Savvidis, E; Eleftheriadis, C A; Kitis, G
2002-01-01
The main purpose of the TARC (Transmutation by Adiabatic Resonance Crossing) experiment (PS-211), was to demonstrate the possibility to destroy efficiently Long-Lived Fission Fragments (LLFF) in Accelerator Driven Systems (ADS). The experimental set-up which consisted of a lead block with dimensions 3.3 x 3.3 x 3 m3, was installed in a CERN Proton Synchrotron (PS) beam line. The proton beam at 2.5 GeV/c and 3.5 GeV/c, was incident in the centre of the lead block assembly producing neutrons via spallation reactions. In this study, neutron flux measurements are presented in the lead block assembly using thermoluminescence and nuclear track detectors. The results are in good agreement with Monte Carlo calculations as well as with the results of the other methods used in the framework of the TARC experiment.
Isotopic Transmutations in Irradiated Beryllium and Their Implications on MARIA Reactor Operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrzejewski, Krzysztof J.; Kulikowska, Teresa A
2004-04-15
Beryllium irradiated by neutrons with energies above 0.7 MeV undergoes (n,{alpha}) and (n,2n) reactions. The Be(n,{alpha}) reaction results in subsequent buildup of {sup 6}Li and {sup 3}He isotopes with large thermal neutron absorption cross sections causing poisoning of irradiated beryllium. The amount of the poison isotopes depends on the neutron flux level and spectrum. The high-flux MARIA reactor operated in Poland since 1975 consists of a beryllium matrix with fuel channels in cutouts of beryllium blocks. As the experimental determination of {sup 6}Li, {sup 3}H, and {sup 3}He content in the operational reactor is impossible, a systematic computational study ofmore » the effect of {sup 3}He and {sup 6}Li presence in beryllium blocks on MARIA reactor reactivity and power density distribution has been undertaken. The analysis of equations governing the transmutation has been done for neutron flux parameters typical for MARIA beryllium blocks. Study of the mutual influence of reactor operational parameters and the buildup of {sup 6}Li, {sup 3}H, and {sup 3}He in beryllium blocks has shown the necessity of a detailed spatial solution of transmutation equations in the reactor, taking into account the whole history of its operation. Therefore, fuel management calculations using the REBUS code with included chains for Be(n,{alpha})-initiated reactions have been done for the whole reactor lifetime. The calculated poisoning of beryllium blocks has been verified against the critical experiment of 1993. Finally, the current {sup 6}Li, {sup 3}H, and {sup 3}He contents, averaged for each beryllium block, have been calculated. The reactivity drop caused by this poisoning is {approx}7%.« less
Nuclear transmutation in steels
NASA Astrophysics Data System (ADS)
Belozerova, A. R.; Shimanskii, G. A.; Belozerov, S. V.
2009-05-01
The investigations of the effects of nuclear transmutation in steels that are widely used in nuclear power and research reactors and in steels that are planned for the application in thermonuclear fusion plants, which are employed under the conditions of a prolonged action of neutron irradiation with different spectra, made it possible to study the effects of changes in the isotopic and chemical composition on the tendency of changes in the structural stability of these steels. For the computations of nuclear transmutation in steels, we used a program complex we have previously developed on the basis of algorithms for constructing branched block-type diagrams of nuclide transformations and for locally and globally optimizing these diagrams with the purpose of minimizing systematic errors in the calculation of nuclear transmutation. The dependences obtained were applied onto a Schaeffler diagram for steels used for structural elements of reactors. For the irradiation in fission reactors, we observed only a weak influence of the effects of nuclear transmutation in steels on their structural stability. On the contrary, in the case of irradiation with fusion neutrons, a strong influence of the effects of nuclear transmutation in steels on their structural stability has been noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Z.; Southwest Science and Technology Univ., No.350 Shushanhu Road, Shushan District, Hefei, Anhui, 230031; Chen, Y.
2012-07-01
China Lead-Alloy cooled Demonstration Reactor (CLEAR-III), which is the concept of lead-bismuth cooled accelerator driven sub-critical reactor for nuclear waste transmutation, was proposed and designed by FDS team in China. In this study, preliminary neutronics design studies have primarily focused on three important performance parameters including Transmutation Support Ratio (TSR), effective multiplication factor and blanket thermal power. The constraint parameters, such as power peaking factor and initial TRU loading, were also considered. In the specific design, uranium-free metallic dispersion fuel of (TRU-Zr)-Zr was used as one of the CLEAR-III fuel types and the ratio between MA and Pu was adjustedmore » to maximize transmutation ratio. In addition, three different fuel zones differing in the TRU fraction of the fuel were respectively employed for this subcritical reactor, and the zone sizes and TRU fractions were determined such that the linear powers of these zones were close to each other. The neutronics calculations and analyses were performed by using Multi-Functional 4D Neutronics Simulation System named VisualBUS and nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library). In the preliminary design, the maximum TSRLLMA was {approx}11 and the blanket thermal power was {approx}1000 MW when the effective multiplication factor was 0.98. The results showed that good performance of transmutation could be achieved based on the subcritical reactor loaded with uranium-free fuel. (authors)« less
The DD Cold Fusion-Transmutation Connection
NASA Astrophysics Data System (ADS)
Chubb, Talbot A.
2005-12-01
LENR theory must explain dd fusion, alpha-addition transmutations, radiationless nuclear reactions, and three-body nuclear particle reactions. Reaction without radiation requires many-body D Bloch+ periodicity in both location and internal structure dependencies. Electron scattering leads to mixed quantum states. The radiationless dd fusion reaction is 2-D Bloch+ -> {}4 He Bloch2+. Overlap between {}4 He Bloch2+ and surface Cs leads to alpha absorption. In the Iwamura et al. studies active deuterium is created by scattering at diffusion barriers.
MYRRHA: A multipurpose nuclear research facility
NASA Astrophysics Data System (ADS)
Baeten, P.; Schyns, M.; Fernandez, Rafaël; De Bruyn, Didier; Van den Eynde, Gert
2014-12-01
MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is a multipurpose research facility currently being developed at SCK•CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level to allow operation feedback. As a flexible irradiation facility, the MYRRHA research facility will be able to work in both critical as subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by lead-bismuth eutectic and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. MYRRHA will also contribute to the study of partitioning and transmutation of high-level waste. Transmutation of minor actinides (MA) can be completed in an efficient way in fast neutron spectrum facilities, so both critical reactors and subcritical ADS are potential candidates as dedicated transmutation systems. However critical reactors heavily loaded with fuel containing large amounts of MA pose reactivity control problems, and thus safety problems. A subcritical ADS operates in a flexible and safe manner, even with a core loading containing a high amount of MA leading to a high transmutation rate. In this paper, the most recent developments in the design of the MYRRHA facility are presented.
An optimization methodology for heterogeneous minor actinides transmutation
NASA Astrophysics Data System (ADS)
Kooyman, Timothée; Buiron, Laurent; Rimpault, Gérald
2018-04-01
In the case of a closed fuel cycle, minor actinides transmutation can lead to a strong reduction in spent fuel radiotoxicity and decay heat. In the heterogeneous approach, minor actinides are loaded in dedicated targets located at the core periphery so that long-lived minor actinides undergo fission and are turned in shorter-lived fission products. However, such targets require a specific design process due to high helium production in the fuel, high flux gradient at the core periphery and low power production. Additionally, the targets are generally manufactured with a high content in minor actinides in order to compensate for the low flux level at the core periphery. This leads to negative impacts on the fuel cycle in terms of neutron source and decay heat of the irradiated targets, which penalize their handling and reprocessing. In this paper, a simplified methodology for the design of targets is coupled with a method for the optimization of transmutation which takes into account both transmutation performances and fuel cycle impacts. The uncertainties and performances of this methodology are evaluated and shown to be sufficient to carry out scoping studies. An illustration is then made by considering the use of moderating material in the targets, which has a positive impact on the minor actinides consumption but a negative impact both on fuel cycle constraints (higher decay heat and neutron) and on assembly design (higher helium production and lower fuel volume fraction). It is shown that the use of moderating material is an optimal solution of the transmutation problem with regards to consumption and fuel cycle impacts, even when taking geometrical design considerations into account.
Statistical transmutation in doped quantum dimer models.
Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P
2012-07-06
We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.
Electron teleportation and statistical transmutation in multiterminal Majorana islands
NASA Astrophysics Data System (ADS)
Michaeli, Karen; Landau, L. Aviad; Sela, Eran; Fu, Liang
2017-11-01
We study a topological superconductor island with spatially separated Majorana modes coupled to multiple normal-metal leads by single-electron tunneling in the Coulomb blockade regime. We show that low-temperature transport in such a Majorana island is carried by an emergent charge-e boson composed of a Majorana mode and an electronic excitation in leads. This transmutation from Fermi to Bose statistics has remarkable consequences. For noninteracting leads, the system flows to a non-Fermi-liquid fixed point, which is stable against tunnel couplings anisotropy or detuning away from the charge-degeneracy point. As a result, the system exhibits a universal conductance at zero temperature, which is a fraction of the conductance quantum, and low-temperature corrections with a universal power-law exponent. In addition, we consider Majorana islands connected to interacting one-dimensional leads, and find different stable fixed points near and far from the charge-degeneracy point.
Ponizovskiy, Michail R
2016-01-01
Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.
Transmutation of actinides in power reactors.
Bergelson, B R; Gerasimov, A S; Tikhomirov, G V
2005-01-01
Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.
Investigation of the feasibility of a small scale transmutation device
NASA Astrophysics Data System (ADS)
Sit, Roger Carson
This dissertation presents the design and feasibility of a small-scale, fusion-based transmutation device incorporating a commercially available neutron generator. It also presents the design features necessary to optimize the device and render it practical for the transmutation of selected long-lived fission products and actinides. Four conceptual designs of a transmutation device were used to study the transformation of seven radionuclides: long-lived fission products (Tc-99 and I-129), short-lived fission products (Cs-137 and Sr-90), and selective actinides (Am-241, Pu-238, and Pu-239). These radionuclides were chosen because they are major components of spent nuclear fuel and also because they exist as legacy sources that are being stored pending a decision regarding their ultimate disposition. The four designs include the use of two different devices; a Deuterium-Deuterium (D-D) neutron generator (for one design) and a Deuterium-Tritium (D-T) neutron generator (for three designs) in configurations which provide different neutron energy spectra for targeting the radionuclide for transmutation. Key parameters analyzed include total fluence and flux requirements; transmutation effectiveness measured as irradiation effective half-life; and activation products generated along with their characteristics: activity, dose rate, decay, and ingestion and inhalation radiotoxicity. From this investigation, conclusions were drawn about the feasibility of the device, the design and technology enhancements that would be required to make transmutation practical, the most beneficial design for each radionuclide, the consequence of the transmutation, and radiation protection issues that are important for the conceptual design of the transmutation device. Key conclusions from this investigation include: (1) the transmutation of long-lived fission products and select actinides can be practical using a small-scale, fusion driven transmutation device; (2) the transmutation of long-lived fission products could result in an irradiation effective half-life of a few years with a three order magnitude increase in the on-target neutron flux accomplishable through a combination of technological enhancements to the source and system design optimization; (3) the transmutation of long-lived fission products requires a thermal-slow energy spectrum to prevent the generation of activation products with half-lives even longer than the original radionuclide; (4) there is no benefit in trying to transmute short-lived fission products due to the ineffectiveness of the transmutation process and the generation of a multiplicity of counterproductive activation products; (5) for actinides, irradiation effective half-lives of < 1 year can be achieved with a four orders magnitude increase in the on-target flux; (6) the ideal neutron energy spectra for transmuting actinides is highly dependent on the particular radionuclide and its fission-to-capture ratio as they determine the generationrate of other actinides; and (7) the methodology developed in this dissertation provides a mechanism that can be used for studying the feasibility of transmuting other radionuclides, and its application can be extended to studying the production of radionuclides of interest in a transmutation process. Although large-scale transmutation technology is presently being researched world-wide for spent fuel management applications, such technology will not be viable for a couple of decades. This dissertation investigated the concept of a small-scale transmutation device using present technology. The results of this research show that with reasonable enhancements, transmutation of specific radionuclides can be practical in the near term.
Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.
Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I
2014-04-15
Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.
Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.
Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiationmore » has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B–/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.« less
MA transmutation performance in the optimized MYRRHA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malambu, E.; Van den Eynde, G.; Fernandez, R.
MYRRHA (multi-purpose hybrid research reactor for high-tech applications) is a multipurpose research facility currently being developed at SCK-CEN. It will be able to work in both critical and subcritical modes and, cooled by lead-bismuth eutectic. In this paper the minor actinides (MA) transmutation capabilities of MYRRHA are investigated. (Pu + Am, U) MOX fuel and (Np + Am + Cm, Pu) Inert Matrix Fuel test samples have been loaded in the central channel of the MYRRHA critical core and have been irradiated during five cycles, each one consisting of 90 days of operation at 100 MWth and 30 days ofmore » shutdown. The reactivity worth of the test fuel assembly was about 1.1 dollar. A wide range of burn-up level has been achieved, extending from 42 to 110 MWd/kg HM, the samples with lower MA-to-Pu ratios reaching the highest burn-up. This study has highlighted the importance of the initial MA content, expressed in terms of MA/Pu ratio, on the transmutation rate of MA elements. For (Pu + Am, U) MOX fuel samples, a net build-up of MA is observed when the initial content of MA is very low (here, 1.77 wt% MA/Pu) while a net decrease in MA is observed in the sample with an initial content of 5 wt%. This suggests the existence of some 'equilibrium' initial MA content value beyond which a net transmutation is achievable.« less
Transmutation of 129I and 237Np using spallation neutrons produced by 1.5, 3.7 and 7.4 GeV protons
NASA Astrophysics Data System (ADS)
Wan, J.-S.; Schmidt, Th.; Langrock, E.-J.; Vater, P.; Brandt, R.; Adam, J.; Bradnova, V.; Bamblevski, V. P.; Gelovani, L.; Gridnev, T. D.; Kalinnikov, V. G.; Krivopustov, M. I.; Kulakov, B. A.; Sosnin, A. N.; Perelygin, V. P.; Pronskikh, V. S.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.; Modolo, G.; Odoj, R.; Phlippen, P.-W.; Zamani-Valassiadou, M.; Adloff, J. C.; Debeauvais, M.; Hashemi-Nezhad, S. R.; Guo, S.-L.; Li, L.; Wang, Y.-L.; Dwivedi, K. K.; Zhuk, I. V.; Boulyga, S. F.; Lomonossova, E. M.; Kievitskaja, A. F.; Rakhno, I. L.; Chigrinov, S. E.; Wilson, W. B.
2001-05-01
Small samples of 129I and 237Np, two long-lived radwaste nuclides, were exposed to spallation neutron fluences from relatively small metal targets of lead and uranium, that were surrounded with a 6 cm thick paraffin moderator, and irradiated with 1.5, 3.7 and 7.4 GeV protons. The (n,γ) transmutation rates were determined for these nuclides. Conventional radiochemical La- and U-sensors and a variety of solid-state nuclear track detectors were irradiated simultaneously with secondary neutrons. Compared with results from calculations with well-known cascade codes (LAHET from Los Alamos and DCM/CEM from Dubna), the observed secondary neutron fluences are larger.
Feasibility study of nuclear transmutation by negative muon capture reaction using the PHITS code
NASA Astrophysics Data System (ADS)
Abe, Shin-ichiro; Sato, Tatsuhiko
2016-06-01
Feasibility of nuclear transmutation of fission products in high-level radioactive waste by negative muon capture reaction is investigated using the Particle and Heave Ion Transport code System (PHITS). It is found that about 80 % of stopped negative muons contribute to transmute target nuclide into stable or short-lived nuclide in the case of 135Cs, which is one of the most important nuclide in the transmutation. The simulation result also indicates that the position of transmutation is controllable by changing the energy of incident negative muon. Based on our simulation, it takes approximately 8.5 × 108years to transmute 500 g of 135Cs by negative muon beam with the highest intensity currently available.
From teosinte to maize: the catastrophic sexual transmutation.
Iltis, H H
1983-11-25
An alternative to the theory that the ear of maize (Zea mays ssp. mays) evolved from a slender female ear of a Mexican annual teosinte holds that it was derived from the central spike of a male teosinte inflorescence (tassel) which terminates the primary lateral branches. This alternative hypothesis is more consistent with morphology and explains the anomalous lack of significant genetic and biochemical differences between these taxa. Maize, the only cereal with unisexual inflorescences, evolved through a sudden epigenetic sexual transmutation involving condensation of primary branches, which brought their tassels into the zone of female expression, leading to strong apical dominance and a catastrophic shift in nutrient allocation. Initially, this quantum change may have involved no new mutations, but rather genetic assimilation under human selection of an abnormality, perhaps environmentally triggered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Mer, J.; Garzenne, C.; Lemasson, D.
In the frame of the French Act of June 28, 2006 on 'a sustainable management of nuclear materials and radioactive waste' EDF R and D assesses various research scenarios of transition between the actual French fleet and a Generation IV fleet with a closed fuel cycle where plutonium is multi-recycled. The basic scenarios simulate a deployment of 60 GWe of Sodium-cooled Fast Reactors (SFRs) in two steps: one third from 2040 to 2050 and the rest from 2080 to 2100 (scenarios 2040). These research scenarios assume that SFR technology will be ready for industrial deployment in 2040. One of themore » many sensitivity analyses that EDF, as a nuclear power plant operator, must evaluate is the impact of a delay of SFR technology in terms of uranium consumptions, plutonium needs and fuel cycle utilities gauging. The sensitivity scenarios use the same assumptions as scenarios 2040 but they simulate a different transition phase: SFRs are deployed in one step between 2080 and 2110 (scenarios 2080). As the French Act states to conduct research on minor actinides (MA) management, we studied different options for 2040 and 2080 scenarios: no MA transmutation, americium transmutation in heterogeneous mode based on americium Bearing Blankets (AmBB) in SFRs and all MA transmutation in heterogeneous mode based on MA Bearing Blankets (MABB). Moreover, we studied multiple parameters that could impact the deployment of these reactors (SFR load factor, increase of the use of MOX in Light Water Reactors, increase of the cooling time in spent nuclear fuel storage...). Each scenario has been computed with the EDF R and D fuel cycle simulation code TIRELIRE-STRATEGIE and optimized to meet various fuel cycle constraints such as using the reprocessing facility with long period of constant capacity, keeping the temporary stored mass of plutonium and MA under imposed limits, recycling older assemblies first... These research scenarios show that the transition from the current PWR fleet to an equivalent fleet of Generation IV SFR can follow different courses. The design of SFR-V2B that we used in our studies needs a high inventory of plutonium resulting in tension on this resource. Several options can be used in order to loosen this tension: our results lead to favour the use of axial breeding blanket in SFR. Load factor of upcoming reactors has to be regarded with attention as it has a high impact on plutonium resource for a given production of electricity. The deployment of SFRs beginning in 2080 instead of 2040 following the scenarios we described creates higher tensions on reprocessing capacity, separated plutonium storage and spent fuel storage. In the frame of the French Act, we studied minor actinides transmutation. The flux of MA in all fuel cycle plants is really high, which will lead to decay heat, a and neutron emission related problems. In terms of reduction of MA inventories, the deployment of MA transmutation cycle must not delay the installation of SFRs. The plutonium production in MABB and AmBB does not allow reducing the use of axial breeding blankets. The impact of MA or Am transmutation over the high level waste disposal is more important if the SFRs are deployed later. Transmutation option (americium or all MA) does not have a significant impact on the number of canister produced nor on its long-term thermal properties. (authors)« less
Copper Doping of Zinc Oxide by Nuclear Transmutation
2014-03-27
Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.
Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place inmore » the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.« less
ERIC Educational Resources Information Center
Serret, Natasha
2010-01-01
Traditionally, alchemy has involved the power of transmuting base metals such as lead into gold or producing the "elixir of life" for those wealthy people who wanted to live forever. But what of today's developments? One hundred years ago, even breaking the four-minute mile would have been deemed "magic," which is what the alchemists of the past…
NASA Astrophysics Data System (ADS)
Khankhasayev, Zhanat B.; Kurmanov, Hans; Plendl, Mikhail Kh.
1996-12-01
The Table of Contents for the full book PDF is as follows: * Preface * I. Review of Current Status of Nuclear Transmutation Projects * Accelerator-Driven Systems — Survey of the Research Programs in the World * The Los Alamos Accelerator-Driven Transmutation of Nuclear Waste Concept * Nuclear Waste Transmutation Program in the Czech Republic * Tentative Results of the ISTC Supported Study of the ADTT Plutonium Disposition * Recent Neutron Physics Investigations for the Back End of the Nuclear Fuel Cycle * Optimisation of Accelerator Systems for Transmutation of Nuclear Waste * Proton Linac of the Moscow Meson Factory for the ADTT Experiments * II. Computer Modeling of Nuclear Waste Transmutation Methods and Systems * Transmutation of Minor Actinides in Different Nuclear Facilities * Monte Carlo Modeling of Electro-nuclear Processes with Nonlinear Effects * Simulation of Hybrid Systems with a GEANT Based Program * Computer Study of 90Sr and 137Cs Transmutation by Proton Beam * Methods and Computer Codes for Burn-Up and Fast Transients Calculations in Subcritical Systems with External Sources * New Model of Calculation of Fission Product Yields for the ADTT Problem * Monte Carlo Simulation of Accelerator-Reactor Systems * III. Data Basis for Transmutation of Actinides and Fission Products * Nuclear Data in the Accelerator Driven Transmutation Problem * Nuclear Data to Study Radiation Damage, Activation, and Transmutation of Materials Irradiated by Particles of Intermediate and High Energies * Radium Institute Investigations on the Intermediate Energy Nuclear Data on Hybrid Nuclear Technologies * Nuclear Data Requirements in Intermediate Energy Range for Improvement of Calculations of ADTT Target Processes * IV. Experimental Studies and Projects * ADTT Experiments at the Los Alamos Neutron Science Center * Neutron Multiplicity Distributions for GeV Proton Induced Spallation Reactions on Thin and Thick Targets of Pb and U * Solid State Nuclear Track Detector and Radiochemical Studies on the Transmutation of Nuclei Using Relativistic Heavy Ions * Experimental and Theoretical Study of Radionuclide Production on the Electronuclear Plant Target and Construction Materials Irradiated by 1.5 GeV and 130 MeV Protons * Neutronics and Power Deposition Parameters of the Targets Proposed in the ISTC Project 17 * Multicycle Irradiation of Plutonium in Solid Fuel Heavy-Water Blanket of ADS * Compound Neutron Valve of Accelerator-Driven System Sectioned Blanket * Subcritical Channel-Type Reactor for Weapon Plutonium Utilization * Accelerator Driven Molten-Fluoride Reactor with Modular Heat Exchangers on PB-BI Eutectic * A New Conception of High Power Ion Linac for ADTT * Pions and Accelerator-Driven Transmutation of Nuclear Waste? * V. Problems and Perspectives * Accelerator-Driven Transmutation Technologies for Resolution of Long-Term Nuclear Waste Concerns * Closing the Nuclear Fuel-Cycle and Moving Toward a Sustainable Energy Development * Workshop Summary * List of Participants
Role of (n,2n) reactions in transmutation of long-lived fission products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apse, V. A.; Kulikov, G. G., E-mail: ggkulikov@mephi.ru; Kulikov, E. G.
2016-12-15
The conditions under which (n,γ) and (n,2n) reactions can help or hinder each other in neutron transmutation of long-lived fission products (LLFPs) are considered. Isotopic and elemental transmutation for the main long-lived fission products, {sup 79}Se, {sup 93}Zr, {sup 99}Tc, {sup 107}Pd, {sup 126}Sn, {sup 129}I, and {sup 135}Cs, are considered. The effect of (n,2n) reactions on the equilibrium amount of nuclei of the transmuted isotope and the neutron consumption required for the isotope processing is estimated. The aim of the study is to estimate the influence of (n,2n) reactions on efficiency of neutron LLFP transmutation. The code TIME26 andmore » the libraries of evaluated nuclear data ABBN-93, JEF-PC, and JANIS system are applied. The following results are obtained: (1) The effect of (n,2n) reactions on the minimum number of neutrons required for transmutation and the equilibrium amount of LLFP nuclei is estimated. (2) It is demonstrated that, for three LLFP isotopes ({sup 126}Sn, {sup 129}I, and {sup 135}Cs), (n,γ) and (n,2n) reactions are partners facilitating neutron transmutation. The strongest effect of (n,2n) reaction is found for {sup 126}Sn transmutation (reduction of the neutron consumption by 49% and the equilibrium amount of nuclei by 19%).« less
NASA Astrophysics Data System (ADS)
Wang, X. L.; Xu, Z. Y.; Luo, W.; Lu, H. Y.; Zhu, Z. C.; Yan, X. Q.
2017-09-01
Photo-transmutation of long-lived nuclear waste induced by a high-charge relativistic electron beam (e-beam) from a laser plasma accelerator is demonstrated. A collimated relativistic e-beam with a high charge of approximately 100 nC is produced from high-intensity laser interaction with near-critical-density (NCD) plasma. Such e-beam impinges on a high-Z convertor and then radiates energetic bremsstrahlung photons with flux approaching 1011 per laser shot. Taking a long-lived radionuclide 126Sn as an example, the resulting transmutation reaction yield is the order of 109 per laser shot, which is two orders of magnitude higher than obtained from previous studies. It is found that at lower densities, a tightly focused laser irradiating relatively longer NCD plasmas can effectively enhance the transmutation efficiency. Furthermore, the photo-transmutation is generalized by considering mixed-nuclide waste samples, which suggests that the laser-accelerated high-charge e-beam could be an efficient tool to transmute long-lived nuclear waste.
2013-06-01
X, where X represents lithium, sodium, beryllium, or transmutation products, such as tritium [47]. In this mechanism, the transmutation of lithium...Similar to the study by Williams, Farmer found that galvanic coupling, increased temperature and the formation of transmutation products (HF and TF), a
Shao, Xueguang; Yu, Zhengliang; Ma, Chaoxiong
2004-06-01
An improved method is proposed for the quantitative determination of multicomponent overlapping chromatograms based on a known transmutation method. To overcome the main limitation of the transmutation method caused by the oscillation generated in the transmutation process, two techniques--wavelet transform smoothing and the cubic spline interpolation for reducing data points--were adopted, and a new criterion was also developed. By using the proposed algorithm, the oscillation can be suppressed effectively, and quantitative determination of the components in both the simulated and experimental overlapping chromatograms is successfully obtained.
Fast reactor core concepts to improve transmutation efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi
Fast Reactor (FR) core concepts to improve transmutation efficiency were conducted. A heterogeneous MA loaded core was designed based on the 1000MWe-ABR breakeven core. The heterogeneous MA loaded core with Zr-H loaded moderated targets had a better transmutation performance than the MA homogeneous loaded core. The annular pellet rod design was proposed as one of the possible design options for the MA target. It was shown that using annular pellet MA rods mitigates the self-shielding effect in the moderated target so as to enhance the transmutation rate.
Unifying relations for scattering amplitudes
NASA Astrophysics Data System (ADS)
Cheung, Clifford; Shen, Chia-Hsien; Wen, Congkao
2018-02-01
We derive new amplitudes relations revealing a hidden unity among a wideranging variety of theories in arbitrary spacetime dimensions. Our results rely on a set of Lorentz invariant differential operators which transmute physical tree-level scattering amplitudes into new ones. By transmuting the amplitudes of gravity coupled to a dilaton and two-form, we generate all the amplitudes of Einstein-Yang-Mills theory, Dirac-Born-Infield theory, special Galileon, nonlinear sigma model, and biadjoint scalar theory. Transmutation also relates amplitudes in string theory and its variants. As a corollary, celebrated aspects of gluon and graviton scattering like color-kinematics duality, the KLT relations, and the CHY construction are inherited traits of the transmuted amplitudes. Transmutation recasts the Adler zero as a trivial consequence of the Weinberg soft theorem and implies new subleading soft theorems for certain scalar theories.
FIRST-PRINCIPLES CALCULATIONS OF INTRINSIC DEFECTS AND Mg TRANSMUTANTS IN 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.
2013-09-25
Silicon carbide (SiC) possesses many desirable attributes for applications in high-temperature and neutron radiation environments. These attributes include excellent dimensional and thermodynamic stability, low activation, high strength, and high thermal conductivity. Therefore, SiC based materials draw broad attention as structural materials for the first wall (FW) and blanket in fusion power plants. Under the severe high-energy neutron environment of D-T fusion systems, SiC suffers significant transmutation resulting in both gaseous and metallic transmutants. Recent calculations by Sawan, et al. [2] predict that at a fast neutron dose of ~100 dpa, there will be about 0.5 at% Mg generated in SiCmore » through nuclear transmutation. Other transmutation products, including 0.15 at% Al, 0.2 at% Be and 2.2 at% He, also emerge. Formation and migration energies of point defects in 3C-SiC have been widely investigated using density functional theory (DFT). However, the properties of defects associated with transmutants are currently not well understood. Fundamental understanding of where the transmutation products go and how they affect microstructure evolution of SiC composites will help to predict property evolution and performance of SiC-based materials in fusion reactors.« less
Transmutation Theory in the Greek Alchemical Corpus.
Dufault, Olivier
2015-08-01
This paper studies transmutation theory as found in the texts attributed to Zosimus of Panopolis, "the philosopher Synesius," and "the philosopher Olympiodorus of Alexandria." It shows that transmutation theory (i.e. a theory explaining the complete transformation of substances) is mostly absent from the work attributed to these three authors. The text attributed to Synesius describes a gilding process, which is similar to those described by Pliny and Vitruvius. The commentary attributed to Olympiodorus is the only text studied here that describes something similar to a transmutation theory. It is unclear, however, if this was a theory of transmutation or if the writer meant something more like the literal meaning of the word "ekstrophē," a term used to describe the transformation of metals, as the "turning inside-out" of what is hidden in a substance. A similar conception of ekstrophē can be found in the works of Zosimus, who discussed transmutation to make an analogy with self-purification processes, which, from the perspective of his own anthropogony, consisted in the "turning inside-out" of the "inner human" (esō anthrōpos).
Isolation of high purity americium metal via distillation
NASA Astrophysics Data System (ADS)
Squires, Leah N.; King, James A.; Fielding, Randall S.; Lessing, Paul
2018-03-01
Pure americium metal is a crucial component for the fabrication of transmutation fuels. Unfortunately, americium in pure metal form is not available; however, a number of mixed metals and mixed oxides that include americium are available. In this manuscript a method is described to obtain high purity americium metal from a mixture of americium and neptunium metals with lead impurity via distillation.
Transmutation doping of silicon solar cells
NASA Technical Reports Server (NTRS)
Wood, R. F.; Westbrook, R. D.; Young, R. T.; Cleland, J. W.
1977-01-01
Normal isotopic silicon contains 3.05% of Si-30 which transmutes to P-31 after thermal neutron absorption, with a half-life of 2.6 hours. This reaction is used to introduce extremely uniform concentrations of phosphorus into silicon, thus eliminating the areal and spatial inhomogeneities characteristic of chemical doping. Annealing of the lattice damage in the irradiated silicon does not alter the uniformity of dopant distribution. Transmutation doping also makes it possible to introduce phosphorus into polycrystalline silicon without segregation of the dopant at the grain boundaries. The use of neutron transmutation doped (NTD) silicon in solar cell research and development is discussed.
Modeling Radioactive Decay Chains with Branching Fraction Uncertainties
2013-03-01
moments methods with transmutation matrices. Uncertainty from both half-lives and branching fractions is carried through these calculations by Monte...moment methods, method for sampling from normal distributions for half- life uncertainty, and use of transmutation matrices were leveraged. This...distributions for half-life and branching fraction uncertainties, building decay chains and generating the transmutation matrix (T-matrix
Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne
2014-01-01
In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations--a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described.
Merk, Bruno; Rohde, Ulrich; Glivici-Cotruţă, Varvara; Litskevich, Dzianis; Scholl, Susanne
2014-01-01
In the view of transmutation of transuranium (TRU) elements, molten salt fast reactors (MSFRs) offer certain advantages compared to solid fuelled reactor types like sodium cooled fast reactors (SFRs). In the first part these advantages are discussed in comparison with the SFR technology, and the research challenges are analyzed. In the second part cycle studies for the MSFR are given for different configurations – a core with U-238 fertile, a fertile free core, and a core with Th-232 as fertile material. For all cases, the transmutation potential is determined and efficient transmutation performance for the case with thorium as a fertile material as well as for the fertile free case is demonstrated and the individual advantages are discussed. The time evolution of different important isotopes is analyzed. In the third part a strategy for the optimization of the transmutation efficiency is developed. The final aim is dictated by the phase out decision of the German government, which requests to put the focus on the determination of the maximal transmutation efficiency and on an as much as possible reduced leftover of transuranium elements at the end of the reactor life. This minimal leftover is achieved by a two step procedure of a first transmuter operation phase followed by a second deep burning phase. There the U-233, which is bred in the blanket of the core consisting of thorium containing salt, is used as feed. It is demonstrated, that transmutation rates up to more than 90% can be achieved for all transuranium isotopes, while the production of undesired high elements like californium is very limited. Additionally, the adaptations needed for the simulation of a MSFR, and the used tool HELIOS 1.10 is described. PMID:24690768
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Koltick, David S.; Reifenberger, Ronald G.; Zubarev, Alexander L.
2006-02-01
Most of experimental results of low-energy nuclear reaction (LENR) reported so far cannot be reproduced on demand. There have been persistent experimental results indicating that the LENR and transmutation processes in condensed matters (LENRTPCM) are surface phenomena rather than bulk phenomena. Recently proposed Bose-Einstein condensation (BEC) mechanism may provide a suitable theoretical description of the surface phenomena. New experiments are proposed and described for testing the BEC mechanism for LENR and transmutation processes in micro- and nano-scale traps. (1) We propose the use of micro- or nano-porous conducting materials as a cathode in electrolysis experiments with heavy water with or without Li in order to stabilize the active surface spots and to enhance the effect for the purpose of improving the reproducibility of excess heat generation and nuclear emission. (2) We propose new experimental tests of the BEC mechanism by measuring the pressure and temperature dependence of LENR events using deuterium gas and these deuterated metals with or without Li. If the LENRTPCM are surface phenomena, the proposed use of micro-/nano-scale porous materials is expected to enhance and scale up the LENRTPCM effects by many order of magnitude, and thus may lead to better reproductivity and theoretical understanding of the phenomena.
Experimental demonstration of free-space optical vortex transmutation with polygonal lenses.
Gao, Nan; Xie, Changqing
2012-08-01
Vortex transmutation was predicted to take place when vortices interact with systems possessing discrete rotational symmetries of finite order [Phys. Rev. Lett.95, 123901 (2005)]. Here we report what is believed to be the first experimental demonstration of vortex transmutation. We show that in free space, by simply inserting polygonal lenses into the optical path, the central vorticity of a coaxially incident optical vortex can be changed following the modular transmutation rule. We generate the wavefront at the exit face of the lenses with computer generated holograms and measure the output vorticity using the interference patterns at the focal plane. The results agree well with theoretical predictions.
Infrared absorption study of neutron-transmutation-doped germanium
NASA Technical Reports Server (NTRS)
Park, I. S.; Haller, E. E.
1988-01-01
Using high-resolution far-infrared Fourier transform absorption spectroscopy and Hall effect measurements, the evolution of the shallow acceptor and donor impurity levels in germanium during and after the neutron transmutation doping process was studied. The results show unambiguously that the gallium acceptor level concentration equals the concentration of transmutated Ge-70 atoms during the whole process indicating that neither recoil during transmutation nor gallium-defect complex formation play significant roles. The arsenic donor levels appear at full concentration only after annealing for 1 h at 450 C. It is shown that this is due to donor-radiation-defect complex formation. Again, recoil does not play a significant role.
Method to Reduce Long-lived Fission Products by Nuclear Transmutations with Fast Spectrum Reactors.
Chiba, Satoshi; Wakabayashi, Toshio; Tachi, Yoshiaki; Takaki, Naoyuki; Terashima, Atsunori; Okumura, Shin; Yoshida, Tadashi
2017-10-24
Transmutation of long-lived fission products (LLFPs: 79 Se, 93 Zr, 99 Tc, 107 Pd, 129 I, and 135 Cs) into short-lived or non-radioactive nuclides by fast neutron spectrum reactors without isotope separation has been proposed as a solution to the problem of radioactive wastes disposal. Despite investigation of many methods, such transmutation remains technologically difficult. To establish an effective and efficient transmutation system, we propose a novel neutron moderator material, yttrium deuteride (YD 2 ), to soften the neutron spectrum leaking from the reactor core. Neutron energy spectra and effective half-lives of LLFPs, transmutation rates, and support ratios were evaluated with the continuous-energy Monte Carlo code MVP-II/MVP-BURN and the JENDL-4.0 cross section library. With the YD 2 moderator in the radial blanket and shield regions, effective half-lives drastically decreased from 106 to 102 years and the support ratios reached 1.0 for all six LLFPs. This successful development and implementation of a transmutation system for LLFPs without isotope separation contributes to a the ability of fast spectrum reactors to reduce radioactive waste by consuming their own LLFPs.
The New Education and the Institute of Education, University of London, 1919-1945
ERIC Educational Resources Information Center
Aldrich, Richard
2009-01-01
The London Day Training College (LDTC), founded in 1902, soon became the leading institution for the study of education and for the training of teachers in England. In 1932 it was transmuted into the Institute of Education of the University of London. Its title and pre-eminence have continued to this day. In the period 1919-1945 it was closely,…
Accelerator-driven transmutation of spent fuel elements
Venneri, Francesco; Williamson, Mark A.; Li, Ning
2002-01-01
An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing
NASA Astrophysics Data System (ADS)
Uyttenhove, W.; Sobolev, V.; Maschek, W.
2011-09-01
A potential option for neutralization of minor actinides (MA) accumulated in spent nuclear fuel of light water reactors (LWRs) is their transmutation in dedicated accelerator-driven systems (ADS). A promising fuel candidate dedicated to MA transmutation is a CERMET composite with Mo metal matrix and (Pu, Np, Am, Cm)O 2-x fuel particles. Results of optimisation studies of the CERMET fuel targeting to increasing the MA transmutation efficiency of the EFIT (European Facility for Industrial Transmutation) core are presented. In the adopted strategy of MA burning the plutonium (Pu) balance of the core is minimized, allowing a reduction in the reactivity swing and the peak power form-factor deviation and an extension of the cycle duration. The MA/Pu ratio is used as a variable for the fuel optimisation studies. The efficiency of MA transmutation is close to the foreseen theoretical value of 42 kg TW -1 h -1 when level of Pu in the actinide mixture is about 40 wt.%. The obtained results are compared with the reference case of the EFIT core loaded with the composite CERCER fuel, where fuel particles are incorporated in a ceramic magnesia matrix. The results of this study offer additional information for the EFIT fuel selection.
How to Use Benchmark and Cross-section Studies to Improve Data Libraries and Models
NASA Astrophysics Data System (ADS)
Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Svoboda, O.; Tichý, P.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Solnyshkin, A.; Tsoupko-Sitnikov, S.; Tyutyunikov, S.; Vladimirovna, N.; Závorka, L.
2016-06-01
Improvements of the Monte Carlo transport codes and cross-section libraries are very important steps towards usage of the accelerator-driven transmutation systems. We have conducted a lot of benchmark experiments with different set-ups consisting of lead, natural uranium and moderator irradiated by relativistic protons and deuterons within framework of the collaboration “Energy and Transmutation of Radioactive Waste”. Unfortunately, the knowledge of the total or partial cross-sections of important reactions is insufficient. Due to this reason we have started extensive studies of different reaction cross-sections. We measure cross-sections of important neutron reactions by means of the quasi-monoenergetic neutron sources based on the cyclotrons at Nuclear Physics Institute in Řež and at The Svedberg Laboratory in Uppsala. Measurements of partial cross-sections of relativistic deuteron reactions were the second direction of our studies. The new results obtained during last years will be shown. Possible use of these data for improvement of libraries, models and benchmark studies will be discussed.
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2015-11-01
The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.
Study of radioactive impurities in neutron transmutation doped germanium
NASA Astrophysics Data System (ADS)
Mathimalar, S.; Dokania, N.; Singh, V.; Nanal, V.; Pillay, R. G.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.
2015-02-01
A program to develop low temperature (mK) sensors with neutron transmutation doped Ge for rare event studies with a cryogenic bolometer has been initiated. For this purpose, semiconductor grade Ge wafers are irradiated with thermal neutron flux from Dhruva reactor at Bhabha Atomic Research Centre (BARC), Mumbai. Spectroscopic studies of irradiated samples have revealed that the environment of the capsule used for irradiating the sample leads to significant levels of 65Zn, 110mAg and 182Ta impurities, which can be reduced by chemical etching of approximately 50 μm thick surface layer. From measurements of the etched samples in the low background counting setup, activity due to trace impurities of 123Sb in bulk Ge is estimated to be 1 Bq / g after irradiation. These estimates indicate that in order to use the NTD Ge sensors for rare event studies, a cooldown period of 2 years would be necessary to reduce the radioactive background to ≤ 1 mBq / g.
Transmutation of planar media singularities in a conformal cloak.
Liu, Yichao; Mukhtar, Musawwadah; Ma, Yungui; Ong, C K
2013-11-01
Invisibility cloaking based on optical transformation involves materials singularity at the branch cut points. Many interesting optical devices, such as the Eaton lens, also require planar media index singularities in their implementation. We show a method to transmute two singularities simultaneously into harmless topological defects formed by anisotropic permittivity and permeability tensors. Numerical simulation is performed to verify the functionality of the transmuted conformal cloak consisting of two kissing Maxwell fish eyes.
Energy Production and Transmutation of Nuclear Waste by Accelerator Driven Systems
NASA Astrophysics Data System (ADS)
Zhivkov, P. K.
2018-05-01
There is a significant amount of highly radiotoxic long-life nuclear waste (NW) produced by NPP (Nuclear Power Plants). Transmutation is a process which transforms NW into less radiotoxic nuclides with a shorter period of half-life by spallation neutrons or radiative capture of neutrons produced by ADS (Accelerator Driven System). In the processes of transmutation new radioactive nuclides are produced. ADS is big energy consumer equipment. It is a method for production of a high-flux and high-energy neutron field. All these processes occur in ADS simultaneously. ADS is able to transmute actinides and produce energy simultaneously. The article considers the energy production problems in ADS. Several ideas are developed regarding the solution of the global energy supply.
Characterization of Neutron-Induced Defects in Isotopically Enriched Lithium Tetraborate
2011-03-01
that efficiently captures and transmutes neutrons into more readily detected forms of material or energy. Neutron detection is desirable to detect...be used to transmute neutrons into a more readily detectable particle or energy. Upon absorbing a thermal neutron, 6Li undergoes the reaction, 6 1...both 6Li and 10B in natural abundances unless deliberately enriched. In addition to the direct reactions, 6Li or 7Li and 16O can transmute neutrons
The Soviet Central Asian Challenge: A Neo-Gramscian Analysis.
1986-09-01
transmutated into the Soviet Union. This point is fundamental to understanding why the Russians are the ruling nationality group in the Soviet Union. The Great...initial years, force and coercion were instrumental for ensuring the continued existence of the transmuted Russian Empire. The new Soviet Union also...information on .Muslim national communism s1 l (Reft. 31, i33. 26F1or an excellent article on Russian nationalism’s transmutation to Soviet communism and the
Dual neutral particle induced transmutation in CINDER2008
NASA Astrophysics Data System (ADS)
Martin, W. J.; de Oliveira, C. R. E.; Hecht, A. A.
2014-12-01
Although nuclear transmutation methods for fission have existed for decades, the focus has been on neutron-induced reactions. Recent novel concepts have sought to use both neutrons and photons for purposes such as active interrogation of cargo to detect the smuggling of highly enriched uranium, a concept that would require modeling the transmutation caused by both incident particles. As photonuclear transmutation has yet to be modeled alongside neutron-induced transmutation in a production code, new methods need to be developed. The CINDER2008 nuclear transmutation code from Los Alamos National Laboratory is extended from neutron applications to dual neutral particle applications, allowing both neutron- and photon-induced reactions for this modeling with a focus on fission. Following standard reaction modeling, the induced fission reaction is understood as a two-part reaction, with an entrance channel to the excited compound nucleus, and an exit channel from the excited compound nucleus to the fission fragmentation. Because photofission yield data-the exit channel from the compound nucleus-are sparse, neutron fission yield data are used in this work. With a different compound nucleus and excitation, the translation to the excited compound state is modified, as appropriate. A verification and validation of these methods and data has been performed. This has shown that the translation of neutron-induced fission product yield sets, and their use in photonuclear applications, is appropriate, and that the code has been extended correctly.
Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1977-01-01
Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.
Application of gaseous core reactors for transmutation of nuclear waste
NASA Technical Reports Server (NTRS)
Schnitzler, B. G.; Paternoster, R. R.; Schneider, R. T.
1976-01-01
An acceptable management scheme for high-level radioactive waste is vital to the nuclear industry. The hazard potential of the trans-uranic actinides and of key fission products is high due to their nuclear activity and/or chemical toxicity. Of particular concern are the very long-lived nuclides whose hazard potential remains high for hundreds of thousands of years. Neutron induced transmutation offers a promising technique for the treatment of problem wastes. Transmutation is unique as a waste management scheme in that it offers the potential for "destruction" of the hazardous nuclides by conversion to non-hazardous or more manageable nuclides. The transmutation potential of a thermal spectrum uranium hexafluoride fueled cavity reactor was examined. Initial studies focused on a heavy water moderated cavity reactor fueled with 5% enriched U-235-F6 and operating with an average thermal flux of 6 times 10 to the 14th power neutrons/sq cm-sec. The isotopes considered for transmutation were I-129, Am-241, Am-242m, Am-243, Cm-243, Cm-244, Cm-245, and Cm-246.
JAERI R & D on accelerator-based transmutation under OMEGA program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takizuka, T.; Nishida, T.; Mizumoto, M.
1995-10-01
The overview of the Japanese long-term research and development program on nuclide partitioning and transmutation, called {open_quotes}OMEGA,{close_quotes} is presented. Under this national program, major R&D activities are being carried out at JAERI, PNC, and CRIEPI. Accelerator-based transmutation study at JAERI is focused on a dedicated transmutor with a subcritical actinide-fueled subcritical core coupled with a spallation target driven by a high intensity proton accelerator. Two types of system concept, solid system and molten-salt system, are discussed. The solid system consists of sodium-cooled tungsten target and metallic actinide fuel. The molten-salt system is fueled with molten actinide chloride that acts alsomore » as a target material. The proposed plant transmutes about 250 kg of minor actinide per year, and generates enough electricity to power its own accelerator. JAERI is proposing the development of an intense proton linear accelerator ETA with 1.5 GeV-10 mA beam for engineering tests of accelerator-based transmutation. Recent achievements in the accelerator development are described.« less
Principe, Lawrence M
2014-01-01
The general abandonment of serious endeavor toward metallic transmutation represents a major development in the history of chemistry, yet its exact causes and timing remain unclear. This essay examines the fate of chrysopoeia at the eighteenth-century Académie Royale des Sciences. It reveals a long-standing tension between Académie chemists, who pursued transmutation, and administrators, who tried to suppress it. This tension provides background for Etienne-François Geoffroy's 1722 paper describing fraudulent practices around transmutation. Although transmutation seems to disappear after Geoffroy's paper, manuscripts reveal that most of the institution's chemists continued to pursue it privately until at least the 1760s, long after widely accepted dates for the "demise of alchemy" in learned circles.
Transmuted of Rayleigh Distribution with Estimation and Application on Noise Signal
NASA Astrophysics Data System (ADS)
Ahmed, Suhad; Qasim, Zainab
2018-05-01
This paper deals with transforming one parameter Rayleigh distribution, into transmuted probability distribution through introducing a new parameter (λ), since this studied distribution is necessary in representing signal data distribution and failure data model the value of this transmuted parameter |λ| ≤ 1, is also estimated as well as the original parameter (⊖) by methods of moments and maximum likelihood using different sample size (n=25, 50, 75, 100) and comparing the results of estimation by statistical measure (mean square error, MSE).
NASA Astrophysics Data System (ADS)
Bays, Samuel Eugene
2008-10-01
In the past several years there has been a renewed interest in sodium fast reactor (SFR) technology for the purpose of destroying transuranic waste (TRU) produced by light water reactors (LWR). The utility of SFRs as waste burners is due to the fact that higher neutron energies allow all of the actinides, including the minor actinides (MA), to contribute to fission. It is well understood that many of the design issues of LWR spent nuclear fuel (SNF) disposal in a geologic repository are linked to MAs. Because the probability of fission for essentially all the "non-fissile" MAs is nearly zero at low neutron energies, these isotopes act as a neutron capture sink in most thermal reactor systems. Furthermore, because most of the isotopes produced by these capture reactions are also non-fissile, they too are neutron sinks in most thermal reactor systems. Conversely, with high neutron energies, the MAs can produce neutrons by fast fission. Additionally, capture reactions transmute the MAs into mostly plutonium isotopes, which can fission more readily at any energy. The transmutation of non-fissile into fissile atoms is the premise of the plutonium breeder reactor. In a breeder reactor, not only does the non-fissile "fertile" U-238 atom contribute fast fission neutrons, but also transmutes into fissile Pu-239. The fissile value of the plutonium produced by MA transmutation can only be realized in fast neutron spectra. This is due to the fact that the predominate isotope produced by MA transmutation, Pu-238, is itself not fissile. However, the Pu-238 fission cross section is significantly larger than the original transmutation parent, predominately: Np-237 and Am-241, in the fast energy range. Also, Pu-238's fission cross section and fission-to-capture ratio is almost as high as that of fissile Pu-239 in the fast neutron spectrum. It is also important to note that a neutron absorption in Pu-238, that does not cause fission, will instead produce fissile Pu-239. Given this fast fissile quality and also the fact that Pu-238 is transmuted from Np-237 and Am-241, these MAs are regarded as fertile material in the SFR design proposed by this dissertation. This dissertation demonstrates a SFR design which is dedicated to plutonium breeding by targeting Am-241 transmutation. This SFR design uses a moderated axial transmutation target that functions primarily as a pseudo-blanket fuel, which is reprocessed with the active driver fuel in an integrated recycling strategy. This work demonstrates the cost and feasibility advantages of plutonium breeding via MA transmutation by adopting reactor, reprocessing and fuel technologies previously demonstrated for traditional breeder reactors. The fuel cycle proposed seeks to find a harmony between the waste management advantages of transuranic burning SFRs and the resource sustainability of traditional plutonium breeder SFRs. As a result, the enhanced plutonium conversion from MAs decreases the burner SFR's fuel costs, by extracting more fissile value from the initial TRU purchased through SNF reprocessing.
Resolving and quantifying overlapped chromatographic bands by transmutation
Malinowski
2000-09-15
A new chemometric technique called "transmutation" is developed for the purpose of sharpening overlapped chromatographic bands in order to quantify the components. The "transmutation function" is created from the chromatogram of the pure component of interest, obtained from the same instrument, operating under the same experimental conditions used to record the unresolved chromatogram of the sample mixture. The method is used to quantify mixtures containing toluene, ethylbenzene, m-xylene, naphthalene, and biphenyl from unresolved chromatograms previously reported. The results are compared to those obtained using window factor analysis, rank annihilation factor analysis, and matrix regression analysis. Unlike the latter methods, the transmutation method is not restricted to two-dimensional arrays of data, such as those obtained from HPLC/DAD, but is also applicable to chromatograms obtained from single detector experiments. Limitations of the method are discussed.
Transmutation: The Roots of the Dream.
ERIC Educational Resources Information Center
Karpenko, Vladimir
1995-01-01
Examines the history of alchemical attempts at transmutation and classifies them by differing approaches and techniques. Traces the development of alchemy in Asia, Europe, and the Middle East, and compares alchemy with craftsmanship. (18 references) (DDR)
Teebor, G W; Frenkel, K; Goldstein, M S
1984-01-01
HeLa cells grown in the presence of [methyl-3H]thymidine contained large amounts of 5-hydroxymethyl-2'-deoxyuridine (HMdU) in their DNA. When the cells were grown in [6-3H]thymidine and their DNA was labeled to the same specific activity, no HMdU was present. When such [6-3H]thymidine-labeled cells were exposed to increasing amounts of gamma-radiation, small but increasing amounts of HMdU were formed in their DNA. This indicates that HMdU can be formed in DNA by two distinct mechanisms. The first is the result of the transmutation of 3H to 3He (beta decay) in the methyl group of thymidine, leading to formation of a carbocation. This short-lived ion reacts with hydroxide ions of water, yielding the hydroxymethyl group. HMdU that is formed by this mechanism is formed at the rate of beta decay of 3H. It appears only in [methyl-3H]thymidine residues and is present in the DNA of both nonirradiated and gamma-irradiated cells. The second mechanism is the result of the radiolysis of water caused by ionizing radiation. The resultant radical species, particularly hydroxyl radicals, may react with many sites on DNA. When the methyl group of thymine is attacked by hydroxyl radicals, the hydroxymethyl group is formed. The formation of HMdU by this mechanism was detected only when [6-3H]thymidine-labeled cells were used, since transmutation of 3H in position 6 of thymine cannot yield HMdU. PMID:6582490
Teebor, G W; Frenkel, K; Goldstein, M S
1984-01-01
HeLa cells grown in the presence of [methyl-3H]thymidine contained large amounts of 5-hydroxymethyl-2'-deoxyuridine (HMdU) in their DNA. When the cells were grown in [6-3H]thymidine and their DNA was labeled to the same specific activity, no HMdU was present. When such [6-3H]thymidine-labeled cells were exposed to increasing amounts of gamma-radiation, small but increasing amounts of HMdU were formed in their DNA. This indicates that HMdU can be formed in DNA by two distinct mechanisms. The first is the result of the transmutation of 3H to 3He (beta decay) in the methyl group of thymidine, leading to formation of a carbocation. This short-lived ion reacts with hydroxide ions of water, yielding the hydroxymethyl group. HMdU that is formed by this mechanism is formed at the rate of beta decay of 3H. It appears only in [methyl-3H]thymidine residues and is present in the DNA of both nonirradiated and gamma-irradiated cells. The second mechanism is the result of the radiolysis of water caused by ionizing radiation. The resultant radical species, particularly hydroxyl radicals, may react with many sites on DNA. When the methyl group of thymine is attacked by hydroxyl radicals, the hydroxymethyl group is formed. The formation of HMdU by this mechanism was detected only when [6-3H]thymidine-labeled cells were used, since transmutation of 3H in position 6 of thymine cannot yield HMdU.
NASA Astrophysics Data System (ADS)
Oigawa, Hiroyuki; Tsujimoto, Kazufumi; Nishihara, Kenji; Sugawara, Takanori; Kurata, Yuji; Takei, Hayanori; Saito, Shigeru; Sasa, Toshinobu; Obayashi, Hironari
2011-08-01
Reduction of burden caused by radioactive waste management is one of the most critical issues for the sustainable utilization of nuclear power. The Partitioning and Transmutation (P&T) technology provides the possibility to reduce the amount of the radiotoxic inventory of the high-level radioactive waste (HLW) dramatically and to extend the repository capacity. The accelerator-driven system (ADS) is regarded as a powerful tool to effectively transmute minor actinides (MAs) in the "double-strata" fuel cycle strategy. The ADS has a potential to flexibly manage MA in the transient phase from light water reactors (LWRs) to fast breeder reactors (FBRs), and can co-exist with FBR symbiotically and complementarily to enhance the reliability and the safety of the commercial FBR cycle. The concept of ADS in JAEA is a lead-bismuth eutectic (LBE) cooled, tank-type subcritical reactor with the power of 800 MWth driven by a 30 MW superconducting LINAC. By such an ADS, 250 kg of MA can be transmuted annually, which corresponds to the amount of MA produced in 10 units of LWR with 1 GWe. The design study was performed mainly for the subcritical reactor and the spallation target with a beam window. In Japan, Atomic Energy Commission (AEC) has implemented the check and review (C&R) on P&T technology from 2008 to 2009. In the C&R, the benefit of P&T technology, the current status of the R&D, and the way forward to promote it were discussed.
Actinide management with commercial fast reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohki, Shigeo
The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.
NASA Astrophysics Data System (ADS)
Iwamoto, Hiroki; Meigo, Shin-ichiro
2017-09-01
The impact of different spallation models implemented in the particle transport code PHITS on the shielding design of Transmutation Experimental Facility is investigated. For 400-MeV proton incident on a lead-bismuth eutectic target, an effective dose rate at the end of a thick radiation shield (3-m-thick iron and 3-m-thick concrete) calculated by the Liège intranuclear cascade (INC) model version 4.6 (INCL4.6) coupled with the GEMcode (INCL4.6/GEM) yields about twice as high as the Bertini INC model (Bertini/GEM). A comparison with experimental data for 500-MeV proton incident on a thick lead target suggest that the prediction accuracy of INCL4.6/GEM would be better than that of Bertini/GEM. In contrast, it is found that the dose rates in beam ducts in front of targets calculated by the INCL4.6/GEMare lower than those by the Bertini/GEM. Since both models underestimate the experimental results for neutron-production doubledifferential cross sections at 180° for 140-MeV proton incident on carbon, iron, and gold targets, it is concluded that it is necessary to allow a margin for uncertainty caused by the spallation models, which is a factor of two, in estimating the dose rate induced by neutron streaming through a beam duct.
NASA Astrophysics Data System (ADS)
Artisyuk, V.; Ignatyuk, A.; Korovin, Yu.; Lopatkin, A.; Matveenko, I.; Stankovskiy, A.; Titarenko, Yu.
2005-05-01
Transmutation of nuclear wastes (Minor Actinides and Long-Lived Fission Products) remains an important option to reduce the burden of high-level waste on final waste disposal in deep geological structures. Accelerator-Driven Systems (ADS) are considered as possible candidates to perform transmutation due to their subcritical operation mode that eliminates some of the serious safety penalties unavoidable in critical reactors. Specific requirements to nuclear data necessary for ADS transmutation analysis is the main subject of the ISTC Project ♯2578 which started in 2004 to identify the areas of research priorities in the future. The present paper gives a summary of ongoing project stressing the importance of nuclear data for blanket performance (reactivity behavior with associated safety characteristics) and uncertainties that affect characteristics of neutron producing target.
Electronic Transmutation (ET): Chemically Turning One Element into Another.
Zhang, Xinxing; Lundell, Katie A; Olson, Jared K; Bowen, Kit H; Boldyrev, Alexander I
2018-03-08
The concept of electronic transmutation (ET) depicts the processes that by acquiring an extra electron, an element with the atomic number Z begins to have properties that were known to only belong to its neighboring element with the atomic number Z+1. Based on ET, signature compounds and chemical bonds that are composed of certain elements can now be designed and formed by other electronically transmutated elements. This Minireview summarizes the recent developments and applications of ET on both the theoretical and experimental fronts. Examples on the ET of Group 13 elements into Group 14 elements, Group 14 elements into Group 15 elements, and Group 15 elements into Group 16 elements are discussed. Compounds and chemical bonding composed of carbon, silicon, germanium, phosphorous, oxygen and sulfur now have analogues using transmutated boron, aluminum, gallium, silicon, nitrogen, and phosphorous. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Lemehov, S. E.; Sobolev, V. P.; Verwerft, M.
2011-09-01
The European Facility for Industrial Transmutation (EFIT) of the minor actinides (MA), from LWR spent fuel is being developed in the integrated project EUROTRANS within the 6th Framework Program of EURATOM. Two composite uranium-free fuel systems, containing a large fraction of MA, are proposed as the main candidates: a CERCER with magnesia matrix hosting (Pu,MA)O 2-x particles, and a CERMET with metallic molybdenum matrix. The long-term thermal and mechanical behaviour of the fuel under the expected EFIT operating conditions is one of the critical issues in the core design. To make a reliable prediction of long-term thermo-mechanical behaviour of the hottest fuel rods in the lead-cooled version of EFIT with thermal power of 400 MW, different fuel performance codes have been used. This study describes the main results of modelling the thermo-mechanical behaviour of the hottest CERCER fuel rods with the fuel performance code MACROS which indicate that the CERCER fuel residence time can safely reach at least 4-5 effective full power years.
"Can Simple Metals Be Transmuted into Gold?" Teaching Science through a Historical Approach.
ERIC Educational Resources Information Center
Mamlok, Rachel; Ben-Zvi, Ruth; Menis, Joseph; Penick, John E.
2000-01-01
Describes the development and enactment of a new teaching unit, "Can simple metals be transmuted into gold?", through an historical approach as well as teacher preparation to teach this unit. (Contains 16 references.) (ASK)
Method and apparatus for transmutation of atomic nuclei
Maenchen, John Eric; Ruiz, Carlos Leon
1998-01-01
Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand.
Application of activation methods on the Dubna experimental transmutation set-ups.
Stoulos, S; Fragopoulou, M; Adloff, J C; Debeauvais, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Papastefanou, C; Zamani, M; Manolopoulou, M
2003-02-01
High spallation neutron fluxes were produced by irradiating massive heavy targets with proton beams in the GeV range. The experiments were performed at the Dubna High Energy Laboratory using the nuclotron accelerator. Two different experimental set-ups were used to produce neutron spectra convenient for transmutation of radioactive waste by (n,x) reactions. By a theoretical analysis neutron spectra can be reproduced from activation measurements. Thermal-epithermal and fast-super-fast neutron fluxes were estimated using the 197Au, 238U (n,gamma) and (n,2n) reactions, respectively. Depleted uranium transmutation rates were also studied in both experiments.
Method and apparatus for transmutation of atomic nuclei
Maenchen, J.E.; Ruiz, C.L.
1998-12-08
Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.
Method and apparatus for transmutation of atomic nuclei
Maenchen, J.E.; Ruiz, C.L.
1998-06-09
Insuring a constant supply of radioisotopes is of great importance to medicine and industry. This invention addresses this problem, and helps to solve it by introducing a new apparatus for transmutation of isotopes which enables swift and flexible production on demand. 9 figs.
Reflection, transmutation, annihilation, and resonance in two-component kink collisions
NASA Astrophysics Data System (ADS)
Alonso-Izquierdo, A.
2018-02-01
In this paper, the study of collisions between kinks arising in the family of MSTB models is addressed. Phenomena such as elastic kink reflection, mutual annihilation, kink-antikink transmutation and inelastic reflection are found and depend on the impact velocity.
Santa Muerte: Threatening the U.S. Homeland
2011-03-08
7 Religious Transmutation ...Religious Transmutation Similarly, a small number of anthropologists do not support the notorious claims about Santa Muerte. They believe that...Muerte, it is no wonder that the religion is spreading globally. Random Terror Slave holding, sexual activity with minors, kidnapping, and
NASA Astrophysics Data System (ADS)
Recker, M. C.; McClory, J. W.; Holston, M. S.; Golden, E. M.; Giles, N. C.; Halliburton, L. E.
2014-06-01
Transmutation of 64Zn to 65Cu has been observed in a ZnO crystal irradiated with neutrons. The crystal was characterized with electron paramagnetic resonance (EPR) before and after the irradiation and with gamma spectroscopy after the irradiation. Major features in the gamma spectrum of the neutron-irradiated crystal included the primary 1115.5 keV gamma ray from the 65Zn decay and the positron annihilation peak at 511 keV. Their presence confirmed the successful transmutation of 64Zn nuclei to 65Cu. Additional direct evidence for transmutation was obtained from the EPR of Cu2+ ions (where 63Cu and 65Cu hyperfine lines are easily resolved). A spectrum from isolated Cu2+ (3d9) ions acquired after the neutron irradiation showed only hyperfine lines from 65Cu nuclei. The absence of 63Cu lines in this Cu2+ spectrum left no doubt that the observed 65Cu signals were due to transmuted 65Cu nuclei created as a result of the neutron irradiation. Small concentrations of copper, in the form of Cu+-H complexes, were inadvertently present in our as-grown ZnO crystal. These Cu+-H complexes are not affected by the neutron irradiation, but they dissociate when a crystal is heated to 900 °C. This behavior allowed EPR to distinguish between the copper initially in the crystal and the copper subsequently produced by the neutron irradiation. In addition to transmutation, a second major effect of the neutron irradiation was the formation of zinc and oxygen vacancies by displacement. These vacancies were observed with EPR.
Specification-based Error Recovery: Theory, Algorithms, and Usability
2013-02-01
transmuting the specification to an implementation at run-time and reducing the performance overhead. A suite of techniques and tools were designed...in the specification, thereby transmuting the specification to an implementation at run-time and reducing the perfor- mance overhead. A suite of
Separations in the STATS report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choppin, G.R.
1996-12-31
The Separations Technology and Transmutation Systems (STATS) Committee formed a Subcommittee on Separations. This subcommittee was charged with evaluating the separations proposed for the several reactor and accelerator transmutation systems. It was also asked to review the processing options for the safe management of high-level waste generated by the defense programs, in particular, the special problems involved in dealing with the waste at the U.S. Department of Energy (DOE) facility in Hanford, Washington. Based on the evaluations from the Subcommittee on Separations, the STATS Committee concluded that for the reactor transmutation programs, aqueous separations involving a combination of PUREX andmore » TRUEX solvent extraction processes could be used. However, additional research and development (R&D) would be required before full plant-scale use of the TRUEX technology could be employed. Alternate separations technology for the reactor transmutation program involves pyroprocessing. This process would require a significant amount of R&D before its full-scale application can be evaluated.« less
Spatial heterogeneity of tungsten transmutation in a fusion device
NASA Astrophysics Data System (ADS)
Gilbert, M. R.; Sublet, J.-Ch.; Dudarev, S. L.
2017-04-01
Accurately quantifying the transmutation rate of tungsten (W) under neutron irradiation is a necessary requirement in the assessment of its performance as an armour material in a fusion power plant. The usual approach of calculating average responses, assuming large, homogenised material volumes, is insufficient to capture the full complexity of the transmutation picture in the context of a realistic fusion power plant design, particularly for rhenium (Re) production from W. Combined neutron transport and inventory simulations for representative spatially heterogeneous high-resolution models of a fusion power plant show that the production rate of Re is strongly influenced by the surrounding local spatial environment. Localised variation in neutron moderation (slowing down) due to structural steel and coolant, particularly water, can dramatically increase Re production because of the huge cross sections of giant resolved resonances in the neutron-capture reaction of 186W at low neutron energies. Calculations using cross section data corrected for temperature (Doppler) effects suggest that temperature may have a relatively lesser influence on transmutation rates.
Exploring Chemical Space with the Alchemical Derivatives.
Balawender, Robert; Welearegay, Meressa A; Lesiuk, Michał; De Proft, Frank; Geerlings, Paul
2013-12-10
In this paper, we verify the usefulness of the alchemical derivatives in the prediction of chemical properties. We concentrate on the stability of the transmutation products, where the term "transmutation" means the change of the nuclear charge at an atomic site at constant number of electrons. As illustrative transmutations showing the potential of the method in exploring chemical space, we present some examples of increasing complexity starting with the deprotonation, continuing with the transmutation of the nitrogen molecule, and ending with the substitution of isoelectronic B-N units for C-C units and N units for C-H units in carbocyclic systems. The basis set influence on the qualitative and quantitative accuracies of the alchemical predictions was investigated. The alchemical deprotonation energy (from the second order Taylor expansion) correlates well with the vertical deprotonation energy and can be used as a preliminary indicator for the experimental deprotonation energy. The results of calculations for the BN derivatives of benzene and pyrene show that this method has great potential for efficient and accurate scanning of chemical space.
2011-01-10
in Fig. 4, we discuss a procedure of transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The...the transmutation from the simple -particle chiral element to the conjugated gammadion chiral metamaterial. The procedure shows how the magnetic or
Merk, Bruno; Litskevich, Dzianis
2015-01-01
The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions. PMID:26717509
Merk, Bruno; Litskevich, Dzianis
2015-01-01
The German government has decided for the nuclear phase out, but a decision on a strategy for the management of the highly radioactive waste is not defined yet. Partitioning and Transmutation (P&T) could be considered as a technological option for the management of highly radioactive waste, therefore a wide study has been conducted. In the study group objectives for P&T and the boundary conditions of the phase out have been discussed. The fulfillment of the given objectives is analyzed from neutronics point of view using simulations of a molten salt reactor with fast neutron spectrum. It is shown that the efficient transmutation of all existing transuranium isotopes would be possible from neutronic point of view in a time frame of about 60 years. For this task three reactors of a mostly new technology would have to be developed and a twofold life cycle consisting of a transmuter operation and a deep burn phase would be required. A basic insight for the optimization of the time duration of the deep burn phase is given. Further on, a detailed balance of different isotopic inventories is given to allow a deeper understanding of the processes during transmutation in the molten salt fast reactor. The effect of modeling and simulation is investigated based on three different modeling strategies and two different code versions.
Neutron transmutation doped Ge bolometers
NASA Technical Reports Server (NTRS)
Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.
1983-01-01
Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.
Nuclear waste disposal utilizing a gaseous core reactor
NASA Technical Reports Server (NTRS)
Paternoster, R. R.
1975-01-01
The feasibility of a gaseous core nuclear reactor designed to produce power to also reduce the national inventories of long-lived reactor waste products through nuclear transmutation was examined. Neutron-induced transmutation of radioactive wastes is shown to be an effective means of shortening the apparent half life.
NASA Astrophysics Data System (ADS)
Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei; Liu, C. S.; Fang, Q. F.; Chen, Jun-Ling; Luo, G.-N.; Wang, Zhiguang
2013-07-01
The behaviour of helium in metals is particularly significant in fusion research due to the He-induced degradation of materials. A small amount of impurities introduced either by intentional alloying or by transmutation reactions, will interact with He and lead the microstructure and mechanical properties of materials to change. In this paper, we present the results of first-principles calculations on the interactions of He with impurities and He diffusion around them in tungsten (W), including the interstitials Be, C, N, O, and substitutional solutes Re, Ta, Tc, Nb, V, Os, Ti, Si, Zr, Y and Sc. We find that the trapping radii of interstitial atoms on He are much larger than those of substitutional solutes. The binding energies between the substitutional impurities and He increase linearly with the relative charge densities at the He occupation site, indicating that He atoms easily aggregate at the low charge density site. The sequence of diffusion energy barriers of He around the possible alloying elements is Ti > V > Os > Ta > Re. The present results suggest that Ta might be chosen as a relatively suitable alloying element compared with other possible ones.
Bowman, C.D.
1992-11-03
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Generation of Escher Arts with Dual Perception.
Lin, Shih-Syun; Morace, Charles C; Lin, Chao-Hung; Hsu, Li-Fong; Lee, Tong-Yee
2018-02-01
Escher transmutation is a graphic art that smoothly transforms one tile pattern into another tile pattern with dual perception. A classic example is the artwork called Sky and Water, in which a compelling figure-ground arrangement is applied to portray the transmutation of a bird in sky and a fish in water. The shape of a bird is progressively deformed and dissolves into the background while the background gradually reveals the shape of a fish. This paper introduces a system to create a variety of Escher-like transmutations, which includes the algorithms for initializing a tile pattern with dual figure-ground arrangement, for searching for the best matched shape of a user-specified motif from a database, and for transforming the content and shapes of tile patterns using a content-aware warping technique. The proposed system, integrating the graphic techniques of tile initialization, shape matching, and shape warping, allows users to create various Escher-like transmutations with minimal user interaction. Experimental results and conducted user studies demonstrate the feasibility and flexibility of the proposed system in Escher art generation.
Bowman, Charles D.
1992-01-01
Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.
Schott, Ryan K; Van Nynatten, Alexander; Card, Daren C; Castoe, Todd A; S W Chang, Belinda
2018-06-01
The visual systems of snakes are heavily modified relative to other squamates, a condition often thought to reflect their fossorial origins. Further modifications are seen in caenophidian snakes, where evolutionary transitions between rod and cone photoreceptors, termed photoreceptor transmutations, have occurred in many lineages. Little previous work, however, has focused on the molecular evolutionary underpinnings of these morphological changes. To address this, we sequenced seven snake eye transcriptomes and utilized new whole-genome and targeted capture sequencing data. We used these data to analyze gene loss and shifts in selection pressures in phototransduction genes that may be associated with snake evolutionary origins and photoreceptor transmutation. We identified the surprising loss of rhodopsin kinase (GRK1), despite a low degree of gene loss overall and a lack of relaxed selection early during snake evolution. These results provide some of the first evolutionary genomic corroboration for a dim-light ancestor that lacks strong fossorial adaptations. Our results also indicate that snakes with photoreceptor transmutation experienced significantly different selection pressures from other reptiles. Significant positive selection was found primarily in cone-specific genes, but not rod-specific genes, contrary to our expectations. These results reveal potential molecular adaptations associated with photoreceptor transmutation and also highlight unappreciated functional differences between rod- and cone-specific phototransduction proteins. This intriguing example of snake visual system evolution illustrates how the underlying molecular components of a complex system can be reshaped in response to changing selection pressures.
Promises and Challenges of Thorium Implementation for Transuranic Transmutation - 13550
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franceschini, F.; Lahoda, E.; Wenner, M.
2013-07-01
This paper focuses on the challenges of implementing a thorium fuel cycle for recycle and transmutation of long-lived actinide components from used nuclear fuel. A multi-stage reactor system is proposed; the first stage consists of current UO{sub 2} once-through LWRs supplying transuranic isotopes that are continuously recycled and burned in second stage reactors in either a uranium (U) or thorium (Th) carrier. The second stage reactors considered for the analysis are Reduced Moderation Pressurized Water Reactors (RMPWRs), reconfigured from current PWR core designs, and Fast Reactors (FRs) with a burner core design. While both RMPWRs and FRs can in principlemore » be employed, each reactor and associated technology has pros and cons. FRs have unmatched flexibility and transmutation efficiency. RMPWRs have higher fuel manufacturing and reprocessing requirements, but may represent a cheaper solution and the opportunity for a shorter time to licensing and deployment. All options require substantial developments in manufacturing, due to the high radiation field, and reprocessing, due to the very high actinide recovery ratio to elicit the claimed radiotoxicity reduction. Th reduces the number of transmutation reactors, and is required to enable a viable RMPWR design, but presents additional challenges on manufacturing and reprocessing. The tradeoff between the various options does not make the choice obvious. Moreover, without an overarching supporting policy in place, the costly and challenging technologies required inherently discourage industrialization of any transmutation scheme, regardless of the adoption of U or Th. (authors)« less
The Constellation-X Focal Plane Microcalorimeter Array: An NTD-Germanium Solution
NASA Technical Reports Server (NTRS)
Beeman, J.; Silver, E.; Bandler, S.; Schnopper, H.; Murray, S.; Madden, N.; Landis, D.; Haller, E. E.; Barbera, M.
2001-01-01
The hallmarks of Neutron Transmutation Doped (NTD) germanium cryogenic thermistors include high reliability, reproducibility, and long term stability of bulk carrier transport properties. Using micro-machined NTD Ge thermistors with integral 'flying' leads, we can now fabricate two-dimensional arrays that are built up from a series of stacked linear arrays. We believe that this modular approach of building, assembling, and perhaps replacing individual modules of detectors is essential to the successful fabrication and testing of large multi-element instruments. Details of construction are presented.
A history of nuclear transmutations by natural alpha particles
NASA Astrophysics Data System (ADS)
Leone, Matteo
2005-11-01
A systematic account of the use of alpha particles up to the 1930s for promoting the disintegration of atoms is here provided. As will be shown, a number of different radium family alpha sources were used in the experiments that led to the discoveries of the proton (Rutherford E 1919 Phil. Mag. 37 581-7) and neutron (Chadwick J 1932 Nature 129 312). The reasons leading to the employment of a particular alpha particle source, as well as the relationship between these sources and the available methods of recording, will be closely addressed.
ERIC Educational Resources Information Center
Ji, Qing; El-Hamdi, Nadia S.; Miljanic´, Ognjen S?.
2014-01-01
Esters are volatile and pleasantly smelling compounds, commonly used as food additives. Using Ti(OBu)[subscript 4]-catalyzed acyl exchange, we demonstrate a scent transmutation experiment, in which two fragrant esters swap their acyl and alkoxy substituents and are, during the course of a reactive distillation, quantitatively converted into two…
Industrial research for transmutation scenarios
NASA Astrophysics Data System (ADS)
Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel
2011-04-01
This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.
Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.
2013-07-01
The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in themore » Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)« less
Gas core reactors for actinide transmutation and breeder applications
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.
1978-01-01
This work consists of design power plant studies for four types of reactor systems: uranium plasma core breeder, uranium plasma core actinide transmuter, UF6 breeder and UF6 actinide transmuter. The plasma core systems can be coupled to MHD generators to obtain high efficiency electrical power generation. A 1074 MWt UF6 breeder reactor was designed with a breeding ratio of 1.002 to guard against diversion of fuel. Using molten salt technology and a superheated steam cycle, an efficiency of 39.2% was obtained for the plant and the U233 inventory in the core and heat exchangers was limited to 105 Kg. It was found that the UF6 reactor can produce high fluxes (10 to the 14th power n/sq cm-sec) necessary for efficient burnup of actinide. However, the buildup of fissile isotopes posed severe heat transfer problems. Therefore, the flux in the actinide region must be decreased with time. Consequently, only beginning-of-life conditions were considered for the power plant design. A 577 MWt UF6 actinide transmutation reactor power plant was designed to operate with 39.3% efficiency and 102 Kg of U233 in the core and heat exchanger for beginning-of-life conditions.
New Quantum Diffusion Monte Carlo Method for strong field time dependent problems
NASA Astrophysics Data System (ADS)
Kalinski, Matt
2017-04-01
We have recently formulated the Quantum Diffusion Quantum Monte Carlo (QDMC) method for the solution of the time-dependent Schrödinger equation when it is equivalent to the reaction-diffusion system coupled by the highly nonlinear potentials of the type of Shay. Here we formulate a new Time Dependent QDMC method free of the nonlinearities described by the constant stochastic process of the coupled diffusion with transmutation. As before two kinds of diffusing particles (color walkers) are considered but which can further also transmute one into the other. Each of the species undergoes the hypothetical Einstein random walk progression with transmutation. The progressed particles transmute into the particles of the other kind before contributing to or annihilating the other particles density. This fully emulates the Time Dependent Schrödinger equation for any number of quantum particles. The negative sign of the real and the imaginary parts of the wave function is handled by the ``spinor'' densities carrying the sign as the degree of freedom. We apply the method for the exact time-dependent observation of our discovered two-electron Langmuir configurations in the magnetic and circularly polarized fields.
NASA Astrophysics Data System (ADS)
Huang, Chen-Hsi; Gilbert, Mark R.; Marian, Jaime
2018-02-01
Simulations of neutron damage under fusion energy conditions must capture the effects of transmutation, both in terms of accurate chemical inventory buildup as well as the physics of the interactions between transmutation elements and irradiation defect clusters. In this work, we integrate neutronics, primary damage calculations, molecular dynamics results, Re transmutation calculations, and stochastic cluster dynamics simulations to study neutron damage in single-crystal tungsten to mimic divertor materials. To gauge the accuracy and validity of the simulations, we first study the material response under experimental conditions at the JOYO fast reactor in Japan and the High Flux Isotope Reactor at Oak Ridge National Laboratory, for which measurements of cluster densities and hardening levels up to 2 dpa exist. We then provide calculations under expected DEMO fusion conditions. Several key mechanisms involving Re atoms and defect clusters are found to govern the accumulation of irradiation damage in each case. We use established correlations to translate damage accumulation into hardening increases and compare our results to the experimental measurements. We find hardening increases in excess of 5000 MPa in all cases, which casts doubts about the integrity of W-based materials under long-term fusion exposure.
Electrochemical reduction of CerMet fuels for transmutation using surrogate CeO2-Mo pellets
NASA Astrophysics Data System (ADS)
Claux, B.; Souček, P.; Malmbeck, R.; Rodrigues, A.; Glatz, J.-P.
2017-08-01
One of the concepts chosen for the transmutation of minor actinides in Accelerator Driven Systems or fast reactors proposes the use of fuels and targets containing minor actinides oxides embedded in an inert matrix either composed of molybdenum metal (CerMet fuel) or of ceramic magnesium oxide (CerCer fuel). Since the sufficient transmutation cannot be achieved in a single step, it requires multi-recycling of the fuel including recovery of the not transmuted minor actinides. In the present work, a pyrochemical process for treatment of Mo metal inert matrix based CerMet fuels is studied, particularly the electroreduction in molten chloride salt as a head-end step required prior the main separation process. At the initial stage, different inactive pellets simulating the fuel containing CeO2 as minor actinide surrogates were examined. The main studied parameters of the process efficiency were the porosity and composition of the pellets and the process parameters as current density and passed charge. The results indicated the feasibility of the process, gave insight into its limiting parameters and defined the parameters for the future experiment on minor actinide containing material.
Transmutation of Matter in Byzantium: The Case of Michael Psellos, the Alchemist
NASA Astrophysics Data System (ADS)
Katsiampoura, Gianna
2008-06-01
There is thus nothing paradoxical about the inclusion of alchemy in the ensemble of the physical sciences nor in the preoccupation with it on the part of learned men engaged in scientific study. In the context of the Medieval model, where discourse on the physical world was ambiguous, often unclear, and lacking the support of experimental verification, the transmutation of matter, which was the subject of alchemy, even if not attended by a host of occult features, was a process that was thought to have a probable basis in reality. What is interesting in this connection is the utilization of the scientific categories of the day for discussion of transmutation of matter and the attempt to avoid, in most instances in the texts that survive, of methods reminiscent of magic.
High-temperature annealing of proton irradiated beryllium – A dilatometry-based study
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-04-07
S—200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 10 20 cm –2 peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objectivemore » was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. Here, the study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.« less
Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly
NASA Astrophysics Data System (ADS)
Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.
2018-03-01
The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.
Bhattacharyya, Nihar; Darren, Benedict; Schott, Ryan K; Tropepe, Vincent; Chang, Belinda S W
2017-07-01
Colubridae is the largest and most diverse family of snakes, with visual systems that reflect this diversity, encompassing a variety of retinal photoreceptor organizations. The transmutation theory proposed by Walls postulates that photoreceptors could evolutionarily transition between cell types in squamates, but few studies have tested this theory. Recently, evidence for transmutation and rod-like machinery in an all-cone retina has been identified in a diurnal garter snake ( Thamnophis ), and it appears that the rhodopsin gene at least may be widespread among colubrid snakes. However, functional evidence supporting transmutation beyond the existence of the rhodopsin gene remains rare. We examined the all-cone retina of another colubrid, Pituophis melanoleucus , thought to be more secretive/burrowing than Thamnophis We found that P. melanoleucus expresses two cone opsins (SWS1, LWS) and rhodopsin (RH1) within the eye. Immunohistochemistry localized rhodopsin to the outer segment of photoreceptors in the all-cone retina of the snake and all opsin genes produced functional visual pigments when expressed in vitro Consistent with other studies, we found that P. melanoleucus rhodopsin is extremely blue-shifted. Surprisingly, P. melanoleucus rhodopsin reacted with hydroxylamine, a typical cone opsin characteristic. These results support the idea that the rhodopsin-containing photoreceptors of P. melanoleucus are the products of evolutionary transmutation from rod ancestors, and suggest that this phenomenon may be widespread in colubrid snakes. We hypothesize that transmutation may be an adaptation for diurnal, brighter-light vision, which could result in increased spectral sensitivity and chromatic discrimination with the potential for colour vision. © 2017. Published by The Company of Biologists Ltd.
Summary of Research Activities. Academic Departments, 1979-1980.
1979-10-01
studied, including recycling, geologic storage, transmutation , ejection from earth, and seabed disposal. Currently, the most favored methods are...official society. (4) The poem ultimately celebrates in a sort of poetic eucharist the regenerative power of poetry to transmute the bread and wine of...Union prevails. Such a view becomes commonplace after Burr’s political enemies attack him as a Catiline, Cain, and sexual predator. Influenced by these
The Changing Nature of Warfare, the Factors Mediating Future Conflict, and Implications for SOF
2006-04-01
most commonly used vernacular today, one is describing the person’s sexual orientation.13 The English language is replete with other words that have...countries and those that are technologically more advanced, primarily due to labor cost differentials. Globaliza- tion has transmuted economics from a...fascination with forensic sci- ences, ala the acclaimed television pro- gram CSI, has transmuted from civilian criminal proceedings to microscopic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Jiang, Weilin
2014-08-28
The Vienna Ab-initio Simulation Package (VASP) is employed to calculate charge states and the formation energies of Mg, Al and Be transmutants at different lattice sites in 3C-SiC. The results provide important information on the dependence of the most stable charge state and formation energy of Mg, Al, Be and vacancies on electron potentials.
Transmutation of Nuclear Waste and the future MYRRHA Demonstrator
NASA Astrophysics Data System (ADS)
Mueller, Alex C.
2013-03-01
While a considerable and world-wide growth of the nuclear share in the global energy mix is desirable for many reasons, there are also, in particular in the "old world" major objections. These are both concerns about safety, in particular in the wake of the Fukushima nuclear accident and concerns about the long-term burden that is constituted by the radiotoxic waste from the spent fuel. With regard to the second topic, the present contribution will outline the concept of Partitioning & Transmutation (P&T), as scientific and technological answer. Deployment of P&T may use dedicated "Transmuter" or "Burner" reactors, using a fast neutron spectrum. For the transmutation of waste with a large content (up to 50%) of (very long-lived) Minor Actinides, a sub-critical reactor, using an external neutron source is a most attractive solution. It is constituted by coupling a proton accelerator, a spallation target and a subcritical core. This promising new technology is named ADS, for accelerator-driven system. The present paper aims at a short introduction into the field that has been characterized by a high collaborative activity during the last decade in Europe, in order to focus, in its later part, on the MYRRHA project as the European ADS technology demonstrator.
NASA Astrophysics Data System (ADS)
Stumpf, Harald
2017-08-01
Light leptonic magnetic monopoles were predicted by Lochak [G. Lochak, Intern. J. Theor. Phys. 24, 1019 (1985).]. Experimental indications based on nuclear transmutations were announced by Urutskoiev et al. [L. I. Urutskoiev, V. I. Liksonov, V. G. Tsinoev, Ann. Fond. L. de Broglie 27, Nr.4, 791 (2002).] and Urutskoev [L. J. Urutskoev, Ann. Fond. L. de Broglie 29, 1149 (2004).]. A theoretical interpretation of these transmutations is proposed under the assumption that light leptonic magnetic monopoles are created during spark discharges in water. The latter should be excited neutrinos according to Lochak. This hypothesis enforces the introduction of an extended Standard Model described in previous papers. The most important results of this study are (i) that multiple proton captures are responsible for the variety of transmutations and that leptonic magnetic monopoles are involved in these processes (ii) that electromagnetic duality can be established for bound states of leptonic monopoles although massive monopoles are in general unstable (iii) that criteria for the emission of leptonic magnetic monopoles and for their catalytic effect on weak decays are set up and elaborated. The study can be considered as a contribution to the efforts of Urutskoiev and Lochak to understand the reasons for accidents in power plants.
Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández
2005-09-16
Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.
NEUTRON FLUX INTENSITY DETECTION
Russell, J.T.
1964-04-21
A method of measuring the instantaneous intensity of neutron flux in the core of a nuclear reactor is described. A target gas capable of being transmuted by neutron bombardment to a product having a resonance absorption line nt a particular microwave frequency is passed through the core of the reactor. Frequency-modulated microwave energy is passed through the target gas and the attenuation of the energy due to the formation of the transmuted product is measured. (AEC)
Hydrogen bond disruption in DNA base pairs from (14)C transmutation.
Sassi, Michel; Carter, Damien J; Uberuaga, Blas P; Stanek, Christopher R; Mancera, Ricardo L; Marks, Nigel A
2014-09-04
Recent ab initio molecular dynamics simulations have shown that radioactive carbon does not normally fragment DNA bases when it decays. Motivated by this finding, density functional theory and Bader analysis have been used to quantify the effect of C → N transmutation on hydrogen bonding in DNA base pairs. We find that (14)C decay has the potential to significantly alter hydrogen bonds in a variety of ways including direct proton shuttling (thymine and cytosine), thermally activated proton shuttling (guanine), and hydrogen bond breaking (cytosine). Transmutation substantially modifies both the absolute and relative strengths of the hydrogen bonding pattern, and in two instances (adenine and cytosine), the density at the critical point indicates development of mild covalent character. Since hydrogen bonding is an important component of Watson-Crick pairing, these (14)C-induced modifications, while infrequent, may trigger errors in DNA transcription and replication.
Application of neutron transmutation doping method to initially p-type silicon material.
Kim, Myong-Seop; Kang, Ki-Doo; Park, Sang-Jun
2009-01-01
The neutron transmutation doping (NTD) method was applied to the initially p-type silicon in order to extend the NTD applications at HANARO. The relationship between the irradiation neutron fluence and the final resistivity of the initially p-type silicon material was investigated. The proportional constant between the neutron fluence and the resistivity was determined to be 2.3473x10(19)nOmegacm(-1). The deviation of the final resistivity from the target for almost all the irradiation results of the initially p-type silicon ingots was at a range from -5% to 2%. In addition, the burn-up effect of the boron impurities, the residual (32)P activity and the effect of the compensation characteristics for the initially p-type silicon were studied. Conclusively, the practical methodology to perform the neutron transmutation doping of the initially p-type silicon ingot was established.
Status of the Neutron Capture Measurement on 237Np with the DANCE Array at LANSCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esch, E.-I.; Bond, E.M.; Bredeweg, T. A.
2005-05-24
Neptunium-237 is a major constituent of spent nuclear fuel. Estimates place the amount of 237Np bound for the Yucca Mountain high-level waste repository at 40 metric tons. The Department of Energy's Advanced Fuel Cycle Initiative program is evaluating methods for transmuting the actinide waste that will be generated by future operation of commercial nuclear power plants. The critical parameter that defines the transmutation efficiency of actinide isotopes is the neutron fission-to-capture ratio for the particular isotope in a given neutron spectrum. The calculation of transmutation efficiency therefore requires accurate fission and capture cross sections. Current 237Np evaluations available for transmutermore » system studies show significant discrepancies in both the fission and capture cross sections in the energy regions of interest. Herein we report on 237Np (n,{gamma}) measurements using the recently commissioned DANCE array.« less
NASA Astrophysics Data System (ADS)
Stacey, W. M.
2009-09-01
The possibility that a tokamak D-T fusion neutron source, based on ITER physics and technology, could be used to drive sub-critical, fast-spectrum nuclear reactors fueled with the transuranics (TRU) in spent nuclear fuel discharged from conventional nuclear reactors has been investigated at Georgia Tech in a series of studies which are summarized in this paper. It is found that sub-critical operation of such fast transmutation reactors is advantageous in allowing longer fuel residence time, hence greater TRU burnup between fuel reprocessing stages, and in allowing higher TRU loading without compromising safety, relative to what could be achieved in a similar critical transmutation reactor. The required plasma and fusion technology operating parameter range of the fusion neutron source is generally within the anticipated operational range of ITER. The implications of these results for fusion development policy, if they hold up under more extensive and detailed analysis, is that a D-T fusion tokamak neutron source for a sub-critical transmutation reactor, built on the basis of the ITER operating experience, could possibly be a logical next step after ITER on the path to fusion electrical power reactors. At the same time, such an application would allow fusion to contribute to meeting the nation's energy needs at an earlier stage by helping to close the fission reactor nuclear fuel cycle.
Parity Anomaly and Spin Transmutation in Quantum Spin Hall Josephson Junctions.
Peng, Yang; Vinkler-Aviv, Yuval; Brouwer, Piet W; Glazman, Leonid I; von Oppen, Felix
2016-12-23
We study the Josephson effect in a quantum spin Hall system coupled to a localized magnetic impurity. As a consequence of the fermion parity anomaly, the spin of the combined system of impurity and spin-Hall edge alternates between half-integer and integer values when the superconducting phase difference across the junction advances by 2π. This leads to characteristic differences in the splittings of the spin multiplets by exchange coupling and single-ion anisotropy at phase differences, for which time-reversal symmetry is preserved. We discuss the resulting 8π-periodic (or Z_{4}) fractional Josephson effect in the context of recent experiments.
Design of Lead-Free Inorganic Halide Perovskites for Solar Cells via Cation-Transmutation.
Zhao, Xin-Gang; Yang, Ji-Hui; Fu, Yuhao; Yang, Dongwen; Xu, Qiaoling; Yu, Liping; Wei, Su-Huai; Zhang, Lijun
2017-02-22
Hybrid organic-inorganic halide perovskites with the prototype material of CH 3 NH 3 PbI 3 have recently attracted intense interest as low-cost and high-performance photovoltaic absorbers. Despite the high power conversion efficiency exceeding 20% achieved by their solar cells, two key issues-the poor device stabilities associated with their intrinsic material instability and the toxicity due to water-soluble Pb 2+ -need to be resolved before large-scale commercialization. Here, we address these issues by exploiting the strategy of cation-transmutation to design stable inorganic Pb-free halide perovskites for solar cells. The idea is to convert two divalent Pb 2+ ions into one monovalent M + and one trivalent M 3+ ions, forming a rich class of quaternary halides in double-perovskite structure. We find through first-principles calculations this class of materials have good phase stability against decomposition and wide-range tunable optoelectronic properties. With photovoltaic-functionality-directed materials screening, we identify 11 optimal materials with intrinsic thermodynamic stability, suitable band gaps, small carrier effective masses, and low excitons binding energies as promising candidates to replace Pb-based photovoltaic absorbers in perovskite solar cells. The chemical trends of phase stabilities and electronic properties are also established for this class of materials, offering useful guidance for the development of perovskite solar cells fabricated with them.
NASA Astrophysics Data System (ADS)
Wen, Xiao-Gang
2017-05-01
We propose a generic construction of exactly soluble local bosonic models that realize various topological orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a (3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory beyond the twisted gauge theory.
Transuranic inventory reduction in repository by partitioning and transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, C.H.; Kazimi, M.S.
1992-01-01
The promise of a new reprocessing technology and the issuance of Environmental Protection Agency (EPA) and U.S. Nuclear Regulatory Commission regulations concerning a geologic repository rekindle the interest in partitioning and transmutation of transuranic (TRU) elements from discharged reactor fuel as a high level waste management option. This paper investigates the TRU repository inventory reduction capability of the proposed advanced liquid metal reactors (ALMRs) and integral fast reactors (IFRs) as well as the plutonium recycled light water reactors (LWRs).
Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications
NASA Technical Reports Server (NTRS)
Haller, E. E.; Itoh, K. M.; Beeman, J. W.
1996-01-01
Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.
Spallation reaction study for the long-lived fission product 107Pd
NASA Astrophysics Data System (ADS)
Wang, He; Otsu, Hideaki; Sakurai, Hiroyoshi; Ahn, DeukSoon; Aikawa, Masayuki; Ando, Takashi; Araki, Shouhei; Chen, Sidong; Nobuyuki, Chiga; Doornenbal, Pieter; Fukuda, Naoki; Isobe, Tadaaki; Kawakami, Shunsuke; Kawase, Shoichiro; Kin, Tadahiro; Kondo, Yosuke; Koyama, Shunpei; Kubono, Shigeru; Maeda, Yukie; Makinaga, Ayano; Matsushita, Masafumi; Matsuzaki, Teiichiro; Michimasa, Shin'ichiro; Momiyama, Satoru; Nagamine, Shunsuke; Nakamura, Takashi; Nakano, Keita; Niikura, Megumi; Ozaki, Tomoyuki; Saito, Atsumi; Saito, Takeshi; Shiga, Yoshiaki; Shikata, Mizuki; Shimizu, Yohei; Shimoura, Susumu; Sumikama, Toshiyuki; Söderström, Pär-Anders; Suzuki, Hiroshi; Takeda, Hiroyuki; Takeuchi, Satoshi; Taniuchi, Ryo; Togano, Yasuhiro; Tsubota, Junichi; Uesaka, Meiko; Watanabe, Yasushi; Watanabe, Yukinobu; Wimmer, Kathrin; Yamamoto, Tatsuya; Yoshida, Koichi
2017-02-01
Spallation reactions for the long-lived fission product 107Pd have been studied for the purpose of nuclear waste transmutation. The cross sections on the proton- and deuteron-induced spallation were obtained at 196 and 118 MeV/nucleon in inverse kinematics at the RIKEN Radioactive Isotope Beam Factory. Both the target and energy dependences of cross sections have been investigated systematically. It was found that the proton-induced cross sections at 196 MeV/nucleon are close to those for deuteron obtained at 118 MeV/nucleon for the light-mass products. The experimental data are compared with the SPACS semi-empirical parameterization and the PHITS calculations including both the intranuclear cascade and evaporation processes. Our data give a design goal of proton/deuteron flux for the transmutation of 107Pd using the spallation reaction. In addition, it is found that the spallation reaction at 118 MeV/nucleon may have an advantage over the 107Pd transmutation because of the low production of other long-lived radioactive isotopes.
Analyses of transients for an 800 MW-class accelerator driven transmuter with fertile-free fuels
NASA Astrophysics Data System (ADS)
Maschek, Werner; Suzuki, Tohru; Chen, Xue-Nong; Rineiski, Andrei; Matzerath Boccaccini, Claudia; Mori, Magnus; Morita, Koji
2006-06-01
In the FUTURE Program, the development and application of fertile-free fuels for Accelerator Driven Transmuters (ADTs) has been advanced. To assess the reactor performance and safety behavior of an ADT with so-called dedicated fuels, various transient cases for an 800 MW-class Pb/Bi-cooled ADT were investigated using the SIMMER-III code. The FUTURE ADT also served as vehicle to develop and test ideas on a safety concept for such transmuters. After an extensive ranking procedure, a CERCER fuel with an MgO matrix and a CERMET fuel with a Mo-92 matrix were chosen. The transient scenarios shown here are: spurious beam trip (BT), unprotected loss of flow (ULOF) and unprotected blockage accident (UBA). Since the release of fission gas and helium after cladding failure could induce a significant positive reactivity, the gas-blowdown was investigated for the transient scenarios. The present analyses showed that power excursions could be avoided by the fuel sweep-out from the core under severe accident conditions.
International programs related to the transmutation of transuranics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, C.
1991-04-01
This report is an account of current programs outside the U.S. relating to the transmutation of transuranics. This work was performed under contract to EPRI. The investigation was based on literature surveys, personal discussions, and visits to European research establishments that are currently active in the area. Research in actinide (uranium plus transuranics) partitioning and transmutation (P-T) is actively promoted in Japan, where the largest program in research on P-T is currently underway; however, following years of relative inactivity, the concept is being revisited elsewhere. Additionally, a significant amount of research in reprocessing and advanced reactors has produced results withmore » interesting possibilities for P-T. Foreign research activities relevant to actinide burning is presented in two sections: foreign national programs, and international programs and working groups. In order to provide the reader with an ability to assess the motivators for or against development of P-T, background on political and institutional trends relating to nuclear waste management is also provided. 38 refs., 17 figs.« less
Preliminary Analysis of High-Flux RSG-GAS to Transmute Am-241 of PWR’s Spent Fuel in Asian Region
NASA Astrophysics Data System (ADS)
Budi Setiawan, M.; Kuntjoro, S.
2018-02-01
A preliminary study of minor actinides (MA) transmutation in the high flux profile RSG-GAS research reactor was performed, aiming at an optimal transmutation loading for present nuclear energy development. The MA selected in the analysis includes Am-241 discharged from pressurized water reactors (PWRs) in Asian region. Until recently, studies have been undertaken in various methods to reduce radiotoxicity from actinides in high-level waste. From the cell calculation using computer code SRAC2006, it is obtained that the target Am-241 which has a cross section of the thermal energy absorption in the region (group 8) is relatively large; it will be easily burned in the RSG-GAS reactor. Minor actinides of Am-241 which can be inserted in the fuel (B/T fuel) is 2.5 kg which is equivalent to Am-241 resulted from the partition of spent fuel from 2 units power reactors PWR with power 1000MW(th) operated for one year.
Rosenbaum, M B; Girotti, L A; Lázzari, J O; Halpern, M S; Elizari, M V
1982-01-01
In five cases of anteroseptal myocardial infarction complicated by intermittent right bundle-branch block, the onset of right bundle-branch block provoked the appearance of abnormal Q waves in leads V1 and V2, whereas a small initial R wave was present in the same leads during normal conduction. The intermittency of the conduction disturbance indicated that the Q waves were "right bundle-branch block dependent". It was also apparent that right bundle-branch block shifted the electrical location of the infarct towards the right, and made it look much larger. Right bundle-branch block dependent Q waves may arise during the acute stage of an anterior infarct suggesting, fallaciously, that an acute extension has occurred, or during the chronic stage, leading to the erroneous supposition that a new infarct had developed. The abnormal Q waves anteroseptal infarction complicated by fixed right bundle-branch block, though obviously related to the infarct, may be dependent on the right bundle-branch block. PMID:7059400
IAEA activities in the area of partitioning and transmutation
NASA Astrophysics Data System (ADS)
Stanculescu, Alexander
2006-06-01
Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural resources and waste management. IAEA's activities in the area of Partitioning and Transmutation (P&T) are mostly in response to the latter. While not involving the large quantities of gaseous products and toxic solid wastes associated with fossil fuels, radioactive waste disposal is today's dominant public acceptance issue. In fact, small waste quantities permit a rigorous confinement strategy, and mined geological disposal is the strategy followed by some countries. Nevertheless, political opposition arguing that this does not yet constitute a safe disposal technology has largely stalled these efforts. One of the primary reasons cited is the long life of many of the radioisotopes generated from fission. This concern has led to increased R&D efforts to develop a technology aimed at reducing the amount and radio-toxicity of long-lived radioactive waste through transmutation in fission reactors or sub-critical systems. In the frame of the Project on Technology Advances in Fast Reactors and Accelerator-Driven Systems (ADS), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long-lived radioactive waste, ADS, and deuterium-tritium plasma-driven sub-critical systems. The paper presents past accomplishments, current status and planned activities of this IAEA project.
Accelerator-driven Transmutation of Waste
NASA Astrophysics Data System (ADS)
Venneri, Francesco
1998-04-01
Nuclear waste from commercial power plants contains large quantities of plutonium, other fissionable actinides, and long-lived fission products that are potential proliferation concerns and create challenges for the long-term storage. Different strategies for dealing with nuclear waste are being followed by various countries because of their geologic situations and their views on nuclear energy, reprocessing and non-proliferation. The current United States policy is to store unprocessed spent reactor fuel in a geologic repository. Other countries are opting for treatment of nuclear waste, including partial utilization of the fissile material contained in the spent fuel, prior to geologic storage. Long-term uncertainties are hampering the acceptability and eventual licensing of a geologic repository for nuclear spent fuel in the US, and driving up its cost. The greatest concerns are with the potential for radiation release and exposure from the spent fuel for tens of thousands of years and the possible diversion and use of the actinides contained in the waste for weapons construction. Taking advantage of the recent breakthroughs in accelerator technology and of the natural flexibility of subcritical systems, the Accelerator-driven Transmutation of Waste (ATW) concept offers the United States and other countries the possibility to greatly reduce plutonium, higher actinides and environmentally hazardous fission products from the waste stream destined for permanent storage. ATW does not eliminate the need for, but instead enhances the viability of permanent waste repositories. Far from being limited to waste destruction, the ATW concept also brings to the table new technologies that could be relevant for next-generation power producing reactors. In the ATW concept, spent fuel would be shipped to the ATW site where the plutonium, transuranics and selected long-lived fission products would be destroyed by fission or transmutation in their first and only pass through the facility, using an accelerator-driven subcritical burner cooled by liquid lead/bismuth and limited pyrochemical treatment of the spent fuel and residual waste. This approach contrasts with the present-day practices of aqueous reprocessing (Europe and Japan), in which high purity plutonium is produced and used in the fabrication of fresh mixed oxide fuel (MOX) that is shipped off-site for use in light water reactors.
Development and fabrication of a high current, fast recovery power diode
NASA Technical Reports Server (NTRS)
Berman, A. H.; Balodis, V.; Devance, D. C.; Gaugh, C. E.; Karlsson, E. A.
1983-01-01
A high voltage (VR = 1200 V), high current (IF = 150 A), fast recovery ( 700 ns) and low forward voltage drop ( 1.5 V) silicon rectifier was designed and the process developed for its fabrication. For maximum purity, uniformity and material characteristic stability, neutron transmutation n-type doped float zone silicon is used. The design features a hexagonal chip for maximum area utilization of space available in the DO-8 diode package, PIN diffused junction structure with deep diffused D(+) anode and a shallow high concentration n(+) cathode. With the high temperature glass passivated positive bevel mesa junction termination, the achieved blocking voltage is close to the theoretical limit of the starting material. Gold diffusion is used to control the lifetime and the resulting effect on switching speed and forward voltage tradeoff. For solder reflow assembly, trimetal (Al-Ti-Ni) contacts are used. The required major device electrical characteristics were achieved. Due to the tradeoff nature of forward voltage drop and reverse recovery time, a compromise was reached for these values.
Short-term static corrosion tests in lead-bismuth
NASA Astrophysics Data System (ADS)
Soler Crespo, L.; Martín Muñoz, F. J.; Gómez Briceño, D.
2001-07-01
Martensitic steels have been proposed to be used as structural materials and as spallation target window in hybrid systems devoted to the transmutation of radioactive waste of long life and high activity. However, their compatibility with lead-bismuth in the operating conditions of these systems depends on the existence of a protective layer such as an oxide film. The feasibility of forming and maintaining an oxide layer or maintaining a pre-oxidised one has been studied. Martensitic steel F82Hmod. (8% Cr) has been tested in lead-bismuth under static and isothermal conditions at 400°C and 600°C. In order to study the first stages of the interaction between the steel and the eutectic, short-term tests (100 and 665 h) have been carried out. Pre-oxidised and as-received samples have been tested in atmospheres with different oxidant potential. For low oxygen concentration in lead-bismuth due to unexpected oxygen consumption in the experimental device, dissolution of as-received F82Hmod. occurs and pre-oxidation does not prevent the material dissolution. For high oxygen concentration, the pre-oxidation layer seems to improve the feasibility of protecting stainless steels controlling the oxygen potential of lead-bismuth with a gas phase.
Radiogenic lead as coolant, reflector and moderator in advanced fast reactors
NASA Astrophysics Data System (ADS)
Kulikov, E. G.
2017-01-01
Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.
II. Inhibited Diffusion Driven Surface Transmutations
NASA Astrophysics Data System (ADS)
Chubb, Talbot A.
2006-02-01
This paper is the second of a set of three papers dealing with the role of coherent partitioning as a common element in Low Energy Nuclear Reactions (LENR), by which is meant cold-fusion related processes. This paper discusses the first step in a sequence of four steps that seem to be necessary to explain Iwamura 2-α-addition surface transmutations. Three concepts are examined: salt-metal interface states, sequential tunneling that transitions D+ ions from localized interstitial to Bloch form, and the general applicability of 2-dimensional vs. 3-dimensional symmetry hosting networks.
Transmutation of skyrmions to half-solitons driven by the nonlinear optical spin Hall effect.
Flayac, H; Solnyshkov, D D; Shelykh, I A; Malpuech, G
2013-01-04
We show that the spin domains, generated in the linear optical spin Hall effect by the analog of spin-orbit interaction for exciton polaritons, are associated with the formation of a Skyrmion lattice. In the nonlinear regime, the spin anisotropy of the polariton-polariton interactions results in a spatial compression of the domains and in a transmutation of the Skyrmions into oblique half-solitons. This phase transition is associated with both the focusing of the spin currents and the emergence of a strongly anisotropic emission pattern.
Infrared bolometers with silicon nitride micromesh absorbers
NASA Technical Reports Server (NTRS)
Bock, J. J.; Turner, A. D.; DelCastillo, H. M.; Beeman, J. W.; Lange, A. E.; Mauskopf, P. D.
1996-01-01
Sensitive far infrared and millimeter wave bolometers fabricated from a freestanding membrane of low stress silicon nitride are reported. The absorber, consisting of a metallized silicon nitride micromesh thermally isolated by radial legs of silicon nitride, is placed in an integrating cavity to efficiently couple to single mode or multiple mode infrared radiation. This structure provides low heat capacity, low thermal conduction and minimal cross section to energetic particles. A neutron transmutation doped Ge thermister is bump bonded to the center of the device and read out with evaporated Cr-Au leads. The limiting performance of the micromesh absorber is discussed and the recent results obtained from a 300 mK cold stage are summarized.
An active target for the accelerator-based transmutation system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grebyonkin, K.F.
1995-10-01
Consideration is given to the possibility of radical reduction in power requirements to the proton accelerator of the electronuclear reactor due to neutron multiplication both in the blanket and the target of an active material. The target is supposed to have the fast-neutron spectrum, and the blanket-the thermal one. The blanket and the target are separated by the thermal neutrons absorber, which is responsible for the neutron decoupling of the active target and blanket. Also made are preliminary estimations which illustrate that the realization of the idea under consideration can lead to significant reduction in power requirements to the protonmore » beam and, hence considerably improve economic characteristics of the electronuclear reactor.« less
New Insight into Nuclear Reactions in Solids
NASA Astrophysics Data System (ADS)
Miley, George H.
2003-04-01
Earlier work by the author disclosed evidence for nuclear transmutations in multi-layer thin-film Ni/Pd electrodes loaded to a high ratio of hydrogen/film metal using an electrolytic technique [1]. Non-natural isotopes abundances were found for select products. A distinctive characteristic of this and similar experiments by others is a product yield curve vs. mass with four high yield peaks distributed between low and high masses. Attempts to explain this observation have evolved around the original swimming electron layer (SEL) theory [2]. In addition, CR-39 track detector measurements have revealed low-level emission of 1.6 MeV protons and 16 MeV alpha particles from the front face of the thin film electrodes during runs [3]. Most recently Mitsubishi Corp. researchers have reported a real-time transmutation measurement using built-in XPS diagnostics where a surface layer of Sr-88 was transmuted into Mo-96 over a 200 hour run period during the diffusion of deuterium through a multi-layer thin-film Pd/CaO substrate [4]. Likewise in a companion experiment, Cs-133 was transmuted into Pr-141. These products exhibit a large deviation from natural isotopic abundance, and the characteristic signature is a mass change of 8 and charge change of 4. These various phenomena along with a preliminary theory involving SEL and orbital mixing will be presented. The objective is to provide a unified understanding of both types of experiments presented in Refs. 1 and 3. [1] G.H. Miley and J. A. Patterson, "Nuclear Transmutations in Thin-Film Nickel Coatings Undergoing Electrolysis," J. New Energy, 1, 3, 5-30 (1996). [2] H. Hora, et al., "Screening in Cold Fusion Derived from D D Reactions," Physics Ltrs. A, 175, 138-143, (1993). [3] A. Lipson, et al., "In-situ long - range alpha particles and X-ray detection in Pd thin film-cathodes during electrolysis in, Li2SO4/H2O, Bult. APS, 47, 1,Pt. II, 1219, Indianapolis, (2002). [4] Y. Iwamura, T. Itoh, et al., "Low energy nuclear reaction induced by D gas permeation through multilayer film," Japanese J. Physics, 41, pt. 1, 7A, 4642, (2002).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Wilson, Paul P. H.
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
Biondo, Elliott D.; Wilson, Paul P. H.
2017-05-08
In fusion energy systems (FES) neutrons born from burning plasma activate system components. The photon dose rate after shutdown from resulting radionuclides must be quantified. This shutdown dose rate (SDR) is calculated by coupling neutron transport, activation analysis, and photon transport. The size, complexity, and attenuating configuration of FES motivate the use of hybrid Monte Carlo (MC)/deterministic neutron transport. The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method can be used to optimize MC neutron transport for coupled multiphysics problems, including SDR analysis, using deterministic estimates of adjoint flux distributions. When used for SDR analysis, MS-CADIS requires the formulation ofmore » an adjoint neutron source that approximates the transmutation process. In this work, transmutation approximations are used to derive a solution for this adjoint neutron source. It is shown that these approximations are reasonably met for typical FES neutron spectra and materials over a range of irradiation scenarios. When these approximations are met, the Groupwise Transmutation (GT)-CADIS method, proposed here, can be used effectively. GT-CADIS is an implementation of the MS-CADIS method for SDR analysis that uses a series of single-energy-group irradiations to calculate the adjoint neutron source. For a simple SDR problem, GT-CADIS provides speedups of 200 100 relative to global variance reduction with the Forward-Weighted (FW)-CADIS method and 9 ± 5 • 104 relative to analog. As a result, this work shows that GT-CADIS is broadly applicable to FES problems and will significantly reduce the computational resources necessary for SDR analysis.« less
NASA Astrophysics Data System (ADS)
Kooyman, Timothée; Buiron, Laurent; Rimpault, Gerald
2018-05-01
In the heterogeneous minor actinides transmutation approach, the nuclei to be transmuted are loaded in dedicated targets often located at the core periphery, so that long-lived heavy nuclides are turned into shorter-lived fission products by fission. To compensate for low flux level at the core periphery, the minor actinides content in the targets is set relatively high (around 20 at.%), which has a negative impact on the reprocessing of the targets due to their important decay heat level. After a complete analysis of the main contributors to the heat load of the irradiated targets, it is shown here that the choice of the reprocessing order of the various feeds of americium from the fuel cycle depends on the actual limit for fuel reprocessing. If reprocessing of hot targets is possible, it is more interesting to reprocess first the americium feed with a high 243Am content in order to limit the total cooling time of the targets, while if reprocessing of targets is limited by their decay heat, it is more interesting to wait for an increase in the 241Am content before loading the americium in the core. An optimization of the reprocessing order appears to lead to a decrease of the total cooling time by 15 years compared to a situation where all the americium feeds are mixed together when two feeds from SFR are considered with a high reprocessing limit.
NASA Astrophysics Data System (ADS)
Castin, N.; Bonny, G.; Bakaev, A.; Ortiz, C. J.; Sand, A. E.; Terentyev, D.
2018-03-01
We upgrade our object kinetic Monte Carlo (OKMC) model, aimed at describing the microstructural evolution in tungsten (W) under neutron and ion irradiation. Two main improvements are proposed based on recently published atomistic data: (a) interstitial carbon impurities, and their interaction with radiation-induced defects (point defect clusters and loops), are more accurately parameterized thanks to ab initio findings; (b) W transmutation to rhenium (Re) upon neutron irradiation, impacting the diffusivity of radiation defects, is included, also relying on recent atomistic data. These essential amendments highly improve the portability of our OKMC model, providing a description for the formation of SIA-type loops under different irradiation conditions. The model is applied to simulate neutron and ion irradiation in pure W samples, in a wide range of fluxes and temperatures. We demonstrate that it performs a realistic prediction of the population of TEM-visible voids and loops, as compared to experimental evidence. The impact of the transmutation of W to Re, and of carbon trapping, is assessed.
Georgia Institute of Technology research on the Gas Core Actinide Transmutation Reactor (GCATR)
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.; Schneider, A.; Hohl, F.
1976-01-01
The program reviewed is a study of the feasibility, design, and optimization of the GCATR. The program is designed to take advantage of initial results and to continue work carried out on the Gas Core Breeder Reactor. The program complements NASA's program of developing UF6 fueled cavity reactors for power, nuclear pumped lasers, and other advanced technology applications. The program comprises: (1) General Studies--Parametric survey calculations performed to examine the effects of reactor spectrum and flux level on the actinide transmutation for GCATR conditions. The sensitivity of the results to neutron cross sections are to be assessed. Specifically, the parametric calculations of the actinide transmutation are to include the mass, isotope composition, fission and capture rates, reactivity effects, and neutron activity of recycled actinides. (2) GCATR Design Studies--This task is a major thrust of the proposed research program. Several subtasks are considered: optimization criteria studies of the blanket and fuel reprocessing, the actinide insertion and recirculation system, and the system integration. A brief review of the background of the GCATR and ongoing research is presented.
Potential benefits of waste transmutation to the U.S. high-level waste respository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, G.E.
1995-10-01
This paper reexamines the potential benefits of waste transmutation to the proposed U.S. geologic repository at the Yucca Mountain site based on recent progress in the performance assessment for the Yucca Mountain base case of spent fuel emplacement. It is observed that actinides are assumed to have higher solubility than in previous studies and that Np and other actinides now dominate the projected aqueous releases from a Yucca Mountain repository. Actinides are also indentified as the dominant source of decay heat in the repository, and the effect of decay heat in perturbing the hydrology, geochemistry, and thermal characteristics of Yuccamore » Mountain are reviewed. It is concluded that the potential for thermally-driven, buoyant, gas-phase flow at Yucca Mountain introduces data and modeling requirements that will increase the costs of licensing the site and may cause the site to be unattractive for geologic disposal of wastes. A transmutation-enabled cold repository is proposed that might allow licensing of a repository to be based upon currently observable characteristics of the Yucca Mountain site.« less
["Habitual" left branch block alternating with 2 "disguised" bracnch block].
Lévy, S; Jullien, G; Mathieu, P; Mostefa, S; Gérard, R
1976-10-01
Two cases of alternating left bundle branch block and "masquerading block" (with left bundle branch morphology in the stnadard leads and right bundle branch block morphology in the precordial leads) were studied by serial tracings and his bundle electrocardiography. In case 1 "the masquerading" block was associated with a first degree AV block related to a prolongation of HV interval. This case is to our knowledge the first cas of alternating bundle branch block in which his bundle activity was recorded in man. In case 2, the patient had atrial fibrilation and His bundle recordings were performed while differents degrees of left bundle branch block were present: The mechanism of the alternation and the concept of "masquerading" block are discussed. It is suggested that this type of block represents a right bundle branch block associated with severe lesions of the "left system".
Fogedby, Hans C
2003-08-01
Using the previously developed canonical phase space approach applied to the noisy Burgers equation in one dimension, we discuss in detail the growth morphology in terms of nonlinear soliton modes and superimposed linear modes. We moreover analyze the non-Hermitian character of the linear mode spectrum and the associated dynamical pinning, and mode transmutation from diffusive to propagating behavior induced by the solitons. We discuss the anomalous diffusion of growth modes, switching and pathways, correlations in the multisoliton sector, and in detail the correlations and scaling properties in the two-soliton sector.
Neutron-transmutation-doped germanium bolometers
NASA Technical Reports Server (NTRS)
Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.
1983-01-01
Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.
Dimensional Transmutation by Monopole Condensation in QCD
NASA Astrophysics Data System (ADS)
Cho, Y. M.
2015-01-01
The dimensional transmutation by the monopole condensation in QCD is reviewed. Using Abelian projection of the gauge potential which projects out the monopole potential gauge independently, we we show that there are two types of gluons: the color neutral binding gluons which plays the role of the confining agent and the colored valence gluons which become confined prisoners. With this we calculate the one-loop QCD effective potential and show the monopole condensation becomes the true vacuum of QCD. We propose to test the existence of two types of gluons experimentally by re-analyzing the existing gluon jets data.
DE Caluwé, Eva; VAN DE Bruaene, Alexander; Willems, Rik; Troost, Els; Gewillig, Marc; Rega, Filip; Budts, Werner
2016-09-01
Children from mothers with systemic lupus erythematosus are frequently born with congenital heart block. This study aimed at evaluating long-term outcome because long-term data are scarce. In the database of pediatric and congenital heart disease (University Hospitals Leuven), 19 children from systemic lupus erythematosus mothers and who were born with or developed atrioventricular block were identified. All records were reviewed for disease course and outcome. Median follow-up time was 7 years (interquartile ranges [IQR] 4.5-13 years). One child had no heart block at birth and developed only a first-degree block during follow-up. One had a second-degree heart block and developed a complete heart block. Seventeen patients (89%) were born with a complete heart block. Seventeen patients (89%) needed a definitive pacemaker. In all, epicardial leads were used at first implantation. Eighty-two percent received their pacemaker in the first year of life. The first battery had a median lifetime of 5 years (IQR 3.5-5 years), the second 6 years (IQR 4.5-6.3 years), and the third 5 years (IQR 5-6 years). Note that 47% of patients needed a lead replacement due to lead problems. Only one pericardial tamponade after pacemaker implantation. No device or lead infections occurred. The left ventricular systolic function at latest follow-up was normal for all. No patients died. In children with heart block born from systemic lupus erythematosus mothers, an early need for pacemaker implantation was documented. The overall battery life was acceptable, but there was a high need for lead replacement. Complication rate was low. Late outcome was good. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sobolev, V.; Uyttenhove, W.; Thetford, R.; Maschek, W.
2011-07-01
The neutronic and thermomechanical performances of two composite fuel systems: CERCER with (Pu,Np,Am,Cm)O 2-x fuel particles in ceramic MgO matrix and CERMET with metallic Mo matrix, selected for transmutation of minor actinides in the European Facility for Industrial Transmutation (EFIT), were analysed aiming at their optimisation. The ALEPH burnup code system, based on MNCPX and ORIGEN codes and JEFF3.1 nuclear data library, and the modern version of the fuel rod performance code TRAFIC were used for this analysis. Because experimental data on the properties of the mixed minor-actinide oxides are scarce, and the in-reactor behaviour of the T91 steel chosen as cladding, as well as of the corrosion protective layer, is still not well-known, a set of "best estimates" provided the properties used in the code. The obtained results indicate that both fuel candidates, CERCER and CERMET, can satisfy the fuel design and safety criteria of EFIT. The residence time for both types of fuel elements can reach about 5 years with the reactivity swing within ±1000 pcm, and about 22% of the loaded MA is transmuted during this period. However, the fuel centreline temperature in the hottest CERCER fuel rod is close to the temperature above which MgO matrix becomes chemically instable. Moreover, a weak PCMI can appear in about 3 years of operation. The CERMET fuel can provide larger safety margins: the fuel temperature is more than 1000 K below the permitted level of 2380 K and the pellet-cladding gap remains open until the end of operation.
NASA Astrophysics Data System (ADS)
Kooymana, Timothée; Buiron, Laurent; Rimpault, Gérald
2017-09-01
Heterogeneous loading of minor actinides in radial blankets is a potential solution to implement minor actinides transmutation in fast reactors. However, to compensate for the lower flux level experienced by the blankets, the fraction of minor actinides to be loaded in the blankets must be increased to maintain acceptable performances. This severely increases the decay heat and neutron source of the blanket assemblies, both before and after irradiation, by more than an order of magnitude in the case of neutron source for instance. We propose here to implement an optimization methodology of the blankets design with regards to various parameters such as the local spectrum or the mass to be loaded, with the objective of minimizing the final neutron source of the spent assembly while maximizing the transmutation performances of the blankets. In a first stage, an analysis of the various contributors to long and short term neutron and gamma source is carried out while in a second stage, relevant estimators are designed for use in the effective optimization process, which is done in the last step. A comparison with core calculations is finally done for completeness and validation purposes. It is found that the use of a moderated spectrum in the blankets can be beneficial in terms of final neutron and gamma source without impacting minor actinides transmutation performances compared to more energetic spectrum that could be achieved using metallic fuel for instance. It is also confirmed that, if possible, the use of hydrides as moderating material in the blankets is a promising option to limit the total minor actinides inventory in the fuel cycle. If not, it appears that focus should be put upon an increased residence time for the blankets rather than an increase in the acceptable neutron source for handling and reprocessing.
Irradiation tests of ITER candidate Hall sensors using two types of neutron spectra.
Ďuran, I; Bolshakova, I; Viererbl, L; Sentkerestiová, J; Holyaka, R; Lahodová, Z; Bém, P
2010-10-01
We report on irradiation tests of InSb based Hall sensors at two irradiation facilities with two distinct types of neutron spectra. One was a fission reactor neutron spectrum with a significant presence of thermal neutrons, while another one was purely fast neutron field. Total neutron fluence of the order of 10(16) cm(-2) was accumulated in both cases, leading to significant drop of Hall sensor sensitivity in case of fission reactor spectrum, while stable performance was observed at purely fast neutron spectrum. This finding suggests that performance of this particular type of Hall sensors is governed dominantly by transmutation. Additionally, it further stresses the need to test ITER candidate Hall sensors under neutron flux with ITER relevant spectrum.
Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.S.
2002-03-13
The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analoguemore » of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.« less
Studies on Materials for Heavy-Liquid-Metal-Cooled Reactors in Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minoru Takahashi; Masayuki Igashira; Toru Obara
2002-07-01
Recent studies on materials for the development of lead-bismuth (Pb-Bi)-cooled fast reactors (FR) and accelerator-driven sub-critical systems (ADS) in Japan are reported. The measurement of the neutron cross section of Bi to produce {sup 210}Po, the removal experiment of Po contamination and steel corrosion test in Pb-Bi flow were performed in Tokyo Institute of Technology. A target material corrosion test was performed in the project of Transmutation Experimental Facility for ADS in Japan Atomic Energy Research Institute (JAERI). Steel corrosion test was started in Mitsui Engineering and Shipbuilding Co., LTD (MES). The feasibility study for FR cycle performed in Japanmore » Nuclear Cycle Institute (JNC) are described. (authors)« less
Production of Ac-225 for cancer therapy by photon-induced transmutation of Ra-226.
Melville, G; Meriarty, H; Metcalfe, P; Knittel, T; Allen, B J
2007-09-01
The increasing application of Ac-225 for cancer therapy indicates the potential need for its increased production and availability. The production of Ac-225 has been achieved using bremsstrahlung photons from an 18 MV medical linear accelerator (linac) to bombard a Ra-226 target. A linac dose of 2800 Gy produced about 64 microCi of Ra-225, which decays to Ac-225. This result, while consistent with the theoretical calculations, is far too low to be of practical use. A more powerful linac is required that runs at a higher current, longer pulse length and higher frequency for practical production. This process could also lead to the reduction of the nuclear waste product Ra-226.
NASA Technical Reports Server (NTRS)
Woosley, S. E.; Hartmann, D. H.; Hoffman, R. D.; Haxton, W. C.
1990-01-01
As the core of a massive star collapses to form a neutron star, the flux of neutrinos in the overlying shells of heavy elements becomes so great that, despite the small cross section, substantial nuclear transmutation is induced. Neutrinos excite heavy elements and even helium to particle unbound levels. The evaporation of a single neutron or proton, and the back reaction of these nucleons on other species present, significantly alters the outcome of traditional nucleosynthesis calculations leading to a new process: nu-nucleosynthesis. Modifications to traditional hydrostatic and explosive varieties of helium, carbon, neon, oxygen, and silicon burning are considered. The results show that a large number of rare isotopes, including many of the odd-Z nuclei from boron through copper, owe much of their present abundance in nature to this process.
Thermal detectors as single photon X-ray spectrometers
NASA Technical Reports Server (NTRS)
Moseley, S. H.; Kelley, R. L.; Mather, J. C.; Mushotzky, R. F.; Szymkowiak, A. E.; Mccammon, D.
1985-01-01
In a thermal detector employed for X-ray spectroscopy applications, the energy of an X-ray is converted to heat in a small mass, and the energy of that X-ray inferred from the size of the temperature rise. The present investigation is concerned with the possibility to make an extremely low heat capacity calorimeter which can be employed as a thermal detector. Several types of calorimeters were fabricated and tested at temperatures as low as approximately 0.05 K. The obtained devices make use of thermistors constructed of melt-doped silicon, nuclear transmutation doped (NTD) germanium, and ion-implanted silicon with a variety of materials for the support and electrical leads. The utility of these microcalorimeters as X-ray spectrometers could be verified.
Right bundle branch block and anterior wall ST elevation myocardial infarction.
Trofin, Monica; Israel, Carsten W; Barold, S Serge
2017-09-01
We report the case of an acute anterior wall ST elevation myocardial infarction with new left anterior fascicular block and pre-existing right bundle branch block. Due to a wide right bundle branch block, no ST segment elevation was visible in lead V1. The left anterior fascicular block was caused by proximal occlusion of the left artery descending and disappeared after acute revascularization. However, also the R' of the right bundle branch block became significantly shorter after revascularization, dismanteling a minor ST segment elevation. The ST elevation in lead V1 in anterior wall infarction and right bundle branch block may merge with the R' and cause a further QRS widening as an "equivalent" to the ST elevation.
Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, Fariz Abdul; Lee, John C.; Franceschini, Fausto
2012-07-01
As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning themore » legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and burn TRU in a thermal spectrum, while satisfying top-level operational and safety constraints. Various assembly designs have been proposed to assess the TRU burning potential of Th-based fuel in PWRs. In addition to typical homogeneous loading patterns, heterogeneous configurations exploiting the breeding potential of thorium to enable multiple cycles of TRU irradiation and burning have been devised. The homogeneous assembly design, with all pins featuring TRU in Th, has the benefit of a simple loading pattern and the highest rate of TRU transmutation, but it can be used only for a few cycles due to the rapid rise in the TRU content of the recycled fuel, which challenges reactivity control, safety coefficients and fuel handling. Due to its simple loading pattern, such assembly design can be used as the first step of Th implementation, achieving up to 3 times larger TRU transmutation rate than conventional U-MOX, assuming same fraction of MOX assemblies in the core. As the next step in thorium implementation, heterogeneous assemblies featuring a mixed array of Th-U and Th-U-TRU pins, where the U is in-bred from Th, have been proposed. These designs have the potential to enable burning an external supply of TRU through multiple cycles of irradiation, recovery (via reprocessing) and recycling of the residual actinides at the end of each irradiation cycle. This is achieved thanks to a larger breeding of U from Th in the heterogeneous assemblies, which reduces the TRU supply and thus mitigates the increase in the TRU core inventory for the multi-recycled fuel. While on an individual cycle basis the amount of TRU burned in the heterogeneous assembly is reduced with respect to the homogeneous design, TRU burning rates higher than single-pass U-MOX fuel can still be achieved, with the additional benefits of a multi-cycle transmutation campaign recycling all TRU isotopes. Nitride fuel, due its higher density and U breeding potential, together with its better thermal properties, ideally suits the objectives and constraints of the heterogeneous assemblies. However, significant technological advancements must be made before nitride fuels can be employed in an LWR: its water resistance needs to be improved and a viable technology to enrich N in N-15 must be devised. Moreover, for the nitride heterogeneous configurations examined in this study, the enhancement in TRU burning performance is achieved not only by replacing oxide with nitride fuel, but also by increasing the fuel rod size. This latter modification, allowed by the high thermal conductivity of nitride fuel, leads however to a very tight lattice, which may challenge reactor coolant pumps and assembly hold-down mechanisms, the former through an increase in core pressure drop and the latter through an increase in assembly lift-off forces. To alleviate these issues, while still achieving the large fuel-to-moderator ratios resulting from using tight lattices, wire wraps could be used in place of grid spacers. For tight lattices, typical grid spacers are hard to manufacture and their replacement with wire wraps is known to allow for a pressure drop reduction by at least 2 times. The studies, while certainly very preliminary, provide a starting point to devise an optimum strategy for TRU transmutation in Th-based PWR fuel. The viability of the scheme proposed depends on the timely phasing in of the associated technologies, with proper lead time and to solve the many challenges. These challenges are certainly substantial, and make the current once-through U-based scheme pursued in the US by far a more practical (and cheaper) option. However, when compared to other transmutation schemes, the proposed one has arguably similar challenges and unknowns with potentially bigger rewards. (authors)« less
Vaporisation of candidate nuclear fuels and targets for transmutation of minor actinides
NASA Astrophysics Data System (ADS)
Gotcu-Freis, P.; Hiernaut, J.-P.; Colle, J.-Y.; Nästrén, C.; Carretero, A. Fernandez; Konings, R. J. M.
2011-04-01
The thermal stability and high temperature behaviour of candidate fuels and targets for transmutation of minor actinides has been investigated. Zirconia-based solid solution, MgO-based CERCER and molybdenum-based CERMET fuels containing Am and/or Pu in various concentrations were heated up to 2700 K in a Knudsen cell coupled with a quadrupole mass spectrometer, to measure their vapour pressure and vapour composition. The results reveal that the vaporisation of the actinides from the samples is not only determined by the thermodynamics of the system but is also related to the dynamic evolution of multi-component mixtures with complex composition or microstructure.
Impact of Including Higher Actinides in Fast Reactor Transmutation Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
B. Forget; M. Asgari; R. Ferrer
2007-09-01
Previous fast reactor transmutation studies generally disregarded higher mass minor actinides beyond Cm-246 due to various considerations including deficiencies in nuclear cross-section data. Although omission of these higher mass actinides does not significantly impact the neutronic calculations and fuel cycle performance parameters follow-on neutron dose calculations related to fuel recycling, transportation and handling are significantly impacted. This report shows that including the minor actinides in the equilibrium fast reactor calculations will increase the predicted neutron emission by about 30%. In addition a sensitivity study was initiated by comparing the impact of different cross-section evaluation file for representing these minor actinides.
Muonic alchemy: Transmuting elements with the inclusion of negative muons
NASA Astrophysics Data System (ADS)
Moncada, Félix; Cruz, Daniel; Reyes, Andrés
2012-06-01
In this Letter we present a theoretical study of atoms in which one electron has been replaced by a negative muon. We have treated these muonic systems with the Any Particle Molecular Orbital (APMO) method. A comparison between the electronic and muonic radial distributions revealed that muons are much more localized than electrons. Therefore, the muonic cloud is screening effectively one positive charge of the nucleus. Our results have revealed that by replacing an electron in an atom by a muon there is a transmutation of the electronic properties of that atom to those of the element with atomic number Z - 1.
New infrastructure for studies of transmutation and fast systems concepts
NASA Astrophysics Data System (ADS)
Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria
2017-09-01
In this work we report initial studies on a low power Accelerator-Driven System as a possible experimental facility for the measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.
Statistical Transmutation in Floquet Driven Optical Lattices.
Sedrakyan, Tigran A; Galitski, Victor M; Kamenev, Alex
2015-11-06
We show that interacting bosons in a periodically driven two dimensional (2D) optical lattice may effectively exhibit fermionic statistics. The phenomenon is similar to the celebrated Tonks-Girardeau regime in 1D. The Floquet band of a driven lattice develops the moat shape, i.e., a minimum along a closed contour in the Brillouin zone. Such degeneracy of the kinetic energy favors fermionic quasiparticles. The statistical transmutation is achieved by the Chern-Simons flux attachment similar to the fractional quantum Hall case. We show that the velocity distribution of the released bosons is a sensitive probe of the fermionic nature of their stationary Floquet state.
A low power ADS for transmutation studies in fast systems
NASA Astrophysics Data System (ADS)
Panza, Fabio; Firpo, Gabriele; Lomonaco, Guglielmo; Osipenko, Mikhail; Ricco, Giovanni; Ripani, Marco; Saracco, Paolo; Viberti, Carlo Maria
2017-12-01
In this work, we report studies on a fast low power accelerator driven system model as a possible experimental facility, focusing on its capabilities in terms of measurement of relevant integral nuclear quantities. In particular, we performed Monte Carlo simulations of minor actinides and fission products irradiation and estimated the fission rate within fission chambers in the reactor core and the reflector, in order to evaluate the transmutation rates and the measurement sensitivity. We also performed a photo-peak analysis of available experimental data from a research reactor, in order to estimate the expected sensitivity of this analysis method on the irradiation of samples in the ADS considered.
Monitoring of the Irradiated Neutron Fluence in the Neutron Transmutation Doping Process of Hanaro
NASA Astrophysics Data System (ADS)
Kim, Myong-Seop; Park, Sang-Jun
2009-08-01
Neutron transmutation doping (NTD) for silicon is a process of the creation of phosphorus impurities in intrinsic or extrinsic silicon by neutron irradiation to obtain silicon semiconductors with extremely uniform dopant distribution. HANARO has two vertical holes for the NTD, and the irradiation for 5 and 6 inch silicon ingots has been going on at one hole. In order to achieve the accurate neutron fluence corresponding to the target resistivity, the real time neutron flux is monitored by self-powered neutron detectors. After irradiation, the total irradiation fluence is confirmed by measuring the absolute activity of activation detectors. In this work, a neutron fluence monitoring method using zirconium foils with the mass of 10 ~ 50 mg was applied to the NTD process of HANARO. We determined the proportional constant of the relationship between the resistivity of the irradiated silicon and the neutron fluence determined by using zirconium foils. The determined constant for the initially n-type silicon was 3.126 × 1019 n·Ω/cm. It was confirmed that the difference between this empirical value and the theoretical one was only 0.5%. Conclusively, the practical methodology to perform the neutron transmutation doping of silicon was established.
Detection of endogenous lithium in neuropsychiatric disorders--a model for biological transmutation.
Kurup, Ravi Kumar; Kurup, Parameswara Achutha
2002-01-01
The human hypothalamus produces an endogenous membrane Na(+)-K(+) ATPase inhibitor, digoxin. A digoxin induced model of cellular/neuronal quantal state and perception has been described by the authors. Biological transmutation has been described in microbial systems in the quantal state. The study focuses on the plasma levels of digoxin, RBC membrane Na(+)-K(+) ATPase activity, plasma levels of magnesium and lithium in neuropsychiatric and systemic disorders. Inhibition of RBC membrane Na(+)-K(+) ATPase activity was observed in most cases along with an increase in the levels of serum digoxin and lithium and a decrease in the level of serum Mg(++). The generation of endogenous lithium would obviously occur due to biological transmutation from magnesium. Digoxin and lithium together can produce added membrane Na(+)-K(+) ATPase inhibition. The role of membrane Na(+)-K(+) ATPase inhibition in the pathogenesis of neuropsychiatric and systemic disorders is discussed. The inhibition of membrane Na(+)-K(+) ATPase can contribute to an increase in intracellular calcium and a decrease in magnesium, which can result in a defective neurotransmitter transport mechanism, mitochondrial dysfunction and apoptosis, defective golgi body function and protein processing dysfunction, immune dysfunction and oncogenesis. Copyright 2002 John Wiley & Sons, Ltd.
Status of the French Research on Partitioning and Transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warin, Dominique
2007-07-01
The global energy context pleads in favor of a sustainable development of nuclear energy since the demand for energy will likely increase, whereas resources will tend to get scarcer and the prospect of global warming will drive down the consumption of fossil fuel sources. How we deal with radioactive waste is crucial in this context. The production of nuclear energy in France has been associated, since its inception, with the optimization of radioactive waste management, including the partitioning and the recycling of recoverable energetic materials. The public's concern regarding the long-term waste management made the French Government prepare and passmore » the December 1991 Law, requesting in particular, the study for fifteen years of solutions for still minimizing the quantity and the hazardousness of final waste, via partitioning and transmutation. At the end of these fifteen years of research, it is considered that partitioning techniques, which have been validated on real solutions, are at disposal. Indeed, aqueous process for separation of minor actinides from the PUREX raffinate has been brought to a point where there is reasonable assurance that industrial deployment can be successful. A key experiment has been the successful kilogram scale trials in the CEA-Marcoule Atalante facility in 2005 and this result, together with the results obtained in the frame of the successive European projects, constitutes a considerable step forward. For transmutation, CEA has conducted programs proving the feasibility of the elimination of minor actinides and fission products: fabrication of specific targets and fuels for transmutation tests in the HFR and Phenix reactors, neutronics and technology studies for critical reactors and ADS developments. Scenario studies have also allowed assessing the feasibility, at the level of cycle and fuel facilities, and the efficiency of transmutation in terms of the quantitative reduction of the final waste inventory depending of the reactor fleet (PWR-FR-ADS). Important results are now available concerning the possibility of significantly reducing the quantity and the radiotoxicity of long-lived waste in association with a sustainable development of nuclear energy. As France has confirmed its long-term approach to nuclear energy, the most effective implementation of P and T of minor actinides relies on the fast neutron GEN IV systems, which are designed to recycle and manage their own actinides. The perspective to deploy a first series of such systems around 2040 supports the idea that progress is being made: the long-term waste would only be made up of fission products, with very low amounts of minor actinides. In this sense, the new waste management law passed by the French Parliament on June 28, 2006, demands that P and T research continues in strong connection to GEN IV systems and ADS development and allowing the assessment of the industrial perspectives of such systems in 2012 and to put into operation a transmutation demo facility in 2020. (author)« less
NASA Astrophysics Data System (ADS)
Yao, Xue; Wang, Peng
2017-11-01
Baoshan block is an important Pb-Zn-Fe-Cu polymetallic ore-concentration area which is located in southern of the Sanjiang metallogenic belt in western Yunnan. The article is studying about the geological and geochemical characteristics of the skarn type lead-zinc deposit in Baoshan block. The skarn-type lead-zinc deposit Baoshan block is characterized by skarn and skarn marble, and the orebodies are layered, or bedded along the interlayer fault, which are significantly controlled by structure. The research about Stable isotope S, H and O indicates that the ore-forming fluids are mainly derived from magmatic water, partly mixed with parts of metamorphic water and atmospheric precipitation. The initial Sr isotopic Sr87/Sr86 ratio suggests that the ore-forming materials derived from deep concealed magmatic rock, age of Rb-Sr mineralization is similar to that of Yanshanian granite. In conclusion, the Yanshanian tectonic-magmatic-fluid coupling mineralization of Yanshan formation is the main reason for the skarn-type lead-zinc deposit in the Baoshan block.
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Zubarev, Alexander L.
2006-02-01
A mixture of two different species of positively charged bosons in harmonic traps is considered in the mean-field approximation. It is shown that depending on the ratio of parameters, the two components may coexist in same regions of space, in spite of the Coulomb repulsion between the two species. Application of this result is discussed for the generalization of the Bose-Einstein condensation mechanism for low-energy nuclear reaction (LENR) and transmutation processes in condensed matters. For the case of deutron-lithium (d + Li) LENR, the result indicates that (d + 6Li) reactions may dominate over (d + d) reactions in LENR experiments.
NASA Astrophysics Data System (ADS)
Kim, Yeong E.; Zubarev, Alexander L.
The most basic theoretical challenge for understanding low-energy nuclear reaction (LENR) and transmutation reaction (LETR) in condensed matters is to find mechanisms by which the large Coulomb barrier between fusing nuclei can be overcome. A unifying theory of LENR and LETR has been developed to provide possible mechanisms for the LENR and LETR processes in matters based on high-density nano-scale and micro-scale quantum plasmas. It is shown that recently developed theoretical models based on Bose-Einstein Fusion (BEF) mechanism and Quantum Plasma Nuclear Fusion (QPNF) mechanism are applicable to the results of many different types of LENR and LETR experiments.
Robert Boyle, Transmutation, and the History of Chemistry before Lavoisier: A Response to Kuhn.
Newman, William R
2014-01-01
In an influential article of 1952, Thomas Kuhn argued that Robert Boyle had little or no influence on the subsequent development of chemistry. This essay challenges Kuhn's view on two fronts. First, it shows that Johann Joachim Becher developed his hierarchical matter theory under the influence of Boyle and then transmitted it to the founder of the phlogiston theory, G. E. Stahl. Second, this essay argues that transmutational matter theories were not necessarily opposed to the existence of stable chemical species, pace Kuhn. Boyle's corpuscular theory descended largely from the tradition of "chymical atomism," which often advocated both chrysopoeia and the reality of robust chemical substances.
The physics design of accelerator-driven transmutation systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venneri, F.
1995-10-01
Nuclear systems under study in the Los Alamos Accelerator-Driven Transmutation Technology program (ADTT) will allow the destruction of nuclear spent fuel and weapons-return plutonium, as well as the production of nuclear energy from the thorium cycle, without a long-lived radioactive waste stream. The subcritical systems proposed represent a radical departure from traditional nuclear concepts (reactors), yet the actual implementation of ADTT systems is based on modest extrapolations of existing technology. These systems strive to keep the best that the nuclear technology has developed over the years, within a sensible conservative design envelope and eventually manage to offer a safe, lessmore » expensive and more environmentally sound approach to nuclear power.« less
Glueball spectrum and hadronic processes in low-energy QCD
NASA Astrophysics Data System (ADS)
Frasca, Marco
2010-10-01
Low-energy limit of quantum chromodynamics (QCD) is obtained using a mapping theorem recently proved. This theorem states that, classically, solutions of a massless quartic scalar field theory are approximate solutions of Yang-Mills equations in the limit of the gauge coupling going to infinity. Low-energy QCD is described by a Yukawa theory further reducible to a Nambu-Jona-Lasinio model. At the leading order one can compute glue-quark interactions and one is able to calculate the properties of the σ and η-η mesons. Finally, it is seen that all the physics of strong interactions, both in the infrared and ultraviolet limit, is described by a single constant Λ arising in the ultraviolet by dimensional transmutation and in the infrared as an integration constant.
High-Energy Activation Simulation Coupling TENDL and SPACS with FISPACT-II
NASA Astrophysics Data System (ADS)
Fleming, Michael; Sublet, Jean-Christophe; Gilbert, Mark
2018-06-01
To address the needs of activation-transmutation simulation in incident-particle fields with energies above a few hundred MeV, the FISPACT-II code has been extended to splice TENDL standard ENDF-6 nuclear data with extended nuclear data forms. The JENDL-2007/HE and HEAD-2009 libraries were processed for FISPACT-II and used to demonstrate the capabilities of the new code version. Tests of the libraries and comparisons against both experimental yield data and the most recent intra-nuclear cascade model results demonstrate that there is need for improved nuclear data libraries up to and above 1 GeV. Simulations on lead targets show that important radionuclides, such as 148Gd, can vary by more than an order of magnitude where more advanced models find agreement within the experimental uncertainties.
NASA Astrophysics Data System (ADS)
Fujisawa, Nobumichi; Hara, Shotaro; Ohta, Yutaka
2016-02-01
The characteristics of a rotating stall of an impeller and diffuser and the evolution of a vortex generated at the diffuser leading-edge (i.e., the leading-edge vortex (LEV)) in a centrifugal compressor were investigated by experiments and numerical analysis. The results of the experiments revealed that both the impeller and diffuser rotating stalls occurred at 55 and 25 Hz during off-design flow operation. For both, stall cells existed only on the shroud side of the flow passages, which is very close to the source location of the LEV. According to the CFD results, the LEV is made up of multiple vortices. The LEV is a combination of a separated vortex near the leading- edge and a longitudinal vortex generated by the extended tip-leakage flow from the impeller. Therefore, the LEV is generated by the accumulation of vorticity caused by the velocity gradient of the impeller discharge flow. In partial-flow operation, the spanwise extent and the position of the LEV origin are temporarily transmuted. The LEV develops with a drop in the velocity in the diffuser passage and forms a significant blockage within the diffuser passage. Therefore, the LEV may be regarded as being one of the causes of a diffuser stall in a centrifugal compressor.
Monte carlo simulations of Yttrium reaction rates in Quinta uranium target
NASA Astrophysics Data System (ADS)
Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.
2017-03-01
The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.
Simões, Bruno F; Sampaio, Filipa L; Loew, Ellis R; Sanders, Kate L; Fisher, Robert N; Hart, Nathan S; Hunt, David M; Partridge, Julian C; Gower, David J
2016-01-27
In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor 'transmutation'. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. © 2016 The Author(s).
Transmutation effects on long-term Cs retention in phyllosilicate minerals from first principles.
Sassi, Michel; Okumura, Masahiko; Machida, Masahiko; Rosso, Kevin M
2017-10-11
The accidental release and incorporation of radiocesium into soil minerals represents a massive environmental, technical and social challenge. Accurately forecasting the evolving distribution and fate of long- and medium-lived isotopes such as 137 Cs and 134 Cs over decadal time scales is essential. The cesium cation has long been modeled as a strongly and selectively sorbed species into clay mineral interlayers; however, because of the time scales involved by the radioisotopes half-lives, the effects of radioactive decay on Cs retention have been unknown. We report density functional theory (DFT) simulations of transmutation effects of radiocesium on long-term Cs retention in phlogopite. The calculations show that the progressive appearance of daughter product Ba 2+ is accompanied by a proportional increase in thermodynamic driving force to preferentially discharge remaining Cs, both radioactive and stable, back into aqueous solution. Based on thermodynamic analysis, the findings indicate that radiocesium transmutation provides a mean to weaken the binding of Cs in phyllosilicate minerals, therefore potentially involving a premature re-release of Cs back into the environment. In the case where radiogenic Ba 2+ ions accumulate in the mineral, collateral effects would ultimately be an increase in the overall interlayer binding energy and a lower resorption capacity.
Impact of Atmospheric Blocking on South America in Austral Summer
NASA Astrophysics Data System (ADS)
Rodrigues, Regina; Woollings, Tim
2017-04-01
In this study, we investigate atmospheric blocking over east South America in austral summer for the period of 1979-2014. Our results show that blocking over this area is a consequence of propagating Rossby waves that grow to large amplitudes and eventually break anticyclonically over subtropical South America (SSA). The SSA blocking can prevent the establishment of the South Atlantic Convergence Zone (SACZ). As such, years with more blocking days coincide with years with fewer SACZ days and reduced precipitation. Convection mainly over the Indian Ocean associated with Madden-Julian Oscillation (MJO) phases 1 and 2 can trigger the wave train that leads to SSA blocking whereas convection over the western/central Pacific associated with phases 6 and 7 is more likely to lead to SACZ events. We find that MJO is a key source of long-term variability in SSA blocking frequency. The wave packets associated with SSA blocking and SACZ episodes differ not only in their origin but also in their phase and refraction pattern. The tropopause-based methodology used here is proven to reliably identify events that lead to extremes of surface temperature and precipitation over SSA. Up to 80% of warm surface air temperature extremes occur simultaneously with SSA blocking events. They are also responsible for the warming of western South Atlantic. The frequency of SSA blocking days is highly anti-correlated with the rainfall over southeast Brazil. The worst droughts in this area, during the summers of 1984, 2001 and 2014, are linked to record high numbers of SSA blocking days. The persistence of these events is also important in generating the extreme impacts.
Kaplowitz, Stan A; Perlstadt, Harry; D'Onofrio, Gail; Melnick, Edward R; Baum, Carl R; Kirrane, Barbara M; Post, Lori A
2012-01-01
We derived a clinical decision rule for determining which young children need testing for lead poisoning. We developed an equation that combines lead exposure self-report questions with the child's census-block housing and socioeconomic characteristics, personal demographic characteristics, and Medicaid status. This equation better predicts elevated blood lead level (EBLL) than one using ZIP code and Medicaid status. A survey regarding potential lead exposure was administered from October 2001 to January 2003 to Michigan parents at pediatric clinics (n=3,396). These self-report survey data were linked to a statewide clinical registry of blood lead level (BLL) tests. Sensitivity and specificity were calculated and then used to estimate the cost-effectiveness of the equation. The census-block group prediction equation explained 18.1% of the variance in BLLs. Replacing block group characteristics with the self-report questions and dichotomized ZIP code risk explained only 12.6% of the variance. Adding three self-report questions to the census-block group model increased the variance explained to 19.9% and increased specificity with no loss in sensitivity in detecting EBLLs of ≥ 10 micrograms per deciliter. Relying solely on self-reports of lead exposure predicted BLL less effectively than the block group model. However, adding three of 13 self-report questions to our clinical decision rule significantly improved prediction of which children require a BLL test. Using the equation as the clinical decision rule would annually eliminate more than 7,200 unnecessary tests in Michigan and save more than $220,000.
Enhanced stiffness of silk-like fibers by loop formation in the corona leads to stronger gels.
Rombouts, Wolf H; Domeradzka, Natalia E; Werten, Marc W T; Leermakers, Frans A M; de Vries, Renko J; de Wolf, Frits A; van der Gucht, Jasper
2016-11-01
We study the self-assembly of protein polymers consisting of a silk-like block flanked by two hydrophilic blocks, with a cysteine residue attached to the C-terminal end. The silk blocks self-assemble to form fibers while the hydrophilic blocks form a stabilizing corona. Entanglement of the fibers leads to the formation of hydrogels. Under oxidizing conditions the cysteine residues form disulfide bridges, effectively connecting two corona chains at their ends to form a loop. We find that this leads to a significant increase in the elastic modulus of the gels. Using atomic force microscopy, we show that this stiffening is due to an increase of the persistence length of the fibers. Self-consistent-field calculations indicate a slight decrease of the lateral pressure in the corona upon loop formation. We argue that this small decrease in the repulsive interactions affects the stacking of the silk-like blocks in the core, resulting in a more rigid fiber. © 2016 Wiley Periodicals, Inc.
Wu, Chi; Xie, Zuowei; Zhang, Guangzhao; Zi, Guofu; Tu, Yingfeng; Yang, Yali; Cai, Ping; Nie, Ting
2002-12-07
A combination of polymer physics and synthetic chemistry has enabled us to develop self-assembly assisted polymerization (SAAP), leading to the preparation of long multi-block copolymers with an ordered chain sequence and controllable block lengths.
Right bundle branch block pattern during right ventricular permanent pacing: Is it safe or not?
Erdogan, Okan; Aksu, Feyza
2007-01-01
The present case report describes a patient with dual chamber pacemaker whose surface ECG demonstrated paced right bundle branch block pattern suggesting a malpositioned ventricular lead in the left ventricle. However, diagnostic work-up revealed that the lead was appropriately located in the right ventricular apex. Diagnostic maneuvers and clues for differentiating safe right bundle branch block pattern during permanent pacing are thoroughly revisited and discussed within the article. PMID:17684578
Determination of Trace Concentration in TMD Detectors using PGAA
NASA Astrophysics Data System (ADS)
Tomandl, I.; Viererbl, L.; Kudějová, P.; Lahodová, Z.; Klupák, V.; Fikrle, M.
2015-05-01
Transmutation detectors could be alternative to the traditional activation detector method for neutron fluence dosimetry at power nuclear reactors. This new method require an isotopically highly-sensitive, non-destructive in sense of compactness as well as isotopic content, precise and standardly used analytical method for trace concentration determination. The capability of Prompt Gamma-ray Activation Analysis (PGAA) for determination of trace concentrations of transmuted stable nuclides in the metallic foils of Ni, Au, Cu and Nb, which were irradiated for 21 days in the reactor core at the LVR-15 research reactor in Řež, is reported. The PGAA measurements of these activation foils were performed at the PGAA facility at Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRMII) in Garching.
Manolopoulou, M; Stoulos, S; Fragopoulou, M; Brandt, R; Westmeier, W; Krivopustov, M; Sosnin, A; Zamani, M
2006-07-01
Various spallation sources have been used to transmute long-lived radioactive waste, mostly making use of the wide energy neutron fluence. In addition to neutrons, a large number of protons and gamma rays are also emitted from these sources. In this paper (nat)Cd is proved to be a useful activation detector for determining both thermal-epithermal neutron as well as secondary proton fluences. The fluences measured with (nat)Cd compared with other experimental data and calculations of DCM-DEM code were found to be in reasonable agreement. An accumulation of thermal-epithermal neutrons around the center of the target (i.e. after approx. 10 cm) and of secondary protons towards the end of the target is observed.
Impacts of Heterogeneous Recycle in Fast Reactors on Overall Fuel Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temitope A. Taiwo; Samuel E. Bays; Abdullatif M. Yacout
2011-03-01
A study in the United States has evaluated the attributes of the heterogeneous recycle approach for plutonium and minor actinide transmutation in fast reactor fuel cycles, with comparison to the homogeneous recycle approach, where pertinent. The work investigated the characteristics, advantages, and disadvantages of the approach in the overall fuel cycle, including reactor transmutation, systems and safety impacts, fuel separation and fabrication issues, and proliferation risk and transportation impacts. For this evaluation, data from previous and ongoing national studies on heterogeneous recycle were reviewed and synthesized. Where useful, information from international sources was included in the findings. The intent ofmore » the work was to provide a comprehensive assessment of the heterogeneous recycle approach at the current time.« less
Multi-pass Monte Carlo simulation method in nuclear transmutations.
Mateescu, Liviu; Kadambi, N Prasad; Ravindra, Nuggehalli M
2016-12-01
Monte Carlo methods, in their direct brute simulation incarnation, bring realistic results if the involved probabilities, be they geometrical or otherwise, remain constant for the duration of the simulation. However, there are physical setups where the evolution of the simulation represents a modification of the simulated system itself. Chief among such evolving simulated systems are the activation/transmutation setups. That is, the simulation starts with a given set of probabilities, which are determined by the geometry of the system, the components and by the microscopic interaction cross-sections. However, the relative weight of the components of the system changes along with the steps of the simulation. A natural measure would be adjusting probabilities after every step of the simulation. On the other hand, the physical system has typically a number of components of the order of Avogadro's number, usually 10 25 or 10 26 members. A simulation step changes the characteristics for just a few of these members; a probability will therefore shift by a quantity of 1/10 25 . Such a change cannot be accounted for within a simulation, because then the simulation should have then a number of at least 10 28 steps in order to have some significance. This is not feasible, of course. For our computing devices, a simulation of one million steps is comfortable, but a further order of magnitude becomes too big a stretch for the computing resources. We propose here a method of dealing with the changing probabilities, leading to the increasing of the precision. This method is intended as a fast approximating approach, and also as a simple introduction (for the benefit of students) in the very branched subject of Monte Carlo simulations vis-à-vis nuclear reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Leon E.; Haas, Derek A.; Gavron, Victor A.
2009-09-25
Under funding from the Department of Energy Office of Nuclear Energy’s Materials, Protection, Accounting, and Control for Transmutation (MPACT) program (formerly the Advanced Fuel Cycle Initiative Safeguards Campaign), Pacific Northwest National Laboratory (PNNL) and Los Alamos National Laboratory (LANL) are collaborating to study the viability of lead slowing-down spectroscopy (LSDS) for spent-fuel assay. Based on the results of previous simulation studies conducted by PNNL and LANL to estimate potential LSDS performance, a more comprehensive study of LSDS viability has been defined. That study includes benchmarking measurements, development and testing of key enabling instrumentation, and continued study of time-spectra analysis methods.more » This report satisfies the requirements for a PNNL/LANL deliverable that describes the objectives, plans and contributing organizations for a comprehensive three-year study of LSDS for spent-fuel assay. This deliverable was generated largely during the LSDS workshop held on August 25-26, 2009 at Rensselaer Polytechnic Institute (RPI). The workshop itself was a prominent milestone in the FY09 MPACT project and is also described within this report.« less
Fabrication of (U,Am)O2 pellet with controlled porosity from oxide microspheres
NASA Astrophysics Data System (ADS)
Ramond, Laure; Coste, Philippe; Picart, Sébastien; Gauthé, Aurélie; Bataillea, Marc
2017-08-01
U1-xAmxO2±δ mixed-oxides are considered as promising compounds for americium heterogeneous transmutation in Sodium Fast Neutron Reactor. Porous microstructure is envisaged in order to facilitate helium and fission gas release and to reduce pellet swelling during irradiation and under self-irradiation. In this study, the porosity is created by reducing (U,Am)3O8 microspheres into (U,Am)O2 during the sintering. This reduction is accompanied by a decrease of the lattice volume that leads to the creation of open porosity. Finally, an (U0.90Am0.10)O2 porous ceramic pellet (D∼89% of the theoretical density TD) with controlled porosity (≥8% open porosity) was obtained from mixed-oxide microspheres obtained by the Weak Acid Resin (WAR) process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Bruyn, D.; Engelen, J.; Ortega, A.
MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is the flexible experimental accelerator-driven system (ADS) in development at SCK-CEN in replacement of its material testing reactor BR2. SCK-CEN in association with 17 European partners from industry, research centres and academia, responded to the FP7 (Seventh Framework Programme) call from the European Commission to establish a Central Design Team (CDT) for the design of a Fast Spectrum Transmutation Experimental Facility (FASTEF) able to demonstrate efficient transmutation and associated technology through a system working in subcritical and/or critical mode. The project has started on April 01, 2009 for a period of threemore » years. In this paper, we present the latest concept of the reactor building and the plant layout. The FASTEF facility has evolved quite a lot since the intermediate reporting done at the ICAPP'10 and ICAPP'11 conferences 1,2. Many iterations have been performed to take into account the safety requirements. The present configuration enables an easy operation and maintenance of the facility, including the possibility to change large components of the reactor. In a companion paper 3, we present the latest configuration of the reactor core and primary system. (authors)« less
The benefits of an advanced fast reactor fuel cycle for plutonium management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannum, W.H.; McFarlane, H.F.; Wade, D.C.
1996-12-31
The United States has no program to investigate advanced nuclear fuel cycles for the large-scale consumption of plutonium from military and civilian sources. The official U.S. position has been to focus on means to bury spent nuclear fuel from civilian reactors and to achieve the spent fuel standard for excess separated plutonium, which is considered by policy makers to be an urgent international priority. Recently, the National Research Council published a long awaited report on its study of potential separation and transmutation technologies (STATS), which concluded that in the nuclear energy phase-out scenario that they evaluated, transmutation of plutonium andmore » long-lived radioisotopes would not be worth the cost. However, at the American Nuclear Society Annual Meeting in June, 1996, the STATS panelists endorsed further study of partitioning to achieve superior waste forms for burial, and suggested that any further consideration of transmutation should be in the context of energy production, not of waste management. 2048 The U.S. Department of Energy (DOE) has an active program for the short-term disposition of excess fissile material and a `focus area` for safe, secure stabilization, storage and disposition of plutonium, but has no current programs for fast reactor development. Nevertheless, sufficient data exist to identify the potential advantages of an advanced fast reactor metallic fuel cycle for the long-term management of plutonium. Advantages are discussed.« less
NASA Astrophysics Data System (ADS)
Terashima, Atsunori; Nilsson, Mikael; Ozawa, Masaki; Chiba, Satoshi
2017-09-01
The Aprés ORIENT research program, as a concept of advanced nuclear fuel cycle, was initiated in FY2011 aiming at creating stable, highly-valuable elements by nuclear transmutation from ↓ssion products. In order to simulate creation of such elements by (n, γ) reaction succeeded by β- decay in reactors, a continuous-energy Monte Carlo burnup calculation code MVP-BURN was employed. Then, it is one of the most important tasks to con↓rm the reliability of MVP-BURN code and evaluated neutron cross section library. In this study, both an experiment of neutron activation analysis in TRIGA Mark I reactor at University of California, Irvine and the corresponding burnup calculation using MVP-BURN code were performed for validation of the simulation on transmutation of light platinum group elements. Especially, some neutron capture reactions such as 102Ru(n, γ)103Ru, 104Ru(n, γ)105Ru, and 108Pd(n, γ)109Pd were dealt with in this study. From a comparison between the calculation (C) and the experiment (E) about 102Ru(n, γ)103Ru, the deviation (C/E-1) was signi↓cantly large. Then, it is strongly suspected that not MVP-BURN code but the neutron capture cross section of 102Ru belonging to JENDL-4.0 used in this simulation have made the big di↑erence as (C/E-1) >20%.
29 CFR 1926.603 - Pile driving equipment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall be... hammer. (6) Guards shall be provided across the top of the head block to prevent the cable from jumping...
29 CFR 1926.603 - Pile driving equipment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall be... hammer. (6) Guards shall be provided across the top of the head block to prevent the cable from jumping...
29 CFR 1926.603 - Pile driving equipment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall be... hammer. (6) Guards shall be provided across the top of the head block to prevent the cable from jumping...
29 CFR 1926.603 - Pile driving equipment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall be... hammer. (6) Guards shall be provided across the top of the head block to prevent the cable from jumping...
29 CFR 1926.603 - Pile driving equipment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... strength. (4) Stop blocks shall be provided for the leads to prevent the hammer from being raised against the head block. (5) A blocking device, capable of safely supporting the weight of the hammer, shall be... hammer. (6) Guards shall be provided across the top of the head block to prevent the cable from jumping...
Analysis of KC-46 Live-Fire Risk Mitigation Program Testing
2012-03-01
the use of real hardware such as electrohydraulic actuators , electrical units, and converter regulators (Andrus, 2010). The only feasible method for...worked with the MQ-9 as a test engineer and analyst for the programs IOT &E, RQ-4 as lead engineer and program lead for the block 3 and the block 4
NASA Astrophysics Data System (ADS)
Afanasev, S.; Vishnevskiy, A.; Vishnevskiy, D.; Rogachev, A.; Tyutyunnikov, S.
2017-05-01
As part of the Energy & Transmutation project, we are developing a detector for neutrons with energies in the 10-100 MeV range emitted from the target irradiated by a charged-particle beam. The neutron is detected by measuring the time-of-flight and total kinetic energy of the forward-going recoil proton [1] knocked out at a small angle from a thin layer of plastic scintillator, which has to be selected against an intense background created by γ quanta, scattered neutrons, and charged particles. On the other hand, neutron energy has to be measured over the full range with no extra tuning of the detector operation regime. Initial measurements with a source of 14.1-MeV neutrons are reported.
FCRD Advanced Reactor (Transmutation) Fuels Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn Elizabeth; Papesch, Cynthia Ann
2016-09-01
Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. U-Pu-Zr alloys are well suited for electrolytic refining, which leads to incorporation rare-earth fission products such as La, Ce, Pr, and Nd. It is, therefore, importantmore » to understand not only the properties of U-Pu-Zr alloys but also those of U-Pu-Zr alloys with concentrations of minor actinides (Np, Am) and rare-earth elements (La, Ce, Pr, and Nd) similar to those in reprocessed fuel. In addition to requiring extensive safety precautions, alloys containing U, Pu, and minor actinides (Np and Am) are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phasetransformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, rapid oxidation, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Although less toxic, rare-earth elements such as La, Ce, Pr, and Nd are also difficult to study for similar reasons. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, particularly those that also contain minor actinides and rare-earth elements. General acceptance of results commonly indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, Np, Am, La, Ce, Pr, and Nd and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, the handbook attempts to provide information about how well the property is known and how much variation exists between measurements. Although it includes some results from models, its primary focus is experimental data. The Handbook is organized in two sections: one with information about the U-Pu-Zr ternary and one with information about other elements and binary and vi ternary alloys in the U-Np-Pu-Am-La-Ce-Pr-Nd-Zr system. Within each section, information about elements is presented first, followed by information about binary alloys, then information about ternary alloys. The order in which the elements in each alloy are mentioned follows the order in the first sentence of this paragraph. Much of the information on the U-Pu-Zr system repeats information from the FCRD Transmutation Fuels Handbook 2015. Most of the other data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data from Idaho National Laboratory is presented here for the first time. As the FCRD programmatic mission evolves, future editions of this handbook will begin to include other advanced reactor fuel designs and compositions. Hence, the title of the handbook will transition to the Advanced Reactor Fuels Handbook.« less
Bullet-Block Science Video Puzzle
ERIC Educational Resources Information Center
Shakur, Asif
2015-01-01
A science video blog, which has gone viral, shows a wooden block shot by a vertically aimed rifle. The video shows that the block hit dead center goes exactly as high as the one shot off-center. (Fig. 1). The puzzle is that the block shot off-center carries rotational kinetic energy in addition to the gravitational potential energy. This leads a…
NASA Astrophysics Data System (ADS)
Martínez, Enrique; Uberuaga, Blas P.; Wirth, Brian D.
2017-08-01
Due to their low sputtering yield, low intrinsic tritium retention, high melting point, and high thermal conductivity, W and W alloys are promising candidates for the divertor region in a magnetic fusion device. Transmutation reactions under neutron irradiation lead to the formation of He and H particles that potentially degrade material performance and might lead to failure. High He fluxes ultimately lead to the formation and bursting of bubbles that induce swelling, a strong decrease in toughness, and a nanoscale microstructure that potentially degrades the plasma. Understanding the behavior of He in polycrystalline W is thus of significant importance as one avenue for controlling the material properties under operating conditions. This paper studies the interaction of substitutional He atoms with various grain boundaries in pure W and the effect of the He presence on the system response to external loading. We observe that He segregates to all the interfaces tested and decreases the cohesion of the system at the grain boundary. Upon tension, the presence of He significantly decreases the yield stress, which depends considerably on the bubble pressure. Increasing pressure reduces cohesion, as expected. More complex stress states result in more convoluted behavior, with He hindering grain boundary sliding upon simple shear.
Polycrystalline silicon semiconducting material by nuclear transmutation doping
Cleland, John W.; Westbrook, Russell D.; Wood, Richard F.; Young, Rosa T.
1978-01-01
A NTD semiconductor material comprising polycrystalline silicon having a mean grain size less than 1000 microns and containing phosphorus dispersed uniformly throughout the silicon rather than at the grain boundaries.
Identification of averantin as an aflatoxin B1 precursor: placement in the biosynthetic pathway.
Bennett, J W; Lee, L S; Shoss, S M; Boudreaux, G H
1980-01-01
A new blocked mutant of Aspergillus parasiticus produces no detectable aflatoxin B1, but accumulates several polyhydroxyanthraquinones. One of these pigments was identified as averantin. This is the first report of its formation by A. parasiticus. Radiotracer studies with [14C]averantin showed that 15.3% of label from averantin was incorporated into aflatoxin B1. This incorporation was blocked by dichlorvos. With radiotracers and other mutants, averantin was placed after norsolorinic acid and before averufin in the biosynthetic pathway in which the general steps are norsolorinic acid leads to averantin leads to averufin leads to versiconal hemiacetal acetate leads to versicolorin A leads to sterigmatocystin leads to aflatoxin B1. PMID:7377778
The influence of ozone forcing on blocking in the Southern Hemisphere
NASA Astrophysics Data System (ADS)
Dennison, Fraser W.; McDonald, Adrian; Morgenstern, Olaf
2016-12-01
We investigate the influence of ozone depletion and recovery on tropospheric blocking in the Southern Hemisphere. Blocking events are identified using a persistent positive anomaly method applied to 500 hPa geopotential height. Using the National Institute for Water and Atmospheric Research-United Kingdom Chemistry and Aerosols chemistry-climate model, we compare reference runs that include forcing due to greenhouse gases (GHGs) and ozone-depleting substances to sensitivity simulations in which ozone-depleting substances are fixed at their 1960 abundances and other sensitivity simulations with GHGs fixed at their 1960 abundances. Blocking events in the South Atlantic are shown to follow stratospheric positive anomalies in the Southern Annular Mode (SAM) index; this is not the case for South Pacific blocking events. This relationship means that summer ozone depletion, and corresponding positive SAM anomalies, leads to an increased frequency of blocking in the South Atlantic while having little effect in the South Pacific. Similarly, ozone recovery, having the opposite effect on the SAM, leads to a decline in blocking frequency in the South Atlantic, although this may be somewhat counteracted by the effect of increasing GHGs.
Quantitative Evaluation of Management Courses: Part 1
ERIC Educational Resources Information Center
Cunningham, Cyril
1973-01-01
The author describes how he developed a method of evaluating and comparing management courses of different types and lengths by applying an ordinal system of relative values using a process of transmutation. (MS)
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
NASA Astrophysics Data System (ADS)
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-11-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
New Mechanism for Explaing LENR and Certain forms of Technological and Natural Catastrophes
NASA Astrophysics Data System (ADS)
Gareev, Fangil
2008-03-01
We proposed a new mechanism for low energy nuclear reactions (LENR): cooperative resonance processes involving the whole the system - nuclei + atoms + condensed matter can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of a redistribution of internal energy of the whole system. The lack of financial support and ignorance by mainstream physicists has resulted in the LENR field not being accepted. We postulate that LENR can lead to catastrophes, potentially including, the runaway evcnt involving the reactor at the Chernobyl Nuclear Power Plant, the explosion of the twin towers during the 11 September 2001 World Trade Center collapse, in New York, the explosion of transformers in Moscow, catastrophes of submarines, and other phenomena associated with a cooperative resonance synchronization mechanism.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...
2015-11-03
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, F.; Mason, D. R.; Eliason, J. K.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-01-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099
NASA Astrophysics Data System (ADS)
Wang, H.; Otsu, H.; Sakurai, H.; Ahn, D. S.; Aikawa, M.; Doornenbal, P.; Fukuda, N.; Isobe, T.; Kawakami, S.; Koyama, S.; Kubo, T.; Kubono, S.; Lorusso, G.; Maeda, Y.; Makinaga, A.; Momiyama, S.; Nakano, K.; Niikura, M.; Shiga, Y.; Söderström, P.-A.; Suzuki, H.; Takeda, H.; Takeuchi, S.; Taniuchi, R.; Watanabe, Ya.; Watanabe, Yu.; Yamasaki, H.; Yoshida, K.
2016-03-01
We have studied spallation reactions for the fission products 137Cs and 90Sr for the purpose of nuclear waste transmutation. The spallation cross sections on the proton and deuteron were obtained in inverse kinematics for the first time using secondary beams of 137Cs and 90Sr at 185 MeV/nucleon at the RIKEN Radioactive Isotope Beam Factory. The target dependence has been investigated systematically, and the cross-section differences between the proton and deuteron are found to be larger for lighter spallation products. The experimental data are compared with the PHITS calculation, which includes cascade and evaporation processes. Our results suggest that both proton- and deuteron-induced spallation reactions are promising mechanisms for the transmutation of radioactive fission products.
Lundell, Katie A; Zhang, Xinxing; Boldyrev, Alexander I; Bowen, Kit H
2017-12-22
The Al=Al double bond is elusive in chemistry. Herein we report the results obtained via combined photoelectron spectroscopy and ab initio studies of the LiAl 2 H 4 - cluster that confirm the formation of a conventional Al=Al double bond. Comprehensive searches for the most stable structures of the LiAl 2 H 4 - cluster have shown that the global minimum isomer I possesses a geometric structure which resembles that of Si 2 H 4 , demonstrating a successful example of the transmutation of Al atoms into Si atoms by electron donation. Theoretical simulations of the photoelectron spectrum discovered the coexistence of two isomers in the ion beam, including the one with the Al=Al double bond. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Transmutation studies at CEA in frame of the SPIN program objectives, results and future trends
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvatores, M.; Prunier, C.; Guerin, Y.
1995-10-01
In order to respond to the public concern about wastes and in particular the long-lived high level ones, a French law issued on December 30, 1991 identified the major objectives of research for the next fifteen years, before a new debate and possibly a decision on final wastes disposal in Parliament. These objectives are: (1) improvement of the wastes conditioning; (2) extraction and transmutation of the long-lived wastes in order to minimize their long term toxicity; (3) research performed in underground laboratories in order to characterize the capacity of geological structures to confine radioactive wastes (two sites have to bemore » selected for these underground laboratories, in concertation with the local population); (4) last, the study of conditioning and prolonged surface storage of wastes.« less
Practising alchemy: the transmutation of evidence into best health care.
Goodyear-Smith, Felicity
2011-04-01
Alchemy was the synthesis or transmutation of all elements in perfect balance to obtain the philosopher's stone, the key to health. Just as alchemists sought this, so health practitioners always seek the best possible practice for optimal health outcomes for our patients. Best practice requires full knowledge--a little information can be dangerous. We need to serve our apprenticeship before we master our profession. Our profession is about improving health care. While the journey may start at medical school, the learning never ceases. It is not only about practising medicine, it is about the development of the practitioner. Professional practice requires systematic thinking combined with capacity to deal morally and creatively in areas of complexity and uncertainty appropriate to a specific context. It requires exemplary communication skills to interact with patients to facilitate collaborative decision making resulting in best practice. The synthesis of scientific and contextual evidence is a concept which applies to all disciplines where theoretical knowledge needs to be transferred to action to inform best practice. Decisions need to be made which take into account a complex array of factors, such as social and legal issues and resource constraints. Therefore, journey towards best practice involves transmutation of these three elements: scientific knowledge, the context in which it is applied and phronesis, the practical wisdom of the practitioner. All science has its limitations and we can never know all possible contextual information. Hence, like the philosopher's stone, best practice is a goal to which we aspire but never quite attain.
Development of oxygen meters for the use in lead-bismuth
NASA Astrophysics Data System (ADS)
Konys, J.; Muscher, H.; Voß, Z.; Wedemeyer, O.
2001-07-01
Liquid lead and the eutectic lead-bismuth alloy (PbBi) are considered both as a spallation target and coolant of an accelerator driven system (ADS) for the transmutation of long-lived actinides from nuclear waste into shorter living isotopes. It is known that both, pure lead and PbBi, exhibit a high corrosivity against austenitic and ferritic steels, because of the high solubility of nickel and iron in PbBi. One way of reducing the strong corrosion is the in situ formation of stable oxide scales on the steel surfaces. Thermodynamic calculations and experimental results have confirmed, that the control of oxygen in lead or PbBi within a defined activity range can lead to acceptable corrosion rates. To control the level of oxygen dissolved in lead or PbBi, a sensor for measuring the oxygen activity is required. Within the sodium fast breeder reactor development, an adequate technique was established for estimating oxygen in liquid sodium. This knowledge can be used for other metal/oxygen systems like oxygen in PbBi. For measuring the oxygen activity and calculating its concentration, the relevant thermodynamic and solubility data have to be considered. Two reference electrode systems: Pt/air and In/In 2O 3 (both based on yttria-stabilized zirconia as solid electrolyte) are investigated to evaluate their electromotive force (EMF)-temperature dependency in saturated and unsaturated oxygen solutions. Results with both types of oxygen meters in PbBi at different oxygen levels were compared with theoretical calculations. The experimental data indicate that the design, construction and integration of an oxygen control unit in a large scale PbBi-loop seems to be very feasible.
NASA Technical Reports Server (NTRS)
Schaerer, Urs
1988-01-01
Extensive U-Pb geochronological studies in the Grenville and Makkovik provinces have shown that eastern Labrador is underlain by two distinct crustal blocks. In order to substantiate the juvenile character of the middle-Proterozoic crustal block, the isotopic compositon of lead in leached k-feldspars from the same rocks were analyzed. The results of the analysis are briefly discussed.
PROGRESS IN THE STUDY OF ION IRRADIATION IN TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Kruska, Karen; Henager, Charles H.
2017-02-27
The experimental study intends to generate data to validate the theoretical predictions on defect accumulation and recovery, as well as to investigate microstructural evolution and transmutant precipitation in mono- and poly-crystalline tungsten using ion implantation.
Alchemy--A History of Early Technology.
ERIC Educational Resources Information Center
Pollard, A. M.
1988-01-01
Reviews the history of alchemy including personalities and methods. Discusses the philosophy associated with various early chemists and alchemists. Attempts to show that it was not unreasonable for ancient alchemists to believe in the possibility of transmutation. (CW)
Achieving dynamic switchable filter based on a transmutable metasurface using SMA
NASA Astrophysics Data System (ADS)
Chen, Xin; Gao, Jinsong; Kang, Bonan
2017-09-01
We propose a switchable filter composed of transmutable array using shape memory alloys (SMA). It could exhibit a temperature induced morphology change spontaneously like the biological excitability, acting as a shutter that allows the incident energy to be selectively transmitted or reflected with in excess of 12dB isolation at the certain frequencies for both polarizations. Equivalent circuit models describe the operational principle qualitatively and the switching effect is underpinned by the full-wave analysis. A further physical mechanism is shown by contrasting the distributions of electric field and surface current on the surface at the same frequency for the two working modes. The experimental results consist with the theoretical simulations, indicating that the metasurface could serve as one innovative solution for manipulating the electromagnetic waves and enlighten the next generation of advanced electromagnetic materials with more freedom in the processes of design and manufacturing.
Post-irradiation examinations of THERMHET composite fuels for transmutation
NASA Astrophysics Data System (ADS)
Noirot, J.; Desgranges, L.; Chauvin, N.; Georgenthum, V.
2003-07-01
The thermal behaviour of composite targets dedicated to minor actinide transmutation was studied using THERMHET (thermal behaviour of heterogeneous fuel) irradiation in the SILOE reactor. Three inert matrix fuel designs were tested (macro-mass, jingle and microdispersion) all with a MgAl 2O 4 spinel inert matrix and around 40% weight of UO 2 to simulate minor actinide inclusions. The post-irradiation examinations led to a new interpretation of the temperature measurement by thermocouples located in the central hole of the pellets. A major change in the micro-dispersed structure was detected. The examinations enabled us to understand the behaviour of the spinel during the different stages of irradiation. They revealed an amorphisation at low temperature and then a nano re-crystallisation at high temperature of the spinel in the micro-dispersed case. These results, together with those obtained in the MATINA irradiation of an equivalent structure, show the importance of the irradiation temperature on spinel behaviour.
ISM band to U-NII band frequency transverter and method of frequency transversion
Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO
2006-04-04
A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.
ISM band to U-NII band frequency transverter and method of frequency transversion
Stepp, Jeffrey David [Grandview, MO; Hensley, Dale [Grandview, MO
2006-09-12
A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.
Wang, Zhenzhen; Chen, Zhaowei; Gao, Nan; Ren, Jinsong; Qu, Xiaogang
2015-10-07
Herein, for the first time, we presented a simple and general approach by using personal glucose meters (PGM) for portable and ultrasensitive detection of microbial pathogens. Upon addition of pathogenic bacteria, glucoamylase-quaternized magnetic nanoparticles (GA-QMNPS) conjugates were disrupted by the competitive multivalent interactions between bacteria and QMNPS, resulting in the release of GA. After magnetic separation, the free GA could catalyze the hydrolysis of amylose into glucose for quantitative readout by PGM. In such way, PGM was transmuted into a bacterial detection device and extremely low detection limits down to 20 cells mL(-1) was achieved. More importantly, QMNPS could inhibit the growth of the bacteria and destroy its cellular structure, which enabled bacteria detection and inhibition simultaneously. The simplicity, portability, sensitivity and low cost of presented work make it attractive for clinical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hooper, I R; Philbin, T G
2013-12-30
We describe a design methodology for modifying the refractive index profile of graded-index optical instruments that incorporate singularities or zeros in their refractive index. The process maintains the device performance whilst resulting in graded profiles that are all-dielectric, do not require materials with unrealistic values, and that are impedance matched to the bounding medium. This is achieved by transmuting the singularities (or zeros) using the formalism of transformation optics, but with an additional boundary condition requiring the gradient of the co-ordinate transformation be continuous. This additional boundary condition ensures that the device is impedance matched to the bounding medium when the spatially varying permittivity and permeability profiles are scaled to realizable values. We demonstrate the method in some detail for an Eaton lens, before describing the profiles for an "invisible disc" and "multipole" lenses.
NASA Astrophysics Data System (ADS)
Strugalska-Gola, Elzbieta; Bielewicz, Marcin; Kilim, Stanislaw; Szuta, Marcin; Tyutyunnikov, Sergey
2017-03-01
This work was performed within the international project "Energy plus Transmutation of Radioactive Wastes" (E&T - RAW) for investigations of energy production and transmutation of radioactive waste of the nuclear power industry. 89Y (Yttrium 89) samples were located in the Quinta assembly in order to measure an average high neutron flux density in three different energy ranges using deuteron and proton beams from Dubna accelerators. Our analysis showed that the neutron density flux for the neutron energy range 20.8 - 32.7 MeV is higher than for the neutron energy range 11.5 - 20.8 MeV both for protons with an energy of 0.66 GeV and deuterons with an energy of 2 GeV, while for deuteron beams of 4 and 6 GeV we did not observe this.
Khorshidi, Abdollah
2016-11-01
Medical nano-gold radioisotopes is produced regularly using high-flux nuclear reactors, and an accelerator-driven neutron activator can turn out higher yield of (197)Au(n,γ)(196,198)Au reactions. Here, nano-gold production via radiative/neutron capture was investigated using irradiated Tehran Research Reactor flux and also simulated proton beam of Karaj cyclotron in Iran. (197)Au nano-solution, including 20nm shaped spherical gold and water, was irradiated under Tehran reactor flux at 2.5E+13n/cm(2)/s for (196,198)Au activity and production yield estimations. Meanwhile, the yield was examined using 30MeV proton beam of Karaj cyclotron via simulated new neutron activator containing beryllium target, bismuth moderator around the target, and also PbF2 reflector enclosed the moderator region. Transmutation in (197)Au nano-solution samples were explored at 15 and 25cm distances from the target. The neutron flux behavior inside the water and bismuth moderators was investigated for nano-gold particles transmutation. The transport of fast neutrons inside bismuth material as heavy nuclei with a lesser lethargy can be contributed in enhanced nano-gold transmutation with long duration time than the water moderator in reactor-based method. Cyclotron-driven production of βeta-emitting radioisotopes for brachytherapy applications can complete the nano-gold production technology as a safer approach as compared to the reactor-based method. Copyright © 2016 Elsevier B.V. All rights reserved.
Progress on inert matrix fuels for minor actinide transmutation in fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnerot, Jean-Marc; Ferroud-Plattet, Marie-Pierre; Lamontagne, Jerome
2007-07-01
An extensive irradiation program has been devoted by CEA to the assessment of transmutation using minor actinide bearing inert support targets. A first irradiation experiment was performed in the fast neutron reactor Phenix, in parallel to other experiments carried out in the HFR and Siloe reactors, in order to assess the behavior under fast neutron flux of various materials intended as inert support matrix for transmutation targets. This experiment, which included the two steps MATINA 1 and MATINA 1A, was completed in 2004 and underwent complete post irradiation examinations (PIE) , whose results are presented in this paper. All themore » pure inert materials showed a satisfactory behavior under fast neutrons except Al{sub 2}O{sub 3} - which exhibits a swelling close to 11 vol. % after irradiation. In presence of UO{sub 2} fissile particles, MgAl{sub 2}O{sub 4} proved to be more stable in term of swelling as inert support than MgO and Al{sub 2}O{sub 3} matrices, under the same irradiation conditions. A second experiment ECRIX H in Phenix involving composite pellets with an MgO matrix and AmO{sub 2-x} particles was completed in 2006. The very first PIE results on ECRIX H are described in this paper. At the light of these first experiments, a second phase dedicated to the design optimization of the target was initiated and three new irradiation experiments - MATINA 2-3, CAMIX COCHIX in Phenix and HELIOS in HFR - were started in 2006 and 2007. (authors)« less
Halbesleben, Jonathon R B; Savage, Grant T; Wakefield, Douglas S; Wakefield, Bonnie J
2010-01-01
Health care organizations have redesigned existing and implemented new work processes intended to improve patient safety. As a consequence of these process changes, there are now intentionally designed "blocks" or barriers that limit how specific work actions, such as ordering and administering medication, are to be carried out. Health care professionals encountering these designed barriers can choose to either follow the new process, engage in workarounds to get past the block, or potentially repeat work (rework). Unfortunately, these workarounds and rework may lead to other safety concerns. The aim of this study was to examine rework and workarounds in hospital medication administration processes. Observations and semistructured interviews were conducted with 58 nurses from four hospital intensive care units focusing on the medication administration process. Using the constant comparative method, we analyzed the observation and interview data to develop themes regarding rework and workarounds. From this analysis, we developed an integrated process map of the medication administration process depicting blocks. A total of 12 blocks were reported by the participants. Based on the analysis, we categorized them as related to information exchange, information entry, and internal supply chain issues. Whereas information exchange and entry blocks tended to lead to rework, internal supply chain issues were more likely to lead to workarounds. A decentralized pharmacist on the unit may reduce work flow blocks (and, thus, workarounds and rework). Work process redesign may further address the problems of workarounds and rework.
The Potential of the LFR and the ELSY Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinotti, L; Smith, C F; Sienicki, J J
2007-03-12
This paper presents the current status of the development of the Lead-cooled Fast Reactor (LFR) in support of Generation IV (GEN IV) Nuclear Energy Systems. The approach being taken by the GIF plan is to address the research priorities of each member state in developing an integrated and coordinated research program to achieve common objectives, while avoiding duplication of effort. The integrated plan being prepared by the LFR Provisional System Steering Committee of the GIF, known as the LFR System research Plan (SRP) recognizes two principal technology tracks for pursuit of LFR technology: (1) a small, transportable system of 10-100more » MWe size that features a very long refueling interval, (2) a larger-sized system rated at about 600 MWe, intended for central station power generation and waste transmutation. This paper, in particular, describes the ongoing activities to develop the Small Secure Transportable Autonomous Reactor (SSTAR) and the European Lead-cooled SYstem (ELSY), the two research initiatives closely aligned with the overall tracks of the SRP and outlines the Proliferation-resistant Environment-friendly Accident-tolerant Continual & Economical Reactors (PEACER) conceived with particular focus on burning/transmuting of long-living TRU waste and fission fragments of concern, such as Tc and I. The current reference design for the SSTAR is a 20 MWe natural circulation pool-type reactor concept with a small shippable reactor vessel. Specific features of the lead coolant, the nitride fuel containing transuranics, the fast spectrum core, and the small size combine to promote a unique approach to achieve proliferation resistance, while also enabling fissile self-sufficiency, autonomous load following, simplicity of operation, reliability, transportability, as well as a high degree of passive safety. Conversion of the core thermal power into electricity at a high plant efficiency of 44% is accomplished utilizing a supercritical carbon dioxide Brayton cycle power converter. The ELSY reference design is a 600 MWe pool-type reactor cooled by pure lead. This concept has been under development since September 2006, and is sponsored by the Sixth Framework Programme of EURATOM. The ELSY project is being performed by a consortium consisting of twenty organizations including seventeen from Europe, two from Korea and one from the USA. ELSY aims to demonstrate the possibility of designing a competitive and safe fast critical reactor using simple engineered technical features while fully complying with the Generation IV goal of minor actinide (MA) burning capability. The use of a compact and simple primary circuit with the additional objective that all internal components be removable, are among the reactor features intended to assure competitive electric energy generation and long-term investment protection. Simplicity is expected to reduce both the capital cost and the construction time; these are also supported by the compactness of the reactor building (reduced footprint and height). The reduced footprint would be possible due to the elimination of the Intermediate Cooling System, the reduced elevation the result of the design approach of reduced-height components.« less
ERIC Educational Resources Information Center
Seaborg, Glenn T.
1983-01-01
Reviews the historical development of the periodic table, examining major changes due to understanding of radioactivity, synthetic transmutation by bombardment, differences between transuranium elements and the lanthanide series, and the transactinide elements. Discusses the continuing work on atomic synthesis and its importance in extending our…
Jiao, Zhenyu; Tian, Ying; Yang, Xinchun; Liu, Xingpeng
2017-10-01
A 59-year-old male patient was admitted with the main complaints of stuffiness and shortness of breath. An ECG from precordial leads on admission showed masquerading bundle branch block. Syncope frequently occurred after admission. During syncope episodes, ECG telemetry showed that the syncope was caused by intermittent complete atrioventricular block, with the longest RR interval lasting for 4.36 s. At the gap of syncope, ECG showed complete right bundle branch block accompanied by alternation of left anterior fascicular block and left posterior fascicular block. The patient was implanted with a dual-chamber permanent pacemaker. Follow-up of 9 months showed no reoccurrence of syncope.
Autophagy and TGF-Beta Antagonist Signaling in Breast Cancer Dormancy at Premetastatic Sites
2015-06-01
blocking Coco and other players involved in reactivation of dormant legions. These inhibitors will be the drug leads for further medicinal chemistry and...blocking Coco and other players involved in reactivation of dormant legions. These inhibitors will be the drug leads for further medicinal chemistry and... protocol . Below we report our progress, starting with the SOW check list below followed by detailed description. Statement of Work (SOW): Task-1
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials. PMID:28904612
Block copolymers from ionic liquids for the preparation of thin carbonaceous shells.
Hanif, Sadaf; Oschmann, Bernd; Spetter, Dmitri; Tahir, Muhammad Nawaz; Tremel, Wolfgang; Zentel, Rudolf
2017-01-01
This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO 2 nanoparticles, which are functionalized thereafter with a block of ionic-liquid polymer. Pyrolysis of these polymer functionalized inorganic nanoparticles leads to TiO 2 nanoparticles coated with a thin carbonaceous shell. Such materials may, e.g., be interesting as battery materials.
ERIC Educational Resources Information Center
Bogner, Donna, Ed.
1988-01-01
Describes two methods to teach radioactive decay to secondary students with wide ranging abilities. Activities are designed to follow classroom discussions of atomic structure, transmutation, half life, and nuclear decay. Includes "The Tasmanian Empire: A Radioactive Dating Activity" and an exercise to teach concepts of half life without…
Family Environmental and Genetic Influences on Children's Future Chemical Dependency.
ERIC Educational Resources Information Center
Kumpfer, Karol L.; DeMarsh, Joseph
1985-01-01
Discusses the following in relation to their predictability to future drug abuse in youth: (1) susceptibility of children of chemically dependent parents; (2) genetic transmutation; (3) family structure and management; (4) socialization; and (5) cognitive family characteristics. (Author/LHW)
Block-copolymer-controlled growth of CaCO3 microrings.
Gao, Yun-Xiang; Yu, Shu-Hong; Cong, Huaiping; Jiang, Jun; Xu, An-Wu; Dong, W F; Cölfen, Helmut
2006-04-06
A novel way for directed solution growth of hollow superstructures of CaCO3 has been successfully developed on the basis of controlled self-assembly and polymer concentration gradients using a double-hydrophilic block copolymer with a hydrophobic modification as a directing agent. A formation mechanism of such rings is proposed on the basis of the formation of CaCO3 nanoparticles in unstructured block copolymer assemblies with subsequent aggregation of these primary nanoparticles. This leads to the formation of a polymer concentration gradient from the inside to the outside of the particle. As the polymer contains multiple chelating units, this leads to a selective dissolution of the center of the particle.
NASA Astrophysics Data System (ADS)
Brunner, L.; Schaller, N.; Sillmann, J.; Steiner, A. K.
2017-12-01
Atmospheric blocking describes stationary anti-cyclones, which weaken or reverse the climatological flow at mid-latitudes. In the northern hemisphere one of the main blocking regions is located over the North Atlantic and Northern Europe. The link between blocking and European temperature extremes, such as heat waves and cold spells, strongly depends on several aspects like season, longitudinal location of the block, and location of the extremes (particularly Northern Europe versus Southern Europe). We use a 50-member ensemble of the Canadian CanESM2 model to investigate historical (1981-2010) and future (2070-2099) blocking cases and their relationship with European temperature extremes. For the historical period the model results are also compared to those from the ERA-Interim reanalysis. Atmospheric blocking is detected on a daily basis in different 30° longitude windows between 60°W and 60°E, using a standard geopotential height-based detection index. Temperature extremes are defined by the daily Heat/Cold Wave Magnitude Index (HWMId/CWMId). The role of cold advection is found particularly important in winter conditions leading to a more than threefold increase in cold wave occurrence during blocking between 60°W and 0°. During blocking over Northern Europe (0° to 60°E) a split relationship is found with cold wave occurrence being strongly increased in Southern Europe, while it is decreased in Northern Europe. Direct, radiative effects dominate in summer, therefore blocking westward of Europe has a weaker effect, while blocking over Northern Europe leads to an increase of heat waves by at least a factor three at the location of the block and a decrease in cold wave occurrence in almost all of Europe. Comparing the historical and future period we find the link between blocking and temperature extremes in Europe to be robust, even though blocking frequency and temperatures are changing.
24 CFR 570.608 - Lead-based paint.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 3 2011-04-01 2010-04-01 true Lead-based paint. 570.608 Section... DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Other Program Requirements § 570.608 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead...
24 CFR 570.608 - Lead-based paint.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 3 2012-04-01 2012-04-01 false Lead-based paint. 570.608 Section... DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Other Program Requirements § 570.608 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead...
24 CFR 570.608 - Lead-based paint.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 3 2013-04-01 2013-04-01 false Lead-based paint. 570.608 Section... DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Other Program Requirements § 570.608 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead...
24 CFR 570.608 - Lead-based paint.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 3 2014-04-01 2013-04-01 true Lead-based paint. 570.608 Section... DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Other Program Requirements § 570.608 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead...
24 CFR 570.608 - Lead-based paint.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 3 2010-04-01 2010-04-01 false Lead-based paint. 570.608 Section... DEVELOPMENT COMMUNITY FACILITIES COMMUNITY DEVELOPMENT BLOCK GRANTS Other Program Requirements § 570.608 Lead-based paint. The Lead-Based Paint Poisoning Prevention Act (42 U.S.C. 4821-4846), the Residential Lead...
NASA Astrophysics Data System (ADS)
Mola Ebrahimi, S.; Arefi, H.; Rasti Veis, H.
2017-09-01
Our paper aims to present a new approach to identify and extract building footprints using aerial images and LiDAR data. Employing an edge detector algorithm, our method first extracts the outer boundary of buildings, and then by taking advantage of Hough transform and extracting the boundary of connected buildings in a building block, it extracts building footprints located in each block. The proposed method first recognizes the predominant leading orientation of a building block using Hough transform, and then rotates the block according to the inverted complement of the dominant line's angle. Therefore the block poses horizontally. Afterwards, by use of another Hough transform, vertical lines, which might be the building boundaries of interest, are extracted and the final building footprints within a block are obtained. The proposed algorithm is implemented and tested on the urban area of Zeebruges, Belgium(IEEE Contest,2015). The areas of extracted footprints are compared to the corresponding areas in the reference data and mean error is equal to 7.43 m2. Besides, qualitative and quantitative evaluations suggest that the proposed algorithm leads to acceptable results in automated precise extraction of building footprints.
Condensed Matter Nuclear Science
NASA Astrophysics Data System (ADS)
Biberian, Jean-Paul
2006-02-01
1. General. A tribute to gene Mallove - the "Genie" reactor / K. Wallace and R. Stringham. An update of LENR for ICCF-11 (short course, 10/31/04) / E. Storms. New physical effects in metal deuterides / P. L. Hagelstein ... [et al.]. Reproducibility, controllability, and optimization of LENR experiments / D. J. Nagel -- 2. Experiments. Electrochemistry. Evidence of electromagnetic radiation from Ni-H systems / S. Focardi ... [et al.]. Superwave reality / I. Dardik. Excess heat in electrolysis experiments at energetics technologies / I. Dardik ... [et al.]. "Excess heat" during electrolysis in platinum/K[symbol]CO[symbol]/nickel light water system / J. Tian ... [et al.]. Innovative procedure for the, in situ, measurement of the resistive thermal coefficient of H(D)/Pd during electrolysis; cross-comparison of new elements detected in the Th-Hg-Pd-D(H) electrolytic cells / F. Celani ... [et al.]. Emergence of a high-temperature superconductivity in hydrogen cycled Pd compounds as an evidence for superstoihiometric H/D sites / A. Lipson ... [et al.]. Plasma electrolysis. Calorimetry of energy-efficient glow discharge - apparatus design and calibration / T. B. Benson and T. O. Passell. Generation of heat and products during plasma electrolysis / T. Mizuno ... [et al.]. Glow discharge. Excess heat production in Pd/D during periodic pulse discharge current in various conditions / A. B. Karabut. Beam experiments. Accelerator experiments and theoretical models for the electron screening effect in metallic environments / A. Huke, K. Czerski, and P. Heide. Evidence for a target-material dependence of the neutron-proton branching ratio in d+d reactions for deuteron energies below 20keV / A. Huke ... [et al.]. Experiments on condensed matter nuclear events in Kobe University / T. Minari ... [et al.]. Electron screening constraints for the cold fusion / K. Czerski, P. Heide, and A. Huke. Cavitation. Low mass 1.6 MHz sonofusion reactor / R. Stringham. Particle detection. Research into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results of analysis of Ti foil after glow discharge with deuterium / I. B. Savvatimova and D. V. Gavritenkov. Enhancement mechanisms of low-energy nuclear reactions / F. A. Gareev, I. E. Zhidkova, and Y. L. Ratis. Co-deposition of palladium with hydrogen isotopes / J. Dash and A. Ambadkar. Variation of the concentration of isotopes copper and zinc in human plasmas of patients affected by cancer / A. Triassi. Transmutation of metal at low energy in a confined plasma in water / D. Cirillo and V. Iorio. The conditions and realization of self-similar Coulomb collapse of condensed target and low-energy laboratory nucleosynthesis / S. V. Adamenko and V. I. Vysotskii. The spatial structure of water and the problem of controlled low-energy nuclear reactions in water matrix / V. I. Vysotskii and A. A. Kornilova. Experiments on controlled decontamination of water mixture of longlived active isotopes in biological cells / V. I. Vysotskii. Assessment of the biological effects of "strange" radiation / E. A. Pryakhin ... [et al.]. Possible nuclear transmutation of nitrogen in the earth's atmosphere / M. Fukuhara. Evidences on the occurrence of LENR-type processes in alchemical transmutations / J. Pérez-Pariente. History of the discovery of transmutation at Texas A&M University / J. O.-M. Bockris -- 4. Theory. Quantum electrodynamics. Concerning the modeling of systems in terms of quantum electro dynamics: the special case of "cold fusion" / M. Abyaneh ... [et al.]. Screening. Theoretical model of the probability of fusion between deuterons within deformed lattices with microcracks at room temperature / F. Fulvio. Resonant tunnelling. Effective interaction potential in the deuterium plasma and multiple resonance scattering / T. Toimela. Multiple scattering theory and condensed matter nuclear science - "super-absorption" in a crystal latice / X. Z. Li ... [et al.]. Ion band states. Framework for understanding LENR processes, using conventional condensed matter physics / S. R. Chubb. I. Bloch ions / T. A. Chubb. II. Inhibited diffusion driven surface transmutations / T. A. Chubb. III. Bloch nuclides, Iwamura transmutations, and Oriani showers / T. A. Chubb. Bose-Einstein condensate. Theoretical study of nuclear reactions induced by Bose-Einstein condensation in Pd / K.-I. Tsuchiya and H. Okumura. Proposal for new experimental tests of the Bose-Einstein condensation mechanism for low-energy nuclear reaction and transmutation processes in deuterium loaded micro- and nano-scale cavities / Y. E. Kim ... [et al.]. Mixtures of charged bosons confined in harmonic traps and Bose-Einstein condensation mechanism for low-energy nuclear reactions and transmutation processes in condensed matters / Y. E. Kim and A. L. Zubarev. Alternative interpretation of low-energy nuclear reaction processes with deuterated metals based on the Bose-Einstein condensation mechanism / Y. E. Kim and T. O. Passell. Multi-body fusion. [symbol]He/[symbol]He production ratios by tetrahedral symmetric condensation / A. Takahashi. Phonon coupling. Phonon-exchange models: some new results / P. L. Hagelstein. Neutron clusters. Cold fusion phenomenon and solid state nuclear physics / H. Kozima. Neutrinos, magnetic monopoles. Neutrino-driven nuclear reactions of cold fusion and transmutation / V. Filimonov. Light monopoles theory: an overview of their effects in physics, chemistry, biology, and nuclear science (weak interactions) / G. Lochak. Electrons clusters and magnetic monopoles / M. Rambaut. Others. Effects of atomic electrons on nuclear stability and radioactive decay / D. V. Filippov, L. I. Urutskoev, and A. A. Rukhadze. Search for erzion nuclear catalysis chains from cosmic ray erzions stopping in organic scintillator / Yu. N. Bazhutov and E. V. Pletnikov. Low-energy nuclear reactions resulting as picometer interactions with similarity to K-shell electron capture / H. Hora ... [et al.] -- 5. Other topics. On the possible magnetic mechanism of shortening the runaway of RBMK-1000 reactor at Chernobyl Nuclear Power Plant / D. V. Filippov ... [et al.]. Cold fusion in the context of a scientific revolution in physics: history and economic ramifications / E. Lewis. The nucleovoltaic cell / D. D. Moon. Introducing the book "Cold Fusion and the Future" / J. Rothwell. Recent cold fusion claims: are they valid? / L. Kowalski. History of attempts to publish a paper / L. Kowalski.
Application of Lean Sigma to the Audiology Clinic at a Large Academic Center.
Huddle, Matthew G; Tirabassi, Amy; Turner, Laurie; Lee, Emily; Ries, Kathryn; Lin, Sandra Y
2016-04-01
To apply Lean Sigma--a quality improvement strategy to eliminate waste and reduce variation and defects--to improve audiology scheduling and utilization in a large tertiary care referral center. The project goals included an increase in utilization rates of audiology block time and a reduction in appointment lead time. Prospective quality improvement study. Academic tertiary care center. All patients scheduling audiology clinic visits July 2013 to July 2014. Value stream mapping was performed for the audiology scheduling process, and wasteful steps were identified for elimination. Interventions included a 2-week block release, audiology template revision, and reduction of underutilized blocks. Schedule utilization and lead time for new patient diagnostic audiogram were measured for 5 months postintervention and compared with 5 months preintervention. Overall, 2995 preintervention and 3714 postintervention booked appointments were analyzed. Block utilization increased from 77% to 90% after intervention (P < .0001). Utilization of joint-with-provider visits increased from 39% to 67% (P < .0001). Booked appointments increased from 2995 to 3714, with joint-with-provider booked appointments increasing from 317 to 1193. Appointment lead time averaged 24 days postintervention, compared with 29 days preintervention (P = .06). Average monthly relative value units measured 13,321 preintervention and 14,778 postintervention (P = .09). Lean Sigma techniques were successfully used to increase appointment block utilization and streamline scheduling practices. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2016.
Ames, Kenneth R.; Doesburg, James M.
1987-01-01
A well pump includes a piston and an inlet and/or outlet valve assembly of special structure. Each is formed of a body of organic polymer, preferably PTFE. Each includes a cavity in its upper portion and at least one passage leading from the cavity to the bottom of the block. A screen covers each cavity and a valve disk covers each screen. Flexible sealing flanges extend upwardly and downwardly from the periphery of the piston block. The outlet valve block has a sliding block and sealing fit with the piston rod.
Separation of Long-Lived Fission Products Tc-99 and I-129 from Synthetic Effluents by Crown Ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paviet-Hartmann, P.; Hartmann, T.
2006-07-01
To minimize significantly the radio-toxic inventory of nuclear geological repositories to come as well as to reduce the potential of radionuclides migration and to minimize long-term exposure, the concept of partitioning and transmutation (P/T) of nuclear waste is currently discussed. Transmutation offers the possibility to convert radio-toxic radionuclides with long half-lives into radionuclides of shorter half-lives, less toxic isotopes, or even into stable isotopes. Besides the most prominent isotopes of neptunium, plutonium, americium, and curium, the long-lived fission products Tc-99 and I-129 (half-lives of 2.13 x 10{sup 5} years, and 1.57 x 10{sup 7} years, respectively) are promising candidates formore » transmutation in order to prevent their migration from a nuclear repository. Partitioning and transmutation of the most radio-toxic radionuclides will not only minimize the nuclear waste load but most importantly will significantly reduce the long-term radio-toxic hazard of nuclear waste repositories to come. Prior to the deployment of partitioning and transmutation, selective extraction techniques are required to separate the radionuclides of concern. Since the discovery of crown ethers by C. Pedersen, various applications of crown ethers have drawn much attention. Although liquid-liquid extraction of alkali and alkali earth metals by crown ethers has been extensively studied, little data is available on the extraction of Tc-99 and I-129 by crown ethers. The methods developed herein for the specific extraction of Tc-99 and I-129 provide recommendations in support of their selectively extraction from liquid radioactive waste streams, mainly ILW. We report data on the solvent extraction of Tc-99 and I-129 from synthetic effluents by six crown ethers of varying cavity dimensions and derivatization. To satisfy the needs of new extractant systems we are demonstrating that crown ether (CE) based systems have the potential to serve as selective extractants for the separation of these long lived radionuclides from high level nuclear waste (HLW), intermediate level nuclear waste (ILW), and low level nuclear waste (LLW) streams. The experimental results show that dibenzo-18-crown-6 (DB 18C6) is highly selective towards Tc-99, and dicyclohexano-18-crown-6 (DC18C6) is highly selective towards I-129. The nature of the diluent was examined and was shown to be the most influential variable in controlling the extraction coefficients of Tc-99 and I-129. Therefore the addition of polar diluent acetone to non-polar diluent toluene enhanced the distribution coefficient of Tc-99 (DTc) was by a factor of 30. For I-129, the best extraction yield was obtained after introducing tetrachloroethane. Through the process, by a single extraction step, 85 % to 95 % of Tc-99 was extracted from synthetic effluents, while 84 % to 88 % of I-129 was extracted from different acidic media. The extraction by crown ether is a fairly rapid process and the total preparation time of the chemical separation takes about 20 minutes for a batch of eight samples. (authors)« less
High-level radioactive waste management alternatives
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1974-05-01
A summary of a comprehensive overview study of potential alternatives for long-term management of high-level radioactive waste is presented. The concepts studied included disposal in geologic formations, disposal in seabeds, disposal in ice caps, disposal into space, and elimination by transmutation. (TFD)
Clinical Investigation Program Report
1992-10-01
alchemists claim of transmutation of metals by asserting the fundamental differen- ii ces of metals. His medical masterwork was the Canon which remained an...1992. Blount BW: Sexually transmitted disease update. Am Acad Fam Phy, Washington, DC, Oct 1991. Blount BW: A comparison of Family Practice content
Christian Realism’s Response to International Terrorism
2002-04-01
defense which cannot be transmuted into instruments of aggression. The frustrations of the average man, who can never realise the power and the...historical existence, tensions have their root in natural, geographic, economic, racial, national and sexual conditions. But since it interprets
Comparison of the calculation QRS angle for bundle branch block detection
NASA Astrophysics Data System (ADS)
Goeirmanto, L.; Mengko, R.; Rajab, T. L.
2016-04-01
QRS angle represent condition of blood circulation in the heart. Normally QRS angle is between -30 until 90 degree. Left Axis Defiation (LAD) and Right Axis Defiation (RAD) are abnormality conditions that lead to Bundle Branch Block. QRS angle is calculated using common method from physicians and compared to mathematical method using difference amplitudos and difference areas. We analyzed the standard 12 lead electrocardiogram data from MITBIH physiobank database. All methods using lead I and lead avF produce similar QRS angle and right QRS axis quadrant. QRS angle from mathematical method using difference areas is close to common method from physician. Mathematical method using difference areas can be used as a trigger for detecting heart condition.
A new approach to nuclear fuel safeguard enhancement through radionuclide profiling
NASA Astrophysics Data System (ADS)
Peterson, Aaron Dawon
The United States has led the effort to promote peaceful use of nuclear power amongst states actively utilizing it as well as those looking to deploy the technology in the near future. With the attraction being demonstrated by various countries towards nuclear power comes the concern that a nation may have military aspirations for the use of nuclear energy. The International Atomic Energy Agency (IAEA) has established nuclear safeguard protocols and procedures to mitigate nuclear proliferation. The work herein proposed a strategy to further enhance existing safeguard protocols by considering safeguard in nuclear fuel design. The strategy involved the use of radionuclides to profile nuclear fuels. Six radionuclides were selected as identifier materials. The decay and transmutation of these radionuclides were analyzed in reactor operation environment. MCNPX was used to simulate a reactor core. The perturbation in reactivity of the core due to the loading of the radionuclides was insignificant. The maximum positive and negative reactivity change induced was at day 1900 with a value of 0.00185 +/- 0.00256 and at day 2000 with -0.00441 +/- 0.00249, respectively. The mass of the radionuclides were practically unaffected by transmutation in the core; the change in radionuclide inventory was dominated by natural decay. The maximum material lost due to transmutation was 1.17% in Eu154. Extraneous signals from fission products identical to the radionuclide compromised the identifier signals. Eu154 saw a maximum intensity change at EOC and 30 days post-irradiation of 1260% and 4545%, respectively. Cs137 saw a minimum change of 12% and 89%, respectively. Mitigation of the extraneous signals is cardinal to the success of the proposed strategy. The predictability of natural decay provides a basis for the characterization of the signals from the radionuclide.
Transmutation Scoping Studies for a Chloride Molten Salt Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidet, Florent; Feng, Bo; Kim, Taek
2016-01-01
Over the past few years, there has been strong renewed interest from private industry, mostly from start-up enterprises, in molten salt reactor (MSR) technologies because of the unique properties of this class of reactors. These are reactors in which the fuel is homogeneously mixed with the coolant in the form of liquid salts and is circulated continuously into and out of the active core region with on-line fuel management, salt treatment, and salt processing. In response to such wide-spread interest, Argonne National Laboratory is expanding its well-established reactor modelling and simulation expertise and infrastructure to enable detailed analysis and designmore » of MSRs. The tools being developed are able to simulate the continuous fuel flow, the complex on-line fuel management and elemental removal processes (e.g., fission product removal) using depletion steps representative of a real MSR system. Leveraging these capabilities, a parametric study on the transmutation performance of a simplified actinide-burning MSR concept that uses a chloride-based salt was performed. This type of salt has attracted attention over the more commonly discussed fluoride-based salts since no tritium is produced as a result of irradiation and it is compatible with a fast neutron spectrum. The studies discussed in this paper examine the performance of a burner MSR design with a fixed core size and power density over a range of possible fuel salt molar ratios with NaCl-MgCl2 as the carrier salt. The intent is to quantify the impact on the required transuranics content of the make-up fuel, the actinide transmutation rates, and other performance characteristics for typical burner MSR designs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzenne, Claude; Massara, Simone; Tetart, Philippe
2006-07-01
Accelerator Driven Systems offer the advantage, thanks to the core sub-criticality, to burn highly radioactive elements such as americium and curium in a dedicated stratum, and then to avoid polluting with these elements the main part of the nuclear fleet, which is optimized for electricity production. This paper presents firstly the ADS model implemented in the fuel cycle simulation code TIRELIRE-STRATEGIE that we developed at EDF R and D Division for nuclear power scenario studies. Then we show and comment the results of TIRELIRE-STRATEGIE calculation of a transition scenario between the current French nuclear fleet, and a fast reactor fleetmore » entirely deployed towards the end of the 21. century, consistently with the EDF prospective view, with 3 options for the minor actinides management:1) vitrified with fission products to be sent to the final disposal; 2) extracted together with plutonium from the spent fuel to be transmuted in Generation IV fast reactors; 3) eventually extracted separately from plutonium to be incinerated in a ADSs double stratum. The comparison of nuclear fuel cycle material fluxes and inventories between these options shows that ADSs are not more efficient than critical fast reactors for reducing the high level waste radio-toxicity; that minor actinides inventory and fluxes in the fuel cycle are more than twice as high in case of a double ADSs stratum than in case of minor actinides transmutation in Generation IV FBRs; and that about fourteen 400 MWth ADS are necessary to incinerate minor actinides issued from a 60 GWe Generation IV fast reactor fleet, corresponding to the current French nuclear fleet installed power. (authors)« less
NASA Astrophysics Data System (ADS)
Brunner, Lukas; Steiner, Andrea; Sillmann, Jana
2017-04-01
Atmospheric blocking is a key contributor to European temperature extremes. It leads to stable, long-lasting weather patterns, which favor the development of cold and warm spells. The link between blocking and such temperature extremes differs significantly across Europe. In northern Europe a majority of warm spells are connected to blocking, while cold spells are suppressed during blocked conditions. In southern Europe the opposite picture arises with most cold spells occurring during blocking and warm spells suppressed. Building on earlier work by Brunner et al. (2017) this study aims at a better understanding of the connection between blocking and temperature extremes in Europe. We investigate cold and warm spells with and without blocking in observations from the European daily high-resolution gridded dataset (E-OBS) from 1979 to 2015. We use an objective extreme index (Russo et al. 2015) to identify and compare cold and warm spells across Europe. Our work is lead by the main question: Are cold/warm spells coinciding with blocking different from cold/warm spells during unblocked conditions in regard to duration, extend, or amplitude? Here we present our research question and the study setup, and show first results of our analysis on European temperature extremes. Brunner, L., G. Hegerl, and A. Steiner (2017): Connecting Atmospheric Blocking to European Temperature Extremes in Spring. J. Climate, 30, 585-594, doi: 10.1175/JCLI-D-16-0518.1. Russo, S., J. Sillmann, and E. M. Fischer (2015): Top ten European heatwaves since 1950 and their occurrence in the coming decades. Environ. Res. Lett. 10.12, S. 124003. doi: 10.1088/1748-9326/10/12/124003.
1988-05-23
Unclass) 12. PERSONAL AUTHOR(S) % Priest, Jolene J., McIllece, Raymond P. I 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month...and identify by block number) FIELD GROUP SUB-GROUP Procurement (u), Procurement Work Directive (PWD) (u), Administrative Lead Time (ALT) (u...Procurement Administra-( A A o e e e time Lead Time (PALf) (u) "p 19. ABSTRACT (Continue on reverse if necessary and identify by block number) The practice of
Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.
1987-08-05
A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.
Sensitivity Studies and Experimental Evaluation for Optimizing Transcurium Isotope Production
Hogle, Susan L.; Alexander, Charles W.; Burns, Jonathan D.; ...
2017-03-01
This work applies to recent initiatives at the Radiochemical Engineering Development Center at Oak Ridge National Laboratory to optimize the production of transcurium isotopes in the High Flux Isotope Reactor in such a way as to prolong the use of high quality heavy curium feedstock. By studying the sensitivity of fission and transmutation reaction rates to the neutron flux spectrum a means of increasing the fraction of (n,γ) reactions per neutron absorption is explored. Filter materials which preferentially absorb neutrons at energies considered detrimental to optimal transcurium production are identified and transmutation rates are examined with high energy resolution. Experimentalmore » capsules are irradiated employing filter materials and the resulting fission and activation products studied to validate the filtering methodology. Improvement is seen in the production efficiency of heavier curium isotopes in 244Cm and 245Cm targets, and potentially in production of 252Cf from mixed californium targets. Finally, further analysis is recommended to evaluate longer duration irradiations more representative of typical transcurium production.« less
Next generation fuel irradiation capability in the High Flux Reactor Petten
NASA Astrophysics Data System (ADS)
Fütterer, Michael A.; D'Agata, Elio; Laurie, Mathias; Marmier, Alain; Scaffidi-Argentina, Francesco; Raison, Philippe; Bakker, Klaas; de Groot, Sander; Klaassen, Frodo
2009-07-01
This paper describes selected equipment and expertise on fuel irradiation testing at the High Flux Reactor (HFR) in Petten, The Netherlands. The reactor went critical in 1961 and holds an operating license up to at least 2015. While HFR has initially focused on Light Water Reactor fuel and materials, it also played a decisive role since the 1970s in the German High Temperature Reactor (HTR) development program. A variety of tests related to fast reactor development in Europe were carried out for next generation fuel and materials, in particular for Very High Temperature Reactor (V/HTR) fuel, fuel for closed fuel cycles (U-Pu and Th-U fuel cycle) and transmutation, as well as for other innovative fuel types. The HFR constitutes a significant European infrastructure tool for the development of next generation reactors. Experimental facilities addressed include V/HTR fuel tests, a coated particle irradiation rig, and tests on fast reactor, transmutation and thorium fuel. The rationales for these tests are given, results are provided and further work is outlined.
The influence of dislocation and hydrogen on thermal helium desorption behavior in Fe9Cr alloys
NASA Astrophysics Data System (ADS)
Zhu, Te; Jin, Shuoxue; Gong, Yihao; Lu, Eryang; Song, Ligang; Xu, Qiu; Guo, Liping; Cao, Xingzhong; Wang, Baoyi
2017-11-01
Transmutation helium may causes serious embrittlement which is considered to be due to helium from clustering as a bubble in materials. Suppression of transmutation helium can be achieved by introducing trapping sites such as dislocations and impurities in materials. Here, effects of intentionally-induced dislocations and hydrogen on helium migrate and release behaviors were investigated using thermal desorption spectrometry (TDS) technique applied to well-annealed and cold-worked Fe9Cr alloys irradiated by energetic helium/hydrogen ions. Synchronous desorption of helium and hydrogen was observed, and the microstructure states during helium release at different temperatures were analyzed. High thermally stable HenD type complexes formed in cold-worked specimens, resulting in the retardation of helium migration and release. The existence of hydrogen will strongly affect the thermal helium desorption which could be reflected in the TDS spectrum. It was confirmed that hydrogen retained in the specimens can result in obvious delay of helium desorption.
Apelgot, S
1980-04-01
The experiments show the lethal effect of the beta decay of 33P incorporated in DNA of bacteriophage S 13. The lethal efficiency is high, 0.72 at 0 degrees C and 0.55 at--197 degrees C. The presence of a radical scavenger like AET has no influence. It was found previously that for such phages with single-stranded DNA, the lethal efficiency of 32P decay is unity, and that the lethal event is a DNA single-strand break, owing to the high energy of the nucleogenic 32S atom. As the recoil energy of the 33S atom is too low to account for such a break, it is suggested that the reorganization of the phosphate molecule into sulphate is able to bring about a DNA single-strand break with an efficiency as high as 0.7, at 0 degrees C. A model for the DNA double-strand-break produced by a transmutation processes is suggested.
Plasmon transmutation: inducing new modes in nanoclusters by adding dielectric nanoparticles.
Wen, Fangfang; Ye, Jian; Liu, Na; Van Dorpe, Pol; Nordlander, Peter; Halas, Naomi J
2012-09-12
Planar clusters of coupled plasmonic nanoparticles support nanoscale electromagnetic "hot spots" and coherent effects, such as Fano resonances, with unique near and far field signatures, currently of prime interest for sensing applications. Here we show that plasmonic cluster properties can be substantially modified by the addition of individual, discrete dielectric nanoparticles at specific locations on the cluster, introducing new plasmon modes, or transmuting existing plasmon modes to new ones, in the resulting metallodielectric nanocomplex. Depositing a single carbon nanoparticle in the junction between a pair of adjacent nanodisks induces a metal-dielectric-metal quadrupolar plasmon mode. In a ten-membered cluster, placement of several carbon nanoparticles in junctions between multiple adjacent nanoparticles introduces a collective magnetic plasmon mode into the Fano dip, giving rise to an additional subradiant mode in the metallodielectric nanocluster response. These examples illustrate that adding dielectric nanoparticles to metallic nanoclusters expands the number and types of plasmon modes supported by these new mixed-media nanoscale assemblies.
An omnidirectional retroreflector based on the transmutation of dielectric singularities.
Ma, Yun Gui; Ong, C K; Tyc, Tomás; Leonhardt, Ulf
2009-08-01
Transformation optics is a concept used in some metamaterials to guide light on a predetermined path. In this approach, the materials implement coordinate transformations on electromagnetic waves to create the illusion that the waves are propagating through a virtual space. Transforming space by appropriately designed materials makes devices possible that have been deemed impossible. In particular, transformation optics has led to the demonstration of invisibility cloaking for microwaves, surface plasmons and infrared light. Here, on the basis of transformation optics, we implement a microwave device that would normally require a dielectric singularity, an infinity in the refractive index. To fabricate such a device, we transmute a dielectric singularity in virtual space into a mere topological defect in a real metamaterial. In particular, we demonstrate an omnidirectional retroreflector, a device for faithfully reflecting images and for creating high visibility from all directions. Our method is robust, potentially broadband and could also be applied to visible light using similar techniques.
Melville, G; Melville, P
2013-02-01
Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation by bombarding Ra-226 with high-energy neutrons from a neutron source to produce Ra-225 and hence Ac-225, which can be used as a generator to produce Bi-213 for use in 'Targeted Alpha Therapy' for cancer. This paper examines the possibility of producing Ac-225 by neutron capture using a theoretical model in which neutron energy is convoluted with the corresponding neutron cross sections of Ra-226. The total integrated yield can then be obtained. This study shows that an intense beam of high-energy neutrons could initiate neutron capture on Ra-226 to produce Ra-225 and hence practical amounts of Ac-225 and a useful reduction of Ra-226. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khmelnytskaya, Kira V., E-mail: khmel@uaq.edu.mx; Kravchenko, Vladislav V., E-mail: vkravchenko@math.cinvestav.edu.mx; Torba, Sergii M., E-mail: storba@math.cinvestav.edu.mx
2016-05-15
The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V.more » V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.« less
Possible mechanism of polyspermy block in human oocytes observed by time-lapse cinematography.
Mio, Yasuyuki; Iwata, Kyoko; Yumoto, Keitaro; Kai, Yoshiteru; Sargant, Haruka C; Mizoguchi, Chizuru; Ueda, Minako; Tsuchie, Yuka; Imajo, Akifumi; Iba, Yumiko; Nishikori, Kyoko
2012-09-01
To analyze the fertilization process related to polyspermy block in human oocytes using an in vitro culturing system for time-lapse cinematography. We had 122 oocytes donated for this study from couples that provided informed consent. We recorded human oocytes at 2,000 to 2,800 frames every 10 s during the fertilization process and thereafter every 2 min using a new in vitro culture system originally developed by the authors for time-lapse cinematography. We displayed 30 frames per second for analysis of the polyspermy block during fertilization. Three oocytes showed the leading and following sperm within the zona pellucida in the same microscopic field. The dynamic images obtained during the fertilization process using this new system revealed that once a leading sperm penetrated the zona pellucida and attached to the oocyte membrane, a following sperm was arrested from further penetration into the zona pellucida within 10 s. The present results strongly suggest the existence of a novel mechanism of polyspermy block that takes place at the zona pellucida immediately after fertilization. These findings are clearly different from previous mechanisms describing polyspermy block as the oocyte membrane block to sperm penetration and the zona reaction. The finding presented herein thus represents a novel discovery about the highly complicated polyspermy block mechanism occurring in human oocytes.
Acquired heart block: a possible complication of patent ductus arteriosus in a preterm infant.
Grasser, Monika; Döhlemann, Christoph; Mittal, Rashmi; Till, Holger; Dietz, Hans-Georg; Münch, Georg; Holzinger, Andreas
2008-01-01
A large patent ductus arteriosus (PDA) is a frequently encountered clinical problem in extremely low birth weight (ELBW) infants. It leads to an increased pulmonary blood flow and in a decreased or reversed diastolic flow in the systemic circulation, resulting in complications. Here we report a possible complication of PDA not previously published. On day 8 of life, a male ELBW infant (birth weight 650 g) born at a gestational age of 23 weeks and 3 days developed an atrioventricular block (AV block). The heart rate dropped from 168/min to 90/min, and the ECG showed a Wenckebach second-degree AV block and intraventricular conduction disturbances. Echocardiography demonstrated a PDA with a large left-to-right shunt and large left atrium and left ventricle with high contractility. Within several minutes after surgical closure of the PDA, the heart rate increased, and after 30 min the AV block had improved to a 1:1 conduction ratio. Echocardiography after 2 h revealed a significant decrease of the left ventricular and atrial dimensions. Within 12 h, the AV block completely reversed together with the intraventricular conduction disturbances. We suggest that PDA with a large left-to-right shunt and left ventricular volume overload may lead to an AV block in an ELBW infant. Surgical closure of the PDA may be indicated. (c) 2007 S. Karger AG, Basel.
Organic photovoltaic cell incorporating electron conducting exciton blocking layers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forrest, Stephen R.; Lassiter, Brian E.
2014-08-26
The present disclosure relates to photosensitive optoelectronic devices including a compound blocking layer located between an acceptor material and a cathode, the compound blocking layer including: at least one electron conducting material, and at least one wide-gap electron conducting exciton blocking layer. For example, 3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI) and 1,4,5,8-napthalene-tetracarboxylic-dianhydride (NTCDA) function as electron conducting and exciton blocking layers when interposed between the acceptor layer and cathode. Both materials serve as efficient electron conductors, leading to a fill factor as high as 0.70. By using an NTCDA/PTCBI compound blocking layer structure increased power conversion efficiency is achieved, compared to anmore » analogous device using a conventional blocking layers shown to conduct electrons via damage-induced midgap states.« less
Preschoolers' Thinking during Block Play
ERIC Educational Resources Information Center
Piccolo, Diana L.; Test, Joan
2010-01-01
Children build foundations for mathematical thinking in early play and exploration. During the preschool years, children enjoy exploring mathematical concepts--such as patterns, shape, spatial relationships, and measurement--leading them to spontaneously engage in mathematical thinking during play. Block play is one common example that engages…
Performance of lead-free versus lead-based hunting ammunition in ballistic soap.
Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl
2014-01-01
Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks.
Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap
Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl
2014-01-01
Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape, and reproducibility, showing that similar terminal ballistic behavior can be achieved. Furthermore, the volumetric image processing allowed superior analysis compared to methods that involve cutting of the soap blocks. PMID:25029572
Classical conformal blocks and accessory parameters from isomonodromic deformations
NASA Astrophysics Data System (ADS)
Lencsés, Máté; Novaes, Fábio
2018-04-01
Classical conformal blocks appear in the large central charge limit of 2D Virasoro conformal blocks. In the AdS3 /CFT2 correspondence, they are related to classical bulk actions and used to calculate entanglement entropy and geodesic lengths. In this work, we discuss the identification of classical conformal blocks and the Painlevé VI action showing how isomonodromic deformations naturally appear in this context. We recover the accessory parameter expansion of Heun's equation from the isomonodromic τ -function. We also discuss how the c = 1 expansion of the τ -function leads to a novel approach to calculate the 4-point classical conformal block.
Joint Service Chemical and Biological Defense Program. FY00-02 Overview
2001-09-01
Development. Contractors: 12 BI DS Biological Integrated Detection System (BIDS) Lead Service Bio Road HERCULES, CA Bruker Analytical Systems BILLERICA, MA...Dynamics Land Systems Division DETROIT, MI Henschel Wehrtechnik GERMANY Bruker -Franzen GERMANY Block II – TBD Milestones Block I MS III (2QFY94) Block...ground. Accessories include hoses and hose reels, two trigger-controlled spray wands , and two electrical-powered scrub brush assemblies. The M22
Phase noise suppression for coherent optical block transmission systems: a unified framework.
Yang, Chuanchuan; Yang, Feng; Wang, Ziyu
2011-08-29
A unified framework for phase noise suppression is proposed in this paper, which could be applied in any coherent optical block transmission systems, including coherent optical orthogonal frequency-division multiplexing (CO-OFDM), coherent optical single-carrier frequency-domain equalization block transmission (CO-SCFDE), etc. Based on adaptive modeling of phase noise, unified observation equations for different coherent optical block transmission systems are constructed, which lead to unified phase noise estimation and suppression. Numerical results demonstrate that the proposal is powerful in mitigating laser phase noise.
Sharing Information among Various Organizations in Relief Efforts
2005-09-01
in which two or more social actors work together toward a singular common end that requires the transmutation of materials, ideas, and/or social...women and children to malnutrition and famine, sexual violence, and displacement. The women’s risk of unemployment and loss of income-generating work
On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles
Fitzpatrick, A. Liam; Kaplan, Jared
2017-04-12
Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS 3/CFT 2 can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all ‘saddles’ that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, andmore » at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS 3. Furthermore, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.« less
On the late-time behavior of Virasoro blocks and a classification of semiclassical saddles
NASA Astrophysics Data System (ADS)
Fitzpatrick, A. Liam; Kaplan, Jared
2017-04-01
Recent work has demonstrated that black hole thermodynamics and information loss/restoration in AdS3/CFT2 can be derived almost entirely from the behavior of the Virasoro conformal blocks at large central charge, with relatively little dependence on the precise details of the CFT spectrum or OPE coefficients. Here, we elaborate on the non-perturbative behavior of Virasoro blocks by classifying all `saddles' that can contribute for arbitrary values of external and internal operator dimensions in the semiclassical large central charge limit. The leading saddles, which determine the naive semiclassical behavior of the Virasoro blocks, all decay exponentially at late times, and at a rate that is independent of internal operator dimensions. Consequently, the semiclassical contribution of a finite number of high-energy states cannot resolve a well-known version of the information loss problem in AdS3. However, we identify two infinite classes of sub-leading saddles, and one of these classes does not decay at late times.
Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine.
Theisen, Michael; Jore, Matthijs M; Sauerwein, Robert
2017-04-01
Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which are essential for the transmission to the mosquito vector. A vaccine targeting the sexual stages of the parasite and thus blocking transmission will be instrumental for the eradication of malaria. One of the leading transmission blocking vaccine candidates is the sexual stage antigen Pfs48/45. Areas covered: PubMed was searched to review the progress and future prospects for clinical development of a Pfs48/45-based subunit vaccine. We will focus on biological function, naturally acquired immunity, functional activity of specific antibodies, sequence diversity, production of recombinant protein and preclinical studies. Expert commentary: Pfs48/45 is one of the lead-candidates for a transmission blocking vaccine and should be further explored in clinical trials.
Marques, Lucas; Franchini, Emerson; Drago, Gustavo; Aoki, Marcelo S.
2017-01-01
Block periodization (BP) has been proposed as an alternative approach for application in the context of high-level sports. Despite its growing acceptance, there is no empirical evidence of BP adoption in high-level judo athletes. Therefore, this study aimed to compare the maximal strength, muscle power, judo-specific performances, and hormonal concentration changes of state/national level (NG) and international level (IG) judo athletes subjected to BP. Twenty-one elite judo athletes (international level = 10; 21.7±1.9 years, 167.2±7.6 cm, 67.6±9.4 kg, 15.7±1.9 years of practice; national level = 11; 21.9±3.0 years, 167.5±9.1 cm, 71.8±16.5, 15.9±3.0 years of practice) were subjected to 13-week BP training (5-week accumulation phase [ACP], 5-week transmutation phase [TP], and 3-week realization phase [RP]). The judo-specific performance (SJFT) increased as there was observed a decrease in the SJFT index (final heart rate [HR] (bpm) + HR1 min after the test divided by the number of throws) for both NG (effect size [ES] = 0.83) and IG (ES = 0.53) from ACP to TP (p < 0.05). The row exercise maximal strength decreased (p < 0.05; ES = 1.35) after the ACP but returned to the baseline level after the TP, for the whole group (ES = 1.39). The athletes did seem to cope appropriately with the demands of BP, as besides increases in SJFT performance no significant changes were observed for cortisol and testosterone concentrations. This is the first study to demonstrate that judo athletes from different competitive levels subjected to BP improved SJFT, likely due to an appropriate balance between training loads and recovery. Thus, the BP approach may be a useful alternative periodization strategy for high-level judo athletes. PMID:29472740
Joint Force Quarterly. Number 6, Autumn/Winter 1994-95
1994-11-01
enhances the per- formance of the other. Indeed, the strategic challenge often is to find ways to transmute success in one environment into good enough...President Clinton “with contemptuous ease” on issues such as revising military policy toward homo- sexuals and using force in ex-Yugoslavia. Kohn accuses
2005-10-01
Many plants have both sexual and vegetative reproduction, and this may be best handled with separate classes that reflect meaningful differ- ences in... Transmutation and functional representation of heterogeneous landscapes.” Landscape Ecology 5: 239-253. LaGro, J.Jr. 1991. “Assessing patch
Transmuting Common Substances: The Cold Fusion Controversy and the Rhetoric of Science.
ERIC Educational Resources Information Center
Thacker, Brad; Stratman, James F.
1995-01-01
Explores the relationship among forensic, deliberative, and epideictic modes of rhetoric in the cold fusion controversy. Shows the interactions between three modes of rhetoric. Examines the ways in which the modes have shaped the emerging scientific consensus. Supports Robert Sanders' contention that rhetorical practices interact with scientific…
Development of advanced technological systems for accelerator transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batskikh, G.I.; Bondarev, B.I.; Durkin, A.P.
1995-10-01
A development concept of the accelerator nuclear energy reactors is considered for energy generation and nuclear power plant waste conversion into short-lived nuclides along with the requirements imposed on the technological systems necessary for implementation of such projects. The state of art in the field is discussed.
The Aspiring Adept: Robert Boyle and His Alchemical Quest (Lawrence M. Principe)
NASA Astrophysics Data System (ADS)
Kovac, Jeffrey
1999-10-01
Robert Boyle is widely regarded as the Father of Modern Chemistry, who broke once and for all from the irrational, misguided alchemy that preceded him. One of the goals of this carefully researched and argued new book by Lawrence M. Principe, Assistant Professor in the Department of Chemistry and the Institute for the History of Science, Medicine, and Technology at The Johns Hopkins University, is to refute the two errors in this characterization of Boyle and to understand his life, thought, and work in the intellectual and social context of his time. This book is not for the casual reader; it is a detailed scholarly treatise in the history of science, but it provides a fresh and interesting perspective on Boyle and on the development of chemistry in the 17th century. Boyle is usually characterized as a modern scientist and his most famous book, The Skeptical Chymist, as a critique of traditional alchemy. Principe demonstrates that this characterization is based on a selective and sometimes incorrect reading of Boyle's works. Like Newton, Boyle was deeply involved in traditional transmutational alchemy, reading the works of other alchemists, performing experiments, and even witnessing transmutations. Alchemy, however, was not a monolith and Boyle adhered to what Principe tentatively identifies as a uniquely English school of supernatural alchemy. According to Principe, The Skeptical Chymist was mainly a criticism of the Paracelsians interested in chemical medicine rather than a defense of what we would now regard as modern chemistry. To further support his characterization of Boyle and to better reveal Boyle's involvement in alchemyparticularly the transmutation of base metals to gold, termed chrysopoeiaPrincipe has reconstructed from some 20 fragments one of Boyle's alchemical manuscripts, his Dialogue on the Transmutation of Metals. The full text of this lost work is included as Appendix 1. Two other primary sources, Interview Accounts of Transmutations and Prefaces to Boyle's Other Chrysopoetic Writings, and Robert Boyle's Dialogue on the Converse with Angels Aided by the Philosophers Stone, are also printed, as Appendices 2 and 3. Both Robert Boyle and 17th-century chemistry emerge from this book as exceedingly complex. The development of chemistry cannot be regarded as either straightforward or linear. As Boyle's work exemplifies, ideas from traditional alchemy were important in the development of chemistry. For example, Boyle's corpuscularian hypothesis is partly derived from the alchemical corpuscularian traditionthe minima of Geber. Alchemy was part of the intellectual context in which both Boyle and Newton were raised and it played an important part in their thinking. For Boyle, alchemy was also closely linked to Christianity. He regarded the philosophers' stone as a powerful weapon against the growing atheism of his time. The possessor of the stone could summon angels and other spirits, thus providing support for crucial theological truths. Religion was as important a motivation as both natural philosophy and the potential for the development of potent medicines for Boyle's study of alchemy. This book is a rich source of information on Robert Boyle, alchemy, and the development of 17th century chemistry. It is not an easy book, however; it requires close attention and some background in the history of science. For those interested in the development of modern science, this is a valuable addition to the growing collection of excellent new books.
[Ultrasound-guided rectus sheath block for upper abdominal surgery].
Osaka, Yoshimune; Kashiwagi, Masanori; Nagatsuka, Yukio; Oosaku, Masayoshi; Hirose, Chikako
2010-08-01
Upper abdominal surgery leads to severe postoperative pain. Insufficient postoperative analgesia accompanies a high incidence of complications. Therefore, postoperative analgesia is very important. The epidural analgesia has many advantages. However it has a high risk of epidural hematoma in anticoagulated patients. Rectus sheath block provided safer and more reliable analgesia in recent years, by the development of ultrasound tools. We experienced two cases of the rectus sheath block in upper abdominal surgery under ultrasound guidance. Ultrasound guided rectus sheath block can reduce the risk of peritoneal puncture, bleeding, and other complications. Rectus sheath block is very effective to reduce postoperative pain in upper abdominal surgery as an alternative method to epidural anesthesia in anticoagulated patients.
Microphase separation in random multiblock copolymers
NASA Astrophysics Data System (ADS)
Govorun, E. N.; Chertovich, A. V.
2017-01-01
Microphase separation in random multiblock copolymers is studied with the mean-field theory assuming that long blocks of a copolymer are strongly segregated, whereas short blocks are able to penetrate into "alien" domains and exchange between the domains and interfacial layer. A bidisperse copolymer with blocks of only two sizes (long and short) is considered as a model of multiblock copolymers with high polydispersity in the block size. Short blocks of the copolymer play an important role in the microphase separation. First, their penetration into the "alien" domains leads to the formation of joint long blocks in their own domains. Second, short blocks localized at the interface considerably change the interfacial tension. The possibility of penetration of short blocks into the "alien" domains is controlled by the product χ Nsh (χ is the Flory-Huggins interaction parameter and Nsh is the short block length). At not very large χ Nsh , the domain size is larger than that for a regular copolymer consisting of the same long blocks as in the considered random copolymer. At a fixed mean block size, the domain size grows with an increase in the block size dispersity, the rate of the growth being dependent of the more detailed parameters of the block size distribution.
Role of Polyalanine Domains in -Sheet Formation in Spider Silk Block Copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabotyagova, O.; Cebe, P; Kaplan, D
2010-01-01
Genetically engineered spider silk-like block copolymers were studied to determine the influence of polyalanine domain size on secondary structure. The role of polyalanine block distribution on {beta}-sheet formation was explored using FT-IR and WAXS. The number of polyalanine blocks had a direct effect on the formation of crystalline {beta}-sheets, reflected in the change in crystallinity index as the blocks of polyalanines increased. WAXS analysis confirmed the crystalline nature of the sample with the largest number of polyalanine blocks. This approach provides a platform for further exploration of the role of specific amino acid chemistries in regulating the assembly of {beta}-sheetmore » secondary structures, leading to options to regulate material properties through manipulation of this key component in spider silks.« less
Li, Xue; Zhao, Shuying; Zhang, Shuxiang; Kim, Dong Ha; Knoll, Wolfgang
2007-06-19
Inorganic compound HAuCl4, which can form a complex with pyridine, is introduced into a poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) block copolymer/poly(methyl methacrylate) (PMMA) homopolymer mixture. The orientation of the cylindrical microdomains formed by the P2VP block, PMMA, and HAuCl4 normal to the substrate surface can be generated via cooperative self-assembly of the mixture. Selective removal of the homopolymer can lead to porous nanostructures containing metal components in P2VP domains, which have a novel photoluminescence property.
Text block identification in restoration process of Javanese script damage
NASA Astrophysics Data System (ADS)
Himamunanto, A. R.; Setyowati, E.
2018-05-01
Generally, in a sheet of documents there are two objects of information, namely text and image. A text block area in the sheet of manuscript is a vital object because the restoration process would be done only in this object. Text block or text area identification becomes an important step before. This paper describes the steps leading to the restoration of Java script destruction. The process stages are: pre-processing, identification of text block, segmentation, damage identification, restoration. The test result based on the input manuscript “Hamong Tani” show that the system works with a success rate of 82.07%
A simple, efficient resistance soldering apparatus
NASA Technical Reports Server (NTRS)
Vermillion, C. M.
1972-01-01
Multiple resistance soldering device for attaching electric leads to multiple terminal block connectors uses power source with one terminal connected to working probe, and other terminal attached to connector carrying common pins for lead insertion. Mating of male and female connectors solders each lead to individual cup pin.
Friction Sensitivity of Primary Explosives
1982-09-01
diffeomI from. Report) ISI. SUPPLEMENTARY NOTES It. KEY WORDS (Contflnuo on rvotr.. oldo. it nec~oaoty and Identify by block ri,uobr) Friction...friction senisitivity. Primary explosives RD 1333 lead azide, dextrinated lead azide, polyvinyl-alcohol (PVA)-lead a~.ide, colloidal lead azide, nocrnal lead...results for dextrinated lead azide duPont 52-127 13 4 A comparison of friction data at 10% probability of initiation 14 FIGURES 1 Working surfaces of BAM
NASA Astrophysics Data System (ADS)
Morgan, T. W.; van den Berg, M. A.; De Temmerman, G.; Bardin, S.; Aussems, D. U. B.; Pitts, R. A.
2017-12-01
For the final design of the ITER divertor it is important to determine whether shaping of each tungsten monoblock to eliminate leading edges is required or not. In order to aid this decision, two experiments were performed in DIFFER’s linear plasma devices to study heat loads on misaligned water cooled blocks at glancing incidence. First, a series of tungsten blocks were exposed to a high parallel heat flux (26 MW \
The First Row Anomaly and Recoupled Pair Bonding in the Halides of the Late p-Block Elements
2012-01-01
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N–F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF5 and SF6 and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF2. Recoupled pair bonding also causes the Fn–1X–F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF3 and PF2H, but not PH2F and PH3) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH3)2S + F2. Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row. PMID:23151313
The first row anomaly and recoupled pair bonding in the halides of the late p-block elements.
Dunning, Thom H; Woon, David E; Leiding, Jeff; Chen, Lina
2013-02-19
The dramatic differences between the properties of molecules formed from the late p-block elements of the first row of the periodic table (N-F) and those of the corresponding elements in subsequent rows is well recognized as the first row anomaly. Certain properties of the atoms, such as the relative energies and spatial extents of the ns and np orbitals, can explain some of these differences, but not others. In this Account, we summarize the results of our recent computational studies of the halides of the late p-block elements. Our studies point to a single underlying cause for many of these differences: the ability of the late p-block elements in the second and subsequent rows of the periodic table to form recoupled pair bonds and recoupled pair bond dyads with very electronegative ligands. Recoupled pair bonds form when an electron in a singly occupied ligand orbital recouples the pair of electrons in a doubly occupied lone pair orbital on the central atom, leading to a central atom-ligand bond. Recoupled pair bond dyads occur when a second ligand forms a bond with the orbital left over from the initial recoupled pair bond. Recoupled pair bonds and recoupled pair bond dyads enable the late p-block elements to form remarkably stable hypervalent compounds such as PF(5) and SF(6) and lead to unexpected excited states in smaller halides of the late p-block elements such as SF and SF(2). Recoupled pair bonding also causes the F(n-1)X-F bond energies to oscillate dramatically once the normal valences of the central atoms have been satisfied. In addition, recoupled pair bonding provides a lower-energy pathway for inversion in heavily fluorinated compounds (PF(3) and PF(2)H, but not PH(2)F and PH(3)) and leads to unusual intermediates and products in reactions involving halogens and late p-block element compounds, such as (CH(3))(2)S + F(2). Although this Account focuses on the halides of the second row, late p-block elements, recoupled pair bonds and recoupled pair bond dyads are important in the chemistry of p-block elements beyond the second row (As, Se, and Br) and for compounds of these elements with other very electronegative ligands, such as OH and O. Knowledge of recoupled pair bonding is thus critical to understanding the properties and reactivity of molecules containing the late p-block elements beyond the first row.
facility at Los Alamos: experiment E225. The main objective was to detect the scattering of electron detect the transmutation of C12 to N12 mediated by means of the electron-neutrino. This was also ;oscillate" to tau or, perhaps electron-type neutrinos on their way from Fermilab. MINOS was not
Matters of Taste: Bridging Molecular Physiology and the Humanities
ERIC Educational Resources Information Center
Rangachari, P. K.; Rangachari, Usha
2015-01-01
Taste perception was the focus of an undergraduate course in the health sciences that bridged the sciences and humanities. A problem-based learning approach was used to study the biological issues, whereas the cultural transmutations of these molecular mechanisms were explored using a variety of resources (novels, cookbooks, and films). Multiple…
Martin, P A
1999-01-01
Arguing that a consensus-based method of bioethical decision making can transform ethical pluralism into an ethical whole, author examines the theory of three consensus-based models--clinical pragmatism, ethics facilitation, and mediation--and develops a practical guide to ethics facilitation that includes a hypothetical case.
ERIC Educational Resources Information Center
Garcia, Sara
2006-01-01
This is an historical analysis of English Only programs in California and their impact on bilingualism as a natural acquisition process. Factors that propagate bilingualism such as a continual flow of Spanish speaking immigrants, and social, economic and ethnic isolation, are delineated for theorizing about key aspects of multilingualism, the…
1991-05-06
Phys- (loosely) Quantum Chaos Theory entific Paradigm ics - atomistic move- ments Value Claims transmutes values value isolated into Values incorporat...infant care 3. immunizations 4. sexually transmissible disease services 5. high blood pressure control 6. toxic agent control 7. occupational safety and
2008-06-01
make better technology investment decisions. C. FOLLOW-ON RESEARCH POTENTIAL Like most assets, knowledge is only valuable if it can be transmuted ...CID Agent Sexual Assault Investigations Training E5 5 Conduct preliminary investigation on referable cases 5811 Basic Military Police Intelligence In
1980-10-01
the various medical centers transmute such liability to the Government. The agency spent must be critically examined to determine whether they can...edu- pational hazards, sexual harassment, and working mothers. cation exist as those identified by the States. In trying to get States to increase the
Reactor production of Thorium-229
Boll, Rose Ann; Murphy, Karen E.; Denton, David L.; ...
2016-05-03
Limited availability of 229Th for clinical applications of 213Bi necessitates investigation of alternative production routes. In reactor production, 229Th is produced from neutron transmutation of 226Ra, 228Ra, 227Ac and 228Th. Here, we evaluate irradiations of 226Ra, 228Ra, and 227Ac targets at the ORNL High Flux Isotope Reactor.
Gas core reactors for actinide transmutation. [uranium hexafluoride
NASA Technical Reports Server (NTRS)
Clement, J. D.; Rust, J. H.; Wan, P. T.; Chow, S.
1979-01-01
The preliminary design of a uranium hexafluoride actinide transmutation reactor to convert long-lived actinide wastes to shorter-lived fission product wastes was analyzed. It is shown that externally moderated gas core reactors are ideal radiators. They provide an abundant supply of thermal neutrons and are insensitive to composition changes in the blanket. For the present reactor, an initial load of 6 metric tons of actinides is loaded. This is equivalent to the quantity produced by 300 LWR-years of operation. At the beginning, the core produces 2000 MWt while the blanket generates only 239 MWt. After four years of irradiation, the actinide mass is reduced to 3.9 metric tonnes. During this time, the blanket is becoming more fissile and its power rapidly approaches 1600 MWt. At the end of four years, continuous refueling of actinides is carried out and the actinide mass is held constant. Equilibrium is essentially achieved at the end of eight years. At equilibrium, the core is producing 1400 MWt and the blanket 1600 MWt. At this power level, the actinide destruction rate is equal to the production rate from 32 LWRs.
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, A.M.M.; Paulson, C.C.; Peacock, M.A.
1995-10-01
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G.H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. A decisionmore » has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
A beamline systems model for Accelerator-Driven Transmutation Technology (ADTT) facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Alan M. M.; Paulson, C. C.; Peacock, M. A.
1995-09-15
A beamline systems code, that is being developed for Accelerator-Driven Transmutation Technology (ADTT) facility trade studies, is described. The overall program is a joint Grumman, G. H. Gillespie Associates (GHGA) and Los Alamos National Laboratory effort. The GHGA Accelerator Systems Model (ASM) has been adopted as the framework on which this effort is based. Relevant accelerator and beam transport models from earlier Grumman systems codes are being adapted to this framework. Preliminary physics and engineering models for each ADTT beamline component have been constructed. Examples noted include a Bridge Coupled Drift Tube Linac (BCDTL) and the accelerator thermal system. Amore » decision has been made to confine the ASM framework principally to beamline modeling, while detailed target/blanket, balance-of-plant and facility costing analysis will be performed externally. An interfacing external balance-of-plant and facility costing model, which will permit the performance of iterative facility trade studies, is under separate development. An ABC (Accelerator Based Conversion) example is used to highlight the present models and capabilities.« less
Characterizing Background Events in Neutron Transmutation Doped Thermistors for CUORE-0
NASA Astrophysics Data System (ADS)
Dutta, Suryabrata; Cuore Collaboration
2017-09-01
The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale neutrinoless double-beta decay experiment operating at the Laboratori Nazionali del Gran Sasso (LNGS). The experiment is comprised of 988 TeO2 bolometric crystals arranged into 19 towers and operated at a temperature of 15 mK. A neutron-transmutation-doped (NTD) Ge thermistor measures the thermal response from particles incident on the crystals. However, bulk and surface contamination of the NTD thermistors themselves produce distorted thermal responses inside the thermistor volume. Although these pulses are efficiently removed from the double-beta decay analysis by pulse shape cuts, they can be used to extract information about thermistor contamination. I will present a multifaceted approach to characterize these events, in which I implement an improved hot-electron thermal model, Geant4 Monte Carlo simulations of background events, and data from a previous experiment, CUORE-0, reprocessed with a new optimal filter. Using this approach, rates and energy deposition from contamination inside the NTD thermistors are measured, giving us better understanding of a CUORE background source.
CURE: Clean use of reactor energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1990-05-01
This paper presents the results of a joint Westinghouse Hanford Company (Westinghouse Hanford)-Pacific Northwest Laboratory (PNL) study that considered the feasibility of treating radioactive waste before disposal to reduce the inventory of long-lived radionuclides, making the waste more suitable for geologic disposal. The treatment considered here is one in which waste would be chemically separated so that long-lived radionuclides can be treated using specific processes appropriate for the nuclide. The technical feasibility of enhancing repository performance by this type of treatment is considered in this report. A joint Westinghouse Hanford-PNL study group developed a concept called the Clean Use ofmore » Reactor Energy (CURE), and evaluated the potential of current technology to reduce the long-lived radionuclide content in waste from the nuclear power industry. The CURE process consists of three components: chemical separation of elements that have significant quantities of long-lived radioisotopes in the waste, exposure in a neutron flux to transmute the radioisotopes to stable nuclides, and packaging of radionuclides that cannot be transmuted easily for storage or geologic disposal. 76 refs., 32 figs., 24 tabs.« less
Xu, Hongwu; Chavez, Manuel E.; Mitchell, Jeremy N.; ...
2015-04-23
An analogue of the mineral pollucite (CsAlSi 2O 6), CsTiSi 2O 6.5 has a potential host phase for radioactive Cs. However, as 137Cs and 135Cs transmute to 137Ba and 135Ba, respectively, through the beta decay, it is essential to study the structure and stability of this phase upon Cs → Ba substitution. In this work, two series of Ba/Ti-substituted samples, Cs xBa (1-x)/2TiSi 2O 6.5 and Cs xBa 1-xTiSi 2O 7-0.5x, (x = 0.9 and 0.7), were synthesized by high-temperature crystallization from their respective precursors. Synchrotron X-ray diffraction and Rietveld analysis reveal that while Cs xBa (1-x)/2TiSi 2O 6.5 samplesmore » are phase-pure, Cs xBa 1-xTiSi 2O 7-0.5x samples contain Cs3x/(2+x)Ba (1-x)/(2+x)TiSi 2O 6.5 pollucites (i.e., also two-Cs-to-one-Ba substitution) and a secondary phase, fresnoite (Ba2TiSi2O8). Thus, the Cs xBa 1-xTiSi 2O 7-0.5x series is energetically less favorable than Cs xBa (1-x)/2TiSi 2O 6.5. To study the stability systematics of Cs xBa (1-x)/2TiSi 2O 6.5 pollucites, high-temperature calorimetric experiments were performed at 973 K with or without the lead borate solvent. Enthalpies of formation from the constituent oxides (and elements) have thus been derived. Our results show that with increasing Ba/(Cs + Ba) ratio, the thermodynamic stability of these phases decreases with respect to their component oxides. Hence, from the energetic viewpoint, continued Cs → Ba transmutation tends to destabilize the parent silicotitanate pollucite structure. However, the Ba-substituted pollucite co-forms with fresnoite (which incorporates the excess Ba), thereby providing viable ceramic waste forms for all the Ba decay products.« less
Case Study: Review of Operating Room Utilization at Mayo Clinic Arizona (MCA)
2008-05-01
or CRNA in training. The training of staff and the use of advanced technology, such as the Davinci Surgical Robot, may lead to an increase in time...gynecology performed during block-time will involve the use of the Davinci robot. When using the robot for a case, the set-up and prep-time before...1999). It is because of the cost of surgical staff that block-time lost to delays is concerning. MCA implemented block-time because it provides a tool
Blocks: A Versatile Learning Tool for Yesterday, Today, and Tomorrow
ERIC Educational Resources Information Center
Anderson, Charlotte
2010-01-01
In today's standards-driven climate, some teachers feel that incorporating content standards in the curriculum leads to a non-developmentally appropriate approach to working with young children. In her work as a preschool teacher trainer, the author shows students how something as common as blocks can guide them through each of the curriculum…
2000-07-01
and leachate collection prior to approval of future phytoextraction at sites such as this. Lead Phytoremediation Demonstration 8-1...number) FIELD GROUP SUB-GROUP Phytoremediation of Lead-Contaminated Soil 19. ABSTRACT (Continue on reverse if necessary and identify by block number...editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE Lead Phytoremediation Demonstration
Method for welding an article and terminating the weldment within the perimeter of the article
NASA Technical Reports Server (NTRS)
Snyder, John H. (Inventor); Smashey, Russell W. (Inventor); Boerger, Eric J. (Inventor); Borne, Bruce L. (Inventor)
2000-01-01
An article is welded, as in weld repair of a defect, by positioning a weld lift-off block at a location on the surface of the article adjacent to the intended location of the end of the weldment on the surface of the article. The weld lift-off block has a wedge shape including a base contacting the surface of the article, and an upper face angled upwardly from the base from a base leading edge. A weld pool is formed on the surface of the article by directly heating the surface of the article using a heat source. The heat source is moved relative to the surface of the article and onto the upper surface of the weld lift-off block by crossing the leading edge of the wedge, without discontinuing the direct heating of the article by the heat source. The heating of the article with the heat source is discontinued only after the heat source is directly heating the upper face of the weld lift-off block, and not the article.
Ayuso, R.A.
1986-01-01
Lead-isotopic compositions of feldspars in high-level Devonian granitic plutons across the northern Appalachians were measured. The presence of three fundamentally different sources of granites was indicated by three distinct lead-isotope groups. Plutons in the coastal lithotectonic block are the most radiogenic (206Pb/204Pb) 18.25-19.25; 207Pb/204Pb 15.59-15.67; 208Pb/204Pb 38.00-38.60); plutons in northern Maine are the least radiogenic (206Pb/204Pb 18.00-18.50; 207Pb/204Pb 15.51-15.55; 208Pb/204Pb 37.80-38.38). Intermediate lead-isotope values characterize the plutons in central Maine. All plutons show relatively radiogenic lead values for their ages and suggest the imprint of continental crustal sources, particularly in the coastal block. These plutons were formed in different crustal fragments in a continental environment, that were juxtaposed after emplacement of the granites.-L.C.H.
Murat, Florent; Zhang, Rongzhi; Guizard, Sébastien; Flores, Raphael; Armero, Alix; Pont, Caroline; Steinbach, Delphine; Quesneville, Hadi; Cooke, Richard; Salse, Jerome
2013-01-01
Modern plant genomes are diploidized paleopolyploids. We revisited grass genome paleohistory in response to the diploidization process through a detailed investigation of the evolutionary fate of duplicated blocks. Ancestrally duplicated genes can be conserved, deleted, and shuffled, defining dominant (bias toward duplicate retention) and sensitive (bias toward duplicate erosion) chromosomal fragments. We propose a new grass genome paleohistory deriving from an ancestral karyotype structured in seven protochromosomes containing 16,464 protogenes and following evolutionary rules where 1) ancestral shared polyploidizations shaped conserved dominant (D) and sensitive (S) subgenomes, 2) subgenome dominance is revealed by both gene deletion and shuffling from the S blocks, 3) duplicate deletion/movement may have been mediated by single-/double-stranded illegitimate recombination mechanisms, 4) modern genomes arose through centromeric fusion of protochromosomes, leading to functional monocentric neochromosomes, 5) the fusion of two dominant blocks leads to supradominant neochromosomes (D + D = D) with higher ancestral gene retention compared with D + S = D (i.e., fusion of blocks with opposite sensitivity) or even S + S = S (i.e., fusion of two sensitive ancestral blocks). A new user-friendly online tool named “PlantSyntenyViewer,” available at http://urgi.versailles.inra.fr/synteny-cereal, presents the refined comparative genomics data. PMID:24317974
FCRD Transmutation Fuels Handbook 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn Elizabeth; Papesch, Cynthia Ann
2015-09-01
Transmutation of minor actinides such as Np, Am, and Cm in spent nuclear fuel is of international interest because of its potential for reducing the long-term health and safety hazards caused by the radioactivity of the spent fuel. One important approach to transmutation (currently being pursued by the DOE Fuel Cycle Research & Development Advanced Fuels Campaign) involves incorporating the minor actinides into U-Pu-Zr alloys, which can be used as fuel in fast reactors. It is, therefore, important to understand the properties of U-Pu-Zr alloys, both with and without minor actinide additions. In addition to requiring extensive safety precautions, alloysmore » containing U and Pu are difficult to study for numerous reasons, including their complex phase transformations, characteristically sluggish phase-transformation kinetics, tendency to produce experimental results that vary depending on the histories of individual samples, and sensitivity to contaminants such as oxygen in concentrations below a hundred parts per million. Many of the experimental measurements were made before 1980, and the level of documentation for experimental methods and results varies widely. It is, therefore, not surprising that little is known with certainty about U-Pu-Zr alloys, and that general acceptance of results sometimes indicates that there is only a single measurement for a particular property. This handbook summarizes currently available information about U, Pu, Zr, and alloys of two or three of these elements. It contains information about phase diagrams and related information (including phases and phase transformations); heat capacity, entropy, and enthalpy; thermal expansion; and thermal conductivity and diffusivity. In addition to presenting information about materials properties, it attempts to provide information about how well the property is known and how much variation exists between measurements. Although the handbook includes some references to publications about modeling, its primary focus is experimental data. Most of the data has been published elsewhere (although scattered throughout numerous references, some quite obscure); however, some data is presented here for the first time.« less
Block clustering based on difference of convex functions (DC) programming and DC algorithms.
Le, Hoai Minh; Le Thi, Hoai An; Dinh, Tao Pham; Huynh, Van Ngai
2013-10-01
We investigate difference of convex functions (DC) programming and the DC algorithm (DCA) to solve the block clustering problem in the continuous framework, which traditionally requires solving a hard combinatorial optimization problem. DC reformulation techniques and exact penalty in DC programming are developed to build an appropriate equivalent DC program of the block clustering problem. They lead to an elegant and explicit DCA scheme for the resulting DC program. Computational experiments show the robustness and efficiency of the proposed algorithm and its superiority over standard algorithms such as two-mode K-means, two-mode fuzzy clustering, and block classification EM.
There is an EJ Index for each environmental indicator. There are eight EJ Indexes in EJSCREEN reflecting the 8 environmental indicators. The EJ Index names are: Particulate Matter (PM2.5), Ozone Traffic Proximity and Volume, Lead Paint Indicator, Proximity to Risk Management Plan Sites, Proximity to National Priorities List Sites, Proximity to Treatment Storage and Disposal Facilities, and Proximity to Major Direct Water Dischargers. The EJ index is constructed as follows: EJ Index = (Environmental Indicator) * (Demographic Index for Block Group - Demographic Index for U.S.) * (Block Group Population)The EJ index is constructed as follows: EJ Index = (Environmental Indicator) * (Demographic Index for Block Group - Demographic Index for U.S.) * (Block Group Population)
2015-01-01
Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494
The AIP Model of EMDR Therapy and Pathogenic Memories
Hase, Michael; Balmaceda, Ute M.; Ostacoli, Luca; Liebermann, Peter; Hofmann, Arne
2017-01-01
Eye Movement Desensitization and Reprocessing (EMDR) therapy has been widely recognized as an efficacious treatment for post-traumatic stress disorder (PTSD). In the last years more insight has been gained regarding the efficacy of EMDR therapy in a broad field of mental disorders beyond PTSD. The cornerstone of EMDR therapy is its unique model of pathogenesis and change: the adaptive information processing (AIP) model. The AIP model developed by F. Shapiro has found support and differentiation in recent studies on the importance of memories in the pathogenesis of a range of mental disorders beside PTSD. However, theoretical publications or research on the application of the AIP model are still rare. The increasing acceptance of ideas that relate the origin of many mental disorders to the formation and consolidation of implicit dysfunctional memory lead to formation of the theory of pathogenic memories. Within the theory of pathogenic memories these implicit dysfunctional memories are considered to form basis of a variety of mental disorders. The theory of pathogenic memories seems compatible to the AIP model of EMDR therapy, which offers strategies to effectively access and transmute these memories leading to amelioration or resolution of symptoms. Merging the AIP model with the theory of pathogenic memories may initiate research. In consequence, patients suffering from such memory-based disorders may be earlier diagnosed and treated more effectively. PMID:28983265
FBCOT: a fast block coding option for JPEG 2000
NASA Astrophysics Data System (ADS)
Taubman, David; Naman, Aous; Mathew, Reji
2017-09-01
Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically < 0.5dB). The algorithm provides only limited quality/SNR scalability, but offers truly reversible transcoding to/from any standard JPEG 2000 block bit-stream. The proposed FAST block coder can be used with EBCOT's post-compression RD-optimization methodology, allowing a target compressed bit-rate to be achieved even at low latencies, leading to the name FBCOT (Fast Block Coding with Optimized Truncation).
Helium in inert matrix dispersion fuels
NASA Astrophysics Data System (ADS)
van Veen, A.; Konings, R. J. M.; Fedorov, A. V.
2003-07-01
The behaviour of helium, an important decay product in the transmutation chains of actinides, in dispersion-type inert matrix fuels is discussed. A phenomenological description of its accumulation and release in CERCER and CERMET fuel is given. A summary of recent He-implantation studies with inert matrix metal oxides (ZrO 2, MgAl 2O 4, MgO and Al 2O 3) is presented. A general picture is that for high helium concentrations helium and vacancy defects form helium clusters which convert into over-pressurized bubbles. At elevated temperature helium is released from the bubbles. On some occasions thermal stable nano-cavities or nano-pores remain. On the basis of these results the consequences for helium induced swelling and helium storage in oxide matrices kept at 800-1000 °C will be discussed. In addition, results of He-implantation studies for metal matrices (W, Mo, Nb and V alloys) will be presented. Introduction of helium in metals at elevated temperatures leads to clustering of helium to bubbles. When operational temperatures are higher than 0.5 melting temperature, swelling and helium embrittlement might occur.
Atomic-scale mechanisms of helium bubble hardening in iron
Osetskiy, Yury N.; Stoller, Roger E.
2015-06-03
Generation of helium due to (n,α) transmutation reactions changes the response of structural materials to neutron irradiation. The whole process of radiation damage evolution is affected by He accumulation and leads to significant changes in the material s properties. A population of nanometric He-filled bubbles affects mechanical properties and the impact can be quite significant because of their high density. Understanding how these basic mechanisms affect mechanical properties is necessary for predicting radiation effects. In this paper we present an extensive study of the interactions between a moving edge dislocation and bubbles using atomic-scale modeling. We focus on the effectmore » of He bubble size and He concentration inside bubbles. Thus, we found that ability of bubbles to act as an obstacle to dislocation motion is close to that of voids when the He-to-vacancy ratio is in the range from 0 to 1. A few simulations made at higher He contents demonstrated that the interaction mechanism is changed for over-pressurized bubbles and they become weaker obstacles. The results are discussed in light of post-irradiation materials testing.« less
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
NASA Astrophysics Data System (ADS)
Clark, David L.; Hecker, Siegfried S.; Jarvinen, Gordon D.; Neu, Mary P.
The element plutonium occupies a unique place in the history of chemistry, physics, technology, and international relations. After the initial discovery based on submicrogram amounts, it is now generated by transmutation of uranium in nuclear reactors on a large scale, and has been separated in ton quantities in large industrial facilities. The intense interest in plutonium resulted fromthe dual-use scenario of domestic power production and nuclear weapons - drawing energy from an atomic nucleus that can produce a factor of millions in energy output relative to chemical energy sources. Indeed, within 5 years of its original synthesis, the primary use of plutonium was for the release of nuclear energy in weapons of unprecedented power, and it seemed that the new element might lead the human race to the brink of self-annihilation. Instead, it has forced the human race to govern itself without resorting to nuclear war over the past 60 years. Plutonium evokes the entire gamut of human emotions, from good to evil, from hope to despair, from the salvation of humanity to its utter destruction. There is no other element in the periodic table that has had such a profound impact on the consciousness of mankind.
properties, a number of intriguing observations have also been noted in the dependencies of transport properties upon the physicochemical parameters...addition of (non-conducting) particles would block the diffusion pathways (by a factor which depends only the loading of the fillers) and lead to reduction in the conductivity of the ions.
ERIC Educational Resources Information Center
Dezuanni, Michael
2015-01-01
This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…
ERIC Educational Resources Information Center
Ness, Daniel; Farenga, Stephen J.
2016-01-01
The authors consider the strengths and weaknesses of three different visuo-spatial constructive play object (VCPO) types--blocks, bricks, and planks--and their impact on the development of creativity in spatial thinking and higher learning during free play. Each VCPO has its own set of attributes, they note, leading to different purposes,…
Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P
1996-01-01
A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.
Radiation effects in structural materials of spallation targets
NASA Astrophysics Data System (ADS)
Jung, P.
2002-02-01
Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.
ERIC Educational Resources Information Center
Yonge, George D.
2008-01-01
In his response to Kruger, Le Grange claims that: (1) the South African discourse of fundamental pedagogics was closely allied with Christian National Education and functioned as a powerful educational doctrine in the service of the South African policy of apartheid education; (2) fundamental pedagogics bracketed political discourse; (3) the…
Linac design for the European spallation source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, H.
1995-10-01
A study group has started to develop a conceptual design for a European Spallation Source (ESS). This pulsed 5 MW source presently consists of a 1.334 GeV linac and two compressor rings. In the following mainly the high intensity linac part will be discussed, which has some features of interest for accelerators for transmutation of radioactive waste too.
High power neutron production targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wender, S.
1996-06-01
The author describes issues of concern in the design of targets and associated systems for high power neutron production facilities. The facilities include uses for neutron scattering, accelerator driven transmutation, accelerator production of tritium, short pulse spallation sources, and long pulse spallation sources. Each of these applications requires a source with different design needs and consequently different implementation in practise.
Transuranic Waste Burning Potential of Thorium Fuel in a Fast Reactor - 12423
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wenner, Michael; Franceschini, Fausto; Ferroni, Paolo
Westinghouse Electric Company (referred to as 'Westinghouse' in the rest of this paper) is proposing a 'back-to-front' approach to overcome the stalemate on nuclear waste management in the US. In this approach, requirements to further the societal acceptance of nuclear waste are such that the ultimate health hazard resulting from the waste package is 'as low as reasonably achievable'. Societal acceptability of nuclear waste can be enhanced by reducing the long-term radiotoxicity of the waste, which is currently driven primarily by the protracted radiotoxicity of the transuranic (TRU) isotopes. Therefore, a transition to a more benign radioactive waste can bemore » accomplished by a fuel cycle capable of consuming the stockpile of TRU 'legacy' waste contained in the LWR Used Nuclear Fuel (UNF) while generating waste which is significantly less radio-toxic than that produced by the current open U-based fuel cycle (once through and variations thereof). Investigation of a fast reactor (FR) operating on a thorium-based fuel cycle, as opposed to the traditional uranium-based is performed. Due to a combination between its neutronic properties and its low position in the actinide chain, thorium not only burns the legacy TRU waste, but it does so with a minimal production of 'new' TRUs. The effectiveness of a thorium-based fast reactor to burn legacy TRU and its flexibility to incorporate various fuels and recycle schemes according to the evolving needs of the transmutation scenario have been investigated. Specifically, the potential for a high TRU burning rate, high U-233 generation rate if so desired and low concurrent production of TRU have been used as metrics for the examined cycles. Core physics simulations of a fast reactor core running on thorium-based fuels and burning an external TRU feed supply have been carried out over multiple cycles of irradiation, separation and reprocessing. The TRU burning capability as well as the core isotopic content have been characterized. Results will be presented showing the potential for thorium to reach a high TRU transmutation rate over a wide variety of fuel types (oxide, metal, nitride and carbide) and transmutation schemes (recycle or partition of in-bred U-233). In addition, a sustainable scheme has been devised to burn the TRU accumulated in the core inventory once the legacy TRU supply has been exhausted, thereby achieving long-term virtually TRU-free. A comprehensive 'back-to-front' approach to the fuel cycle has recently been proposed by Westinghouse which emphasizes achieving 'acceptable', low-radiotoxicity, high-level waste, with the intent not only to satisfy all technical constraints but also to improve public acceptance of nuclear energy. Following this approach, the thorium fuel cycle, due to its low radiotoxicity and high potential for TRU transmutation has been selected as a promising solution. Additional studies not shown here have shown significant reduction of decay heat. The TRU burning potential of the Th-based fuel cycle has been illustrated with a variety of fuel types, using the Toshiba ARR to perform the analysis, including scenarios with continued LWR operation of either uranium fueled or thorium fueled LWRs. These scenarios will afford overall reduction in actinide radiotoxicity, however when the TRU supply is exhausted, a continued U- 235 LWR operation must be assumed to provide TRU makeup feed. This scenario will never reach the characteristically low TRU content of a closed thorium fuel cycle with its associated potential benefits on waste radiotoxicity, as exemplified by the transition scenario studied. At present, the cases studied indicate ThC as a potential fuel for maximizing TRU burning, while ThN with nitrogen enriched to 95% N-15 shows the highest breeding potential. As a result, a transition scenario with ThN was developed to show that a sustainable, closed Th-cycle can be achieved starting from burning the legacy TRU stock and completing the transmutation of the residual TRU remaining in the core inventory after the legacy TRU external supply has been exhausted. The radiotoxicity of the actinide waste during the various phases has been characterized, showing the beneficial effect of the decreasing content of TRU in the recycled fuel as the transition to a closed Th-based fuel cycle is undertaken. Due to the back-to-front nature of the proposed methodology, detailed designs are not the first step taken when assessing a fuel cycle scenario potential. As a result, design refinement is still required and should be expected in future studies. Moreover, significant safety assessment, including determination of associated reactivity coefficients, fuel and reprocessing feasibility studies and economic assessments will still be needed for a more comprehensive and meaningful comparison against other potential solutions. With the above considerations in mind, the potential advantages of thorium fuelled reactors on HLW management optimization lead us to believe that thorium fuelled reactor systems can play a significant role in the future and deserve further consideration. (authors)« less
11. INTERIOR DETAIL, BASEMENT, SHOWING CONDUITS LEADING UNDERGROUND TO SWITCHES ...
11. INTERIOR DETAIL, BASEMENT, SHOWING CONDUITS LEADING UNDERGROUND TO SWITCHES AND SIGNALS - Baltimore & Potomac Interlocking Tower, Adjacent to AMTRAK railroad tracks in block bounded by Howard Street, Jones Falls Expressway, Maryland Avenue & Falls Road, Baltimore, Independent City, MD
Small domain-size multiblock copolymer electrolytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistorino, Jonathan; Eitouni, Hany Basam
2016-09-20
New block polymer electrolytes have been developed which have higher conductivities than previously reported for other block copolymer electrolytes. The new materials are constructed of multiple blocks (>5) of relatively low domain size. The small domain size provides greater protection against formation of dendrites during cycling against lithium in an electrochemical cell, while the large total molecular weight insures poor long range alignment, which leads to higher conductivity. In addition to higher conductivity, these materials can be more easily synthesized because of reduced requirements on the purity level of the reagents.
Atmospheric blocking in the Climate SPHINX simulations: the role of orography and resolution
NASA Astrophysics Data System (ADS)
Davini, Paolo; Corti, Susanna; D'Andrea, Fabio; Riviere, Gwendal; von Hardenberg, Jost
2017-04-01
The representation of atmospheric blocking in numerical simulations, especially over the Euro-Atlantic region, still represents a main concern for the climate modelling community. We here discuss the Northern Hemisphere winter atmospheric blocking representation in a set of 30-year simulations which has been performed in the framework of the PRACE project "Climate SPHINX". Simulations were run using the EC-Earth Global Climate Model with several ensemble members at 5 different horizontal resolutions (ranging from 125 km to 16 km). Results show that the negative bias in blocking frequency over Europe becomes negligible at resolutions of about 40 km and finer. However, the blocking duration is still underestimated by 1-2 days, suggesting that the correct blocking frequencies are achieved with an overestimation of the number of blocking onsets. The reasons leading to such improvements are then discussed, highlighting the role of orography in shaping the Atlantic jet stream: at higher resolution the jet is weaker and less penetrating over Europe, favoring the breaking of synoptic Rossby waves over the Atlantic stationary ridge and thus increasing the simulated blocking frequency.
Notch2 blockade enhances hematopoietic stem cell mobilization and homing.
Wang, Weihuan; Yu, Shuiliang; Myers, Jay; Wang, Yiwei; Xin, William W; Albakri, Marwah; Xin, Alison W; Li, Ming; Huang, Alex Y; Xin, Wei; Siebel, Christian W; Lazarus, Hillard M; Zhou, Lan
2017-10-01
Despite use of newer approaches, some patients being considered for autologous hematopoietic cell transplantation (HCT) may only mobilize limited numbers of hematopoietic progenitor cells (HPCs) into blood, precluding use of the procedure, or being placed at increased risk of complications due to slow hematopoietic reconstitution. Developing more efficacious HPC mobilization regimens and strategies may enhance the mobilization process and improve patient outcome. Although Notch signaling is not essential for homeostasis of adult hematopoietic stem cells (HSCs), Notch-ligand adhesive interaction maintains HSC quiescence and niche retention. Using Notch receptor blocking antibodies, we report that Notch2 blockade, but not Notch1 blockade, sensitizes hematopoietic stem cells and progenitors (HSPCs) to mobilization stimuli and leads to enhanced egress from marrow to the periphery. Notch2 blockade leads to transient myeloid progenitor expansion without affecting HSC homeostasis and self-renewal. We show that transient Notch2 blockade or Notch2-loss in mice lacking Notch2 receptor lead to decreased CXCR4 expression by HSC but increased cell cycling with CXCR4 transcription being directly regulated by the Notch transcriptional protein RBPJ. In addition, we found that Notch2-blocked or Notch2-deficient marrow HSPCs show an increased homing to the marrow, while mobilized Notch2-blocked, but not Notch2-deficient stem cells and progenitors, displayed a competitive repopulating advantage and enhanced hematopoietic reconstitution. These findings suggest that blocking Notch2 combined with the current clinical regimen may further enhance HPC mobilization and improve engraftment during HCT. Copyright© 2017 Ferrata Storti Foundation.
1976-10-01
and Identify by block number) This report describes an improved, approaching-needle electrostatic sensitivity apparatus as well as the...category. Thus, basic lead styphnate, RD1333 lead azide, dextrinated lead azide and tetracene all ignited. But, as expected, tetryl, PETN, superfine PETN... dextrinated lead azide obtained using the same apparatus and procedure and conducted at the same time. Sample Preparation, Electrode Replacement, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Sudip K; Perumalla, Kalyan S; Hirshman, Steven Paul
2013-01-01
Simulations that require solutions of block tridiagonal systems of equations rely on fast parallel solvers for runtime efficiency. Leading parallel solvers that are highly effective for general systems of equations, dense or sparse, are limited in scalability when applied to block tridiagonal systems. This paper presents scalability results as well as detailed analyses of two parallel solvers that exploit the special structure of block tridiagonal matrices to deliver superior performance, often by orders of magnitude. A rigorous analysis of their relative parallel runtimes is shown to reveal the existence of a critical block size that separates the parameter space spannedmore » by the number of block rows, the block size and the processor count, into distinct regions that favor one or the other of the two solvers. Dependence of this critical block size on the above parameters as well as on machine-specific constants is established. These formal insights are supported by empirical results on up to 2,048 cores of a Cray XT4 system. To the best of our knowledge, this is the highest reported scalability for parallel block tridiagonal solvers to date.« less
Learning to Lead: Self- and Peer Evaluation of Team Leaders in the Human Structure Didactic Block
ERIC Educational Resources Information Center
Chen, Laura P.; Gregory, Jeremy K.; Camp, Christopher L.; Juskewitch, Justin E.; Pawlina, Wojciech; Lachman, Nirusha
2009-01-01
Increasing emphasis on leadership in medical education has created a need for developing accurate evaluations of team leaders. Our study aimed to compare the accuracy of self- and peer evaluation of student leaders in the first-year Human Structure block (integrated gross anatomy, embryology, and radiology). Forty-nine first-year medical students…
Garg, Rakesh; Sinha, Renu; Nishad, PK
2011-01-01
Wolff-Parkinson-White (WPW) syndrome is one of the pre-excitation syndromes in which activation of an accessory atrioventricular (AV) conduction pathway leads to bypass the AV node and cause earlier ventricular activation than the normal pathway. We report a patient with intermittent WPW syndrome who repeatedly manifested pre-excitation after subarachnoid block. PMID:21712875
Using a Geographic Information System to Improve Childhood Lead-Screening Efforts
2013-01-01
The Idaho Division of Public Health conducted a pilot study to produce a lead-exposure–risk map to help local and state agencies better target childhood lead-screening efforts. Priority lead-screening areas, at the block group level, were created by using county tax assessor data and geographic information system software. A series of maps were produced, indicating childhood lead-screening prevalence in areas in which there was high potential for exposure to lead. These maps could enable development of more systematically targeted and cost-effective childhood lead-screening efforts. PMID:23764346
Virasoro conformal blocks and thermality from classical background fields
Fitzpatrick, A. Liam; Kaplan, Jared; Walters, Matthew T.
2015-11-30
We show that in 2d CFTs at large central charge, the coupling of the stress tensor to heavy operators can be re-absorbed by placing the CFT in a non-trivial background metric. This leads to a more precise computation of the Virasoro conformal blocks between heavy and light operators, which are shown to be equivalent to global conformal blocks evaluated in the new background. We also generalize to the case where the operators carry U(1) charges. The refined Virasoro blocks can be used as the seed for a new Virasoro block recursion relation expanded in the heavy-light limit. Furthermore, we commentmore » on the implications of our results for the universality of black hole thermality in AdS 3 , or equivalently, the eigenstate thermalization hypothesis for CFT 2 at large central charge.« less
Let there be light: photo-cross-linked block copolymer nanoparticles.
Roy, Debashish; Sumerlin, Brent S
2014-01-01
Polymeric nanoparticles are prepared by selectively cross-linking a photo-sensitive dimethylmaleimide-containing block of a diblock copolymer via UV irradiation. A well-defined photo-cross-linkable block copolymer is prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of a dimethylmaleimide-functional acrylamido monomer containing photoreactive pendant groups with a poly(N,N-dimethylacrylamide) (PDMA) macro-chain transfer agent. The resulting amphiphilic block copolymers form micelles in water with a hydrophilic PDMA shell and a hydrophobic photo-cross-linkable dimethylmaleimide-containing core. UV irradiation results in photodimerization of the dimethylmaleimide groups within the micelle cores to yield core-cross-linked aggregates. Alternatively, UV irradiation of homogeneous solutions of the block copolymer in a non-selective solvent leads to in situ nanoparticle formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lirk, Philipp; Flatz, Magdalena; Haller, Ingrid; Hausott, Barbara; Blumenthal, Stephan; Stevens, Markus F.; Suzuki, Suzuko; Klimaschewski, Lars; Gerner, Peter
2012-01-01
Background and Objectives Application of local anesthetics may lead to nerve damage. Increasing evidence suggests that risk of neurotoxicity is higher in patients with diabetic peripheral neuropathy. Additionally, block duration may be prolonged in neuropathy. We sought to investigate neurotoxicity in vitro and block duration in vivo in a genetic animal model of diabetes mellitus type II. Methods In the first experiments, neurons harvested from control Zucker Diabetic Fatty (ZDF) rats were exposed to acute (24 hours) or chronic (72 hours) hyperglycemia, followed by incubation with lidocaine 40 mM (approximately 1%). In a second experiment, neurons harvested from control ZDF rats, or diabetic ZDF rats, were incubated with lidocaine, with or without SB203580, an inhibitor of the p38 Mitogen-Activated Protein Kinase. Finally, we performed sciatic nerve block (lidocaine 2%, 0.2 mL) in control or diabetic ZDF rats, and measured motor and nociceptive block duration. Results In vitro, neither acute nor chronic hyperglycemia altered neurotoxic properties of lidocaine. In vitro, incubation of neurons with lidocaine resulted in a slightly decreased survival ratio when neurons were harvested from diabetic (57 ± 19) as compared to control (64 ± 9 %) rats. The addition of SB203580 partly reversed this enhanced neurotoxic effect and raised survival to 71 ± 12 in diabetic and 66 ± 9 % in control rats, respectively. In vivo, even though no difference was detected at baseline testing, motor block was significantly prolonged in diabetic as compared to control rats (137 ± 16 min versus 86 ± 17 min). Conclusions In vitro, local anesthetic neurotoxicity was more pronounced on neurons from diabetic animals, but the survival difference was small. In vivo, subclinical neuropathy leads to substantial prolongation of block duration. We conclude that early diabetic neuropathy increases block duration, while the observed increase in toxicity was small. PMID:23011115
Localized Optogenetic Targeting of Rotors in Atrial Cardiomyocyte Monolayers.
Feola, Iolanda; Volkers, Linda; Majumder, Rupamanjari; Teplenin, Alexander; Schalij, Martin J; Panfilov, Alexander V; de Vries, Antoine A F; Pijnappels, Daniël A
2017-11-01
Recently, a new ablation strategy for atrial fibrillation has emerged, which involves the identification of rotors (ie, local drivers) followed by the localized targeting of their core region by ablation. However, this concept has been subject to debate because the mode of arrhythmia termination remains poorly understood, as dedicated models and research tools are lacking. We took a unique optogenetic approach to induce and locally target a rotor in atrial monolayers. Neonatal rat atrial cardiomyocyte monolayers expressing a depolarizing light-gated ion channel (Ca 2+ -translocating channelrhodopsin) were subjected to patterned illumination to induce single, stable, and centralized rotors by optical S1-S2 cross-field stimulation. Next, the core region of these rotors was specifically and precisely targeted by light to induce local conduction blocks of circular or linear shapes. Conduction blocks crossing the core region, but not reaching any unexcitable boundary, did not lead to termination. Instead, electric waves started to propagate along the circumference of block, thereby maintaining reentrant activity, although of lower frequency. If, however, core-spanning lines of block reached at least 1 unexcitable boundary, reentrant activity was consistently terminated by wave collision. Lines of block away from the core region resulted merely in rotor destabilization (ie, drifting). Localized optogenetic targeting of rotors in atrial monolayers could lead to both stabilization and destabilization of reentrant activity. For termination, however, a line of block is required reaching from the core region to at least 1 unexcitable boundary. These findings may improve our understanding of the mechanisms involved in rotor-guided ablation. © 2017 American Heart Association, Inc.
The role of forest humus in watershed management in New England
G. R., Jr. Trimble; Howard W. Lull
1956-01-01
Forest humus is one of the most interesting components of the forest environment. Its surface serves as a depository for leaf fall and needle fall, with successive depths marking stages of transmutation from the freshly fallen to the decomposed. And humus is responsive: humus type and depth are indicators of forest treatment and, to some extent, of site quality....
Transmutation of Matter in Byzantium: The Case of Michael Psellos, the Alchemist
ERIC Educational Resources Information Center
Katsiampoura, Gianna
2008-01-01
There is thus nothing paradoxical about the inclusion of alchemy in the ensemble of the physical sciences nor in the preoccupation with it on the part of learned men engaged in scientific study. In the context of the Medieval model, where discourse on the physical world was ambiguous, often unclear, and lacking the support of experimental…
Breeding of 233U in the thorium-uranium fuel cycle in VVER reactors using heavy water
NASA Astrophysics Data System (ADS)
Marshalkin, V. E.; Povyshev, V. M.
2015-12-01
A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the 233U-232Th oxide fuel of water-moderated reactors with variable water composition (D2O, H2O) that ensures breeding of the 233U and 235U isotopes. The method is comparatively simple to implement.
Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragusa, Jean; Vierow, Karen
2011-09-01
The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzedmore » advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.« less
Applications in Nuclear Energy Security
NASA Astrophysics Data System (ADS)
Sheffield, Richard
2009-05-01
A key roadblock to development of additional nuclear power capacity is a concern over management of nuclear waste. Nuclear waste is predominantly comprised of used fuel discharged from operating nuclear reactors. The roughly 100 operating US reactors currently produce about 20% of the US electricity and will create about 87,000 tons of such discharged or ``spent'' fuel over the course of their lifetimes. The long-term radioactivity of the spent fuel drives the need for deep geologic storage that remains stable for millions of years. Nearly all issues related to risks to future generations arising from long-term disposal of such spent nuclear fuel is attributable to approximately the 1% made up primarily of minor actinides. If we can reduce or eliminate this 1% of the spent fuel, then within a few hundred years the toxic nature of the spent fuel drops below that of the natural uranium ore that was originally mined for nuclear fuel. The minor actinides can be efficiently eliminated through nuclear transmutation using as a driver fast-neutrons produced by a spallation process initiated with a high-energy proton beam. This presentation will cover the system design considerations and issues of an accelerator driven transmutation system.
NASA Astrophysics Data System (ADS)
Cheng, E. T.
2004-08-01
Neutron activation analysis was conducted for the reduced activation ferritic/martensitic (RAFM) steel used in flibe molten-salt cooled fusion blankets. After 22.4 MW yr/m 2 of neutron exposure, the RAFM steel first wall in a molten salt blanket with 40% lithium-6 enrichment in lithium was found to be within 1 mSv/h in contact dose rate after 100 yr of cooling. The contact dose rate drops to 30 and 20 μSv/h or less, respectively, when the cooling times are 300 and 500 yr after discharge. The RAFM steel discharged from the high-temperature shield component would be allowed for hands-on recycling after 100 yr of cooling, when the contact dose rate is 10 μSv/h or less. The most significant changes found in the RAFM steel first wall due to nuclear transmutation, are 10% decrease in W and 10% increase in Ti. Additionally, there are minor elements produced: Mn - <1.2%, V - <0.26%, Re - <0.2%, Ta - <0.08%, and Os - <0.1%, all in weight percent. The gaseous elements generated are H and He, and the, respectively, accumulated quantities are about 260 and 190 wppm.
Melville, G; Fan Liu, Sau; Allen, B J
2006-09-01
Radium needles that were once implanted into tumours as a cancer treatment are now obsolete and constitute a radioactive waste problem, as their half-life is 1600 years. We are investigating the reduction of radium by transmutation on a small scale by bombarding Ra-226 with high-energy photons from a medical linear accelerator (linac) to produce Ra-225, which subsequently decays to Ac-225, which can be used as a generator to produce Bi-213 for use in 'targeted alpha therapy' for cancer. This paper examines the possibility of producing Ac-225 with a linac using an accurate theoretical model in which the bremsstrahlung photon spectrum at 18 MV linac electron energy is convoluted with the corresponding photonuclear cross sections of Ra-226. The total integrated yield can then be obtained and is compared with a computer simulation. This study shows that at 18 MV, the photonuclear reaction on Ra-226 can produce low activities of Ac-225 with a linac. However, a high power linac with high current, pulse length and frequency is needed to produce practical amounts of Ac-225 and a useful reduction of Ra-226.
Ho, Hai Quan; Honda, Yuki; Motoyama, Mizuki; Hamamoto, Shimpei; Ishii, Toshiaki; Ishitsuka, Etsuo
2018-05-01
The p-type spherical silicon solar cell is a candidate for future solar energy with low fabrication cost, however, its conversion efficiency is only about 10%. The conversion efficiency of a silicon solar cell can be increased by using n-type silicon semiconductor as a substrate. This study proposed a new method of neutron transmutation doping silicon (NTD-Si) for producing the n-type spherical solar cell, in which the Si-particles are irradiated directly instead of the cylinder Si-ingot as in the conventional NTD-Si. By using a 'screw', an identical resistivity could be achieved for the Si-particles without a complicated procedure as in the NTD with Si-ingot. Also, the reactivity and neutron flux swing could be kept to a minimum because of the continuous irradiation of the Si-particles. A high temperature engineering test reactor (HTTR), which is located in Japan, was used as a reference reactor in this study. Neutronic calculations showed that the HTTR has a capability to produce about 40t/EFPY of 10Ωcm resistivity Si-particles for fabrication of the n-type spherical solar cell. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hamann, H J; Irskens, M
1975-01-01
Among the various methods for studying the relative effects of transmutation and radiation of incorporated nuclides, simulation of beta radiation by external gamma exposure is of practical importance. Self-irradiation and mutual irradiation of the labeled cells cannot be neglected in any case. Furthermore, additional hypothetical and experimental problems may arise from using either external beta radiation or different isotopes of an element. By means of external gamma irradiation on the other hand, this being equivalent to the internal beta radiation from a microdosimetrical point of view, the radiation effect of the nuclide alone can be observed without any modification of other experimental parameters. To determine such equivalent gamma radiation for labeled cell nuclei of Vicia faba roots, the authors applied the Monte Carlo Method to the beta spectra of 32-P, 3-H, 14-C and 131-J, to the energy-dependent LET and to different cell diameters. The existence of secondary particle equilibrium inside the nuclei during gamma exposure was assumed. For certain radionuclides and cell sizes it is possible to calculate gamma spectra which induce energy spectra in the nuclei similar to those caused by the beta particles originating in the nuclear DNA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang Y.; Setyawan, Wahyu; Van Ginhoven, Renee M.
2014-02-20
Density functional theory (DFT) is used to calculate the thermodynamic and kinetic properties of transmutant Mg in 3C-SiC due to high-energy neutron irradiation associated with the fusion nuclear environment. The formation and binding energies of intrinsic defects, Mg-related defects, and clusters in 3C-SiC are systematically calculated. The minimum energy paths and activation energies during point defect migration and small cluster evolution are studied using a generalized solid-state elastic band (G-SSNEB) method with DFT energy calculations. Stable defect structures and possible defect migration mechanisms are identified. The evolution of binding energies during Mg2Si formation demonstrates that the formation of Mg2Si needsmore » to overcome a critical nucleus size and nucleation barrier. It is also found that a compressive stress field exists around the Mg2Si nucleus. These data are important inputs in meso- and macro-scale modeling and experiments to understand and predict the impact of Mg on phase stability, microstructure evolution, and performance of SiC and SiC-based materials during long-term neutron exposures.« less
Effect of Vacuum Properties on Electroweak Processes - A Theoretical Interpretation of Experiments
NASA Astrophysics Data System (ADS)
Stumpf, Harald
2008-06-01
Recently for discharges in fluids induced nuclear transmutations have been observed. It is our hypothesis that these reactions are due to a symmetry breaking of the electroweak vacuum by the experimental arrangement. The treatment of this hypothesis is based on the assumption that electroweak bosons, leptons and quarks possess a substructure of elementary fermionic constituents. The dynamical law of these fermionic constituents is given by a relativistically invariant nonlinear spinor field equation with local interaction, canonical quantization, selfregularization and probability interpretation. Phenomenological quantities of electroweak processes follow from the derivation of corresponding effective theories obtained by algebraic weak mapping theorems where the latter theories depend on the spinor field propagator, i. e. a vacuum expectation value. This propagator and its equation are studied for conserved and for broken discrete symmetries. For combined CP- and isospin symmetry breaking it is shown that the propagator corresponds to the experimental arrangements under consideration. The modifications of the effective electroweak theory due to this modified propagator are discussed. Based on these results a mechanism is sketched which offers a qualitative interpretation of the appearance of induced nuclear transmutations. A numerical estimate of electron capture is given.
NASA Astrophysics Data System (ADS)
Cheng, Ting; Baney, Ronald H.; Tulenko, James
2010-10-01
Silicon carbide is one of the prime candidates as a matrix material in inert matrix fuels (IMF) being designed to reduce the plutonium inventories. Since complete fission and transmutation is not practical in a single in-core run, it is necessary to separate the non-transmuted actinide materials from the silicon carbide matrix for recycling. In this work, SiC was corroded in sodium carbonate (Na 2CO 3) and potassium carbonate (K 2CO 3), to form water soluble sodium or potassium silicate. Separation of the transuranics was achieved by dissolving the SiC corrosion product in boiling water. Ceria (CeO 2), which was used as a surrogate for plutonium oxide (PuO 2), was not corroded in these molten salt environments. The molten salt depth, which is a distance between the salt/air interface to the upper surface of SiC pellets, significantly affected the rate of corrosion. The corrosion was faster in K 2CO 3 than in Na 2CO 3 molten salt at 1050 °C, when the initial molten salt depths were kept the same for both salts.
Self-Sustaining Thorium Boiling Water Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenspan, Ehud; Gorman, Phillip M.; Bogetic, Sandra
The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare themore » RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.« less
2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures
2016-06-16
Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.
ERIC Educational Resources Information Center
US Department of Health and Human Services, Head Start Bureau, 2004
2004-01-01
Nearly 30 years ago, leading child psychologist Michael E. Lamb reminded us that fathers are the "forgotten contributors to child development." Since then, much work has been done to explore the ways fathers uniquely contribute to the healthy development of their children. Scholars now know that boys and girls who grow up with an involved father,…
Supercontinent Formation in 3-D Spherical Mantle Convection Models With Multiple Continental Blocks
NASA Astrophysics Data System (ADS)
Zhang, N.; Zhong, S.; McNamara, A.
2007-12-01
Much of the large-scale tectonics on the Earth in the last Ga is predominated by the assembly and breakup of supercontinents Rodinia and Pangea. However, the mechanism that is responsible for supercontinent formation remains poorly understood. Zhong et al [2007] recently showed that mantle convection with moderately strong lithosphere and lower mantle is characterized by a largely degree-1 planform in which one hemisphere is predominated by upwellings while the other by downwellings. They further suggested that the downwellings should attract all the continental blocks to merge in the downwelling hemisphere, thus leading to supercontinent formation there. However, Zhong et al. [2007] did not consider drifting and collision processes of continents. In this study, we explore the supercontinent formation mechanisms by including drifting and collision processes of multiple continental blocks in 3-D spherical mantle convection models. We use thermochemical CitcomS code to model 3-D spherical mantle convection with continental blocks. In our models, particles are used to represent continents and to track their motions. We found that for models with mantle viscosity (i.e., moderately strong lithosphere and lower mantle) that leads to degree-1 convection as reported in Zhong et al. [2007], initially evenly- distributed continental blocks always merge to form a supercontinent on a time-scale of about 6 transit times (i.e., corresponding to about 300 Ma). The hemisphere where a supercontinent is formed is predominated by downwellings as continents merge towards there, while the other hemisphere by upwellings. However, after the supercontinent formation, upwellings are generated beneath the supercontinent. This scenario is qualitatively consistent with what Zhong et al. [2007] proposed. We also found that while some convection models with intrinsically small-scale planforms may also lead to formation of a supercontinent, some other models may fail to produce a supercontinent. For these models with intrinsically small-scale planforms, the merged continental blocks promote long-wavelength mantle structure near the continents. However, in non-continental regions, convective wavelengths remain relatively small. We suggest that time-scales for supercontinent formation and convective wavelengths in non-continental area are important parameters that help constrain mechanisms for supercontinent formation.
Specificity and effector mechanisms of autoantibodies in congenital heart block.
Wahren-Herlenius, Marie; Sonesson, Sven-Erik
2006-12-01
Complete congenital atrio-ventricular (AV) heart block develops in 2-5% of fetuses of Ro/SSA and La/SSB autoantibody-positive pregnant women. During pregnancy, the Ro/SSA and La/SSB antibodies are transported across the placenta and affect the fetus. Emerging data suggest that this happens by a two-stage process. In the first step, maternal autoantibodies bind fetal cardiomyocytes, dysregulate calcium homestasis and induce apoptosis in affected cells. This step might clinically correspond to a first-degree heart block, and be reversible. La/SSB antibodies can bind apoptotic cardiomyocytes and thus increase Ig deposition in the heart. The tissue damage could, as a second step, lead to spread of inflammation in genetically pre-disposed fetuses, progressing to fibrosis and calcification of the AV-node and subsequent complete congenital heart block. Early intrauterine treatment of an incomplete AV-block with fluorinated steroids has been shown to prevent progression of the heart block, making it clinically important to find specific markers to identify the high-risk pregnancies.
A basic review on the inferior alveolar nerve block techniques.
Khalil, Hesham
2014-01-01
The inferior alveolar nerve block is the most common injection technique used in dentistry and many modifications of the conventional nerve block have been recently described in the literature. Selecting the best technique by the dentist or surgeon depends on many factors including the success rate and complications related to the selected technique. Dentists should be aware of the available current modifications of the inferior alveolar nerve block techniques in order to effectively choose between these modifications. Some operators may encounter difficulty in identifying the anatomical landmarks which are useful in applying the inferior alveolar nerve block and rely instead on assumptions as to where the needle should be positioned. Such assumptions can lead to failure and the failure rate of inferior alveolar nerve block has been reported to be 20-25% which is considered very high. In this basic review, the anatomical details of the inferior alveolar nerve will be given together with a description of its both conventional and modified blocking techniques; in addition, an overview of the complications which may result from the application of this important technique will be mentioned.
A basic review on the inferior alveolar nerve block techniques
Khalil, Hesham
2014-01-01
The inferior alveolar nerve block is the most common injection technique used in dentistry and many modifications of the conventional nerve block have been recently described in the literature. Selecting the best technique by the dentist or surgeon depends on many factors including the success rate and complications related to the selected technique. Dentists should be aware of the available current modifications of the inferior alveolar nerve block techniques in order to effectively choose between these modifications. Some operators may encounter difficulty in identifying the anatomical landmarks which are useful in applying the inferior alveolar nerve block and rely instead on assumptions as to where the needle should be positioned. Such assumptions can lead to failure and the failure rate of inferior alveolar nerve block has been reported to be 20-25% which is considered very high. In this basic review, the anatomical details of the inferior alveolar nerve will be given together with a description of its both conventional and modified blocking techniques; in addition, an overview of the complications which may result from the application of this important technique will be mentioned. PMID:25886095
Atmospheric Blocking and Atlantic Multi-Decadal Ocean Variability
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa; Rhines, Peter B.; Worthlen, Denise L.
2011-01-01
Based on the 20th century atmospheric reanalysis, winters with more frequent blocking, in a band of blocked latitudes from Greenland to Western Europe, are found to persist over several decades and correspond to a warm North Atlantic Ocean, in-phase with Atlantic multi-decadal ocean variability. Atmospheric blocking over the northern North Atlantic, which involves isolation of large regions of air from the westerly circulation for 5 days or more, influences fundamentally the ocean circulation and upper ocean properties by impacting wind patterns. Winters with clusters of more frequent blocking between Greenland and western Europe correspond to a warmer, more saline subpolar ocean. The correspondence between blocked westerly winds and warm ocean holds in recent decadal episodes (especially, 1996-2010). It also describes much longer-timescale Atlantic multidecadal ocean variability (AMV), including the extreme, pre-greenhouse-gas, northern warming of the 1930s-1960s. The space-time structure of the wind forcing associated with a blocked regime leads to weaker ocean gyres and weaker heat-exchange, both of which contribute to the warm phase of AMV.
Frequency domain FIR and IIR adaptive filters
NASA Technical Reports Server (NTRS)
Lynn, D. W.
1990-01-01
A discussion of the LMS adaptive filter relating to its convergence characteristics and the problems associated with disparate eigenvalues is presented. This is used to introduce the concept of proportional convergence. An approach is used to analyze the convergence characteristics of block frequency-domain adaptive filters. This leads to a development showing how the frequency-domain FIR adaptive filter is easily modified to provide proportional convergence. These ideas are extended to a block frequency-domain IIR adaptive filter and the idea of proportional convergence is applied. Experimental results illustrating proportional convergence in both FIR and IIR frequency-domain block adaptive filters is presented.
Reduced order feedback control equations for linear time and frequency domain analysis
NASA Technical Reports Server (NTRS)
Frisch, H. P.
1981-01-01
An algorithm was developed which can be used to obtain the equations. In a more general context, the algorithm computes a real nonsingular similarity transformation matrix which reduces a real nonsymmetric matrix to block diagonal form, each block of which is a real quasi upper triangular matrix. The algorithm works with both defective and derogatory matrices and when and if it fails, the resultant output can be used as a guide for the reformulation of the mathematical equations that lead up to the ill conditioned matrix which could not be block diagonalized.
Gu, C; Rao, D C
2001-01-01
Because simplistic designs will lead to prohibitively large sample sizes, the optimization of genetic study designs is critical for successfully mapping genes for complex diseases. Creative designs are necessary for detecting and amplifying the usually weak signals for complex traits. Two important outcomes of a study design--power and resolution--are implicitly tied together by the principle of uncertainty. Overemphasis on either one may lead to suboptimal designs. To achieve optimality for a particular study, therefore, practical measures such as cost-effectiveness must be used to strike a balance between power and resolution. In this light, the myriad of factors involved in study design can be checked for their effects on the ultimate outcomes, and the popular existing designs can be sorted into building blocks that may be useful for particular situations. It is hoped that imaginative construction of novel designs using such building blocks will lead to enhanced efficiency in finding genes for complex human traits.
Blocking-state influence on shot noise and conductance in quantum dots
NASA Astrophysics Data System (ADS)
Harabula, M.-C.; Ranjan, V.; Haller, R.; Fülöp, G.; Schönenberger, C.
2018-03-01
Quantum dots (QDs) investigated through electron transport measurements often exhibit varying, state-dependent tunnel couplings to the leads. Under specific conditions, weakly coupled states can result in a strong suppression of the electrical current, and they are correspondingly called blocking states. Using the combination of conductance and shot noise measurements, we investigate blocking states in carbon nanotube (CNT) QDs. We report negative differential conductance and super-Poissonian noise. The enhanced noise is the signature of electron bunching, which originates from random switches between the strongly and weakly conducting states of the QD. Negative differential conductance appears here when the blocking state is an excited state. In this case, at the threshold voltage where the blocking state becomes populated, the current is reduced. Using a master equation approach, we provide numerical simulations reproducing both the conductance and the shot noise pattern observed in our measurements.
Hydrogen Bond Induces Hierarchical Self-Assembly in Liquid-Crystalline Block Copolymers.
Huang, Shuai; Pang, Linlin; Chen, Yuxuan; Zhou, Liming; Fang, Shaoming; Yu, Haifeng
2018-03-01
Microphase-separated structures of block copolymers (BCs) with a size of sub-10 nm are usually obtained by hydrogen-bond-induced self-assembly of BCs through doping with small molecules as functional additives. Here, fabrication of hierarchically self-assembled sub-10 nm structures upon microphase separation of amphiphilic liquid-crystalline BCs (LCBCs) at the existence of hydrogen bonds but without any dopants is reported. The newly introduced urethane groups in the side chain of the hydrophobic block of LCBCs interact with the ether groups of the hydrophilic poly(ethylene oxide) (PEO) block, leading to imperfect crystallization of the PEO blocks. Both crystalline and amorphous domains coexist in the separated PEO phase, enabling a lamellar structure to appear inside the PEO nanocylinders. This provides an elegant method to fabricate controllable sub-10 nm microstructures in well-defined polymer systems without the introduction of any dopants. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lesson from Tungsten Leading Edge Heat Load Analysis in KSTAR Divertor
NASA Astrophysics Data System (ADS)
Hong, Suk-Ho; Pitts, Richard Anthony; Lee, Hyeong-Ho; Bang, Eunnam; Kang, Chan-Soo; Kim, Kyung-Min; Kim, Hong-Tack; ITER Organization Collaboration; Kstar Team Team
2016-10-01
An important design issue for the ITER tungsten (W) divertor and in fact for all such components using metallic plasma-facing elements and which are exposed to high parallel power fluxes, is the question of surface shaping to avoid melting of leading edges. We have fabricated a series of tungsten blocks with a variety of leading edge heights (0.3, 0.6, 1.0, and 2.0 mm), from the ITER worst case to heights even beyond the extreme value tested on JET. They are mounted into adjacent, inertially cooled graphite tile installed in the central divertor region of KSTAR, within the field of view of an infra-red (IR) thermography system with a spatial resolution to 0.4 mm/pixel. Adjustment of the outer divertor strike point position is used to deposit power on the different blocks in different discharges. The measured power flux density on flat regions of the surrounding graphite tiles is used to obtain the parallel power flux, q|| impinging on the various W blocks. Experiments have been performed in Type I ELMing H-mode with Ip = 600 kA, BT = 2 T, PNBI = 3.5 MW, leading to a hot attached divertor with typical pulse lengths of 10 s. Three dimensional ANSYS simulations using q|| and assuming geometric projection of the heat flux are found to be consistent with the observed edge loading. This research was partially supported by Ministry of Science, ICT, and Future Planning under KSTAR project.
ERIC Educational Resources Information Center
Congress of the U.S., Washington, DC. House Committee on Energy and Commerce.
These hearings examine the problem of lead poisoning in children and explore the consequences of the transfer of funds for lead-screening efforts to the maternal child health block grant. Lead toxicity is described as probably the most significant and pervasive environmental illness in the United States. Testimony asserts that the effect of the…
DiMES Tests of W Leading Edge Power Loading in DIII-D
NASA Astrophysics Data System (ADS)
Nygren, R. E.; Watkins, J. G.; Rudakov, D. L.; Lasnier, C. J.; Pitts, R. A.; Stangeby, P. C.
2015-11-01
In a transient melt experiment in JET, the power to a ~1-mm-high leading edge on a W lamella in the bulk-W outer divertor was lower than expected from the geometry by factors of 5 and 2 for L-mode and H-mode discharges, respectively. We checked this surprising result in DIII-D with 3 W blocks (10 mm square) mounted radially side-by-side in DiMES with leading edges of 0.0, 0.3, 1.0 mm, single null L-mode plasmas, OSP just outside ``0.0'' block, limited scans (NBI+ECH), B-field incident at 1.5° or 2.5°, and viewed, as in JET, from above with 0.2mm/pixel resolution IRTV. Langmuir probes measured parallel power to the target. We compared probe and IR data with a detailed thermal model of the blocks and concluded provisionally that we did not reproduce the power deficit found in JET. Blurred IR images complicated fitting of temperature distributions from the thermal model. We plan an experiment with both L- and H-mode He plasmas before the APS meeting. Supported by US DOE under DE-AC04-94AL85000, 44500007360, DE-AC52-07NA27344, and DE-FC02-04ER54698.
ERIC Educational Resources Information Center
Hutchison, Charles B.; Quach, Lan; Wiggan, Greg
2006-01-01
As global migrations of both teachers and students have increased, so has the need to re-learn English in response to local parlances. Thus, the use of formal and informal language styles, the masking of accents, and the understanding of the differential use of certain specific words, expressions, and the like become critical for teachers and…
Analyzing Global Interdependence. Volume I. Analytical Perspectives and Policy Implications,
1974-11-01
clearly explored in the school of social psychology called Role Theory. The language of dependency is transmuted into "matrices of possible interactions...imperialism or from sexual differences. The colonial oppression (dependencia) literature is polemical in style and normative in substance. b The orientation... sexual inequality, 7 one can glean several propositions about the dynamic characteristics of the dominant and subordinate members in the dependent
Stress Corrosion Cracking of Aluminum Alloys
2012-09-10
Hossain and B. J, O’Toole: Stress Corrosion Cracking of Martensitic Stainless Steel for Transmutation Application, Presented at 2003 International...SCC of marternsitic stainless steel by Roy,[12] and learn the annealing effect on SCC of carbon steel by Haruna.[13] The application of slow...observations. In his study on SCC of AISI 304 stainless steel , Roychowdhury[3] detected no apparent SCC in solutions containing 1 ppm thiosulfate and
NASA Astrophysics Data System (ADS)
Vickers, Linda Diane
This dissertation issues the first published document of the radiation absorbed dose rate (rad-h-1) to tissue from radioactive spallation products in Ta, W, Pb, Bi, and LBE target materials used in Accelerator Transmutation of Waste (ATW) applications. No previous works have provided an estimate of the absorbed dose rate (rad-h-1) from activated targets for ATW applications. The results of this dissertation are useful for planning the radiological safety assessment to personnel, and for the design, construction, maintenance, and disposition of target materials of high-energy particle accelerators for ATW applications (Charlton, 1996). In addition, this dissertation provides the characterization of target materials of high-energy particle accelerators for the parameters of: (1) spallation neutron yield (neutrons/proton), (2) spallation products yield (nuclides/proton), (3) energy-dependent spallation neutron fluence distribution, (4) spallation neutron flux, (5) identification of radioactive spallation products for consideration in safety of personnel to high radiation dose rates, and (6) identification of the optimum geometrical dimensions for the target applicable to the maximum radial spallation neutron leakage from the target. Pb and Bi target materials yielded the lowest absorbed dose rates (rad-h -1) for a 10-year irradiation/50-year decay scheme, and would be the preferred target materials for consideration of the radiological safety of personnel during ATW operations. A beneficial characteristic of these target materials is that they do not produce radioactive transuranic isotopes, which have very long half-lives and require special handling and disposition requirements. Furthermore, the targets are not considered High-Level Waste (HLW) such as reactor spent fuel for disposal purposes. It is a basic ATW system requirement that the spallation target after it has been expended should be disposable as Class C low-level radioactive waste. Therefore, the disposal of Pb and Bi targets would be optimally beneficial to the economy and environment. Future studies should relate the target performance to other system parameters, specifically solid and liquid blanket systems that contain the radioactive waste to be transmuted. The methodology of this dissertation may be applied to any target material of a high-energy particle accelerator.
Shepherd, Emma; Stuart, Graham; Martin, Rob; Walsh, Mark A
2015-06-01
SelectSecure™ pacing leads (Medtronic Inc) are increasingly being used in pediatric patients and adults with structural congenital heart disease. The 4Fr lead is ideal for patients who may require lifelong pacing and can be advantageous for patients with complex anatomy. The purpose of this study was to compare the extraction of SelectSecure leads with conventional (stylette-driven) pacing leads in patients with structural congenital heart disease and congenital atrioventricular block. The data on lead extractions from pediatric and adult congenital heart disease (ACHD) patients from August 2004 to July 2014 at Bristol Royal Hospital for Children and the Bristol Heart Institute were reviewed. Multivariable regression analysis was used to determine whether conventional pacing leads were associated with a more difficult extraction process. A total of 57 patients underwent pacemaker lead extractions (22 SelectSecure, 35 conventional). No deaths occurred. Mean age at the time of extraction was 17.6 ± 10.5 years, mean weight was 47 ± 18 kg, and mean lead age was 5.6 ± 2.6 years (range 1-11 years). Complex extraction (partial extraction/femoral extraction) was more common in patients with conventional pacing leads at univariate (P < .01) and multivariate (P = .04) levels. Lead age was also a significant predictor of complex extraction (P < .01). SelectSecure leads can be successfully extracted using techniques that are used for conventional pacing leads. They are less likely to be partially extracted and are less likely to require extraction using a femoral approach compared with conventional pacing leads. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-01
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
Ostras, Konstantin S; Gorobets, Nikolay Yu; Desenko, Sergey M; Musatov, Vladimir I
2006-08-01
A new one-stage fast multicomponent synthesis of title compounds leads to products in 21-55% isolated yields under both conventional and microwave conditions. The primary amino group in the building blocks can be easily acylated by various usual electophilic agents that can be utilized in the synthesis of diverse heterocylic compounds libraries.
Development of Novel Therapeutics for Neglected Tropical Disease Leishmaniasis
2016-10-01
Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) US Naval Medical Research Unit No. Six Venezuela Av. Block 36 Bellavista, Callao-Peru Asociacion Benefica...leading drug candidates identified in the previous experiments. Site 2: Naval Medical Research Unit No. Six (NAMRU-6), Venezuela Avenue block 36
Surface code implementation of block code state distillation.
Fowler, Austin G; Devitt, Simon J; Jones, Cody
2013-01-01
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states produced a single improved [formula: see text] state given 15 input copies. New block code state distillation methods can produce k improved [formula: see text] states given 3k + 8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.
Surface code implementation of block code state distillation
Fowler, Austin G.; Devitt, Simon J.; Jones, Cody
2013-01-01
State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states produced a single improved |A〉 state given 15 input copies. New block code state distillation methods can produce k improved |A〉 states given 3k + 8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three. PMID:23736868
Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands.
Pöselt, Elmar; Fischer, Steffen; Foerster, Stephan; Weller, Horst
2009-12-15
A novel type of ligand for biofunctionalization of nanoparticles is presented that comprises tailor-made triblock-copolymers consisting of a polyethylene imine binding block, a hydrophobic polycaprolactone and a terminal functionalized polyethelene oxide block. Phase transfer to water occurs simply by ligand and water addition and removal of the organic solvents. It is shown that the intermediate polycaprolacton block favors the attachment to the particle surface and shields the binding groups effectively from the solution. As a consequence, the particles exhibit an outstanding stability in various aqueous media for biological studies and give easy access to specific coupling reactions at the terminal end groups of the polyethylene oxide block. Controlling the ligand exchange parameters leads to self-assembly to either individual encapsulated nanoparticles or to multifunctional nanobeads.
Zhao, Fang; Xie, Dinghai; Zhang, Guangzhao; Pispas, Stergios
2008-05-22
Poly(isoprene)-block-poly(ethylene oxide) (PI-b-PEO) diblock copolymers form micelles in water. The introduction of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) triblock copolymer leads to the formation of mixed micelles through hydrophobic interaction. The dimension of the mixed micelles varies with the weight ratio (r) of PEO-b-PPO-b-PEO to PI-b-PEO. By use of laser light scattering, we have investigated the temperature dependence of the structural evolution of the micelles at different r. At r<10, the size of the mixed micelles decreases with temperature. At r>10, due to the excessive PEO-b-PPO-b-PEO chains in solution, as temperature increases, the mixed micelles aggregate into larger micelle clusters.
Vapor cooled current lead for cryogenic electrical equipment
Vansant, James H.
1983-01-01
Apparatus and method are provided for conducting electric current to cryogenic electrical equipment devices. A combination of inner and outer tubes together form a plurality of hollow composite tubes housed in a sheath. Top and bottom block mounting means are fitted to hold the composite tubes and are affixed to the ends of the sheath. This combination forms a current lead. The current lead is attached to a cryogenic device housing a fluid coolant which moves through the current lead, cooling the current lead as the fluid travels.
Garg, Rakesh; Bhan, Swati; Vig, Saurabh
2018-04-01
Surgical resection of the primary tumour with axillary dissection is one of the main modalities of breast cancer treatment. Regional blocks have been considered as one of the modalities for effective perioperative pain control. With the advent of ultrasound, newer interventions such as fascial plane blocks have been reported for perioperative analgesia in breast surgeries. Our aim is to review the literature for fascial plane blocks for analgesia in breast surgeries. The research question for initiating the review was 'What are the reported newer regional anaesthesia techniques (fascial plane blocks) for female patients undergoing breast surgery and their analgesic efficacy?.' The participants, intervention, comparisons, outcomes and study design were followed. Due to the paucity of similar studies and heterogeneity, the assessment of bias, systematic review or pooled analysis/meta-analysis was not feasible. Of the 989 manuscripts, the present review included 28 manuscripts inclusive of all types of published manuscripts. 15 manuscripts directly related to the administration of fascial plane blocks for breast surgery across all type of study designs and cases were reviewed for the utility of fascial plane blocks in breast surgeries. Interfascial blocks score over regional anaesthetic techniques such as paravertebral block as they have no risk of sympathetic blockade, intrathecal or epidural spread which may lead to haemodynamic instability and prolonged hospital stay. This review observed that no block effectively covers the whole of breast and axilla, thus a combination of blocks should be used depending on the site of incision and extent of surgical resection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael A. Pope
2011-10-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francesco Venneri; Chang-Keun Jo; Jae-Man Noh
2010-09-01
The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physicsmore » design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.« less
Timm, Matthew J; Matta, Chérif F
2014-12-01
Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. Copyright © 2014 Elsevier Ltd. All rights reserved.
1984-09-01
7D-Rt46 982 JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION j/j ADVERTISING : COMPARISON OF..(U) J B FUGUR SCHOOL OF N BUSINESS DURHAM NC R C MOREY...REPORT I PEPIO0 COV9cO JOINT DOD VERSUS NAVY SPECIFIC LEAD GENERATION Technical Report ADVERTISING : Comparison of Conversion Rates to (0 Quality...block number) . Upper-Mental, High School Degree, enlistment contracts, national leads, Z Joint DOD advertising , Service Specific Advertising , conversion
1999-03-01
Results of the 1998 Field Demonstration and Preliminary Implementation Guidance for Phytoremediation of Lead-Contaminated Soil at the Twin... Phytoremediation of Lead-Contaminated Soil at the Twin Cities Army Ammunition Plant, Arden Hills, Minnesota. 12. PERSONAL AUTHOR(S) A. P. Behel, Jr...CODES FIELD GROUP SUB-GROUP 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Phytoremediation of Lead-Contaminated
Fast realization of nonrecursive digital filters with limits on signal delay
NASA Astrophysics Data System (ADS)
Titov, M. A.; Bondarenko, N. N.
1983-07-01
Attention is given to the problem of achieving a fast realization of nonrecursive digital filters with the aim of reducing signal delay. It is shown that a realization wherein the impulse characteristic of the filter is divided into blocks satisfies the delay requirements and is almost as economical in terms of the number of multiplications as conventional fast convolution. In addition, the block method leads to a reduction in the needed size of the memory and in the number of additions; the short-convolution procedure is substantially simplified. Finally, the block method facilitates the paralleling of computations owing to the simple transfers between subfilters.
Needle in the external auditory canal: an unusual complication of inferior alveolar nerve block.
Ribeiro, Leandro; Ramalho, Sara; Gerós, Sandra; Ferreira, Edite Coimbra; Faria e Almeida, António; Condé, Artur
2014-06-01
Inferior alveolar nerve block is used to anesthetize the ipsilateral mandible. The most commonly used technique is one in which the anesthetic is injected directly into the pterygomandibular space, by an intraoral approach. The fracture of the needle, although uncommon, can lead to potentially serious complications. The needle is usually found in the pterygomandibular space, although it can migrate and damage adjacent structures, with variable consequences. The authors report an unusual case of a fractured needle, migrating to the external auditory canal, as a result of an inferior alveolar nerve block. Copyright © 2014 Elsevier Inc. All rights reserved.
Building blocks for subleading helicity operators
Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.
2016-05-24
On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonn, Bruce Edward
2009-11-01
This paper presents a scenario, a written narrative that describes a series of events that could lead to the extinction of humans as a species. The scenario is built upon three blocks of events. The first contains events that could severely and rapidly reduce human population in a relatively few years. The second block of events describes the regression of human civilization and technological base and the further loss of human population. The third block encompasses global environmental events that the remaining humans are subsequently unprepared to handle. The scenario posits the death by asphyxiation of the last human beingmore » by the year 3000.« less
Effects of specimen resonances on acoustic-ultrasonic testing
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Kahn, E. B.; Lee, S. S.
1983-01-01
The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements.
Mitra, Ranjana; Le, Thuc T; Gorjala, Priyatham; Goodman, Oscar B
2017-09-06
Neoplastic cells proliferate rapidly and obtain requisite building blocks by reprogramming metabolic pathways that favor growth. Previously, we observed that prostate cancer cells uptake and store lipids in the form of lipid droplets, providing building blocks for membrane synthesis, to facilitate proliferation and growth. Mechanisms of lipid uptake, lipid droplet dynamics and their contribution to cancer growth have yet to be defined. This work is focused on elucidating the prostate cancer-specific modifications in lipid storage pathways so that these modified gene products can be identified and therapeutically targeted. To identify genes that promote lipid droplet formation and storage, the expression profiles of candidate genes were assessed and compared between peripheral blood mononuclear cells and prostate cancer cells. Subsequently, differentially expressed genes were inhibited and growth assays performed to elucidate their role in the growth of the cancer cells. Cell cycle, apoptosis and autophagy assays were performed to ascertain the mechanism of growth inhibition. Our results indicate that DGAT1, ABHD5, ACAT1 and ATGL are overexpressed in prostate cancer cells compared to PBMCs and of these overexpressed genes, DGAT1 and ABHD5 aid in the growth of the prostate cancer cells. Blocking the expression of both DGAT1 and ABHD5 results in inhibition of growth, cell cycle block and cell death. DGAT1 siRNA treatment inhibits lipid droplet formation and leads to autophagy where as ABHD5 siRNA treatment promotes accumulation of lipid droplets and leads to apoptosis. Both the siRNA treatments reduce AMPK phosphorylation, a key regulator of lipid metabolism. While DGAT1 siRNA reduces phosphorylation of ACC, the rate limiting enzyme in de novo fat synthesis and triggers phosphorylation of raptor and ULK-1 inducing autophagy and cell death, ABHD5 siRNA decreases P70S6 phosphorylation, leading to PARP cleavage, apoptosis and cell death. Interestingly, DGAT-1 is involved in the synthesis of triacylglycerol where as ABHD5 is a hydrolase and participates in the fatty acid oxidation process, yet inhibition of both enzymes similarly promotes prostate cancer cell death. Inhibition of either DGAT1 or ABHD5 leads to prostate cancer cell death. Both DGAT1 and ABHD5 can be selectively targeted to block prostate cancer cell growth.
Quality of selected coal seams from Indiana: Implications for carbonization
Walker, R.; Mastalerz, Maria; Padgett, P.
2001-01-01
The chemical properties of two high-volatile bituminous coals, the Danville Coal Member of the Dugger Formation and the Lower Block Coal Member of the Brazil Formation from southern Indiana, were compared to understand the differences in their coking behavior. It was determined that of the two, the Lower Block has better characteristics for coking. Observed factors that contribute to the differences in the coking behavior of the coals include carbon content, organic sulfur content, and oxygen/carbon (O/C) ratios. The Lower Block coal has greater carbon content than the Danville coal, leading to a lower O/C ratio, which is more favorable for coking. Organic sulfur content is higher in the Lower Block coal, and a strong correlation was found between organic sulfur and plasticity. The majority of the data for both seams plot in the Type III zone on a van Krevelen diagram, and several samples from the Lower Block coal plot into the Type II zone, suggesting a perhydrous character for those samples. This divergence in properties between the Lower Block and Danville coals may account for the superior coking behavior of the Lower Block coal. ?? 2001 Elsevier Science B.V. All rights reserved.
Gu, Ming-liang; Chu, Jia-you
2007-12-01
Human genome has structures of haplotype and haplotype block which provide valuable information on human evolutionary history and may lead to the development of more efficient strategies to identify genetic variants that increase susceptibility to complex diseases. Haplotype block can be divided into discrete blocks of limited haplotype diversity. In each block, a small fraction of ptag SNPsq can be used to distinguish a large fraction of the haplotypes. These tag SNPs can be potentially useful for construction of haplotype and haplotype block, and association studies in complex diseases. There are two general classes of methods to construct haplotype and haplotype blocks based on genotypes on large pedigrees and statistical algorithms respectively. The author evaluate several construction methods to assess the power of different association tests with a variety of disease models and block-partitioning criteria. The advantages, limitations and applications of each method and the application in the association studies are discussed equitably. With the completion of the HapMap and development of statistical algorithms for addressing haplotype reconstruction, ideas of construction of haplotype based on combination of mathematics, physics, and computer science etc will have profound impacts on population genetics, location and cloning for susceptible genes in complex diseases, and related domain with life science etc.
Critical Period of Memory Enhancement during Taste Avoidance Conditioning in Lymnaea stagnalis
Sunada, Hiroshi; Lukowiak, Ken; Sakakibara, Manabu
2013-01-01
The present study investigated the optimal training procedure leading to long-lasting taste avoidance behavior in Lymnaea. A training procedure comprising 5 repeated pairings of a conditional stimulus (CS, sucrose), with an unconditional stimulus (US, a tactile stimulation to the animal’s head), over a 4-day period resulted in an enhanced memory formation than 10 CS-US repeated pairings over a 2-day period or 20 CS-US repeated pairings on a single day. Backward conditioning (US-CS) pairings did not result in conditioning. Thus, this taste avoidance conditioning was CS-US pairing specific. Food avoidance behavior was not observed following training, however, if snails were immediately subjected to a cold-block (4°C for 10 min). It was critical that the cold-block be applied within 10 min to block long-term memory (LTM) formation. Further, exposure to the cold-block 180 min after training also blocked both STM and LTM formation. The effects of the cold-block on subsequent learning and memory formation were also examined. We found no long lasting effects of the cold-block on subsequent memory formation. If protein kinase C was activated before the conditioning paradigm, snails could still acquire STM despite exposure to the cold-block. PMID:24098373
Targeting androgen receptor and JunD interaction for prevention of prostate cancer progression.
Mehraein-Ghomi, Farideh; Kegel, Stacy J; Church, Dawn R; Schmidt, Joseph S; Reuter, Quentin R; Saphner, Elizabeth L; Basu, Hirak S; Wilding, George
2014-05-01
Multiple studies show that reactive oxygen species (ROS) play a major role in prostate cancer (PCa) development and progression. Previously, we reported an induction of Spermidine/Spermine N(1) -Acetyl Transferase (SSAT) by androgen-activated androgen receptor (AR)-JunD protein complex that leads to over-production of ROS in PCa cells. In our current research, we identify small molecules that specifically block AR-JunD in this ROS-generating metabolic pathway. A high throughput assay based on Gaussia Luciferase reconstitution was used to identify inhibitors of the AR-JunD interaction. Selected hits were further screened using a fluorescence polarization competitor assay to eliminate those that bind to the AR Ligand Binding Domain (LBD), in order to identify molecules that specifically target events downstream to androgen activation of AR. Eleven molecules were selected for studies on their efficacy against ROS generation and growth of cultured human PCa cells by DCFH dye-oxidation assay and DNA fluorescence assay, respectively. In situ Proximity Ligation Assay (PLA), SSAT promoter-luciferase reporter assay, and western blotting of apoptosis and cell cycle markers were used to study mechanism of action of the lead compound. Selected lead compound GWARJD10 with EC(50) 10 μM against ROS production was shown to block AR-JunD interaction in situ as well as block androgen-induced SSAT gene expression at IC(50) 5 μM. This compound had no effect on apoptosis markers, but reduced cyclin D1 protein level. Inhibitor of AR-JunD interaction, GWARJD10 shows promise for prevention of progression of PCa at an early stage of the disease by blocking growth and ROS production. © 2014 Wiley Periodicals, Inc.
Radiative PQ breaking and the Higgs boson mass
NASA Astrophysics Data System (ADS)
D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio
2015-06-01
The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ˜ 5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.
Ab initio study of the trapping of polonium on noble metals
NASA Astrophysics Data System (ADS)
Rijpstra, Kim; Van Yperen-De Deyne, Andy; Maugeri, Emilio Andrea; Neuhausen, Jörg; Waroquier, Michel; Van Speybroeck, Veronique; Cottenier, Stefaan
2016-04-01
In the future MYRRHA reactor, lead bismuth eutectic (LBE) will be used both as coolant and as spallation target. Due to the high neutron flux a small fraction of the bismuth will transmute to radiotoxic 210Po. Part of this radiotoxic element will evaporate into the gas above the coolant. Extracting it from the gas phase is necessary to ensure a safe handling of the reactor. An issue in the development of suitable filters is the lack of accurate knowledge on the chemical interaction between a candidate filter material and either elemental polonium or polonium containing molecules. Experimental work on this topic is complicated by the high radiotoxicity of polonium. Therefore, we present in this paper a first-principles study on the adsorption of polonium on noble metals as filter materials. The adsorption of monoatomic Po is considered on the candidate filter materials palladium, platinum, silver and gold. The case of the gold filter is looked upon in more detail by examining how bismuth pollution affects its capability to capture polonium and by studying the adsorption of the heavy diatomic molecules Po2, PoBi and PoPb on this gold filter.
Development of Novel PD1/PD-L1 Antagonists Using Circular Cys-Knotted Micro Proteins
2017-06-01
positive bacte- ria.[67] Similar antibacterial activities have been found in cyclo- tides isolated from Hedyota biflora (Rubiaceae family)[68] and C...immune control. Hence, reversing the inhibition of the adaptive immunity can lead to the activation of a patient’s immunity. For example, inhibition of...receptor and PD-L1, to block immune checkpoints, and facilitate antitumor activity . These checkpoint-blocking antibodies have demonstrated clinical
NASA Astrophysics Data System (ADS)
Massey, Richard J.; Schochetman, Gerald
1981-07-01
The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.
High-resolution, cryogenic, side-entry type specimen stage
King, Wayne E.; Merkle, Karl L.
1979-01-01
A high-resolution, cryogenic side-entry type specimen stage includes a copper block within which a specimen can be positioned in the electron beam of an electron microscope, one end of the copper block constituting a specimen heat exchanger, means for directing a flow of helium at cryogenic temperature into the heat exchanger, and electrical leads running from the specimen to the exterior of the microscope for four point D.C. electrical resistivity measurements.
Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty
Koh, In Jun; Choi, Young Jun; Kim, Man Soo; Koh, Hyun Jung; Kang, Min Sung; In, Yong
2017-01-01
Inadequate pain management after total knee arthroplasty (TKA) impedes recovery, increases the risk of postoperative complications, and results in patient dissatisfaction. Although the preemptive use of multimodal measures is currently considered the principle of pain management after TKA, no gold standard pain management protocol has been established. Peripheral nerve blocks have been used as part of a contemporary multimodal approach to pain control after TKA. Femoral nerve block (FNB) has excellent postoperative analgesia and is now a commonly used analgesic modality for TKA pain control. However, FNB leads to quadriceps muscle weakness, which impairs early mobilization and increases the risk of postoperative falls. In this context, emerging evidence suggests that adductor canal block (ACB) facilitates postoperative rehabilitation compared with FNB because it primarily provides a sensory nerve block with sparing of quadriceps strength. However, whether ACB is more appropriate for contemporary pain management after TKA remains controversial. The objective of this study was to review and summarize recent studies regarding practical issues for ACB and comparisons of analgesic efficacy and functional recovery between ACB and FNB in patients who have undergone TKA. PMID:28545172
Femoral Nerve Block versus Adductor Canal Block for Analgesia after Total Knee Arthroplasty.
Koh, In Jun; Choi, Young Jun; Kim, Man Soo; Koh, Hyun Jung; Kang, Min Sung; In, Yong
2017-06-01
Inadequate pain management after total knee arthroplasty (TKA) impedes recovery, increases the risk of postoperative complications, and results in patient dissatisfaction. Although the preemptive use of multimodal measures is currently considered the principle of pain management after TKA, no gold standard pain management protocol has been established. Peripheral nerve blocks have been used as part of a contemporary multimodal approach to pain control after TKA. Femoral nerve block (FNB) has excellent postoperative analgesia and is now a commonly used analgesic modality for TKA pain control. However, FNB leads to quadriceps muscle weakness, which impairs early mobilization and increases the risk of postoperative falls. In this context, emerging evidence suggests that adductor canal block (ACB) facilitates postoperative rehabilitation compared with FNB because it primarily provides a sensory nerve block with sparing of quadriceps strength. However, whether ACB is more appropriate for contemporary pain management after TKA remains controversial. The objective of this study was to review and summarize recent studies regarding practical issues for ACB and comparisons of analgesic efficacy and functional recovery between ACB and FNB in patients who have undergone TKA.
Design of short peptides to block BTLA/HVEM interactions for promoting anticancer T-cell responses
Spodzieja, Marta; Lach, Sławomir; Iwaszkiewicz, Justyna; Cesson, Valérie; Kalejta, Katarzyna; Olive, Daniel; Michielin, Olivier; Speiser, Daniel E.; Zoete, Vincent
2017-01-01
Antibody based immune-checkpoint blockade therapy is a major breakthrough in oncology, leading to clinical benefit for cancer patients. Among the growing family of inhibitory receptors, the B and T lymphocyte attenuator (BTLA), which interacts with herpes virus entry mediator (HVEM), is a promising target for immunotherapy. Indeed, BTLA inhibits T-cell proliferation and cytokine production. The crystal structure of the BTLA/HVEM complex has shown that the HVEM(26–38) fragment is directly involved in protein binding. We designed and analyzed the capacity of several analogs of this fragment to block the ligation between BTLA and HVEM, using competitive ELISA and cellular assay. We found that the HVEM(23–39) peptide can block BTLA/HVEM ligation. However, the blocking ability was due to the Cys encompassed in this peptide and that even free cysteine targeted the BTLA protein and blocked its interaction with HVEM. These data highlight a Cys-related artefact in vitro, which should be taken in consideration for future development of BTLA/HVEM blocking compounds. PMID:28594868
ERIC Educational Resources Information Center
Rapaport, David
2005-01-01
Edward Thorndike may be counted on to say in few words what amounts to a highly complex idea. He once said that, with learning as with any activity, ability must be supplemented by interest or desire. "If we wish to learn a certain thing, we must arouse adequate interest... we must transmute this general wish into an interest that will carry us to…
Overview of Light Hydrogen-Based Low Energy Nuclear Reactions
NASA Astrophysics Data System (ADS)
Miley, George H.; Shrestha, Prajakti J.
This paper reviews light water and hydrogen-based low-energy nuclear reactions (LENRs) including the different methodologies used to study these reactions and the results obtained. Reports of excess heat production, transmutation reactions, and nuclear radiation emission are cited. An aim of this review is to present a summary of the present status of light water LENR research and provide some insight into where this research is heading.
Particle-vortex duality from 3D bosonization
Karch, Andreas; Tong, David
2016-09-19
We show how particle-vortex duality in d = 2+1 dimensions arises as part of an intricate web of relationships between different field theories. The starting point is “bosonization,” a conjectured duality that uses flux attachment to transmute the statistics of relativistic particles. From this seed, we derive many old and new dualities. Finally, these include particle-vortex duality for bosons as well as the recently discovered counterpart for fermions.
Breeding of {sup 233}U in the thorium–uranium fuel cycle in VVER reactors using heavy water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marshalkin, V. E., E-mail: marshalkin@vniief.ru; Povyshev, V. M.
A method is proposed for achieving optimal neutron kinetics and efficient isotope transmutation in the {sup 233}U–{sup 232}Th oxide fuel of water-moderated reactors with variable water composition (D{sub 2}O, H{sub 2}O) that ensures breeding of the {sup 233}U and {sup 235}U isotopes. The method is comparatively simple to implement.
A Preliminary Investigation of Ego Stage and Leadership Effectiveness.
1988-03-01
traits are not necessarily linked to observable0! behavior. For example, an individual may refrain from sexual harassment because he is legally bound...are given value as a function of their worth to the child. Bodily impulses, such as sexual and aggressive im- pulses, appropriate to the particular...potentialities in various circumstances. Conscientiousness of oneself transmutes group standards of conduct and appearance. No longer does the person see one
Shedding light on serpent sight: the visual pigments of henophidian snakes.
Davies, Wayne L; Cowing, Jill A; Bowmaker, James K; Carvalho, Livia S; Gower, David J; Hunt, David M
2009-06-10
The biologist Gordon Walls proposed his "transmutation" theory through the 1930s and the 1940s to explain cone-like morphology of rods (and vice versa) in the duplex retinas of modern-day reptiles, with snakes regarded as the epitome of his hypothesis. Despite Walls' interest, the visual system of reptiles, and in particular snakes, has been widely neglected in favor of studies of fishes and mammals. By analyzing the visual pigments of two henophidian snakes, Xenopeltis unicolor and Python regius, we show that both species express two cone opsins, an ultraviolet-sensitive short-wavelength-sensitive 1 (SWS1) (lambda(max) = 361 nm) pigment and a long-wavelength-sensitive (LWS) (lambda(max) = 550 nm) pigment, providing the potential for dichromatic color vision. They also possess rod photoreceptors which express the usual rod opsin (Rh1) pigment with a lambda(max) at 497 nm. This is the first molecular study of the visual pigments expressed in the photoreceptors of any snake species. The presence of a duplex retina and the characterization of LWS, SWS1, and Rh1 visual pigments in henophidian snakes implies that "lower" snakes do not provide support for Walls' transmutation theory, unlike some "higher" (caenophidian) snakes and other reptiles, such as geckos. More data from other snake lineages will be required to test this hypothesis further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, S. L.; Harp, J. M.; Chichester, H. J. M.
Research and development activities on metallic fuels in the US are focused on their potential use for actinide transmutation in future sodium fast reactors. As part of this application, there is a desire to demonstrate a multifold increase in burnup potential. A number of metallic fuel design innovations are under investigation with a view toward significantly increasing the burnup potential of metallic fuels, since higher discharge burnups equate to lower potential actinide losses during recycle. Promising innovations under investigation include: 1) lowering the fuel smeared density in order to accommodate the additional swelling expected as burnups increase, 2) utilizing anmore » annular fuel geometry for better geometrical stability at low smeared densities, as well as the potential to eliminate the need for a sodium bond, and 3) minor alloy additions to immobilize lanthanide fission products inside the metallic fuel matrix and prevent their transport to the cladding resulting in fuel-cladding chemical interaction. This paper presents results from these efforts to advance metallic fuel technology in support of high burnup and actinide transmutation objectives. Highlights include examples of fabrication of low smeared density annular metallic fuels, experiments to identify alloy additions effective in immobilizing lanthanide fission products, and early postirradiation examinations of annular metallic fuels having low smeared densities and palladium additions for fission product immobilization.« less
Simoe, Bruno F; Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.; Gower, David J.
2016-01-01
In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels.
New Mechanism of Low Energy Nuclear Reactions Using Superlow
NASA Astrophysics Data System (ADS)
Gareev, F. A.; Zhidkova, I. E.
2006-03-01
We proposed a new mechanism of LENR (low energy nuclear reactions) cooperative processes in the whole system - nuclei+atoms+condensed matter can occur at smaller threshold than the corresponding ones assoiciated with free constituents. The cooperative processes can be induced and enhanced by (``superlow energy'') external fields. The excess heat is the emission of internal energy, and transmutations from LENR are the result of redistribution of the internal energy of the whole system. A review of possible stimulation mechanisms of LENR is presented. We have concluded that transmutation of nuclei at low energies and excess heat are possible in the framework of the known fundamental physical laws: The universal resonance synchronization principle, and based on it, different enhancement mechanisms of reaction rates are responsible for these processes. The excitation and ionization of atoms may play the role of a trigger for LENR. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0511092 v1 30 Nov 2005. F.A. Gareev, In: FPB-98, Novosibirsk, June 1998, p.92; F.A.Gareev, G.F. Gareeva, in: Novosibirsk, July 2000, p.161. F.A. Gareev, I.E. Zhidkova and Yu.L. Ratis, Preprint JINR P4-2004-68, Dubna, 2004. F.A. Gareev, I.E. Zhidkova, E-print arXiv Nucl-th/0505021 9 May 2005.
Sampaio, Filipa L.; Loew, Ellis R.; Sanders, Kate L.; Fisher, Robert N.; Hart, Nathan S.; Hunt, David M.; Partridge, Julian C.
2016-01-01
In 1934, Gordon Walls forwarded his radical theory of retinal photoreceptor ‘transmutation’. This proposed that rods and cones used for scotopic and photopic vision, respectively, were not fixed but could evolve into each other via a series of morphologically distinguishable intermediates. Walls' prime evidence came from series of diurnal and nocturnal geckos and snakes that appeared to have pure-cone or pure-rod retinas (in forms that Walls believed evolved from ancestors with the reverse complement) or which possessed intermediate photoreceptor cells. Walls was limited in testing his theory because the precise identity of visual pigments present in photoreceptors was then unknown. Subsequent molecular research has hitherto neglected this topic but presents new opportunities. We identify three visual opsin genes, rh1, sws1 and lws, in retinal mRNA of an ecologically and taxonomically diverse sample of snakes central to Walls' theory. We conclude that photoreceptors with superficially rod- or cone-like morphology are not limited to containing scotopic or photopic opsins, respectively. Walls' theory is essentially correct, and more research is needed to identify the patterns, processes and functional implications of transmutation. Future research will help to clarify the fundamental properties and physiology of photoreceptors adapted to function in different light levels. PMID:26817768
Epifano, Enrica; Guéneau, Christine; Belin, Renaud C; Vauchy, Romain; Lebreton, Florent; Richaud, Jean-Christophe; Joly, Alexis; Valot, Christophe; Martin, Philippe M
2017-07-03
In the frame of minor actinide transmutation, americium can be diluted in UO 2 and (U, Pu)O 2 fuels burned in fast neutron reactors. The first mandatory step to foresee the influence of Am on the in-reactor behavior of transmutation targets or fuel is to have fundamental knowledge of the Am-O binary system and, in particular, of the AmO 2-x phase. In this study, we coupled HT-XRD (high-temperature X-ray diffraction) experiments with CALPHAD thermodynamic modeling to provide new insights into the structural properties and phase equilibria in the AmO 2-x -AmO 1.61+x -Am 2 O 3 domain. Because of this approach, we were able for the first time to assess the relationships between temperature, lattice parameter, and hypostoichiometry for fcc AmO 2-x . We showed the presence of a hyperstoichiometric existence domain for the bcc AmO 1.61+x phase and the absence of a miscibility gap in the fcc AmO 2-x phase, contrary to previous representations of the phase diagram. Finally, with the new experimental data, a new CALPHAD thermodynamic model of the Am-O system was developed, and an improved version of the phase diagram is presented.
Neutron transmutation doping of silicon in the SAFARI-1 research reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louw, P.A.; Robertson, D.G.; Strydom, W.J.
1994-12-31
The SAFARI-1 research reactor has operated with an exemplary safety record since commissioning in 1965. As part of a commercialisation effort a silicon irradiation facility (SILIRAD) has been installed in the poolside region of SAFARI-1 for Neutron Transmutation Doping (NTD) of silicon. Commissioning of the facility took place in the last quarter of 1992 with a series of trial irradiations which were performed in close collaboration with Wacker Chemitronic of Germany. A methodology for the determination of irradiation times necessary to achieve the target resistivities was verified on the basis of the results from the trial irradiations. All production activitiesmore » are controlled by quality assurance procedures. To date some hundred and twelve silicon ingots (103 mm diameter) have been successfully irradiated on a commercial contract basis. The observed axial and radial variations in the resistivity profile of the ingots are very small compared to the profiles associated with conventionally doped silicon and small tolerances on target resistivities are attained. In this paper an overview of the design and characterisation of SILIRAD is given and the methods applied that ensure a quality product are described. Results obtained from trial and production irradiations are presented and the envisaged future modifications to SILIRAD discussed.« less
In situ measurement of tritium permeation through stainless steel
NASA Astrophysics Data System (ADS)
Luscher, Walter G.; Senor, David J.; Clayton, Kevin K.; Longhurst, Glen R.
2013-06-01
The TMIST-2 irradiation experiment was conducted in the Advanced Test Reactor at Idaho National Laboratory to evaluate tritium permeation through Type 316 stainless steel (316 SS). The interior of a 316 SS seamless tube specimen was exposed to a 4He carrier gas mixed with a specified quantity of tritium (T2) to yield partial pressures of 0.1, 5, and 50 Pa at 292 °C and 330 °C. In situ tritium permeation measurements were made by passing a He-Ne sweep gas over the outer surface of the specimen to carry the permeated tritium to a bubbler column for liquid scintillation counting. Results from in situ permeation measurements were compared with predictions based on an ex-reactor permeation correlation in the literature. In situ permeation data were also used to derive an in-reactor permeation correlation as a function of temperature and pressure over the ranges considered in this study. In addition, the triton recoil contribution to tritium permeation, which results from the transmutation of 3He to T, was also evaluated by introducing a 4He carrier gas mixed with 3He at a partial pressure of 1013 Pa at 330 °C. Less than 3% of the tritium resulting from 3He transmutation contributed to tritium permeation.
NASA Astrophysics Data System (ADS)
Li, Xiaodong; Gao, Caitian; Wang, Jiangtao; Lu, Bingan; Chen, Wanjun; Song, Jie; Zhang, Shanshan; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing
2012-09-01
Highly transparent nanocrystalline TiO2 films have been fabricated by electrospinning (ES) technique based on a transmutation process from as-spun nanofibers with an appropriate amount of tri-ethanolamine (TEOA) added to the precursor. A possible evolution mechanism of the transparent nanocrystalline TiO2 films is proposed. It is found that the films prepared via transmutation from electrospun nanofibers possess rich bulk oxygen vacancies (BOVs, PL band at 621-640 nm) by using photoluminescence (PL) spectroscopy. Contrastively, the dominant peak in PL spectrum of the spin-coated film is the emission from surface oxygen vacancies (SOVs, PL band at 537-555 nm). The electrospun TiO2 films with rich BOVs induce large open-circuit voltage (Voc) and fill factor (FF) improvements in dye-sensitized solar cells (DSCs), and thus a large improvement of energy conversion efficiency (η). In addition, these performance advantages are maintained for a double-layer cell with a doctor-bladed ˜7 μm top layer (P25 nanometer TiO2, Degussa) and an electrospun ˜3 μm bottom layer. The double-layer cell yields a high η of 6.01%, which has increased by 14% as compared with that obtained from a 10 μm thick P25 film.
Ion Transport in Nanostructured Block Copolymer/Ionic Liquid Membranes
NASA Astrophysics Data System (ADS)
Hoarfrost, Megan Lane
Incorporating an ionic liquid into one block copolymer microphase provides a platform for combining the outstanding electrochemical properties of ionic liquids with a number of favorable attributes provided by block copolymers. In particular, block copolymers thermodynamically self-assemble into well-ordered nanostructures, which can be engineered to provide a durable mechanical scaffold and template the ionic liquid into continuous ion-conducting nanochannels. Understanding how the addition of an ionic liquid affects the thermodynamic self-assembly of block copolymers, and how the confinement of ionic liquids to block copolymer nanodomains affects their ion-conducting properties is essential for predictable structure-property control. The lyotropic phase behavior of block copolymer/ionic liquid mixtures is shown to be reminiscent of mixtures of block copolymers with selective molecular solvents. A variety of ordered microstructures corresponding to lamellae, hexagonally close-packed cylinders, body-centered cubic, and face-centered cubic oriented micelles are observed in a model system composed of mixtures of imidazolium bis(trifluoromethylsulfonyl)imide ([Im][TFSI]) and poly(styrene-
Li, Yuanyuan; Leneghan, Darren B; Miura, Kazutoyo; Nikolaeva, Daria; Brian, Iona J; Dicks, Matthew D J; Fyfe, Alex J; Zakutansky, Sarah E; de Cassan, Simone; Long, Carole A; Draper, Simon J; Hill, Adrian V S; Hill, Fergal; Biswas, Sumi
2016-01-08
Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.
Garcia, Carlos B W; Zhang, Yuanming; Mahajan, Surbhi; DiSalvo, Francis; Wiesner, Ulrich
2003-11-05
In the present study poly(isoprene-block-ethylene oxide), PI-b-PEO, block copolymers are used to structure iron oxide and silica precursors into reverse mesophases, which upon dissolution of the organic matrix lead to well-defined nanoparticles of spheres, cylinders, and plates based on the original structure of the mesophase prepared. The hybrid mesophases with sphere, cylinder, and lamellar morphologies containing the inorganic components in the minority phases are characterized through a combination of small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and electron energy loss spectroscopy (EELS). After heat treatments the respective nanoparticles on mica surfaces are characterized by scanning force microscopy (SFM). X-ray diffraction (XRD) and superconducting quantum interference device (SQUID) magnetometer measurements are performed to demonstrate that the heat treatment leads to the formation of a magnetic gamma-Fe2O3 crystalline phase within the amorphous aluminosilicate. The results pave the way to functional, i.e., magnetic nanoparticles where the size, shape, and iron oxide concentration can be controlled opening a range of possible applications.
NASA Astrophysics Data System (ADS)
Giardiello, Marco; Hatton, Fiona L.; Slater, Rebecca A.; Chambon, Pierre; North, Jocelyn; Peacock, Anita K.; He, Tao; McDonald, Tom O.; Owen, Andrew; Rannard, Steve P.
2016-03-01
The formation of inorganic-organic magnetic nanocomposites using reactive chemistry often leads to a loss of super-paramagnetisim when conducted in the presence of iron oxide nanoparticles. We present here a low energy and chemically-mild process of co-nanoprecipitation using SPIONs and homopolymers or amphiphilic block copolymers, of varying architecture and hydrophilic/hydrophobic balance, which efficiently generates near monodisperse SPION-containing polymer nanoparticles with complete retention of magnetism, and highly reversible aggregation and redispersion behaviour. When linear and branched block copolymers with inherent water-solubility are used, a SPION-directed nanoprecipitation mechanism appears to dominate the nanoparticle formation presenting new opportunities for tailoring and scaling highly functional systems for a range of applications.The formation of inorganic-organic magnetic nanocomposites using reactive chemistry often leads to a loss of super-paramagnetisim when conducted in the presence of iron oxide nanoparticles. We present here a low energy and chemically-mild process of co-nanoprecipitation using SPIONs and homopolymers or amphiphilic block copolymers, of varying architecture and hydrophilic/hydrophobic balance, which efficiently generates near monodisperse SPION-containing polymer nanoparticles with complete retention of magnetism, and highly reversible aggregation and redispersion behaviour. When linear and branched block copolymers with inherent water-solubility are used, a SPION-directed nanoprecipitation mechanism appears to dominate the nanoparticle formation presenting new opportunities for tailoring and scaling highly functional systems for a range of applications. Electronic supplementary information (ESI) available: Additional experimental details, NMR spectra, GPC chromatograms, kinetics experiments, graphs of nanopreciptate aggregation and cycling studies and SPION characterisation. See DOI: 10.1039/c6nr00788k
Arai, Masaru; Nagashima, Koichi; Kato, Mahoto; Akutsu, Naotaka; Hayase, Misa; Ogura, Kanako; Iwasawa, Yukino; Aizawa, Yoshihiro; Saito, Yuki; Okumura, Yasuo; Nishimaki, Haruna; Masuda, Shinobu; Hirayama, Astushi
2016-09-08
BACKGROUND Infective endocarditis (IE) involving the mitral valve can but rarely lead to complete atrioventricular block (CAVB). CASE REPORT A 74-year-old man with a history of infective endocarditis caused by Streptococcus gordonii (S. gordonii) presented to our emergency room with fever and loss of appetite, which had lasted for 5 days. On admission, results of serologic tests pointed to severe infection. Electrocardiography showed normal sinus rhythm with first-degree atrioventricular block and incomplete right bundle branch block, and transthoracic echocardiography and transesophageal echocardiography revealed severe mitral regurgitation caused by posterior leaflet perforation and 2 vegetations (5 mm and 6 mm) on the tricuspid valve. The patient was initially treated with ceftriaxone and gentamycin because blood and cutaneous ulcer cultures yielded S. agalactiae. On hospital day 2, however, sudden CAVB requiring transvenous pacing occurred, and the patient's heart failure and infection worsened. Although an emergent surgery is strongly recommended, even in patients with uncontrolled heart failure or infection, surgery was not performed because of the Child-Pugh class B liver cirrhosis. Despite intensive therapy, the patient's condition further deteriorated, and he died on hospital day 16. On postmortem examination, a 2×1-cm vegetation was seen on the perforated posterior mitral leaflet, and the infection had extended to the interventricular septum. Histologic examination revealed extensive necrosis of the AV node. CONCLUSIONS This rare case of CAVB resulting from S. agalactiae IE points to the fact that in monitoring patients with IE involving the mitral valve, clinicians should be aware of the potential for perivalvular extension of the infection, which can lead to fatal heart block.
Kumar, Varun; Hong, Sam Y.; Maciag, Anna E.; Saavedra, Joseph E.; Adamson, Douglas H.; Prud'homme, Robert K.; Keefer, Larry K.; Chakrapani, Harinath
2009-01-01
Here we report the stabilization of the nitric oxide (NO) prodrugs and anti-cancer lead compounds, PABA/NO (O2-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and “Double JS-K” (1,5-bis{[1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato]-2,4-dinitrobenzene), through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit. PMID:20000791
Kumar, Varun; Hong, Sam Y; Maciag, Anna E; Saavedra, Joseph E; Adamson, Douglas H; Prud'homme, Robert K; Keefer, Larry K; Chakrapani, Harinath
2010-02-01
We report the stabilization of the nitric oxide (NO) prodrugs and anticancer lead compounds, PABA/NO (O(2)-{2,4-dinitro-5-[4-(N-methylamino)benzoyloxy]phenyl} 1-(N,N-dimethylamino)diazen-1-ium-1,2-diolate) and "Double JS-K" 1,5-bis-{1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diol-2-ato}-2,4-dinitrobenzene, through their incorporation into polymer-protected nanoparticles. The prodrugs were formulated in block copolymer-stabilized nanoparticles with sizes from 220 to 450 nm by a novel rapid precipitation process. The block copolymers, with polyethylene glycol (PEG) soluble blocks, provide a steric barrier against NO prodrug activation by glutathione. Too rapid activation and NO release has been a major barrier to effective administration of this class of compounds. The nanoparticle stabilized PABA/NO are protected from attack by glutathione as evidenced by a significant increase in time taken for 50% decomposition from 15 min (unformulated) to 5 h (formulated); in the case of Double JS-K, the 50% decomposition time was extended from 4.5 min (unformulated) to 40 min (formulated). The more hydrophobic PABA/NO produced more stable nanoparticles and correspondingly more extended release times in comparison with Double JS-K. The hydrophobic blocks of the polymer were either polystyrene or polylactide. Both blocks produced nanoparticles of approximately the same size and release kinetics. This combination of PEG-protected nanoparticles with sizes appropriate for cancer targeting by enhanced permeation and retention (EPR) and delayed release of NO may afford enhanced therapeutic benefit.
Millisecond ordering of block-copolymer films via photo-thermal gradients
Majewski, Pawel W.; Yager, Kevin G.
2015-03-12
For the promise of self-assembly to be realized, processing techniques must be developed that simultaneously enable control of the nanoscale morphology, rapid assembly, and, ideally, the ability to pattern the nanostructure. Here, we demonstrate how photo-thermal gradients can be used to control the ordering of block-copolymer thin films. Highly localized laser heating leads to intense thermal gradients, which induce a thermophoretic force on morphological defects. This increases the ordering kinetics by at least 3 orders-of-magnitude, compared to conventional oven annealing. By simultaneously exploiting the thermal gradients to induce shear fields, we demonstrate uniaxial alignment of a block-copolymer film in lessmore » than a second. Finally, we provide examples of how control of the incident light-field can be used to generate prescribed configurations of block-copolymer nanoscale patterns.« less
Samal, Monica; Mohapatra, Priya Ranjan; Yun, Kyu Sik
2015-09-01
A diblock copolymer poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) is used for the present study. It has two blocks; a rod-shaped PHIC block that adopts a helical conformation, and a coil shaped P2VP block. In a polar solvent such as THF both PHIC and P2VP blocks are soluble. In mixtures of two solvents, such as THF and methanol, while the solubility of P2VP component is augmented that of PHIC is decreased leading to formation of reversed micelles. The pyridine nitrogen in P2VP block is a reactive site. It forms complexes with a suitable metal ion, such as Cd2+. The micelle is employed as a nanoreactor for synthesis of CdS quantum dot (QD). In this paper, the micellization behaviour of the copolymer and the use of the micelles for synthesis and controlled growth of CdS nanocrystals are demonstrated.
... digestive fluid that's released into your small intestine (bile). In most cases, gallstones blocking the tube leading ... your gallbladder cause cholecystitis. This results in a bile buildup that can cause inflammation. Other causes of ...
Genes involved in androgen biosynthesis and the male phenotype.
Waterman, M R; Keeney, D S
1992-01-01
A series of enzymatic steps in the testis lead to the conversion of cholesterol to the male sex steroid hormones, testosterone and 5 alpha-dihydrotestosterone. Mutations in any one of these steps are presumed to alter or block the development of the male phenotype. Most of the genes encoding the enzymes involved in this pathway have now been cloned, and mutations within the coding regions of these genes do, in fact, block development of the male phenotype.
Zhang, Xuewen; Liang, Chunjun; Sun, Mengjie; Zhang, Huimin; Ji, Chao; Guo, Zebang; Xu, Yajun; Sun, Fulin; Song, Qi; He, Zhiqun
2018-03-14
Planar perovskite solar cells (PSCs) have gained great interest due to their low-temperature solution preparation and simple process. In inverted planar PSCs, an additional buffer layer is usually needed on the top of the PCBM electron-transport layer (ETL) to enhance the device performance. In this work, we used a new buffer layer, zirconium acetate (Zr(Ac) 4 ). The inclusion of the Zr(Ac) 4 buffer layer leads to the increase of FF from ∼68% to ∼79% and PCE from ∼14% to ∼17% in the planar PSCs. The UPS measurement indicates that the Zr(Ac) 4 layer has a low HOMO level of -8.2 eV, indicating that the buffer layer can act as a hole-blocking layer. Surface morphology and surface chemistry investigations reveal that the elements I, MA and Pb can diffuse across the PCBM ETL, damaging the device performance. The covering Zr(Ac) 4 molecules fill in the pinholes of the PCBM layer and effectively block the ions/molecules of the perovskite from diffusion across the ETL. The resulting more robust PCBM/Zr(Ac) 4 ETL leads to weaker ionic charge accumulation and lower diode leakage current. The double role of hole-and-ion blocking of the Zr(Ac) 4 layer explains the improved FF and PCE in the PSCs.
The internal head protein Gp16 controls DNA ejection from the bacteriophage T7 virion.
Struthers-Schlinke, J S; Robins, W P; Kemp, P; Molineux, I J
2000-08-04
A wild-type T7 virion ejects about 850 bp of the 40 kb genome into the bacterial cell by a transcription-independent process. Internalization of the remainder of the genome normally requires transcription. Inhibition of transcription-independent DNA translocation beyond the leading 850 bp is not absolute but the time taken by a population of phage genomes in overcoming the block averages about 20 minutes at 30 degrees C. There are additional blocks to transcription-independent translocation and less than 20 % of infecting DNA molecules completely penetrate the cell cytoplasm after four hours of infection. Mutant virions containing an altered gene 16 protein either prevent the blocks to transcription-independent DNA translocation or effect rapid release from blocking sites and allow the entire phage DNA molecule to enter the cell at a constant rate of about 75 bp per second. This rate is likely the same at which the leading 850 bp is ejected into the cell from a wild-type virion. All mutations fall into two clusters contained within 380 bp of the 4 kb gene 16, suggesting that a 127 residue segment of gp16 controls DNA ejection from the phage particle. We suggest that this segment of gp16 acts as a clamp to prevent transcription-independent DNA translocation. Copyright 2000 Academic Press.
... body needs to grow and develop normally. Vitamin D helps your body absorb calcium. Calcium is one ... building blocks of bone. A lack of vitamin D can lead to bone diseases such as osteoporosis ...
... adult tapeworm consists of a head, neck and chain of segments called proglottids. When you have an ... blockage. If tapeworms grow large enough, they can block your appendix, leading to infection (appendicitis); your bile ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musk, S.R.
1991-03-01
The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.
New Cooperative Mechanisms of Low-Energy Nuclear Reactions Using Super Low-Energy External Field
NASA Astrophysics Data System (ADS)
Gareev, F. A.; Zhidkova, I. E.
We propose a new mechanism of LENR: cooperative processes in the whole system, nuclei + atoms + condensed matter, can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low-energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of redistribution of inner energy of the whole system.
Transmutation Fuel Performance Code Thermal Model Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory K. Miller; Pavel G. Medvedev
2007-09-01
FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.
Elementary defects in graphane
NASA Astrophysics Data System (ADS)
Podlivaev, A. I.; Openov, L. A.
2017-07-01
The main zero-dimensional defects in graphane, a completely hydrogenated single-layer graphene, having the chair-type conformation have been numerically simulated. The hydrogen and carbon-hydrogen vacancies, Stone-Wales defect, and "transmutation defect" resulting from the simultaneous hoppings of two hydrogen atoms between the neighboring carbon atoms have been considered. The energies of formations of these defects have been calculated and their effect on the electronic structure, phonon spectra, and Young modulus has been studied.
Overview of Accelerator Applications in Energy
NASA Astrophysics Data System (ADS)
Garnett, Robert W.; Sheffield, Richard L.
An overview of the application of accelerators and accelerator technology in energy is presented. Applications span a broad range of cost, size, and complexity and include large-scale systems requiring high-power or high-energy accelerators to drive subcritical reactors for energy production or waste transmutation, as well as small-scale industrial systems used to improve oil and gas exploration and production. The enabling accelerator technologies will also be reviewed and future directions discussed.
Code of Federal Regulations, 2013 CFR
2013-04-01
... Neighborhood Development program (see 24 CFR part 594); (15) The “Lead-Based Paint Hazard Reduction Program... following formula grant programs are covered by the consolidated plan: (1) The Community Development Block...
Code of Federal Regulations, 2012 CFR
2012-04-01
... Neighborhood Development program (see 24 CFR part 594); (15) The “Lead-Based Paint Hazard Reduction Program... following formula grant programs are covered by the consolidated plan: (1) The Community Development Block...
Code of Federal Regulations, 2011 CFR
2011-04-01
... Neighborhood Development program (see 24 CFR part 594); (15) The “Lead-Based Paint Hazard Reduction Program... following formula grant programs are covered by the consolidated plan: (1) The Community Development Block...
Code of Federal Regulations, 2014 CFR
2014-04-01
... Neighborhood Development program (see 24 CFR part 594); (15) The “Lead-Based Paint Hazard Reduction Program... following formula grant programs are covered by the consolidated plan: (1) The Community Development Block...
Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth
NASA Astrophysics Data System (ADS)
Loc, Welley Siu; Quan, Zewei; Lin, Cuikun; Pan, Jinfong; Wang, Yuxuan; Yang, Kaikun; Jian, Wen-Bin; Zhao, Bo; Wang, Howard; Fang, Jiye
2015-11-01
Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications.Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications. Electronic supplementary information (ESI) available: Experimental section (chemicals, synthesis, characterization methods), synthesis conditions, AFM image of NSs, SEM and TEM images of NWs prepared without OAm, and TEM images of truncated NCbs grown for 7.5 min at 180 °C. See DOI: 10.1039/c5nr04181c
Identifying the most hazardous synoptic meteorological conditions for Winter UK PM10 exceedences
NASA Astrophysics Data System (ADS)
Webber, Chris; Dacre, Helen; Collins, Bill; Masato, Giacomo
2016-04-01
Summary We investigate the relationship between synoptic scale meteorological variability and local scale pollution concentrations within the UK. Synoptic conditions representative of atmospheric blocking highlighted significant increases in UK PM10 concentration ([PM10]), with the probability of exceeding harmful [PM10] limits also increased. Once relationships had been diagnosed, The Met Office Unified Model (UM) was used to replicate these relationships, using idealised source regions of PM10. This helped to determine the PM10 source regions most influential throughout UK PM10 exceedance events and to test whether the model was capable of capturing the relationships between UK PM10 and atmospheric blocking. Finally, a time slice simulation for 2050-2060 helped to answer the question whether PM10 exceedance events are more likely to occur within a changing climate. Introduction Atmospheric blocking events are well understood to lead to conditions, conducive to pollution events within the UK. Literature shows that synoptic conditions with the ability to deflect the Northwest Atlantic storm track from the UK, often lead to the highest UK pollution concentrations. Rossby wave breaking (RWB) has been identified as a mechanism, which results in atmospheric blocking and its relationship with UK [PM10] is explored using metrics designed in Masato, et al., 2013. Climate simulations facilitated by the Met Office UM, enable these relationships between RWB and PM10 to be found within the model. Subsequently the frequency of events that lead to hazardous PM10 concentrations ([PM10]) in a future climate, can be determined, within a climate simulation. An understanding of the impact, meteorology has on UK [PM10] within a changing climate, will help inform policy makers, regarding the importance of limiting PM10 emissions, ensuring safe air quality in the future. Methodology and Results Three Blocking metrics were used to subset RWB into four categories. These RWB categories were all shown to increase UK [PM10] and to increase the probability of exceeding a UK [PM10] threshold, when they occurred within constrained regions. Further analysis highlighted that Omega Block events lead to the greatest probability of exceeding hazardous UK [PM10] limits. These events facilitated the advection of European PM10, while also providing stagnant conditions over the UK, facilitating PM10 accumulation. The Met Office UM was used and nudged to ERA-Interim Reanalysis wind and temperature fields, to replicate the relationships found using observed UK [PM10]. Inert tracers were implemented into the model to replicate UK PM10 source regions throughout Europe. The modelled tracers were seen to correlate well with observed [PM10] and Figure 1 highlights the correlations between a RWB metric and observed (a) and modelled (b) [PM10]. A further free running model simulation highlighted the deficiency of the Met Office UM in capturing RWB frequency, with a reduction over the Northwest Atlantic/ European region. A final time slice simulation was undertaken for the period 2050-2060, using Representative Concentration Pathway 8.5, which attempted to determine the change in frequency of UK PM10 exceedance events, due to changing meteorology, in a future climate. Conclusions RWB has been shown to increase UK [PM10] and to lead to greater probabilities of exceeding a harmful [PM10] threshold. Omega block events have been determined the most hazardous RWB subset and this is due to a combination of European advection and UK stagnation. Simulations within the Met Office UM were undertaken and the relationships seen between observed UK [PM10] and RWB were replicated within the model, using inert tracers. Finally, time slice simulations were undertaken, determining the change in frequency of UK [PM10] exceedance events within a changing climate. References Masato, G., Hoskins, B. J., Woolings, T., 2013; Wave-breaking Characteristics of Northern Hemisphere Winter Blocking: A Two-Dimensional Approach. J. Climate, 26, 4535-4549.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2007-04-01
According to a recent account of addiction, dopaminergic effects of drugs like cocaine mimic the neuronal signal that occurs when a natural reward has a larger value than expected. Consequently, the drug's expected reward value increases with each administration, leading to an over-selection of drug-seeking behavior. One prediction of this hypothesis is that the blocking effect, a cornerstone of contemporary learning theory, should not occur with drug reinforcers. To test this prediction, two groups of rats were trained to self-administer cocaine with a nose-poking response. For 5 sessions, a tone was paired with each self-administered injection (blocking group), or no stimulus was paired with injection (non-blocking group). Then, in both groups, the tone and a light were both paired with each injection for 5 sessions. In subsequent testing, the light functioned as a conditioned reinforcer for a new response (lever-pressing) in the non-blocking group, but not the blocking group. Thus, contrary to prediction, pre-training with the tone blocked conditioning to the light. Although these results fail to support a potentially powerful explanation of addiction, they are consistent with the fact that most conditioning and learning phenomena that occur with non-drug reinforcers can also be demonstrated with drug reinforcers.
Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study
Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo
2017-12-24
Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less
Evaluation of molecular volume change of block copolymer depending on temperature: A SANS study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Tae-Hwan; Do, Changwoo; Han, Young-Soo
Amphiphilic Pluronic triblock copolymers form various self-assembled structures such as sphere, cylinder, lamellae and so on, depending on temperature, leading to the increase of hydrophobicity of block copolymers. However, the effective molecular volume change of the block copolymer has not been fully exploited yet, when temperature increases. Here in this paper, we have investigated the effective molecular volume change of the block copolymer upon heating by using the contrast variation small angle neutron scattering. The scattering length densities (SLDs) of the block copolymer were experimentally obtained from the neutron scattering contrast variation method between the solvent and the block copolymermore » at varying temperature. Even though the SLD, which is the intrinsic property of the material, should not be changed by temperature elevation, it was dependent on temperature, indicating that the molecular volume is changed. Therefore, we obtained the increase rate of the molecular volume change of the block copolymer (the effective molecular volume change) from the comparison of the calculated SLD and the standard SLD, which is evaluated by plotting the SANS intensity at the first order Bragg peak as the function of temperature at each volume fraction of D 2O and H 2O that is about 25.5%–51.3% depending on temperature.« less
Twelve-lead electrocardiography in the young: physiologic and pathologic abnormalities.
Kobza, Richard; Cuculi, Florim; Abächerli, Roger; Toggweiler, Stefan; Suter, Yves; Frey, Franz; Schmid, Johann Jakob; Erne, Paul
2012-12-01
BACKGROUND/ OBJECTIVE: The purpose of the present study was to analyze the prevalence of physiologic and pathologic ECG abnormalities in a cohort of young conscripts that represents the whole young generation of today. ECGs of all Swiss citizens who underwent conscription for the army during a 29-month period were analyzed manually. ECGs of 43,401 conscripts (mean age 19.2 ± 1.1 years) were analyzed; 158 conscripts were female. Incomplete right bundle branch block was found in 5870 (13.5%) and left anterior fascicular block in 360 (0.83%). First-degree AV block was present in 329 (0.8%) and Mobitz type I (Wenckebach) second-degree AV block in 3 (0.01%). Early repolarization was observed in 1035 (2.4%), T-wave inversion in 39 (0.09%), and minor T-wave changes in 182 (0.42%). Brugada-like abnormalities were observed in 6 (0.01%). None of the conscripts had atrial fibrillation or flutter. ECG abnormalities can be found in a relatively large proportion of young individuals. Incomplete right bundle branch block, left fascicular block, and first-degree AV block are the most frequent findings. No conscript presented with atrial fibrillation or flutter. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Second-Degree Atrioventricular Block Occurring After Tooth Extraction.
Kamatani, Takaaki; Akizuki, Ayako; Kondo, Seiji; Shirota, Tatsuo
Although cardiac arrhythmias are occasionally associated with dental extractions and dental anesthesia, atrioventricular block is rarely seen during dental procedures. We report a rare case of type I second-degree atrioventricular block (Wenckebach phenomenon) occurring after bilateral extraction of impacted mandibular third molars under general anesthesia in a 16-year-old Japanese girl. Under consultation with a cardiovascular physician, we carefully monitored the patient's vital signs postoperatively, including blood pressure, oxygen saturation, and electrocardiogram, using a bedside monitor. Her postoperative course was uneventful. A 12-lead electrocardiogram the following day revealed no abnormality. In this case, we hypothesize that extubation of the nasotracheal tube or oral/pharyngeal suction might have triggered a vagal reflex that caused type I second-degree atrioventricular block. Our experience indicates that standard cardiovascular monitoring should be used for patients undergoing dental treatment under general anesthesia, even for young, healthy patients, to prevent and detect cardiovascular emergencies.
Au/CdS Hybrid Nanoparticles in Block Copolymer Micellar Shells.
Koh, Haeng-Deog; Changez, Mohammad; Lee, Jae-Suk
2010-10-18
A polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) micellar structure with a P2VP core containing 5 nm CdS nanoparticles (NPs) and a PS shell formed in toluene that is a good solvent for PS block undergoes the core-shell inversion by excess addition of methanol that is a good solvent for P2VP block. It leads to the formation of micellar shell-embedded CdS NPs in the methanol major phase. The spontaneous crystalline growth of Au NPs on the CdS surfaces positioned at micellar shells without a further reduction process is newly demonstrated. The nanostructure of Au/CdS/PS-b-P2VP hybrid NPs is confirmed by transmission electron microscopy, energy-dispersive X-ray, and UV-Vis absorption. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Selective directed self-assembly of coexisting morphologies using block copolymer blends
NASA Astrophysics Data System (ADS)
Stein, A.; Wright, G.; Yager, K. G.; Doerk, G. S.; Black, C. T.
2016-08-01
Directed self-assembly (DSA) of block copolymers is an emergent technique for nano-lithography, but is limited in the range of structures possible in a single fabrication step. Here we expand on traditional DSA chemical patterning. A blend of lamellar- and cylinder-forming block copolymers assembles on specially designed surface chemical line gratings, leading to the simultaneous formation of coexisting ordered morphologies in separate areas of the substrate. The competing energetics of polymer chain distortions and chemical mismatch with the substrate grating bias the system towards either line/space or dot array patterns, depending on the pitch and linewidth of the prepattern. This is in contrast to the typical DSA, wherein assembly of a single-component block copolymer on chemical templates generates patterns of either lines/spaces (lamellar) or hexagonal dot arrays (cylinders). In our approach, the chemical template encodes desired local spatial arrangements of coexisting design motifs, self-assembled from a single, sophisticated resist.
Gong, Hong-Liang; Lei, Lei; Shi, Shu-Xian; Xia, Yu-Zheng; Chen, Xiao-Nong
2018-05-01
In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy. Such micelles exhibit obvious thermo-responsive properties: (1) Poly(N-isopropylacrylamide) blocks collapse on the polylactide core as system temperature increase, leading to reduce of micelle size. (2) Micelles with short poly(N-isopropylacrylamide) blocks tend to aggregate together when temperature increased, which is resulted from the reduction of the system hydrophilicity and the decreased repulsive force between micelles.
[Prolonged neuromuscular block in a patient with butyrylcholinesterase deficiency].
Mabboux, I; Hary, B; Courcelle, S; Ceppa, F; Delacour, H
2016-05-01
Succinylcholine is a neuromuscular block whose duration of action depends on rapid hydrolysis by butyrylcholinesterase (BChE). In patients with common BChE activities, succinylcholine duration of action is short (10min). BChE deficiency induces a slower hydrolysis of the drug and consequently prolonged neuromuscular block, leading to apnea. We report a case of prolonged neuromuscular block after administration of succinylcholine in a 14-year-old boy. Biological investigations revealed a marked BChE deficiency (1099U/L) related to the presence of three point mutations in the BCHE gene in a compound heterozygous state: p.Asp70Gly (rs1799807), p.Ala539Tyr (rs1803274), and p.Phe118Valfs*12 (rs398124632). The diagnosis of genetic BChE deficiency (OMIM 177400) was retained. This case is intended to present the pathophysiology of genetic BChE deficiency, its management, and the diagnostic strategy to be implemented. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
[Conduction block: a notion to let through].
Fournier, E
2012-12-01
Historical study of electrodiagnosis indicates that nerve conduction block is an old notion, used as early as the second century by Galien and then early in the 19th by physiologists such as Müller and Mateucci. Although introduced into the field of human pathology by Mitchell in 1872, who used it to study nerve injuries, and then by Erb in 1874 to study radial palsy, the contribution of nerve conduction blocks to electrodiagnosis was not exploited until the 1980s. At that time, attempts to improve early diagnosis of Guillain-Barré syndrome showed that among the electrophysiological consequences of demyelination, conduction block was the most appropriate to account for the paralysis. At the same time, descriptions of neuropathies characterized by conduction blocks led to considering conduction block as a major electrophysiological sign. Why was it so difficult for this sign to be retained for electrodiagnosis? Since the notion is not always associated with anatomical lesions, it doesn't fit easily into anatomoclinical reasoning, but has to be thought of in functional terms. Understanding how an uninjured axon could fail to conduct action potentials leads to an examination of the intimate consequences of demyelinations and axonal dysfunctions. But some of the difficulty encountered in adding this new old sign to the armamentarium of electrophysiological diagnosis was related to the technical precautions required to individualize a block. Several pitfalls have to be avoided if a conduction block is to be afforded real diagnostic value. Similar precautions and discussions are also needed to establish an opposing sign, the "excitability block" or "inverse block". Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Genetics Home Reference: cystinosis
... the amino acid cystine (a building block of proteins) within cells. Excess cystine damages cells and often ... gene lead to a deficiency of a transporter protein called cystinosin. Within cells, this protein normally moves ...
Di, C Y; Wan, Z; Li, K; Ding, Y S; Lin, W H
2017-12-01
Objective: To explore the characteristics of electrocardiogram(ECG) and target potential features of premature ventricular contraction (PVC) in patients with complete left/right bundle branch block (CL/RBBB) and compare with those without CL/RBBB. Methods: A retrospective analysis was done in 8 outflow tract PVC patients with CL/RBBB, who successfully underwent radiofrequency ablation from August 2009 to June 2017. According to the bundle branch block chamber, patients were divided into the complete right bundle branch block (CRBBB) group ( n= 4) and the complete left bundle branch block (CLBBB) group ( n= 4). The control group were those who successfully underwent ablation at the same position as the above two groups but without CL/RBBB. The characteristics of ECG and target potential features were compared among groups. Results: One case in the CRBBB group was successfully ablated in the great cardiac vein with precordial R/S>1 transition at V(1) and one case in the CLBBB group was successfully ablated in the right coronary cusp with precordial R/S>1 transition at V(2), while other 6 cases were all with precordial R/S>1 transition at lead V(4). Precordial R/S>1 transition was not later than sinus rhythm (SR) in the CLBBB group. No statistical difference was found in the QRS complex duration between SR and PVC in the CL/RBBB patients [(134.38±23.80)ms vs (156.75±25.93)ms, P> 0.05], while statistical difference was shown in the control group [(92.63±5.76)ms vs (140.25±15.97)ms, P< 0.05]. Conclusion: Bundle branch block can lead to misjudgment of PVC origin with CL/RBBB during sinus rhythm, thus the origin chamber of the PVC should be determined according to the mapping and ablation result.
Gateless AlGaN/GaN HEMT response to block co-polymers
NASA Astrophysics Data System (ADS)
Kang, B. S.; Louche, G.; Duran, R. S.; Gnanou, Y.; Pearton, S. J.; Ren, F.
2004-05-01
Gateless AlGaN/GaN high electron mobility transistor (HEMT) structures exhibit large changes in source-drain current upon exposing the gate region to various block co-polymer solutions. The polar nature of some of these polymer chains lead to a change of surface charges in gate region on the HEMT, producing a change in surface potential at the semiconductor/liquid interface. The nitride sensors appear to be promising for a wide range of chemical gas, combustion gas, liquid and strain sensing.
[Experience with combined spinal and epidural anesthesia at cesarean section].
Levinzon, A S; Taran, O I; Pura, K R; Mishchenko, G S; Mamaeva, N V
2006-01-01
The paper analyzes some experience gained in using various modes of regional anesthesia as an anesthetic appliance at cesarean sections and comparatively characterizes various types of central segmental blocks. The results of 213 cases of cesarean section performed under spinal or combined spinal and epidural anesthesia (CSEA) were generalized by the following parameters: block onset, maternal and fetal action, the quality of anesthesia and postoperative analgesia, which leads to the conclusion that CSEA is the method of choice.
A stereoscopic look into the bulk
Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...
2016-07-26
Here, we present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimalmore » surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.« less
Kuo, Rei-Lin; Zhao, Chen; Malur, Meghana; Krug, Robert M
2010-12-20
We demonstrate that influenza A virus strains that circulate in humans differ markedly in the ability of their NS1 proteins to block the activation of IRF3 and interferon-β transcription. Strong activation occurs in cells infected with viruses expressing NS1 proteins of seasonal H3N2 and H2N2 viruses, whereas activation is blocked in cells infected with viruses expressing NS1 proteins of some, but not all seasonal H1N1 viruses. The NS1 proteins of the 2009 H1N1 and H5N1 viruses also block these activations. The difference in this NS1 function is mediated largely by the C-terminal region of the effector domain, which contains the only amino acid (K or E at position 196) that covaries with the functional difference. Further, we show that TRIM25 binds the NS1 protein whether or not IRF3 activation is blocked, demonstrating that binding of TRIM25 by the NS1 protein does not necessarily lead to the blocking of IRF3 activation. Copyright © 2010 Elsevier Inc. All rights reserved.
Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.
Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L
2012-10-23
One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.
NASA Astrophysics Data System (ADS)
Heinkenschloss, Matthias
2005-01-01
We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.
Arai, Masaru; Nagashima, Koichi; Kato, Mahoto; Akutsu, Naotaka; Hayase, Misa; Ogura, Kanako; Iwasawa, Yukino; Aizawa, Yoshihiro; Saito, Yuki; Okumura, Yasuo; Nishimaki, Haruna; Masuda, Shinobu; Hirayama, Atsushi
2016-01-01
Patient: Male, 74 Final Diagnosis: Infective endocarditis Symptoms: Apetite loss • fever Medication: — Clinical Procedure: Transesophageal echocardiography Specialty: Cardiology Objective: Rare co-existance of disease or pathology Background: Infective endocarditis (IE) involving the mitral valve can but rarely lead to complete atrioventricular block (CAVB). Case Report: A 74-year-old man with a history of infective endocarditis caused by Streptococcus gordonii (S. gordonii) presented to our emergency room with fever and loss of appetite, which had lasted for 5 days. On admission, results of serologic tests pointed to severe infection. Electrocardiography showed normal sinus rhythm with first-degree atrioventricular block and incomplete right bundle branch block, and transthoracic echocardiography and transesophageal echocardiography revealed severe mitral regurgitation caused by posterior leaflet perforation and 2 vegetations (5 mm and 6 mm) on the tricuspid valve. The patient was initially treated with ceftriaxone and gentamycin because blood and cutaneous ulcer cultures yielded S. agalactiae. On hospital day 2, however, sudden CAVB requiring transvenous pacing occurred, and the patient’s heart failure and infection worsened. Although an emergent surgery is strongly recommended, even in patients with uncontrolled heart failure or infection, surgery was not performed because of the Child-Pugh class B liver cirrhosis. Despite intensive therapy, the patient’s condition further deteriorated, and he died on hospital day 16. On postmortem examination, a 2×1-cm vegetation was seen on the perforated posterior mitral leaflet, and the infection had extended to the interventricular septum. Histologic examination revealed extensive necrosis of the AV node. Conclusions: This rare case of CAVB resulting from S. agalactiae IE points to the fact that in monitoring patients with IE involving the mitral valve, clinicians should be aware of the potential for perivalvular extension of the infection, which can lead to fatal heart block. PMID:27604147
Transmutation of Isotopes --- Ecological and Energy Production Aspects
NASA Astrophysics Data System (ADS)
Gudowski, Waclaw
2000-01-01
This paper describes principles of Accelerator-Driven Transmutation of Nuclear Wastes (ATW) and gives some flavour of the most important topics which are today under investigations in many countries. An assessment of the potential impact of ATW on a future of nuclear energy is also given. Nuclear reactors based on self-sustained fission reactions --- after spectacular development in fifties and sixties, that resulted in deployment of over 400 power reactors --- are wrestling today more with public acceptance than with irresolvable technological problems. In a whole spectrum of reasons which resulted in today's opposition against nuclear power few of them are very relevant for the nuclear physics community and they arose from the fact that development of nuclear power had been handed over to the nuclear engineers and technicians with some generically unresolved problems, which should have been solved properly by nuclear scientists. In a certain degree of simplification one can say, that most of the problems originate from very specific features of a fission phenomenon: self-sustained chain reaction in fissile materials and very strong radioactivity of fission products and very long half-life of some of the fission and activation products. And just this enormous concentration of radioactive fission products in the reactor core is the main problem of managing nuclear reactors: it requires unconditional guarantee for the reactor core integrity in order to avoid radioactive contamination of the environment; it creates problems to handle decay heat in the reactor core and finally it makes handling and/or disposal of spent fuel almost a philosophical issue, due to unimaginable long time scales of radioactive decay of some isotopes. A lot can be done to improve the design of conventional nuclear reactors (like Light Water Reactors); new, better reactors can be designed but it seems today very improbable to expect any radical change in the public perception of conventional nuclear power. In this context a lot of hopes and expectations have been expressed for novel systems called Accelerator-Driven Systems, Accelerator-Driven Transmutation of Waste or just Hybrid Reactors. All these names are used for description of the same nuclear system combining a powerful particle accelerator with a subcritical reactor. A careful analysis of possible environmental impact of ATW together with limitation of this technology is presented also in this paper.
Left bundle branch block, an old-new entity.
Breithardt, Günter; Breithardt, Ole-Alexander
2012-04-01
Left bundle branch block (LBBB) is generally associated with a poorer prognosis in comparison to normal intraventricular conduction, but also in comparison to right bundle branch block which is generally considered to be benign in the absence of an underlying cardiac disorder like congenital heart disease. LBBB may be the first manifestation of a more diffuse myocardial disease. The typical surface ECG feature of LBBB is a prolongation of QRS above 0.11 s in combination with a delay of the intrinsic deflection in leads V5 and V6 of more than 60 ms and no septal q waves in leads I, V5, and V6 due to the abnormal septal activation from right to left. LBBB may induce abnormalities in left ventricular performance due to abnormal asynchronous contraction patterns which can be compensated by biventricular pacing (resynchronization therapy). Asynchronous electrical activation of the ventricles causes regional differences in workload which may lead to asymmetric hypertrophy and left ventricular dilatation, especially due to increased wall mass in late-activated regions, which may aggravate preexisting left ventricular pumping performance or even induce it. Of special interest are patients with LBBB and normal left ventricular dimensions and normal ejection fraction at rest but who may present with an abnormal increase in pulmonary artery pressure during exercise, production of lactate during high-rate pacing, signs of ischemia on myocardial scintigrams (but no coronary artery narrowing), and abnormal ultrastructural findings on myocardial biopsy. For this entity, the term latent cardiomyopathy had been suggested previously.
Fear extinction induces mGluR5-mediated synaptic and intrinsic plasticity in infralimbic neurons.
Sepulveda-Orengo, Marian T; Lopez, Ana V; Soler-Cedeño, Omar; Porter, James T
2013-04-24
Studies suggest that plasticity in the infralimbic prefrontal cortex (IL) in rodents and its homolog in humans is necessary for inhibition of fear during the recall of fear extinction. The recall of extinction is impaired by locally blocking metabotropic glutamate receptor type 5 (mGluR5) activation in IL during extinction training. This finding suggests that mGluR5 stimulation may lead to IL plasticity needed for fear extinction. To test this hypothesis, we recorded AMPA and NMDA currents, AMPA receptor (AMPAR) rectification, and intrinsic excitability in IL pyramidal neurons in slices from trained rats using whole-cell patch-clamp recording. We observed that fear extinction increases the AMPA/NMDA ratio, consistent with insertion of AMPARs into IL synapses. In addition, extinction training increased inward rectification, suggesting that extinction induces the insertion of calcium-permeable (GluA2-lacking) AMPARs into IL synapses. Consistent with this, selectively blocking calcium-permeable AMPARs with Naspm reduced the AMPA EPSCs in IL neurons to a larger degree after extinction. Extinction-induced changes in AMPA/NMDA ratio, rectification, and intrinsic excitability were blocked with an mGluR5 antagonist. These findings suggest that mGluR5 activation leads to consolidation of fear extinction by regulating the intrinsic excitability of IL neurons and modifying the composition of AMPARs in IL synapses. Therefore, impaired mGluR5 activity in IL synapses could be one factor that causes inappropriate modulation of fear expression leading to anxiety disorders.
Suderman, Bethany L; Hoover, Ryan W; Ching, Randal P; Scher, Irving S
2014-12-01
We evaluated the effectiveness of hardhats in attenuating head acceleration and neck force in vertical impacts from large construction objects. Two weight-matched objects (lead shot bag and concrete block) weighing 9.1 kg were dropped from three heights (0.91 m, 1.83 m and 2.74 m) onto the head of a 50th percentile male Hybrid III anthropomorphic test device (ATD). Two headgear conditions were tested: no head protection and an ANSI Type-I, Class-E hardhat. A third headgear condition (snow sport helmet) was tested at 1.83 m for comparison with the hardhat. Hardhats significantly reduced the resultant linear acceleration for the concrete block impacts by 70-95% when compared to the unprotected head condition. Upper neck compression was also significantly reduced by 26-60% with the use of a hardhat when compared to the unprotected head condition for the 0.91 and 1.83 m drop heights for both lead shot and concrete block drop objects. In this study we found that hardhats can be effective in reducing both head accelerations and compressive neck forces for large construction objects in vertical impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Arkelyan, A.M.; Rickard, C.L.
1962-04-17
A gate valve for controlling the flow of fluid in separate concentric ducts or channels by means of a single valve is described. In one position, the valve sealing discs engage opposed sets of concentric ducts leading to the concentric pipes defining the flow channels to block flow therethrough. In another position, the discs are withdrawn from engagement with the opposed ducts and at the same time a bridging section is interposed therebetween to define concentric paths coextensive with and connecting the opposed ducts to facilitate flow therebetween. A wedge block arrangement is employed with each sealing disc to enable it to engage the ducts. The wedge block arrangement also facilitates unobstructcd withdrawal of the discs out of the intervening space between the sets of ducts. (AEC)
Tang, Peter
2017-12-01
In situ ulnar nerve release has been gaining popularity as a simple, effective, and low-morbidity procedure for the treatment of cubital tunnel syndrome. One concern with the technique is how to manage the unstable ulnar nerve after release. It is unclear how much nerve subluxation will lead to problems and surprisingly there is no grading system to assess ulnar nerve instability. I propose such a grading system, as well as a new technique to stabilize the unstable ulnar nerve. The blocking flap technique consists of raising a rectangular flap off the flexor/pronator fascia and attaching it to the posterior subcutaneous flap so that it blocks the nerve from subluxation/dislocation.
Multi-purpose wind tunnel reaction control model block
NASA Technical Reports Server (NTRS)
Dresser, H. S.; Daileda, J. J. (Inventor)
1978-01-01
A reaction control system nozzle block is provided for testing the response characteristics of space vehicles to a variety of reaction control thruster configurations. A pressurized air system is connected with the supply lines which lead to the individual jet nozzles. Each supply line terminates in a compact cylindrical plenum volume, axially perpendicular and adjacent to the throat of the jet nozzle. The volume of the cylindrical plenum is sized to provide uniform thrust characteristics from each jet nozzle irrespective of the angle of approach of the supply line to the plenum. Each supply line may be plugged or capped to stop the air supply to selected jet nozzles, thereby enabling a variety of nozzle configurations to be obtained from a single model nozzle block.
Development of NTD Ge Sensors for Superconducting Bolometer
NASA Astrophysics Data System (ADS)
Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.
2016-08-01
Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.
Closed DTU fuel cycle with Np recycle and waste transmutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beller, D.E.; Sailor, W.C.; Venneri, F.
1999-09-01
A nuclear energy scenario for the 21st century that included a denatured thorium-uranium-oxide (DTU) fuel cycle and new light water reactors (LWRs) supported by accelerator-driven transmutation of waste (ATW) systems was previously described. This coupled system with the closed DTU fuel cycle provides several improvements beyond conventional LWR (CLWR) (once-through, UO{sub 2} fuel) nuclear technology: increased proliferation resistance, reduced waste, and efficient use of natural resources. However, like CLWR fuel cycles, the spent fuel in the first one-third core discharged after startup contains higher-quality Pu than the equilibrium fuel cycle. To eliminate this high-grade Pu, Np is separated and recycledmore » with Th and U--rather than with higher actinides [(HA) including Pu]. The presence of Np in the LWR feed greatly increases the production of {sup 238}Pu so that a few kilograms of Pu generated enough alpha-decay heat that the separated Pu is highly resistant to proliferation. This alternate process also simplifies the pyrochemical separation of fuel elements (Th and U) from HAs. To examine the advantages of this concept, the authors modeled a US deployment scenario for nuclear energy that includes DTU-LWRs plus ATW`s to burn the actinides produced by these LWRs and to close the back-end of the DTU fuel cycle.« less
The origins of species: the debate between August Weismann and Moritz Wagner.
Weissman, Charlotte
2010-01-01
Weismann's ideas on species transmutation were first expressed in his famous debate with Moritz Wagner on the mechanism of speciation. Wagner suggested that the isolation of a colony from its original source is a preliminary and necessary factor for speciation. Weismann accepted a secondary, facilitating role for isolation, but argued that natural and sexual selection are the primary driving forces of species transmutation, and are always necessary and often sufficient causes for its occurrence. The debate with Wagner, which occurred between 1868 and 1872 within the framework of Darwin's discussions of geographical distribution, was Weismann's first public battle over the mechanism of evolution. This paper, which offers the first comprehensive analysis of this debate, extends previous analyses and throws light on the underlying beliefs and motivations of these early evolutionists, focusing mainly on Weismann's views and showing his commitment to what he later called "the all sufficiency of Natural Selection." It led to the crystallization of his ideas on the central and essential role of selection, both natural and sexual, in all processes of evolution, and, already at this early stage in his theoretical thinking, was coupled with sophisticated and nuanced approach to biological organization. The paper also discusses Ernst Mayr's analysis of the debate and highlights aspects of Weismann's views that were overlooked by Mayr and were peripheral to the discussions of other historians of biology.
A brief history of design studies on innovative nuclear reactors
NASA Astrophysics Data System (ADS)
Sekimoto, Hiroshi
2014-09-01
In a short period after the success of CP1, many types of nuclear reactors were proposed and investigated. However, soon only a small number of reactors were selected for practical use. Around 1970, only LWRs with small number of CANDUs were operated in the western world, and FBRs were under development. It was about the time when Apollo moon landing was accomplished. However, at the same time, the future of human being was widely considered pessimistic and Limits to Growth was published. In the end of 1970's the TMI accident occurred and many nuclear reactor contracts were cancelled in USA and any more contracts had not been concluded until recent years. From the reflection of this accident, many Inherent Safe Reactors (ISRs) were proposed, though none of them were constructed. A common idea of ISRs is smallness of their size. Tokyo Institute of Technology (TokyoTech) held a symposium on small reactors, SR/TIT, in 1991, where many types of small ISRs were presented. Recently small reactors attract interest again. The most ideas employed in these reactors were the same discussed in SR/TIT. In 1980's the radioactive wastes from fuel cycle became a severe problem around the world. In TokyoTech, this issue was discussed mainly from the viewpoint of nuclear transmutations. The neutron economy became inevitable for these innovative nuclear reactors especially small long-life reactors and transmutation reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Fiorina; N. E. Stauff; F. Franceschini
2013-12-01
The present paper compares the reactor physics and transmutation performance of sodium-cooled Fast Reactors (FRs) for TRansUranic (TRU) burning with thorium (Th) or uranium (U) as fertile materials. The 1000 MWt Toshiba-Westinghouse Advanced Recycling Reactor (ARR) conceptual core has been used as benchmark for the comparison. Both burner and breakeven configurations sustained or started with a TRU supply, and assuming full actinide homogeneous recycle strategy, have been developed. State-of-the-art core physics tools have been employed to establish fuel inventory and reactor physics performances for equilibrium and transition cycles. Results show that Th fosters large improvements in the reactivity coefficients associatedmore » with coolant expansion and voiding, which enhances safety margins and, for a burner design, can be traded for maximizing the TRU burning rate. A trade-off of Th compared to U is the significantly larger fuel inventory required to achieve a breakeven design, which entails additional blankets at the detriment of core compactness as well as fuel manufacturing and separation requirements. The gamma field generated by the progeny of U-232 in the U bred from Th challenges fuel handling and manufacturing, but in case of full recycle, the high contents of Am and Cm in the transmutation fuel impose remote fuel operations regardless of the presence of U-232.« less
Evaluation of blocking performance in ensemble seasonal integrations
NASA Astrophysics Data System (ADS)
Casado, M. J.; Doblas-Reyes, F. J.; Pastor, M. A.
2003-04-01
EVALUATION OF BLOCKING PERFOMANCE IN ENSEMBLE SEASONAL INTEGRATIONS M. J. Casado (1), F. J. Doblas-Reyes (2), A. Pastor (1) (1) I Instituto Nacional de Meteorología, c/Leonardo Prieto Castro,8,28071 ,Madrid,Spain, mjcasado@inm.es (2) ECMWF, Shinfield Park,RG2 9AX, Reading, UK, f.doblas-reyes@ecmwf.int Climate models have shown a robust inability to reliably predict blocking onset and frequency. This systematic error has been evaluated using multi-model ensemble seasonal integrations carried out in the framework of the Prediction Of climate Variations On Seasonal and interanual Timescales (PROVOST) project and compared to a blocking features assessment of the NCEP re-analyses. The PROVOST GCMs are able to adequately reproduce the spatial NCEP teleconnection patterns over the Northern Hemisphere, being notorious the great spatial correlation coefficient with some of the corresponding NCEP patterns. In spite of that, the different models show a consistent underestimation of blocking frequency which may impact on the ability to predict the seasonal amplitude of the leading modes of variability over the Northern Hemisphere.
The clinical spectrum of autoimmune congenital heart block
Brito-Zerón, Pilar; Izmirly, Peter M.; Ramos-Casals, Manuel; Buyon, Jill P.; Khamashta, Munther A.
2017-01-01
Autoimmune congenital heart block (CHB) is an immune-mediated acquired disease that is associated with the placental transference of maternal antibodies specific for Ro and La autoantigens. The disease develops in a fetal heart without anatomical abnormalities that could otherwise explain the block, and which is usually diagnosed in utero, but also at birth or within the neonatal period. Autoantibody-mediated damage of fetal conduction tissues causes inflammation and fibrosis and leads to blockage of signal conduction at the atrioventricular (AV) node. Irreversible complete AV block is the principal cardiac manifestation of CHB, although some babies might develop other severe cardiac complications, such as endocardial fibroelastosis or valvular insufficiency, even in the absence of cardiac block. In this Review, we discuss the epidemiology, classification and management of women whose pregnancies are affected by autoimmune CHB, with a particular focus on the autoantibodies associated with autoimmune CHB and how we should test for these antibodies and diagnose this disease. Without confirmed effective preventive or therapeutic strategies and further research on the aetiopathogenic mechanisms, autoimmune CHB will remain a severe life-threatening disorder. PMID:25800217
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, He-Lou; Li, Xiao; Ren, Jiaxing
Controlling the macroscopic orientation of nanoscale periodic structures of amphiphilic liquid crystalline block copolymers (LC BCPs) is important to a variety of technical applications (e.g., lithium conducting polymer electrolytes). To study LC BCP domain orientation, a series of LC BCPs containing a poly(ethylene oxide) (PEO) block as a conventional hydrophilic coil block and LC blocks containing azobenzene mesogens is designed and synthesized. LC ordering in thin films of the BCP leads to the formation of highly ordered, microphase-separated nanostructures, with hexagonally arranged PEO cylinders. Substitution on the tail of the azobenzene mesogen is shown to control the orientation of themore » PEO cylinders. When the substitution on the mesogenic tails is an alkyl chain, the PEO cylinders have a perpendicular orientation to the substrate surface, provided the thin film is above a critical thickness value. In contrast, when the substitution on the mesogenic tails has an ether group the PEO cylinders assemble parallel to the substrate surface regardless of the film thickness value.« less
Snowdon, Richard L; Balasubramaniam, Richard; Teh, Andrew W; Haqqani, Haris M; Medi, Caroline; Rosso, Raphael; Vohra, Jitendra K; Kistler, Peter M; Morton, Joseph B; Sparks, Paul B; Kalman, Jonathan M
2010-05-01
Ablation for atypical atrial flutter (AFL) is often performed during tachycardia, with termination or noninducibility of AFL as the endpoint. Termination alone is, however, an inadequate endpoint for typical AFL ablation, where incomplete isthmus block leads to high recurrence rates. We assessed conduction block across a low lateral right atrial (RA) ablation line (LRA) from free wall scar to the inferior vena cava (IVC) or tricuspid annulus in 11 consecutive patients with atypical RA free wall flutter. LRA block was assessed following termination of AFL, by pacing from the ablation catheter in the low lateral RA posterior to the ablation line and recording the sequence and timing of activation anterior to the line with a duodecapole catheter, and vice versa for bidirectional block. LRA block resulted in a high to low activation pattern on the halo and a mean conduction time of 201 +/- 48 ms to distal halo. LRA conduction block was present in only 2 out of 6 patients after termination of AFL by ablation. Ablation was performed during sinus rhythm (SR) in 9 patients to achieve LRA conduction block. No recurrence of AFL was observed at long-term follow-up (22 +/- 12 months); 3 patients developed AF. Termination of right free wall flutter is often associated with persistent LRA conduction and additional radiofrequency ablation (RFA) in SR is usually required. Low RA pacing may be used to assess LRA conduction block and offers a robust endpoint for atypical RA free wall flutter ablation, which results in a high long-term cure rate.
NASA Astrophysics Data System (ADS)
Zhao, Tao; Crosta, Giovanni Battista; Dattola, Giuseppe; Utili, Stefano
2018-04-01
The dynamic fragmentation of jointed rock blocks during rockslide avalanches has been investigated by discrete element method simulations for a multiple arrangement of a rock block sliding over a simple slope geometry. The rock blocks are released along an inclined sliding plane and subsequently collide onto a flat horizontal plane at a sharp kink point. The contact force chains generated by the impact appear initially at the bottom frontal corner of the rock block and then propagate radially upward to the top rear part of the block. The jointed rock blocks exhibit evident contact force concentration and discontinuity of force wave propagation near the joint, associating with high energy dissipation of granular dynamics. The corresponding force wave propagation velocity can be less than 200 m/s, which is much smaller than that of an intact rock (1,316 m/s). The concentration of contact forces at the bottom leads to high rock fragmentation intensity and momentum boosts, facilitating the spreading of many fine fragments to the distal ends. However, the upper rock block exhibits very low rock fragmentation intensity but high energy dissipation due to intensive friction and damping, resulting in the deposition of large fragments near the slope toe. The size and shape of large fragments are closely related to the orientation and distribution of the block joints. The cumulative fragment size distribution can be well fitted by the Weibull's distribution function, with very gentle and steep curvatures at the fine and coarse size ranges, respectively. The numerical results of fragment size distribution can match well some experimental and field observations.
Extradural cold block for selective neurostimulation of the bladder: development of a new technique.
Schumacher, S; Bross, S; Scheepe, J R; Seif, C; Jünemann, K P; Alken, P
1999-03-01
Cryotechnique for selective block of the urethral sphincter and simultaneous activation of the bladder was developed to achieve physiological micturition during sacral anterior root stimulation (SARS). In ten foxhounds SARS of S2 was carried out while extradurally both spinal nerves S2 were cooled down from positive 25C in a stepwise fashion until a sphincter block was observed. Subsequently, SARS of S2 was performed while the pudendal nerves were cooled down from + 15C. The effects of spinal and pudendal nerve cold block on the urethral sphincter and bladder during SARS and the recovery time were monitored by urodynamic investigation. A complete cold block of the urethral sphincter during spinal nerve cooling was achieved in all cases. During pudendal nerve cooling, the sphincter was completely blocked in two, and incompletely blocked in four dogs. Cold block temperature of the spinal nerves averaged +11.7C and of the pudendal nerves +6.2C. During SARS and spinal nerve cooling, an increase in intravesical pressure up to 13 cm. water was recognized, and recovery time was on average 6.6 minutes. Intravesical pressure remained unchanged during pudendal nerve cooling, with recovery time being less than 1 minute. The cold block was always reversible. Cryotechnique is an excellent method for selective and reversible block of the urethral sphincter during SARS to avoid detrusor-sphincter-dyssynergia. The application of cryotechnique in functional electrical stimulation leads to an improvement of quality of life in para- or tetraplegic patients because of selective nerve stimulation with optimization of micturition, standing, walking and grasping and does so without the necessity of surgical dorsal root rhizotomy.
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.; ...
2015-02-03
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this paper, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d 6 azlactone) (PVDMA-d 6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate–monomer and monomer–monomer interactions on the microphase segregation are studied using SCFT. The theoretical studymore » reveals that in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d 6 di-block copolymer deposited on silicon substrates. In conclusion, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Microphase separation in thin films of lamellar forming polydisperse di-block copolymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Lokitz, Bradley S.; Sides, Scott W.
Despite the ubiquity of polydispersity in chain lengths of di-block copolymers, its effects on microphase separation in thin films have eluded a clear understanding. In this work, we have studied effects of polydispersity on the microphase separation in thin films of lamellar forming di-block copolymers using self-consistent field theory (SCFT) and neutron reflectivity experiments. Di-block copolymers containing a polydisperse block of poly(glycidylmethacrylate) (PGMA) connected to a near-monodisperse block poly(2-vinyl-4,4-dimethyl-d6 azlactone) (PVDMA-d6) are considered in this work. Effects of chain length polydispersity, film thickness, substrate-monomer and monomer-monomer interactions on the microphase segregation are studied using SCFT. The theoretical study reveals thatmore » in comparison to a film created with monodisperse di-block copolymers, an increase in polydispersity tends to decrease the number of lamellar strata that can be packed in a film of given thickness. This is a direct consequence of an increase in lamellar domain spacing with an increase in polydispersity index. Furthermore, it is shown that polydispersity induces conformational asymmetry and an increase in the polydispersity index leads to an increase in the effective Kuhn segment length of the polydisperse blocks. It is shown that the conformational asymmetry effects, which are entropic in origin and of increasing importance as film thickness decreases, drive the polydisperse blocks to the middle of the films despite favorable substrate interactions. These predictions are verified by results from neutron reflectivity experiments on thin films made from moderately polydisperse PGMA-PVDMA-d6 di-block copolymer deposited on silicon substrates. Finally, results from SCFT are used to predict neutron reflectivity profiles, providing a facile and robust route to obtain useful physical insights into the structure of polydisperse diblock copolymers at interfaces.« less
Kaye, Gerald C; Linker, Nicholas J; Marwick, Thomas H; Pollock, Lucy; Graham, Laura; Pouliot, Erika; Poloniecki, Jan; Gammage, Michael
2015-04-07
Chronic right ventricle (RV) apical (RVA) pacing is standard treatment for an atrioventricular (AV) block but may be deleterious to left ventricle (LV) systolic function. Previous clinical studies of non-apical pacing have produced conflicting results. The aim of this randomized, prospective, international, multicentre trial was to compare change in LV ejection fraction (LVEF) between right ventricular apical and high septal (RVHS) pacing over a 2-year study period. We randomized 240 patients (age 74 ± 11 years, 67% male) with a high-grade AV block requiring >90% ventricular pacing and preserved baseline LVEF >50%, to receive pacing at the RVA (n = 120) or RVHS (n = 120). At 2 years, LVEF decreased in both the RVA (57 ± 9 to 55 ± 9%, P = 0.047) and the RVHS groups (56 ± 10 to 54 ± 10%, P = 0.0003). However, there was no significant difference in intra-patient change in LVEF between confirmed RVA (n = 85) and RVHS (n = 83) lead position (P = 0.43). There were no significant differences in heart failure hospitalization, mortality, the burden of atrial fibrillation, or plasma brain natriutetic peptide levels between the two groups. A significantly greater time was required to place the lead in the RVHS position (70 ± 25 vs. 56 ± 24 min, P < 0.0001) with longer fluoroscopy times (11 ± 7 vs. 5 ± 4 min, P < 0.0001). In patients with a high-grade AV block and preserved LV function requiring a high percentage of ventricular pacing, RVHS pacing does not provide a protective effect on left ventricular function over RVA pacing in the first 2 years. ClinicalTrials.gov number NCT00461734. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.
2013-01-01
Background Given the serious threats posed to terrestrial ecosystems by industrial contamination, environmental monitoring is a standard procedure used for assessing the current status of an environment or trends in environmental parameters. Measurement of metal concentrations at different trophic levels followed by their statistical analysis using exploratory multivariate methods can provide meaningful information on the status of environmental quality. In this context, the present paper proposes a novel chemometric approach to standard statistical methods by combining the Block clustering with Partial least square (PLS) analysis to investigate the accumulation patterns of metals in anthropized terrestrial ecosystems. The present study focused on copper, zinc, manganese, iron, cobalt, cadmium, nickel, and lead transfer along a soil-plant-snai food chain, and the hepatopancreas of the Roman snail (Helix pomatia) was used as a biological end-point of metal accumulation. Results Block clustering deliniates between the areas exposed to industrial and vehicular contamination. The toxic metals have similar distributions in the nettle leaves and snail hepatopancreas. PLS analysis showed that (1) zinc and copper concentrations at the lower trophic levels are the most important latent factors that contribute to metal accumulation in land snails; (2) cadmium and lead are the main determinants of pollution pattern in areas exposed to industrial contamination; (3) at the sites located near roads lead is the most threatfull metal for terrestrial ecosystems. Conclusion There were three major benefits by applying block clustering with PLS for processing the obtained data: firstly, it helped in grouping sites depending on the type of contamination. Secondly, it was valuable for identifying the latent factors that contribute the most to metal accumulation in land snails. Finally, it optimized the number and type of data that are best for monitoring the status of metallic contamination in terrestrial ecosystems exposed to different kinds of anthropic polution. PMID:23987502
Facet-controlled facilitation of PbS nanoarchitectures by understanding nanocrystal growth.
Loc, Welley Siu; Quan, Zewei; Lin, Cuikun; Pan, Jinfong; Wang, Yuxuan; Yang, Kaikun; Jian, Wen-Bin; Zhao, Bo; Wang, Howard; Fang, Jiye
2015-12-07
Nanostructured lead sulphide is a significant component in a number of energy-related sustainable applications such as photovoltaic cells and thermoelectric components. In many micro-packaging processes, dimensionality-controlled nano-architectures as building blocks with unique properties are required. This study investigates different facet-merging growth behaviors through a wet-chemical synthetic strategy to produce high-quality controlled nanostructures of lead sulphide in various dimensionalities. It was found that 1D nanowires or 2D nanosheets can be obtained by the merging of reactive {111}- or {110}-facets, respectively, while promoting {100} facets in the early stages after nucleation leads to the growth of 0D nanocubes. The influence of temperature, capping ligands and co-solvent in facilitating the crystal facet growth of each intermediate seed is also demonstrated. The novelty of this work is characterized by the delicate manipulation of various PbS nanoarchitectures based on the comprehension of the facet-merging evolution. The synthesis of facet-controlled PbS nanostructures could provide novel building blocks with desired properties for use in many applications.
Proton pump inhibitors as anti vacuolar-ATPases drugs: a novel anticancer strategy.
Spugnini, Enrico P; Citro, Gennaro; Fais, Stefano
2010-05-08
The vacuolar ATPases are ATP-dependent proton pumps whose functions include the acidification of intracellular compartments and the extrusion of protons through the cell cytoplasmic membrane. These pumps play a pivotal role in the regulation of cell pH in normal cells and, to a much greater extent, in tumor cells. In fact, the glucose metabolism in hypoxic conditions by the neoplasms leads to an intercellular pH drift towards acidity. The acid microenvironment is modulated through the over-expression of H+ transporters that are also involved in tumor progression, invasiveness, distant spread and chemoresistance. Several strategies to block/downmodulate the efficiency of these transporters are currently being investigated. Among them, proton pump inhibitors have shown to successfully block the H+ transporters in vitro and in vivo, leading to apoptotic death. Furthermore, their action seems to synergize with conventional chemotherapy protocols, leading to chemosensitization and reversal of chemoresistance. Aim of this article is to critically revise the current knowledge of this cellular machinery and to summarize the therapeutic strategies developed to counter this mechanism.
cis p-tau: early driver of brain injury and tauopathy blocked by antibody
Mannix, Rebekah; Qiu, Jianhua; Moncaster, Juliet; Chen, Chun-Hau; Yao, Yandan; Lin, Yu-Min; Driver, Jane A; Sun, Yan; Wei, Shuo; Luo, Man-Li; Albayram, Onder; Huang, Pengyu; Rotenberg, Alexander; Ryo, Akihide; Goldstein, Lee E; Pascual-Leone, Alvaro; McKee, Ann C.; Meehan, William; Zhou, Xiao Zhen; Lu, Kun Ping
2015-01-01
Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy (CTE) and Alzheimer's disease (AD), whose defining pathologic features include tauopathy made of phosphorylated tau (p-tau). However, tauopathy has not been detected in early stages after TBI and how TBI leads to tauopathy is unknown. Here we find robust cis p-tau pathology after sport- and military-related TBI in humans and mice. Acutely after TBI in mice and stress in vitro, neurons prominently produce cis p-tau, which disrupts axonal microtubule network and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, termed “cistauosis”, appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis p-tau is a major early driver after TBI and leads to tauopathy in CTE and AD, and cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury. PMID:26176913
Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momblona, C.; Malinkiewicz, O.; Soriano, A.
2014-08-01
Efficient methylammonium lead iodide perovskite-based solar cells have been prepared in which the perovskite layer is sandwiched in between two organic charge transporting layers that block holes and electrons, respectively. This configuration leads to stable and reproducible devices that do not suffer from strong hysteresis effects and when optimized lead to efficiencies close to 15%. The perovskite layer is formed by using a dual-source thermal evaporation method, whereas the organic layers are processed from solution. The dual-source thermal evaporation method leads to smooth films and allows for high precision thickness variations. Devices were prepared with perovskite layer thicknesses ranging frommore » 160 to 900 nm. The short-circuit current observed for these devices increased with increasing perovskite layer thickness. The main parameter that decreases with increasing perovskite layer thickness is the fill factor and as a result optimum device performance is obtained for perovskite layer thickness around 300 nm. However, here we demonstrate that with a slightly oxidized electron blocking layer the fill factor for the solar cells with a perovskite layer thickness of 900 nm increases to the same values as for the devices with thin perovskite layers. As a result the power conversion efficiencies for the cells with 300 and 900 nm are very similar, 12.7% and 12%, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Quanlin; Oldenburg, Curtis M.; Spangler, Lee H.
Analytical solutions with infinite exponential series are available to calculate the rate of diffusive transfer between low-permeability blocks and high-permeability zones in the subsurface. Truncation of these series is often employed by neglecting the early-time regime. Here in this paper, we present unified-form approximate solutions in which the early-time and the late-time solutions are continuous at a switchover time. The early-time solutions are based on three-term polynomial functions in terms of square root of dimensionless time, with the first coefficient dependent only on the dimensionless area-to-volume ratio. The last two coefficients are either determined analytically for isotropic blocks (e.g., spheresmore » and slabs) or obtained by fitting the exact solutions, and they solely depend on the aspect ratios for rectangular columns and parallelepipeds. For the late-time solutions, only the leading exponential term is needed for isotropic blocks, while a few additional exponential terms are needed for highly anisotropic rectangular blocks. The optimal switchover time is between 0.157 and 0.229, with highest relative approximation error less than 0.2%. The solutions are used to demonstrate the storage of dissolved CO 2 in fractured reservoirs with low-permeability matrix blocks of single and multiple shapes and sizes. These approximate solutions are building blocks for development of analytical and numerical tools for hydraulic, solute, and thermal diffusion processes in low-permeability matrix blocks.« less
Low-temperature high-Z gamma-detectors with very high energy resolution
NASA Astrophysics Data System (ADS)
Pobes, Carlos; Brofferio, Chiara; Bucci, Carlo; Cremonesi, Oliviero; Fiorini, Ettore; Giuliani, Andrea; Nucciotti, Angelo; Pavan, Maura; Pedretti, Marisa; Pessina, Gianluigi; Pirro, Stefano; Previtali, Ezio; Sisti, Monica; Vanzini, Marco; Zanotti, Luigi
2001-12-01
High-Z low-temperature calorimeters are developed by an Italian collaboration (Milano-Como-Gran Sasso Underground Laboratories) in order to search for rare nuclear events and Dark Matter massive candidates. They exhibit an excellent energy resolution, close to that of Ge-diodes, but a much higher efficiency. Different high-Z materials were initially employed . A many-years optimisation work on tellurium oxide (TeO2) lead to impressive results: devices with total masses around 750 g present FWHM energy resolutions on gamma-ray peaks ranging from 1 KeV (close to the 5 KeV energy threshold) to 2.6 KeV at 2615 KeV (208Tl gamma line). A 3.2 KeV FWHM energy resolution was obtained at 5.4 MeV (210Po alpha line), which is by far the best one ever achieved with any alpha detector. These devices, operated at about 10 mK, consist of a TeO2 single crystal thermally coupled to a 50 mg Neutron Transmutation Doped (NTD) Ge crystal working as a temperature sensor. Special care was devoted to methods for response linearization and temporal stabilisation. Devices based on the same principle and specifically optimised could find applications in several fields like gamma-ray astrophysics, nuclear physics searches, environmental monitoring and radiation metrology.
Measurements and usage of cross sections of various (n,xn) threshold reactions
NASA Astrophysics Data System (ADS)
Chudoba, P.; Vrzalová, J.; Svoboda, O.; Krása, A.; Kugler, A.; Majerle, M.; Suchopár, M.; Wagner, V.
2017-03-01
Current trend in nuclear reactor physics is a transition from technologies using thermal neutrons to technologies utilizing fast neutrons. Unfortunately focus was put mainly on the thermal neutrons for a long time and lead to very good knowledge about this low energy region, but very scarce coverage of the high energy region. This means that there is a gap in the knowledge of excitation functions for higher energies. This gap spreads from 20 MeV up to 1 GeV and higher. This is exactly the energy region needed for description of advanced nuclear systems such as accelerator driven systems (ADS). Our group from Nuclear Physics Institute (NPI) of the CAS is a member of an international collaboration Energy & Transmutation of Radioactive Waste (E&T RAW). This collaboration focuses on ADS for many years. In order to measure neutron field within ADS models it is necessary to know excitation functions of reactions used to monitor the neutron field. In many cases there are almost no experimental data for suitable reactions. Worse and quite common case is that there are no data at all. Therefore we are also focusing on measurements of these data in order to fill the databases as well as to allow further improvements of codes for nuclear data calculations.
Nanochannel structures in W enhance radiation tolerance
Qin, Wenjing; Ren, Feng; Doerner, Russell P.; ...
2018-04-23
Developing high performance plasma facing materials (PFMs) is one of the greatest challenges for fusion reactors, because PFMs face unprecedented harsh environments including high flux plasma exposure, fast neutron irradiation and large transmutation gas. Tungsten (W) is considered as one of the most promising PFMs. Rapid accumulation of helium (He) atoms in such environments can lead to the He bubbles nucleation and even the formation of nano- to micro-scale “fuzz” on W surface, which greatly degrade the properties of W itself. The possible ejection of large W particulates into the core plasma can cause plasma instabilities. In this paper, wemore » present a new strategy to address the root causes of bubble nucleation and “fuzz” formation by concurrently releasing He outside of W matrix through the nano-engineered channel structure (nanochannels). Comparing to ordinary bulk W, nanochannel W films with high surface-to-volume ratios are found to not only delay the growth of He bubbles, but also suppress the formation of “fuzz” (less than a half of the “fuzz” thickness formation in bulk W). Finally, molecular dynamic (MD) simulation results elucidate that low vacancy formation energy and high He binding energy in the nanochannel surface effectively help He release and affect He clusters distribution in W during He ion irradiation.« less