluid (as much as 9200 μg of Hg leached/g), serum-based fluid (as much as 1600 μg of Hg leached/g), and water of pH 5 (as much as 880 μg of Hg leached/g). The leaching capacity of Hg is controlled by calcine mineralogy; thus, calcines containing soluble Hg compounds contain higher leachate Hg concentrations. Results indicate that ingestion or inhalation of Hg mine-waste calcine may lead to increased Hg concentrations in the human body, especially through the ingestion pathway.
Uranium mining and lung cancer among Navajo men in New Mexico and Arizona, 1969 to 1993.
Gilliland, F D; Hunt, W C; Pardilla, M; Key, C R
2000-03-01
Navajo men who were underground miners have excess risk of lung cancer. To further characterize the long-term consequences of uranium mining in this high-risk population, we examined lung cancer incidence among Navajo men residing in New Mexico and Arizona from 1969 to 1993 and conducted a population-based case-control study to estimate the risk of lung cancer for Navajo uranium miners. Uranium mining contributed substantially to lung cancer among Navajo men over the 25-year period following the end of mining for the Navajo Nation. Sixty-three (67%) of the 94-incident lung cancers among Navajo men occurred in former uranium miners. The relative risk for a history of mining was 28.6 (95% confidence interval, 13.2-61.7). Smoking did not account for the strong relationship between lung cancer and uranium mining. The Navajo experience with uranium mining is a unique example of exposure in a single occupation accounting for the majority of lung cancers in an entire population.
LEACHING OF URANIUM ORES USING ALKALINE CARBONATES AND BICARBONATES AT ATMOSPHERIC PRESSURE
Thunaes, A.; Brown, E.A.; Rabbits, A.T.; Simard, R.; Herbst, H.J.
1961-07-18
A method of leaching uranium ores containing sulfides is described. The method consists of adding a leach solution containing alkaline carbonate and alkaline bicarbonate to the ore to form a slurry, passing the slurry through a series of agitators, passing an oxygen containing gas through the slurry in the last agitator in the series, passing the same gas enriched with carbon dioxide formed by the decomposition of bicarbonates in the slurry through the penultimate agitator and in the same manner passing the same gas increasingly enriched with carbon dioxide through the other agitators in the series. The conditions of agitation is such that the extraction of the uranium content will be substantially complete before the slurry reaches the last agitator.
Yang, Jinyan; Tang, Ya; Yang, Kai; Rouff, Ashaki A; Elzinga, Evert J; Huang, Jen-How
2014-01-15
A series of column leaching experiments were performed to understand the leaching behaviour and the potential environmental risk of vanadium in a Panzhihua soil and vanadium titanomagnetite mine tailings. Results from sequential extraction experiments indicated that the mobility of vanadium in both the soil and the mine tailings was low, with <1% of the total vanadium readily mobilised. Column experiments revealed that only <0.1% of vanadium in the soil and mine tailing was leachable. The vanadium concentrations in the soil leachates did not vary considerably, but decreased with the leachate volume in the mine tailing leachates. This suggests that there was a smaller pool of leachable vanadium in the mine tailings compared to that in the soil. Drought and rewetting increased the vanadium concentrations in the soil and mine tailing leachates from 20μgL(-1) to 50-90μgL(-1), indicating the potential for high vanadium release following periods of drought. Experiments with soil columns overlain with 4, 8 and 20% volume mine tailings/volume soil exhibited very similar vanadium leaching behaviour. These results suggest that the transport of vanadium to the subsurface is controlled primarily by the leaching processes occurring in soils. Copyright © 2013 Elsevier B.V. All rights reserved.
Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W
2014-10-01
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...
2014-06-07
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
Applied technology for mine waste water decontamination in the uranium ores extraction from Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejenaru, C.; Filip, G.; Vacariu, V.T.
1996-12-31
The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less
What Price Energy? Hazards of Uranium Mining in the Southwest.
ERIC Educational Resources Information Center
Barry, Tom
1979-01-01
This article describes the hazards, sickness, death and destruction caused by uranium mining/nuclear energy development in the Southwest focusing on the experiences of several Indian uranium mines. (RTS)
Baumann, Nils; Arnold, Thuro; Haferburg, Götz
2014-01-01
Uranium concentrations in cultivated (sunflower, sunchoke, potato) and native plants, plant compartment specimens, and mushrooms, grown on a test site within a uranium-contaminated area in Eastern Thuringia, were analyzed and compared. This test site belongs to the Friedrich-Schiller University Jena and is situated on the ground of a former but now removed uranium mine waste leaching heap. For determination of the U concentrations in the biomaterials, the saps of the samples were squeezed out by using an ultracentrifuge, after that, the uranium concentrations in the saps and the remaining residue were measured, using ICP-MS. The study further showed that uranium concentrations observed in plant compartment and mushroom fruiting bodies sap samples were always higher than their associated solid residue sample. Also, it was found that the detected uranium concentration in the root samples were always higher than were observed in their associated above ground biomass, e.g., in shoots, leaves, blossoms etc. The highest uranium concentration was measured with almost 40 ppb U in a fruiting body of a mushroom and in roots of butterbur. However, the detected uranium concentrations in plants and mushrooms collected in this study were always lower than in the associated surface and soil water of the test site, indicating that under the encountered natural conditions, none of the studied plant and mushroom species turned out to be a hyperaccumulator for uranium, which could have extracted uranium in sufficient amounts out of the uranium-contaminated soil. In addition, it was found that the detected uranium concentrations in the sap samples, despite being above the sensitivity limit, proved to be too low-in combination with the presence of fluorescence quenching substances, e.g., iron and manganese ions, and/or organic quenchers-to extract a useful fluorescence signal, which could have helped to identify the uranium speciation in plants.
U.S.-Australia Civilian Nuclear Cooperation: Issues for Congress
2010-09-30
7 Uranium Mining and Milling ................................................................................................8...cycle begins with mining uranium ore and upgrading it to yellowcake. Because naturally occurring uranium lacks sufficient fissile 235U to make fuel for...enrichment, and finally fabrication into fuel elements. Australia exports its uranium after the mining and milling stage. Commercial enrichment services
THE RECOVERY OF URANIUM FROM GAS MIXTURE
Jury, S.H.
1964-03-17
A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-20
... in-situ uranium recovery (ISR, also known as in-situ leach) facilities, and would require restoration... Environmental Impact Statement for In-Situ Leach Uranium Milling Facilities (ISR GEIS) that was published in... published in the Federal Register on January 05, 2010 (75 FR 467-471). The purpose of this notice of intent...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
Western Abandoned Uranium Mine Region Maps
Map of the Western Abandoned Uranium Mine (AUM) Region, more than 100 abandoned uranium mine claims generally located along the Little Colorado River and Highway 89 in the Cameron, Coalmine Canyon, Bodaway/Gap, and Leupp Chapters in Northern Arizona.
Assessment of uranium release to the environment from a disabled uranium mine in Brazil.
Pereira, Wagner de Souza; Kelecom, Alphonse Germaine Albert Charles; da Silva, Ademir Xavier; do Carmo, Alessander Sá; Py Júnior, Delcy de Azavedo
2018-08-01
The Ore Treatment Unit (in Portuguese Unidade de Tratamento de Minérios - UTM) located in Caldas, MG, Brazil is a disabled uranium mine. Environmental conditions generate acid drainage leaching metals and radionuclides from the waste rock pile. This drainage is treated to remove the heavy metals and radionuclides, before allowing the release of the effluent to the environment. To validate the treatment, samples of the released effluents were collected at the interface of the installation with the environment. Sampling was carried out from 2010 to 2015, and the activity concentration (AC, in Bq·l -1 ) of uranium in the liquid effluent was analyzed by arzenazo UV-Vis spectrophotometry of the soluble and particulate fractions, and of the sum of both fractions. Descriptive statistics, Z test and Pearson R 2 correlation among the fractions were performed. Then, the data were organized by year and both ANOVA and Tukey test were carried out to group the means by magnitude of AC. The annual mean ranged from 0.02 Bq·l -1 in 2015 to 0.11 Bq·l -1 in 2010. The soluble fraction showed a higher AC mean when compared to the mean of the particulate fraction and no correlation of the data could be observed. Concerning the magnitude of the release, the ANOVA associated with the Tukey test, identified three groups of annual means (AC 2010 > AC 2011 = AC 2012 = AC 2013 = AC 2014 > AC 2015 ). The mean values of uranium release at the interface installation-environment checking point (point 014) were within the Authorized Annual Limit (AAL) set by the regulator (0.2 Bq·l -1 ) indicating compliance of treatment with the licensing established for the unit. Finally, the data showed a decreasing tendency of U release. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mine waste rock and roaster tailings were collected from the Sulfur Bank Mercury Mine (SBMM) located in Clearlake Oaks, California. The site has been under investigation as a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) site. Leaching profiles o...
Western Abandoned Uranium Mine Region Fact Sheets
Fact sheets related to Western Abandoned Uranium Mine (AUM) Region, more than 100 abandoned uranium mine claims located along the Little Colorado River and Highway 89, ain the Cameron, Coalmine Canyon, Bodaway/Gap, and Leupp Chapters in Northern Arizona.
Biswas, Sujoy; Pathak, P N; Roy, S B
2012-06-01
An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Harris, R.; Reimus, P. W.; Ware, D.; Williams, K.; Chu, D.; Perkins, G.; Migdissov, A. A.; Bonwell, C.
2017-12-01
Uranium is primarily mined for nuclear power production using an aqueous extraction technique called in-situ recovery (ISR). ISR can pollute groundwater with residual uranium and other heavy metals. Reverse osmosis and groundwater sweep are currently used to restore groundwater after ISR mining, but are not permanent solutions. Sodium dithionite is being tested as part of a method to more permanently restore groundwater after ISR mining at the Smith-Ranch Highland site in Wyoming. Sodium dithionite is a chemical reductant that can reduce sediments that were oxidized during ISR. The reduced sediments can reduce soluble uranium (VI) in the groundwater to insoluble uranium (IV). Laboratory studies that use sodium dithionite to treat sediments and waters from the site may help predict how it will behave during a field deployment. An aqueous batch experiment showed that sodium dithionite reduced uranium in post-mined untreated groundwater from 38 ppm to less than 1 ppm after 1 day. A sediment reduction batch experiment showed that sodium dithionite-treated sediments were capable of reducing uranium in post-mined untreated groundwater from 38 ppm to 2 ppm after 7 days. One column experiment is showing post-mined sodium dithionite-treated sediments are capable of reducing uranium in post-mined groundwater for over 30 pore volumes past the initial injection. While these results are promising for field deployments of sodium dithionite, another column experiment with sodium dithionite-treated sediments containing uranium rich organic matter is showing net production of uranium instead of uranium uptake. Sodium dithionite appears to liberate uranium from the organic matter. Another sediment reduction experiment is being conducted to further investigate this hypothesis. These experiments are helping guide plans for field deployments of sodium dithionite at uranium ISR mining sites.
Federal Guidance Report No. 8: Guidance for the Control of Radiation Hazards in Uranium Mining
This report contains background material used in the development of guidance concerning radiation protection in the mining of uranium ore, and seeks to provide guidance for long-term radiation protection in uranium mining.
NASA Astrophysics Data System (ADS)
Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.
2015-12-01
The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.
Molybdenum isotope fractionation during acid leaching of a granitic uranium ore
NASA Astrophysics Data System (ADS)
Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline
2018-06-01
As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during chemical weathering in terrestrial environments where the role of secondary processes such as adsorption is significant.
Monitoring genotoxic exposure in uranium mines.
Srám, R J; Dobiás, L; Rössner, P; Veselá, D; Veselý, D; Rakusová, R; Rericha, V
1993-01-01
Recent data from deep uranium mines in Czechoslovakia indicated that mines are exposed to other mutagenic factors in addition to radon daughter products. Mycotoxins were identified as a possible source of mutagens in these mines. Mycotoxins were examined in 38 samples from mines and in throat swabs taken from 116 miners and 78 controls. The following mycotoxins were identified from mines samples: aflatoxins B1 and G1, citrinin, citreoviridin, mycophenolic acid, and sterigmatocystin. Some mold strains isolated from mines and throat swabs were investigated for mutagenic activity by the SOS chromotest and Salmonella assay with strains TA100 and TA98. Mutagenicity was observed, especially with metabolic activation in vitro. These data suggest that mycotoxins produced by molds in uranium mines are a new genotoxic factor for uranium miners. PMID:8143610
Abandoned Uranium Mine (AUM) Points, Navajo Nation, 2016, US EPA Region 9
This GIS dataset contains point features of all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Points are centroids developed from the Navajo Nation production mines polygon dataset that comprise of productive or unproductive Abandoned Uranium Mines. Attributes include mine names, aliases, links to AUM reports, indicators whether an AUM was mined above or below ground, indicators whether an AUM was mined above or below the local water table, and the region in which an AUM is located. This dataset contains 608 features.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-26
... Proposed Dewey- Burdock In-Situ Uranium Recovery Project in Custer and Fall River Counties, SD AGENCY... draft Supplemental Environmental Impact Statement (Draft SEIS) for the Dewey-Burdock In-Situ Uranium... NUREG-1910, ``Generic Environmental Impact Statement for In-Situ Leach Uranium Milling Facilities,'' May...
NASA Astrophysics Data System (ADS)
Sekisov, AG; Lavrov, AYu; Rubtsov, YuI
2017-02-01
The paper gives a description of tests and trials of the technology of heap gold leaching from rebellious ore in Aprelkovo and Delmachik Mines. Efficiency of leaching flowsheets with the stage-wise use of activated solutions of different reagents, including active forms of oxygen, is evaluated. Carbonate-peroxide solutions are used at the first stage of leaching to oxidize sulfide and sulfide-arsenide ore minerals to recover iron and copper from them. The second stage leaching uses active cyanide solutions to leach encapsulated and disperse gold and silver.
ION EXCHANGE TESTS ON LIQUOR AND PULPS PRODUCED FROM UTEX ORES. Topical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollis, E.T.; Pickwick, F.J. Jr.; Kazanjian, A.R.
1954-07-30
Uranium leach liquors produced from Utex ore by cold leaching, hot leaching, and pugging proved amenable to the lon exchange process, Higher resin loadings were obtained rom the cold leach liquors than from the hot leach and pug liquors. In general, the less vigorous leaching conditions produced liquors which gave the highest resin loadings. In addition, a resin-in-pulp system was operated using the lucite Winchester cells on Utex pulp produced by cold leaching. Satisfactory loadings were obtained. (auth)
Preparation of ore blocks for mine leaching by reagent explosion injection
NASA Astrophysics Data System (ADS)
Shevchenko, YuS
2017-02-01
The current drilling-and-blasting operations fail to prepare intact ore body underlying a production horizon for subsequent mining and leaching. It is found that the required preparation quality is possible by means of advanced implementation of ore body discontinuity and filling of the resultant system of joints with active leaching solutions.
Kinetics of dissolution of thorium and uranium doped britholite ceramics
NASA Astrophysics Data System (ADS)
Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.
2010-09-01
In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.
Wufuer, Rehemanjiang; Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2018-09-01
Recent reports have drawn attention to the uranium contamination arising from coal mining activities in the Yili region of Xinjiang, China due to the mixed distribution of uranium and coal mines, and some of the coal mines being associated with a high uranium content. In this study, we have collected water samples, solid samples such as soil, mud, coal, and coal ash, and hair and urine samples from local populations in order to evaluate the uranium level in this environment and its implications for humans in this high uranium coal mining area. Our results showed that uranium concentrations were 8.71-10.91 μg L -1 in underground water, whereas lower levels of uranium occurred in river water. Among the solid samples, coal ash contained fairly high concentrations of uranium (33.1 μg g -1 ) due to enrichment from coal burning. In addition, uranium levels in the other solid samples were around 2.8 μg g -1 (the Earth's average background value). Uranium concentrations in hair and urine samples were 22.2-634.5 ng g -1 (mean: 156.2 ng g -1 ) and 8.44-761.6 ng L -1 (mean: 202.6 ng L -1 ), respectively, which are significantly higher than reference values reported for unexposed subjects in other areas. Therefore, these results indicate that people living in this coal mining area have been subjected to uranium exposure for long periods of time. Copyright © 2018. Published by Elsevier Ltd.
PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES
Sawyer, C.W.; Handley, R.W.
1959-07-14
A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.
Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine
2002-12-01
This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).
Modeling Patterns of Total Dissolved Solids Release from Central Appalachia, USA, Mine Spoils.
Clark, Elyse V; Zipper, Carl E; Daniels, W Lee; Orndorff, Zenah W; Keefe, Matthew J
2017-01-01
Surface mining in the central Appalachian coalfields (USA) influences water quality because the interaction of infiltrated waters and O with freshly exposed mine spoils releases elevated levels of total dissolved solids (TDS) to streams. Modeling and predicting the short- and long-term TDS release potentials of mine spoils can aid in the management of current and future mining-influenced watersheds and landscapes. In this study, the specific conductance (SC, a proxy variable for TDS) patterns of 39 mine spoils during a sequence of 40 leaching events were modeled using a five-parameter nonlinear regression. Estimated parameter values were compared to six rapid spoil assessment techniques (RSATs) to assess predictive relationships between model parameters and RSATs. Spoil leachates reached maximum values, 1108 ± 161 μS cm on average, within the first three leaching events, then declined exponentially to a breakpoint at the 16th leaching event on average. After the breakpoint, SC release remained linear, with most spoil samples exhibiting declines in SC release with successive leaching events. The SC asymptote averaged 276 ± 25 μS cm. Only three samples had SCs >500 μS cm at the end of the 40 leaching events. Model parameters varied with mine spoil rock and weathering type, and RSATs were predictive of four model parameters. Unweathered samples released higher SCs throughout the leaching period relative to weathered samples, and rock type influenced the rate of SC release. The RSATs for SC, total S, and neutralization potential may best predict certain phases of mine spoil TDS release. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
U.S.-Australia Civilian Nuclear Cooperation: Issues for Congress
2010-12-01
Enrichment.......................................................................................................7 Uranium Mining and Milling...Issues for Congress Congressional Research Service 7 The nuclear fuel cycle begins with mining uranium ore and upgrading it to yellowcake. Because...uranium after the mining and milling stage. Commercial enrichment services are available in the United States, Europe, Russia, and Japan. Fuel
Saint-Pierre, Sylvain; Kidd, Steve
2011-01-01
This paper presents the WNA's worldwide nuclear industry overview on the anticipated growth of the front-end nuclear fuel cycle from uranium mining to conversion and enrichment, and on the related key health, safety, and environmental (HSE) issues and challenges. It also puts an emphasis on uranium mining in new producing countries with insufficiently developed regulatory regimes that pose greater HSE concerns. It introduces the new WNA policy on uranium mining: Sustaining Global Best Practices in Uranium Mining and Processing-Principles for Managing Radiation, Health and Safety and the Environment, which is an outgrowth of an International Atomic Energy Agency (IAEA) cooperation project that closely involved industry and governmental experts in uranium mining from around the world. Copyright © 2010 Health Physics Society
Leaching characteristics, ecotoxicity, and risk assessment based management of mine wastes
NASA Astrophysics Data System (ADS)
Kim, J.; Ju, W. J.; Jho, E. H.; Nam, K.; Hong, J. K.
2016-12-01
Mine wastes generated during mining activities in metal mines generally contain high concentrations of metals that may impose toxic effects to surrounding environment. Thus, it is necessary to properly assess the mining-impacted landscapes for management. The study investigated leaching characteristics, potential environmental effects, and human health risk of mine wastes from three different metal mines in South Korea (molybdenum mine, lead-zinc mine, and magnetite mine). The heavy metal concentrations in the leachates obtained by using the Korean Standard Test Method for Solid Wastes (STM), Toxicity Characteristics Leaching Procedure (TCLP), and Synthetic Precipitation Leaching Procedure (SPLP) met the Korea Waste Control Act and the USEPA region 3 regulatory levels accordingly, even though the mine wastes contained high concentrations of metals. Assuming that the leachates may get into nearby water sources, the leachate toxicity was tested using Daphnia Magna. The toxic unit (TU) values after 24 h and 48 h exposure of all the mine wastes tested met the Korea Allowable Effluent Water Quality Standards (TU<1). The column leaching test showed that the lead-zinc mine waste may have long-term toxic effects (TU>1 for the eluent at L/S of 30) implying that the long-term effect of mine wastes left in mining areas need to be assessed. Considering reuse of mine wastes as a way of managing mine wastes, the human health risk assessment of reusing the lead-zinc mine waste in industrial areas was carried out using the bioavailable fraction of the heavy metals contained in the mine wastes, which was determined by using the Solubility/Bioavailability Research Consortium method. There may be potential carcinogenic risk (9.7E-05) and non-carcinogenic risk (HI, Hazard Index of 1.0E+00) as CR≧1.0E-05 has carcinogenic risk and HI≧1.0E+00 has non-carcinogenic risk. Overall, this study shows that not only the concentration-based assessment but ecological toxic effect and human health risk based assessments can be utilized for mining-impacted landscapes management.
El Paso Natural Gas Mines Fact Sheets
These fact sheets contain information about El Paso Natural Gas Mines and the Western Abandoned Uranium Mine Region, 19 abandoned uranium mine claims generally located along the Little Colorado River or Highway 89 near Cameron, AZ.
CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS
Clifford, W.E.
1962-05-29
A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming AGENCY: Nuclear... to Source Materials License SUA-1598 for continued uranium production operations and in-situ recovery... identified in NUREG-1910, ``Generic Environmental Impact Statement for In-Situ Leach Uranium Milling...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... Ross In-Situ Uranium Recovery Project in Crook County, Wyoming AGENCY: Nuclear Regulatory Commission... Commission (NRC) for a new source materials license for the proposed Ross In-Situ Uranium Recovery (ISR... SEIS is Supplement 5 to NUREG-1910, ``Generic Environmental Impact Statement for In-Situ Leach Uranium...
Cyanide hazards to plants and animals from gold mining and related water issues
Eisler, R.; Wiemeyer, Stanley N.
2004-01-01
Highly toxic sodium cyanide (NaCN) is used by the international mining community to extract gold and other precious metals through milling of high-grade ores and heap leaching of low-grade ores (Korte et al. 2000). The process to concentrate gold using cyanide was developed in Scotland in 1887 and was used almost immediately in the Witwatersrand gold fields of the Republic of South Africa. Heap leaching with cyanide was proposed by the U.S. Bureau of Mines in 1969 as a means of extracting gold from low-grade ores. The gold industry adopted the technique in the 1970s, soon making heap leaching the dominant technology in gold extraction (Da Rosa and Lyon 1997). The heap leach and milling processes, which involve dewatering of gold-bearing ores, spraying of dilute cyanide solutions on extremely large heaps of ores containing low concentrations of gold, or the milling of ores with the use of cyanide and subsequent recovery of the gold-cyanide complex, have created a number of serious environmental problems affecting wildlife and water management. In this account, we review the history of cyanide use in gold mining with emphasis on heap leach gold mining, cyanide hazards to plants and animals, water management issues associated with gold mining, and proposed mitigation and research needs.
Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie
2008-01-01
Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1.05), and this distinctive isotopic composition may be preserved in iron-oxyhydroxide precipitates of acid drainage origin. The study area includes a particularly large vein-type uranium deposit (Schwartzwalder mine) with past uranium production. Stream water and sediment collected downstream from the mine's surface operations have locally anomalous concentrations of uranium. Fine-grained sediments downstream from the mine contain rare minute particles (10-20 micrometers) of uraninite, which is unstable in a stream environment and thus probably of recent origin related to mining. Additional rare particles of very fine grained (less than 5 micrometer) barite likely entered the stream as discharge from settling ponds in which barite precipitation was formerly used to scavenge dissolved radium from mine effluent.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan
2017-06-01
Pollution by the release of heavy metals from tailings constitutes a potential threat to the environment. To characterize the processes governing the release of Mn, Sr, Pb, and U from the uranium mill tailings, a dynamic leaching test was applied for different size of uranium mill tailings samples. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) were performed to determine the content of Mn, Sr, Pb, and U in the leachates. The release of mobile Mn, Sr, Pb, and U fraction was slow, being faster in the initial stage and then attained a near steady-state condition. The experimental results demonstrate that the release of Mn, Sr, Pb, and U from uranium mill tailings with different size fractions is controlled by a variety of mechanisms. Surface wash-off is the release mechanism for Mn. The main release mechanism of Sr and Pb is the dissolution in the initial leaching stage. For U, a mixed process of wash-off and diffusion is the controlling mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chervet, J.
1960-01-01
The major degradations suffered by primary and secondary uranium ores under the weathering action of air and water are assessed. Pyritic ores were found to be the most vunerable. The interactions between pynite oxidation products and urantferous compounds often lead to the formation of neogentc ores. (C.J.G.)
Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines
Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok
2009-01-01
Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231
Monitoring genotoxic exposure in uranium mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sram, R.J.; Vesela, D.; Vesely, D.
1993-10-01
Recent data from deep uranium mines in Czechoslovakia indicated that miners are exposed to other mutagenic factors in addition to radon daughter products. Mycotoxins were identified as a possible source of mutagens in these mines. Mycotoxins were examined in 38 samples from mines and in throat swabs taken from 116 miners and 78 controls. The following mycotoxins were identified from mines samples: aflatoxins B{sub 1} and G1, citrinin, citreoviridin, mycophenolic acid, and sterigmatocystin. Some mold strains isolated from mines and throat swabs were investigated for mutagenic activity by the SOS chromotest and Salmonella assay with strains TA100 and TA98. Mutagenicitymore » was observed, especially with metabolic activation in citro. These data suggest that mycotoxins produced by molds in uranium mines are a new genotoxic factor im uranium miners. 17 refs., 4 tabs.« less
Sustainability of uranium mining and milling: toward quantifying resources and eco-efficiency.
Mudd, Gavin M; Diesendorf, Mark
2008-04-01
The mining of uranium has long been a controversial public issue, and a renewed debate has emerged on the potential for nuclear power to help mitigate against climate change. The central thesis of pro-nuclear advocates is the lower carbon intensity of nuclear energy compared to fossil fuels, although there remains very little detailed analysis of the true carbon costs of nuclear energy. In this paper, we compile and analyze a range of data on uranium mining and milling, including uranium resources as well as sustainability metrics such as energy and water consumption and carbon emissions with respect to uranium production-arguably the first time for modern projects. The extent of economically recoverable uranium resources is clearly linked to exploration, technology, and economics but also inextricably to environmental costs such as energy/water/chemicals consumption, greenhouse gas emissions, and social issues. Overall, the data clearly show the sensitivity of sustainability assessments to the ore grade of the uranium deposit being mined and that significant gaps remain in complete sustainability reporting and accounting. This paper is a case study of the energy, water, and carbon costs of uranium mining and milling within the context of the nuclear energy chain.
PREPARATION OF URANIUM HEXAFLUORIDE
Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.
1959-10-01
A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.
Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...
Uranium Fate and Transport Modeling, Guterl Specialty Steel Site, New York - 13545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Bill; Tandon, Vikas
2013-07-01
The Former Guterl Specialty Steel Corporation Site (Guterl Site) is located 32 kilometers (20 miles) northeast of Buffalo, New York, in Lockport, Niagara County, New York. Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Uranium transport from the site involves legacy on-site pickling fluid handling, themore » leaching of uranium from soil to groundwater, and the groundwater transport of dissolved uranium to the Erie Canal. Groundwater fate and transport modeling was performed to assess the transfer of dissolved uranium from the contaminated soils and buildings to groundwater and subsequently to the nearby Erie Canal. The modeling provides a tool to determine if the uranium contamination could potentially affect human receptors in the vicinity of the site. Groundwater underlying the site and in the surrounding area generally flows southeasterly towards the Erie Canal; locally, groundwater is not used as a drinking water resource. The risk to human health was evaluated outside the Guterl Site boundary from the possibility of impacted groundwater discharging to and mixing with the Erie Canal waters. This condition was evaluated because canal water is infrequently used as an emergency water supply for the City of Lockport via an intake located approximately 122 meters (m) (400 feet [ft]) southeast of the Guterl Site. Modeling was performed to assess whether mixing of groundwater with surface water in the Erie Canal could result in levels of uranium exceeding the U.S. Environmental Protection Agency (USEPA) established drinking water standard for total uranium; the Maximum Concentration Limit (MCL). Geotechnical test data indicate that the major portion of uranium in the soil will adsorb or remain bound to soil, yet leaching to groundwater appears as an on-site source. Soil leaching was modeled using low adsorption factors to replicate worst-case conditions where the uranium leaches to the groundwater. Results indicate that even after several decades, which is the period of time since uranium was processed at the Guterl Site, leaching from soil does not fully account for the currently observed levels of groundwater contamination. Modeling results suggest that there were historic releases of uranium from processing operations directly to the shallow fractured rock and possibly other geochemical conditions that have produced the current groundwater contamination. Groundwater data collected at the site between 1997 and 2011 do not indicate an increasing level of uranium in the main plume, thus the uranium adsorbed to the soil is in equilibrium with the groundwater geochemistry and transport conditions. Consequently, increases in the overall plume concentration or size are not expected. Groundwater flowing through fractures under the Guterl Site transports dissolved uranium from the site to the Erie Canal, where the groundwater has been observed to seep from the northern canal wall at some locations. The seeps discharge uranium at concentrations near or below the MCL to the Erie Canal. Conservative mixing calculations were performed using two worst-case assumptions: 1) the seeps were calculated as contiguous discharges from the Erie Canal wall and 2) the uranium concentration of the seepage is 274 micrograms per liter (μg/L) of uranium, which is the highest on-site uranium concentration in groundwater and nearly ten-fold the actual seep concentrations. The results indicate that uranium concentrations in the seep water would have to be more than 200 times greater than the highest observed on-site groundwater concentrations (or nearly 55,000 μg/L) to potentially exceed the drinking water standard (the MCL) for total uranium in the Erie Canal. (authors)« less
,
1948-01-01
The accompanying map and sections show examples of the present state of information about the occurrence of the "Leached" uranium-bearing bed in the Florida pebble phosphate district. The dashed lines on the map define, as closely as present data permit, the limit of the area in which this bed contains significant amounts of uranium. The figures next to localities on the map indicate first, the thickness of the bed in feet; and second the uranium content in thousandths of percent. For example, the figures 16-10 next to the TVA localities in Secs. 9 and 10, T. 32 S., R. 26 E. indicate 16 feet at 0.010 percent uranium. A "0" by a locality indicates either that the uranium content is less than 0.001 percent or less than the concentration in the underlying phosphate beds (matrix of the miners) or that the leached bed is not present.
Australia unlocks her uranium reserves. [Will develop deposits in Northern Territories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scott, W.E.
1977-11-01
The economic implications of Australia's move to permit the development of uranium mining and to resume exporting uranium have led to forecasts that range from pessimism over unseen factors to an optimistic estimate of $A20 billion and 500,000 jobs. Direct benefits will go to those involved in road construction, mining equipment, and construction camps. The goverment plan calls for mining operations and yellowcake exports from four major uranium mines by 1985. An overview is given of the development plan, which emphasizes an orderly procedure rather than exploitation and excessive competition. The uranium industry is viewed as a stable long-term suppliermore » for international trade. Customers will be required to submit to international Atomic Energy Agency inspection and must guarantee to limit their uranium use to peaceful projects. (DCK)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruedig, Elizabeth; Johnson, Thomas E.
In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y –1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less
Ruedig, Elizabeth; Johnson, Thomas E.
2015-08-30
In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y –1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less
Ruedig, Elizabeth; Johnson, Thomas E
2015-12-01
In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (as nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6-8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42-0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y(-1). Higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear. Published by Elsevier Ltd.
Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans.
Lee, Eunseong; Han, Yosep; Park, Jeonghyun; Hong, Jeongsik; Silva, Rene A; Kim, Seungkon; Kim, Hyunjung
2015-01-01
The behavior of arsenic (As) bioleaching from mine tailings containing high amount of As (ca. 34,000 mg/kg) was investigated using Acidithiobacillus thiooxidans to get an insight on the optimal conditions that would be applied to practical heap and/or tank bioleaching tests. Initial pH (1.8-2.2), temperature (25-40 °C), and solid concentration (0.5-4.0%) were employed as experimental parameters. Complementary characterization experiments (e.g., XRD, SEM-EDS, electrophoretic mobility, cell density, and sulfate production) were also carried out to better understand the mechanism of As bioleaching. The results showed that final As leaching efficiency was similar regardless of initial pH. However, greater initial As leaching rate was observed at initial pH 1.8 than other conditions, which could be attributed to greater initial cell attachment to mine tailings. Unlike the trend observed when varying the initial pH, the final As leaching efficiency varied with the changes in temperature and solid concentration. Specifically, As leaching efficiency tended to decrease with increasing temperature due to the decrease in the bacterial growth rate at higher temperature. Meanwhile, As leaching efficiency tended to increase with decreasing solid concentration. The results for jarosite contents in mine tailings residue after bioleaching revealed that much greater amount of the jarosite was formed during the bioleaching reaction at higher solid concentration, suggesting that the coverage of the surface of the mine tailings by jarosite and/or the co-precipitation of the leached As with jarosite could be a dominant factor reducing As leaching efficiency. Copyright © 2014 Elsevier Ltd. All rights reserved.
Madzivire, Godfrey; Ramasenya, Koena; Tlowana, Supi; Coetzee, Henk; Vadapalli, Viswanath R K
2018-04-16
Over the years, coal mining in the Mpumalanga Province of South Africa has negatively affected the environment by causing pollution of water resources, land subsidence and spontaneous coal combustion. Previous studies show that in-situ treatment of acid mine drainage (AMD) using coal fly ash (CFA) from local power stations was possible and sludge recovered out of such treatment can be used to backfill mines. In this article, the authors have attempted to understand the leaching characteristics of CFA when placed underground as a backfill material using the mine water leaching protocol (MWLP). The results show that the migration of contaminants between the coal fly ash and the AMD in the mine voids depends on the pH and quality of the mine water. While backfilling mine voids with CFA can neutralize and scavenge between 50% and 95% of certain environmentally sensitive elements from AMD such as Fe, Al, Zn, Cu, Ni, Co and Mn. At this moment, it is also important to point out that certain scavenged/removed contaminants from the AMD during initial phases of backfilling can be remobilized by the influx of acidic water into the mine voids. It has therefore been concluded that, while CFA can be used to backfill mine voids, the influx of fresh acidic mine water should be avoided to minimize the remobilization of trapped contaminants such as Fe, Al, Mn and As. However, the pozzolanic material resulting from the CFA-AMD interaction could prevent such influx.
Uranium extraction by complexation with siderophores
NASA Astrophysics Data System (ADS)
Bahamonde Castro, Cristina
One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.
13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?
Code of Federal Regulations, 2012 CFR
2012-01-01
... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...
13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?
Code of Federal Regulations, 2011 CFR
2011-01-01
... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...
13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?
Code of Federal Regulations, 2014 CFR
2014-01-01
... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...
13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?
Code of Federal Regulations, 2010 CFR
2010-01-01
... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... standard for leasing of Government land for uranium mining? A concern is small for this purpose if it...
The History of Uranium Mining and the Navajo People
Brugge, Doug; Goble, Rob
2002-01-01
From World War II until 1971, the government was the sole purchaser of uranium ore in the United States. Uranium mining occurred mostly in the southwestern United States and drew many Native Americans and others into work in the mines and mills. Despite a long and well-developed understanding, based on the European experience earlier in the century, that uranium mining led to high rates of lung cancer, few protections were provided for US miners before 1962 and their adoption after that time was slow and incomplete. The resulting high rates of illness among miners led in 1990 to passage of the Radiation Exposure Compensation Act. PMID:12197966
Uranium Mines and Mills Location Database
EPA has compiled mine location information from federal, state, and Tribal agencies into a single database as part of its investigation into the potential environmental hazards of wastes from abandoned uranium mines in the western United States.
Psychosocial and health impacts of uranium mining and milling on Navajo lands.
Dawson, Susan E; Madsen, Gary E
2011-11-01
The uranium industry in the American Southwest has had profoundly negative impacts on American Indian communities. Navajo workers experienced significant health problems, including lung cancer and nonmalignant respiratory diseases, and psychosocial problems, such as depression and anxiety. There were four uranium processing mills and approximately 1,200 uranium mines on the Navajo Nation's over 27,000 square miles. In this paper, a chronology is presented of how uranium mining and milling impacted the lives of Navajo workers and their families. Local community leaders organized meetings across the reservation to inform workers and their families about the relationship between worker exposures and possible health problems. A reservation-wide effort resulted in activists working with political leaders and attorneys to write radiation compensation legislation, which was passed in 1990 as the Radiation Exposure Compensation Act (RECA) and included underground uranium miners, atomic downwinders, and nuclear test-site workers. Later efforts resulted in the inclusion of surface miners, ore truck haulers, and millworkers in the RECA Amendments of 2000. On the Navajo Nation, the Office of Navajo Uranium Workers was created to assist workers and their families to apply for RECA funds. Present issues concerning the Navajo and other uranium-impacted groups include those who worked in mining and milling after 1971 and are excluded from RECA. Perceptions about uranium health impacts have contributed recently to the Navajo people rejecting a resumption of uranium mining and milling on Navajo lands.
Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field
NASA Astrophysics Data System (ADS)
Kochkin, B. T.; Solodov, I. N.; Ganina, N. I.; Rekun, M. L.; Tarasov, N. N.; Shugina, G. A.; Shulik, L. S.
2017-09-01
The Neogene uranium deposits of the Khiagda ore field (KOF) belong to the paleovalley variety of the hydrogene type and differ from other deposits of this genetic type in the geological and geochemical localization conditions. The contemporary hydrogeochemical setting and microbiological composition of ore-bearing medium are discussed. The redox potential of the medium (Eh is as low as-400 mV) is much lower than those established at other hydrogenic deposits, both ancient Late Mesozoic and young Late Alpine, studied with the same methods in Russia, Uzbekistan, and southern Kazakhstan. The pH of subsurface water (6.86-8.13) differs in significant fluctuations both between neighboring deposits and within individual ore lodes. Hydrogen-forming and denitrifying bacteria are predominant in microbiological populations, whereas sulfate-reducing bacteria are low-active. The consideration of these factors allowed us to describe the mechanism of uranium ore conservation as resulting from the development of the cryolithic zone, which isolates ore lodes from the effect of the external medium. Carbonated water supplied from the basement along fault zones also participates in the formation of the present-day hydrogeochemical setting. Based on the features of the ore-bearing medium, we propose a method of borehole in situ acid leaching to increase the efficiency of mining in the Khiagda ore field.
75 FR 71668 - Cibota National Forest, Mount Taylor Ranger District, NM, Roca Honda Mine
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-24
... develop and conduct underground uranium mining operations on their mining claims on and near Jesus Mesa in... open to mineral entry under the General Mining Law of 1872. Section 16 is State of New Mexico land... statement (EIS) to assess the development of a uranium mining operation on the Mount Taylor Ranger District...
Volume II investigates the potential radiogenic risks from abandoned uranium mines and evaluates which may pose the greatest hazards to members of the public and to the environment. The intent of this report is to identify who may be most likely to be exposed to wastes at small a...
Park, Jin Hee; Li, Xiaofang; Edraki, Mansour; Baumgartl, Thomas; Kirsch, Bernie
2013-06-01
Coal mining wastes in the form of spoils, rejects and tailings deposited on a mine lease can cause various environmental issues including contamination by toxic metals, acid mine drainage and salinity. Dissolution of salt from saline mine spoil, in particular, during rainfall events may result in local or regional dispersion of salts through leaching or in the accumulation of dissolved salts in soil pore water and inhibition of plant growth. The salinity in coal mine environments is from the geogenic salt accumulations and weathering of spoils upon surface exposure. The salts are mainly sulfates and chlorides of calcium, magnesium and sodium. The objective of the research is to investigate and assess the source and mobility of salts and trace elements in various spoil types, thereby predicting the leaching behavior of the salts and trace elements from spoils which have similar geochemical properties. X-ray diffraction analysis, total digestion, sequential extraction and column experiments were conducted to achieve the objectives. Sodium and chloride concentrations best represented salinity of the spoils, which might originate from halite. Electrical conductivity, sodium and chloride concentrations in the leachate decreased sharply with increasing leaching cycles. Leaching of trace elements was not significant in the studied area. Geochemical classification of spoil/waste defined for rehabilitation purposes was useful to predict potential salinity, which corresponded with the classification from cluster analysis based on leaching data of major elements. Certain spoil groups showed high potential salinity by releasing high sodium and chloride concentrations. Therefore, the leaching characteristics of sites having saline susceptible spoils require monitoring, and suitable remediation technologies have to be applied.
NASA Astrophysics Data System (ADS)
Bang, H.; Kim, J.; Hyun, S.
2016-12-01
Mine leachate derived from contaminated mine sites with metallic elements can pose serious risks on human society and environment. Only labile fraction of metallic elements in mine soils is subject to leaching and movement by rainfall. Lability of metallic element in soil is a function of bond strengths between metal and soil surfaces, which is influenced by environmental condition (e.g., rainfall intensity, duration, temperature, etc.) The purpose of this study was to elucidate the effects of various climate conditions on the leaching patterns and lability of metallic elements in mine soils. To do this, two mine soils were sampled from two abandoned mine sites located in Korea. Leaching test were conducted using batch decant-refill method. Various climatic conditions were employed in leaching test such as (1) oven drying (40oC) - wetting cycles, (2) air drying (20oC) - wetting cycle, and (3) freezing (-40oC) - thawing cycles. Duration of drying and freezing were varied from 4 days to 2 weeks. Concentration of metallic elements, pH, Eh and concentration of dissolved iron and sulfate in leachate from each leaching process was measured. To identify the changes of labile fraction in mine soils after each of drying or freezing period, sequential extraction procedure (five fraction) was used to compare labile fraction (i.e., F1 + F2) of metallic elements. The concentration of metallic elements in mine leachate was increased after drying and freezing procedure. The amounts of released metallic element from mine soils was changed depending on their drying or freezing period. In addition, labile fraction of metallic elements in soil was also changed after drying and freezing. The changes in labile fraction after drying and freezing might be due to the increased soil surface area by pore water volume expansion. Further study is therefore needed to evaluate the impact of altered physical properties of soils such as hydration of soil surface area and shrinking by drying and freezing cycles.
Source identification of uranium-containing materials at mine legacy sites in Portugal.
Keatley, A C; Martin, P G; Hallam, K R; Payton, O D; Awbery, R; Carvalho, F P; Oliveira, J M; Silva, L; Malta, M; Scott, T B
2018-03-01
Whilst prior nuclear forensic studies have focused on identifying signatures to distinguish between different uranium deposit types, this paper focuses on providing a scientific basis for source identification of materials from different uranium mine sites within a single region, which can then be potentially used within nuclear forensics. A number of different tools, including gamma spectrometry, alpha spectrometry, mineralogy and major and minor elemental analysis, have been utilised to determine the provenance of uranium mineral samples collected at eight mine sites, located within three different uranium provinces, in Portugal. A radiation survey was initially conducted by foot and/or unmanned aerial vehicle at each site to assist sample collection. The results from each mine site were then compared to determine if individual mine sites could be distinguished based on characteristic elemental and isotopic signatures. Gamma and alpha spectrometry were used to differentiate between samples from different sites and also give an indication of past milling and mining activities. Ore samples from the different mine sites were found to be very similar in terms of gangue and uranium mineralogy. However, rarer minerals or specific impurity elements, such as calcium and copper, did permit some separation of the sites examined. In addition, classification rates using linear discriminant analysis were comparable to those in the literature. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
A study on the selection of indigenous leaching-bacteria for effective bioleaching
NASA Astrophysics Data System (ADS)
Oh, S. J.; Cho, K. H.; Kim, B. J.; Choi, N. C.; Park, C. Y.
2012-04-01
Bioleaching technology, which is based on the ability of microorganisms to transform solid compounds into soluble and extractable valuable elements that can be recovered, has been rapidly developed in recent decades for its advantages, which include mild reaction condition, low energy consumption, simple process, low environmental impact and being suitable for low grade mine tailings and residues. The bacteria activities (survival, adaptation of toxically environments etc.) in the bioleaching technology play a key role in the solubilization of metals. The purpose of this study was to selection of optimal leaching-bacteria through changed pH and redox potential on bio-oxidation in batch experiments for successful bioleaching technology. Twenty three indigenous bacteria used throughout this study, leaching-bacteria were obtained from various geochemical conditions; bacteria inhabitation type (acid mine drainage, mine wastes leachate and sulfur hot springs) and base-metal type (sulfur, sulfide, iron and coal). Bio-oxidation experiment result was showed that 9 cycles (1 cycle - 28days) after the leaching-bacteria were inoculated to a leaching medium, pH was observed decreasing and redox potential increased. In the bacteria inhabitation type, bio-oxidation of sulfur hot springs bacteria was greater than other types (acid mine drainage and mine wastes leachate). In addition, bio-oxidation on base-metal type was appeared sulfur was greater than other types (sulfide, iron and coal). This study informs basic knowledge when bacteria apply to eco-/economic resources utilization studies including the biomining and the recycling of mine waste system.
Bills, Donald J.; Brown, Kristin M.; Alpine, Andrea E.; Otton, James K.; Van Gosen, Bradley S.; Hinck, Jo Ellen; Tillman, Fred D.
2011-01-01
About 1 million acres of Federal land in the Grand Canyon region of Arizona were temporarily withdrawn from new mining claims in July 2009 by the Secretary of the Interior because of concern that increased uranium mining could have negative impacts on the land, water, people, and wildlife. During a 2-year interval, a Federal team led by the Bureau of Land Management is evaluating the effects of withdrawing these lands for extended periods. As part of this team, the U.S. Geological Survey (USGS) conducted a series of short-term studies to examine the historical effects of breccia-pipe uranium mining in the region. The USGS studies provide estimates of uranium resources affected by the possible land withdrawal, examine the effects of previous breccia-pipe mining, summarize water-chemistry data for streams and springs, and investigate potential biological pathways of exposure to uranium and associated contaminants. This fact sheet summarizes results through December 2009 and outlines further research needs.
Schäffner, F; Merten, D; Pollok, K; Wagner, S; Knoblauch, S; Langenhorst, F; Büchel, G
2015-12-01
Extensive uranium mining in the former German Democratic Republic (GDR) in eastern Thuringia and Saxony took place during the period of 1946-1990. During mining activities, pelitic sediments rich in organic carbon and uranium were processed and exposed to oxygen. Subsequent pyrite oxidation and acidic leaching lead to partial contamination of the area with heavy metals and acid mine drainage (AMD) even few years after completion of remediation. One of those areas is the former heap Gessen (Ronneburg, Germany) were the residual contamination can be found 10 m under the base of the former heap containing partly permeable drainage channels. Actually, in such a system, a rapid but locally restricted mineralization of Mn oxides takes place under acidic conditions. This formation can be classified as a natural attenuation process as certain heavy metals, e.g., Cd (up to 6 μg/g), Ni (up to 311 μg/g), Co (up to 133 μg/g), and Zn (up to 104 μg/g) are bound to this phases. The secondary minerals occur as colored layers close to the shallow aquifer in glacial sediments and could be identified as birnessite and todorokite as Mn phase. The thermodynamic model shows that even small changes in the system are sufficient to shift either the pH or the Eh in the direction of stable Mn oxide phases in this acidic system. As a consequence of 9-15-year-long formation process (or even less), the supergene mineralization provides a cost-efficient contribution for remediation (natural attenuation) strategies of residual with heavy metals (e.g., Cd, Co, Ni, Zn) contaminated substrates.
Märten, Arno; Berger, Dietrich; Köhler, Mirko; Merten, Dirk
2015-12-01
We reconstructed the contamination history of an area influenced by 40 years of uranium mining and subsequent remediation actions using dendroanalysis (i.e., the determination of the elemental content of tree rings). The uranium content in the tree rings of four individual oak trees (Quercus sp.) was determined by laser ablation with inductively coupled plasma mass spectrometry (LA-ICP-MS). This technique allows the investigation of trace metals in solid samples with a spatial resolution of 250 μm and a detection limit below 0.01 μg/g for uranium. The investigations show that in three of the four oaks sampled, there were temporally similar uranium concentrations. These were approximately 2 orders of magnitude higher (0.15 to 0.4 μg/g) than those from before the period of active mining (concentrations below 0.01 μg/g). After the mining was terminated and the area was restored, the uranium contents in the wood decreased by approximately 1 order of magnitude. The similar radial uranium distribution patterns of the three trees were confirmed by correlation analysis. In combination with the results of soil analyses, it was determined that there was a heterogeneous contamination in the forest investigated. This could be confirmed by pre-remediation soil uranium contents from literature. The uranium contents in the tree rings of the oaks investigated reflect the contamination history of the study area. This study demonstrates that the dendrochemical analysis of oak tree rings is a suitable technique for investigating past and recent uranium contamination in mining areas.
Qiang, Xue; Bing, Liang; Hui-yun, Wang; Lei, Liu
2006-01-01
An understanding of the dynamic behavior of trace elements leaching from coal mine spoil is important in predicting the groundwater quality. The relationship between trace element concentrations and leaching times, pH values of the media is studied. Column leaching tests conducted in the laboratory showed that there was a close correlation between pH value and trace element concentrations. The longer the leaching time, the higher the trace element concentrations. Different trace elements are differently affected by pH values of leaching media. A numerical model for water flow and trace element transport has been developed based on analyzing the characteristics of migration and transformation of trace elements leached from coal mine spoil. Solutions to the coupled model are accomplished by Eulerian-Lagrangian localized adjoint method. Numerical simulation shows that rainfall intensity determined maximum leaching depth. As rainfall intensity is 3.6ml/s, the outflow concentrations indicate a breakthrough of trace elements beyond the column base, with peak concentration at 90cm depth. And the subsurface pollution range has a trend of increase with time. The model simulations are compared to experimental results of trace element concentrations, with reasonable agreement between them. The analysis and modeling of trace elements suggested that the infiltration of rainwater through the mine spoil might lead to potential groundwater pollution. It provides theoretical evidence for quantitative assessment soil-water quality of trace element transport on environment pollution.
2010 Five-Year Plan: Assessment of Health and Environmental Impacts of Uranium Mining and Milling
The five-year plan is intended to compile all activities contributing to the identification and cleanup of legacy uranium milling and mining activities in the Grants Mining District in the State of New Mexico.
Hageman, Philip L.; Briggs, Paul H.; Desborough, George A.; Lamothe, Paul J.; Theodorakos, Peter M.
2000-01-01
This report details chemistry data derived from leaching of mine-waste composite samples using a modification of E.P.A. Method 1312, Synthetic Precipitation Leaching Procedure (SPLP). In 1998, members of the U.S. Geological Survey Mine Waste Characterization Project collected four mine-waste composite samples from mining districts in southwestern New Mexico (CAR and PET) and near Leadville, Colorado (TUC and MII). Resulting leachate pH values for the four composites ranged from 5.45 to 8.84 and ranked in the following order: CAR < TUC < MII < PET. Specific conductivity values ranged from 85 uS/cm to 847 uS/cm in the following order: PET < MII < CAR < TUC. Geochemical data generated from this investigation reveal that leachate from the CAR composite contains the highest concentrations of Pb, Zn, Ni, Mn, Cu, Cd, and Al
CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...
CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with Mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wai, Chien M.
Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less
Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine
NASA Astrophysics Data System (ADS)
Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.
2015-12-01
In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within the system, as redox couples involving these species collectively bracket the predicted transition redox potential for the U(VI)/U(IV) couple. Reduction should provide much longer-lasting immobilization of constituents than adsorption, especially given the inherent reducing characteristics of roll-front systems.
Le Guernic, Antoine; Sanchez, Wilfried; Bado-Nilles, Anne; Palluel, Olivier; Turies, Cyril; Chadili, Edith; Cavalié, Isabelle; Delahaut, Laurence; Adam-Guillermin, Christelle; Porcher, Jean-Marc; Geffard, Alain; Betoulle, Stéphane; Gagnaire, Béatrice
2016-08-01
Human activities have led to increased levels of various pollutants including metals in aquatic ecosystems. Increase of metallic concentrations in aquatic environments represents a potential risk to exposed organisms, including fish. The aim of this study was to characterize the environmental risk to fish health linked to a polymetallic contamination from former uranium mines in France. This contamination is characterized by metals naturally present in the areas (manganese and iron), uranium, and metals (aluminum and barium) added to precipitate uranium and its decay products. Effects from mine releases in two contaminated ponds (Pontabrier for Haute-Vienne Department and Saint-Pierre for Cantal Department) were compared to those assessed at four other ponds outside the influence of mine tailings (two reference ponds/department). In this way, 360 adult three-spined sticklebacks (Gasterosteus aculeatus) were caged for 28 days in these six ponds before biomarker analyses (immune system, antioxidant system, biometry, histology, DNA integrity, etc.). Ponds receiving uranium mine tailings presented higher concentrations of uranium, manganese and aluminum, especially for the Haute-Vienne Department. This uranium contamination could explain the higher bioaccumulation of this metal in fish caged in Pontabrier and Saint-Pierre Ponds. In the same way, many fish biomarkers (antioxidant and immune systems, acetylcholinesterase activity and biometric parameters) were impacted by this environmental exposure to mine tailings. This study shows the interest of caging and the use of a multi-biomarker approach in the study of a complex metallic contamination.
Beisner, Kimberly R.; Paretti, Nicholas; Tillman, Fred; Naftz, David L.; Bills, Donald; Walton-Day, Katie; Gallegos, Tanya J.
2017-01-01
The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reimus, Paul William
A two-part field study was conducted in Smith Ranch-Highland in-situ recovery (ISR) near Douglas, Wyoming, to evaluate the restorative capacity of the aquifer downgradient (i.e., hydrologically downstream) of a Uranium ISR mining site with respect to the transport of uranium and other potential contaminants in groundwater after mining has ceased. The study was partially conducted by checking the Uranium content and the alkalinity of separate wells, some wells had been restored and others had not. A map and in-depth procedures of the study are included.
Abandoned Uranium Mine (AUM) Surface Areas, Navajo Nation, 2016, US EPA Region 9
This GIS dataset contains polygon features that represent all Abandoned Uranium Mines (AUMs) on or within one mile of the Navajo Nation. Attributes include mine names, aliases, Potentially Responsible Parties, reclaimation status, EPA mine status, links to AUM reports, and the region in which an AUM is located. This dataset contains 608 features.
76 FR 72920 - Notification of a Public Teleconference of the Chartered Science Advisory Board
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... Document ``Considerations Related to Post-Closure Monitoring of Uranium In-Situ ISL/ISR Sites.'' DATES: The... Monitoring of Uranium In-Situ ISL/ISR Sites.'' The SAB will comply with the provisions of FACA and all... Environmental Protection Standards for Uranium and Thorium Mill Tailings in regard to underground In-Situ Leach...
40 CFR 63.11651 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... mine ore at gold mine ore processing and production facilities prior to the cyanide leaching process... are generated from leaching gold ore with a dilute cyanide solution. Quenching means a process in... the presence of steam, after the gold has been stripped from the carbon. Carbon processes with mercury...
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... Molybdenum Ores Subcategory § 440.104 New source performance standards (NSPS). Except as provided in subpart... technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
Hageman, Philip L.
2007-01-01
The U. S. Geological Survey (USGS) has developed a fast (5-minute), effective, simple, and cost-effective leach test that can be used to simulate the reactions that occur when materials are leached by water. The USGS Field Leach Test has been used to predict, assess, and characterize the geochemical interactions between water and a broad variety of geologic and environmental matrices. Examples of some of the samples leached include metal mine wastes, various types of dusts, biosolids (processed sewage sludge), flood and wetland sediments, volcanic ash, forest-fire burned soils, and many other diverse matrices. The Field Leach Test has been an integral part of these investigations and has demonstrated its value as a geochemical characterization tool. It has enabled investigators to identify which constituents are water reactive, soluble, mobilized, and made bioaccessible because of leaching by water, and to understand potential impacts of these interactions on the surrounding environment.
Uranium and its decay products in samples contaminated with uranium mine and mill waste
NASA Astrophysics Data System (ADS)
Benedik, L.; Klemencic, H.; Repinc, U.; Vrecek, P.
2003-05-01
The routine determination of the activity concentrations of uranium isotopes (^{238}U, ^{235}U and ^{234}U), thorium isotopes (^{212}Th, ^{230}TI, and ^{228}Th), ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in the environment is one of the most important tasks in uranium mining areas. Natural radionuclides contribute negligibly to the extemal radiation dose, but in the case of ingestion or inhalation can represent a very serious hazard. The objective of this study was to determine the activities of uranium and its decay products ^{230}Th, ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in sediments and water below sources of contamination (uranium mine, disposal sites and individual inflows) using gamma and alpha spectrometry, beta counting, the liquid scintillation technique and radiochemical neutron activation analysis.
Occurrences of uranium-bearing minerals in the St. Kevin District, Lake County, Colorado
Pierson, C.T.; Singewald, Q.D.
1953-01-01
None of the uranium occurrences are of commercial importance. They are for the most part in non-glaciated terrane, which has been subjected to a very long period of weathering. Thus, chemical leaching within the zone of weathering may have greatly reduced the uranium content of material near the surface, and occurrences of even small quantities of secondary uranium minerals might be related to stronger, primary concentrations at depth.
Multisource geological data mining and its utilization of uranium resources exploration
NASA Astrophysics Data System (ADS)
Zhang, Jie-lin
2009-10-01
Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilpatrick, Laura E.; Cotter, Ed
The U.S. Department of Energy (DOE) Office of Legacy Management is responsible for administering the DOE Uranium Leasing Program (ULP) and its 31 uranium lease tracts located in the Uravan Mineral Belt of southwestern Colorado (see Figure 1). In addition to administering the ULP for the last six decades, DOE has also undertaken the significant task of reclaiming a large number of abandoned uranium (legacy) mine sites and associated features located throughout the Uravan Mineral Belt. In 1995, DOE initiated a 3-year reconnaissance program to locate and delineate (through extensive on-the-ground mapping) the legacy mine sites and associated features containedmore » within the historically defined boundaries of its uranium lease tracts. During that same time frame, DOE recognized the lack of regulations pertaining to the reclamation of legacy mine sites and contacted the U.S. Bureau of Land Management (BLM) concerning the reclamation of legacy mine sites. In November 1995, The BLM Colorado State Office formally issued the United States Department of the Interior, Colorado Bureau of Land Management, Closure/Reclamation Guidelines, Abandoned Uranium Mine Sites as a supplement to its Solid Minerals Reclamation Handbook (H-3042-1). Over the next five-and-one-half years, DOE reclaimed the 161 legacy mine sites that had been identified on DOE withdrawn lands. By the late 1990's, the various BLM field offices in southwestern Colorado began to recognize DOE's experience and expertise in reclaiming legacy mine sites. During the ensuing 8 years, BLM funded DOE (through a series of task orders) to perform reclamation activities at 182 BLM mine sites. To date, DOE has reclaimed 372 separate and distinct legacy mine sites. During this process, DOE has learned many lessons and is willing to share those lessons with others in the reclamation industry because there are still many legacy mine sites not yet reclaimed. DOE currently administers 31 lease tracts (11,017 ha) that collectively contain over 220 legacy (abandoned) uranium mine sites. This contrasts to the millions of hectares administered by the BLM, the U.S. Forest Service, and other federal, tribal, and state agencies that contain thousands of such sites. DOE believes that the processes it has used provide a practical and cost-effective approach to abandoned uranium mine-site reclamation. Although the Federal Acquisition Regulations preclude DOE from competing with private industry, DOE is available to assist other governmental and tribal agencies in their reclamation efforts. (authors)« less
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...
40 CFR 440.104 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
..., in-situ leach or vat-leach processes to extract copper from ores or ore waste materials. The Agency... provided in subpart L of this part any new source subject to this subsection must achieve the following... demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Preliminary examination of uranium deposits near Marysvale, Piute County, Utah
Granger, Harry C.; Bauer, Herman L.
1950-01-01
Autunite and other uranium minerals were discovered in 1948 by Pratt Seegmiller about 3 1/4 miles north of Marysvale, Piute County, Utah. Mining operations were begun in the summer of 1949 by the Vanadium Corporation of America on the Prospector and the Freedom claims, and by the Bullion Monarch Mining Company a the Bullion Monarch claims. These claims were examined briefly in December 1949 and January 1950 by the writers. The uranium deposits of the Marysvale district are in north-easterly striking fault zones in quartz monzonite that intrudes rocks of the "older" Tertiary volcanic sequence. Flows and tuffs of the "younger" Tertiary volcanic sequence uncomfortably overlie the earlier rocks. Autunite, tobernite, uranophane, schroeckingerite, and at least one unidentified secondary uranium mineral occur in the upper parts of the deposits. Pitchblende has been mined from the underground workings of the Prospector No. 1 mine. The uranium minerals are associated with dense quartz veins and intensely argillized wall rock. In the upper parts of the deposits pyrite is completely oxidized. The secondary uranium minerals probably were formed by the alteration of primary pitchblende by circulating meteoric waters.
Lourenço, J; Marques, S; Carvalho, F P; Oliveira, J; Malta, M; Santos, M; Gonçalves, F; Pereira, R; Mendo, S
2017-12-15
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.
1990-01-01
The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.
Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A
2014-08-01
Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sodium cyanide hazards to fish and other wildlife from gold mining operations
Eisler, R.; Clark, D.R.; Wiemeyer, Stanley N.; Henny, C.J.; Azcue, Jose M.
1999-01-01
Highly toxic sodium cyanide (NaCN) is used increasingly by the international mining community to extract gold and other precious metals through milling of high grade ores and heap leaching of low grade ores. Of the 98 million kg cyanide (CN) consumed in North America in 1989, about 80% was used in gold mining (Knudson 1990). In Canada, more than 90% of the mined gold is extracted from ores with the cyanidation process. This process consists of leaching gold from the ore as a gold-cyanide complex, and gold being recovered by precipitation (Simovic and Snodgrass 1985). Milling and heap leaching require cycling of millions of liters of alkaline water containing high concentrations of potentially toxic NaCN, free cyanide, and metal cyanide complexes that are frequently accessible to wildlife. Some milling operations result in tailings ponds of 150 ha and larger. Heap leach operations that spray or drip cyanide solution onto the flattened top of the ore heap require solution processing ponds of about 1 ha in surface area. Although not intentional or desired, puddles of various sizes may occur on the top of heaps where the highest concentrations of NaCN are found. Exposed solution recovery channels are usually constructed at the base of leach heaps. All of these cyanidecontaining water bodies are hazardous to wildlife if not properly managed (Henny et al. 1994). In this account we emphasize hazards of cyanide from mining operations to fish and wildlife species and proposed mitigation to protect them.
Creekmore, Lynn H.
1999-01-01
Cyanide poisoning of birds is caused by exposure to cyanide in two forms: inorganic salts and hydrogen cyanide gas (HCN). Two sources of cyanide have been associated with bird mortalities: gold and silver mines that use cyanide in the extraction process and a predator control device called the M-44 sodium cyanide ejector, which uses cyanide as the toxic agent.Most of the cyanide mortality documented in birds is a result of exposure to cyanide used in heap leach and carbonin-pulp mill gold or silver mining processes. At these mines, the animals are exposed when they ingest water that contains cyanide salts used in mining processes or, possibly, when they inhale HCN gas. In heap leach mining operations, the ore is placed on an impermeable pad over which a cyanide solution is sprayed or dripped. The cyanide solution dissolves and attaches to or “leaches out” the gold. The cyanide and gold solution is then drained to a plastic-lined pond, which is commonly called the pregnant pond. The gold is extracted, and the remaining solution is moved into another lined pond, which is commonly called the barren pond. The cyanide concentration in this pond is increased so that the solution is again suitable for use in the leaching process, and the solution is used again on the ore heap (Fig. 46.1). Bird use of the HCN-contaminated water in the ponds (Fig. 46.2) or contaminated water on or at the base of the heap leach pads (Fig. 46.3) can result in mortality.
Safeguards on uranium ore concentrate? the impact of modern mining and milling process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, Stephen
2013-07-01
Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.
Wibbles, H.L.; Miller, E.I.
1958-01-14
This patent deals with the separation of uranium from molybdenum compounds, and in particular with their separation from ether solutions containing the molybdenum in the form of acids, such as silicomolybdic and phosphomolybdic acids. After the nitric acid leach of pitchblende, the molybdenum values present in the ore are found in the leach solution in the form of complex acids. The uranium bearing solution may be purified of this molybdenum content by comtacting it with activated charcoal. The purification is improved when the acidity of the solution is low ad agitation is also beneficial. The molybdenum may subsequently be recovered from the charcosl ad the charcoal reused.
Nutrient leaching and soil retention in mined land reclaimed with stabilized manure.
Dere, Ashlee L; Stehouwer, Richard C; Aboukila, Emad; McDonald, Kirsten E
2012-01-01
Two environmental problems in Pennsylvania are degraded mined lands and excess manure nutrients from intensive animal production. Manure could be used in mine reclamation, but the large application rates required for sustained biomass production could result in significant nutrient discharge. An abandoned mine site in Schuylkill County, Pennsylvania, was used to test manure nutrient stabilization by composting and by mixing with primary paper mill sludge (PMS). Reclamation treatments were lime and fertilizer, composted poultry manure (78 and 156 Mg ha), and poultry manure (50 Mg ha) mixed with PMS (103 and 184 Mg ha) to achieve C-to-N ratios of 20 and 29. Leachates were collected with zero-tension lysimeters, and during 3 yr following amendment application, <1% of added N leached from the compost treatments. The manure+PMS C:N 29 treatment leached more N than any other treatment (393 kg N ha during 3 yr, 12.4 times more N than compost treatments), mostly as pulses of NO in the first two fall seasons following reclamation. The manure+PMS C:N 20 treatment leached 107 kg N ha during 3 yr. Three years after amendment application, most of the N and P added with the manure-based amendments was retained in the mine soil even though net immobilization of N by PMS appeared to be limited to 3 mo following application. Composting or mixing PMS with manure to achieve a C-to-N ratio of 20 can effectively minimize N leaching, retain added N in mine soil, and provide greater improvement in soil quality than lime and fertilizer amendment. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
28 CFR 79.44 - Proof of working level month exposure to radiation.
Code of Federal Regulations, 2013 CFR
2013-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of...; (2) Certified copies of records of the owner or operator of a uranium mine in the specified states... employment in a uranium mine that a claimant establishes under § 79.43(c) as to which paragraph (d) of this...
28 CFR 79.44 - Proof of working level month exposure to radiation.
Code of Federal Regulations, 2012 CFR
2012-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of...; (2) Certified copies of records of the owner or operator of a uranium mine in the specified states... employment in a uranium mine that a claimant establishes under § 79.43(c) as to which paragraph (d) of this...
28 CFR 79.44 - Proof of working level month exposure to radiation.
Code of Federal Regulations, 2011 CFR
2011-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of...; (2) Certified copies of records of the owner or operator of a uranium mine in the specified states... employment in a uranium mine that a claimant establishes under § 79.43(c) as to which paragraph (d) of this...
28 CFR 79.44 - Proof of working level month exposure to radiation.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.44 Proof of...; (2) Certified copies of records of the owner or operator of a uranium mine in the specified states... employment in a uranium mine that a claimant establishes under § 79.43(c) as to which paragraph (d) of this...
U.S.-Australia Civilian Nuclear Cooperation: Issues for Congress
2010-07-07
Mining and Milling ................................................................................................7 Uranium Sales to India...carried out at Lucas Heights (see below). The nuclear fuel cycle begins with mining uranium ore and upgrading it to yellowcake. Because naturally... mining and milling stage. Commercial enrichment services are available in the United States, Europe, Russia, and Japan. Fuel fabrication services are
RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS
Igelsrud, I.; Stephen, E.F.
1959-08-11
ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.
Distribution of 226Ra body burden of workers in an underground uranium mine in India.
Patnaik, R L; Jha, V N; Kumar, R; Srivastava, V S; Ravi, P M; Tripathi, R M
2014-11-01
Uranium mine workers are exposed to ore dust containing uranium and its daughter products during different mining operations. These radionuclides may pose inhalation hazards to workers during the course of their occupation. The most significant among these radionuclides is (226)Ra. The measurement of radium body burden of uranium mine workers is important to assess their internal exposure. For this purpose, the radon-in-breath measurement technique has been used in the present paper. Workers at the Jaduguda mine, India, associated with different categories of mining operations were monitored between 2001 and 2007. The measurement results indicate that workers--depending on mining operation category--show (226)Ra body burdens ranging from 0.15 to 2.85 kBq. The maximum body burden was found for workers associated with timbering operations, with an average (226)Ra body burden of 0.85 ± 0.54 kBq. Overall, the average value observed for 800 workers was 0.76 ± 0.51 kBq, which gives rise to an average effective dose of 1.67 mSv per year for inhalation and 0.21 mSv per year for ingestion.
Potential of Melastoma malabathricum as bio-accumulator for uranium and thorium from soil
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saat, Ahmad, E-mail: ahmad183@salam.uitm.edu.my; Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam; Kamsani, Ain Shaqina
2015-04-29
Uranium and Thorium are naturally occuring radionuclides. However, due to anthropogenic activities in some locations their concentrations in the soils could be elevated. This study explores the potential of Melastoma malabathricum (locally known as ‘pokok senduduk’) as bio-accumulator of uranium and thorium from soils of three different study areas, namely former tin mining, industrial and residential/commercial areas in Peninsular Malaysia. The study found elevated concentrations of uranium and thorium in former tin mining soils as compared to natural abundance. However in industral and residential/commercial areas the concentrations are within the range of natural abundance. In terms of transfer factor (TF),more » in ex-mining areas TF > 1 for uranium in the leaf, stem and roots, indicating accumulation of uranium from soil. However for thorium TF < 1, indicating the occurence of transfer from soil to root, stem and leaf, but no accumulation. For other areas only transfer of uranium and thorium were observed. The results indicated the potential of Melastoma malabathricum to be used as bio-accumulatior of uranium, especially in areas of elevated concentration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camper, Larry W.; Michalak, Paul; Cohen, Stephen
Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less
78 FR 19261 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... No. 20130073, Draft Supplement, NRC, WY Ross In-Situ Leach Recovery (ISR) Project, Supplement to the Generic Environmental Impact Statement for In-Situ Leach Uranium Milling Facilities, Comment Period Ends... project. EIS No. 20130075, Draft Supplement, NMFS, AK, Effects of Oil and Gas Activities in the Arctic...
A top-down assessment of energy, water and land use in uranium mining, milling, and refining
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Schneider; B. Carlsen; E. Tavrides
2013-11-01
Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, watermore » and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.« less
Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming
2018-01-01
Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Leaching and geochemical behavior of fired bricks containing coal wastes.
Taha, Yassine; Benzaazoua, Mostafa; Edahbi, Mohamed; Mansori, Mohammed; Hakkou, Rachid
2018-03-01
High amounts of mine wastes are continuously produced by the mining industry all over the world. Recycling possibility of some wastes in fired brick making has been investigated and showed promising results. However, little attention is given to the leaching behavior of mine wastes based fired bricks. The objective of this paper is to evaluate the geochemical behavior of fired bricks containing different types of coal wastes. The leachates were analyzed for their concentration of As, Ba, Cd, Co, Cr, Cu, Mo, Ni, Pb, Zn and sulfates using different leaching tests; namely Tank Leaching tests (NEN 7375), Toxicity Characteristic Leaching Procedure (TCLP) and pH dependence test (EPA, 1313). The results showed that the release of constituents of potential interest was highly reduced after thermal treatment and were immobilized within the glassy matrix of the fired bricks. Moreover, it was also highlighted that the final pH of all fired samples changed and stabilized around 8-8.5 when the initial pH of leaching solution was in the range 2.5-11.5. The release of heavy metals and metalloids (As) tended to decrease with the increase of pH from acidic to alkaline solutions while Mo displayed a different trend. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moure-Eraso, R
1999-01-01
This article evaluates how an observational epidemiologic study of federal agencies in uranium miners became an experiment of opportunity for radiation effects. Navajo miners and communities suffered environmental exposures caused by the practices of uranium mining and milling in the Navajo reservation during the 1947 to 1966 period. A historical review of the state-of-the-art knowledge of the health effects of uranium mining and milling during the years prior to 1947 was conducted. Contemporary prevention and remediation practices also were assessed. An appraisal of the summary of findings of a comprehensive evaluation of radiation human experimentation conducted by the U.S. federal government in 1995-96 (ACHRE) demonstrates that uranium miners, including Navajo miners, were the single group that was put more seriously at risk of harm from radiation exposures, with inadequate disclosure and often with fatal consequences. Uranium miners were unwilling and unaware victims of human experimentation to evaluate the health effects of radiation. The failure of the State and U.S. Governments to issue regulations or demand installation of known mine-dust exposure control measures caused widespread environmental damage in the Navajo Nation.
Pierson, Charles Thomas; Green, Morris W.
1977-01-01
Geologic studies were made at all of the uranium mines and prospects in the Dakota Sandstone of Early(?) and Late Cretaceous age in the Gallup mining district, McKinley County, New Mexico. Dakota mines in the adjacent Ambrosia Lake mining district were visited briefly for comparative purposes. Mines in the eastern part of the Gallup district, and in the Ambrosia Lake district, are on the Chaco slope of the southern San Juan Basin in strata which dip gently northward toward the central part of the basin. Mines in the western part of the Gallup district are along the Gallup hogback (Nutria monocline) in strata which dip steeply westward into the Gallup sag. Geologic factors which controlled formation of the uranium deposits in the Dakota Sandstone are: (1) a source of uranium, believed to be uranium deposits of the underlying Morrison Formation of Late Jurassic age; (2) the accessibility to the Dakota of uranium-bearing solutions from the Morrison; (3) the presence in the Dakota of permeable sandstone beds overlain by impermeable carbonaceous shale beds; and (4) the occurrence within the permeable Dakota sandstone beds of carbonaceous reducing material as bedding-plane laminae, or as pockets of carbonaceous trash. Most of the Dakota uranium deposits are found in the lower part of the formation in marginal-marine distributary-channel sandstones which were deposited in the backshore environment. However, the Hogback no. 4 (Hyde) Mine (Gallup district) occurs in sandy paludal shale of the backshore environment, and another deposit, the Silver Spur (Ambrosia Lake district), is found in what is interpreted to be a massive beach or barrier-bar sandstone of the foreshore environment in the upper part of the Dakota. The sedimentary depositional environment most favorable for the accumulation of uranium is that of backshore areas lateral to main distributary channels, where levee, splay, and some distributary-channel sandstones intertongue with gray carbonaceous shales and siltstones of the well-drained swamp environment. Deposits of black carbonaceous shale which were formed in the poorly drained swamp deposits of the interfluve area are not favorable host rocks for uranium. The depositional energy levels of the various environments in which the sandstone and shale beds of the Dakota were deposited govern the relative favorability of the strata as uranium host rocks. In the report area, uranium usually occurs in carbonaceous sandstone deposited under low- to medium-energy fluvial conditions within distributary channels. A prerequisite, however, is that such sandstone be overlain by impermeable carbonaceous shale beds. Low- to medium-energy fluvial conditions result in the deposition of sandstone beds having detrital carbonaceous material distributed in laminae or in trash pockets on bedding planes. The carbonaceous laminae and trash pockets provide the necessary reductant to cause precipitation of uranium from solution. High-energy fluvial conditions result in the deposition of sandstones having little or no carbonaceous material included to provide a reductant. Very low energy swampy conditions result in carbonaceous shale deposits, which are generally barren of uranium because of their relative impermeability to migrating uranium-bearing solutions.
METHOD OF RECOVERING URANIUM COMPOUNDS
Poirier, R.H.
1957-10-29
S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.
From rum jungle to Wismut-reducing the environmental impact of uranium mining and milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuk, W.M.; Jeffree, R.A.; Levins, D.M.
1994-12-31
Australia has a long history of uranium mining. In the early days, little attention was given to environmental matters and considerable pollution occurred. Ansto has been involved in rehabilitation of a number of the early uranium mining sites, from Rum Jungle in Australia`s Northern Territory to Wismut in Germany, and is working with current producers to minimise the environmental impact of their operations. Ansto`s expertise is extensive and includes, inter alia, amelioration of acid mine drainage, radon measurement and control, treatment of mill wastes, management of tailings, monitoring of seepage plumes, mathematical modelling of pollutant transport and biological impacts inmore » a tropical environment.« less
Taxation and regulation of uranium mining in Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1990-11-01
Government taxation and regulation have a profound influence on mineral operations. In Canada, taxation occurs both on the federal and provincial levels. In addition, both federal and provincial regulations also affect mine operations, sometimes with overlapping, or conflicting, legislation and jurisdiction. Three broad areas of regulation affect the mine production of uranium in Canada: (1) mining law or mineral rights; (2) the licensing procedures; and (3) regulation of occupational health and safety.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
Code of Federal Regulations, 2014 CFR
2014-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Code of Federal Regulations, 2012 CFR
2012-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...
Code of Federal Regulations, 2011 CFR
2011-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Code of Federal Regulations, 2010 CFR
2010-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
The Leaching of Aluminium In Spanish Clays, Coal Mining Wastes and Coal Fly Ashes by Sulphuric Acid.
NASA Astrophysics Data System (ADS)
Fernández, A. M.; Ibáñez, J. L.; Llavona, M. A.; Zapico, R.
The acid leaching of aluminium from several non traditional ores, bayerite, kaolinite, different clays, coal mining wastes and coal fly ashes, and the kinetic of their dissolution are described. The effects of time, temperature, acid concentration, sample calcination, particle size were examined. The leaching of aluminium is dependent on acid concentration and strongly on temperature. Generally, the time to reach a fixed percentage of dissolution decreases with increasing acid concentration in the range 6% to 40% acid by weight. On clays and coal mining wastes a good relation between Al removal and ratio kaolinite/illite was also observed at all temperatures and acid concentration tested. Coal fly ashes are particles that were heated at very high temperatures in the power station and Al compounds were transformed into mullite and so Al recovery was minor. Several rate equations describing the kinetics of the leach reaction were discussed and Kinetic parameters and activation energy values of samples are presented.
Moore, George Winfred; Stephens, James G.
1954-01-01
During the summer of 1952 a reconnaissance was conducted in California and parts of Oregon and Nevada in search of new deposits of uranium-bearing carbonaceous rocks. The principal localities found in California where uranium occurs in coal are listed here with. the uranium content of the coal: Newhall prospect, Los Angeles County, 0.020 percent; Fireflex mine, San Benito County, 0.005 percent; American licyaite mine, Amador County, 0.004 percent; and Tesla prospect, Alameda County, 0.003 percent. An oil-saturated sandstone near Edna, San Luis Obispo County, contains 0.002 percent uranium.
Trace elements and Pb isotopes in soils and sediments impacted by uranium mining.
Cuvier, A; Pourcelot, L; Probst, A; Prunier, J; Le Roux, G
2016-10-01
The purpose of this study is to evaluate the contamination in As, Ba, Co, Cu, Mn, Ni, Sr, V, Zn and REE, in a high uranium activity (up to 21,000Bq∙kg(-1)) area, downstream of a former uranium mine. Different geochemical proxies like enrichment factor and fractions from a sequential extraction procedure are used to evaluate the level of contamination, the mobility and the availability of the potential contaminants. Pb isotope ratios are determined in the total samples and in the sequential leachates to identify the sources of the contaminants and to determine the mobility of radiogenic Pb in the context of uranium mining. In spite of the large uranium contamination measured in the soils and the sediments (EF≫40), trace element contamination is low to moderate (2
Thomas, Patricia; Irvine, James; Lyster, Jane; Beaulieu, Rhys
2005-05-01
Tissues from 45 moose and 4 cattle were collected to assess the health of country foods near uranium mines in northern Saskatchewan. Bone, liver, kidney, muscle and rumen contents were analyzed for uranium, radium-226 (226Ra), lead-210 (210Pb), and polonium-210 (210Po). Cesium-137 (137Cs), potassium-40 (40K), and 27 trace metals were also measured in some tissues. Within the most active mining area, Po in liver and muscle declined significantly with distance from tailings, possibly influenced by nearby natural uranium outcrops. Moose from this area had significantly higher 226Ra, 210Pb, 210Po, and 137Cs in some edible soft tissues vs. one control area. However, soil type and diet may influence concentrations as much as uranium mining activities, given that a) liver levels of uranium, 226Ra, and 210Po were similar to a second positive control area with mineral-rich shale hills and b) 210Po was higher in cattle kidneys than in all moose. Enhanced food chain transfer from rumen contents to liver was found for selenium in the main mining area and for copper, molybdenum and cadmium in moose vs. cattle. Although radiological doses to moose in the main mining area were 2.6 times higher than doses to control moose or cattle, low moose intakes yielded low human doses (0.0068 mSv y(-1)), a mere 0.3% of the dose from intake of caribou (2.4 mSv y(-1)), the dietary staple in the area.
Navajo Nation: Cleaning Up Abandoned Uranium Mines
This site provides information about the progress of EPA's cleanup of abandoned uranium mines on Navajo and Hopi lands and in other areas of Arizona and New Mexico, including health impacts, major enforcement and removal milestones, and community actions.
28 CFR 79.42 - Criteria for eligibility for claims by miners.
Code of Federal Regulations, 2011 CFR
2011-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.42 Criteria for... in a uranium mine or mines during the period identified in paragraph (b) of this section; and (d) The...
28 CFR 79.42 - Criteria for eligibility for claims by miners.
Code of Federal Regulations, 2012 CFR
2012-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.42 Criteria for... in a uranium mine or mines during the period identified in paragraph (b) of this section; and (d) The...
28 CFR 79.42 - Criteria for eligibility for claims by miners.
Code of Federal Regulations, 2013 CFR
2013-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.42 Criteria for... in a uranium mine or mines during the period identified in paragraph (b) of this section; and (d) The...
28 CFR 79.42 - Criteria for eligibility for claims by miners.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RADIATION EXPOSURE COMPENSATION ACT Eligibility Criteria for Claims by Uranium Miners § 79.42 Criteria for... in a uranium mine or mines during the period identified in paragraph (b) of this section; and (d) The...
Explosion-assisted preparation of dispersed gold-bearing different-grade ore for selective mining
NASA Astrophysics Data System (ADS)
Trubachev, AI; Zykov, NV
2017-02-01
It is found that there are transient zones (between quality and off-quality ore areas) with the respective content of useful component in an ore body, and a variant of explosive treatment of such zones before the selective mining is put forward. Practicability of two processing technologies is evaluated: processing of high-grade and low-grade ore from the transient zones and heap leaching of metals from the low-grade and impoverished ore. Open mining technology is conventional truck-and-shovel scheme, with distributed ore flows to processing plant and (or) to heap leaching, which generally enhances the mine efficiency.
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.
2009-05-14
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM
DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.
2008-01-01
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950
Zakrzewska-Koltuniewicz, Grażyna; Herdzik-Koniecko, Irena; Cojocaru, Corneliu; Chajduk, Ewelina
2014-06-30
The paper deals with experimental design and optimization of leaching process of uranium and associated metals from low-grade, Polish ores. The chemical elements of interest for extraction from the ore were U, La, V, Mo, Yb and Th. Sulphuric acid has been used as leaching reagent. Based on the design of experiments the second-order regression models have been constructed to approximate the leaching efficiency of elements. The graphical illustrations using 3-D surface plots have been employed in order to identify the main, quadratic and interaction effects of the factors. The multi-objective optimization method based on desirability approach has been applied in this study. The optimum condition have been determined as P=5 bar, T=120 °C and t=90 min. Under these optimal conditions, the overall extraction performance is 81.43% (for U), 64.24% (for La), 98.38% (for V), 43.69% (for Yb) and 76.89% (for Mo) and 97.00% (for Th). Copyright © 2014 Elsevier B.V. All rights reserved.
Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.
Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye
2017-01-01
Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.
Code of Federal Regulations, 2013 CFR
2013-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2014 CFR
2014-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2012 CFR
2012-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... situ coal mining means activities conducted on the surface or underground in connection with in-place... not limited to, in situ gasification, in situ leaching, slurry mining, solution mining, bore hole mining, and fluid recovery mining. At this time, part 870 considers only in situ gasification. Inherent...
Geology of uranium in the Chadron area, Nebraska and South Dakota
Dunham, Robert Jacob
1961-01-01
The Chadron area covers 375 square miles about 25 miles southeast of the Black Hills. Recurrent mild tectonic activity and erosion on the Chadron arch, a compound anticlinal uplift of regional extent, exposed 1900 feet of Upper Cretaceous rocks, mostly marine shale containing pyrite and organic matter, and 600 feet of Oligocene and Miocene rocks, mostly terrestrial fine-grained sediment containing volcanic ash. Each Cretaceous formation truncated by the sub-Oligocene unconformity is stained yellow and red, leached, kaolinized, and otherwise altered to depths as great as 55 feet. The composition and profile of the altered material indicate lateritic soil; indirect evidence indicates Eocene(?) age. In a belt through the central part of the area, the Brule formation of Oligocene age is a sequence of bedded gypsum, clay, dolomite, and limestone more than 300 feet thick. Uranium in Cretaceous shale in 58 samples averages 0.002 percent, ten times the average for the earths crust. Association with pyrite and organic matter indicates low valency. The uranium probably is syngenetic or nearly so. Uranium in Eocene(?) soil in 43 samples averages 0.054 percent, ranging up to 1.12 percent. The upper part of the soil is depleted in uranium; enriched masses in the basal part of the soil consist of remnants of bedrock shale and are restricted to the highest reaches of the ancient oxidation-reduction interface. The uranium is probably in the from of a low-valent mineral, perhaps uraninite. Modern weathering of Cretaceous shale is capable of releasing as much as 0.780 ppm uranium to water. Eocene(?) weathering probably caused enrichment of the ancient soil through 1) leaching of Cretaceous shale, 2) downward migration of uranyl complex ions, and 3) reduction of hydrogen sulfide at the water table. Uranium minerals occur in the basal 25 feet of the gypsum facies of the Brule formation at the two localities where the gypsum is carbonaceous; 16 samples average 0.066 percent uranium and range up to 0.43 percent. Elsewhere uranium in dolomite and limestone in the basal 25 feet of the gypsum facies in 10 samples averages 0.007 percent, ranging up to 0.12 percent. Localization of the uranium at the base of the gypsum facies suggests downward moving waters; indirect evidence that the water from which the gypsum was deposited was highly alkaline suggests that the uranium was leached from volcanic ash in Oligocene time.
Effects of uranium mining, Puerco River, New Mexico
Lopes, Thomas J.
1991-01-01
Effluent from uranium-mine dewatering and acidic water released by a tailings-pond dike failure increased radionuclide activities in streamflow in the Puerco River in New Mexico and Arizona. Median dissolved gross-alpha activity in the streamflow was 1,130 picocuries per liter from 1975 to 1986 when mine discharges ceased and 6.2 picocuries per liter from 1986 to 1989. From 1975 to July 1979, major ions in streamflow at the Puerco River at Gallup streamflow-gaging station were sodium, bicarbonate, and sulfate. On July 16, 1979, the day of the tailing spill, major ions in streamflow were magnesium, calcium, and sulfate. From 1979 to 1984, major ions in streamflow had a greater proportion of calcium and sulfate than prior to the spill, indicating flushing of residual tailings solution. Geochemical modeling of mine effluent indicates that uranium was unlikely to precipitate from effluent between the mines and Gallup or when mixed with wastewater downstream from Gallup. Geochemical modeling of acidic-tailings solution indicates that uranium was in solution as far downstream as Gallup. When the acidic-tailings solution mixed with 10- to 40-percent wastewater, uranium may have precipitated from solution as carnotite [K2(UO2)2(VO4)2] and tyuyamunite [Ca(UO2)2(VO4)2].
Brown, Steven H; Edge, Russel; Elmer, John; McDonald, Michael
2018-06-01
Thousands of former uranium mining sites in the United States, primarily in the southwestern states of Colorado, Arizona, New Mexico, Arizona, and Utah, are being identified and evaluated to assess their potential for causing public and environmental impacts. The common radiological contaminant of concern that characterizes these sites is naturally occurring uranium ore and associated wastes that may have been left behind postmining. The majority of these sites were abandoned and in general, are referred to as abandoned uranium mines, regardless of the government authority currently managing the land or in some cases, assigned responsibility for the oversight of assessment and remediation. The U.S. Department of Energy has identified over 4,000 defense-related uranium mine sites from which uranium ore was purchased by the U.S. government for nuclear defense programs prior to 1970. U.S. Department of Energy has established a program to inventory and perform environmental screening on defense-related uranium mine sites. The focus of this paper is the approximately 2,400 defense-related uranium mine sites located on federal land managed by the Bureau of Land Management and the U.S. Forest Service. This paper presents the results of an analysis to develop radiological screening criteria for U.S. Department of Energy's defense-related uranium mine sites that can be used as input to the overall ranking of these sites for prioritization of additional assessment, reclamation, or remedial actions. For these sites managed by Bureau of Land Management, public access is typically limited to short-term use, primarily for recreational purposes. This is a broad category that can cover a range of possible activities, including camping, hiking, hunting, biking, all-terrain vehicle use, and horseback riding. The radiological screening levels were developed by calculating the radiological dose to future recreational users of defense-related uranium mine sites assuming a future camper spends two weeks per year at the site engaged in recreational activities. Although a number of possible exposure pathways were included in this analysis (inhalation and ingestion of dust and soil, radon and progeny inhalation, and gamma radiation exposure from the soil), it is desirable as a practical matter to determine what gamma exposure rate would ensure that the annual acceptable exposure as determined by the regulatory authority will not be exceeded in the future. Because these sites are generally remote and located in semiarid environments, traditional exposure scenarios often applied in these types of analyses (e.g., subsistent farmers and ranchers), including exposure pathways for the ingestion of locally grown food products and water, were not considered relevant to short-term recreational use.
Subpart B: National Emission Standards for Radon Emissions From Underground Uranium Mines
Subpart B sets a limit on the emission of radon-222 that ensures that no member of the public in any year receives an effective dose equivalent of more than 10 mrem/year from an underground uranium mine.
Singhal, R K; Narayanan, Usha; Karpe, Rupali; Kumar, Ajay; Ranade, A; Ramachandran, V
2009-04-01
During this work, controlled redox potential methodology was adopted for the complete separation of traces of uranium from the host matrix of mixed hydroxide of Iron. Precipitates of Fe(+2) and Fe(+3) along with other transuranic elements were obtained from acid leached solution of soil by raising the pH to 9 with 14N ammonia solution. The concentration of the uranium observed in the soil samples was 200-600 ppb, whereas in sediment samples, the concentration range was 61-400 ppb.
RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS
Wilson, H.F.
1958-07-01
An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.
RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS
Michal, E.J.; Porter, R.R.
1959-06-16
Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)
Son, Hye Ok; Jung, Myung Chae
2011-01-01
This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP < SPLP < TCLP < 0.1 M HCl < 0.5 M HCl < 1.0 M HCl < 3.0 M HCl. In the same extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.
Leachability of uranium and other elements from freshly erupted volcanic ash
Smith, D.B.; Zielinski, R.A.; Rose, W.I.
1982-01-01
A study of leaching of freshly erupted basaltic and dacitic air-fall ash and bomb fragment samples, unaffected by rain, shows that glass dissolution is the dominant process by which uranium is initially mobilized from air-fall volcanic ash. Si, Li, and V are also preferentially mobilized by glass dissolution. Gaseous transfer followed by fixation of soluble uranium species on volcanic-ash particles is not an important process affecting uranium mobility. Gaseous transfer, however, may be important in forming water-soluble phases, adsorbed to ash surfaces, enriched in the economically and environmentally important elements Zn, Cu, Cd, Pb, B, F, and Ba. Quick removal of these adsorbed elements by the first exposure of freshly erupted ash to rain and surface water may pose short-term hazards to certain forms of aquatic and terrestrial life. Such rapid release of material may also represent the first step in transportation of economically important elements to environments favorable for precipitation into deposits of commercial interest. Ash samples collected from the active Guatemalan volcanoes Fuego and Pacaya (high-Al basalts) and Santiaguito (hornblende-hypersthene dacite); bomb fragments from Augustine volcano (andesite-dacite), Alaska, and Heimaey (basalt), Vestmann Islands, Iceland; and fragments of "rhyolitic" pumice from various historic eruptions were subjected to three successive leaches with a constant water-to-ash weight ratio of 4:1. The volcanic material was successively leached by: (1) distilled-deionized water (pH = 5.0-5.5) at room temperature for 24 h, which removes water-soluble gases and salts adsorbed on ash surfaces during eruption; (2) dilute HCl solution (pH = 3.5-4.0) at room temperature for 24 h, which continues the attack initiated by the water and also attacks acid-soluble sulfides and oxides; (3) a solution 0.05 M in both Na,CO, and NaHCO, (pH = 9.9) at 80°C for one week, which preferentially dissolves volcanic glass. The first two leaches mimic interaction of ash with rain produced in the vicinity of an active eruption. The third leach accelerates the effect of prolonged contact of volcanic ash with alkaline ground water present during ash diagenesis.
Determining the release of radionuclides from tank waste residual solids. FY2015 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO 3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH andmore » E h at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an E h range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, E h values observed for the ORIII condition were approximately 160 mV less positive than the target. E h values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to conduct leaching studies with actual Tank 18 residual solids material. Actual waste testing will include leaching evaluations of technetium and neptunium, as well as plutonium and uranium.« less
Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.
2012-07-01
Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The currentmore » Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)« less
Code of Federal Regulations, 2014 CFR
2014-07-01
... includes in situ lung cancers. (j) Readily available documentation means documents in the possession... or uranium mine worker means a person who operated or otherwise worked in a uranium mine. (f... means a chronic lung disease resulting from inhalation and deposition in the lung of particulate matter...
Church, Stan E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann
2008-01-01
Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining geochemical background determined upstream of the mine site. Postmining metal concentrations in sediment are lower than during the mining period, but remain elevated relative to premining geochemical background. Furthermore, the sediment composition of surface sediment in the Blue Creek delta is contaminated. Base-metal contamination by arsenic, cadmium, lead, and zinc in sediment in the delta in Blue Creek cove is dominated by suspended sediment from the Coeur d?Alene mining district. Uranium contamination in surface sediment in the delta of Blue Creek cove extends at least 500 meters downstream from the mouth of Blue Creek as defined by the 1,290-ft elevation boundary between lands administered by the National Park Service and the Spokane Indian Tribe. Comparisons of the premining geochemical background to sediment sampled during the period the mine was in operation, and to the sediment data from the postmining period, are used to delineate the extent of contaminated sediment in Blue Creek cove along the thalweg of Blue Creek into Lake Roosevelt. The extent of contamination out into Lake Roosevelt by mining remains open.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, Michael M.
As a result of NSG restrictions, India cannot import the natural uranium required to fuel its Pressurized Heavy Water Reactors (PHWRs); consequently, it is forced to rely on the expediency of domestic uranium production. However, domestic production from mines and byproduct sources has not kept pace with demand from commercial reactors. This shortage has been officially confirmed by the Indian Planning Commission’s Mid-Term Appraisal of the country’s current Five Year Plan. The report stresses that as a result of the uranium shortage, Indian PHWR load factors have been continually decreasing. The Uranium Corporation of India Ltd (UCIL) operates a numbermore » of underground mines in the Singhbhum Shear Zone of Jharkhand, and it is all processed at a single mill in Jaduguda. UCIL is attempting to aggrandize operations by establishing new mines and mills in other states, but the requisite permit-gathering and development time will defer production until at least 2009. A significant portion of India’s uranium comes from byproduct sources, but a number of these are derived from accumulated stores that are nearing exhaustion. A current maximum estimate of indigenous uranium production is 430t/yr (230t from mines and 200t from byproduct sources); whereas, the current uranium requirement for Indian PHWRs is 455t/yr (depending on plant capacity factor). This deficit is exacerbated by the additional requirements of the Indian weapons program. Present power generation capacity of Indian nuclear plants is 4350 MWe. The power generation target set by the Indian Department of Atomic Energy (DAE) is 20,000 MWe by the year 2020. It is expected that around half of this total will be provided by PHWRs using indigenously supplied uranium with the bulk of the remainder provided by breeder reactors or pressurized water reactors using imported low-enriched uranium.« less
Biota dose assessment of small mammals sampled near uranium mines in northern Arizona
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannik, T.; Minter, K.; Kuhne, W.
In 2015, the U. S. Geological Survey (USGS) collected approximately 50 small mammal carcasses from Northern Arizona uranium mines and other background locations. Based on the highest gross alpha results, 11 small mammal samples were selected for radioisotopic analyses. None of the background samples had significant gross alpha results. The 11 small mammals were identified relative to the three ‘indicator’ mines located south of Fredonia, AZ on the Kanab Plateau (Kanab North Mine, Pinenut Mine, and Arizona 1 Mine) (Figure 1-1) and are operated by Energy Fuels Resources Inc. (EFRI). EFRI annually reports soil analysis for uranium and radium-226 usingmore » Arizona Department of Environmental Quality (ADEQ)-approved Standard Operating Procedures for Soil Sampling (EFRI 2016a, 2016b, 2017). In combination with the USGS small mammal radioiosotopic tissue analyses, a biota dose assessment was completed by Savannah River National Laboratory (SRNL) using the RESidual RADioactivity-BIOTA (RESRAD-BIOTA, V. 1.8) dose assessment tool provided by the Argonne National Laboratory (ANL 2017).« less
1993-12-30
projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible
Cola soft drinks for evaluating the bioaccessibility of uranium in contaminated mine soils.
Lottermoser, Bernd G; Schnug, Ewald; Haneklaus, Silvia
2011-08-15
There is a rising need for scientifically sound and quantitative as well as simple, rapid, cheap and readily available soil testing procedures. The purpose of this study was to explore selected soft drinks (Coca-Cola Classic®, Diet Coke®, Coke Zero®) as indicators of bioaccessible uranium and other trace elements (As, Ce, Cu, La, Mn, Ni, Pb, Th, Y, Zn) in contaminated soils of the Mary Kathleen uranium mine site, Australia. Data of single extraction tests using Coca-Cola Classic®, Diet Coke® and Coke Zero® demonstrate that extractable arsenic, copper, lanthanum, manganese, nickel, yttrium and zinc concentrations correlate significantly with DTPA- and CaCl₂-extractable metals. Moreover, the correlation between DTPA-extractable uranium and that extracted using Coca-Cola Classic® is close to unity (+0.98), with reduced correlations for Diet Coke® (+0.66) and Coke Zero® (+0.55). Also, Coca-Cola Classic® extracts uranium concentrations near identical to DTPA, whereas distinctly higher uranium fractions were extracted using Diet Coke® and Coke Zero®. Results of this study demonstrate that the use of Coca-Cola Classic® in single extraction tests provided an excellent indication of bioaccessible uranium in the analysed soils and of uranium uptake into leaves and stems of the Sodom apple (Calotropis procera). Moreover, the unconventional reagent is superior in terms of availability, costs, preparation and disposal compared to traditional chemicals. Contaminated site assessments and rehabilitation of uranium mine sites require a solid understanding of the chemical speciation of environmentally significant elements for estimating their translocation in soils and plant uptake. Therefore, Cola soft drinks have potential applications in single extraction tests of uranium contaminated soils and may be used for environmental impact assessments of uranium mine sites, nuclear fuel processing plants and waste storage and disposal facilities. Copyright © 2011 Elsevier B.V. All rights reserved.
What are the health costs of uranium mining? A case study of miners in Grants, New Mexico
Jones, Benjamin A
2014-01-01
Background: Uranium mining is associated with lung cancer and other health problems among miners. Health impacts are related with miner exposure to radon gas progeny. Objectives: This study estimates the health costs of excess lung cancer mortality among uranium miners in the largest uranium-producing district in the USA, centered in Grants, New Mexico. Methods: Lung cancer mortality rates on miners were used to estimate excess mortality and years of life lost (YLL) among the miner population in Grants from 1955 to 2005. A cost analysis was performed to estimate direct (medical) and indirect (premature mortality) health costs. Results: Total health costs ranged from $2.2 million to $7.7 million per excess death. This amounts to between $22.4 million and $165.8 million in annual health costs over the 1955–1990 mining period. Annual exposure-related lung cancer mortality was estimated at 2185.4 miners per 100 000, with a range of 1419.8–2974.3 per 100 000. Conclusions: Given renewed interest in uranium worldwide, results suggest a re-evaluation of radon exposure standards and inclusion of miner long-term health into mining planning decisions. PMID:25224806
What are the health costs of uranium mining? A case study of miners in Grants, New Mexico.
Jones, Benjamin A
2014-10-01
Uranium mining is associated with lung cancer and other health problems among miners. Health impacts are related with miner exposure to radon gas progeny. This study estimates the health costs of excess lung cancer mortality among uranium miners in the largest uranium-producing district in the USA, centered in Grants, New Mexico. Lung cancer mortality rates on miners were used to estimate excess mortality and years of life lost (YLL) among the miner population in Grants from 1955 to 2005. A cost analysis was performed to estimate direct (medical) and indirect (premature mortality) health costs. Total health costs ranged from $2·2 million to $7·7 million per excess death. This amounts to between $22·4 million and $165·8 million in annual health costs over the 1955-1990 mining period. Annual exposure-related lung cancer mortality was estimated at 2185·4 miners per 100 000, with a range of 1419·8-2974·3 per 100 000. Given renewed interest in uranium worldwide, results suggest a re-evaluation of radon exposure standards and inclusion of miner long-term health into mining planning decisions.
NASA Astrophysics Data System (ADS)
Liang, Jie; Shi, Chen-hao; Zeng, Guang-ming; Zhong, Min-zhou; Yuan, Yu-jie
2017-07-01
In recent years, heavy metal contamination in the environment has been attracted worldwide attention due to their toxicity, persistence,extensive sources and non-biodegradable properties. We herein investigate variation trend and risk of heavy metal and radiation distribution in the former mine stope, former mineral ore stockyard, and mine road with surface soils of a retired uranium mine in the mid-south of China. The mean concentrations (mg/kg) of Pb,Cd,Cu,Zn,As,Hg,Cr,Mn,Ni,U, and 232Th were analyzed according to the corresponding background values in Hunan, China. The Geo-accumulation index (Igeo ) were used for the assessment of pollution level of heavy metals and the radioactive elements of U and 232Th. Then, Pollution load index (PLI) and GIS techniquewere integrated to assess spatial distribution of heavy metal contamination and radioactive contamination. Results confirmed that three areas in the retired uranium mine was a primary source of pollution, which showed anthropogenic origin mainly from agricultural runoff, hydrometallurgy from chemical industries, radioactive tailings, and electroplating industriesfinally drained into Zishui River and Xiangjiang River. Based on the actual situation, some suggestions were put forward for the treatment of the retired uranium mine in conclusion.
Uranophane at Silver Cliff mine, Lusk, Wyoming
Wilmarth, Verl R.; Johnson, D.H.
1954-01-01
The uranium deposit at the Silver Cliff mine near Lusk, Wyo., consists primarily of uranophane which occurs as fracture fillings and small replacement pockets in faulted and fractured calcareous sandstone of Cambrian (?) age. The country rock in the vicinity of the mine is schist of pre-Cambrian age intruded by pegmatite dikes and is unconformably overlain by almost horizontal sandstone of Cambrian(?) age. The mine is on the southern end of the Lusk Dome, a local structure probably related to the Hartville uplift. In the immediate vicinity of the mine, the dome is cut by the Silver Cliff fault, a north-trending high-angle reverse fault about 1,200 feet in length with a stratigraphic throw of 70 feet. Uranophane, metatorbernite, pitchblende, calcite, native silver, native copper, chalcocite, azurite, malachite, chrysocolla, and cuprite have been deposited in fractured sandstone. The fault was probably mineralized throughout its length, but because of erosion, the mineralized zone is discontinuous. The principal ore body is about 800 feet long. The width and depth of the mineralized zone are not accurately known but are at least 20 feet and 60 feet respectively. The uranium content of material sampled in the mine ranges from 0.001 to 0.23 percent uranium, whereas dump samples range from 0.076 to 3.39 percent uranium.
Agriculture in an area impacted by past uranium mining activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, F. P.; Oliveira, J. M.; Neves, O.
2007-07-01
The shallow aquifer near the old Cunha Baixa uranium mine (Viseu, Portugal) was contaminated by acid mine drainage. Concentration of radionuclides in water from irrigation wells and in the topsoil layer of the agriculture fields nearby display enhanced concentrations of uranium, radium and polonium. Two types of agriculture land in this area were selected, one with enhanced and another with low uranium concentrations, for controlled growth of lettuce and potatoes. Plants were grown in replicate portions of land (two plots) in each soil type and were periodically irrigated with water from wells. In each soil, one plot was irrigated withmore » water containing low concentration of dissolved uranium and the other plot with water containing enhanced concentration of dissolved uranium. At the end of the growth season, plants were harvested and analysed, along with soil and irrigation water samples. Results show the accumulation of radionuclides in edible parts of plants, specially in the field plots with higher radionuclide concentrations in soil. Radionuclides in irrigation water contributed less to the radioactivity accumulated in plants than radionuclides from soils. (authors)« less
Uranium deposits at the Jomac mine, White Canyon area, San Juan County, Utah
Trites, A.F.; Hadd, G.A.
1955-01-01
azurite, and chalcanthite occur locally with the uranium minerals. Principal ore guides at the Jomac mine are channels, and scours at the bottom of these channels coal-bearing sandstone or conglomerate at the base of the Shinarump conglomerate, coal, and jarosite.
NASA Astrophysics Data System (ADS)
Pereira, Dolores; Pereira, Alcides; Neves, Luis
2015-04-01
The study of radioactivity in natural stones is a subject of great interest from different points of view: scientific, social and economic. Several previous studies have demonstrated that the radioactivity is dependent, not only on the uranium content, but also on the structures, textures, minerals containing the uranium and degree of weathering of the natural stone. Villavieja granite is extracted in a village where uranium mining was an important activity during the 20th century. Today the mine is closed but the granite is still extracted. Incorrect information about natural radioactivity given to natural stone users, policy makers, construction managers and the general public has caused turmoil in the media for many years. This paper considers problems associated with the communication of reliable information, as well as uncertainties, on natural radioactivity to these audiences.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
...-Filing system also distributes an email notice that provides access to the document to the NRC's Office... mail, or expedited delivery service to the Office of the Secretary, Sixteenth Floor, One White Flint... courier, express mail, or expedited delivery service upon depositing the document with the provider of the...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-07
..., the reader is referred to the Nuclear Regulatory Commission's Generic EIS of In-Situ Leach Uranium.... SUMMARY: Pursuant to the National Environmental Policy Act of 1969, as amended, (NEPA) and in response to... to solicit public comments regarding issues and resource information for the proposed Gas Hills in...
Ngom, Baba; Liang, Yili; Liu, Xueduan
2014-01-01
A cross-comparison of six strains isolated from two different regions, Chambishi copper mine (Zambia, Africa) and Dexing copper mine (China, Asia), was conducted to study the leaching efficiency of low grade copper ores. The strains belong to the three major species often encountered in bioleaching of copper sulfide ores under mesophilic conditions: Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferriphilum. Prior to their study in bioleaching, the different strains were characterized and compared at physiological level. The results revealed that, except for copper tolerance, strains within species presented almost similar physiological traits with slight advantages of Chambishi strains. However, in terms of leaching efficiency, native strains always achieved higher cell density and greater iron and copper extraction rates than the foreign microorganisms. In addition, microbial community analysis revealed that the different mixed cultures shared almost the same profile, and At. ferrooxidans strains always outcompeted the other strains. PMID:25478575
THE MARY KATHLEEN URANIUM PROJECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, A.
1960-02-01
A description is given of uranium mining and milling methods at the Mary Kathleen Mine in the Cloncurry-Mt. Isa district of Queensland, Australia. The discovery of this property and its development are outlined. The deposit cecurs in highly altered meta-sediments in the corella beds of lower proterozoic age. Because of the considerable internal waste in the deposit, it was necessary to devise a selective mining method which would keep dilution to the lowest possible level. The mining, haulage and handling, premilling program, drilling, and blasting are discussed. (M.C.G.)
Chau, N D; Wyszomirski, P; Chruściel, E; Ochoński, A
1999-11-01
In this paper, a method of determination of uranium 238 and 234 in mining waters of Andrzej kaolin open pit in Zarów (Lower Silesia) is presented. The method is based on independent measurements of alpha and beta radiation intensities by means of a liquid scintillation spectrometer alpha/beta. The initial volume of water sample was 3 dm3, then it was diminished by chemical preparation to 6 cm3, and then 12 cm3 of scintillator was added. The lower limit of detection (for the measurement time of 8 h) for both 234U and 238U amounted to 0.02 Bq/dm3. For determination of the uranium content in ferruginous sediments precipitating from mining waters of the above-mentioned open pit, gamma ray spectrometry was used. The obtained results may be viewed as a contribution to studies on anomalous uranium concentration within this kaolin deposit. The elevated uranium content, in comparison with its average concentration in the Earth crust, is characteristic for parent rocks of Andrzej kaolin deposit, which are granitoids of Strzegom-Sobótka massif. In connection with it, the high uranium content can be observed not only in kaolin and weakly kaolinised granitoids from the deposit in question, but also in mining waters genetically related with them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dare, W.L.
1957-04-01
Descriptions are given of the Calyx No. 3 mine operated by American Reduc Uranium Corp. and Calyx No. 8 operated by Cline Co. The deposits are composed of numerous small, irregular bodies and are worked through 36 inch Calyx drill holes. The U--V ores are concentrated chiefly in the lower 30 feet of the Moss Back sandstone. In general it follows the strnta. The mine is worked by open stoping with random pillar support. The operations and mining practices of these two mines are very similar and typify the mining methods and practioes used by many small U producers onmore » the Colorado Plateau. (R.V.J.)« less
Pant, H J; Sharma, V K; Shenoy, K T; Sreenivas, T
2015-03-01
An alkaline based continuous leaching process is commonly used for extraction of uranium from uranium ore. The reactor in which the leaching process is carried out is called a continuous leaching reactor (CLR) and is expected to behave as a continuously stirred tank reactor (CSTR) for the liquid phase. A pilot-scale CLR used in a Technology Demonstration Pilot Plant (TDPP) was designed, installed and operated; and thus needed to be tested for its hydrodynamic behavior. A radiotracer investigation was carried out in the CLR for measurement of residence time distribution (RTD) of liquid phase with specific objectives to characterize the flow behavior of the reactor and validate its design. Bromine-82 as ammonium bromide was used as a radiotracer and about 40-60MBq activity was used in each run. The measured RTD curves were treated and mean residence times were determined and simulated using a tanks-in-series model. The result of simulation indicated no flow abnormality and the reactor behaved as an ideal CSTR for the range of the operating conditions used in the investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yager, Douglas B.; Fey, David L.; Chapin, Thomas; Johnson, Raymond H.
2016-01-01
The Gold King mine water release that occurred on 5 August 2015 near the historical mining community of Silverton, Colorado, highlights the environmental legacy that abandoned mines have on the environment. During reclamation efforts, a breach of collapsed workings at the Gold King mine sent 3 million gallons of acidic and metal-rich mine water into the upper Animas River, a tributary to the Colorado River basin. The Gold King mine is located in the scenic, western San Juan Mountains, a region renowned for its volcano-tectonic and gold-silver-base metal mineralization history. Prior to mining, acidic drainage from hydrothermally altered areas was a major source of metals and acidity to streams, and it continues to be so. In addition to abandoned hard rock metal mines, uranium mine waste poses a long-term storage and immobilization challenge in this area. Uranium resources are mined in the Colorado Plateau, which borders the San Juan Mountains on the west. Uranium processing and repository sites along the Animas River near Durango, Colorado, are a prime example of how the legacy of mining must be managed for the health and well-being of future generations. The San Juan Mountains are part of a geoenvironmental nexus where geology, mining, agriculture, recreation, and community issues converge. This trip will explore the geology, mining, and mine cleanup history in which a community-driven, watershed-based stakeholder process is an integral part. Research tools and historical data useful for understanding complex watersheds impacted by natural sources of metals and acidity overprinted by mining will also be discussed.
Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.
2014-01-01
Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions are the locally endemic Tusayan flameflower Phemeranthus validulus, the long-legged bat Myotis volans, and the Arizona bat Myotis occultus. The most common vertebrate species identified at the mine site included the Mexican spadefoot toad Spea multiplicata, plateau fence lizard Sceloporus tristichus, violetgreen swallow Tachycineta thalassina, pygmy nuthatch Sitta pygmaea, purple martin Progne subis, western bluebird Sialia mexicana, deermouse Peromyscus maniculatus, valley pocket gopher Thomomys bottae, cliff chipmunk Tamias dorsalis, black-tailed jackrabbit Lepus californicus, mule deer Odocoileus hemionus, and elk Cervus canadensis. A limited number of the most common species were collected for contaminant analysis to establish baseline contaminant and radiological concentrations prior to ore extraction. These empirical baseline data will help validate contaminant exposure pathways and potential threats from contaminant exposures to ecological receptors. Resource managers will also be able to use these data to determine the extent to which local species are exposed to chemical and radiation contamination once the mine is operational and producing ore. More broadly, these data could inform resource management decisions on mitigating chemical and radiation exposure of biota at high-grade uranium breccia pipes throughout the Grand Canyon watershed.
Leaching Properties of Naturally Occurring Heavy Metals from Soils
NASA Astrophysics Data System (ADS)
Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.
2014-12-01
The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with remediation of naturally polluted sites, and emphasizes the importance of risk-based countermeasures against naturally occurring heavy metals. Keywords: Leaching properties, Control Factor, Naturally Occurring Heavy Metals, Lead, Arsenic, Chromium
MINING AND PROCESSING AT THE MARY KATHLEEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1959-03-01
Ore mining and processing to the yellow cake at Mary Kathleen, Queensland, Australia, are described. The mining, crushlng, grinding, leaching, solids separation, ion exchange, purification, and final precipitation procedures and equipment are discussed in some detail. (T.R.H.)
For nearly a century, Clear Lake in northern California has received inputs of mercury (Hg) mining wastes trom the Sulfur Bank Mercury Mine (SBMM). About 1.2 million tons of Hg-contaminated overburden and mine tailings were distributed over a 50-ha surface area due to mining oper...
Carbonate-H2O2 Leaching for Sequestering Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Horng-Bin; Weisheng, Liao; Wai, Chien
Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with little loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.
Carbonate-H₂O₂ leaching for sequestering uranium from seawater.
Pan, Horng-Bin; Liao, Weisheng; Wai, Chien M; Oyola, Yatsandra; Janke, Christopher J; Tian, Guoxin; Rao, Linfeng
2014-07-28
Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1 M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to the formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with minimal loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.
NASA Astrophysics Data System (ADS)
Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.
2012-08-01
We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.
Plutonium Decontamination of Uranium using CO2 Cleaning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blau, M
A concern of the Department of Energy (DOE) Environmental Management (EM) and Defense Programs (DP), and of the Los Alamos National Laboratory (LANL) and the Lawrence Livermore National Laboratory (LLNL), is the disposition of thousands of legacy and recently generated plutonium (Pu)-contaminated, highly enriched uranium (HEU) parts. These parts take up needed vault space. This presents a serious problem for LLNL, as site limit could result in the stoppage of future weapons work. The Office of Fissile Materials Disposition (NN-60) will also face a similar problem as thousands of HEU parts will be created with the disassembly of site-return pitsmore » for plutonium recovery when the Pit Disassembly and Conversion Facility (PDCF) at the Savannah River Site (SRS) becomes operational. To send HEU to the Oak Ridge National Laboratory and the Y-12 Plant for disposition, the contamination for metal must be less than 20 disintegrations per minute (dpm) of swipable transuranic per 100 cm{sup 2} of surface area or the Pu bulk contamination for oxide must be less than 210 parts per billion (ppb). LANL has used the electrolytic process on Pu-contaminated HEU weapon parts with some success. However, this process requires that a different fixture be used for every configuration; each fixture cost approximately $10K. Moreover, electrolytic decontamination leaches the uranium metal substrate (no uranium or plutonium oxide) from the HEU part. The leaching rate at the uranium metal grain boundaries is higher than that of the grains and depends on the thickness of the uranium oxide layer. As the leaching liquid flows past the HEU part, it carries away plutonium oxide contamination and uranium oxide. The uneven uranium metal surface created by the leaching becomes a trap for plutonium oxide contamination. In addition, other DOE sites have used CO{sub 2} cleaning for Pu decontamination successfully. In the 1990's, the Idaho National Engineering Laboratory investigated this technology and showed that CO{sub 2} pellet blasting (or CO{sub 2} cleaning) reduced both fixed and smearable contamination on tools. In 1997, LLNL proved that even tritium contamination could be removed from a variety of different matrices using CO{sub 2}cleaning. CO{sub 2} cleaning is a non-toxic, nonconductive, nonabrasive decontamination process whose primary cleaning mechanisms are: (1) Impact of the CO{sub 2} pellets loosens the bond between the contaminant and the substrate. (2) CO{sub 2} pellets shatter and sublimate into a gaseous state with large expansion ({approx}800 times). The expanding CO{sub 2} gas forms a layer between the contaminant and the substrate that acts as a spatula and peels off the contaminant. (3) Cooling of the contaminant assists in breaking its bond with the substrate. Thus, LLNL conducted feasibility testing to determine if CO{sub 2} pellet blasting could remove Pu contamination (e.g., uranium oxide) from uranium metal without abrading the metal matrix. This report contains a summary of events and the results of this test.« less
NASA Astrophysics Data System (ADS)
Petrescu, L.; Bilal, E.
2012-04-01
Between 1962 and 2009, National Company of Uranium - CNU, the former Romanian Rare Metals Mining Company, mined over 1,200,000 tones of pitchblende ore in the East Carpathians (Crucea-Botušana area, Bistrita Mountains). The exploration and mining facilities include 32 adits, situated between 780 and 1040 m above sea level. Radioactive waste resulted from mining are disposed next to the mining facilities. Mine dumps (32) cover an area of 364,000 square meters and consist of waste rock (rocks with sub-economic mineralization) and gangue minerals. Older dumps (18) have been already naturally reclaimed by forest vegetation, which played an important role in stabilizing the waste dump cover and in slowing down the uranium migration processes. The soils samples have been collected from different mine dumps in the Crucea-Botušana uranium deposit, mainly from 1, 4, 5, 6, 8, 9, 1/30 and 950 mine waste galleries. Soil samples were collected from the upper part and slope at each mine dump, from the vegetation root zones. Total uranium concentration in soils collected from Crucea-Botušana site ranged from 6.10 to 680.70 ppm, with a mean of 52.48 ppm (dry wt.). Total thorium varies between 7.70 and 115.30 ppm (dry wt.). This indicates that the adsorption of the radioactive elements by the soils is high and variable, influenced by the ore dump - sample relationship. The sequential extraction has emphasized the fact that the uranium is associated with all the mineral fractions present in the soil samples. A great percentage of U can be found in the carbonate (21.77%), organic (15.04%) and oxides fractions (15.88%) - in accordance with the high absorbed/adsorbed properties of this element. The percentage of uranium detected in the exchangeable fraction is rather small - 2.16%. It is also to be expected that the uranium should be irreversible adsorbed by the organic matter and by the clay minerals due to its ionic radius and to its positive charge. The fact that 21.77% of the total uranium can be found in the specifically absorbed and carbonate bound fraction, indicated the important role played by the carbonates in the retention of U; one the other hand this fraction is liable to release the uranium if the pH should happen to change. Thorium appear in high-enough concentration in the soil is scarcely available because 70.29% is present in residual fraction, and about 21.78% in the crystalline iron oxides occluded fraction and organically and secondary sulfide bound fraction. This is certainly due to the fact that this naturally occurring radionuclide can be associated with relatively insoluble mineral phases like alumino-silicates and refractory oxides. Its association with the organic matter (10.93%) suggests that it can form soluble organic complexes that can facilitate its removal by the stream waters. Grounded on these results, we were able to prove that the examined mine dumps can represent an impact on the environment, which constitute an argument in favor of the initiation of a program of remedying the quality of the environment from this mining zone. Although from our research it resulted that the natural actinides does not concentrate in the exchangeable fraction (Th) or it concentrates very little in it (U), the isolation of the mineral fraction of soil rich in U and Th helps us in the future identification of the links between the bioavailability and the pedogenesis, connections which control the cycle of the radioactive metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balaceanu, J.C.; Coussemant, F.; Mouret, P.
1959-10-31
A study was made of the basic characteristics of the leaching with carbonate solution under oxygen pressure and of the catalytic hydrogen reduction of low-grade French ores. Pure U/sub 3/O/sub 8/ was used in the investigations on leaching. The effects of oxygen pressure, temperature, initial surface of the oxide, surfuce during the course of the reaction, and concentration of the carbonate solution were determined. It was shown that the heterogeneous reactions involve a constant surface and two steps. A pilot plant experiment was made on a number of low-grade French ores. With ores the leaching is not sensitive to oxygenmore » pressure. Dilute solutions of sodium uranyl carbonate are obtained from the leaching. The uranium can be precipitated as an oxide of a lower valent state by catalytic reduction with hydrogen. The study of this step was made on pure solutions of sodium uranyl carbonate in the presence of nickel and platinum catalysts. The reaction is strongly modified by the presence of even low concentrations of sodium bicarbonate. The reaction velocity increases with hydrogen pressure up to 5 atm, but then becomes independent of the pressure. The precipitation is accelerated by an increase in temperature. (J.S.R.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1957-01-01
The conditions affecting the sulfuric acid leaching of uranium ores from Venta de Cardena were studied on a laboratory scale. The effects of grain size, acid concentration, liquid-solid ratio, temperature, presence of oxidizing agents, and agitation time were investigated. The results led to the establishments of the conditions for the selective leaching of the ores, and these conditions are tabulated. (J.S.R.)
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... Uranium Recovery Project, located in the Pumpkin Buttes Uranium Mining District within the Powder River.... Alternatives that were considered, but were eliminated from detailed analysis, include conventional mining and... an Agencywide Documents and Management System (ADAMS), which provides text and image files of the NRC...
NASA Astrophysics Data System (ADS)
Zhumadilov, Kassym; Ivannikov, Alexander; Khailov, Artem; Orlenko, Sergei; Skvortsov, Valeriy; Stepanenko, Valeriy; Kuterbekov, Kairat; Toyoda, Shin; Kazymbet, Polat; Hoshi, Masaharu
2017-11-01
In order to estimate radiation effects on uranium enterprise staff and population teeth samples were collected for EPR tooth enamel dosimetry from population of Stepnogorsk city and staff of uranium mining enterprise in Shantobe settlment (Akmola region, North of Kazakhstan). By measurements of tooth enamel EPR spectra, the total absorbed dose in the enamel samples and added doses after subtraction of the contribution of natural background radiation are determined. For the population of Stepnogorsk city average added dose value of 4 +/- 11 mGy with variation of 51 mGy was obtained. For the staff of uranium mining enterprise in Shantobe settlment average value of added dose 95 +/- 20 mGy, with 85 mGy variation was obtained. Higher doses and the average value and a large variation for the staff, probably is due to the contribution of occupational exposure.
Geology and ore deposits of the McDermitt Caldera, Nevada-Oregon
Rytuba, James J.
1976-01-01
The McDermitt caldera is a Miocene collapse structure along the Nevada-Oregon border. The oval-shaped caldera is bounded by arcuate normal faults on the north and south and by rhyolite ring domes on the west. Precollapse ash-flow tuffs exposed within the south caldera rim consist of three cooling units and are peralkaline in composition. Refractive indexes of nonhydrated glasses from basal vitrophyres of the. units range from 1.493 to 1.503 and are typical of comendites. Post-collapse intracaldera rocks consist of tuffaceous lake sediments, rhyolite flows and domes, and ash-flow tuffs. Within the caldera are the mercury mines of Bretz, Cordero, McDermitt, Opalite, and Ruja and the Moonlight uranium mine. The mercury mines are adjacent to ring fracture faults, and the uranium mine and other uranium occurrences are located within rhyolite ring domes. Fluid inclusions in quartz indicate a deposition temperature of 340?C for the uranium deposit and 200?C for the mercury deposits. The mercury deposits formed at shallow depth by replacement of lakebed sediments and volcanic rocks.
Biogeochemical prospecting for uranium with conifers: results from the Midnite Mine area, Washington
Nash, J. Thomas; Ward, Frederick Norville
1977-01-01
The ash of needles, cones, and duff from Ponderosa pine (Pinus ponderosa Laws) growing near uranium deposits of the Midnite mine, Stevens County, Wash., contain as much as 200 parts per million (ppm) uranium. Needle samples containing more than 10 ppm uranium define zones that correlate well with known uranium deposits or dumps. Dispersion is as much as 300 m but generally is less. Background is about 1 ppm. Tree roots are judged to be sampling ore, low-grade uranium halo, or ground water to a depth of about 15 m. Uptake of uranium by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) needles appears to be about the same as by Ponderosa pine needles. Cones and duff are generally enriched in uranium relate to needles. Needles, cones, and duff are recommended as easily collected, uncomplicated sample media for geochemical surveys. Samples can be analyzed by standard methods and total cost per sample kept to about $6.
Dynamic leaching studies of 48 MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions
NASA Astrophysics Data System (ADS)
Serrano-Purroy, D.; Casas, I.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; Clarens, F.; Giménez, J.; de Pablo, J.; Martínez-Esparza, A.
2013-03-01
The leaching of a high-burn-up spent nuclear fuel (48 MWd/KgU) has been studied in a carbonate-containing solution and under oxic conditions using a Continuously Stirred Tank Flow-Through Reactor (CSTR). Two samples of the fuel, one prepared from the centre of the pellet (labelled CORE) and another one from the fuel pellet periphery, enriched with the so-called High Burn-Up Structure (HBS, labelled OUT) have been used.For uranium and actinides, the results showed that U, Np, Am and Cm gave very similar normalized dissolution rates, while Pu showed slower dissolution rates for both samples. In addition, dissolution rates were consistently two to four times lower for OUT sample compared to CORE sample.Considering the fission products release the main results are that Y, Tc, La and Nd dissolved very similar to uranium; while Cs, Sr, Mo and Rb have up to 10 times higher dissolution rates. Rh, Ru and Zr seemed to have lower dissolution rates than uranium. The lowest dissolution rates were found for OUT sample.Three different contributions were detected on uranium release, modelled and attributed to oxidation layer, fines and matrix release.
Abandoned Uranium Mines (AUM) Site Screening Map Service, 2016, US EPA Region 9
As described in detail in the Five-Year Report, US EPA completed on-the-ground screening of 521 abandoned uranium mine areas. US EPA and the Navajo EPA are using the Comprehensive Database and Atlas to determine which mines should be cleaned up first. US EPA continues to research and identify Potentially Responsible Parties (PRPs) under Superfund to contribute to the costs of cleanup efforts.This US EPA Region 9 web service contains the following map layers:Abandoned Uranium Mines, Priority Mines, Tronox Mines, Navajo Environmental Response Trust Mines, Mines with Enforcement Actions, Superfund AUM Regions, Navajo Nation Administrative Boundaries and Chapter Houses.Mine points have a maximum scale of 1:220,000, while Mine polygons have a minimum scale of 1:220,000. Chapter houses have a minimum scale of 1:200,000. BLM Land Status has a minimum scale of 1:150,000.Full FGDC metadata records for each layer can be found by clicking the layer name at the web service endpoint and viewing the layer description. Data used to create this web service are available for download at https://edg.epa.gov/metadata/catalog/data/data.page.Security Classification: Public. Access Constraints: None. Use Constraints: None. Please check sources, scale, accuracy, currentness and other available information. Please confirm that you are using the most recent copy of both data and metadata. Acknowledgement of the EPA would be appreciated.
TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials)
... and Titanium Mining Wastes Rare Earths Mining Wastes Uranium Mining Wastes Copper Mining and Production Wastes Bauxite and Alumina Production Wastes Energy production Oil and Gas Production Wastes Coal Combustion Residuals Water ...
The United States and the Navajo Nation entered into settlement agreements that provide funds to conduct investigations and any needed cleanup at 16 of the 46 priority mines, including six mines in the Northern Abandoned Uranium Mine Region.
Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Elskens, Marc; Phrommavanh, Vannapha; Descostes, Michael
2016-03-24
The performance of the Diffusive Gradients in Thin films (DGT) technique with Chelex(®)-100, Metsorb™ and Diphonix(®) as binding phases was evaluated in the vicinity of the former uranium mining sites of Chardon and L'Ecarpière (Loire-Atlantique department in western France). This is the first time that the DGT technique with three different binding agents was employed for the aqueous U determination in the context of uranium mining environments. The fractionation and speciation of uranium were investigated using a multi-methodological approach using filtration (0.45 μm, 0.2 μm), ultrafiltration (500 kDa, 100 kDa and 10 kDa) coupled to geochemical speciation modelling (PhreeQC) and the DGT technique. The ultrafiltration data showed that at each sampling point uranium was present mostly in the 10 kDa truly dissolved fraction and the geochemical modelling speciation calculations indicated that U speciation was markedly predominated by CaUO2(CO3)3(2-). In natural waters, no significant difference was observed in terms of U uptake between Chelex(®)-100 and Metsorb™, while similar or inferior U uptake was observed on Diphonix(®) resin. In turn, at mining influenced sampling spots, the U accumulation on DGT-Diphonix(®) was higher than on DGT-Chelex(®)-100 and DGT-Metsorb™, probably because their performance was disturbed by the extreme composition of the mining waters. The use of Diphonix(®) resin leads to a significant advance in the application and development of the DGT technique for determination of U in mining influenced environments. This investigation demonstrated that such multi-technique approach provides a better picture of U speciation and enables to assess more accurately the potentially bioavailable U pool. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Patrick; Liang, Haijun; Jin, Zhen; ...
2017-11-01
We report phosphate beneficiation in Florida generates more than one tonne of phosphatic clay, or slime, per tonne of phosphate rock produced. Since the start of the practice of large-scale washing and desliming for phosphate beneficiation, more than 2 Gt of slime has accumulated, containing approximately 600 Mt of phosphate rock, 600 kt of rare earth elements (REEs) and 80 million kilograms of uranium. The recovery of these valuable elements from the phosphatic clay is one of the most challenging endeavors in mineral processing, because the clay is extremely dilute, with an average solids concentration of 3 percent, and finemore » in size, with more than 50 percent having particle size smaller than 2 μm, and it contains nearly 50 percent clay minerals as well as large amounts of magnesium, iron and aluminum. With industry support and under funding from the Critical Materials Institute, the Florida Industrial and Phosphate Research Institute in conjunction with the Oak Ridge National Laboratory undertook the task to recover phosphorus, rare earths and uranium from Florida phosphatic clay. This paper presents the results from the preliminary testing of two approaches. The first approach involves three-stage cycloning using cyclones with diameters of 12.4 cm (5 in.), 5.08 cm (2 in.) and 2.54 cm (1 in.), respectively, to remove clay minerals followed by flotation and leaching. The second approach is a two-step leaching process. In the first step, selective leaching was conducted to remove magnesium, thus allowing the production of phosphoric acid suitable for the manufacture of diammonium phosphate (DAP) in the second leaching step. The results showed that multistage cycloning with small cyclones is necessary to remove clay minerals. Finally, selective leaching at about pH 3.2 using sulfuric acid was found to be effective for removing more than 80 percent of magnesium from the feed with minimal loss of phosphorus.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Patrick; Liang, Haijun; Jin, Zhen
We report phosphate beneficiation in Florida generates more than one tonne of phosphatic clay, or slime, per tonne of phosphate rock produced. Since the start of the practice of large-scale washing and desliming for phosphate beneficiation, more than 2 Gt of slime has accumulated, containing approximately 600 Mt of phosphate rock, 600 kt of rare earth elements (REEs) and 80 million kilograms of uranium. The recovery of these valuable elements from the phosphatic clay is one of the most challenging endeavors in mineral processing, because the clay is extremely dilute, with an average solids concentration of 3 percent, and finemore » in size, with more than 50 percent having particle size smaller than 2 μm, and it contains nearly 50 percent clay minerals as well as large amounts of magnesium, iron and aluminum. With industry support and under funding from the Critical Materials Institute, the Florida Industrial and Phosphate Research Institute in conjunction with the Oak Ridge National Laboratory undertook the task to recover phosphorus, rare earths and uranium from Florida phosphatic clay. This paper presents the results from the preliminary testing of two approaches. The first approach involves three-stage cycloning using cyclones with diameters of 12.4 cm (5 in.), 5.08 cm (2 in.) and 2.54 cm (1 in.), respectively, to remove clay minerals followed by flotation and leaching. The second approach is a two-step leaching process. In the first step, selective leaching was conducted to remove magnesium, thus allowing the production of phosphoric acid suitable for the manufacture of diammonium phosphate (DAP) in the second leaching step. The results showed that multistage cycloning with small cyclones is necessary to remove clay minerals. Finally, selective leaching at about pH 3.2 using sulfuric acid was found to be effective for removing more than 80 percent of magnesium from the feed with minimal loss of phosphorus.« less
Determining a pre-mining radiological baseline from historic airborne gamma surveys: a case study.
Bollhöfer, Andreas; Beraldo, Annamarie; Pfitzner, Kirrilly; Esparon, Andrew; Doering, Che
2014-01-15
Knowing the baseline level of radioactivity in areas naturally enriched in radionuclides is important in the uranium mining context to assess radiation doses to humans and the environment both during and after mining. This information is particularly useful in rehabilitation planning and developing closure criteria for uranium mines as only radiation doses additional to the natural background are usually considered 'controllable' for radiation protection purposes. In this case study we have tested whether the method of contemporary groundtruthing of a historic airborne gamma survey could be used to determine the pre-mining radiological conditions at the Ranger mine in northern Australia. The airborne gamma survey was flown in 1976 before mining started and groundtruthed using ground gamma dose rate measurements made between 2007 and 2009 at an undisturbed area naturally enriched in uranium (Anomaly 2) located nearby the Ranger mine. Measurements of (226)Ra soil activity concentration and (222)Rn exhalation flux density at Anomaly 2 were made concurrent with the ground gamma dose rate measurements. Algorithms were developed to upscale the ground gamma data to the same spatial resolution as the historic airborne gamma survey data using a geographic information system, allowing comparison of the datasets. Linear correlation models were developed to estimate the pre-mining gamma dose rates, (226)Ra soil activity concentrations, and (222)Rn exhalation flux densities at selected areas in the greater Ranger region. The modelled levels agreed with measurements made at the Ranger Orebodies 1 and 3 before mining started, and at environmental sites in the region. The conclusion is that our approach can be used to determine baseline radiation levels, and provide a benchmark for rehabilitation of uranium mines or industrial sites where historical airborne gamma survey data are available and an undisturbed radiological analogue exists to groundtruth the data. © 2013.
Hageman, Philip L.; Seal, Robert R.; Diehl, Sharon F.; Piatak, Nadine M.; Lowers, Heather
2015-01-01
A comparison study of selected static leaching and acid–base accounting (ABA) methods using a mineralogically diverse set of 12 modern-style, metal mine waste samples was undertaken to understand the relative performance of the various tests. To complement this study, in-depth mineralogical studies were conducted in order to elucidate the relationships between sample mineralogy, weathering features, and leachate and ABA characteristics. In part one of the study, splits of the samples were leached using six commonly used leaching tests including paste pH, the U.S. Geological Survey (USGS) Field Leach Test (FLT) (both 5-min and 18-h agitation), the U.S. Environmental Protection Agency (USEPA) Method 1312 SPLP (both leachate pH 4.2 and leachate pH 5.0), and the USEPA Method 1311 TCLP (leachate pH 4.9). Leachate geochemical trends were compared in order to assess differences, if any, produced by the various leaching procedures. Results showed that the FLT (5-min agitation) was just as effective as the 18-h leaching tests in revealing the leachate geochemical characteristics of the samples. Leaching results also showed that the TCLP leaching test produces inconsistent results when compared to results produced from the other leaching tests. In part two of the study, the ABA was determined on splits of the samples using both well-established traditional static testing methods and a relatively quick, simplified net acid–base accounting (NABA) procedure. Results showed that the traditional methods, while time consuming, provide the most in-depth data on both the acid generating, and acid neutralizing tendencies of the samples. However, the simplified NABA method provided a relatively fast, effective estimation of the net acid–base account of the samples. Overall, this study showed that while most of the well-established methods are useful and effective, the use of a simplified leaching test and the NABA acid–base accounting method provide investigators fast, quantitative tools that can be used to provide rapid, reliable information about the leachability of metals and other constituents of concern, and the acid-generating potential of metal mining waste.
Alpine, Andrea E.
2010-01-01
On July 21, 2009, U.S. Secretary of the Interior Ken Salazar proposed a two-year withdrawal of about 1 million acres of Federal land near the Grand Canyon from future mineral entry. These lands are contained in three parcels: two parcels on U.S. Bureau of Land Management land to the north of the Grand Canyon (North and East Segregation Areas) and one on the Kaibab National Forest south of the Grand Canyon (South Segregation Area). The purpose of the two-year withdrawal is to examine the potential effects of restricting these areas from new mine development for the next 20 years. This proposed withdrawal initiated a period of study during which the effects of the withdrawal must be evaluated. At the direction of the Secretary, the U.S. Geological Survey began a series of short-term studies designed to develop additional information about the possible effects of uranium mining on the natural resources of the region. Dissolved uranium and other major, minor, and trace elements occur naturally in groundwater as the result of precipitation infiltrating from the surface to water-bearing zones and, presumably, to underlying regional aquifers. Discharges from these aquifers occur as seeps and springs throughout the region and provide valuable habitat and water sources for plants and animals. Uranium mining within the watershed may increase the amount of radioactive materials and heavy metals in the surface water and groundwater flowing into Grand Canyon National Park and the Colorado River, and deep mining activities may increase mobilization of uranium through the rock strata into the aquifers. In addition, waste rock and ore from mined areas may be transported away from the mines by wind and runoff.
Size distribution of radon daughter particles in uranium mine atmospheres.
George, A C; Hinchliffe, L; Sladowski, R
1975-06-01
The size distribution of radon daughters was measured in several uranium mines using four compact diffusion batteries and a round jet cascade impactor. Simultaneously, measurements were made of uncombined fractions of radon daughters, radon concentration, working level and particle concentration. The size distributions found for radon daughters were log normal. The activity median diameters ranged from 0.09 mum to 0.3 mum with a mean value of 0.17 mum. Geometric standard deviations were in the range from 1.3 to 4 with a mean value of 2.7. Uncombined fractions expressed in accordance with the ICRP definition ranged from 0.004 to 0.16 with a mean value of 0.04. The radon daughter sizes in these mines are greater than the sizes assumed by various authors in calculating respiratory tract dose. The disparity may reflect the widening use of diesel-powered equipment in large uranium mines.
Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy
2010-01-01
This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other radionuclides are unknown for these biota.
Information about Section 9 Lease Mines, three abandoned uranium mines sites located near the Little Colorado River in Northern Arizona. The mines are located just outside the Navajo Nation and are about 10 miles southeast of Cameron, AZ.
Recovery of uranium from seawater by immobilized tannin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaguchi, T.; Nakajima, A.
1987-06-01
Tannin compounds having multiple adjacent hydroxy groups have an extremely high affinity for uranium. To prevent the leaching of tannins into water and to improve the adsorbing characteristics of these compounds, the authors tried to immobilize tannins. The immobilized tannin has the most favorable features for uranium recovery; high selective adsorption ability to uranium, rapid adsorption rate, and applicability in both column and batch systems. The immobilized tannin can recover uranium from natural seawater with high efficiency. About 2530 ..mu..g uranium is adsorbed per gram of this adsorbent within 22 h. Depending on the concentration in seawater, an enrichment ofmore » up to 766,000-fold within the adsorbent is possible. Almost all uranium adsorbed is easily desorbed with a very dilute acid. Thus, the immobilized tannin can be used repeatedly in the adsorption-desorption process.« less
NASA Astrophysics Data System (ADS)
Winde, Frank; Brugge, Doug; Nidecker, Andreas; Ruegg, Urs
2017-05-01
In 2003, nuclear power received renewed interest as a perceived climate-neutral way to meet high energy demands of large industrialized countries, such as China, India, Russia and the USA. It triggered a growing demand for uranium (U) as nuclear fuel. Dubbed the 'nuclear renaissance', the U-price rose over tenfold before the global credit crisis dampend the rush. Many efforts to capitalise on the renewed demand focused on Africa. This paper provides an overview on the type and extent of uranium mining, production and exploration on the African continent and discusses the economic benefits as well as the potential environmental and health risks and the long-term needs for remediation of legacy sites. The actual historical results of uranium mining activities in more than thirty African countries provide data against which to assess the existing risks of uranium development. The already existing uraniferous waste in several African countries threatens scarce water resources and the health of adjacent residents. Responsibility should rest with the governments and the companies to ensure that these threats are not realized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)
Why Has It Taken So Long to Address the Problems Created by Uranium Mining in the Navajo Nation?
Brugge, Doug
2016-02-01
Following the start of uranium mining after World War II, progress toward addressing the hazards it created for workers and nearby communities was slow, taking many decades. This essay asks why it took so long and suggests several factors that might have contributed. © The Author(s) 2016.
Study on immobilization and migration of nuclide u in superficial soil of uranium tailings pond
NASA Astrophysics Data System (ADS)
Chang, Zhe; Zhou, Shukui
2017-05-01
The uranium tailings in southern China was used as the object of study to study the fixation and migration characteristics of nuclide U in shallow tailings. The results showed that the precipitation of tailings in the tailings soil was not linearly related to the depth during the acid rain leaching process. Tailings soil in the role of fixatives, when the lime as a fixative, the tailings of different soil uranium in 20 days after the re-precipitation. However, when lime and ammonium phosphate were used as fixing agents, the cumulative precipitation of U had a significant effect, and the migration of uranium was inhibited.
Environmental implications of material leached from coal.
Moyo, Stanley; Mujuru, Munyaradzi; McCrindle, Rob I; Mokgalaka-Matlala, Ntebogeng
2011-05-01
Samples of coal were collected from different seams at a South African coal mine and comparative leaching experiments were carried out under various pH conditions and times to investigate the leaching behavior and potential environmental impact of possibly hazardous elements such as As, Cd, Co, Cr, Mn, Ni, Pb, Th and U. The calculated leaching intensities, sequential extraction results and cumulative percentages demonstrate that the leaching behavior of the elements is strongly influenced by the pH, the leaching time and the properties and occurrences of the elements. The leached concentrations of As, Cd, Co, Cr, Mn, Ni and Pb exceeded the maximum concentrations recommended by the Environmental Protection Agency (EPA) for surface water.
Kelly, Charlene N.; Peltz, Christopher D.; Stanton, Mark R.; Rutherford, David W.; Rostad, Colleen E.
2014-01-01
Waste rock piles from historic mining activities remain unvegetated as a result of metal toxicity and high acidity. Biochar has been proposed as a low-cost remediation strategy to increase soil pH and reduce leaching of toxic elements, and improve plant establishment. In this laboratory column study, biochar made from beetle-killed pine wood was assessed for utility as a soil amendment by mixing soil material from two mine sites collected near Silverton, Colorado, USA with four application rates of biochar (0%, 10%, 20%, 30% vol:vol). Columns were leached seven times over 65 days and leachate pH and concentration of toxic elements and base cations were measured at each leaching. Nutrient availability and soil physical and biological parameters were determined following the incubation period. We investigated the hypotheses that biochar incorporation into acidic mine materials will (1) reduce toxic element concentrations in leaching solution, (2) improve soil parameters (i.e. increase nutrient and water holding capacity and pH, and decrease compaction), and (3) increase microbial populations and activity. Biochar directly increased soil pH (from 3.33 to 3.63 and from 4.07 to 4.77 in the two materials) and organic matter content, and decreased bulk density and extractable salt content in both mine materials, and increased nitrate availability in one material. No changes in microbial population or activity were detected in either mine material upon biochar application. In leachate solution, biochar increased base cations from both materials and reduced the concentrations of Al, Cd, Cu, Pb, and Zn in leachate solution from one material. However, in the material with greater toxic element content, biochar did not reduce concentrations of any measured dissolved toxic elements in leachate and resulted in a potentially detrimental release of Cd and Zn into solution at concentrations above that of the pure mine material. The length of time of effectiveness and specific sorption by biochar is variable by element and the toxic element concentration and acidity of the initial mine material.
SULPHUR DIOXIDE LEACHING OF URANIUM CONTAINING MATERIAL
Thunaes, A.; Rabbits, F.T.; Hester, K.D.; Smith, H.W.
1958-12-01
A process is described for extracting uranlum from uranium containing material, such as a low grade pitchblende ore, or mill taillngs, where at least part of the uraniunn is in the +4 oxidation state. After comminuting and magnetically removing any entrained lron particles the general material is made up as an aqueous slurry containing added ferric and manganese salts and treated with sulfur dioxide and aeration to an extent sufficient to form a proportion of oxysulfur acids to give a pH of about 1 to 2 but insufficient to cause excessive removal of the sulfur dioxide gas. After separating from the solids, the leach solution is adjusted to a pH of about 1.25, then treated with metallic iron in the presence of a precipitant such as a soluble phosphate, arsonate, or fluoride.
Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags
Wegner, Carl-Eric; Liesack, Werner
2017-01-01
Acid mine drainage (AMD) and mine tailing environments are well-characterized ecosystems known to be dominated by organisms involved in iron- and sulfur-cycling. Here we examined the microbiology of industrial soft coal slags that originate from alum leaching, an ecosystem distantly related to AMD environments. Our study involved geochemical analyses, bacterial community profiling, and shotgun metagenomics. The slags still contained high amounts of alum constituents (aluminum, sulfur), which mediated direct and indirect effects on bacterial community structure. Bacterial groups typically found in AMD systems and mine tailings were not present. Instead, the soft coal slags were dominated by uncharacterized groups of Acidobacteria (DA052 [subdivision 2], KF-JG30-18 [subdivision 13]), Actinobacteria (TM214), Alphaproteobacteria (DA111), and Chloroflexi (JG37-AG-4), which have previously been detected primarily in peatlands and uranium waste piles. Shotgun metagenomics allowed us to reconstruct 13 high-quality Acidobacteria draft genomes, of which two genomes could be directly linked to dominating groups (DA052, KF-JG30-18) by recovered 16S rRNA gene sequences. Comparative genomics revealed broad carbon utilization capabilities for these two groups of elusive Acidobacteria, including polysaccharide breakdown (cellulose, xylan) and the competence to metabolize C1 compounds (ribulose monophosphate pathway) and lignin derivatives (dye-decolorizing peroxidases). Equipped with a broad range of efflux systems for metal cations and xenobiotics, DA052 and KF-JG30-18 may have a competitive advantage over other bacterial groups in this unique habitat. PMID:28642744
Beisner, Kimberly R.; Gray, Floyd
2018-03-13
The Old Yuma Mine is an abandoned copper, lead, zinc, silver, and gold mine located within the boundaries of Saguaro National Park, Tucson Mountain District, Arizona. This study analyzed the geochemistry of sediments associated with the Old Yuma Mine and assessed hydrologic and geochemical conditions of groundwater to evaluate the area surrounding the Old Yuma Mine. The purpose of the study was to establish the geochemical signature of material associated with the Old Yuma Mine and to compare it with background material and groundwater in the area. Few groundwater samples exceeded the U.S. Environmental Protection Agency (EPA) drinking water standards. Concentrations of several elements were elevated in the waste rock and mine tailings compared with concentrations in sediments collected in background areas. A subset of 15 sediment samples was leached to simulate precipitation interacting with the solid material. Analysis of leachate samples compared to groundwater samples suggests that groundwater samples collected in this study are distinct from leachate samples associated with mining related material. Results suggest that at this time groundwater samples collected during this investigation are not influenced by elements leached from Old Yuma Mine materials.
Improving gross count gamma-ray logging in uranium mining with the NGRS probe
NASA Astrophysics Data System (ADS)
Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.
China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues
2014-01-03
countries) for secret nuclear weapons facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium...declaration from North Korea for outside verification. 89 Barbara Opall -Rome and...that the China Guangfa Bank engaged in business with the DPRK’s arms dealer, Global Trading and Technology (a front for Korea Mining Development
13 CFR 121.510 - What is the size standard for leasing of Government land for uranium mining?
Code of Federal Regulations, 2013 CFR
2013-01-01
... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false What is the size standard for leasing of Government land for uranium mining? 121.510 Section 121.510 Business Credit and Assistance... Size Eligibility Requirements for Sales Or Lease of Government Property § 121.510 What is the size...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... and Extend the NRC Long-Term Surveillance Boundary With Respect to Materials License SUA-1139 AGENCY... concentration limits and to extend the NRC Long-Term Surveillance Boundary at its Highland Uranium Mine and Mill... wells and at the proposed POC well. The amendment also proposes to expand the Long-Term Surveillance...
NASA Astrophysics Data System (ADS)
Buechel, G.; Merten, D.; Geletneky, J. W.; Kothe, E.
2003-04-01
Between 1947 and 1990 about 113.000 t of uranium were excavated at the former uranium mining site of Ronneburg (Eastern Thuringia, Germany). The legacy consists of more than 200 million m^3 of metasedimentary rocks rich in organic matter, sulfides and heavy metals originally deposited in mining heaps at the surface. The metasedimentary rocks formed under anoxic conditions about a 400 Mio. years ago are now exposed to oxic conditions. The oxidation of markasite and pyrite results in the formation of H_2SO_4. The formation of acid mine drainage (AMD) leads to high concentrations of uranium, rare earth elements (REE) and other heavy metals in surface water, seepage water and groundwater. This mobilization is due to alteration enhanced by high microbial activity and low pH. The tolerance mechanisms towards heavy metal pollution of soil substrate and surface/groundwater has allowed the selection of microbes which have, e.g. specific transporter genes and which are associated to plants in symbiotic interactions like mycorrhiza. In order to follow the processes linking alteration of metasedimentary rocks to biological systems the use of tracers is needed. One group of such tracers occuring in high concentrations in the water phase at the Ronneburg mining site are the REE (La-Lu) which are featured by very similar chemical behaviour. They show smooth but continuous variations of their chemical behaviour as a function of atomic number. For seepage water of the waste rock dump Nordhalde - sampled over a period of two years - the shale normalized REE patterns show enrichment of heavy REE and only minor variations, although the concentration differs. At sampling points in the surface water and in groundwater rather similar REE patterns were observed. Thus, REE can be used as tracers to identify diffuse inflow of REE-rich acid mine drainage of the dumps into the creek and the sediments. The absolute concentrations of REE in the creek and in ground water are up to 1000 times less than in seepage water due to mixing and (co)precipitation of REE. Lu/La and Sm/La relations show a significant decrease with increasing distance from the dump caused by preferential (co)precipitation of heavy REE with amorphous Fe-hydroxides along the Gessenbach. Thus, REE patterns can not only be used as tracers but also to study processes. In contrast to the patterns of the seepage, the REE patterns of the Silurian rocks as determined by LA-ICP-MS feature rather flat patterns with enrichment of middle REE (Sm - Dy). Results from batch experiments show preferentially leaching of heavy REE for all investigated source rocks. The highest absolute concentrations of REE appear in the eluates of the Silurian 'Ockerkalk'. Since the REE pattern closely reflects the pattern found in the seepage water it is assumed to be the most important source for the occurence of the REE pattern observed in seepage water. Studies of microbial heavy metal retention were performed by direct incubation of seepage water using well characterized fungal and bacterial strains. Using the bacterium Escherichia coli for incubation of seepage water sorption of heavy metals to biomass was observed. Use of the fungus Schizophyllum commune for incubation, however, has a much more pronounced effect including significant fractionation of REE pointing to the possibility of a specific active uptake mechanism. Bioextraction with bacteria and fungal mycelia might be an alternative to plant growth and phytoextraction and might be preferable for AMD water treatment since no soil substrate is necessary. Future research must be directed towards genes for active transport, intra- or extracellular storage proteins and their application. Biotechnological use of such genes in, e.g., strains of E. coli, might yield highly useful bioremediation strains that can help to reduce the ecological effects of pollution resulting from former mining activities.
Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.
2013-01-01
Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.
Keatley, A C; Scott, T B; Davis, S; Jones, C P; Turner, P
2015-12-01
Minor element composition and rare earth element (REE) concentrations in nuclear materials are important as they are used within the field of nuclear forensics as an indicator of sample origin. However recent studies into uranium ores and uranium ore concentrates (UOCs) have shown significant elemental and isotopic heterogeneity from a single mine site such that some sites have shown higher variation within the mine site than that seen between multiple sites. The elemental composition of both uranium and gangue minerals within ore samples taken along a single mineral vein in South West England have been measured and reported here. The analysis of the samples was undertaken to determine the extent of the localised variation in key elements. Energy Dispersive X-ray spectroscopy (EDS) was used to analyse the gangue mineralogy and measure major element composition. Minor element composition and rare earth element (REE) concentrations were measured by Electron Probe Microanalysis (EPMA). The results confirm that a number of key elements, REE concentrations and patterns used for origin location do show significant variation within mine. Furthermore significant variation is also visible on a meter scale. In addition three separate uranium phases were identified within the vein which indicates multiple uranium mineralisation events. In light of these localised elemental variations it is recommended that representative sampling for an area is undertaken prior to establishing the REE pattern that may be used to identify the originating mine for an unknown ore sample and prior to investigating impact of ore processing on any arising REE patterns. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dewatering of the Jenkins open pit uranium mine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straskraba, V.; Kissinger, L.E.
Mining of low grade uranium sandstones in the Jenkins open pit mine in the Shirley Basin, Wyoming was troubled by slope failures and wet conditions in the pit. Since the mine was expanding toward a river, the possibility of drainage from this river into the mine raised serious concern during the mine planning. A baseline hydrogeologic study was performed and dewatering measures were designed with the help of a numerical mathematical model. A combination of dewatering wells installed from the surface around the perimeter of the pit and horizontal drains in areas of high slope failure potential substantially improved themore » mining conditions and slope stability. This procedure consequently led to the successful ore recovery from the highly saturated sandstone strata. The development of drawdown during the dewatering of two separated aquifers in the overburden was close to that predicted by the model.« less
Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala
2006-05-01
Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.
Biogenic catalysis in sulphide minerals' weathering processes and acid mine drainage genesis.
Kušnierová, Mária; Praščáková, Mária; Nowak, Anna K; Gorazda, Katarzyna; Wzorek, Zbigniew
2014-01-01
Bioleaching and biogenesis are the main outputs from a large group of environmental processes participating in the natural material cycle, used in raw materials processing. Bio-oxidation reactions are the main basis for bioleaching procedures, often participating in parallel leaching processes. During the leaching processes of polycomponent sulphide substrates, the factor of process selection also plays an important role, being in direct relation to the electric properties and galvanic effect occurring between the individual components of the leaching substrate. This work gives a summary of the results of a research focused on the possibilities of using biotechnological procedures for treatment of Slovak sulphide ores. The object of the research is extraction of valuable metals, undesirable admixtures and degradation of crystal lattice of sulphides for subsequent chemical leaching processing of precious metals. The results of experiments on the existence of biogenic processes in situ on waste dumps from exploitation containing residual sulphides are also presented. The processes result in acid mine drainage water generation. These waters are strongly mineralised (over 48 g/L) and of low pH; that is why they are very caustic. The arsenic content (2.558 mg/L) in outflowing waters from old mines is high and over the limits set by the law.
Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C
2013-12-15
Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Ilyas, Sadia; Chi, Ruan; Bhatti, H N; Bhatti, I A; Ghauri, M A
2012-03-01
Present work describes the bioleaching potential of metals from low-grade mining ore containing smithsonite, sphaerocobaltite, azurite and talc as main gangue minerals with adapted consortium of Sulfobacillus thermosulfidooxidans strain-RDB and Thermoplasma acidophilum. Bioleaching potential improved markedly by added energy source, acid preleaching and adaptation of microbial consortium with mixed metal ions. During whole leaching period including acid preleaching stage of 960 h and bioleaching stage of 212 days about 76% Co, 70% Zn, 84% Cu, 72% Ni and 63% Fe leached out.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall not exceed...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines, either open-pit...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall not exceed...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines, either open-pit...
Progress report on the Happy Jack mine, Which Canyon area, San Juan county, Utah
Trites, Albert F.; Chew, Randall T.
1954-01-01
The Happy Jack mine is in the White Canyon area, San Juan county, Utah. Production is from high-grade uranium deposits in the Shinarump conglomerate of the Triassic age. In this area the Shinarump beds range from about 16 to 40 feet in thickness and the lower part of these beds fills an east-trending channel this is note than 750 feet wide and 10 feet deep. The Shinarump conglomerate consists of beds of coarse- to fine-grained quartzose sandstone, conglomerate, siltstone, and claystone. Carbonized wood is abundant in these beds, and in the field it was classified as mineral charcoal and coal. Intra-Shinarump channels, cross-stratification, current lineation, and slumping and compaction structures have been recognized in the mine. Steeply dipping fractures have dominant trends in four directions -- N 65°W, N 60°E, N 85°E, and due north. Uranium occurs as bedded deposits, as replacement bodies in accumulations of "trash", and as replacements of larger fragments of wood. An "ore shoot" is formed where the three types of uranium deposits occur together; these ore shoots appear to be elongate masses with sharp boundaries. Uranium minerals include uraninite, sooty pitchblende(?), and the sulfate--betazippeite, johannite, and uranopilite. Associated with the uraninite are the sulfide minerals covellite, bornite, chalcopyritw, and pyrite. Galena and sphalerite have been found in close association with uranium minerals. The gaunge minerals include: limonite and hematite present in most of the sandstone beds throughout the deposit, jarosite that impregnates much of the sandstone in the outer parts of the mine workings, gypsum that fills many of the fractures, and barite that impregnates the sandstone in at least one part of the mine. Secondary copper minerals, mainly copper sulfates, occur throughout the mine, but most abundant near the adits in the outermost 30 feet of the workings. The minerals comprising the bulk of the country rock include quartz, feldspar, and clay minerals. The amount of uranium minerals deposited in a sandstone bed is believed to have been determined by the position of the bed in the channel, the permeability of the sandstone in the bed, and the amount of carbonized wood and plant remains within the bed. The beds considered most favorable for uranium deposition contain an abundance of claystone and siltstone both as matrix filling and as fragments and pebbles. Suggested exploration guides from uranium ore bodies include the following: (1) interbedded siltstone lenses, (2) claystone and siltstone cement and pabbles, (3) concentrations of "trash", (4) covelllite and bornite, (5) chalcopyrite, and (6) carbonized wood.
Effects of cover materials on leaching of constituents from dolomitic lead mine tailings
Harwood, J.J.; Koirtyohann, S.R.; Schmitt, C.J.
1987-01-01
Five raised-bed test plots were used to study the effects of cover materials on the leaching of constituents from dolomitic Pb mine tailings over a 2-yr period. The cover materials studied were a fertilizer and seed mixture, anaerobically digested sewage sludge, loam and sod, and fallen leaves from silver maples (Acer Saccharinum); one plot was not covered. Fresh leachates and receiving pool waters were analyzed for ten metals, Si, P, inorganic anions, filterable organic carbon (FOC), and alkalinity. The mixture of fertilizer and seed decreased leaching of Pb and Zn during the first year. The leaf cover increased leaching of Pb during both years; this effect decreased as the leaves weathered. Sludge caused some increase in Pb leaching during the first year, and increased Cd leaching during both years. Concentrations of most leachate constituents decreased, and pH increased in the receiving pools. Concentrations of Pb remained higher in the receiving pool for the leaf-covered plot than in the other pools. Increases in leaching of Pb and Cd with a sludge cover were moderate, and the ability of the material to support plant growth on the tailings suggested that it may be a good medium for inducing growth of vegetative cover on the dolomitic tailings. Other organic materials may cause pronounced increase in the concentration of toxic trace metals in leachate from the tailings.
40 CFR 144.81 - Does this subpart apply to me?
Code of Federal Regulations, 2013 CFR
2013-07-01
... electric power; (12) Wells used for solution mining of conventional mines such as stopes leaching; (13... auto body repair shop, automotive repair shop, new and used car dealership, specialty repair shop (e.g...
40 CFR 144.81 - Does this subpart apply to me?
Code of Federal Regulations, 2012 CFR
2012-07-01
... electric power; (12) Wells used for solution mining of conventional mines such as stopes leaching; (13... auto body repair shop, automotive repair shop, new and used car dealership, specialty repair shop (e.g...
40 CFR 144.81 - Does this subpart apply to me?
Code of Federal Regulations, 2011 CFR
2011-07-01
... electric power; (12) Wells used for solution mining of conventional mines such as stopes leaching; (13... auto body repair shop, automotive repair shop, new and used car dealership, specialty repair shop (e.g...
Phytoremediation using microbially mediated metal accumulation in Sorghum bicolor.
Phieler, René; Merten, Dirk; Roth, Martin; Büchel, Georg; Kothe, Erika
2015-12-01
Reclaiming land that has been anthropogenically contaminated with multiple heavy metal elements, e.g., during mining operations, is a growing challenge worldwide. The use of phytoremediation has been discussed with varying success. Here, we show that a careful examination of options of microbial determination of plant performance is a key element in providing a multielement remediation option for such landscapes. We used both (a) mycorrhiza with Rhizophagus irregularis and (b) bacterial amendments with Streptomyces acidiscabies E13 and Streptomyces tendae F4 to mediate plant-promoting and metal-accumulating properties to Sorghum bicolor. In pot experiments, the effects on plant growth and metal uptake were scored, and in a field trial at a former uranium leaching heap site near Ronneburg, Germany, we could show the efficacy under field conditions. Different metals could be extracted at the same time, with varying microbial inoculation and soil amendment scenarios possible when a certain metal is the focus of interest. Especially, manganese was extracted at very high levels which might be useful even for phytomining approaches.
China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues
2010-08-16
nuclear weapons facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium enrichment) near...brief interruptions.”85 84 Barbara Opall -Rome and Vago Muradian, “Bush Privately Lauds...confiscated a rare metal used to produce alloy steel (called vanadium) being smuggled to North Korea. In the same month, China’s NHI Shenyang Mining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Australia. Atomic Energy Commission
1963-01-01
A report is presented on the uranium mining and treatment industry established at Rum Jungle and its contribution to the development of the Northern Territory. The Combined Development Agency contract for uranium procurement (terminated in 1963) and some of its results are described. A description of Rum Jungle and its geology and mineralization is given. Mining and treatment of ore are discussed, and some production statistics are given. (D.L.C.)
Kesler, R.D.; Rabb, D.D.
1959-07-28
An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.
1994-01-01
The U.S. Bureau of Mines, the University of Arizona, Sandia National Laboratory, and Zonge Engineering and Research, Inc., conducted cooperative field tests of six electromagnetic geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 meters below the surface. The test site was the University's San Xavier experimental mine near Tucson, Arizona. Geophysical surveys using surface and surface-borehole time-domain electromagnetics (TEM), surface controlled source audio-frequency magnetotellurics (CSAMT), surface-borehole frequency-domain electromagnetics (FEM), crosshole FEM and surface magnetic field ellipticity were conducted before and duringmore » brine injection.« less
Caves, mines and subterranean spaces: hazard and risk from exposure to radon.
NASA Astrophysics Data System (ADS)
Crockett, R. G. M.; Gillmore, G. K.
2009-04-01
Radon is a naturally occurring radioactive gas. It is colourless, odourless and chemically inert. The most hazardous isotope is 222Rn. Radon is formed in the natural environment by the radioactive decay of the element uranium (238U) and is a daughter product of daughter product of radium (226Ra). Uranium and radium are found, in differing degrees, in a wide range of rocks, soils (and building materials that are made from these). Radon concentrations in caves, e.g. limestone caves such as the Great Cave of Niah, Borneo, and caves in the Mendips and Peak District in the UK, has been documented and reveal that both (prehistoric) cave-dwellers and other users such as archaeologists are at risk from exposure to radon a naturally occurring radioactive gas. In general, but dependent on cave geometry and ventilation, radon concentration increases with increasing distance from the entrance, implying that the hazard also increases with distance from the entrance. With regard to mines and mining operations, as well as modern extraction of uranium and radium ores, both ores commonly occur alongside other metallic ores, e.g. silver at Schneeberg and Joachimsthal, and tin in Cornwall, and in some instances, waste from earlier metalliferious mining activity has itself been ‘mined' for uranium and/or radium ores. It is not solely the miners and other subterranean workers which are at risk, other workers and local inhabitants are also at risk. Also, that risk is not eliminated by protection against dust/airborne particulates: the risk from inhalation of radon is only reduced by reducing the inhalation of radon, i.e. use of breathing apparatus. Amongst the general population, radon is the second most significant cause of lung cancer behind tobacco smoking. Estimates vary but 6-9% of lung-cancers are attributable to radon and approximately 2% all cancer deaths are attributable to radon. These proportions will increase in higher-radon environments such as caves, mines and mining areas (via spoil heaps, settlement lagoons etc. containing uranium and radium). We here present an overview of the potential hazard presented by radon in subterranean spaces and by metalliferous mining activities. We also present some speculation as to evidence of (pre-) historic exposure to radon which might potentially exist in archaeological remains and oral traditions. Keywords: radon; caves; metalliferous mining; cave-dwellers; archaeologists.
Cooley, Maurice E.
1979-01-01
A reconnaissance was made of some of the effects of uranium development on erosion and associated sedimentation in the southern San Juan Basin, where uranium development is concentrated. In general, the effects of exploration on erosion are minor, although erosion may be accelerated by the building of access roads, by activities at the drilling sites, and by close concentration of drilling sites. Areas where the greatest effects on erosion and sedimentation from mining and milling operations have occurred are: (1) in the immediate vicinity of mines and mills, (2) near waste piles, and (3) in stream channels where modifications, such as changes in depth have been caused by discharge of excess mine and mill water. Collapse of tailings piles could result in localized but excessive erosion and sedimentation.
Fey, David L.; Church, Stan E.; Driscoll, Rhonda L.; Adams, Monique G.
2011-01-01
Eleven acid-sulphate and quartz-sericite-pyrite altered mine waste samples from the Animas River watershed in SW Colorado were subjected to a series of 5 to 6 successive leaches using the US EPA 1312 leach protocol to evaluate the transport of metals and loss of acidity from mine wastes as a function of time. Multi-acid digestion ICP-AES analyses, X-ray diffraction (XRD) mineral identification, total sulphur, and net acid potential (NAP) determinations were performed on the initial starting materials. Multiple leaching steps generally showed a 'flushing' effect, whereby elements loosely bound, presumably as water-soluble salts, were removed. Aluminum, Cd, Fe, Mg, Mn, Sr, Zn, and S showed decreasing concentration trends, whereas Cu concentrations showed initially decreasing trends, followed by increasing trends in later steps. Concentrations of Zn in the first leach step were independent of whole-sample Zn content. Lead and Ba concentrations consistently increased with each step, indicating that anglesite (PbSO4) and barite (BaSO4), respectively, were dissolving in successive leach steps. Comparison of Fe content with NAP resulted in a modest correlation. However, using the S analyses and XRD identification of sulphide minerals to apportion S amongst enargite, barite, anglesite/galena, and sphalerite, and assigning the remaining S to pyrite, provided a useful correlation between estimated pyrite content and NAP. Whole-sample mass loss correlated well with NAP, but individual elements' behaviors varied between positive correlation (e.g. Al, Fe, Mg), no apparent correlation (Ca, Cd, Pb, Zn), and negative correlation (Cu). Comparison of the summed titrated acidities of the leachates with the whole-sample NAP values yielded an estimate of the fraction of NAP consumed, and led to an estimate of the time it would take to consume the sample acidity by weathering. We estimate, on the basis of these experiments, the acidity in the upper 30 cm would be consumed in 200–1000 years. In addition, calculations suggest that the acidity would be depleted before the complete store of the metals Cu-Cd-Zn in these mine wastes would be released to the environment.
Fey, D.L.; Church, S.E.; Driscoll, R.L.; Adams, M.G.
2011-01-01
Eleven acid-sulphate and quartz-sericite-pyrite altered mine waste samples from the Animas River watershed in SW Colorado were subjected to a series of 5 to 6 successive leaches using the US EPA 1312 leach protocol to evaluate the transport of metals and loss of acidity from mine wastes as a function of time. Multi-acid digestion ICP-AES analyses, X-ray diffraction (XRD) mineral identification, total sulphur, and net acid potential (NAP) determinations were performed on the initial starting materials. Multiple leaching steps generally showed a 'flushing' effect, whereby elements loosely bound, presumably as water-soluble salts, were removed. Aluminum, Cd, Fe, Mg, Mn, Sr, Zn, and S showed decreasing concentration trends, whereas Cu concentrations showed initially decreasing trends, followed by increasing trends in later steps. Concentrations of Zn in the first leach step were independent of whole-sample Zn content. Lead and Ba concentrations consistently increased with each step, indicating that anglesite (PbSO4) and barite (BaSO4), respectively, were dissolving in successive leach steps. Comparison of Fe content with NAP resulted in a modest correlation. However, using the S analyses and XRD identification of sulphide minerals to apportion S amongst enargite, barite, anglesite/galena, and sphalerite, and assigning the remaining S to pyrite, provided a useful correlation between estimated pyrite content and NAP. Whole-sample mass loss correlated well with NAP, but individual elements' behaviors varied between positive correlation (e.g. Al, Fe, Mg), no apparent correlation (Ca, Cd, Pb, Zn), and negative correlation (Cu). Comparison of the summed titrated acidities of the leachates with the whole-sample NAP values yielded an estimate of the fraction of NAP consumed, and led to an estimate of the time it would take to consume the sample acidity by weathering. We estimate, on the basis of these experiments, the acidity in the upper 30 cm would be consumed in 200-1000 years. In addition, calculations suggest that the acidity would be depleted before the complete store of the metals Cu-Cd-Zn in these mine wastes would be released to the environment. ?? 2011 AAG/Geological Society of London.
Implementation of the Leaching Environmental Assessment Framework (LEAF) in the United States
LEAF provides a uniform and integrated approach for evaluating leaching from solid materials (e.g., waste, treated wastes such as by solidification/stabilization, secondary materials such as blast furnace slags, energy residuals such as coal fly ash, soil, sediments, mining and m...
Physical exploration for uranium during 1951 in the Silver Reef district, Washington County, Utah
Stugard, Frederick
1954-01-01
During 1951 a joint exploration program of the most promising uraniferous areas in the Silver Reef district was made by the U.S. Geological Survey and the U.S. atomic Energy Commission. A U.S. Bureau of Mines drill crew, on contract to the Atomic Energy Commission, did 2,450 feet of diamond drilling under the geological supervision of the U.S. Geological Survey. The purpose of the drilling was to delineate broadly the favorable ground for commercial development of the uranium deposits. Ten drill holes were located around Pumpkin Point, which is the northeastern end of Buckeye Reef, to probe for extensions of small ore sheets mined on the Point in fine-grained sandstones of the Chinle formation. Three additional holes were located around Tecumseh Hill to probe for extensions of the small showings of uranium-bearing rocks of Buckeye Reef. Only one trace of uranium mineral was detected in the 13 drill holes by logging of drill cores, gamma-ray logging of the holes, and analysis of many core splits from favorable lithology. Extensive traversing with Geiger counters throughout the district and detailed geologic mapping of areas on Buckeye Reef and on East Reef indicate that the chances of discovering significant uranium deposits in the Silver Reef district are very poor, because of: highly variable lithology, closely faulted structure, and obliteration of the shallow uranium-bearing lenses by silver mining. Most of the available ore in the district was in the Pumpkin Point area and has been mined during 1950 to 1953. No ore reserves can be computed for the district before further development work. The most favorable remaining area in the district is now being explored by the operators with Atomic Energy Commission supervision.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiroshi Saito; Tomihiro Taki
2013-07-01
Ningyo-toge Uranium Mine is subject to the environmental remediation. The main purposes are to take measures to ensure the radiation protection from the exposure pathways to humans in future, and to prevent the occurrence of mining pollution. The Yotsugi Mill Tailings Pond in the Ningyo-toge Uranium Mine has deposited mining waste and impounded water as a buffer reservoir before it is transferred to the Water Treatment Facility. It is located at the upstream of the water-source river and as the impact on its environment in case of earthquake is estimated significant, the highest priority has been put to it amongmore » mine-related facilities in the Mine. So far, basic concept has been examined and a great number of data has been acquired, and using the data, some remediation activities have already done, including capping construction for the upstream part of the Mill Tailings Pond. The capping is to reduce rainwater penetration to lower the burden of water treatment, and to reduce radon exhalation and dose rates. Only natural materials are used to alleviate the future maintenance. Data, including settlement amount and underground temperature is now being acquired and accumulated to verify the effectiveness of the capping, and used for the future remediation of the Downstream with revision of its specifications if necessary. (authors)« less
WEST NEEDLE WILDERNESS STUDY AREA, COLORADO.
Van Loenen, Richard E.; Scott, David C.
1984-01-01
The West Needle Wilderness Study Area, southwestern Colorado, was evaluated for mineral-resource potential. An area extending westward into the wilderness near the Elk Park mine, has a probable mineral-resource potential for uranium. Uranium resources, and associated silver, nickel, cobalt, and copper, are located at the Elk Park mine, directly adjacent to the eastern study area boundary. No potential for other mineral or energy resources was identified in this study.
Evaluation of different amendments to stabilize antimony in mining polluted soils.
Álvarez-Ayuso, E; Otones, V; Murciego, A; García-Sánchez, A
2013-02-01
Soil pollution with antimony is of increasing environmental concern worldwide. Measures for its control and to attenuate the risks posed to the ecosystem are required. In this study the application of several iron and aluminium oxides and oxyhydroxides as soil amendments was evaluated in order to assess their feasibility to stabilize Sb in mining polluted soils. Mine soils with different pollution levels were amended with either goethite, ferrihydrite or amorphous Al oxide at various ratios (0-10%). The effectiveness of such treatments was assessed by both batch and column leaching tests. The use of ferrihydrite or amorphous Al oxide proved to be highly effective to stabilize Sb. Immobilization levels of 100% were found when doses of 5% ferrihydrite or 10% amorphous Al oxide were applied, regardless of the soil Sb load. Column leaching studies also showed a high Sb leaching reduction (>75%) when soils were amended with 1% ferrihydrite or 5% amorphous Al oxide. Moreover, such treatments proved to simultaneously immobilize As and Pb in a great extent when soils were also polluted with such toxic elements. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, Doug; Wiatzka, Gerd; Brown, Steve
This paper provides the life story of Canada's original radium/uranium mine. In addition to the history of operations, it discusses the unique and successful approach used to identify the key issues and concerns associated with the former radium, uranium and silver mining property and the activities undertaken to define the remedial actions and subsequent remedial plan. The Port Radium Mine site, situated approximately 275 km north of Yellowknife on the east shore of Great Bear Lake, Northwest Territories, was discovered in 1930 and underground mining began in 1932. The mine operated almost continuously from 1932 to 1982, initially for recoverymore » of radium, then uranium and finally, for recovery of silver. Tailings production totaled an estimated 900,000 tons and 800,000 tons from uranium and silver processing operations respectively. In the early days of mining, Port Radium miners were exposed to radon and associated decay product levels (in Working Level Months of exposure - WLM) hundreds of times greater than modern standards. The experience of the Port Radium miners provides important contribution to understanding the risks from radon. While the uranium mine was originally decommissioned in the early 1960's, to the standards of the day, the community of Deline (formerly Fort Franklin) had concerns about residual contamination at the mine site and the potential effects arising from use of traditional lands. The Deline people were also concerned about the possible risks to Deline Dene arising from their work as ore carriers. In the late 1990's, the community of Deline brought these concerns to national attention and consequently, the Government of Canada and the community of Deline agreed to move forward in a collaborative manner to address these concerns. The approach agreed to was to establish the Canada-Deline Uranium Table (CDUT) to provide a joint process by which the people of Deline could have their concerns expressed and addressed. A great deal of work was done through the CDUT, including efforts to assess site environment and safety issues in the context of modern reclamation standards. In addition to the environmental and remediation studies, an assessment of historic exposures of Deline ore carriers to radiation and a follow-up epidemiological feasibility study were performed. SENES Consultants Limited (SENES) carried out the dose reconstruction for the Port Radium miners in the 1990's, was the environmental consultant to the CDUT from 2000 to 2005, developed the Remedial Action Plan (RAP), engineering plans and specifications for decommissioning the Port Radium mine and vicinity sites in 2005/6, supervised the remedial works in 2007 and carried out the long term post closure monitoring from 2008 to 2012. Our firsthand experience from working cooperatively with the CDUT provides insights into effective decommissioning of historic contaminated sites. (authors)« less
Urinary excretion of uranium in adult inhabitants of the Czech Republic.
Malátová, Irena; Bečková, Věra; Kotík, Lukáš
2016-02-01
The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-01
This article reviews uranium production in Romania. Geological aspects of the country are discussed, and known uranium deposits are noted. Uranium mining and milling activities are also covered. Utilization of Romania`s uranium production industry will primarily be to supply the country`s nuclear power program, and with the present adequate supplies and the operation of their recently revamped fuel production facility, Romania should be self-reliant in the front end of the nuclear fuel cycle.
Monitoring genotoxic exposure in uranium miners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sram, R.J.; Binkova, B.; Dobias, L.
1993-03-01
Recent data from deep uranium mines in Czechoslovakia indicated that in addition to radon daughter products, miners are also exposed to chemical mutagens. Mycotoxins were identified as a possible source of mutagenicity present in the mines. Various methods of biomonitoring were used to examine three groups of miners from different uranium mines. Cytogenetic analysis of peripheral lymphocytes, unscheduled DNA synthesis (UDS) in lymphocytes, and lipid peroxidation (LPO) in both plasma and lymphocytes were studied on 66 exposed miners and 56 controls. Throat swabs were taken from 116 miners and 78 controls. Significantly increased numbers of aberrant cells were found inmore » all groups of miners, as well as decreased UDS values in lymphocytes and increased LPO plasma levels in comparison to controls. Molds were detected in throat swabs from 27% of miners, and 58% of these molds were embryotoxic. Only 5% of the control samples contained molds and none of them was embryotoxic. The following mycotoxins were isolated from miners' throat swab samples: rugulosin, sterigmatocystin, mycophenolic acid, brevianamid A, citreoviridin, citrinin, penicilic acid, and secalonic acid. These data suggest that mycotoxins are a genotoxic factor affecting uranium miners.« less
Monitoring genotoxic exposure in uranium miners.
Srám, R J; Binková, B; Dobiás, L; Rössner, P; Topinka, J; Veselá, D; Veselý, D; Stejskalová, J; Bavorová, H; Rericha, V
1993-01-01
Recent data from deep uranium mines in Czechoslovakia indicated that in addition to radon daughter products, miners are also exposed to chemical mutagens. Mycotoxins were identified as a possible source of mutagenicity present in the mines. Various methods of biomonitoring were used to examine three groups of miners from different uranium mines. Cytogenetic analysis of peripheral lymphocytes, unscheduled DNA synthesis (UDS) in lymphocytes, and lipid peroxidation (LPO) in both plasma and lymphocytes were studied on 66 exposed miners and 56 controls. Throat swabs were taken from 116 miners and 78 controls. Significantly increased numbers of aberrant cells were found in all groups of miners, as well as decreased UDS values in lymphocytes and increased LPO plasma levels in comparison to controls. Molds were detected in throat swabs from 27% of miners, and 58% of these molds were embryotoxic. Only 5% of the control samples contained molds and none of them was embryotoxic. The following mycotoxins were isolated from miners' throat swab samples: rugulosin, sterigmatocystin, mycophenolic acid, brevianamid A, citreoviridin, citrinin, penicilic acid, and secalonic acid. These data suggest that mycotoxins are a genotoxic factor affecting uranium miners. PMID:8319649
28 CFR 79.40 - Scope of subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ACT Eligibility Criteria for Claims by Uranium Miners § 79.40 Scope of subpart. The regulations in... miners, i.e., uranium mine workers, and the nature of the evidence that will be accepted as proof of the... exposure to a defined minimum level of radiation during employment in aboveground or underground uranium...
28 CFR 79.40 - Scope of subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ACT Eligibility Criteria for Claims by Uranium Miners § 79.40 Scope of subpart. The regulations in... miners, i.e., uranium mine workers, and the nature of the evidence that will be accepted as proof of the... exposure to a defined minimum level of radiation during employment in aboveground or underground uranium...
28 CFR 79.40 - Scope of subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ACT Eligibility Criteria for Claims by Uranium Miners § 79.40 Scope of subpart. The regulations in... miners, i.e., uranium mine workers, and the nature of the evidence that will be accepted as proof of the... exposure to a defined minimum level of radiation during employment in aboveground or underground uranium...
40 CFR 440.30 - Applicability; description of the uranium, radium and vanadium ores subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium, radium and vanadium ores subcategory. 440.30 Section 440.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.30 Applicability; description of the...
28 CFR 79.40 - Scope of subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ACT Eligibility Criteria for Claims by Uranium Miners § 79.40 Scope of subpart. The regulations in... miners, i.e., uranium mine workers, and the nature of the evidence that will be accepted as proof of the... exposure to a defined minimum level of radiation during employment in aboveground or underground uranium...
Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13
Breit, George N.
2016-01-01
Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.
Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).
Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.
2000-01-01
Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-16
... business hours. SUPPLEMENTARY INFORMATION: Midway Gold US Inc. (Midway) proposes to construct and operate an open-pit gold mining operation, which would include open pits, a heap leach pad, waste rock dumps, and ancillary facilities. The mine would be located in the northern part of the Pancake Mountain Range...
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...
Bacterial diversity and composition of an alkaline uranium mine tailings-water interface.
Khan, Nurul H; Bondici, Viorica F; Medihala, Prabhakara G; Lawrence, John R; Wolfaardt, Gideon M; Warner, Jeff; Korber, Darren R
2013-10-01
The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.
China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues
2012-11-07
facilities, while experts from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium enrichment) near Isfahan, reported the...Barbara Opall -Rome and Vago Muradian, “Bush Privately Lauds Israeli Attack on Syria,” Defense News, January 14, 2008; Paul Richter, “West Says N... Mining Development Trading Corporation).123 Also, in December 2009, Japan arrested two traders who exported expensive cosmetics from Japan to North
China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues
2012-03-30
from China worked at a uranium mine at Saghand and a centrifuge facility (for uranium enrichment) near Isfahan, reported the Washington Post (December...Facilities,” China News Agency, September 3, 2007; Xinhua, September 4 and 6, 2007. 99 Barbara Opall -Rome and Vago Muradian, “Bush Privately Lauds...with the DPRK’s arms dealer, Global Trading and Technology (a front for Korea Mining Development Trading Corporation).119 Also, in December 2009
Uranium decay daughters from isolated mines: Accumulation and sources.
Cuvier, A; Panza, F; Pourcelot, L; Foissard, B; Cagnat, X; Prunier, J; van Beek, P; Souhaut, M; Le Roux, G
2015-11-01
This study combines in situ gamma spectrometry performed at different scales, in order to accurately locate the contamination pools, to identify the concerned radionuclides and to determine the distribution of the contaminants from soil to bearing phase scale. The potential mobility of several radionuclides is also evaluated using sequential extraction. Using this procedure, an accumulation area located downstream of a former French uranium mine and concentrating a significant fraction of radioactivity is highlighted. We report disequilibria in the U-decay chains, which are likely related to the processes implemented on the mining area. Coupling of mineralogical analyzes with sequential extraction allow us to highlight the presence of barium sulfate, which may be the carrier of the Ra-226 activities found in the residual phase (Ba(Ra)SO4). In contrast, uranium is essentially in the reducible fraction and potentially trapped in clay-iron coatings located on the surface of minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Uranium as a possible criterion for the hydro-chemical alteration of betafite
NASA Astrophysics Data System (ADS)
Hosseinpour Khanmiri, Mohammad; Yanson, Svetlana Yu.; Fomin, Edward V.; Titov, Anatoly V.; Grebeniuk, Andrey V.; Polekhovsky, Yury S.; Bogdanov, Roman V.
2018-01-01
Hydro-chemical processes significantly alter the original composition of metamict minerals. In the work presented here, an attempt was made to reconstruct the chemical composition of betafite in the earlier stages of its geological history. The time scale is determined by the leaching rate of the isotope 238U, a process that takes its course in line with first-order kinetics, or something close to it. The leaching rate constant of this uranium isotope was assessed. Based on available data in the literature, the hydro-chemical behavior of various atoms in group A of betafite was analyzed. The chemical composition of the mineral was calculated taking into account the total charge of the cations that the betafite had at the time it was formed, or possibly the last time it was completely reformed as a result of diverse endogenic processes.
Uranium as a possible criterion for the hydro-chemical alteration of betafite
NASA Astrophysics Data System (ADS)
Hosseinpour Khanmiri, Mohammad; Yanson, Svetlana Yu.; Fomin, Edward V.; Titov, Anatoly V.; Grebeniuk, Andrey V.; Polekhovsky, Yury S.; Bogdanov, Roman V.
2018-06-01
Hydro-chemical processes significantly alter the original composition of metamict minerals. In the work presented here, an attempt was made to reconstruct the chemical composition of betafite in the earlier stages of its geological history. The time scale is determined by the leaching rate of the isotope 238U, a process that takes its course in line with first-order kinetics, or something close to it. The leaching rate constant of this uranium isotope was assessed. Based on available data in the literature, the hydro-chemical behavior of various atoms in group A of betafite was analyzed. The chemical composition of the mineral was calculated taking into account the total charge of the cations that the betafite had at the time it was formed, or possibly the last time it was completely reformed as a result of diverse endogenic processes.
Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Phrommavanh, Vannapha; Descostes, Michael
2016-07-01
The Diffusive Gradients in Thin Films (DGT) technique using PIWBA resin (The Dow Chemical Company) was developed and validated for the measurement of uranium (U) concentration in natural and uranium mining influenced waters. The U uptake on the PIWBA resin gel was 97.3 ± 0.4% (batch method; Vsol = 5 mL; [U] = 20 μg L(-1); 0.01 M NaNO3; pH = 7.0 ± 0.2). The optimal eluent was found to be HNO3conc/70 °C with an elution efficiency of 88.9 ± 1.4%. The laboratory DGT investigation demonstrated that the PIWBA resin gel exhibits a very good performance across a wide range of pH (3-9) and ionic strength (0.001-0.7 M NaNO3) at different time intervals. Neither effect of PO4(3-) (up to 1.72 × 10(-4) M), nor of HCO3(-) (up to 8.20 × 10(-3) M) on the quantitative measurement of uranium by DGT-PIWBA method were observed. Only at very high Ca(2+) (2.66 × 10(-4) M), and SO4(2-) (5.55 × 10(-4) M) concentration, the U uptake on DGT-PIWBA was appreciably lessened. In-situ DGT field evaluation was carried out in the vicinity of three former uranium mining sites in France (Loire-Atlantique and Herault departments), which employ different water treatment technologies and have different natural geochemical characteristics. There was a similar or inferior U uptake on DGT-Chelex(®)-100 in comparison with the U accumulation on a DGT-PIWBA sampler. Most likely, the performance of Chelex(®)-100 was negatively affected by a highly complex matrix of mining waters. The high concentration and identity of co-accumulating analytes, typical for the mining environment, did not have a substantial impact on the quantitative uptake of labile U species on DGT- PIWBA. The use of the polyphenol impregnated anion exchange resin leads to a significant advancement in the application and development of the DGT technique for determination of U in the vicinity of the former uranium mining sites. Copyright © 2016 Elsevier Ltd. All rights reserved.
Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah
Finch, Warren Irvin
1953-01-01
The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandes, H.M.; Reinhart, D.; Lettie, L.
2006-07-01
The operation of uranium mining and milling plants gives rise to huge amounts of wastes from both mining and milling operations. When pyrite is present in these materials, the generation of acid drainage can take place and result in the contamination of underground and surface waters through the leaching of heavy metals and radionuclides. To solve this problem, many studies have been conducted to find cost-effective solutions to manage acid mine drainage; however, no adequate strategy to deal with sulfide-ric h wastes is currently available. Ferrate (VI) is a powerful oxidizing agent in aqueous media. Under acidic conditions, the redoxmore » potential of the Ferrate (VI) ion is the highest of any other oxidant used in wastewater treatment processes. The standard half cell reduction potential of ferrate (VI) has been determined as +2.20 V to + 0.72 V in acidic and basic solutions, respectively. Ferrate (VI) exhibits a multitude of advantageous properties, including higher reactivity and selectivity than traditional oxidant alternatives, as well as disinfectant, flocculating, and coagulant properties. Despite numerous beneficial properties in environmental applications, ferrate (VI) has remained commercially unavailable. Starting in 1953, different methods for producing a high purity, powdered ferrate (VI) product were developed. However, producing this dry, stabilized ferrate (VI) product required numerous process steps which led to excessive synthesis costs (over $20/lb) thereby preventing bulk industrial use. Recently a novel synthesis method for the production of a liquid ferrate (VI) based on hypochlorite oxidation of ferric ion in strongly alkaline solutions has been discovered (USPTO 6,790,428; September 14, 2004). This on-site synthesis process dramatically reduces manufacturing cost for the production of ferrate (VI) by utilizing common commodity feedstocks. This breakthrough means that for the first time ferrate (VI) can be an economical alternative to treating acid mining drainage generating materials. The objective of the present study was to investigate a methodology of preventing the generation of acid drainage by applying ferrate (VI) to acid generating materials prior to the disposal in impoundments or piles. Oxidizing the pyritic material in mining waste could diminish the potential for acid generation and its related environmental risks and long-term costs at disposal sites. The effectiveness of toxic metals removal from acid mine drainage by applying ferrate (VI) is also examined. Preliminary results presented in this paper show that the oxidation of pyrite by ferrate is a first-order rate reaction in Fe(VI) with a half-life of about six hours. The stability of Fe(VI) in water solutions will not influence the reaction rate in a significant manner. New low-cost production methods for making liquid ferrate on-site makes this technology a very attractive option to mitigate one of the most pressing environmental problems in the mining industry. (authors)« less
Preliminary report on the Comet area, Jefferson County, Montana
Becraft, George Earle
1953-01-01
Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base- and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5? miles. It trends N. 80 ? W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as prebatholithic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of pyrite, galena, ruby silver, arqentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and also from disseminated secondary uranium ,minerals in the adjacent quartz monzonite. Undiscovered deposits of uranium ore may occur spatially associated with the base- and precious-metal deposits along the Comet-Gray Eagle shear zone and with chalcedonic vein zones similar to the Free Enterprise.
Rare earths recovery and gypsum upgrade from Florida phosphogypsum
Liang, Haijun; Zhang, Patrick; Jin, Zhen; ...
2017-11-01
Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less
Rare earths recovery and gypsum upgrade from Florida phosphogypsum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Haijun; Zhang, Patrick; Jin, Zhen
Phosphogypsum is a byproduct created during the production of industrial wet-process phosphoric acid. This study focused on recovering rare earth elements (REEs) from a Florida phosphogypsum sample and investigated the effects of removing detrimental impurities such as phosphorus pentoxide (P 2O 5), uranium (U) and fluorine (F) during the leaching process. Experimental results indicated that REE leaching efficiency increased rapidly, reached a maximum and then began to decrease with sulfuric acid concentrations ranging from 0 to 10 percent and temperatures ranging from 20 to 70 °C. At a sulfuric acid concentration of 5 percent and leaching temperature of 50 °C,more » REE leaching efficiency obtained a maximum value of approximately 43 percent. Increasing the leaching time or liquid/solid ratio increased the leaching efficiency. The leaching efficiencies of P 2O 5, U and F consistently increased with sulfuric acid concentration, temperature, leaching time and liquid/solid ratio within the testing ranges. A fine-grain gypsum concentrate, sized smaller than 40 μm, was separated from leached phosphogypsum through elutriation, in which the P 2O 5, U and F content levels were reduced by 99, 70 and 83 percent, respectively, from their content levels in fresh phosphogypsum.« less
NASA Astrophysics Data System (ADS)
Ballouard, C.; Poujol, M.; Mercadier, J.; Deloule, E.; Boulvais, P.; Baele, J. M.; Cuney, M.; Cathelineau, M.
2018-06-01
In the French Armorican Variscan belt, most of the economically significant hydrothermal U deposits are spatially associated with peraluminous leucogranites emplaced along the south Armorican shear zone (SASZ), a dextral lithospheric scale wrench fault that recorded ductile deformation from ca. 315 to 300 Ma. In the Pontivy-Rostrenen complex, a composite intrusion, the U mineralization is spatially associated with brittle structures related to deformation along the SASZ. In contrast to monzogranite and quartz monzodiorite (3 < U < 9 ppm; Th/U > 3), the leucogranite samples are characterized by highly variable U contents ( 3 to 27 ppm) and Th/U ratios ( 0.1 to 5) suggesting that the crystallization of magmatic uranium oxide in the more evolved facies was followed by uranium oxide leaching during hydrothermal alteration and/or surface weathering. U-Pb dating of uranium oxides from the deposits reveals that they mostly formed between ca. 300 and 270 Ma. In monzogranite and quartz monzodiorite, apatite grains display magmatic textures and provide U-Pb ages of ca. 315 Ma reflecting the time of emplacement of the intrusions. In contrast, apatite grains from the leucogranite display textural, geochemical, and geochronological evidences for interaction with U-rich oxidized hydrothermal fluids contemporaneously with U mineralizing events. From 300 to 270 Ma, infiltration of surface-derived oxidized fluids leached magmatic uranium oxide from fertile leucogranite and formed U deposits. This phenomenon was sustained by brittle deformation and by the persistence of thermal anomalies associated with U-rich granitic bodies.
Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.
2013-06-01
The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that δ202Hg values relative to NIST 3133 of calcine (up to 1.52‰) in the Terlingua district, Texas, are as much as 3.24‰ heavier than cinnabar (−1.72‰) prior to retorting. In addition, δ202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17‰ heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, δ202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. PMID:19848142
Stetson, S.J.; Gray, J.E.; Wanty, R.B.; Macalady, D.L.
2009-01-01
The isotopic composition of mercury (Hg) was determined in cinnabar ore, mine-waste calcine (retorted ore), and leachates obtained from water leaching experiments of calcine from two large Hg mining districts in the U.S. This study is the first to report significant mass-dependent Hg isotopic fractionation between cinnabar ore and resultant calcine. Data indicate that ??202Hg values relative to NIST 3133 of calcine (up to 1.52???) in the Terlingua district, Texas, are as much as 3.24??? heavier than cinnabar (-1.72???) prior to retorting. In addition, ??202Hg values obtained from leachates of Terlingua district calcines are isotopically similar to, or as much as 1.17??? heavier than associated calcines, most likely due to leaching of soluble, byproduct Hg compounds formed during ore retorting that are a minor component in the calcines. As a result of the large fractionation found between cinnabar and calcine, and because calcine is the dominant source of Hg contamination from the mines studied, ??202Hg values of calcine may be more environmentally important in these mined areas than the primary cinnabar ore. Measurement of the Hg isotopic composition of calcine is necessary when using Hg isotopes for tracing Hg sources from areas mined for Hg, especially mine water runoff. ?? 2009 American Chemical Society.
NASA Astrophysics Data System (ADS)
Filchev, Lachezar; Roumenina, Eugenia
2013-10-01
The article presents the results obtained from a study for detection and assessment of abiotic stress through pollution with heavy metals, metalloids, and natural radionuclides in European Black Pine (Pinus nigra L.) forests caused by uranium mining using ground-based biogeochemical, biophysical, and field spectrometry data. The forests are located on a territory subject to underground and open uranium mining. An operational model of the study is proposed. The areas subject to technogeochemical load are outlined based on the aggregate pollution index Zc. Laboratory and field spectrometry data were used to detect the signals of abiotic stress at pixel level. The methods used for determination of stressed and unstressed black pine forests are: four vegetation indices (TCARI, MCARI, MTVI 2, and PRI 1) for stress detection, and the position, depth, asymmetry, and shift of the red-edge. Based on the "blue shift" and the depth and position of the red-edge, registered by the laboratory analysis and field spectral reflectance, it is established that coniferous forests subject to abiotic stress show an increase in total chlorophyll content and carotene. It has been found that the vegetation indices MTVI 2 and PRI 1, as well as the combination of vegetation indices and pigments may be used as a direct indicator of abiotic stress in coniferous forests caused by uranium mining.
Abandoned Uranium Mine (AUM) Trust Mine Points, Navajo Nation, 2016, US EPA Region 9
This GIS dataset contains point features that represent mines included in the Navajo Environmental Response Trust. This mine category also includes Priority mines. USEPA and NNEPA prioritized mines based on gamma radiation levels, proximity to homes and potential for water contamination identified in the preliminary assessments. Attributes include mine names, reclaimed status, links to US EPA AUM reports, and the region in which the mine is located. This dataset contains 19 features.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-24
... gold mine and associated processing and ancillary facilities. The project would be located on public... media, newspapers and the BLM Web site at: http://www.blm.gov/nv/st/en/fo/battle_mountain_field.html... to construct, operate, reclaim, and close an open pit, heap leach, gold mining operation known as the...
The effect of hydrogen peroxide on uranium oxide films on 316L stainless steel
NASA Astrophysics Data System (ADS)
Wilbraham, Richard J.; Boxall, Colin; Goddard, David T.; Taylor, Robin J.; Woodbury, Simon E.
2015-09-01
For the first time the effect of hydrogen peroxide on the dissolution of electrodeposited uranium oxide films on 316L stainless steel planchets (acting as simulant uranium-contaminated metal surfaces) has been studied. Analysis of the H2O2-mediated film dissolution processes via open circuit potentiometry, alpha counting and SEM/EDX imaging has shown that in near-neutral solutions of pH 6.1 and at [H2O2] ⩽ 100 μmol dm-3 the electrodeposited uranium oxide layer is freely dissolving, the associated rate of film dissolution being significantly increased over leaching of similar films in pH 6.1 peroxide-free water. At H2O2 concentrations between 1 mmol dm-3 and 0.1 mol dm-3, formation of an insoluble studtite product layer occurs at the surface of the uranium oxide film. In analogy to corrosion processes on common metal substrates such as steel, the studtite layer effectively passivates the underlying uranium oxide layer against subsequent dissolution. Finally, at [H2O2] > 0.1 mol dm-3 the uranium oxide film, again in analogy to common corrosion processes, behaves as if in a transpassive state and begins to dissolve. This transition from passive to transpassive behaviour in the effect of peroxide concentration on UO2 films has not hitherto been observed or explored, either in terms of corrosion processes or otherwise. Through consideration of thermodynamic solubility product and complex formation constant data, we attribute the transition to the formation of soluble uranyl-peroxide complexes under mildly alkaline, high [H2O2] conditions - a conclusion that has implications for the design of both acid minimal, metal ion oxidant-free decontamination strategies with low secondary waste arisings, and single step processes for spent nuclear fuel dissolution such as the Carbonate-based Oxidative Leaching (COL) process.
Long, Keith R.; Singer, Donald A.
2001-01-01
Determining the economic viability of mineral deposits of various sizes and grades is a critical task in all phases of mineral supply, from land-use management to mine development. This study evaluates two simple tools for estimating the economic viability of porphyry copper deposits mined by open-pit, heap-leach methods when only limited information on these deposits is available. These two methods are useful for evaluating deposits that either (1) are undiscovered deposits predicted by a mineral resource assessment, or (2) have been discovered but for which little data has been collected or released. The first tool uses ordinary least-squared regression analysis of cost and operating data from selected deposits to estimate a predictive relationship between mining rate, itself estimated from deposit size, and capital and operating costs. The second method uses cost models developed by the U.S. Bureau of Mines (Camm, 1991) updated using appropriate cost indices. We find that the cost model method works best for estimating capital costs and the empirical model works best for estimating operating costs for mines to be developed in the United States.
Kinetic Study on the Removal of Iron from Gold Mine Tailings by Citric Acid
NASA Astrophysics Data System (ADS)
Mashifana, T.; Mavimbela, N.; Sithole, N.
2018-03-01
The Gold mining generates large volumes of tailings, with consequent disposal and environmental problems. Iron tends to react with sulphur to form pyrite and pyrrhotite which then react with rain water forming acid rain. The study focuses on the removal of iron (Fe) from Gold Mine tailings; Fe was leached using citric acid as a leaching reagent. Three parameters which have an effect on the removal of Fe from the gold mine tailings, namely; temperature (25 °C and 50 °C), reagent concentration (0.25 M, 0.5 M, 0.75 M and 1 M) and solid loading ratio (20 %, 30 % and 40 %) were investigated. It was found that the recovery of Fe from gold mine tailings increased with increasing temperature and reagent concentration, but decreased with increasing solid loading ratio. The optimum conditions for the recovery of Fe from gold mine tailings was found to be at a temperature of 50 ºC, reagent concentration of 1 M and solid loading of 20 %. Three linear kinetic models were investigated and Prout-Tompkins kinetic model was the best fit yielding linear graphs with the highest R2 values.
Uranium content and leachable fraction of fluorspars
Landa, E.R.; Councell, T.B.
2000-01-01
Much attention in the radiological health community has recently focused on the management and regulation of naturally occurring radioactive materials. Although uranium-bearing minerals are present in a variety of fluorspar deposits, their potential consideration as naturally occurring radioactive materials has received only limited recognition. The uranium content of 28 samples of acid- and cryolite-grade (>97% CaF2) fluorspar from the National Defense Stockpile was found to range from 120 to 24,200 ??g kg-1, with a mean of 2,145 ??g kg-1. As a point of comparison, the average concentration of uranium in the upper crust of the earth is about 2,500 ??g kg-1. Leachability of this uranium was assessed by means of the Toxicity Characteristic Leaching Procedure (TCLP). The TCLP extractable fraction ranged from 1 to 98%, with a mean of 24% of the total uranium. The typically low concentrations of uranium seen in these materials probably reflects the removal of uranium-bearing mineral phases during the beneficiation of the crude fluorspar ore to achieve industrial specifications. Future NORM studies should examine crude fluorspar ores and flotation tailings.
Acute and chronic toxicity of effluent water from an abandoned uranium mine.
Antunes, S C; Pereira, R; Gonçalves, F
2007-08-01
Inactive or abandoned mines represent a significant source of environmental, chemical, physical, and aesthetic impact. Among concerning situations, the occurrence of abandoned or semi-abandoned mine-associated ponds (for sedimentation of solids, for effluent neutralization, or for washing the ore) is a common feature in this type of system. These ponds are a source of contamination for the groundwater resources and adjacent soils, because they lack appropriate impermeabilization. The use of this water for agriculture may also pose chronic risks to humans. In Portugal, these problems have been diagnosed and some remediation projects have been developed. The purpose of our study was to evaluate the acute and chronic toxicity of water samples collected from the aquatic system surrounding an abandoned uranium mine (Cunha Baixa, Mangualde, Central Portugal). The present study focuses on the water compartment, whose toxicity was evaluated by means of standard toxicity assays using two Daphnia species (D. longispina and D. magna). Three different ponds were used in the characterization of the aquatic system from Cunha Baixa mine: a reference pond (Ref), a mine effluent treatment pond (T), and a mine pit pond (M). Metal analyses performed in the water samples from these ponds showed values that, in some cases, were much higher than maximum recommendable values established (especially Al, Mn) by Portuguese legislation for waters for crop irrigation. Acute toxicity was only observed in the mine pit pond, with EC(50) values of 28.4% and 50.4% for D. longispina and D. magna, respectively. The significant impairment of chronic endpoints, translated in reductions in the population growth rate for both species, gives rise to concerns regarding the potential risks for aquatic zooplanktonic communities, from local receiving waters, potentially exposed to point source discharges of the treated and nontreated effluent from Cunha Baixa uranium mine.
NASA Astrophysics Data System (ADS)
Xue, Q.; Tang, J., Sr.; Chen, H.
2017-12-01
High concentrations of ammonium sulfate, often used in the in-situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages, and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid extractable fractions. 96% of the extractable fraction in soil were desorbed into solution at pH=3.0, and the content of the reducible fraction was observed to initially increase (when pH>4.0) and then decrease (when pH<4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process.
Cross-current leaching of indium from end-of-life LCD panels.
Rocchetti, Laura; Amato, Alessia; Fonti, Viviana; Ubaldini, Stefano; De Michelis, Ida; Kopacek, Bernd; Vegliò, Francesco; Beolchini, Francesca
2015-08-01
Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs represent a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2M sulfuric acid at 80°C for 10min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85-90%, and with 6 steps it was about 50-55%. Indium concentration in the leachate was about 35mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO2 (with 10 steps we assessed that the emission of about 90kg CO2-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selective uptake of uranium and thorium by some vegetables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, A.M.; Ghazali, Z.; Rahman, S.A.
1996-12-31
Uranium and thorium are trace elements in the actinide series found naturally in the atmosphere and can enter the human body through ingestion of food or by drinking. To establish baseline information for current and future environmental assessment due to pollution, especially in foodstuff, by heavy and trace metals, biological samples such as locally grown vegetables were analyzed for uranium and thorium contents. The terrain in most parts of the Malaysian peninsula consists of monazite-bearing rocks or soil that can be found extensively in areas related to tin-mining operations. Abandoned mining areas provide suitable sites for vegetable cultivation where mostmore » vegetables in the lowlands are grown.« less
Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J
2010-03-15
A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment. (c) 2009 Elsevier B.V. All rights reserved.
Si-based technologies for reduction of the pollutant leaching from landfills and mine tails.
Bocharnikova, E; Matichenkov, V; Jiang, J; Yuejin, C
2017-07-01
Monosilicic and polysilicic acids were shown to react with different types of the pollutants. The direction of these reactions can be managed by changing the monosilicic and polysilicic acid concentration in soil or water media. The objective of this study was to determine the effect of Si-treated calcium metallurgical slag and battery slag on the As, Se, Cd, Pb, Ni, Cr, and Hg mobility and bioavailability in mine tailings (Xikuangshan mine, Hunan, China). The results of column experiment showed that the Si-activated slags reduced leaching of As, Se, Cd, Pb, Ni, Cr, and Hg by 13-89% and transformed them into plant-unavailable forms. The greenhouse test has demonstrated that the Si-treated slags provided reinforced plant resistance to heavy metal toxicity and reduced pollutants in barley and pea leaves. Si-treated local solid slags could be used for creating the biogeochemical barriers on the pollutant streams from landfills or mine tailings sites.
Effects of ammonium on uranium partitioning and kaolinite mineral dissolution.
Emerson, Hilary P; Di Pietro, Silvina; Katsenovich, Yelena; Szecsody, Jim
2017-02-01
Ammonia gas injection is a promising technique for the remediation of uranium within the vadose zone. It can be used to manipulate the pH of a system and cause co-precipitation processes that are expected to remove uranium from the aqueous phase and decrease leaching from the solid phase. The work presented in this paper explores the effects of ammonium and sodium hydroxide on the partitioning of uranium and dissolution of the kaolinite mineral in simplified synthetic groundwaters using equilibrium batch sorption and sequential extraction experiments. It shows that there is a significant increase in uranium removal in systems with divalent cations present in the aqueous phase but not in sodium chloride synthetic groundwaters. Further, the initial conditions of the aqueous phase do not affect the dissolution of kaolinite. However, the type of base treatment does have an effect on mineral dissolution. Published by Elsevier Ltd.
McLean, II, William; Miller, Philip E.
1997-01-01
A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.
McLean, W. II; Miller, P.E.
1997-12-16
A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.
NASA Astrophysics Data System (ADS)
Lambert, I. B.
2012-04-01
This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and strong opposition to growth of nuclear power in a number of quarters - it is vital that the market provides incentives for exploration and development of environmentally sustainable mining operations. Thorium: World Reasonably Assured plus Inferred Resources of thorium are estimated at over 2.2 million tonnes, in hard rock and heavy mineral sand deposits. At least double this amount is considered to occur in as yet undiscovered thorium deposits. Currently, demand for thorium is insignificant, but even a major shift to thorium-fueled reactors would not make significant inroads into the huge resource base over the next half century.
Raymond-Whish, Stefanie; Mayer, Loretta P.; O’Neal, Tamara; Martinez, Alisyn; Sellers, Marilee A.; Christian, Patricia J.; Marion, Samuel L.; Begay, Carlyle; Propper, Catherine R.; Hoyer, Patricia B.; Dyer, Cheryl A.
2007-01-01
Background The deleterious impact of uranium on human health has been linked to its radioactive and heavy metal–chemical properties. Decades of research has defined the causal relationship between uranium mining/milling and onset of kidney and respiratory diseases 25 years later. Objective We investigated the hypothesis that uranium, similar to other heavy metals such as cadmium, acts like estrogen. Methods In several experiments, we exposed intact, ovariectomized, or pregnant mice to depleted uranium in drinking water [ranging from 0.5 μg/L (0.001 μM) to 28 mg/L (120 μM). Results Mice that drank uranium-containing water exhibited estrogenic responses including selective reduction of primary follicles, increased uterine weight, greater uterine luminal epithelial cell height, accelerated vaginal opening, and persistent presence of cornified vaginal cells. Coincident treatment with the antiestrogen ICI 182,780 blocked these responses to uranium or the synthetic estrogen diethylstilbestrol. In addition, mouse dams that drank uranium-containing water delivered grossly normal pups, but they had significantly fewer primordial follicles than pups whose dams drank control tap water. Conclusions Because of the decades of uranium mining/milling in the Colorado plateau in the Four Corners region of the American Southwest, the uranium concentration and the route of exposure used in these studies are environmentally relevant. Our data support the conclusion that uranium is an endocrine-disrupting chemical and populations exposed to environmental uranium should be followed for increased risk of fertility problems and reproductive cancers. PMID:18087588
Western Region Mines Community Involvement Plan
Factsheets related to the Western Abandoned Uranium Mine Region, generally located along the Little Colorado River and Highway 89, and are in the Cameron, Coalmine Canyon, Bodaway/Gap, and Leupp Chapters.
Lung cancer in a nonsmoking underground uranium miner.
Mulloy, K B; James, D S; Mohs, K; Kornfeld, M
2001-01-01
Working in mines is associated with acute and chronic occupational disorders. Most of the uranium mining in the United States took place in the Four Corners region of the Southwest (Arizona, Colorado, New Mexico, and Utah) and on Native American lands. Although the uranium industry collapsed in the late 1980s, the industry employed several thousand individuals who continue to be at increased risk for developing lung cancers. We present the case of a 72-year-old Navajo male who worked for 17 years as an underground uranium miner and who developed lung cancer 22 years after leaving the industry. His total occupational exposure to radon progeny was estimated at 506 working level months. The miner was a life-long nonsmoker and had no other significant occupational or environmental exposures. On the chest X-ray taken at admission into the hospital, a right lower lung zone infiltrate was detected. The patient was treated for community-acquired pneumonia and developed respiratory failure requiring mechanical ventilation. Respiratory failure worsened and the patient died 19 days after presenting. On autopsy, a 2.5 cm squamous cell carcinoma of the right lung arising from the lower lobe bronchus, a right broncho-esophageal fistula, and a right lower lung abscess were found. Malignant respiratory disease in uranium miners may be from several occupational exposures; for example, radon decay products, silica, and possibly diesel exhaust are respiratory carcinogens that were commonly encountered. In response to a growing number of affected uranium miners, the Radiation Exposure Compensation Act (RECA) was passed by the U.S. Congress in 1990 to make partial restitution to individuals harmed by radiation exposure resulting from underground uranium mining and above-ground nuclear tests in Nevada. PMID:11333194
Reis, P; Lourenço, J; Carvalho, F P; Oliveira, J; Malta, M; Mendo, S; Pereira, R
2018-05-01
The induction of RIBE (Radiation Induced Bystander Effect) is a non-target effect of low radiation doses that has already been verified at an inter-organismic level in fish and small mammals. Although the theoretical impact in the field of environmental risk assessment (ERA) is possible, there is a gap of knowledge regarding this phenomenon in invertebrate groups and following environmentally relevant exposures. To understand if RIBE should be considered for ERA of radionuclide-rich wastewaters, we exposed Daphnia magna (<24 h and 5d old) to a 2% diluted uranium mine effluent for 48 h, and to a matching dose of waterborne uranium (55.3 μg L -1 ). Then the exposed organisms were placed (24 and 48 h) in a clean medium together with non-exposed neonates. The DNA damage observed for the non-exposed organisms was statistically significant after the 24 h cohabitation for both uranium (neonates p = 0.002; 5 d-old daphnids p = <0.001) and uranium mine effluent exposure (only for neonates p = 0.042). After 48 h cohabitation significant results were obtained only for uranium exposure (neonates p = 0.017; 5 d-old daphnids p = 0.013). Although there may be some variability associated to age and exposure duration, the significant DNA damage detected in non-exposed organisms clearly reveals the occurrence of RIBE in D. magna. The data obtained and here presented are a valuable contribution for the discussion about the relevance of RIBE for environmental risk assessment. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, L.
Since the onset of the first ''oil shock'' in 1974, France has pursued a policy of steadily increasing energy independence based on nuclear power for generation of electricity. In 1973, nuclear reactors supplied only 8% of France's electrical power. A strong development effort lifted the nuclear share to 23% in 1980, to 66% in 1985, and the plan is to raise the total to 75% by 1990. In 1976, Cogema (Compagnie Generale des Matieres Nucleaires) was organized from the production division of France's Commissariat a l'Energie Atomique (CEA) to handle fuel supply and spent fuel reprocessing for the expanding industrymore » (see subsequent article on Cogema). In parallel with growth of the French nuclear power, Cogema has become a world leader in all aspects of the fuel cycle, providing services not only domestically but internationally as well. As a uranium mining company, Cogema has steadily developed domestic and foreign sources of supply, and over the years it has maintained the world's strongest uranium exploration effort throughout the ups and downs of the market. As a result, the company has become the world's leading uranium supplier, with about 20% of total production contributed either by its domestic mining divisions or overseas subsidiaries.« less
Biota of uranium mill tailings near the Black Hills
Mark A. Rumble
1982-01-01
Reclamation" often implies the enhancement of the land as wildlife habitat or for other productive uses. However, there are situations where revegetation to stabilize erosion is the only desired goal. Uranium mining and mill sites may fall into this later category. Data pertaining to plant and animal components on revegetated uranium mill tailings was collected....
Geology and ore deposits of the Section 23 Mine, Ambrosia Lake District, New Mexico
Granger, H.C.; Santos, E.S.
1982-01-01
The section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation in the Ambrosia Lake mining district during the early 1960s. The Ambrosia Lake district is one of several mining districts within the Grants mineral belt, an elongate zone containing many uranium deposits along the southern flank of the San Juan basin. Two distinct types of ore occur in the mine. Primary ore occurs as peneconcordant layers of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks and which are typically elongate in an east-southeast direction subparallel both to the sedimentary trends and to the present-day regional strike of the strata. These are called prefault or trend ores because of their early genesis and their elongation and alinement. A second type of ore in the mine is referred to as postfault, stacked, or redistributed ore. Its genesis was similar to that of the roll-type deposits in Tertiary rocks of Wyoming and Texas. Oxidation, related to the development of a large tongue of oxidized rock extending from Gallup to Ambrosia Lake, destroyed much of the primary ore and redistributed it as massive accumulations of lower grade ores bordering the redox interface at the edge of the tongue. Host rocks in the southern half of sec. 23 (T. 14 N., R. 10 W.) are oxidized and contain only remnants of the original, tabular, organic-rich ore. Thick bodies of roll-type ore are distributed along the leading edge of the oxidized zone, and pristine primary ore is found only near the north edge of the section. Organic matter in the primary ore was derived from humic acids that precipitated in the pores of the sandstones and fixed uranium as both coffinite and urano-organic compounds. Vanadium, molybdenum, and selenium are also associated with the ore. The secondary or roll-type ores are essentially free of organic carbon and contain uranium both as coffinite and uraninite. They also contain vanadium and selenium but are virtually devoid of molybdenum. Although much has been learned about these deposits since the time this study was conducted, in 1966, a great deal more study will by required to completely elucidate their geologic history.
Radionuclides from past uranium mining in rivers of Portugal.
Carvalho, Fernando P; Oliveira, João M; Lopes, Irene; Batista, Aleluia
2007-01-01
During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, Dão, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiriça confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.
Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)
NASA Astrophysics Data System (ADS)
Antunes, I. M.; Ribeiro, A. F.
2012-04-01
The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Th and U contents) decreases along SE direction and increases along NE and SW directions. The probability of expression for principal component 2 (explaining pH, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr and Pb contents), decreases from central points (inside mine influence) to peripheral points (outside mine influence) and gradually increases along N and SW directions. The spatial distribution of tailing materials did not allowed a consistent spatial distribution. In general, the stream sediments are classified as unpolluted and not polluted or moderately polluted, according to geoaccumulation Müller index with exception of local samples, located inside mine influence. The soils cannot be used for public, private or residential uses according to the Canadian soil legislation. However, almost samples can be used for commercial or industrial occupation. According to the target values and intervention values for soils remediation, these soils need intervention. Tailing materials samples are much polluted in thorium (Th) and uranium (U) and they cannot be used for public, private or residential uses.
Use of cemented paste backfill in arsenic-rich tailings
NASA Astrophysics Data System (ADS)
Hamberg, Roger; Maurice, Christian; Alakangas, Lena
2015-04-01
Gold is extracted by cyanide leaching from inclusions in arsenopyrite from a mine in the north of Sweden. The major ore mineral assemblage consists of pyrrhotite and arsenopyrite-loellingite. Effluents from the gold extraction were treated with Fe2(SO4)3, with the aim to form stable As-bearing Fe-precipitates (FEP). The use of the method called cemented paste backfill (CPB) is sometimes suggested for the management of tailings. In CPB, tailings are commonly mixed with low proportions (3 - 7 %) of cement and backfilled into underground excavated area. To reduce costs, amendments such as granulated blast furnace slag (GBFS), biofuel fly ash (BFA) and cement kiln dust (CKD) are used for partial replacement of cement in CPB due to their pozzolanic and alkaline properties. The objective for this study was to evaluate the leaching behaviour of As in CPB-mixtures with low proportions (1 - 3 %) of BFA and ordinary cement and unmodified tailings. The selection of CPB-recipies was made based on technical and economical criterias to adress the demands deriving from the mining operations. Speciation of the As in ore and tailings samples revealed that mining processes have dissolved the majority of the arsenopyrite in the ore, causing secondary As phases to co-precipitate with newly formed FEP:s. Tank leaching tests (TLT) and weathering cells (WCT) were used to compare leaching behaviour in a monolithic mass contra a crushed material. Quantification of the presumed benefit of CPB was made by calculation of the cumulative leaching of As. Results from the leaching tests (TLT and WCT) showed that the inclusion of As-rich tailings into a cementitious matrix increased leaching of As. This behaviour could partially be explained by an increase of pH. The addition of alkaline binder materials to tailings increased As leaching due to the relocation of desorbed As from FEPs into less acid-tolerant species such as Ca-arsenates and cementitious As-phases. Unmodified tailings generated an acidic environment in which As-bearing FEPs were stable. The addition of binders increased the tailings' acid-neutralizing capacity and introduced more Ca-ions and Fe-precipitates into the tailings matrix, both of which may facilitate As adsorption and reduce the potential for sulphide oxidation on a long-term basis.
Restructuring the Uranium Mining Industry in Romania: Actual Situation and Prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgescu, P.D.; Petrescu, S.T.; Iuhas, T.F.
2002-07-01
Uranium prospecting in Romania has started some 50 years ago, when a bilateral agreement between Romania and the former Soviet Union had been concluded and a joint Romanian-Soviet enterprise was created. The production started in 1952 by the opening of some deposits from western Transylvania (Bihor and Ciudanovita). From 1962 the production has continued only with Romanian participation on the ore deposit Avram Iancu and from 1985 on the deposits from Eastern Carpathians (Crucea and Botusana). Starting with 1978 the extracted ores have been completely processed in the Uranium Ore Processing Plant from Feldioara, Brasov. Complying with the initial stipulationsmore » of the Nuclear National Program launched at the beginning of the 1980's, the construction of a nuclear power station in Cernavoda has started in Romania, using natural uranium and heavy water (CANDU type), having five units of 650 MW installed capacity. After 1989 this initial Nuclear National Program was revised and the construction of the first unit (number 1) was finalized and put in operation in 1996. In 2001 the works at the unit number 2 were resumed, having the year 2005 as the scheduled activating date. The future of the other 3 units, being in different construction phases, hasn't been clearly decided. Taking into consideration the exhaustion degree of some ore deposits and from the prospect of exploiting other ore deposits, the uranium industry will be subject of an ample restructuring process. This process includes workings of modernization of the mines in operation and of the processing plant, increasing the profitableness, lowering of the production costs by closing out and ecological rehabilitation of some areas affected by mining works and even new openings of some uraniferous exploitations. This paper presents the actual situation and the prospects of uranium mining industry on the base of some new technical and economical strategic concepts in accordance with the actual Romanian Program for Nuclear Energetics. (authors)« less
Thomas, P A; Gates, T E
1999-01-01
The richest uranium ore bodies ever discovered (Cigar Lake and McArthur River) are presently under development in northeastern Saskatchewan. This subarctic region is also home to several operating uranium mines and aboriginal communities, partly dependent upon caribou for subsistence. Because of concerns over mining impacts and the efficient transfer of airborne radionuclides through the lichen-caribou-human food chain, radionuclides were analyzed in tissues from 18 barren-ground caribou (Rangifer tarandus groenlandicus). Radionuclides included uranium (U), radium (226Ra), lead (210Pb), and polonium (210Po) from the uranium decay series; the fission product (137Cs) from fallout; and naturally occurring potassium (40K). Natural background radiation doses average 2-4 mSv/year from cosmic rays, external gamma rays, radon inhalation, and ingestion of food items. The ingestion of 210Po and 137Cs when caribou are consumed adds to these background doses. The dose increment was 0.85 mSv/year for adults who consumed 100 g of caribou meat per day and up to 1.7 mSv/year if one liver and 10 kidneys per year were also consumed. We discuss the cancer risk from these doses. Concentration ratios (CRs), relating caribou tissues to lichens or rumen (stomach) contents, were calculated to estimate food chain transfer. The CRs for caribou muscle ranged from 1 to 16% for U, 6 to 25% for 226Ra, 1 to 2% for 210Pb, 6 to 26% for 210Po, 260 to 370% for 137Cs, and 76 to 130% for 40K, with 137Cs biomagnifying by a factor of 3-4. These CRs are useful in predicting caribou meat concentrations from the lichens, measured in monitoring programs, for the future evaluation of uranium mining impacts on this critical food chain. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:10378999
Stabilization of the As-contaminated soil from the metal mining areas in Korea.
Ko, Myoung-Soo; Kim, Ju-Yong; Bang, Sunbeak; Lee, Jin-Soo; Ko, Ju-In; Kim, Kyoung-Woong
2012-01-01
The stabilization efficiencies of arsenic (As) in contaminated soil were evaluated using various additives such as limestone, steel mill slag, granular ferric hydroxide (GFH), and mine sludge collected from an acid mine drainage treatment system. The soil samples were collected from the Chungyang area, where abandoned Au-Ag mines are located. Toxicity characteristic leaching procedure, synthetic precipitation leaching procedure, sequential extraction analysis, aqua regia digestion, cation exchange capacity, loss on ignition, and particle size distribution were conducted to assess the physical and chemical characteristics of highly arsenic-contaminated soils. The total concentrations of arsenic in the Chungyang area soil ranged up to 145 mg/kg. After the stabilization tests, the removal percentages of dissolved As(III) and As(V) were found to differ from the additives employed. Approximately 80 and 40% of the As(V) and As(III), respectively, were removed with the use of steel mill slag. The addition of limestone had a lesser effect on the removal of arsenic from solution. However, more than 99% of arsenic was removed from solution within 24 h when using GFH and mine sludge, with similar results observed when the contaminated soils were stabilized using GFH and mine sludge. These results suggested that GFH and mine sludge may play a significant role on the arsenic stabilization. Moreover, this result showed that mine sludge can be used as a suitable additive for the stabilization of arsenic.
UNDERGROUND URANIUM MINING ON COLORADO PLATEAU
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dare, W.L.
1958-10-31
The size and continuity of the Chinie ore bodies in the Big Indian district, Utah, have permitted mine operators in plan a more integrated development and mining system using larger and more specialized equipment. Thick ore and firm backs at the south end of the district than permitted room and pillar mining, using large drill jumbos send diesel-powered haulage equipment. The Gismo loader and draw-chute system has proved efficient. Driving the haulage- way below the stope level is an advantage when pillars are recovered. To the north, thinner ore with weaker backs favor retreat systems and smaller equipment. Here, themore » ore bodies are delineated by a grid system of drifts, send the ore recovered by panel, longwall, or similar mining methods, retreating toward the principal entry. Labor productivity ranges from 8 to 21 tons per man-shift, send direct mining send development costs, excluding initial development, ranges from 75 to 51 per ton. A unique system of mine development is in the Temple Mountain district, Utah, where the shallow Chinie deposits are mined through 36- inch diameter calyx drill holes. Using small diesel-powered ore buggies and bucket hoisting, ore in produced from the two largest mines at a rate of 4.1 tons per man-shift, at a direci cost of 15 a ton. Ambrosia Lake deposits range from 5 to 80 feet thick and occur from 350 to 1,000 feet below the surface. These mines are in development stages. Open, retreat, and top-slice sloping is planned. Adequate ventilation is essential in uranium mining since sufficient air must be coursed through the workings to maintain airborne radioactive concentration at tolerance levels send dilute exhaust gases where diesel-powered equipment is used. Uranium miners have found that radiometric scannning is a quick and efficient method for checking ths grade of the ore produced and in process of development. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less
Gamma-ray spectroscopy measurements and simulations for uranium mining
NASA Astrophysics Data System (ADS)
Marchais, T.; Pérot, B.; Carasco, C.; Allinei, P.-G.; Chaussonnet, P.; Ma, J.-L.; Toubon, H.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration evaluation by means of gamma measurements. This paper reports gamma-ray spectra, recorded with a high-purity coaxial germanium detector, on standard cement blocks with increasing uranium content, and the corresponding MCNP simulations. The detailed MCNP model of the detector and experimental setup has been validated by calculation vs. experiment comparisons. An optimization of the detector MCNP model is presented in this paper, as well as a comparison of different nuclear data libraries to explain missing or exceeding peaks in the simulation. Energy shifts observed between the fluorescence X-rays produced by MCNP and atomic data are also investigated. The qualified numerical model will be used in further studies to develop new gamma spectroscopy approaches aiming at reducing acquisition times, especially for ore samples with low uranium content.
Organic amendments and nutrient leaching in soil columns
USDA-ARS?s Scientific Manuscript database
The lack of nutrient build up in reclaimed coal mine soils would therefore require additional inputs to maintain plant productivity and establishment of a healthy ecosystem. In a greenhouse experiment, reclaimed coal mine soil were amended with fresh and composted poultry manure at the rates based ...
Hemingway, B.S.
1982-01-01
Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.
Increasing flux rate to shorten leaching period and ramp-up production
NASA Astrophysics Data System (ADS)
Ngantung, Billy; Agustin, Riska; Ravi'i
2017-01-01
J Resources Bolaang Mongondow (JBRM) has operated a dynamic heap leach in its Bakan Gold Mine since late 2013. After successfully surpassing its name plate capacity of 2.6 MT/annum in 2014, the clayey and transition ore become the next operational challenge. The presence of transition and clayey ore requires longer leaching period, hence reducing the leach pad capacity which then caused reduced production. Maintaining or even increasing production with such longer leaching ore types can be done by expanding the leach pad area which means an additional capital investment, and/or shortening the leaching cycle which compromise a portion of gold extraction. JBRM has been successfully increasing the leach pad production from 2.6 MT/annum to 3.8 MT/annum, whilst improving the gold extraction from around 70% to around 80%. This was achieved by managing the operation of the leach pad which is shortening the leach cycle by identifying and combining the optimal flux rate application versus the tonne processed in each cell, at no capital investment for expanding the cell capacity.
Radioactive deposits in California
Walker, George W.; Lovering, Tom G.
1954-01-01
Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.
Trust Mines: Legal Documents and Settlements
Legal Documents and Settlements related to the Northern Abandoned Uranium Mines Region including the Phase 1 Settlement Agreement and Environmental Response Trust Agreement, Phase 2 Settlement Agreement Removal Site Evaluation (RSE) Trust Agreement.
Working with Communities on Cleaning Up Abandoned Uranium Mines
This site provides information about the EPA's work to inform and include communities in the cleanup of abandoned mines, including health impacts, major enforcement and removal milestones, and community actions.
Preliminary report on the Comet area, Jefferson County, Montana
Becraft, George Earle
1952-01-01
Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base-and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5 1/2 miles. It trends N. 80° W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as the pre-batholitic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins, but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of the following minerals: pyrite, galena, ruby silver, argentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and from disseminated secondary uranium minerals in the adjacent quartz monzonite. Undiscovered commercial deposits of uranium ore may occur spatially associated with the base-and precious-metal deposits along the Comet-Gray Eagle shear zone, and chalcedonic vein zones similar to the Free Enterprise.
Uranium deposits in Grant County, New Mexico
Granger, Harry C.; Bauer, Herman L.; Lovering, Tom G.; Gillerman, Elliot
1952-01-01
The known uranium deposits of Grant county, N. Mex., are principally in the White Signal and Black Hawk districts. Both districts are within a northwesterly-trending belt of pre-Cambrian rocks, composed chiefly of granite with included gneisses, schists, and quartzites. Younger dikes and stocks intrude the pre-Cambrian complex. The White Signal district is on the southeast flanks of the Burro Mountains; the Black Hawk district is about 18 miles northwest of the town of White Signal. In the White Signal district the seconday uranium phosphates--autunite and torbernite--occur as fracture coatings and disseminations in oxidized parts of quartz-pyrite veins, and in the adjacent mafic dikes and granites; uraniferous limonite is common locally. Most of the known uraniferous deposits are less that 50 feet in their greatest dimension. The most promising deposits in the district are on the Merry Widow and Blue Jay claims. The richest sample taken from the Merry Widow mine contained more than 2 percent uranium and a sample from the Blue Jay property contained as much as 0.11 percent; samples from the other properties were of lower grade. In the Black Hawk district pitchblende is associated with nickel, silver, and cobalt minerals in fissure veins. The most promising properties in the Black Hawk district are the Black Hawk, Alhambra, and Rose mines. No uranium analyses from this district were available in 1951. There are no known minable reserves of uranium ore in either district, although there is some vein material at the Merry Widow mine of ore grade, if a market were available in the region.
NASA Astrophysics Data System (ADS)
Abreu, M. M.; Neves, O.; Marcelino, M.
2012-04-01
Former uranium mines areas are frequently the sources of environmental radionuclides problems even many years after the closure of mining operations. A concern for inhabitants from mining areas is the use of contaminated land or irrigation water for agriculture, and the potential transfer of metals from soils to vegetables, and to humans through the food chain. The main aim of this study was to compare the uranium concentration in lettuce (Lactuca sativa L. varieties Marady and Romana) grown in different seasons (autumn and summer) and exposed to high and low uranium concentrations both in irrigation water and agricultural soil. The content of uranium in irrigation water, soil (total and available fraction) and in lettuce leaf samples was analyzed in a certified laboratory. In the field experiments, two agricultural soils were divided into two plots (four replicates each); one of them was irrigated with uranium contaminated water (0.94 to 1.14 mg/L) and the other with uncontaminated water (< 0.02 mg/L). Irrigation with contaminated water together with highest soil uranium available concentration (10 to 13 mg/kg) had negative effects on both studied lettuce varieties, namely yield reduction (up to 53% and 87% in autumn and summer experiments, respectively) and increase of uranium leaf concentration (up to 1.4 and 7 fold in autumn and summer, respectively). Effect on lettuce yield was mainly due to the high soil salinity (1.01 to 6.31 mS/cm) as a consequence of high irrigation water electrical conductivity (up to 1.82 mS/cm) and low lettuce soil salinity tolerance (1 to 3 mS/cm). The highest lettuce uranium concentration (dry weight) observed was 2.13 and 5.37 mg/kg for Marady and Romana variety, respectively. The highest uranium lettuce concentration in Romana variety was also the effect of its growing in summer season when it was subject to greatest frequency and amount of water irrigation. The consumption by an adult of the lettuce that concentrate more uranium, represents only 16.7% of the tolerable daily limit intake set by World Health Organisation for this element (0.6 mg/kg body weight daily), suggesting that lettuce uranium intake had a low contribution and do not represent a potential health risk for Cunha Baixa's residents.
NASA Astrophysics Data System (ADS)
Youssef, Mohamed A. S.; Sabra, Mohamed Elsadek M.; Abdeldayem, Abdelaziz L.; Masoud, Alaa A.; Mansour, Salah A.
2017-12-01
Airborne gamma-ray spectrometric data, covering Gabal Umm Hammad area, near Quseir City, in the Eastern Desert of Egypt, has been utilized to identify the uranium migration path, and U, Th and K-favorability indices. The following of the uranium migration technique enabled estimation of the amount of migrated uranium, in and out of the rock units. Investigation of the Taref Formation, Nakhil Formation, Tarawan Formation and Dawi Formation shows large negative amount of uranium migration, indicating that uranium leaching is outward from the geologic body toward surrounding rock units. Moreover, calculation of the U, Th and K-favorability indices has been carried out for the various rock units to locate the rocks having the highest radioelement potentialities. The rock units that possess relatively major probability of uranium potentiality include Mu‧tiq Group, weakly deformed granitic rocks, and Trachyte plugs and sheets. Meanwhile, the rock units with major potential of Th-index are Taref Formation, Quseir Formation and Dawi Formation. The rock units with major potential of K-index are Dokhan volcanic and Mu‧tiq group.
Caine, Jonathan S.; Johnson, Raymond H.; Wild, Emily C.
2011-01-01
The Schwartzwalder deposit is the largest known vein type uranium deposit in the United States. Located about eight miles northwest of Golden, Colorado it occurs in Proterozoic metamorphic rocks and was formed by hydrothermal fluid flow, mineralization, and deformation during the Laramide Orogeny. A complex brittle fault zone hosts the deposit comprising locally brecciated carbonate, oxide, and sulfide minerals. Mining of pitchblende, the primary ore mineral, began in 1953 and an extensive network of underground workings was developed. Mine dewatering, treatment of the effluent and its discharge into the adjacent Ralston Creek was done under State permit from about 1990 through about 2008. Mining and dewatering ceased in 2000 and natural groundwater rebound has filled the mine workings to a current elevation that is above Ralston Creek but that is still below the lowest ground level adit. Water in the 'mine pool' has concentrations of dissolved uranium in excess of 1,000 times the U.S. Environmental Protection Agency drinking-water standard of 30 milligrams per liter. Other dissolved constituents such as molybdenum, radium, and sulfate are also present in anomalously high concentrations. Ralston Creek flows in a narrow valley containing Quaternary alluvium predominantly derived from weathering of crystalline bedrock including local mineralized rock. Just upstream of the mine site, two capped and unsaturated waste rock piles with high radioactivity sit on an alluvial terrace. As Ralston Creek flows past the mine site, a host of dissolved metal concentrations increase. Ralston Creek eventually discharges into Ralston Reservoir about 2.5 miles downstream. Because of highly elevated uranium concentrations, the State of Colorado issued an enforcement action against the mine permit holder requiring renewed collection and treatment of alluvial groundwater. As part of planned mine reclamation, abundant data were collected and compiled into a report by Wyman and Effner (2007), which was to be used as a basis for eventual mine site closure. In 2010 the U.S. Geological Survey was asked by the State of Colorado to provide an objective and independent review of the Wyman and Effner (2007) report and to identify gaps in knowledge regarding the hydrogeology of the mine site. Key findings from the U.S. Geological Survey assessment include geological structural analysis indicating that although the primary uranium-hosting fault likely does not cross under Ralston Creek, many complex subsidiary faults do cross under Ralston Creek. It is unknown if any of these faults act as conduits for mine pool water to enter Ralston Creek. Reported bedrock permeabilities are low, but local hydraulic gradients are sufficient to potentially drive groundwater flow from the mine pool to the creek. Estimated average linear velocities for the full range of reported hydraulic conductivities indicate groundwater transit times from the mine pool to the creek on the order of a few months to about 3,800 years or 11 to 65 years using mean reported input values. These estimates do not account for geochemical reactions along any given flow path that may differentially enhance or retard movement of individual dissolved constituents. New reconnaissance data including 34S isotope and 234U/238U isotopic activity ratios show potentially distinctive signatures for the mine pool compared to local groundwater and Ralston Creek water above the mine site. Although the mine pool may be near an equilibrium elevation, evidence for groundwater recharge transients indicates inflow to the workings that are greater than outflow. There is not enough hydraulic head data adjacent to the mine workings to adequately constrain a final equilibrium elevation or to predict how several wet years in succession might affect variations in mine pool elevation. Although ground level adits are sealed with bulkheads, if the mine pool elevation were to rise slightly to the elevation of or abo
DEHYDRATION OF DEUTERIUM OXIDE SLURRIES
Hiskey, C.F.
1959-03-10
A method is presented for recovering heavy water from uranium oxide-- heavy water slurries. The method consists in saturating such slurries with a potassium nitrate-sodium nitrate salt mixture and then allowing the self-heat of the slurry to raise its temperature to a point slightly in excess of 100 deg C, thus effecting complete evaporation of the free heavy water from the slurry. The temperature of the slurry is then allowed to reach 300 to 900 deg C causing fusion of the salt mixture and expulsion of the water of hydration. The uranium may be recovered from the fused salt mixture by treatment with water to leach the soluble salts away from the uranium-containing residue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillet, H.
1960-01-01
A brief description is given of some aspects of the experience gained over a year during which x-ray fluorescence was used at the laberatory of the present Section Autonome d'Etudes, Recherches et Applications Chimiques of the Commissariat a l'Energie Atomique. A standard is tested daily to ensure reproducibility. The observations made during the months from Dec. 1958 to May 1959 are described. In acid leaching of uranium ores, the residues are analyzed by x-ray fluorescence directly in powder form. Fixation and elution of vanadium on ion-exchange resin were also studied. (auth)
Release of 226Ra from uranium mill tailings by microbial Fe(III) reduction
Landa, E.R.; Phillips, E.J.P.; Lovley, D.R.
1991-01-01
Uranium mill tailings were anaerobically incubated in the presence of H2 with Alteromonas putrefaciens, a bacterium known to couple the oxidation of H2 and organic compounds to the reduction of Fe(III) oxides. There was a direct correlation between the extent of Fe(III) reduction and the accumulation of dissolved 226Ra. In sterile tailings in which Fe(III) was not reduced, there was negligible leaching of 226Ra. The behavior of Ba was similar to that of Ra in inoculated and sterile systems. These results demonstrate that under anaerobic conditions, microbial reduction of Fe(III) may result in the release of dissolved 226Ra from uranium mill tailings. ?? 1991.
USE OF GEOSPATIAL DATA TO PREDICT DOWNSTREAM IMPACTS OF COAL MINING IN AN APPALACHIAN WATERSHED
Mountaintop removal and valley filling is a method of mining coal that results in burial of Appalachian headwater streams. Leaching of fill material often results in elevated ion concentrations below fills. A primary objective of this study was to quantify downstream extent of mi...
INTEGRATED BIOREACTOR SYSTEM FOR THE TREATMENT OF CYANIDE, METALS AND NITRATES IN MINE PROCESS WATER
An innovative biological process is described for the tratment of cyanide-, metals- and nitrate-contaminated mine process water. The technology was tested for its ability to detoxify cyanide and nitrate and to immobilize metals in wastewater from agitation cyanide leaching. A pil...
DESIGN AND ANALYSIS OF AN EXPERIMENT FOR ASSESSING CYANIDE IN GOLD MINING WASTES
Gold mining wastes treated by heap leaching cyanidization typically contain several metallo-cyanide species. Accurate measurement of total cyanide by the most common methods in such a case may be hampered by the inadequate recoveries that occur for certain cyanide compounds (e.g....
Bioremediation of uranium contamination with enzymatic uranium reduction
Lovley, D.R.; Phillips, E.J.P.
1992-01-01
Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Results of a reconnaissance geochemical survey of the Beeville Quadrangle, Texas are reported. Field and laboratory data are presented for 373 groundwater and 364 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. The groundwater data indicate that the northwestern corner of the quadrangle is the most favorable for potential uranium mineralization. Favorability is indicated by high uranium concentrations; high arsenic, molybdenum, and vanadium concentrations;more » and proximity and similar geologic setting to the mines of the Karnes County mining district. Other areas that appear favorable are an area in Bee and Refugio Counties and the northeastern part of the quadrangle. Both areas have water chemistry similar to the Karnes County area, but the northeastern area does not have high concentrations of pathfinder elements. The stream sediment data indicate that the northeastern corner of the quadrangle is the most favorable for potential mineralization, but agricultural practices and mineralogy of the outcropping Beaumont Formation may indicate a false anomaly. The northwestern corner of the quadrangle is considered favorable because of its proximity to the known uranium deposits, but the data do not seem to support this.« less
NASA Astrophysics Data System (ADS)
Blake, J.; De Vore, C. L.; Avasarala, S.; Ali, A.; Roldan, C.; Bowers, F.; Spilde, M.; Artyushkova, K.; Cerrato, J.
2015-12-01
The chemical interactions, mobility, and plant uptake of uranium (U) near abandoned mine wastes was investigated along the Rio Paguate, adjacent to the Jackpile Mine, located in Laguna Pueblo, New Mexico. Elevated U concentrations in surface water adjacent to mine waste range from 30 to 710 μg/L seasonally and decrease to 5.77 to 10.0 μg/L at a wetland 4.5 kilometers downstream of the mine. Although U concentrations in stream water are elevated, aqua regia acid digestions performed on co-located stream bed and stream bank sediments reveal that there is limited U accumulation on sediments along the reach between the mine and wetland, with most sediment concentrations being near the 3 mg/kg crustal average. However, U concentrations in sediments in the wetland are 4 times the background concentrations in the area. Individual results from salt cedar roots, stems, and leaves collected along the river transect show higher U concentrations in the roots adjacent to the mine waste (20 and 55 mg/kg) and lower in the stems and leaves. Translocation values calculated below 1 are evident in many of the plant samples, suggesting that U root to shoot translocation is minimal and U is accumulating in the roots. Concentrations of U in salt cedar roots from downstream of the mine waste decrease to 15 mg/kg. X-ray photoelectron spectroscopy analysis on sediment samples adjacent to the mine waste show a 75:25% ratio of Fe(III) to Fe(II), which can have an effect on adsorption properties. Electron microprobe results suggest that the ore in this area is present as a uranium-phosphate phase. Our results suggest that dilution, uptake by plants, and U sorption to wetland sediments are the dominant factors that help to decrease the U concentrations downstream of the mine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2011 CFR
2011-07-01
... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...
Code of Federal Regulations, 2010 CFR
2010-07-01
... any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach... operations other than placer deposits; (2) Mills that use the froth-flotation process alone or in conjunction... not apply to discharges from the Quartz Hill Molybdenum Project in the Tongass National Forest, Alaska...
Code of Federal Regulations, 2012 CFR
2012-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Code of Federal Regulations, 2014 CFR
2014-07-01
... process alone or in conjunction with other processes, for the beneficiation of copper, lead, zinc, gold, silver, or molybdenum ores, or any combination of these ores; (3) Mines and mills that use dump, heap, in-situ leach, or vat-leach processes to extract copper from ores or ore waste materials; and (4) Mills...
Zhang, Guangji; Chao, Xingwu; Guo, Pei; Cao, Junya; Yang, Chao
2015-01-01
Orpiment is one of the major arsenic sulfide minerals which commonly occurs in the gold mine environment and the weathering of this mineral can lead to the contamination of arsenic. In this study, chemical leaching experiments using 10g/L Fe(3+) at 35°C and 50°C were carried out and the results show that orpiment can be leached by Fe(3+) and the leaching rate of orpiment was significantly enhanced in the presence of Ag(+). The bioleaching experiments with mesophilic bacteria Acidithiobacillus ferrooxidans and moderate thermophilic bacteria Sulfobacillus sibiricus were carried out, showing that these two strains can survive in the mineral pulp and oxidize Fe(2+) to regenerate Fe(3+). Based on above results, it is believed that the leaching action of the acidic mining drainage by some bacteria can lead to the release of arsenic from orpiment. Different performances of At. ferrooxidans and S. sibiricus in the tests suggest they follow two different mechanisms and this point of view is further confirmed based on analyses of the composition and morphology of the mineral residue by SEM and EDS. Copyright © 2014 Elsevier B.V. All rights reserved.
Applications of imaging spectroscopy data: A case study at Summitville, Colorado
King, Trude V.V.; Clark, Roger N.; Swayze, Gregg A.
2000-01-01
From 1985 through 1992, the Summitville open-pit mine produced gold from lowgrade ore using cyanide heap-leach techniques, a method to extract gold whereby the ore pile is sprayed with water containing cyanide, which dissolves the minute gold grains. Environmental problems due to mining activity at Summitville include significant increases in acidic and metal-rich drainage from the site, leakage of cyanide-bearing solutions from the heap-leach pad into an underdrain system, and several surface leaks of cyanide-bearing solutions into the Wightman Fork of the Alamosa River. In general, drainage from the Summitville mine moves downslope into the Wightman Fork, a small tributary of the Alamosa River, which in turn flows east into the Terrace Reservoir before entering the agricultural lands of the San Luis Valley. The increase in the trace-metal burden of the Alamosa River watershed due to the mining activities at Summitville is of concern to farmers and fisherman, as well as Federal and State of Colorado agencies having responsibility for land stewardship. The environment of the Summitville area is a result of 1) its geologic evolution, that culminated in the formation of precious-metal mineral deposits; and 2) previous metal mining activity. Mining accentuates, accelerates, and pertubates natural geochemical processes. The development of underground workings, open pits, mill tailings, and spoil heaps and the extractive processing of ore enhances the likelihood of releasing chemicals and elements to the surrounding areas and at increased rates relative to unmined areas. Both mined and unmined mineralized areas can produce acid drainage from the formation and movement of highly acidic water rich in heavy metals. This acidic water forms principally through the chemical reaction of oxygenated surface water and shallow subsurface water with rocks that contain sulfide minerals, producing sulphuric acid. Heavy metals can be leached by the acid solution that comes in contact with mineralized rocks, a process that may be enhanced by bacterial action. The resulting fluids may be highly toxic and, when mixed with groundwater, surface water, and soil, may have harmful effects on humans, animals, and plants. Thus, understanding the geologic and hydrologic history of this area is a critical piece of the environmental puzzle in the Summitville area. The Summitville mine operators had ceased active mining and begun environmental remediation, including treatment of the heap-leach pile and installation of a water-treatment facility, when it declared bankruptcy in December 1992 and abandoned the mine site. The U.S. Environmental Protection Agency (EPA) immediately took over the Summitville site under EPA Superfund Emergency Response authority. Summitville has focused public attention on the environmental effects of modern mineral-resource development. Soon after the mine was abandoned, Federal, State, and local agencies, along with Alamosa River water users and private companies, began extensive studies at the mine site and surrounding areas. These studies included analysis of water, soil, livestock and vegetation. The role of the U.S. Geological Survey (USGS) was to provide geologic, hydrologic and agricultural information about the mine and surrounding area and to describe and evaluate the environmental condition of the Summitville mine and the downstream effects of the mine on the San Luis Valley (King 1995).
Lisa L. Stillings; Michael C. Amacher
2010-01-01
Phosphorite from the Meade Peak Phosphatic Shale member of the Permian Phosphoria Formation has been mined in southeastern Idaho since 1906. Dumps of waste rock from mining operations contain high concentrations of Se which readily leach into nearby streams and wetlands. While the most common mineralogical residence of Se in the phosphatic shale is elemental Se, Se(0...
Fey, David L.; Wirt, Laurie
2007-01-01
The largest sources of copper and zinc to the creek were from surface inflows from the adit, diffuse inflows from wetland areas, and leaching of dispersed mill tailings. Major instream processes included mixing between mining- and non-mining-impacted waters and the attenuation of iron, aluminum, manganese, and othermetals by precipitation or sorption. One year after the rerouting, the Zn and Cu loads in Leavenworth Creek from the adit discharge versus those from leaching of a large volume of dispersed mill tailings were approximately equal to, if not greater than, those before. The mine-waste dump does not appear to be a major source of metal loading. Any improvement that may have resulted from the elimination of adit flow across the dump was masked by higher adit discharge attributed to a larger snow pack. Although many mine remediation activities commonly proceed without prior scientific studies to identify the sources and pathways of metal transport, such strategies do not always translate to water-quality improvements in the stream. Assessment of sources and pathways to gain better understanding of the system is a necessary investment in the outcome of any successful remediation strategy.
Prediction of blast fragmentation of underground stopes for in situ leaching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stagg, M.S.; Otterness, R.E.; Djahanguiri, F.
1994-12-31
The US Bureau of Mines (USBM) evaluated empirical equations that predict fragmentation from underground stope rounds. Controlled blasting is necessary for creating leaching stopes that maximize the recovery and minimize backbreak of the perimeter wall. This paper presents the fragmentation results from one of the three drop-raise blasts used to develop a reduced-scale cylindrical stope, 1.8 m in diameter and 6 m in height. The stope is located in the Colorado School of Mines Experimental Mine (Edgar Mine) in Idaho Springs, Colorado. This stope is part of a USBM research effort to determine the feasibility of incorporating in situ leachingmore » of rubblized stopes into active underground metal and nonmetal mines. All the material from the first blast, 14 mtons was sieved. The resulting distribution was compared to the distribution predicted from empirical equations. The best fit was found with a USBM equation developed from over 50 sieved, reduced-scale (1- to 2-m) high wall blasts. Modifications to the equations were made to account for the observed differences due to breakout angle, shot geometry, initiation timing, decoupling, rock fracture toughness and explosive energy.« less
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits
NASA Astrophysics Data System (ADS)
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-06-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-01-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment. PMID:28569759
Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.; ...
2017-06-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits.
Bhattacharyya, Amrita; Campbell, Kate M; Kelly, Shelly D; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-06-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI) ) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238 U-enriched isotope signatures, consistent with largely biotic reduction of U (VI) to U (IV) . This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.
Biogenic non-crystalline U (IV) revealed as major component in uranium ore deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly D.
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U (VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U (IV) generated through biologically mediated U (VI) reduction is the predominant U (IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (~58-89%) of U is bound as U (IV) to C-containing organic functional groups or inorganic carbonate, while uraninite and U (VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotopemore » signatures, consistent with largely biotic reduction of U (VI) to U (IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U (IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.« less
Biogenic non-crystalline U(IV) revealed as major component in uranium ore deposits
Bhattacharyya, Amrita; Campbell, Kate M.; Kelly, Shelly; Roebbert, Yvonne; Weyer, Stefan; Bernier-Latmani, Rizlan; Borch, Thomas
2017-01-01
Historically, it is believed that crystalline uraninite, produced via the abiotic reduction of hexavalent uranium (U(VI)) is the dominant reduced U species formed in low-temperature uranium roll-front ore deposits. Here we show that non-crystalline U(IV) generated through biologically mediated U(VI) reduction is the predominant U(IV) species in an undisturbed U roll-front ore deposit in Wyoming, USA. Characterization of U species revealed that the majority (∼58-89%) of U is bound as U(IV)to C-containing organic functional groups or inorganic carbonate, while uraninite and U(VI) represent only minor components. The uranium deposit exhibited mostly 238U-enriched isotope signatures, consistent with largely biotic reduction of U(VI) to U(IV). This finding implies that biogenic processes are more important to uranium ore genesis than previously understood. The predominance of a relatively labile form of U(IV) also provides an opportunity for a more economical and environmentally benign mining process, as well as the design of more effective post-mining restoration strategies and human health-risk assessment.
Applied Geochemistry Special Issue on Environmental geochemistry of modern mining
Seal, Robert R.; Nordstrom, D. Kirk
2015-01-01
Environmental geochemistry is an integral part of the mine-life cycle, particularly for modern mining. The critical importance of environmental geochemistry begins with pre-mining baseline characterization and the assessment of environmental risks related to mining, continues through active mining especially in water and waste management practices, and culminates in mine closure. The enhanced significance of environmental geochemistry to modern mining has arisen from an increased knowledge of the impacts that historical and active mining can have on the environment, and from new regulations meant to guard against these impacts. New regulations are commonly motivated by advances in the scientific understanding of the environmental impacts of past mining. The impacts can be physical, chemical, and biological in nature. The physical challenges typically fall within the purview of engineers, whereas the chemical and biological challenges typically require a multidisciplinary array of expertise including geologists, geochemists, hydrologists, microbiologists, and biologists. The modern mine-permitting process throughout most of the world now requires that potential risks be assessed prior to the start of mining. The strategies for this risk assessment include a thorough characterization of pre-mining baseline conditions and the identification of risks specifically related to the manner in which the ore will be mined and processed, how water and waste products will be managed, and what the final configuration of the post-mining landscape will be.In the Fall 2010, the Society of Economic Geologists held a short course in conjunction with the annual meeting of the Geological Society of America in Denver, Colorado (USA) to examine the environmental geochemistry of modern mining. The intent was to focus on issues that are pertinent to current and future mines, as opposed to abandoned mines, which have been the focus of numerous previous short courses. The geochemical challenges of current and future mines share similarities with abandoned mines, but differences also exist. Mining and ore processing techniques have changed; the environmental footprint of waste materials has changed; environmental protection has become a more integral part of the mine planning process; and most historical mining was done with limited regard for the environment. The 17 papers in this special issue evolved from the Society of Economic Geologists’ short course.The relevant geochemical processes encompass the source, transport, and fate of contaminants related to the life cycle of a mine. Contaminants include metals and other inorganic species derived from geologic sources such as ore and solid mine waste, and substances brought to the site for ore processing, such as cyanide to leach gold. Factors, such as mine-waste mineralogy, hydrologic setting, mine-drainage chemistry, and microbial activity, that affect the hydrochemical risks from mining are reviewed by Nordstrom et al. In another paper, Nordstrom discusses baseline characterization at mine sites in a regulatory framework, and emphasizes the influence of mineral deposits in producing naturally elevated concentrations of many trace elements in surface water and groundwater. Surface water quality in mineralized watersheds is influenced by a number of processes that act on daily (diel) cycles and can produce dramatic variations in trace element concentrations as described by Gammons et al. Pre-mining baseline characterization studies should strive to capture the magnitude of these diel variations. Desbarats et al., using a case study of mine drainage from a gold mine, illustrate how elements that commonly occur as negatively charged species (anions) in solution, such as arsenic as arsenate, behave in an opposite fashion than most metals, which occur as positively charged species (cations). Significant improvement in the understanding of factors that influence the toxicity of metals to aquatic organisms in surface water has highlighted the importance of aqueous chemistry, particularly dissolved organic carbon, as described by Smith et al. Stream sediment contamination is another important pathway for affecting aquatic organisms, as reviewed by Besser et al. Understanding and predicting environmental consequences from mining begins with knowing the mineralogy and mineral reactivity of the ore, the wastes, and of secondary minerals formed later. Jamieson et al. review the importance of mineralogical studies in mine planning and remediation. A number of types of site-specific studies are needed to identify environmental risks related to individual mines. Lapakko reviews the general framework of mine waste characterization studies that are integral to the mine planning process. Hageman et al. present a comparative study of several static tests commonly used to characterize mine waste.The mining and ore processing practices employed at a specific mine site will vary on the basis of the commodities being targeted, the geology of the deposit, the geometry of the deposit, and the mining and ore processing methods used. Thus, these factors, in addition to the waste management practices used, can result in a variety of end-member mine waste features, each of which has its own set of challenges. Open pit mines and underground mines require waste rock to be removed to access ore. Waste rock presents unique problems because the rock is commonly mineralized at sub-economic grades and has not been processed to remove potentially problematic minerals, such as pyrite. Amos et al. examine the salient aspects of the geochemistry of waste rock. Mill tailings – the waste material after ore minerals have been removed – are a volumetrically important solid waste at many mine sites. Their fine grain size and the options for their management make their behavior in the environment distinct from that of waste rock. Lindsay et al. describe some of these differences through three case-study examples. Subaqueous disposal of tailings is another option described by Moncur et al. Cyanide leaching for gold extraction is a common method throughout the world. Johnson describes environmental aspects of cyanidation. Uranium mining presents unique environmental challenges, particularly since in-situ recovery has seen widespread use. Campbell et al. review the environmental geochemistry of uranium mining and current research on bioremediation. Ore concentrates from many types of metal mining undergo a pyrometallurgical technique known as smelting to extract the metal. Slag is the result of smelting, and it may be an environmental liability or a valuable byproduct, as described by Piatak et al. Finally, the open pits that result from surface mining commonly reach below the water table. At the end of mining, these pits may fill to form lakes that become part of the legacy of the mine. Castendyk et al., in two papers, review theoretical aspects of the environmental limnology of pit lakes. They also describe approaches that have been used to model pit lake water balance, wall-rock contributions to pit lake chemistry, pit lake water quality, and limnological processes, such as vertical mixing, through the use of three case studies.
Seal, R.R.; Hammarstrom, J.M.; Johnson, A.N.; Piatak, N.M.; Wandless, G.A.
2008-01-01
The abandoned Valzinco mine, which worked a steeply dipping Kuroko-type massive sulfide deposit in the Virginia Au-pyrite belt, contributed significant metal-laden acid-mine drainage to the Knight's Branch watershed. The host rocks were dominated by metamorphosed felsic volcanic rocks, which offered limited acid-neutralizing potential. The ores were dominated by pyrite, sphalerite, galena, and chalcopyrite, which represented significant acid-generating potential. Acid-base accounting and leaching studies of flotation tailings - the dominant mine waste at the site - indicated that they were acid generating and therefore, should have liberated significant quantities of metals to solution. Field studies of mine drainage from the site confirmed that mine drainage and the impacted stream waters had pH values from 1.1 to 6.4 and exceeded aquatic ecosystem toxicity limits for Fe, Al, Cd, Cu, Pb and Zn. Stable isotope studies of water, dissolved SO42 -, and primary and secondary sulfate and sulfide minerals indicated that two distinct sulfide oxidation pathways were operative at the site: one dominated by Fe(III) as the oxidant, and another by molecular O2 as the oxidant. Reaction-path modeling suggested that geochemical interactions between tailings and waters approached a steady state within about a year. Both leaching studies and geochemical reaction-path modeling provided reasonable predictions of the mine-drainage chemistry.
Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes
Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph
2016-02-24
Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less
Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph
Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less
Otton, James K.
2011-01-01
Studies of the natural environment in the Grants Mineral Belt in northwestern New Mexico have been conducted since the 1930s; however, few such investigations predate uranium mining and milling operations, which began in the early 1950s. This report provides an annotated bibliography of reports that describe the hydrology and geochemistry of groundwaters and surface waters and the geochemistry of soils and sediments in the Grants Mineral Belt and contiguous areas. The reports referenced and discussed provide a large volume of information about the environmental conditions in the area after mining started. Data presented in many of these studies, if evaluated carefully, may provide much basic information about the baseline conditions that existed over large parts of the Grants Mineral Belt prior to mining. Other data may provide information that can direct new work in efforts to discriminate between baseline conditions and the effects of the mining and milling on the natural environment.
Natural thorium resources and recovery: Options and impacts
Ault, Timothy; Van Gosen, Bradley S.; Krahn, Steven; Croff, Allen
2016-01-01
This paper reviews the front end of the thorium fuel cycle, including the extent and variety of thorium deposits, the potential sources of thorium production, and the physical and chemical technologies required to isolate and purify thorium. Thorium is frequently found within rare earth element–bearing minerals that exist in diverse types of mineral deposits, often in conjunction with other minerals mined for their commercial value. It may be possible to recover substantial quantities of thorium as a by-product from active titanium, uranium, tin, iron, and rare earth mines. Incremental physical and chemical processing is required to obtain a purified thorium product from thorium minerals, but documented experience with these processes is extensive, and incorporating thorium recovery should not be overly challenging. The anticipated environmental impacts of by-product thorium recovery are small relative to those of uranium recovery since existing mining infrastructure utilization avoids the opening and operation of new mines and thorium recovery removes radionuclides from the mining tailings.
Economic geology of the Central City district, Gilpin County, Colorado
Sims, P.K.; Drake, Avery A.; Tooker, E.W.
1963-01-01
The Central City district, in Gilpin County, Colo., is on the east flank of the Front Range, about 30 miles west of Denver. The district is the most important mining camp in the Front Range mineral belt, and has yielded more than $100 million worth of gold, silver, uranium, and base-metal ores since 1859. Gold accounts for about 85 percent of the dollar value of the ore. In recent years mining activity has been slack but from 1950 to 1955 the search for uranium ores stimulated prospecting and development.
Excess lead in "rusty rock" 66095 and implications for an early lunar differentiation
Nunes, P.D.; Tatsumoto, M.
1973-01-01
Apollo 16 breccia 66095 contains a remarkably high amount of lead (15 part's per million), 85 percent of which is not supported by uranium and thorium in the rock. An acid leach experiment coupled with separate analyses of the whole rock and mineral fractions for uranium, thorium, and lead indicate that the excess lead has a lunar source and was apparently introduced about 4.0 X 109 years ago. The data also suggest that a major lunar crustal differentiation occurred about 4.47 X 109 years ago.
Uranium concentrations in groundwater, northeastern Washington
Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.
2018-04-18
A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to 88,600 μg/L, and the median concentration of uranium in groundwater for all sites was 1.4 μg/L.New (2017) uranium in groundwater concentration data were obtained by sampling 13 private domestic wells for uranium in areas without recent (2000s) water-quality data. Uranium was detected in all 13 wells sampled for this study; concentrations ranged from 1.03 to 1,180 μg/L with a median of 22 μg/L. Uranium concentrations of groundwater samples from 6 of the 13 wells exceeded the MCL for uranium. Uranium concentrations in water samples from two wells were 1,130 and 1,180 μg/L, respectively; nearly 40 times the MCL.Additional data collection and analysis are needed in rural areas where self-supplied groundwater withdrawals are the primary source of water for human consumption. Of the roughly 43,000 existing water wells in the study area, only 1,755 wells, as summarized in this document, have available uranium concentration data, and some of those data are decades old. Furthermore, analysis of area groundwater quality would benefit from a more extensive chemical-analysis suite including general chemistry in order to better understand local geochemical conditions that largely govern the mobility of uranium. Although the focus of the present study is uranium, it also is important to recognize that there are other radionuclides of concern that may be present in area groundwater.
NASA Astrophysics Data System (ADS)
Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc
2015-10-01
The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide-sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide-sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide-sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As-S-rich assemblage strongly associated with cobaltite.
Macías, Francisco; Caraballo, Manuel A; Nieto, José Miguel
2012-08-30
As acid mine drainage (AMD) remediation is increasingly faced by governments and mining industries worldwide, the generation of metal-rich solid residues from the treatments plants is concomitantly raising. A proper environmental management of these metal-rich wastes requires a detailed characterization of the metal mobility as well as an assessment of this new residues stability. The European standard leaching test EN 12457-2, the US EPA TCLP test and the BCR sequential extraction procedure were selected to address the environmental assessment of dispersed alkaline substrate (DAS) residues generated in AMD passive treatment systems. Significant discrepancies were observed in the hazardousness classification of the residues according to the TCLP or EN 12457-2 test. Furthermore, the absence of some important metals (like Fe or Al) in the regulatory limits employed in both leaching tests severely restricts their applicability for metal-rich wastes. The results obtained in the BCR sequential extraction suggest an important influence of the landfill environmental conditions on the metals released from the wastes. To ensure a complete stability of the pollutants in the studied DAS-wastes the contact with water or any other leaching solutions must be avoided and a dry environment needs to be provided in the landfill disposal selected. Copyright © 2012 Elsevier B.V. All rights reserved.
Smith, D.B.; Hoover, D.B.; Sanzolone, R.F.
1993-01-01
The CHIM electrogeochemical exploration technique was developed in the former Soviet Union about 20 years ago and is claimed to be effective in exploration for concealed mineral deposits that are not detectable by other geochemical or geophysical techniques. The method involves providing a high-voltage direct current to an anode and an array of special collector cathodes. Cations mobile in the electric field are collected at the cathodes and their concentrations determined. The U.S. Geological Survey started a study of the CHIM method by conducting tests over a precious- and base-metal-bearing quartz vein covered with 3 m of colluvial soil and weathered bedrock near the Kokomo Mine, Colorado. The tests show that the CHIM method gives better definition of the vein than conventional soil geochemistry based on a total-dissolution technique. The CHIM technique gives reproducible geochemical anomaly patterns, but the absolute concentrations depend on local site variability as well as temporal variations. Weak partial dissolutions of soils at the Kokomo Mine by an enzyme leach, a dilute acetic acid leach, and a dilute hydrochloric acid leach show results comparable to those from the CHIM method. This supports the idea that the CHIM technique is essentially a weak in-situ partial extraction involving only ions able to move in a weak electric field. ?? 1993.
The use of unmanned aerial systems for the mapping of legacy uranium mines.
Martin, P G; Payton, O D; Fardoulis, J S; Richards, D A; Scott, T B
2015-05-01
Historical mining of uranium mineral veins within Cornwall, England, has resulted in a significant amount of legacy radiological contamination spread across numerous long disused mining sites. Factors including the poorly documented and aged condition of these sites as well as the highly localised nature of radioactivity limit the success of traditional survey methods. A newly developed terrain-independent unmanned aerial system [UAS] carrying an integrated gamma radiation mapping unit was used for the radiological characterisation of a single legacy mining site. Using this instrument to produce high-spatial-resolution maps, it was possible to determine the radiologically contaminated land areas and to rapidly identify and quantify the degree of contamination and its isotopic nature. The instrument was demonstrated to be a viable tool for the characterisation of similar sites worldwide. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Joner, Erik Jautris; Munier-Lamy, Colette; Gouget, Barbara
2007-08-01
An old mine spoil at a 19th-century mining site with considerable residues of uranium (400-800 mg U/kg) was investigated with respect to U concentrations in soil and plants and tolerance to U in the soil microbial community in order to describe the bioavailability of U. Measurements of soil fractions representing water-soluble U, easily exchangeable U, and U bound to humified organic matter showed that all fractions contained elevated concentrations of U. Plant U concentrations were only 10 times higher at the mine spoil site compared to the reference site (3 mg U/kg vs 0.3 mg U/kg), while the most easily available soil fractions contained 0.18 to 0.86 mg U/kg soil at the mine spoil. An ecotoxicity bioassay using incorporation of [3H]thymidine into the indigenous microbial communities of the two soils in the presence of increasing U concentrations showed that microorganisms at the mining site were sensitive to U but also that they had acquired a substantial tolerance toward U (EC50, the effective concentration reducing activity by 50% of UO2-citrate was approximately 120 microM as compared to 30 microM in the reference soil). In the assay, more than 40% of the microbial activity was maintained in the presence of 1 mM UO2-citrate versus 3% in the reference soil. We conclude that U-enriched mining waste can contain sufficiently elevated concentrations of bioavailable U to affect indigenous microorganisms and that bioavailable U imposes a selection pressure that favors the development of a highly uranium-tolerant microbial community, while plant uptake of U remains low.
Uranium mining wastes, garden exhibition and health risks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Gerhard; Schmidt, Peter; Hinz, Wilko
2007-07-01
Available in abstract form only. Full text of publication follows: For more than 40 years the Soviet-German stockholding company SDAG WISMUT mined and milled Uranium in the East of Germany and became up to 1990 the world's third largest Uranium producer. After reunification of Germany, the new found state own company Wismut GmbH was faced with the task of decommissioning and rehabilitation of the mining and milling sites. One of the largest mining areas in the world, that had to be cleaned up, was located close to the municipality of Ronneburg near the City of Gera in Thuringia. After closingmore » the operations of the Ronneburg underground mine and at the 160 m deep open pit mine with a free volume of 84 Mio.m{sup 3}, the open pit and 7 large piles of mine waste, together 112 Mio.m{sup 3} of material, had to be cleaned up. As a result of an optimisation procedure it was chosen to relocate the waste rock piles back into the open pit. After taking this decision and approval of the plan the disposal operation was started. Even though the transport task was done by large trucks, this took 16 years. The work will be finished in 2007, a cover consisting of 40 cm of uncontaminated material will be placed on top of the material, and the re-vegetation of the former open pit area will be established. When in 2002 the City of Gera applied to host the largest garden exhibition in Germany, Bundesgartenschau (BUGA), in 2007, Wismut GmbH supported this plan by offering parts of the territory of the former mining site as an exhibition ground. Finally, it was decided by the BUGA organizers to arrange its 2007 exhibition on grounds in Gera and in the valley adjacent to the former open pit mine, with parts of the remediated area within the fence of the exhibition. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, S.L.
Root uptake of /sup 226/Ra, /sup 210/Pb and /sup 210/Po by mature sagebrush was studied using a soil injection method for spiking the soil with minimal root disturbance. The main objective was to measure vegetation concentrations and determine concentration ratios (CR's) due to root uptake as a function of time in mature big sagebrush. Concentration ratios obtained in mature vegetation and in steady-state situations may be valuable in assessing the impact of uranium mining and milling. The vegetation was sampled approximately every 3 months for a 2 year period. Significant levels of activity were detected in the vegetation beginning atmore » the first sampling (81 days after soil injection for /sup 226/Ra, 28 days for /sup 210/Pb and /sup 210/Po). There was an exponential decrease in concentration to an apparent steady-state value. Mean values (geometric) of the data pooled over the second year period indicated that the steady-state CR's for /sup 226/Ra, /sup 210/Pb and /sup 210/Po, as determined in mature sagebrush, were 0.04, 0.009, and 0.08, respectively. A three compartment mathematical model was formulated to help understand mechanisms of plant uptake and to predict, if possible, the concentration of /sup 226/Ra, /sup 210/Pb and /sup 210/Po in vegetation as a function of time after soil spiking. A numerical solution was determined by 'calibrating' the general model solution with constants determined from regressions of concentrations in vegetation, soil leaching and leaf leaching data. Validation of the model is currently not possible because of an absence of similar time-dependent uptake studies. 168 refs., 19 figs., 18 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... Environmental Impact Statement for the Lost Creek In-Situ Recovery Project in Sweetwater County, WY; Supplement to the Generic Environmental Impact Statement for In-Situ Leach Uranium Milling Facilities AGENCY... SEIS) for the Lost Creek [[Page 6069
Tang, Jie; Xue, Qiang; Chen, Honghan; Li, Wenting
2017-05-01
High concentrations of ammonium sulfate, often used in the in situ mining process, can result in a decrease of pH in the environment and dissolution of rare earth metals. Ammonium sulfate can also cause desorption of toxic heavy metals, leading to environmental and human health implications. In this study, the desorption behavior and fraction changes of lead in the ion-absorbed rare earth ore were studied using batch desorption experiments and column leaching tests. Results from batch desorption experiments showed that the desorption process of lead included fast and slow stages and followed an Elovich model well. The desorption rate and the proportion of lead content in the solution to the total lead in the soil were observed to increase with a decrease in the initial pH of the ammonium sulfate solution. The lead in soil included an acid-extractable fraction, reducible fraction, oxidizable fraction, and a residual fraction, with the predominant fractions being the reducible and acid-extractable fractions. Ninety-six percent of the extractable fraction in soil was desorbed into solution at pH = 3.0, and the content of the reducible fraction was observed to initially increase (when pH >4.0) and then decrease (when pH <4.0) with a decrease in pH. Column leaching tests indicated that the content of lead in the different fractions of soil followed the trend of reducible fraction > oxidizable fraction > acid-extractable fraction > residual fraction after the simulating leaching mining process. The change in pH was also found to have a larger influence on the acid-extractable and reducible fractions than the other two fractions. The proportion of the extractable fraction being leached was ca. 86%, and the reducible fraction was enriched along the migration direction of the leaching liquid. These results suggest that certain lead fractions may desorb again and contaminate the environment via acid rain, which provides significant information for environmental assessment and remediation after mining process. Graphical abstract ᅟ.
Release of U(VI) from spent biosorbent immobilized in cement concrete blocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkobachar, C.; Iyengar, L.; Mishra, U.K.
1995-12-01
This paper deals with cementation as the method for the disposal of spent biosorbent, Ganoderma lucidum (a wood rotting macrofungi) after it is used for the removal of Uranium. Results on the uranium release during the curing of cement-concrete (CC) blocks indicated that placing the spent sorbent at the center of the blocks during their casting yields better immobilization of uranium as compared to the homogeneous mixing of the spent sorbent with the cement. Short term leach tests indicated that the uranium release was negligible in simulated seawater, 1.8% in 0.2 N sodium carbonate and 6.0% in 0.2 N HCl.more » The latter two leachates were used to represent the extreme environmental conditions. It was observed that the presence of the spent biosorbent up to 5% by weight did not affect the compressive strength of CC blocks. Thus cementation technique is suitable for the immobilization of uranium loaded biosorbent for its ultimate disposal.« less
Vaselli, Orlando; Nisi, Barbara; Rappuoli, Daniele; Cabassi, Jacopo; Tassi, Franco
2017-04-15
Mercury has a strong environmental impact since both its organic and inorganic forms are toxic, and it represents a pollutant of global concern. Liquid Hg is highly volatile and can be released during natural and anthropogenic processes in the hydrosphere, biosphere and atmosphere. In this study, the distribution of Gaseous Elemental Mercury (GEM) and the total and leached mercury concentrations on paint, plaster, roof tiles, concrete, metals, dust and wood structures were determined in the main buildings and structures of the former Hg-mining area of Abbadia San Salvatore (Siena, Central Italy). The mining complex (divided into seven units) covers a surface of about 65 ha and contains mining structures and managers' and workers' buildings. Nine surveys of GEM measurements were carried out from July 2011 to August 2015 for the buildings and structures located in Units 2, 3 and 6, the latter being the area where liquid mercury was produced. Measurements were also performed in February, April, July, September and December 2016 in the edifices and mining structures of Unit 6. GEM concentrations showed a strong variability in time and space mostly depending on ambient temperature and the operational activities that were carried out in each building. The Unit 2 surveys carried out in the hotter period (from June to September) showed GEM concentrations up to 27,500 ng·m -3 , while in Unit 6, they were on average much higher, and occasionally, they saturated the GEM measurement device (>50,000 ng·m -3 ). Concentrations of total (in mg·kg -1 ) and leached (in μg·L -1 ) mercury measured in different building materials (up to 46,580 mg·kg -1 and 4470 mg·L -1 , respectively) were highly variable, being related to the edifice or mining structure from which they were collected. The results obtained in this study are of relevant interest for operational cleanings to be carried out during reclamation activities.
A simple scheme to determine potential aquatic metal toxicity from mining wastes
Wildeman, T.R.; Smith, K.S.; Ranville, J.F.
2007-01-01
A decision tree (mining waste decision tree) that uses simple physical and chemical tests has been developed to determine whether effluent from mine waste material poses a potential toxicity threat to the aquatic environment. For the chemical portion of the tree, leaching tests developed by the United States Geological Survey, the Colorado Division of Minerals and Geology (Denver, CO), and a modified 1311 toxicity characteristic leaching procedure (TCLP) test of the United States Environmental Protection Agency have been extensively used as a surrogate for readily available metals that can be released into the environment from mining wastes. To assist in the assessment, element concentration pattern graphs (ECPG) are produced that compare concentrations of selected groups of elements from the three leachates and any water associated with the mining waste. The MWDT makes a distinction between leachates or waters with pH less than or greater than 5. Generally, when the pH values are below 5, the ECPG of the solutions are quite similar, and potential aquatic toxicity from cationic metals, such as Pb, Cu, Zn, Cd, and Al, is assumed. Below pH 5, these metals are mostly dissolved, generally are not complexed with organic or inorganic ligands, and hence are more bioavailable. Furthermore, there is virtually no carbonate alkalinity at pH less than 5. All of these factors promote metal toxicity to aquatic organisms. On the other hand, when the pH value of the water or the leachates is above 5, the ECPG from the solutions are variable, and inferred aquatic toxicity depends on factors in addition to the metals released from the leaching tests. Hence, leachates and waters with pH above 5 warrant further examination of their chemical composition. Physical ranking criteria provide additional information, particularly in areas where waste piles exhibit similar chemical rankings. Rankings from physical and chemical criteria generally are not correlated. Examples of how this decision tree has been applied in assessing mine sites are discussed. Copyright ?? Taylor & Francis Group, LLC.
Ecological aspects of microorganisms inhabiting uranium mill tailings
Miller, C.L.; Landa, E.R.; Updegraff, D.M.
1987-01-01
Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.
The Grants Mineral Belt was the focus of uranium extraction and production activities from the 1950s until the late 1990s. EPA is working with state, local, and federal partners to assess and address health risks and environmental effects of the mines
Mutation rates at the glycophorin A and HPRT loci in uranium miners exposed to radon progeny.
Shanahan, E M; Peterson, D; Roxby, D; Quintana, J; Morely, A A; Woodward, A
1996-01-01
OBJECTIVES--To find whether a relation exists between estimated levels of exposure to radon and its progeny and mutations in hypoxanthine phosphoribosyl transferase (HPRT) and glycophorin A in a cohort of former uranium miners. METHODS--A cohort study involving a sample of miners from the Radium Hill uranium mine in South Australia, which operated from 1952 to 1961. Radiation exposures underground at Radium Hill were estimated from historical radon gas measures with a job exposure matrix. Workers from the mine who worked exclusively above ground according to mine records were selected as controls. In 1991-2 miners were interviewed and blood taken for measurement of somatic mutations. Mutation rates for HPRT and glycophorin A were estimated with standard assay techniques. RESULTS--Homozygous mutations of glycophorin A were increased in underground miners (P = 0.0027) and the mutation rate tended to rise with increasing exposure with the exception of the highest exposure (> 10 working level months). However, there was no association between place of work and either the hemizygous mutations of glycophorin A or the HPRT mutation. CONCLUSIONS--There may be an association between glycophorin A mutations and previous occupational exposure to ionising radiation. However, not enough is known at present to use these assays as biomarkers for historical exposure in underground mining cohorts. PMID:8704866
Radon exposure in uranium mining industry vs. exposure in tourist caves.
Quindós Poncela, L; Fernández Navarro, P; Sainz Fernández, C; Gómez Arozamena, J; Bordonoba Perez, M
2004-01-01
There is a fairly general consensus among health physicists and radiation professionals that exposure to radon progeny is the largest and most variable contribution to the population's exposure to natural sources of radiation. However, this exposure is the subject of continuing debate concerning the validity of risk assessment and recommendations on how to act in radon-prone areas. The purpose of this contribution is to situate the radon issue in Spain in two very different settings. The first is a uranium mining industry located in Saelices el Chico (Salamanca), which is under strict control of the Spanish Nuclear Safety Council (CSN). We have measured radon concentrations in different workplaces in this mine over a five-year period. The second setting comprises four tourist caves, three of which are located in the province of Cantabria and the fourth on the Canary Island of Lanzarote. These caves are not subject to any administrative control of radiation exposure. Measured air 222Rn concentrations were used to estimate annual effective doses due to radon inhalation in the two settings, and dose values were found to be from 2 to 10 times lower in the uranium mine than in the tourist caves. These results were analysed in the context of the new European Basic Safety Standards Directive (EU-BSS, 1996).
NASA Astrophysics Data System (ADS)
Pingitore, N. E.; Clague, J. W.; Gorski, D.
2013-12-01
Round Top Mountain is a surface-exposed peraluminous rhyolite laccolith, enriched in heavy rare earth elements, as well as niobium-tantalum, beryllium, lithium, fluorine, tin, rubidium, thorium, and uranium. The extreme extent of the deposit (diameter one mile) makes it a target for recovery of valuable yttrium and HREEs, and possibly other scarce elements. The Texas Bureau of Economic Geology estimated the laccolith mass as at least 1.6 billion tons. A Preliminary Economic Assessment for Texas Rare Earth Resources listed an inferred mineral resource of 430,598,000 kg REOs (rare earth oxides), with over 70% Y+HREEs (YHREE). Put in global perspective, China is thought to produce ~25,000 tons YHREE per year, and exports but a small fraction of that. Because of the extremely fine grain size of the late-phase fluorine-carried critical fluid mineralization, it has not been clear which minerals host the YHREEs. X-ray Absorption Spectroscopy experiments at the Stanford Synchrotron Radiation Lightsource revealed that virtually all of the YHREE content resides in yttrofluorite, rather than in the other reported REE minerals in the deposit, bastnaesite and xenotime. The extended x-ray absorption fine structure (XAFS) spectra of the sample suite were all quite similar, and proved a close match to known model compound specimens of yttrofluorite from two locations, in Sweden and New Mexico. Small spectral variation between the two model compounds and among the samples is attributable to the variable elemental composition and altervalent substitutional nature of yttrofluorite (Ca [1-x] Y,REE [x])F[2+x]. We found no other reported deposit in the world in which yttrofluorite is the exclusive, or even more than a minor, YHREE host mineral. Leaching experiments show that the YHREEs are easily liberated by dissolution with dilute sulfuric acid, due to the solubility of yttrofluorite. Flotation separation of the yttrofluorite had been demonstrated, but was rendered inefficient by the micron-scale grain size of the yttrofluorite. Our laboratory leaching experiments with different acid strengths, grain sizes, and exposure times showed up to 90% recovery of the YHREEs. As expected, similar recoveries were obtained from longer exposure times at lower sulfuric acid concentration. Optimal grain size is in the 2-10 mm range. Thus a heap leach of the deposit is likely feasible, aided by the fact that 90-95% of the rock comprises insoluble and unreactive quartz and feldspars. The absence of overburden, proximity (a few km) to an interstate highway and major rail systems, temperate climate, and favorable political location enhance the potential and appeal for development of a heap leach operation. The grade of the deposit is just over 0.05% total rare earth elements plus yttrium. Although some might consider this sub-economic, it is in the range of the South China ionic clay deposits that supply essentially all of the world's YHREEs. Further, the grade is remarkably consistent through 1657 samples from 64 reverse-circulation drill holes with a total sampled interval of 30,353 feet. This consistency of grade permits accurate economic assessment and prediction, an unchanging ore grade and mine feedstock over life of mine, and a single REE separation chemistry to be developed. Thus mine and separation procedures need only be developed and optimized once.
NASA Astrophysics Data System (ADS)
Mahur, A. K.; Kumar, Rajesh; Sonkawade, R. G.; Sengupta, D.; Prasad, Rajendra
2008-04-01
The Singhbhum shear zone is a 200 km long arcuate belt in Jharkhand state situated in eastern India. The central part between Jaduguda-Bhatin-Nimdih, Narwapahr-Garadih-Turamdih is rich in uranium. Presence of uranium in the host rocks and the prevalence of a confined atmosphere within mines could result in enhanced concentration of radon (222Rn) gas and its progeny. Inhalation of radon daughter products is a major contributor to the radiation dose to exposed subjects. By using high resolution γ-ray spectroscopic system various radionuclides in the rock samples, collected from different places of Jaduguda uranium mines have been identified quantitatively based on the characteristic spectral peaks. The activity concentrations of the natural radionuclides, uranium (238U), thorium (232Th) and potassium (40K) were measured in the rock samples and radiological parameters were calculated. Uranium concentration was found to vary from 123 ± 7 Bq kg-1 to 40,858 ± 174 Bq kg-1. Activity of thorium was not significant in the samples, whereas, few samples have shown potassium activity from 162 ± 11 Bq kg-1 to 9024 ± 189 Bq kg-1. Radon exhalation rates from these samples were also measured using "Sealed Can technique" and found to vary from 4.2 ± 0.05 to 13.7 ± 0.08 Bq m-2 h-1. A positive correlation was found between the radon exhalation rate and the uranium activity. The absorbed dose rates vary from 63.6 to 18876.4 nGy h-1, with an average value of 7054.2 nGy h-1. The annual external effective dose rates vary from 0.7 to 23.2 mSv y-1. Radium equivalent activities (Raeq) varied from 134.3 to 40858.0 Bq kg-1. Value of external hazard index (Hex) varied from 0.4 to 110.4 with an average value of 41.2.
Results of exploration at the Old Leyden coal mine, Jefferson County, Colorado
Gude, A.J.; McKeown, F.A.
1953-01-01
Six diamond core holes totaling 2, 201 feet were drilled by the. U, S. Bureau of Mines under contract to the U. S. Atomic Energy Commission at the Old Leyden coal mine, Jefferson County, Colo. The holes were spotted on the basis of geologic mapping by the U. S. Geological survey and were drilled to explore the lateral and downward extent of a uranium-bearing coal and the associated carnotite deposits in the adjacent sandstone° The data obtained from the diamond-core holes helped to explain the geology and structural control of the deposit. The uranium is most abundant in a coal bed that in places has been brecciated by shearing. and then altered to a hard, dense, and silicified rock. The uraniferous coal is in the nearly vertical beds of the Laramie formation of Upper Cretaceous age. Small lenticular bodies of uraniferous material, 50 feet long, 25 to 30 feet wide, and 2 to 4 feet thick, occur at intervals in the coal and silicified coal over a strike length of about 800 feet. These bodies contain 0.10 to 0.50 percent uranium. Data obtained from the drilling indicate a discontinuous radioactive zone between these higher-grade bodies; assays of samples from the cores range from 0.001 to 0.10 percent uranium. All drill holes were probed by Survey and A. E. C. logging equipment and showed anomalies where the core assayed more than 0.005 percent uranium. Material of ore grade--0.10 percent uranium--was found in one core; the rock in the other five holes was of lower grade. The presence of the radioactive zone in all holes suggests, however, that uranium is distributed irregularly in a southerly plunging deposit which is exposed in the adit, on the outcrop, and in other diamond-drill holes that were put down by the lessee.
NASA Astrophysics Data System (ADS)
Ye, Yong-jun; Yin, An-song; Li, Zhi; Lei, Bo; Ding, De-xin
2017-04-01
There is a certain concentration of radioactive dust particles in the air of workplace of underground uranium mines. Some small diameter particles will pass through the masks and enter the respiratory tract which will cause radiation damage to the human body. In order to study deposition regularity of uranium dust in the human respiratory tract, in this paper, we firstly use the RNG turbulence model to simulate the gas flow field in the human respiratory tract Z0 ∼ Z3 level under different respiratory intensity. Then we use DPM discrete phase model to simulate the concentration, particle size distribution, deposition rate and deposition share of uranium dust particles after being filtered through the masks in the human respiratory tract Z0 to Z3 bronchus. According to the simulation results, we have got the following conclusions: the particles’ number concentration of uranium dust after being filtered through the mask in the human respiratory tract basically decreases with the increasing of particle size under different respiratory intensities on the environment of uranium mine. In addition, the intensity of respiration and the mass concentration of particles have an important influence on the deposition rate and the deposition of particles in the respiratory tract.
Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butz, T.R.; Dean, N.E.; Bard, C.S.
1980-05-31
Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at themore » surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.« less
U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region
Ludwig, K. R.; Simmons, K.R.
1992-01-01
Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors
Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten
2015-12-01
To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.
The As removal from arsenopyrite-bearing mine waste by microwave
NASA Astrophysics Data System (ADS)
Kim, Hyun Soo; Myung, Eun Ji; Hack Lim, Dae; Kim, Bong Ju; Park, Cheon Young
2016-04-01
Penalties incurred by miners for arsenic in concentrates have increased significantly because the removal and disposal of arsenic is difficult and costly for smelters and because the environmental challenges are increasing worldwide. Typically miners incur penalties on arsenic in concentrates above 0.2% As with smelter rejection limits of 0.5%. Therefore, finding an effective solution for removing As during primary mining activities is necessary to avoid penalty. The aim of this study was to investigate the As removal from mine waste using microwave process. The mine waste samples were characterized by chemical and XRD analysis. To determine of As removal from the microwave experiments, aqua regia digestion was performed according to Korean environmental standard method(KESM) and the As removal effect were evaluated using the standard EPA toxicity characteristic leaching procedure(TCLP, EPA 1311 method). The result of mineralogical character for mine waste using XRD was detected arsenopyrite, pyrite, chalcopyrite, pyrrhotite and quartz. The chemical analysis of As, Pb, Zn contents in the mine waste measured 13,896.0, 896.1 and 1,054.6 mg/kg, respectively. The As removal of experiments was conducted to examine the effects of microwave exposure time(1~15min). The results showed that the As removal in mine waste (exposure time = 10min) was 92.90%, and the temperature of mine waste by microwave heating was 886℃. The TCLP leaching of treated mine waste by microwave measured values were below the EPA's current regulatory threshold(As, Pb, Zn : 5 mg/L). The optimum condition of microwave exposure for As removal from arsenopyrite-bearing mine waste was obtained at 800W, 2450MHz, 10min. Acknowledgment : This work was supported by the Energy and Resources Engineering Program Grant funded by the Ministry of Trade, Industry and Energy, Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocchetti, Laura; Amato, Alessia; Fonti, Viviana
Graphical abstract: Display Omitted - Highlights: • End-of-life LCD panels represent a source of indium. • Several experimental conditions for indium leaching have been assessed. • Indium is completely extracted with 2 M sulfuric acid at 80 °C for 10 min. • Cross-current leaching improves indium extraction and operating costs are lowered. • Benefits to the environment come from reduction of CO{sub 2} emissions and reagents use. - Abstract: Indium is a critical element mainly produced as a by-product of zinc mining, and it is largely used in the production process of liquid crystal display (LCD) panels. End-of-life LCDs representmore » a possible source of indium in the field of urban mining. In the present paper, we apply, for the first time, cross-current leaching to mobilize indium from end-of-life LCD panels. We carried out a series of treatments to leach indium. The best leaching conditions for indium were 2 M sulfuric acid at 80 °C for 10 min, which allowed us to completely mobilize indium. Taking into account the low content of indium in end-of-life LCDs, of about 100 ppm, a single step of leaching is not cost-effective. We tested 6 steps of cross-current leaching: in the first step indium leaching was complete, whereas in the second step it was in the range of 85–90%, and with 6 steps it was about 50–55%. Indium concentration in the leachate was about 35 mg/L after the first step of leaching, almost 2-fold at the second step and about 3-fold at the fifth step. Then, we hypothesized to scale up the process of cross-current leaching up to 10 steps, followed by cementation with zinc to recover indium. In this simulation, the process of indium recovery was advantageous from an economic and environmental point of view. Indeed, cross-current leaching allowed to concentrate indium, save reagents, and reduce the emission of CO{sub 2} (with 10 steps we assessed that the emission of about 90 kg CO{sub 2}-Eq. could be avoided) thanks to the recovery of indium. This new strategy represents a useful approach for secondary production of indium from waste LCD panels.« less
SAN PEDRO PARKS WILDERNESS, NEW MEXICO.
Santos, Elmer S.; Weisner, Robert C.
1984-01-01
The San Pedro Parks Wilderness occupies 62. 7 sq mi of the Santa Fe National Forest in north-central New Mexico. Several copper mines, many copper prospects, and a few uranium prospects occur in sedimentary units in the vicinity of the wilderness. These units, where they extend into the wilderness, constitute only a small volume of rock and, judging from analyses of samples and from field observations, are devoid of copper and uranium concentration. Prospects on several of about 65 mining claims within the wilderness revealed concentrations of manganese or barite but only in volumes too small to be considered a demonstrated resource.
Ye, Maoyou; Yan, Pingfang; Sun, Shuiyu; Han, Dajian; Xiao, Xiao; Zheng, Li; Huang, Shaosong; Chen, Yun; Zhuang, Shengwei
2017-02-01
During the process of bioleaching, lead (Pb) recovery is low. This low recovery is caused by a problem with the bioleaching technique. This research investigated the bioleaching combination of bioleaching with brine leaching to remove heavy metals from lead-zinc mine tailings. The impact of different parameters were studied, including the effects of initial pH (1.5-3.0) and solid concentration (5-20%) for bioleaching, and the effects of sodium chloride (NaCl) concentration (10-200 g/L) and temperature (25 and 50 °C) for brine leaching. Complementary characterization experiments (Sequential extraction, X-ray diffractometer (XRD), scanning electronic microscope (SEM)) were also conducted to explore the transformation of tailings during the leaching process. The results showed that bioleaching efficiency was significantly influenced by initial pH and solid concentration. Approximately 85.45% of iron (Fe), 4.12% of Pb, and 97.85% of zinc (Zn) were recovered through bioleaching in optimum conditions. Increasing the brine concentration and temperature promoted lead recovery. Lead was recovered from the bioleaching residues at a rate of 94.70% at 25 °C and at a rate of 99.46% at 50 °C when the NaCl concentration was 150 g/L. The study showed that bioleaching significantly changed the speciation of heavy metals and the formation and surface morphology of tailings. The metals were mainly bound in stable fractions after bioleaching. Copyright © 2016 Elsevier Ltd. All rights reserved.
Prevention of sulfide oxidation in sulfide-rich waste rock
NASA Astrophysics Data System (ADS)
Nyström, Elsa; Alakangas, Lena
2015-04-01
The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.
Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah
Finch, Warren Irvin
1954-01-01
The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.
The social costs of uranium mining in the US Colorado Plateau cohort, 1960-2005.
Jones, Benjamin A
2017-05-01
Long-term social costs associated with underground uranium mining are largely unknown. This study estimated health costs of Native American and white (Hispanic and non-Hispanic origin) uranium miners in the US Public Health Service Colorado Plateau cohort study. Elevated uranium miner person-years of life lost (PYLL) were calculated from the most recent study of the Colorado Plateau cohort over 1960-2005. Nine causes of death categories were included. Costs to society of miner PYLL were monetized using the value of a statistical life-year approach. Costs over 1960-2005 totaled $2 billion USD [95% CI: $1.8, $2.2], or $2.9 million per elevated miner death. This corresponds to $43.1 million [95%: $38.7, $48.7] in annual costs. Lung cancer was the most costly cause of death at $1.4 billion [95%: $1.3, $1.5]. Absolute health costs were largest for white miners, but Native Americans had larger costs per elevated death. Annual excess mortality over 1960-2005 averaged 366.4 per 100,000 miners; 404.6 (white) and 201.5 per 100,000 (Native American). This research advances our understanding of uranium extraction legacy impacts, particularly among indigenous populations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Band, P.; Feldstein, M.; Saccomanno, G.
To assess the effect of cigarette smoking and of exposure to radon daughters, a prospective survey consisting of periodic sputum cytology evaluation was initiated among 249 underground uranium miners and 123 male controls. Sputum cytology specimens showing moderate atypia, marked atypia, or cancer cells were classified as abnormal. As compared to control smokers, miners who smoke had a significantly higher incidence of abnormal cytology (P = 0.025). For miner smokers, the observed frequencies of abnormal cytology were linearly related to cumulative exposure to radon daughters and to the number of years of uranium mining. A statistical model relating the probabilitymore » of abnormal cytology to the risk factors was investigated using a binary logistic regression. The estimated frequency of abnormal cytology was significantly dependent, for controls, on the duration of cigarette smoking, and for miners, on the duration of cigarette smoking and of uranium mining.« less
Geology of the Midnite uranium mine, Stevens County, Washington; a preliminary report
Nash, J. Thomas; Lehrman, Norman J.
1975-01-01
The Midnite mine is one of only two mines in the United States currently producing uranium from discordant deposits in crystalline host rocks. Ore bodies are in metamorphosed steeply dipping Precambrian pelitic and calcareous rocks of a roof pendant adjacent to a Cretaceous(?) porphyritic quartz monzonite pluton. Production during 14 years, of operation has been about 8 million pounds of U3O8 from oxidized and reduced ores averaging 0.23 percent U3O8. Uranium deposits are generally tabular in form and dimensions range up to 380 m long, 210 m wide, and 50 m thick. Deposits are bounded on at least one side by unmineralized intrusive ribs of granitic rock, and thickest mineralized zones invariably occur at depressions in the intrusive contact. Upper limits of some deposits are nearly horizontal, and upper elevations of adjacent mineralized zones separated by ribs of granite are similar. Near surface ore is predominantly autunite, but ore at depth consists of pitchblende and coffinite with abundant pyrite and marcasite. Uranium minerals occur as .disseminations along foliation, replacements, and stockwork fracture-fillings. No stratigraphic controls on ore deposition are recognized. Rather, mineralized zones cut across lithologic boundaries if permeability is adequate. Most ore is in muscovite schist and mica phyllite, but important deposits occur in calc-silicate hornfels. Amphibolite sills and mid-Tertiary dacite dikes locally, carry ore where intensely fractured. High content of iron and sulfur, contained chiefly in FeS2, appear to be an important feature of favorable host rocks. Geometry of deposits, structural, and geochemical features suggest that uranium minerals were deposited over a span of time from late Cretaceous to late Tertiary. Ore occurs in but is not offset by a shear zone that displaces mid-Tertiary rocks.. Economic zones of uranium are interpreted to have been secondarily enriched in late Tertiary time by downward and lateral migration of uranium into permeable zones where deposition was influenced by ground water controls and minerals that could reduce or neutralize uranium-bearing solutions.
McLEan, D.C.
1959-03-10
A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penley, H.M.; Schot, E.H.; Sewell, J.M.
1978-11-01
Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U/sub 3/O/sub 8/ and the radiometric surveys. Although anomalousmore » radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium.« less
Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah Ri...
Profile of a Rural Area Work Force: The Wyoming Uranium Industry.
ERIC Educational Resources Information Center
Dobbs, Thomas L.; Kiner, Phil E.
1974-01-01
Designed to provide insights into policies relative to human resource investments and employment information channels, the study's objectives were to: (1) relate types of employment in Wyoming's uranium mines and mills to work force participants; (2) determine employee earnings and relate those earnings to employment categories and…
Uranium on the Checkerboard: Crisis at Crownpoint
ERIC Educational Resources Information Center
Barry, Tom; Wood, Beth
1978-01-01
Some 22 companies are currently exploring for uranium in the Crownpoint, New Mexico area. Due to complicated patterns of land and mineral ownership on the Navajo Reservation, the mining companies do not feel obligated to communicate, and the Navajo are, consequently, worried about their social and physical environment. (JC)
NASA Astrophysics Data System (ADS)
Núñez-Ramírez, Diola Marina; Solís-Soto, Aquiles; López-Miranda, Javier; Pereyra-Alférez, Benito; Rutiaga-Quiñónes, Miriam; Medina-Torres, Luis; Medrano-Roldán, Hiram
2011-10-01
The iron concentrate from Hercules Mine of Coahuila, Mexico, which mainly contained pyrite and pyrrhotite, was treated by the bioleaching process using native strain Acidithiobacillus ferrooxidans ( A. ferrooxidans) to determine the ability of these bacteria on the leaching of zinc. The native bacteria were isolated from the iron concentrate of the mine. The bioleaching experiments were carried out in shake flasks to analyze the effects of pH values, pulp density, and the ferrous sulfate concentration on the bioleaching process. The results obtained by microbial kinetic analyses for the evaluation of some aspects of zinc leaching show that the native bacteria A. ferrooxidans, which is enriched with a 9K Silverman medium under the optimum conditions of pH 2.0, 20 g/L pulp density, and 40 g/L FeSO4, increases the zinc extraction considerably observed by monitoring during15 d, i.e., the zinc concentration has a decrease of about 95% in the iron concentrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, R.F.; Eadie, G.G.; Russell, C.R.
Ground-water contamination from uranium mining and milling results from the infiltration of radium-bearing mine, mill, and ion-exchange plant effluents. Radium, selenium, and nitrate were of most value as indicators of contamination. In recent years, mining has increased radium in mine effluents from several picocuries/liter (pCi/1) or less, to 100-150 pCi/1. The shallow aquifer in use in the vicinity of one mill was grossly contaminated with selenium, attributable to the mill tailings. Seepage from two other mill tailings ponds averaged 67,400,000 liters/year and, to date, has contributed an estimated 1.1 curies of radium to ground water. At one of these, anmore » injection well was used to dispose of over 3,400,000,000 liters of waste from 1960-1973. The wastes have not been properly monitored and have apparently migrated to more shallow, potable aquifers. No adverse impacts on municipal water quality in Paguate, Bluewater, Grants, Milan, and Gallup were observed. (GRA)« less
Banana peel reductant for leaching medium grade manganese ore in sulfuric acid solution
NASA Astrophysics Data System (ADS)
Aripin, H.; Joni, I. Made; Busaeri, Nundang; Usrah, Ifkar; Sudiana, I. Nyoman; Sabchevski, Svilen
2017-03-01
In this investigation, manganese has been produced from medium grade manganese ore from Karangnunggal mine (West Java, Indonesia). The effects of weighed amount of banana peels on the structural and leaching properties have been studied. The material's properties have been characterized on the basis of the experimental data obtained using X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transforms infrared (FTIR) spectroscopy. It has been found that an increase of the weighed amount of banana peels up to 4 g leads to an increase of the leaching efficiency of manganese from manganese ore. Above 4 g, however, the leaching efficiency does not change significantly. The analysis based on the interpretation of both XRD patterns and FTIR spectrum allows one to explain the increase in the leaching efficiencies of manganese by the reduction of MnO2 minerals and by the removal of hemicelluloses groups of banana peel in the samples.