Friction-induced structural transformations of the carbide phase in Hadfield steel
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.; Shabashov, V. A.
2015-08-01
Structural transformations of the carbide phase in Hadfield steel (110G13) that occur upon plastic deformation by dry sliding friction have been studied by methods of optical metallography, X-ray diffraction, and transmission electron microscopy. Deformation is shown to lead to the refinement of the particles of the carbide phase (Fe, Mn)3C to a nanosized level. The effect of the deformation-induced dissolution of (Fe, Mn)3C carbides in austenite of 110G13 (Hadfield) steel has been revealed, which manifests in the appearance of new lines belonging to austenite with an unusually large lattice parameter ( a = 0.3660-0.3680 nm) in the X-ray diffraction patterns of steel tempered to obtain a fine-lamellar carbide phase after deformation. This austenite is the result of the deformation-induced dissolution of disperse (Fe, Mn)3C particles, which leads to the local enrichment of austenite with carbon and manganese. The tempering that leads to the formation of carbide particles in 110G13 steel exerts a negative influence on the strain hardening of the steel, despite the increase in the hardness of steel upon tempering and the development of the processes of the deformation-induced dissolution of the carbide phase, which leads to the strengthening of the γ solid solution.
NASA Astrophysics Data System (ADS)
Guitar, María Agustina; Suárez, Sebastián; Prat, Orlando; Duarte Guigou, Martín; Gari, Valentina; Pereira, Gastón; Mücklich, Frank
2018-05-01
This work evaluates the effect of a destabilization treatment combined with a subcritical diffusion (SCD) and a subsequent quenching (Q) steps on precipitation of secondary carbides and their influence on the wear properties of HCCI (16%Cr). The destabilization of the austenite at high temperature leads to a final microstructure composed of eutectic and secondary carbides, with an M7C3 nature, embedded in a martensitic matrix. An improved wear resistance was observed in the SCD + Q samples in comparison with the Q one, which was attributed to the size of secondary carbides.
NASA Technical Reports Server (NTRS)
Kiser, J. Douglas; Singh, Mrityunjay; Lei, Jin-Fen; Martin, Lisa C.
1999-01-01
A novel attachment approach for positioning sensor lead wires on silicon carbide-based monolithic ceramic and fiber reinforced ceramic matrix composite (FRCMC) components has been developed. This approach is based on an affordable, robust ceramic joining technology, named ARCJoinT, which was developed for the joining of silicon carbide-based ceramic and fiber reinforced composites. The ARCJoinT technique has previously been shown to produce joints with tailorable thickness and good high temperature strength. In this study, silicon carbide-based ceramic and FRCMC attachments of different shapes and sizes were joined onto silicon carbide fiber reinforced silicon carbide matrix (SiC/ SiC) composites having flat and curved surfaces. Based on results obtained in previous joining studies. the joined attachments should maintain their mechanical strength and integrity at temperatures up to 1350 C in air. Therefore they can be used to position and secure sensor lead wires on SiC/SiC components that are being tested in programs that are focused on developing FRCMCs for a number of demanding high temperature applications in aerospace and ground-based systems. This approach, which is suitable for installing attachments on large and complex shaped monolithic ceramic and composite components, should enhance the durability of minimally intrusive high temperature sensor systems. The technology could also be used to reinstall attachments on ceramic components that were damaged in service.
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar [Lenoir City, TN; An, Ke [Knoxville, TX; Kiggans, Jr., James O.; Dudney, Nancy J [Knoxville, TN; Contescu, Cristian I [Knoxville, TN; Baker, Frederick S [Oak Ridge, TN; Armstrong, Beth L [Clinton, TN
2011-09-13
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
Lightweight, durable lead-acid batteries
Lara-Curzio, Edgar; An, Ke; Kiggans, Jr., James O; Dudney, Nancy J; Contescu, Cristian I; Baker, Frederick S; Armstrong, Beth L
2013-05-21
A lightweight, durable lead-acid battery is disclosed. Alternative electrode materials and configurations are used to reduce weight, to increase material utilization and to extend service life. The electrode can include a current collector having a buffer layer in contact with the current collector and an electrochemically active material in contact with the buffer layer. In one form, the buffer layer includes a carbide, and the current collector includes carbon fibers having the buffer layer. The buffer layer can include a carbide and/or a noble metal selected from of gold, silver, tantalum, platinum, palladium and rhodium. When the electrode is to be used in a lead-acid battery, the electrochemically active material is selected from metallic lead (for a negative electrode) or lead peroxide (for a positive electrode).
Electrons, phonons and superconductivity in rocksalt and tungsten-carbide phases of CrC.
Tütüncü, H M; Baǧcı, S; Srivastava, G P; Akbulut, A
2012-11-14
We present results of ab initio theoretical investigations of the electronic structure, phonon dispersion relations, electron-phonon interaction and superconductivity in the rocksalt and tungsten-carbide phases of CrC. It is found that, compared to the stable tungsten-carbide phase, the metastable rocksalt phase is characterized by a much larger electronic density of states at the Fermi level. The phonon spectra of the rocksalt phase exhibit anomalies in the dispersion curves of both the transverse and longitudinal acoustic branches along the main symmetry directions. A combination of these characteristic electronic and phonon properties leads to an order of magnitude larger value of the electron-phonon coupling constant (λ = 2.66) for the rocksalt phase compared to that for the tungsten-carbide phase (λ = 0.24). Our calculations suggest that superconducting transition temperature values of 0.01 K and 25-35 K may be expected for the tungsten-carbide and rocksalt phases, respectively.
Silicon Oxycarbide Aerogels for High-Temperature Thermal Insulation
NASA Technical Reports Server (NTRS)
Evans, Owen; Rhine, Wendell; Coutinho, Decio
2010-01-01
This work has shown that the use of SOC-A35 leads to aerogel materials containing a significant concentration of carbidic species and limited amorphous free carbon. Substitution of the divalent oxide species in silica with tetravalent carbidic carbon has directly led to materials that exhibit increased network viscosity, reduced sintering, and limited densification. The SiOC aerogels produced in this work have the highest carbide content of any dense or porous SiOC glass reported in the literature at that time, and exhibit tremendous long-term thermal stability.
NASA Astrophysics Data System (ADS)
Linsmeier, Christian
2004-12-01
The deposition of carbon on metals is the unavoidable consequence of the application of different wall materials in present and future fusion experiments like ITER. Presently used and prospected materials besides carbon (CFC materials in high heat load areas) are tungsten and beryllium. The simultaneous application of different materials leads to the formation of surface compounds due to the erosion, transport and re-deposition of material during plasma operations. The formation and erosion processes are governed by widely varying surface temperatures and kinetic energies as well as the spectrum of impinging particles from the plasma. The knowledge of the dependence on these parameters is crucial for the understanding and prediction of the compound formation on wall materials. The formation of surface layers is of great importance, since they not only determine erosion rates, but also influence the ability of the first wall for hydrogen isotope inventory accumulation and release. Surface compound formation, diffusion and erosion phenomena are studied under well-controlled ultra-high vacuum conditions using in-situ X-ray photoelectron spectroscopy (XPS) and ion beam analysis techniques available at a 3 MV tandem accelerator. XPS provides chemical information and allows distinguishing elemental and carbidic phases with high surface sensitivity. Accelerator-based spectroscopies provide quantitative compositional analysis and sensitivity for deuterium in the surface layers. Using these techniques, the formation of carbidic layers on metals is studied from room temperature up to 1700 K. The formation of an interfacial carbide of several monolayers thickness is not only observed for metals with exothermic carbide formation enthalpies, but also in the cases of Ni and Fe which form endothermic carbides. Additional carbon deposited at 300 K remains elemental. Depending on the substrate, carbon diffusion into the bulk starts at elevated temperatures together with additional carbide formation. Depending on the bond nature in the carbide (metallic in the transition metal carbides, ionic e.g. in Be2C), the surface carbide layer is dissolved upon further increased temperatures or remains stable. Carbide formation can also be initiated by ion bombardment, both of chemically inert noble gas ions or C+ or CO+ ions. In the latter case, a deposition-erosion equilibrium develops which leads to a ternary surface layer of constant thickness. A chemical erosion channel is also discussed for the enhanced erosion of thin carbon films on metals by deuterium ions.
Silicon Carbide Technologies for Lightweighted Aerospace Mirrors
2008-09-01
Silicon Carbide Technologies for Lightweighted Aerospace Mirrors Lawrence E. Matson (1) Ming Y. Chen (1) Brett deBlonk (2) Iwona A...glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs...for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive
Liu, Xing-Wu; Cao, Zhi; Zhao, Shu; ...
2017-09-11
As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2C and ε’-Fe 2.2C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe xC, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectramore » for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2C has six sets of chemically distinct Fe atoms.« less
Choi, Jae -Soon; Zacher, Alan; Wang, Huamin; ...
2016-05-19
This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jae-Soon; Zacher, Alan H.; Wang, Huamin
We assessed molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60-h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oils below 2 wt% andmore » 0.01 mg KOH g-1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60-h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are promising catalytic materials which could lead to a significant cost reduction in hydroprocessing bio-oils. This paper highlights areas for future research which will be needed to further understand carbide structure-function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jae -Soon; Zacher, Alan; Wang, Huamin
This paper describes properties of molybdenum carbides as a potential catalyst for fast pyrolysis bio-oil hydroprocessing. Currently, high catalyst cost, short catalyst lifetime, and lack of effective regeneration methods are hampering the development of this otherwise attractive renewable hydrocarbon technology. A series of metal-doped bulk Mo carbides were synthesized, characterized, and evaluated in sequential low-temperature stabilization and high-temperature deoxygenation of a pine-derived bio-oil. During a typical 60 h run, Mo carbides were capable of upgrading raw bio-oil to a level suitable for direct insertion into the current hydrocarbon infrastructure with residual oxygen content and total acid number of upgraded oilsmore » below 2 wt % and 0.01 mg KOH g –1, respectively. The performance was shown to be sensitive to the type of metal dopant, Ni-doped Mo carbides outperforming Co-, Cu-, or Ca-doped counterparts; a higher Ni loading led to a superior catalytic performance. No bulk oxidation or other significant structural changes were observed. Besides the structural robustness, another attractive property of Mo carbides was in situ regenerability. The effectiveness of regeneration was demonstrated by successfully carrying out four consecutive 60 h runs with a reductive decoking between two adjacent runs. These results strongly suggest that Mo carbides are a good catalyst candidate which could lead to a significant cost reduction in hydroprocessing bio-oils. Furthermore, we highlight areas for future research which will be needed to further understand carbide structure–function relationships and help design practical bio-oil upgrading catalysts based on Mo carbides.« less
Marchese, Giulio; Basile, Gloria; Bassini, Emilio; Aversa, Alberta; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara
2018-01-11
Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M₆C, M 12 C and M n C m type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process.
Basile, Gloria; Bassini, Emilio; Ugues, Daniele; Fino, Paolo
2018-01-01
Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions typically less than 1 µm, coupled with the formation of sub-micrometric carbides, the largest ones were mainly distributed along the interdendritic regions and grain boundaries. From the microstructural analyses, it appeared that the formation of intergranular carbides provided weaker zones, which combined with high thermal residual stresses resulted in hot cracks formation along the grain boundaries. The carbides were extracted from the austenitic matrix and characterized by combining different techniques, showing the formation of various types of Mo-rich carbides, classified as M6C, M12C and MnCm type. The first two types of carbides are typically found in HX alloy, whereas the last one is a metastable carbide probably generated by the very high cooling rates of the process. PMID:29324658
Mixed material formation and erosion
NASA Astrophysics Data System (ADS)
Linsmeier, Ch.; Luthin, J.; Goldstraß, P.
2001-03-01
The formation of mixed phases on materials relevant for first wall components of fusion devices is studied under well-defined conditions in ultra-high vacuum (UHV). This is necessary in order to determine fundamental parameters governing the basic processes of chemical reaction, material mixing and erosion. We examined the binary systems comprising of the wall materials beryllium, silicon, tungsten and titanium and carbon, the latter being both a wall material and a plasma impurity. Experiments were carried out to study the interaction of carbon in the form of a vapor-deposited component on clean, well-defined elemental surfaces. The chemical composition and the binding state are measured by X-ray photoelectron spectroscopy (XPS) after annealing treatments. For all materials, a limited carbide formation is found at room temperature. Annealing carbon films on elemental substrate leads to a complete carbidization of the carbon layer. The carbide layers on Be and Si are stable even at very high temperatures, whereas the carbides of Ti and W dissolve. The erosion of these two metals by sputtering is then identical to the pure metals, whereas for Be and Si a protective carbide layer can reduce the sputtering yields.
Optimization of Milling Parameters Employing Desirability Functions
NASA Astrophysics Data System (ADS)
Ribeiro, J. L. S.; Rubio, J. C. Campos; Abrão, A. M.
2011-01-01
The principal aim of this paper is to investigate the influence of tool material (one cermet and two coated carbide grades), cutting speed and feed rate on the machinability of hardened AISI H13 hot work steel, in order to identify the cutting conditions which lead to optimal performance. A multiple response optimization procedure based on tool life, surface roughness, milling forces and the machining time (required to produce a sample cavity) was employed. The results indicated that the TiCN-TiN coated carbide and cermet presented similar results concerning the global optimum values for cutting speed and feed rate per tooth, outperforming the TiN-TiCN-Al2O3 coated carbide tool.
Measurements and simulations of boron carbide as degrader material for proton therapy.
Gerbershagen, Alexander; Baumgarten, Christian; Kiselev, Daniela; van der Meer, Robert; Risters, Yannic; Schippers, Marco
2016-07-21
We report on test measurements using boron carbide (B4C) as degrader material in comparison with the conventional graphite, which is currently used in many proton therapy degraders. Boron carbide is a material of lower average atomic weight and higher density than graphite. Calculations predict that, compared to graphite, the use of boron carbide results in a lower emittance behind the degrader due to the shorter degrader length. Downstream of the acceptance defining collimation system we expect a higher beam transmission, especially at low beam energies. This is of great interest in proton therapy applications as it allows either a reduction of the beam intensity extracted from the cyclotron leading to lower activation or a reduction of the treatment time. This paper summarizes the results of simulations and experiments carried out at the PROSCAN facility at the Paul Scherrer Institute(1). The simulations predict an increase in the transmitted beam current after the collimation system of approx. 30.5% for beam degradation from 250 to 84 MeV for a boron carbide degrader compared to graphite. The experiment carried out with a boron carbide block reducing the energy to 84 MeV yielded a transmission improvement of 37% compared with the graphite degrader set to that energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chih-Yuan, E-mail: chen6563@gmail.com; Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan; Yang, Jer-Ren, E-mail: jryang@ntu.edu.tw
Nanometer-sized carbides that precipitated in a Ti–Mo bearing steel after interrupted continuous cooling in a temperature range of 620–700 °C with or without hot deformation were investigated by field-emission-gun transmission electron microscopy. The nanometer-sized carbides were identified as randomly homogeneous precipitation carbides and interphase precipitation carbides coexisting in the ferrite matrix. It is found that this dual precipitation morphology of carbides in the steel leads to the non-uniform mechanical properties of individual ferrite grains. Vickers hardness data mainly revealed that, in the specimens cooled at a rate of 0.5 °C/s without hot deformation, the range of Vickers hardness distribution wasmore » 230–340 HV 0.1 when cooling was interrupted at 680 °C, and 220–360 HV 0.1 when cooling was interrupted at 650 °C. For the specimens cooled at a rate of 0.5 °C/s with hot deformation, the range of Vickers hardness distribution was 290–360 HV 0.1 when cooling was interrupted at 680 °C, and 280–340 HV 0.1 when cooling was interrupted at 650 °C. Therefore, a narrower range of hardness distribution occurred in the specimens that underwent hot deformation and were then cooled with a lower interrupted cooling temperature. The uniform precipitation status in each ferrite grain can lead to ferrite grains with a narrower Vickers hardness distribution. On the other hand, interrupted cooling produced a maximum Vickers hardness of 320–330 HV 0.1 for the hot deformed specimens and 290–310 HV 0.1 for the non-deformed specimens with cooling interrupted in the temperature range of 660–670 °C. The maximum Vickers hardness obtained in such a temperature range can be ascribed to the full precipitation of the microalloying elements in the supersaturated ferrite matrix with a tiny size (~ 4–7 nm). - Highlight: • The interrupted continuous cooling temperatures were 620 °C to 700 °C. • Precipitation carbides with dual dispersed morphology coexisted in the matrix. • Heavy hot deformation narrowed the range of hardness distribution. • Full precipitation of nano-sized carbides achieved maximum hardening.« less
Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools
NASA Astrophysics Data System (ADS)
Jagadesh, Thangavel; Samuel, G. L.
2017-02-01
The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.
Influence of oxygen on the carbide formation on tungsten
NASA Astrophysics Data System (ADS)
Luthin, J.; Linsmeier, Ch.
2001-03-01
As a first wall material in nuclear fusion devices, tungsten will interact with carbon and oxygen from the plasma. In this study, we report on the process of thermally induced carbide formation of thin carbon films on polycrystalline tungsten and the influence of oxygen on this process. All investigations are performed using X-ray photoelectron spectroscopy (XPS). Carbon films are supplied through electron beam evaporation of graphite. The carbidization process, monitored during increased substrate temperature, can be divided into four phases. In phase I disordered carbon converts into graphite-like carbon. In phase II significant diffusion and the reaction to W 2C is observed, followed by phase III which is dominated by the presence of W 2C and the beginning reaction to WC. Finally in phase IV only WC is present, but the total carbon amount has strongly decreased. Different mechanisms of oxygen influence on the carbide formation are proposed and measurements of the reaction of carbon on tungsten with intermediate oxide layers are presented in detail. A WO 2+ x intermediate layer completely inhibits the carbide formation, while a WO 2 layer leads to WC formation at temperatures above 1270 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbücher, C.; Hildebrandt, E.; Sharath, S. U.
On highly oxygen deficient thin films of hafnium oxide (hafnia, HfO{sub 2−x}) contaminated with adsorbates of carbon oxides, the formation of hafnium carbide (HfC{sub x}) at the surface during vacuum annealing at temperatures as low as 600 °C is reported. Using X-ray photoelectron spectroscopy the evolution of the HfC{sub x} surface layer related to a transformation from insulating into metallic state is monitored in situ. In contrast, for fully stoichiometric HfO{sub 2} thin films prepared and measured under identical conditions, the formation of HfC{sub x} was not detectable suggesting that the enhanced adsorption of carbon oxides on oxygen deficient films providesmore » a carbon source for the carbide formation. This shows that a high concentration of oxygen vacancies in carbon contaminated hafnia lowers considerably the formation energy of hafnium carbide. Thus, the presence of a sufficient amount of residual carbon in resistive random access memory devices might lead to a similar carbide formation within the conducting filaments due to Joule heating.« less
Ablation properties of carbon/carbon composites with tungsten carbide
NASA Astrophysics Data System (ADS)
Yin, Jian; Zhang, Hongbo; Xiong, Xiang; Huang, Baiyun; Zuo, Jinlv
2009-02-01
The ablation properties and morphologies of carbon/carbon (C/C) composites with tungsten carbide (WC) filaments were investigated by ablation test on an arc heater and scanning electron microscopy. And the results were compared with those without tungsten carbide (WC) filaments tested under the same conditions. It shows that there is a big difference between C/C composites with and without WC filaments on both macroscopic and microscopic ablation morphologies and the ablation rates of the former are higher than the latter. It is found that the ablation process of C/C composites with WC filaments includes oxidation of carbon fibers, carbon matrices and WC, melting of WC and WO 3, and denudation of WC, WO 3 and C/C composites. Oxidation and melting of WC leads to the formation of holes in z directional carbon fiber bundles, which increases the coarseness of the ablation surfaces of the composites, speeds up ablation and leads to the higher ablation rate. Moreover, it is further found that the molten WC and WO 3 cannot form a continuous film on the ablation surface to prevent further ablation of C/C composites.
NASA Astrophysics Data System (ADS)
Doetz, Marius; Dambon, Olaf; Klocke, Fritz; Fähnle, Oliver
2015-08-01
Molds made of tungsten carbide are typically used for the replicative mass production of glass lenses by precision glass molding. Consequently an ultra-precision grinding process with a subsequent fresh-feed polishing operation is conventionally applied. These processes are time consuming and have a relatively low reproducibility. An alternative manufacturing technology, with a high predictability and efficiency, which additionally allows a higher geometrical flexibility, is the single point diamond turning technique (SPDT). However, the extreme hardness and the chemical properties of tungsten carbide lead to significant tool wear and therefore the impossibility of machining the work pieces in an economical way. One approach to enlarge the tool life is to affect the contact zone between tool and work piece by the use of special cutting fluids. This publication emphasizes on the most recent investigations and results in direct machining of nano-grained tungsten carbide with mono crystal diamonds under the influence of various kinds of cutting fluids. Therefore basic ruling experiments on binderless nano grained tungsten carbide were performed, where the tool performed a linear movement with a steadily increasing depth of cut. As the ductile cutting mechanism is a prerequisite for the optical manufacturing of tungsten carbide these experiments serve the purpose for establish the influence of different cutting fluid characteristics on the cutting performance of mono crystal diamonds. Eventually it is shown that by adjusting the coolant fluid it is possible to significantly shift the transition point from ductile to brittle removal to larger depths of cut eventually enabling a SPDT of binderless tungsten carbide molds.
The effect of plasma impurities on the sputtering of tungsten carbide
NASA Astrophysics Data System (ADS)
Vörtler, K.; Björkas, C.; Nordlund, K.
2011-03-01
Understanding of sputtering by ion bombardment is needed in a wide range of applications. In fusion reactors, ion impacts originating from a hydrogen-isotope-rich plasma will lead, among other effects, to sputtering of the wall material. To study the effect of plasma impurities on the sputtering of the wall mixed material tungsten carbide molecular dynamics simulations were carried out. Simulations of cumulative D cobombardment with C, W, He, Ne or Ar impurities on crystalline tungsten carbide were performed in the energy range 100-300 eV. The sputtering yields obtained at low fluences were compared to steady state SDTrimSP yields. During bombardment single C atom sputtering was preferentially observed. We also detected significant WxCy molecule sputtering. We found that this molecule sputtering mechanism is of physical origin.
Feasibility study of fluxless brazing cemented carbides to steel
NASA Astrophysics Data System (ADS)
Tillmann, W.; Sievers, N.
2017-03-01
One of the most important brazing processes is the joints between cemented carbides and steel for the tool industry such as in rotary drill hammers or saw blades. Even though this technique has already been used for several decades, defects in the joint can still occur and lead to quality loss. Mostly, the joining process is facilitated by induction heating and the use of a flux to enhance the wetting of the filler alloy on the surface of the steel and cemented carbide in an ambient atmosphere. However, although the use of flux enables successful joining, it also generates voids within the joint, which reduces the strength of the connection while the chemicals within the flux are toxic and polluting. In this feasibility study, a fluxless brazing process is used to examine the joint between cemented carbides and steel for the first time. For this, ultrasound is applied during induction heating to enable the wetting between the liquid filler metal and the surfaces of the cemented carbide and steel. The ultrasound generates cavitations within the liquid filler metal, which remove the oxides from the surface. Several filler metals such as a silver based alloy Ag449, pure Zn, and an AlSi-alloy were used to reduce the brazing temperature and to lower the thermal residual stresses within the joint. As a result, every filler metal successfully wetted both materials and led to a dense connection. The ultrasound has to be applied carefully to prevent a damage of the cemented carbide. In this regard, it was observed that single grains of the cemented carbide broke out and remained in the joint. This positive result of brazing cemented carbides to steel without a flux but using ultrasound, allows future studies to focus on the shear strength of these joints as well as the behavior of the thermally induced residual stresses.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C
NASA Astrophysics Data System (ADS)
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-06-01
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C.
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-06-14
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr 0.8 Ti 0.2 C 0.74 B 0.26 ) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000-3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr-Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic's oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance.
Ablation-resistant carbide Zr0.8Ti0.2C0.74B0.26 for oxidizing environments up to 3,000 °C
Zeng, Yi; Wang, Dini; Xiong, Xiang; Zhang, Xun; Withers, Philip J.; Sun, Wei; Smith, Matthew; Bai, Mingwen; Xiao, Ping
2017-01-01
Ultra-high temperature ceramics are desirable for applications in the hypersonic vehicle, rockets, re-entry spacecraft and defence sectors, but few materials can currently satisfy the associated high temperature ablation requirements. Here we design and fabricate a carbide (Zr0.8Ti0.2C0.74B0.26) coating by reactive melt infiltration and pack cementation onto a C/C composite. It displays superior ablation resistance at temperatures from 2,000–3,000 °C, compared to existing ultra-high temperature ceramics (for example, a rate of material loss over 12 times better than conventional zirconium carbide at 2,500 °C). The carbide is a substitutional solid solution of Zr–Ti containing carbon vacancies that are randomly occupied by boron atoms. The sealing ability of the ceramic’s oxides, slow oxygen diffusion and a dense and gradient distribution of ceramic result in much slower loss of protective oxide layers formed during ablation than other ceramic systems, leading to the superior ablation resistance. PMID:28613275
NASA Astrophysics Data System (ADS)
Kunimoto, Takehiro; Irifune, Tetsuo; Tange, Yoshinori; Wada, Kouhei
2016-04-01
A pressure generation test for Kawai-type multianvil apparatus (KMA) has been made using second-stage anvils of a newly developed ultra-hard tungsten carbide composite. Superb performance of the new anvil with significantly less plastic deformation was confirmed as compared to those commonly used for the KMA experiments. A maximum pressure of ∼48 GPa was achieved using the new anvils with a truncation edge length (TEL) of 1.5 mm, based on in situ X-ray diffraction measurements. Further optimization of materials and sizes of the pressure medium/gasket should lead to pressures even higher than 50 GPa in KMA using this novel tungsten carbide composite, which may also be used for expansion of the pressure ranges in other types of high pressure apparatus operated in large volume press.
Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers
NASA Astrophysics Data System (ADS)
Cunning, Benjamin V.; Ahmed, Mohsin; Mishra, Neeraj; Ranjbar Kermany, Atieh; Wood, Barry; Iacopi, Francesca
2014-08-01
Currently proven methods that are used to obtain devices with high-quality graphene on silicon wafers involve the transfer of graphene flakes from a growth substrate, resulting in fundamental limitations for large-scale device fabrication. Moreover, the complex three-dimensional structures of interest for microelectromechanical and nanoelectromechanical systems are hardly compatible with such transfer processes. Here, we introduce a methodology for obtaining thousands of microbeams, made of graphitized silicon carbide on silicon, through a site-selective and wafer-scale approach. A Ni-Cu alloy catalyst mediates a self-aligned graphitization on prepatterned SiC microstructures at a temperature that is compatible with silicon technologies. The graphene nanocoating leads to a dramatically enhanced electrical conductivity, which elevates this approach to an ideal method for the replacement of conductive metal films in silicon carbide-based MEMS and NEMS devices.
NASA Astrophysics Data System (ADS)
Das, Tilak; Chatterjee, Swastika; Ghosh, Sujoy; Saha-Dasgupta, Tanusri
2017-09-01
We perform a computational study based on first-principles calculations to investigate the relative stability and elastic properties of the doped and undoped Fe carbide compounds at 200-364 GPa. We find that upon doping a few weight percent of Si impurities at the carbon sites in Fe7C3 carbide phases, the values of Poisson's ratio and density increase while
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xing-Wu; Cao, Zhi; Zhao, Shu
As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2C and ε’-Fe 2.2C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe xC, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectramore » for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2C has six sets of chemically distinct Fe atoms.« less
Facile electrosynthesis of silicon carbide nanowires from silica/carbon precursors in molten salt.
Zou, Xingli; Ji, Li; Lu, Xionggang; Zhou, Zhongfu
2017-08-30
Silicon carbide nanowires (SiC NWs) have attracted intensive attention in recent years due to their outstanding performances in many applications. A large-scale and facile production of SiC NWs is critical to its successful application. Here, we report a simple method for the production of SiC NWs from inexpensive and abundantly available silica/carbon (SiO 2 /C) precursors in molten calcium chloride. The solid-to-solid electroreduction and dissolution-electrodeposition mechanisms can easily lead to the formation of homogenous SiC NWs. This template/catalyst-free approach greatly simplifies the synthesis procedure compared to conventional methods. This general strategy opens a direct electrochemical route for the conversion of SiO 2 /C into SiC NWs, and may also have implications for the electrosynthesis of other micro/nanostructured metal carbides/composites from metal oxides/carbon precursors.
Melt-Infiltration Process For SiC Ceramics And Composites
NASA Technical Reports Server (NTRS)
Behrendt, Donald R.; Singh, Mrityunjay
1994-01-01
Reactive melt infiltration produces silicon carbide-based ceramics and composites faster and more economically than do such processes as chemical vapor infiltration (CVI), reaction sintering, pressureless sintering, hot pressing, and hot isostatic pressing. Process yields dense, strong materials at relatively low cost. Silicon carbide ceramics and composites made by reactive melt infiltration used in combustor liners of jet engines and in nose cones and leading edges of high-speed aircraft and returning spacecraft. In energy industry, materials used in radiant-heater tubes, heat exchangers, heat recuperators, and turbine parts. Materials also well suited to demands of advanced automobile engines.
RQL Sector Rig Testing of SiC/SiC Combustor Liners
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Martin, Lisa C.; Brewer, David N.
2002-01-01
Combustor liners, manufactured from silicon carbide fiber-reinforced silicon carbide (SiC/SiC) were tested for 260 hr using a simulated gas turbine engine cycle. This report documents the results of the last 56 hr of testing. Damage occurred in one of the six different components that make up the combustor liner set, the rich zone liner. Cracks in the rich zone liner initiated at the leading edge due to stresses resulting from the component attachment configuration. Thin film thermocouples and fiber optic pyrometers were used to measure the rich zone liner's temperature and these results are reported.
Melting of SiC powders preplaced duplex stainless steel using TIG welding
NASA Astrophysics Data System (ADS)
Maleque, M. A.; Afiq, M.
2018-01-01
TIG torch welding technique is a conventional melting technique for the cladding of metallic materials. Duplex stainless steels (DSS) show decrease in performance under aggressive environment which may lead to unanticipated failure due to poor surface properties. In this research, surface modification is done by using TIG torch method where silicon carbide (SiC) particles are fused into DSS substrate in order to form a new intermetallic compound at the surface. The effect of particle size, feed rate of SiC preplacement, energy input and shielding gas flow rate on surface topography, microstructure, microstructure and hardness are investigated. Deepest melt pool (1.237 mm) is produced via TIG torch with highest energy input of 1080 J/mm. Observations of surface topography shows rippling marks which confirms that re-solidification process has taken place. Melt microstructure consist of dendritic and globular carbides precipitate as well as partially melted silicon carbides (SiC) particles. Micro hardness recorded at value ranging from 316 HV0.5 to 1277 HV0.5 which shows increment from base hardness of 260 HV0.5kgf. The analyzed result showed that incorporation of silicon carbide particles via TIG Torch method increase the hardness of DSS.
NASA Astrophysics Data System (ADS)
Chhina, H.; Campbell, S.; Kesler, O.
The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pradeepkumar, Aiswarya; Mishra, Neeraj; Kermany, Atieh Ranjbar
Epitaxial cubic silicon carbide on silicon is of high potential technological relevance for the integration of a wide range of applications and materials with silicon technologies, such as micro electro mechanical systems, wide-bandgap electronics, and graphene. The hetero-epitaxial system engenders mechanical stresses at least up to a GPa, pressures making it extremely challenging to maintain the integrity of the silicon carbide/silicon interface. In this work, we investigate the stability of said interface and we find that high temperature annealing leads to a loss of integrity. High–resolution transmission electron microscopy analysis shows a morphologically degraded SiC/Si interface, while mechanical stress measurementsmore » indicate considerable relaxation of the interfacial stress. From an electrical point of view, the diode behaviour of the initial p-Si/n-SiC junction is catastrophically lost due to considerable inter-diffusion of atoms and charges across the interface upon annealing. Temperature dependent transport measurements confirm a severe electrical shorting of the epitaxial silicon carbide to the underlying substrate, indicating vast predominance of the silicon carriers in lateral transport above 25 K. This finding has crucial consequences on the integration of epitaxial silicon carbide on silicon and its potential applications.« less
NASA Astrophysics Data System (ADS)
Khramtsov, Igor A.; Vyshnevyy, Andrey A.; Fedyanin, Dmitry Yu.
2018-03-01
Practical applications of quantum information technologies exploiting the quantum nature of light require efficient and bright true single-photon sources which operate under ambient conditions. Currently, point defects in the crystal lattice of diamond known as color centers have taken the lead in the race for the most promising quantum system for practical non-classical light sources. This work is focused on a different quantum optoelectronic material, namely a color center in silicon carbide, and reveals the physics behind the process of single-photon emission from color centers in SiC under electrical pumping. We show that color centers in silicon carbide can be far superior to any other quantum light emitter under electrical control at room temperature. Using a comprehensive theoretical approach and rigorous numerical simulations, we demonstrate that at room temperature, the photon emission rate from a p-i-n silicon carbide single-photon emitting diode can exceed 5 Gcounts/s, which is higher than what can be achieved with electrically driven color centers in diamond or epitaxial quantum dots. These findings lay the foundation for the development of practical photonic quantum devices which can be produced in a well-developed CMOS compatible process flow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Gendy, AA; Bertino, M; Clifford, D
Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe2C) of nanoparticles. Structural characterization of the CoFe2C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffraction was alsomore » performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, TB, of 790K for particles with a domain size as small as 5 +/- 1 nm. The particles have magnetocrystalline anisotropy of 4.662 +/- 10 6 J/m(3), which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe2C nanoparticles have huge potential for enhanced magnetic data storage devices. (C) 2015 AIP Publishing LLC.« less
NASA Astrophysics Data System (ADS)
Braun, James; Guéneau, Christine; Alpettaz, Thierry; Sauder, Cédric; Brackx, Emmanuelle; Domenger, Renaud; Gossé, Stéphane; Balbaud-Célérier, Fanny
2017-04-01
Silicon carbide-silicon carbide (SiC/SiC) composites are considered to replace the current zirconium-based cladding materials thanks to their good behavior under irradiation and their resistance under oxidative environments at high temperature. In the present work, a thermodynamic analysis of the UO2±x/SiC system is performed. Moreover, using two different experimental methods, the chemical compatibility of SiC towards uranium dioxide, with various oxygen contents (UO2±x) is investigated in the 1500-1970 K temperature range. The reaction leads to the formation of mainly uranium silicides and carbides phases along with CO and SiO gas release. Knudsen Cell Mass Spectrometry is used to measure the gas release occurring during the reaction between UO2+x and SiC powders as function of time and temperature. These experimental conditions are representative of an open system. Diffusion couple experiments with pellets are also performed to study the reaction kinetics in closed system conditions. In both cases, a limited chemical reaction is observed below 1700 K, whereas the reaction is enhanced at higher temperature due to the decomposition of SiC leading to Si vaporization. The temperature of formation of the liquid phase is found to lie between 1850 < T < 1950 K.
The microstructure and properties of rapidly solidified, dispersion-strengthened NiAl
NASA Technical Reports Server (NTRS)
Jha, S. C.; Ray, R.
1990-01-01
An advanced rapid solidification technology for processing reactive and refractory alloys, utilized to produce large quantities of melt-spun filaments of NiAl, is presented. The melt-spun filaments are pulverized to fine particle sizes, and subsequently consolidated by hot extrusion or hot isostatic pressing. Rapid solidification process gives rise to very fine-grained microstructures. However, exposure to elevated temperature during hot consolidation leads to grain growth. Alloying agents such as borides, carbides, and tungsten can pin the grain boundaries and retard the grain growth. Various alloy compositions are investigated. The eventual goal is to utilize the hot-extruded and forged stock to grow single-crystal NiAl blades for advanced gas-turbine engine applications. Single-crystal NiAl, containing a uniform dispersion of carbide strengthening precipitates, is expected to lead to highly creep-resistant turbine blades, and is of considerable interest to the aerospace propulsion industry.
C60 superstructure and carbide formation on the Al-terminated Al9Co2(001 ) surface
NASA Astrophysics Data System (ADS)
Ledieu, J.; Gaudry, É.; de Weerd, M.-C.; Gille, P.; Diehl, R. D.; Fournée, V.
2015-04-01
We report the formation of an ordered C60 monolayer on the Al9Co2 (001) surface using scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), x-ray and ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio calculations. Dosing fullerenes at 300 K results in a disordered overlayer. However, the adsorption of C60 with the sample held between 573-673 K leads to a [4, -2 ∣1 ,3 ] phase. The growth of C60 proceeds with the formation of two domains which are mirror symmetric with respect to the [100] direction. Within each domain, the superstructure unit cell contains six molecules and this implies an area per fullerene equal to 91 Å2. The molecules exhibit two types of contrast (bright and dim) which are bias dependent. The adsorption energies and preferred molecular configuration at several possible adsorption sites have been determined theoretically. These calculations lead to a possible scheme describing the configuration of each C60 in the observed superstructure. Several defects (vacancies, protrusions,…) and domain boundaries observed in the film are also discussed. If the sample temperature is higher than 693 K when dosing, impinging C60 molecules dissociate at the surface, hence leading to the formation of a carbide film as observed by STM and LEED measurements. The formation of Al4C3 domains and the molecular dissociation are confirmed by XPS/UPS measurements acquired at different stages of the experiment. The cluster substructure present at the Al9Co2 (001) surface dictates the carbide domain orientations.
NASA Astrophysics Data System (ADS)
Fernandez, Ruben; Jodoin, Bertrand
2017-08-01
Nickel chromium-chromium carbide coatings provide good corrosion and wear resistance at high temperatures, making them ideal for applications where a harsh environment and high temperatures are expected. Thermal spray processes are preferred as deposition technique of cermets, but the high process temperatures can lead to decarburization and reduction of the coatings properties. Cold spray uses lower temperatures preventing decarburization. Since the metallic phase remains solid, the feedstock powder morphology becomes crucial on the deposition behavior. Six commercially available powders were studied, varying in morphology and metal/ceramic ratios. The powders were categorized into 4 groups depending on their morphology. Spherical powders lead to substrate erosion due to their limited overall ductility. Porous agglomerated and sintered powders lead to severely cracked coatings. For dense agglomerated and sintered powders, the outcome depended on the initial metal/ceramic ratio: powders with 25 wt.% NiCr led to substrate erosion while 35 wt.% NiCr powders led to dense coatings. Finally, blended ceramic-metal mixtures also lead to dense coatings. All coatings obtained had lower ceramic content than the initial feedstock powders. Interrupted spray tests, combined with FEA, helped drawing conclusions on the deposition behavior to explain the obtained results.
NASA Astrophysics Data System (ADS)
Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.
2013-05-01
This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Gendy, Ahmed A., E-mail: aelgendy@vcu.edu, E-mail: ecarpenter2@vcu.edu, E-mail: snkhanna@vcu.edu; Nanotechnology and Nanometrology Lab., National institute for standards; Bertino, Massimo
Attainment of magnetic order in nanoparticles at room temperature is an issue of critical importance for many different technologies. For ordinary ferromagnetic materials, a reduction in size leads to decreased magnetic anisotropy and results in superparamagnetic relaxations. If, instead, anisotropy could be enhanced at reduced particle sizes, then it would be possible to attain stable magnetic order at room temperature. Herein, we provide experimental evidence substantiating the synthesis of a cobalt iron carbide phase (CoFe{sub 2}C) of nanoparticles. Structural characterization of the CoFe{sub 2}C carbide phase was performed by transmission electron microscopy, electron diffraction and energy electron spectroscopy. X-ray diffractionmore » was also performed as a complimentary analysis. Magnetic characterization of the carbide phase revealed a blocking temperature, T{sub B}, of 790 K for particles with a domain size as small as 5 ± 1 nm. The particles have magnetocrystalline anisotropy of 4.6 ± 2 × 10{sup 6 }J/m{sup 3}, which is ten times larger than that of Co nanoparticles. Such colossal anisotropy leads to thermally stable long range magnetic order. Moreover, the thermal stability constant is much larger than that of the commonly used FePt nanoparticles. With thermal stability and colossal anisotropy, the CoFe{sub 2}C nanoparticles have huge potential for enhanced magnetic data storage devices.« less
Hierarchical Cu precipitation in lamellated steel after multistage heat treatment
NASA Astrophysics Data System (ADS)
Liu, Qingdong; Gu, Jianfeng
2017-09-01
The hierarchical distribution of Cu-rich precipitates (CRPs) and related partitioning and segregation behaviours of solute atoms were investigated in a 1.54 Cu-3.51 Ni (wt.%) low-carbon high-strength low-alloy (HSLA) steel after multistage heat treatment by using the combination of electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and atom probe tomography (APT). Intercritical tempering at 725 °C of as-quenched lathlike martensitic structure leads to the coprecipitation of CRPs at the periphery of a carbide precipitate which is possibly in its paraequilibrium state due to distinct solute segregation at the interface. The alloyed carbide and CRPs provide constituent elements for each other and make the coprecipitation thermodynamically favourable. Meanwhile, austenite reversion occurs to form fresh secondary martensite (FSM) zone where is rich in Cu and pertinent Ni and Mn atoms, which gives rise to a different distributional morphology of CRPs with large size and high density. In addition, conventional tempering at 500 °C leads to the formation of nanoscale Cu-rich clusters in α-Fe matrix. As a consequence, three populations of CRPs are hierarchically formed around carbide precipitate, at FSM zone and in α-Fe matrix. The formation of different precipitated features can be turned by controlling diffusion pathways of related solute atoms and further to tailor mechanical properties via proper multistage heat treatments.
Effect of micro-scale texturing on the cutting tool performance
NASA Astrophysics Data System (ADS)
Vasumathy, D.; Meena, Anil
2018-05-01
The present study is mainly focused on the cutting performance of the micro-scale textured carbide tools while turning AISI 304 austenitic stainless steel under dry cutting environment. The texture on the rake face of the carbide tools was fabricated by laser machining. The cutting performance of the textured tools was further compared with conventional tools in terms of cutting forces, tool wear, machined surface quality and chip curl radius. SEM and EDS analyses have been also performed to better understand the tool surface characteristics. Results show that the grooves help in breaking the tool-chip contact leading to a lesser tool-chip contact area which results in reduced iron (Fe) adhesion to the tool.
NASA Astrophysics Data System (ADS)
Lvova, N. A.; Blank, V. D.; Gogolinskiy, K. V.; Kulibaba, V. F.
2007-04-01
Specifisities of deformation on nanoscale of hard brittle materials with the hardness exceeding 10 GP by means of scanning probe microscope - nanohardness tester "NanoScan" are investigated. It is found, that pile-up is forming at scratching of sample surface with use of diamond indenter. Heigh of this pile-up depends on hardness and elastic modulus of the material. Definition of the contact area without taking into account height of pile-up leads to an overestimation of hardness values. At scratching of silicon carbide surface a transition from plastic flow to fracture is found out. The results received allowed to estimate fracture toughness KIC for silicon carbide.
NASA Astrophysics Data System (ADS)
Venkatesh, Lakshmi Narayanan; Suresh Babu, Pitchuka; Gundakaram, Ravi Chandra; Doherty, Roger D.; Joshi, Shrikant V.; Samajdar, Indradev
2017-04-01
Microstructural evolution with superheating was studied in chromium carbide-nickel coatings deposited by laser cladding. At lower superheating, selective growth of <0001> direction from the high density of Cr7C3 grains nucleated resulted in a columnar structure with (0001) texture. Increased superheating lead to the loss of columnar structure as well as the (0001) texture. The hexagonal Cr7C3 showed an unusual isotropic nanoindentation hardness evidently correlated with its low c/ a ratio. However, the rod-like morphology of the carbide dendrites resulted in significant anisotropy in the hardness of the composite.
Iron oxide and iron carbide particles produced by the polyol method
NASA Astrophysics Data System (ADS)
Yamada, Y.; Shimizu, R.; Kobayashi, Y.
2016-12-01
Iron oxide ( γ-Fe2O3) and iron carbide (Fe3C) particles were produced by the polyol method. Ferrocene, which was employed as an iron source, was decomposed in a mixture of 1,2-hexadecandiol, oleylamine, and 1-octadecene. Particles were characterized using Mössbauer spectroscopy, X-ray diffraction, and transmission electron microscopy. It was found that oleylamine acted as a capping reagent, leading to uniform-sized (12-16 nm) particles consisting of γ-Fe 2O3. On the other hand, 1-octadecene acted as a non-coordinating solvent and a carbon source, which led to particles consisting of Fe3C and α-Fe with various sizes.
Process for microwave sintering boron carbide
Holcombe, C.E.; Morrow, M.S.
1993-10-12
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Process for microwave sintering boron carbide
Holcombe, Cressie E.; Morrow, Marvin S.
1993-01-01
A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.
Weihs, Timothy P.; Barbee, Jr., Troy W.
2002-01-01
Cubic or metastable cubic refractory metal carbides act as barrier layers to isolate, adhere, and passivate copper in semiconductor fabrication. One or more barrier layers of the metal carbide are deposited in conjunction with copper metallizations to form a multilayer characterized by a cubic crystal structure with a strong (100) texture. Suitable barrier layer materials include refractory transition metal carbides such as vanadium carbide (VC), niobium carbide (NbC), tantalum carbide (TaC), chromium carbide (Cr.sub.3 C.sub.2), tungsten carbide (WC), and molybdenum carbide (MoC).
Effect of the cathode material on the removal of nitrates by electrolysis in non-chloride media.
Lacasa, Engracia; Cañizares, Pablo; Llanos, Javier; Rodrigo, Manuel A
2012-04-30
In this work, the effect of the cathode material (conductive diamond, stainless steel, silicon carbide, graphite or lead) and the current density (150-1400 A m(-2)) on the removal of nitrates from aqueous solutions is studied by electrolysis in non-divided electrochemical cells equipped with conductive diamond anodes, using sodium sulphate as the electrolyte. The results show that the cathode material very strongly influences both the process performance and the product distribution. The main products obtained are gaseous nitrogen (NO, N(2)O and NO(2)) and ammonium ions. Nitrate removal follows first order kinetics, which indicates that the electrolysis process is controlled by mass transfer. Furthermore, the stainless steel and graphite cathodes show a great selectivity towards the production of ammonium ions, whereas the silicon carbide cathode leads to the highest formation of gaseous nitrogen, which production is promoted at low current densities. Copyright © 2012 Elsevier B.V. All rights reserved.
Boron carbide nanowires: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Guan, Zhe
Bulk boron carbide has been widely used in ballistic armored vest and the property characterization has been heavily focused on mechanical properties. Even though boron carbides have also been projected as a promising class of high temperature thermoelectric materials for energy harvesting, the research has been limited in this field. Since the thermal conductivity of bulk boron carbide is still relatively high, there is a great opportunity to take advantage of the nano effect to further reduce it for better thermoelectric performance. This dissertation work aims to explore whether improved thermoelectric performance can be found in boron carbide nanowires compared with their bulk counterparts. This dissertation work consists of four main parts. (1) Synthesis of boron carbide nanowires. Boron carbide nanowires were synthesized by co-pyrolysis of diborane and methane at low temperatures (with 879 °C as the lowest) in a home-built low pressure chemical vapor deposition (LPCVD) system. The CVD-based method is energy efficient and cost effective. The as-synthesized nanowires were characterized by electron microscopy extensively. The transmission electron microscopy (TEM) results show the nanowires are single crystalline with planar defects. Depending on the geometrical relationship between the preferred growth direction of the nanowire and the orientation of the defects, the as-synthesized nanowires could be further divided into two categories: transverse fault (TF) nanowires grow normal to the defect plane, while axial fault (AF) ones grow within the defect plane. (2) Understanding the growth mechanism of as-synthesized boron carbide nanowires. The growth mechanism can be generally considered as the famous vapor-liquid-solid (VLS) mechanism. TF and AF nanowires were found to be guided by Ni-B catalysts of two phases. A TF nanowire is lead by a hexagonal phase catalyst, which was proved to be in a liquid state during reaction. While an AF nanowires is catalyzed by a solid orthorhombic phase catalyst. The status of a catalyst depends mainly on temperature. (3) Observation of "invisible" defects in boron carbide nanowires. The planar defects can only be seen under a transmission electron microscope when the electron beam is within the defect plane. Furthermore, there are only two directions within that plane, along which the orientation of defect can be told and clear TEM results can be taken. The challenge is that the TEM sample holder is limited to tilt +/-30° in each direction. A theory was developed based on lattice calculation and simulation to tell the orientation of defect even not from those unique directions. Furthermore, it was tested by experimental data and proved to be successful. (4) Preliminary exploration of structure-transport property of as-synthesized boron carbide nanowires. In collaboration with experts in the field of thermal science, thermal transport properties of a few boron carbide nanowires were studied. All measured nanowires were either pre-characterized or post-characterized by TEM to reveal their structural information such as diameter, fault orientations and chemical composition. The obtained structural information was then analyzed together with measured thermal conductivity to establish a structure-transport property relation. Current data indicate that TF ones have a lower thermal conductivity, which is also diameter-dependent.
Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering
NASA Astrophysics Data System (ADS)
Munhollon, Tyler Lee
Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with less than 40 wt. % amorphous boron additions. X-ray diffraction analysis revealed the samples to be phase pure and boron-rich. Carbon content was determined to be at or near expected values with exception of samples with greater than 40 wt. % amorphous boron additions. Raman microspectroscopy further confirmed the changes in chemistry as well as revealed the chemical homogeneity of the samples. Microstructural analysis carried out using both optical and electron imaging showed clean and consistent microstructures. The changes in the chemistry of the boron carbide samples has been shown to significantly affect the static mechanical properties. Ultrasonic wave speed measurements were used to calculate the elastic moduli which showed a clear decrease in the Young's and shear moduli with a slight increase in bulk modulus. Berkovich nano-indentation revealed a similar trend, as the hardness and fracture toughness of the material decreased with decreasing carbon content. Amorphization within 1 kg Knoop indents was shown to diminish in intensity and extent as carbon content decreased, signifying a mechanism for amorphization mitigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jagannadham, K., E-mail: jag-kasichainula@ncsu.edu
2014-09-01
Graphene film was deposited by microwave plasma assisted deposition on polished oxygen free high conductivity copper foils. Tungsten–graphene layered film was formed by deposition of tungsten film by magnetron sputtering on the graphene covered copper foils. Tungsten film was also deposited directly on copper foil without graphene as the intermediate film. The tungsten–graphene–copper samples were heated at different temperatures up to 900 °C in argon atmosphere to form an interfacial tungsten carbide film. Tungsten film deposited on thicker graphene platelets dispersed on silicon wafer was also heated at 900 °C to identify the formation of tungsten carbide film by reaction of tungstenmore » with graphene platelets. The films were characterized by scanning electron microscopy, Raman spectroscopy, and x-ray diffraction. It was found that tungsten carbide film formed at the interface upon heating only above 650 °C. Transient thermoreflectance signal from the tungsten film surface on the samples was collected and modeled using one-dimensional heat equation. The experimental and modeled results showed that the presence of graphene at the interface reduced the cross-plane effective thermal conductivity and the interfacial thermal conductance of the layer structure. Heating at 650 and 900 °C in argon further reduced the cross-plane thermal conductivity and interface thermal conductance as a result of formation nanocrystalline tungsten carbide at the interface leading to separation and formation of voids. The present results emphasize that interfacial interactions between graphene and carbide forming bcc and hcp elements will reduce the cross-plane effective thermal conductivity in composites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zeen; Hu, Rui; Zhang, Tiebang, E-mail: tiebang
The microstructure and solidification behavior of high Nb containing TiAl alloys with the composition of Ti-46Al-8Nb-xC (x = 0.1, 0.7, 1.4, 2.5 at.%) prepared by arc-melting method have been investigated in this work. The results give evidence that the addition of carbon changes the solidification behavior from solidification via the β phase to the peritectic solidification. And carbon in solid solution enriches in the α{sub 2} phase and increases the microhardness. As the carbon content increases to 1.4 at.%, plate-shape morphology carbides Ti{sub 2}AlC (H phase) precipitate from the TiAl matrix which leads to the refinement microstructure. By aging atmore » 1173 K for 24 h after quenching treatment, fine needle-like and granular shape Ti{sub 3}AlC (P phase) carbides are observed in the matrix of Ti-46Al-8Nb-2.5C alloy, which distribute along the lamellar structure or around the plate-shape Ti{sub 2}AlC. Transmission electron microscope observation shows that the Ti{sub 3}AlC carbides precipitate at dislocations. The phase transformation in-situ observations indicate that the Ti{sub 2}AlC carbides partly precipitate during the solid state phase transformation process. - Highlights: •Carbon changes the solidification behavior from β phase to peritectic solidification. •Dislocations in solution treated γ phase act as nucleation sites of Ti{sub 3}AlC precipitations. •Ti{sub 3}AlC precipitates as fine needle-like or granular shape in the solution treated matrix. •Ti{sub 2}AlC carbides precipitate during the solid state phase transformation process.« less
The structure and properties of boron carbide ceramics modified by high-current pulsed electron-beam
NASA Astrophysics Data System (ADS)
Ivanov, Yuri; Tolkachev, Oleg; Petyukevich, Maria; Teresov, Anton; Ivanova, Olga; Ikonnikova, Irina; Polisadova, Valentina
2016-01-01
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm2, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electron beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.
Ablation Resistant Zirconium and Hafnium Ceramics
NASA Technical Reports Server (NTRS)
Bull, Jeffrey (Inventor); White, Michael J. (Inventor); Kaufman, Larry (Inventor)
1998-01-01
High temperature ablation resistant ceramic composites have been made. These ceramics are composites of zirconium diboride and zirconium carbide with silicon carbide, hafnium diboride and hafnium carbide with silicon carbide and ceramic composites which contain mixed diborides and/or carbides of zirconium and hafnium. along with silicon carbide.
NASA Astrophysics Data System (ADS)
Rangaswamy, T.; Nagaraja, R.
2018-04-01
The Study focused on design and development of solid carbide step drill K34 to drill holes on composite materials such as Carbon Fiber Reinforced Plastic (CFRP) and Glass Fiber Reinforced Plastic (GFRP). The step drill K34 replaces step wise drilling of diameter 6.5mm and 9 mm holes that reduces the setup time, cutting speed, feed rate cost, delamination and increase the production rate. Several researchers have analyzed the effect of drilling process on various fiber reinforced plastic composites by carrying out using conventional tools and machinery. However, this process operation can lead to different kind of damages such as delamination, fiber pullout, and local cracks. To avoid the problems encountered at the time of drilling, suitable tool material and geometry is essential. This paper deals with the design and development of K34 Carbide step drill used to drill holes on CFRP and GFRP laminates. An Experimental study carried out to investigate the tool geometry, feed rate and cutting speed that avoids delamination and fiber breakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Healy, M.D.; Smith, D.C.; Springer, R.W.
1993-12-31
The organometallic chemical vapor deposition of transition metal carbides (M = Ti, Zr, Hf, and Cr) from tetraneopentyl-metal precursors has been carried out. Metal carbides can be deposited on Si, Al{sub 2}O{sub 3}, and stainless steel substrates from M[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} at temperatures in the range of 300 to 750 C and pressures from 10{sup {minus}2} to 10{sup {minus}4} Torr. Thin films have also been grown using a carrier gas (Ar, H{sub 2}). The effects of variation of the metal center, deposition conditions, and reactor design on the resulting material have been examined by SEM, XPS, XRD, ERDmore » and AES. Hydrocarbon fragments generated in the deposition chamber have been studied in by in-situ mass spectrometry. Complementary studies examining the UHV surface decomposition of Zr[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} have allowed for a better understanding of the mechanism leading to film growth.« less
Use of silicon carbide sludge to form porous alkali-activated materials for insulating application
NASA Astrophysics Data System (ADS)
Prud'homme, E.; Joussein, E.; Rossignol, S.
2015-07-01
One of the objectives in the field of alkali-activated materials is the development of materials having greater thermal performances than conventional construction materials such as aerated concrete. The aim of this paper is to present the possibility to obtain controlled porosity and controlled thermal properties with geopolymer materials including a waste like silicon carbide sludge. The porosity is created by the reaction of free silicon contains in silicon carbide sludge leading to the formation of hydrogen. Two possible ways are investigated to control the porosity: modification of mixture formulation and additives introduction. The first way is the most promising and allowed the formation of materials presenting the same density but various porosities, which shows that the material is adaptable to the application. The insulation properties are logically linked to the porosity and density of materials. A lower value of thermal conductivity of 0.075 W.m-1.K-1 can be reached for a material with a low density of 0.27 g.cm-3. These characteristics are really good for a mineral-based material which always displays non-negligible resistance to manipulation.
Phase Contrast Imaging of Damage Initiation During Ballistic Impact of Boron Carbide
NASA Astrophysics Data System (ADS)
Schuster, Brian; Tonge, Andrew; Ramos, Kyle; Rigg, Paulo; Iverson, Adam; Schuman, Adam; Lorenzo, Nicholas
2017-06-01
For several decades, flash X-ray imaging has been used to perform time-resolved investigations of the response of ceramics under ballistic impact. Traditional absorption based contrast offers little insight into the early initiation of inelastic deformation mechanisms and instead typically only shows the gross deformation and fracture behavior. In the present work, we employed phase contrast imaging (PCI) at the Dynamic Compression Sector (DCS) at the Advanced Photon Source, Argonne National Laboratory, to investigate crack initiation and propagation following the impact of copper penetrators into boron carbide targets. These experiments employed a single-stage propellant gun to launch small-scale (0.6 mm diameter by 3 mm long) pure copper impactors at velocities ranging from 0.9 to 1.9 km/s into commercially available boron carbide targets that were 8 mm on a side. At the lowest striking velocities the penetrator undergoes dwell or interface defeat and the target response is consistent with the cone crack formation at the impact site. At higher striking velocities there is a distinct transition to massive fragmentation leading to the onset of penetration.
Investigating the Effect of Approach Angle and Nose Radius on Surface Quality of Inconel 718
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Singh, Dilbag; Kalsi, Nirmal S.
2017-11-01
This experimental work presents a surface quality evaluation of a Nickel-Cr-Fe based Inconel 718 superalloy, which has many applications in the aero engine and turbine components. However, during machining, the early wear of tool leads to decrease in surface quality. The coating on cutting tool plays a significant role in increasing the wear resistance and life of the tool. In this work, the aim is to study the surface quality of Inconel 718 with TiAlN-coated carbide tools. Influence of various geometrical parameters (tool nose radius, approach angle) and machining variables (cutting velocity, feed rate) on the quality of machined surface (surface roughness) was determined by using central composite design (CCD) matrix. The mathematical model of the same was developed. Analysis of variance was used to find the significance of the parameters. Results showed that the tool nose radius and feed were the main active factors. The present experiment accomplished that TiAlN-coated carbide inserts result in better surface quality as compared with uncoated carbide inserts.
Computational Design of Epoxy/ Boron Carbide Nanocomposites for Radiation Shielding Applications
NASA Astrophysics Data System (ADS)
Bejagam, Karteek; Galehdari, Nasim; Espinosa, Ingrid; Deshmukh, Sanket A.; Kelkar, Ajit D.
An individual working in industries that include nuclear power plants, healthcare industry, and aerospace are knowingly or unknowingly exposed to radiations of different energies. Exposure to high-energy radiations such as α/ β particle emissions or gamma ray electromagnetic radiations enhances the health risks that can lead to carcinogenesis, cardiac problems, cataracts, and other acute radiation syndromes. The best possible solution to protect one from the exposure to radiations is shielding. In the present study, we have developed a new algorithm to generate a range of different structures of Diglycidyl Ether of Bisphenol F (EPON 862) and curing agent Diethylene Toluene Diamine (DETDA) resins with varying degrees of crosslinking. 3, 5, and 10 weight percent boron carbide was employed as filling materials to study its influence on the thermal and mechanical properties of composite. We further conduct the reactive molecular dynamics (RMD) simulations to investigate the effect of radiation exposure on the structural, physical, and mechanical properties of these Epoxy/Boron Carbide nanocomposites. Where possible the simulation results were compared with the experimental data.
NASA Astrophysics Data System (ADS)
Yan, Guanghua; Han, Lizhan; Li, Chuanwei; Luo, Xiaomeng; Gu, Jianfeng
2017-01-01
Retained austenite(RA) usually presents in the quenched Nuclear Pressure-Vessel SA508 Gr.3 steel. In the present work, the characteristic of RA decomposition and its effect on the impact toughness were investigated by microstructure observation, dilatometric experiments and Charpy impact tests. The results show that the RA transformed into martensite and bainite during tempering at 230 °C and 400 °C respectively, while mixture of long rod carbides and ferrite formed at 650 °C. The long rod carbides formed from RA decomposition decrease the critical cleavage stress for initiation of micro-cracks, and deteriorate the impact toughness of the steel. Pre-tempering at a low temperature such as 230 °C or 400 °C leading to the decomposition of RA into martensite or baintie can eliminate the deterioration of the toughness caused by direct decomposition into long rod carbides. The absorbed energy indicate that pre-tempering at 400 °C can drive dramatically improvement in the toughness of the steel.
Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet.
Warren, Joshua A; Riddle, Matthew E; Graziano, Diane J; Das, Sujit; Upadhyayula, Venkata K K; Masanet, Eric; Cresko, Joe
2015-09-01
Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of silicon carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015-2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2-20 billion GJ depending on market adoption dynamics.
Plasma spray processing of TiC-based coatings for sliding wear resistance
NASA Astrophysics Data System (ADS)
Mohanty, Mahesh
Titanium carbide-reinforced metallic coatings, produced by plasma spraying, can be used for sliding wear resistant applications. The sliding wear properties of such coatings are governed to a large extent by the strength, structure and stability of the bond interface between the carbide and the metallic phases. In the present investigation, the microstructure and sliding wear properties of plasma sprayed metal-bonded TiC coatings containing up to 90 v/o carbide have been studied. It was shown that alloying of the metallic phase improved carbide retention in TiC cermets due to better interface bonding, and increased wear resistance and lowered sliding coefficient of friction. TiC-based coatings were produced from both physically blended and synthesized feed powders. It was observed that the precursor TiC-based powder morphology and structure greatly affected the plasma sprayed coating microstructures and the resultant physical and mechanical characteristics. Physical blending of powders induced segregation during spraying, leading to somewhat lower deposit efficiencies and coating uniformity, while synthesized and alloyed titanium carbide/metal composite powders reduced problems of segregation and reactions associated with plasma spraying of physically blended powders where the TiC was in direct contact with the plasma jet. To understand oxidation effects of the environment, Ti and TiC-based coatings were produced under low pressure (VPS), air plasma (APS) and shrouded plasma sprayed conditions. APS Ti and TiC-based powders with reactive matrices suffered severe oxidation decomposition during flight, leading to poor deposition efficiencies and oxidized microstructures. High particle temperatures and cold air plasma spraying. Coating oxidation due to reactions of the particles with the surrounding air during spraying reduced coating hardness and wear resistance. TiC-with Ti or Ti-alloy matrix coatings with the highest hardness, density and wear resistance was achieved by spraying under vacuum plasma spray conditions. VPS coating microstructures of synthesized 40, 60 and 80 v/o TiC in Ti10Ni10Cr5Al and 80 v/o TiC in Fe30Cr alloy matrices exhibited fine and uniform distributions of spheroidal carbides. High volume fraction carbides were also obtained with no segregation effects. It was also shown that coatings produced from mechanically blended powders of 50, 70 and 90 vol. % TiC and commercially pure (C.P.) Ti, using low pressure plasma spray process (VPS), had densities >98% and were well bonded to steel, aluminum alloy or titanium alloy substrates. Reductions in jet oxygen contents by the use of an inert gas shroud enabled Ti and TiC-based coatings to be produced which were cleaner and denser than air plasma sprayed and comparable to vacuum plasma sprayed coatings. Direct oxygen concentration measurements in shrouded plasma jets made using an enthalpy probe and a gas analyzer also showed significant reductions in the entrainment of atmospheric oxygen. VPS and shrouded plasma spraying minimized carbide-matrix interface oxidation and improved coating wear resistance. The sliding wear resistance of synthesized coatings was very high and comparable with standard HVOF sprayed WC/Co and Crsb3Csb2/NiCr coatings. Shrouded plasma spray deposits of Crsb3Csb2/NiCr also performed much better than similar air plasma sprayed coatings, as result of reduced oxidation.
2012-12-14
PZT ceramic plate [40]. Since then Lamb wave devices utilizing the lowest-order antisymmetric (A0) mode propagation in ZnO thin plate were widely...Million Pt Platinum PVDF Polyvinylidene Flouride PZT Lead Zirconium Titanate Q Quality Factor R Resistor RIE Reactive Ion Etching Rm Motional...GaAs), silicon carbide (SiC), langasite (LGS), lead zirconium titanate ( PZT ), and polyvinylidene flouride (PVDF). Each piezoelectric material has
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mikhaylova, A. I., E-mail: m.aleksey.spb@gmail.com; Afanasyev, A. V.; Ilyin, V. A.
The effect of phosphorus implantation into a 4H-SiC epitaxial layer immediately before the thermal growth of a gate insulator in an atmosphere of dry oxygen on the reliability of the gate insulator is studied. It is found that, together with passivating surface states, the introduction of phosphorus ions leads to insignificant weakening of the dielectric breakdown field and to a decrease in the height of the energy barrier between silicon carbide and the insulator, which is due to the presence of phosphorus atoms at the 4H-SiC/SiO{sub 2} interface and in the bulk of silicon dioxide.
Improved toughness of silicon carbide
NASA Technical Reports Server (NTRS)
Palm, J. A.
1976-01-01
Impact energy absorbing layers (EALs) comprised of partially densified silicon carbide were formed in situ on fully sinterable silicon carbide substrates. After final sintering, duplex silicon carbide structures resulted which were comprised of a fully sintered, high density silicon carbide substrate or core, overlayed with an EAL of partially sintered silicon carbide integrally bonded to its core member. Thermal cycling tests proved such structures to be moderately resistant to oxidation and highly resistant to thermal shock stresses. The strength of the developed structures in some cases exceeded but essentially it remained the same as the fully sintered silicon carbide without the EAL. Ballistic impact tests indicated that substantial improvements in the toughness of sintered silicon carbide were achieved by the use of the partially densified silicon carbide EALs.
NASA Technical Reports Server (NTRS)
Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.
1990-01-01
Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.
NASA Astrophysics Data System (ADS)
Muamar Rifa'i, Alfian; Setiawan, Bambang; Djarwanti, Noegroho
2017-12-01
The expansive soil is soil that has a potential for swelling-shrinking due to changes in water content. Such behavior can exert enough force on building above to cause damage. The use of columns filled with additives such as Calcium Carbide is done to reduce the negative impact of expansive soil behavior. This study aims to determine the effect of carbide columns on expansive soil. Observations were made on swelling and spreading of carbides in the soil. 7 Carbide columns with 5 cm diameter and 20 cm height were installed into the soil with an inter-column spacing of 8.75 cm. Wetting is done through a pipe at the center of the carbide column for 20 days. Observations were conducted on expansive soil without carbide columns and expansive soil with carbide columns. The results showed that the addition of carbide column could reduce the percentage of swelling by 4.42%. Wetting through the center of the carbide column can help spread the carbide into the soil. The use of carbide columns can also decrease the rate of soil expansivity. After the addition of carbide column, the plasticity index value decreased from 71.76% to 4.3% and the shrinkage index decreased from 95.72% to 9.2%.
Friction and wear behavior of single-crystal silicon carbide in contact with titanium
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1977-01-01
Sliding friction experiments were conducted with single crystal silicon carbide in sliding contact with titanium. Results indicate that the friction coefficient is greater in vacuum than in argon and that this is due to the greater adhesion or adhesive transfer in vacuum. Thin films of silicon carbide transferred to titanium also adhered to silicon carbide both in argon at atmospheric pressure and in high vacuum. Cohesive bonds fractured on both the silicon carbide and titanium surfaces. The wear debris of silicon carbide created by fracture plowed the silicon carbide surface in a plastic manner. The friction characteristics of titanium in contact with silicon carbide were sensitive to the surface roughness of silicon carbide, and the friction coefficients were higher for a rough surface of silicon carbide than for a smooth one. The difference in friction results was due to plastic deformation (plowing of titanium).
Silicon carbide semiconductor technology for high temperature and radiation environments
NASA Technical Reports Server (NTRS)
Matus, Lawrence G.
1993-01-01
Viewgraphs on silicon carbide semiconductor technology and its potential for enabling electronic devices to function in high temperature and high radiation environments are presented. Topics covered include silicon carbide; sublimation growth of 6H-SiC boules; SiC chemical vapor deposition reaction system; 6H silicon carbide p-n junction diode; silicon carbide MOSFET; and silicon carbide JFET radiation response.
Carbides Evolution in a Ni-16Mo-7Cr Base Superalloy during Long-Term Thermal Exposure
Han, Fenfen; Jiang, Li; Ye, Xiangxi; Lu, Yanling; Li, Zhijun; Zhou, Xingtai
2017-01-01
The effect of long-term thermal exposure on the carbide evolution in a Ni-16Mo-7Cr base superalloy was investigated. The results show that M12C carbides are mainly precipitated on the grain boundaries during thermal exposure, and the primary massive M6C carbides can be completely transformed to M12C carbides in situ at temperatures above 750 °C for long-term thermal exposure. The transformation from M6C carbides to M12C carbides is attributed to the release of C atoms from M6C, which results in the morphology changes of massive carbides, and stabilization of the sizes of M12C carbides precipitated on the grain boundaries. PMID:28772881
Porous silicon carbide (SIC) semiconductor device
NASA Technical Reports Server (NTRS)
Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)
1996-01-01
Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.
Formation of dysprosium carbide on the graphite (0001) surface
Lii-Rosales, Ann; Zhou, Yinghui; Wallingford, Mark; ...
2017-07-12
When using scanning tunneling microscopy, we characterize a surface carbide that forms such that Dy is deposited on the basal plane of graphite. In order to form carbide islands on terraces, Dy is first deposited at 650–800 K, which forms large metallic islands. Upon annealing at 1000 K, these clusters convert to carbide. Deposition directly at 1000 K is ineffective because nucleation on terraces is inhibited. Reaction is signaled by the fact that each carbide cluster is partially or totally surrounded by an etch pit. The etch pit is one carbon layer deep for most carbide clusters. Carbide clusters aremore » also identifiable by striations on their surfaces. Based on mass balance, and assuming that only the surface layer of carbon is involved in the reaction, the carbide has stoichiometry D y 2 C . This is Dy-rich compared with the most common bulk carbide Dy C 2 , which may reflect limited surface carbon transport to the carbide.« less
Peng, Yu-Min; Wang, Jih-Wen; Liue, Chun-Ying; Yeh, Shinn-Horng
1994-01-01
A method for preparing silicon carbide particles dispersed in an electrolytic bath for composite electroplating of metals includes the steps of washing the silicon carbide particles with an organic solvent; washing the silicon carbide particles with an inorganic acid; grinding the silicon carbide particles; and heating the silicon carbide particles in a nickel-containing solution at a boiling temperature for a predetermined period of time.
Method of fabricating porous silicon carbide (SiC)
NASA Technical Reports Server (NTRS)
Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)
1995-01-01
Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lii-Rosales, Ann; Zhou, Yinghui; Wallingford, Mark
When using scanning tunneling microscopy, we characterize a surface carbide that forms such that Dy is deposited on the basal plane of graphite. In order to form carbide islands on terraces, Dy is first deposited at 650–800 K, which forms large metallic islands. Upon annealing at 1000 K, these clusters convert to carbide. Deposition directly at 1000 K is ineffective because nucleation on terraces is inhibited. Reaction is signaled by the fact that each carbide cluster is partially or totally surrounded by an etch pit. The etch pit is one carbon layer deep for most carbide clusters. Carbide clusters aremore » also identifiable by striations on their surfaces. Based on mass balance, and assuming that only the surface layer of carbon is involved in the reaction, the carbide has stoichiometry D y 2 C . This is Dy-rich compared with the most common bulk carbide Dy C 2 , which may reflect limited surface carbon transport to the carbide.« less
Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo; ...
2015-03-13
In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-01
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2008-11-19
By using ab initio density functional theory, the structural characterizations and electronic properties of two large-diameter (13, 13) and (14, 14) armchair silicon carbide nanotube (SiCNT) bundles are investigated. Full structural optimizations show that the cross sections of these large-diameter SiCNTs in the bundles have a nearly hexagonal shape. The effects of inter-tube coupling on the electronic dispersions of large-diameter SiCNT bundles are demonstrated. By comparing the band structures of the triangular lattices of (14, 14) SiCNTs with nearly hexagonal and circular cross sections we found that the polygonization of the tubes in the bundle leads to a further dispersion of the occupied bands and an increase in the bandgap by 0.18 eV.
NASA Technical Reports Server (NTRS)
Gantz, E. E.
1977-01-01
Reinforced carbon-carbon material specimens were machined from 19 and 33 ply flat panels which were fabricated and processed in accordance with the specifications and procedures accepted for the fabrication and processing of the leading edge structural subsystem (LESS) elements for the space shuttle orbiter. The specimens were then baseline coated and tetraethyl orthosilicate impregnated, as applicable, in accordance with the procedures and requirements of the appropriate LESS production specifications. Three heater bars were ATJ graphite silicon carbide coated with the Vought 'pack cementation' coating process, and three were stackpole grade 2020 graphite silicon carbide coated with the chemical vapor deposition process utilized by Vought in coating the LESS shell development program entry heater elements. Nondestructive test results are reported.
Low Cost Synthesis Method of Two-Dimensional Titanium Carbide MXene
NASA Astrophysics Data System (ADS)
Rasid, Z. A. M.; Omar, M. F.; Nazeri, M. F. M.; A'ziz, M. A. A.; Szota, M.
2017-06-01
A layered MAX phase of Ti3AlC2 was synthesized through pressureless sintering (PLS) the initial powder of TiH2/Al/C without preliminary dehydrogenation under argon atmosphere at 1350°C. An elegant exfoliations approach was used to prepare a two-dimensional (2D) metal carbide Ti3C2 from layered MAX phase by removing A layer by chemical etching. The use of PLS method instead of any pressure assistance method such as hot isostatic press (HIP) and hot press (HP) lowered the cost of synthesis. Recently, some unique potential of Ti3C2 has been discovered leads to the proposal of potential application, mostly on electronic devices. Morphology and structural analysis was used to confirm the successful of this research.
Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors
NASA Astrophysics Data System (ADS)
Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury
2010-04-01
Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.
Monolithic carbide-derived carbon films for micro-supercapacitors.
Chmiola, John; Largeot, Celine; Taberna, Pierre-Louis; Simon, Patrice; Gogotsi, Yury
2010-04-23
Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.
Optimising mechanical properties of hot forged nickel superalloy 625 components
NASA Astrophysics Data System (ADS)
Singo, Nthambe; Coles, John; Rosochowska, Malgorzata; Lalvani, Himanshu; Hernandez, Jose; Ion, William
2018-05-01
Hot forging and subsequent heat treatment were resulting in substandard mechanical properties of nickel superalloy, Alloy 625, components. The low strength was found to be due to inadequate deformation during forging, excessive grain growth and precipitation of carbides during subsequent heat treatment. Experimentation in a drop forging company and heat treatment facility led to the establishment of optimal parameters to minimise grain size and mitigate the adverse effects of carbide precipitation, leading to successful fulfilment of mechanical property specifications. This was achieved by reducing the number of operations, maximising the extent of deformation by changing the slug dimensions and its orientation in the die, and minimising the time of exposure to elevated temperatures in both the forging and subsequent heat treatment processes to avoid grain growth.
Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy.
Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang
2016-09-06
The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process.
Growth characteristics of primary M7C3 carbide in hypereutectic Fe-Cr-C alloy
Liu, Sha; Zhou, Yefei; Xing, Xiaolei; Wang, Jibo; Ren, Xuejun; Yang, Qingxiang
2016-01-01
The microstructure of the hypereutectic Fe-Cr-C alloy is observed by optical microscopy (OM). The initial growth morphology, the crystallographic structure, the semi-molten morphology and the stacking faults of the primary M7C3 carbide are observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The in-suit growth process of the primary M7C3 carbide was observed by confocal laser microscope (CLM). It is found that the primary M7C3 carbide in hypereutectic Fe-Cr-C alloy is irregular polygonal shape with several hollows in the center and gaps on the edge. Some primary M7C3 carbides are formed by layers of shell or/and consist of multiple parts. In the initial growth period, the primary M7C3 carbide forms protrusion parallel to {} crystal planes. The extending and revolving protrusion forms the carbide shell. The electron backscattered diffraction (EBSD) maps show that the primary M7C3 carbide consists of multiple parts. The semi-molten M7C3 carbide contains unmelted shell and several small-scale carbides inside, which further proves that the primary M7C3 carbide is not an overall block. It is believed that the coalescence of the primary M7C3 carbides is ascribed to the growing condition of the protrusion and the gap filling process. PMID:27596718
Efficient Generation of an Array of Single Silicon-Vacancy Defects in Silicon Carbide
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Zhou, Yu; Zhang, Xiaoming; Liu, Fucai; Li, Yan; Li, Ke; Liu, Zheng; Wang, Guanzhong; Gao, Weibo
2017-06-01
Color centers in silicon carbide have increasingly attracted attention in recent years owing to their excellent properties such as single-photon emission, good photostability, and long spin-coherence time even at room temperature. As compared to diamond, which is widely used for hosting nitrogen-vacancy centers, silicon carbide has an advantage in terms of large-scale, high-quality, and low-cost growth, as well as an advanced fabrication technique in optoelectronics, leading to prospects for large-scale quantum engineering. In this paper, we report an experimental demonstration of the generation of a single-photon-emitter array through ion implantation. VSi defects are generated in predetermined locations with high generation efficiency (approximately 19 % ±4 % ). The single emitter probability reaches approximately 34 % ±4 % when the ion-implantation dose is properly set. This method serves as a critical step in integrating single VSi defect emitters with photonic structures, which, in turn, can improve the emission and collection efficiency of VSi defects when they are used in a spin photonic quantum network. On the other hand, the defects are shallow, and they are generated about 40 nm below the surface which can serve as a critical resource in quantum-sensing applications.
Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide
NASA Astrophysics Data System (ADS)
Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine
2018-03-01
Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.
NASA Astrophysics Data System (ADS)
Gautier, G.; Biscarrat, J.; Defforge, T.; Fèvre, A.; Valente, D.; Gary, A.; Menard, S.
2014-12-01
In this study, we show I-V characterizations of various metal/porous silicon carbide (pSiC)/silicon carbide (SiC) structures. SiC wafers were electrochemically etched from the Si and C faces in the dark or under UV lighting leading to different pSiC morphologies. In the case of low porosity pSiC etched in the dark, the I-V characteristics were found to be almost linear and the extracted resistivities of pSiC were around 1.5 × 104 Ω cm at 30 °C for the Si face. This is around 6 orders of magnitude higher than the resistivity of doped SiC wafers. In the range of 20-200 °C, the activation energy was around 50 meV. pSiC obtained from the C face was less porous and the measured average resistivity was 10 Ω cm. In the case high porosity pSiC etched under UV illumination, the resistivity was found to be much higher, around 1014 Ω cm at room temperature. In this case, the extracted activation energy was estimated to be 290 meV.
Compilation of reinforced carbon-carbon transatlantic abort landing arc jet test results
NASA Technical Reports Server (NTRS)
Milhoan, James D.; Pham, Vuong T.; Yuen, Eric H.
1993-01-01
This document consists of the entire test database generated to support the Reinforced Carbon-Carbon Transatlantic Abort Landing Study. RCC components used for orbiter nose cap and wing leading edge thermal protection were originally designed to have a multi-mission entry capability of 2800 F. Increased orbiter range capability required a predicted increase in excess of 3300 F. Three test series were conducted. Test series #1 used ENKA-based RCC specimens coated with silicon carbide, treated with tetraethyl orthosilicate, sealed with Type A surface enhancement, and tested at 3000-3400 F with surface pressure of 60-101 psf. Series #2 used ENKA- or AVTEX-based RCC, with and without silicon carbide, Type A or double Type AA surface enhancement, all impregnated with TEOS, and at temperatures from 1440-3350 F with pressures from 100-350 psf. Series #3 tested ENKA-based RCC, with and without silicon carbide coating. No specimens were treated with TEOS or sealed with Type A. Surface temperatures ranged from 2690-3440 F and pressures ranged from 313-400 psf. These combined test results provided the database for establishing RCC material single-mission-limit temperature and developing surface recession correlations used to predict mass loss for abort conditions.
Energy Impacts of Wide Band Gap Semiconductors in U.S. Light-Duty Electric Vehicle Fleet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Joshua A.; Riddle, Matthew E.; Graziano, Diane J.
2015-08-12
Silicon carbide and gallium nitride, two leading wide band gap semiconductors with significant potential in electric vehicle power electronics, are examined from a life cycle energy perspective and compared with incumbent silicon in U.S. light-duty electric vehicle fleet. Cradle-to-gate, silicon carbide is estimated to require more than twice the energy as silicon. However, the magnitude of vehicle use phase fuel savings potential is comparatively several orders of magnitude higher than the marginal increase in cradle-to-gate energy. Gallium nitride cradle-to-gate energy requirements are estimated to be similar to silicon, with use phase savings potential similar to or exceeding that of siliconmore » carbide. Potential energy reductions in the United States vehicle fleet are examined through several scenarios that consider the market adoption potential of electric vehicles themselves, as well as the market adoption potential of wide band gap semiconductors in electric vehicles. For the 2015–2050 time frame, cumulative energy savings associated with the deployment of wide band gap semiconductors are estimated to range from 2–20 billion GJ depending on market adoption dynamics.« less
Development of the SOFIA silicon carbide secondary mirror
NASA Astrophysics Data System (ADS)
Fruit, Michel; Antoine, Pascal; Varin, Jean-Luc; Bittner, Hermann; Erdmann, Matthias
2003-02-01
The SOFIA telescope is ajoint NASA-DLR project for a 2.5 m airborne Stratospheric Observatory for IR Astronomy to be flown in a specially adapted Boeing 747 SP plane, Kayser-Threde being resopinsible for the development of the Telescope Optics. The φ 352 mm Secondary Mirror is mounted ona chopping mechanism to allow avoidance of background noise during IR observations. Stiffness associated to lightness is a major demand for such a mirror to achieve high frequency chopping. This leads to select SIlicon Carbide for the mirror blank. Its development has been run by the ASTRIUM/BOOSTEC joint venture SiCSPACE, taking full benefit of the instrinsic properties of the BOOSTEC SiC-100 sintered material, associated to qualified processes specifically developed for space borne mirrors by ASTRIUM. Achieved performances include a low mass of 1.97 kg, a very high stiffness with a first resonant frequency of 1865 Hz and a measured optical surface accuracy of 39 nm rms, using Ion Beam Figuring. It is proposed here to present the major design features of the SOFIA Secondary Mirror, highlighting the main advantages of using Silicon Carbide, the main steps of its development and the achieved optomechanical performances of the developed mirror.
Microwave sintering of boron carbide
Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.
1988-06-10
A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jae -Soon; Schwartz, Viviane; Santillan-Jimenez, Eduardo
In this paper, we investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore volume and surface area. The extent of these structural changes was sensitive to the initial carbide structure and was lower under actual hydroprocessing conditions indicating themore » possibility of further improving the hydrothermal stability of Mo carbides by optimizing catalyst structure and operating conditions. Mo carbides were active in acetic acid conversion in the presence of liquid water, their activity being comparable to that of Ru/C. Finally, the results suggest that effective and inexpensive bio-oil hydroprocessing catalysts could be designed based on Mo carbides, although a more detailed understanding of the structure-performance relationships is needed, especially in upgrading of more complex reaction mixtures or real bio-oils.« less
Process for preparing metal-carbide-containing microspheres from metal-loaded resin beads
Beatty, Ronald L.
1976-01-01
An improved method for treating metal-loaded resin microspheres is described which comprises heating a metal-loaded resin charge in an inert atmosphere at a pre-carbide-forming temperature under such conditions as to produce a microsphere composition having sufficient carbon as to create a substantially continuous carbon matrix and a metal-carbide or an oxide-carbide mixture as a dispersed phase(s) during carbide-forming conditions, and then heating the thus treated charge to a carbide-forming temperature.
Methods of producing continuous boron carbide fibers
Garnier, John E.; Griffith, George W.
2015-12-01
Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.
Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications
NASA Astrophysics Data System (ADS)
Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.
2017-12-01
Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.
Surface and Bulk Carbide Transformations in High-Speed Steel
Godec, M.; Večko Pirtovšek, T.; Šetina Batič, B.; McGuiness, P.; Burja, J.; Podgornik, B.
2015-01-01
We have studied the transformation of carbides in AISI M42 high-speed steels in the temperature window used for forging. The annealing was found to result in the partial transformation of the large, metastable M2C carbides into small, more stable grains of M6C, with an associated change in the crystal orientation. In addition, MC carbides form during the transformation of M2C to M6C. From the high-speed-steel production point of view, it is beneficial to have large, metastable carbides in the cast structure, which later during annealing, before the forging, transform into a structure of polycrystalline carbides. Such carbides can be easily decomposed into several small carbides, which are then randomly distributed in the microstructure. The results also show an interesting difference in the carbide-transformation reactions on the surface versus the bulk of the alloy, which has implications for in-situ studies of bulk phenomena that are based on surface observations. PMID:26537780
Performance of biomorphic Silicon Carbide as particulate filter in diesel boilers.
Orihuela, M Pilar; Gómez-Martín, Aurora; Becerra, José A; Chacartegui, Ricardo; Ramírez-Rico, Joaquín
2017-12-01
Biomorphic Silicon Carbide (bioSiC) is a novel porous ceramic material with excellent mechanical and thermal properties. Previous studies have demonstrated that it may be a good candidate for its use as particle filter media of exhaust gases at medium or high temperature. In order to determine the filtration efficiency of biomorphic Silicon Carbide, and its adequacy as substrate for diesel particulate filters, different bioSiC-samples have been tested in the flue gases of a diesel boiler. For this purpose, an experimental facility to extract a fraction of the boiler exhaust flow and filter it under controlled conditions has been designed and built. Several filter samples with different microstructures, obtained from different precursors, have been tested in this bench. The experimental campaign was focused on the measurement of the number and size of particles before and after placing the samples. Results show that the initial efficiency of filters made from natural precursors is severely determined by the cutting direction and associated microstructure. In biomorphic Silicon Carbide derived from radially cut wood, the initial efficiency of the filter is higher than 95%. Nevertheless, when the cut of the wood is axial, the efficiency depends on the pore size and the permeability, reaching in some cases values in the range 70-90%. In this case, the presence of macropores in some of the samples reduces their efficiency as particle traps. In continuous operation, the accumulation of particles within the porous media leads to the formation of a soot cake, which improves the efficiency except in the case when extra-large pores exist. For all the samples, after a few operation cycles, capture efficiency was higher than 95%. These experimental results show the potential for developing filters for diesel boilers based on biomorphic Silicon Carbide. Copyright © 2017 Elsevier Ltd. All rights reserved.
Improved toughness of silicon carbide
NASA Technical Reports Server (NTRS)
Palm, J. A.
1975-01-01
Several techniques were employed to apply or otherwise form porous layers of various materials on the surface of hot-pressed silicon carbide ceramic. From mechanical properties measurements and studies, it was concluded that although porous layers could be applied to the silicon carbide ceramic, sufficient damage was done to the silicon carbide surface by the processing required so as to drastically reduce its mechanical strength. It was further concluded that there was little promise of success in forming an effective energy absorbing layer on the surface of already densified silicon carbide ceramic that would have the mechanical strength of the untreated or unsurfaced material. Using a process for the pressureless sintering of silicon carbide powders it was discovered that porous layers of silicon carbide could be formed on a dense, strong silicon carbide substrate in a single consolidation process.
Production method for making rare earth compounds
McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.
1997-11-25
A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.
Production method for making rare earth compounds
McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.
1997-11-25
A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.
Reactive Fusion Welding for Ultra-High Temperature Ceramic Composite Joining
2015-03-16
Titanium diboride TiC-Titanium carbide C-Carbon SiC - Silicon carbide B4C-Boron carbide 67 W-Tungsten WC-Tungsten carbide ZrB2-20ZrC-ZrB2...ceramics with a nominal carbide content of 20 vol% were prepared. Starting powders were mechanically mixed by ball milling ZrB2 (H.C. Starck; Grade B...0.50 wt%, or ~1.5 vol%. Milling was carried out in acetone for 2 hours using tungsten carbide media. After milling, the powder slurry was dried
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium... the production of calcium carbide in uncovered furnaces. ...
40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium... the production of calcium carbide in uncovered furnaces. ...
40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium... the production of calcium carbide in uncovered furnaces. ...
40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium... the production of calcium carbide in uncovered furnaces. ...
40 CFR 415.30 - Applicability; description of the calcium carbide production subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... calcium carbide production subcategory. 415.30 Section 415.30 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Calcium Carbide Production Subcategory § 415.30 Applicability; description of the calcium... the production of calcium carbide in uncovered furnaces. ...
Molecular dynamics simulations of hydrogen bombardment of tungsten carbide surfaces
NASA Astrophysics Data System (ADS)
Träskelin, P.; Juslin, N.; Erhart, P.; Nordlund, K.
2007-05-01
The interaction between energetic hydrogen and tungsten carbide (WC) is of interest both due to the use of hydrogen-containing plasmas in thin-film manufacturing and due to the presence of WC in the divertor of fusion reactors. In order to study this interaction, we have carried out molecular dynamics simulations of the low-energy bombardment of deuterium impinging onto crystalline as well as amorphous WC surfaces. We find that prolonged bombardment leads to the formation of an amorphous WC surface layer, regardless of the initial structure of the WC sample. Loosely bound hydrocarbons, which can erode by swift chemical sputtering, are formed at the surface. Carbon-terminated surfaces show larger sputtering yields than tungsten-terminated surfaces. In both cumulative and noncumulative simulations, C is seen to sputter preferentially. Implications for mixed material erosion in ITER are discussed.
Characterization of the carbides and the martensite phase in powder-metallurgy high-speed steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godec, Matjaz, E-mail: matjaz.godec@imt.si; Batic, Barbara Setina; Mandrino, Djordje
2010-04-15
A microstructural characterization of the powder-metallurgy high-speed-steel S390 Microclean was performed based on an elemental distribution of the carbide phase as well as crystallographic analyses. The results showed that there were two types of carbides present: vanadium-rich carbides, which were not chemically homogeneous and exhibited a tungsten-enriched or tungsten-depleted central area; and chemically homogeneous tungsten-rich M{sub 6}C-type carbides. Despite the possibility of chemical inhomogenities, the crystallographic orientation of each of the carbides was shown to be uniform. Using electron backscatter diffraction the vanadium-rich carbides were determined to be either cubic VC or hexagonal V{sub 6}C{sub 5}, while the tungsten-rich carbidesmore » were M{sub 6}C. The electron backscatter diffraction results were also verified using X-ray diffraction. Several electron backscatter diffraction pattern maps were acquired in order to define the fraction of each carbide phase as well as the amount of martensite phase. The fraction of martensite was estimated using band-contrast images, while the fraction of carbides was calculated using the crystallographic data.« less
Three-dimensional studies of intergranular carbides in austenitic stainless steel.
Ochi, Minoru; Kawano, Rika; Maeda, Takuya; Sato, Yukio; Teranishi, Ryo; Hara, Toru; Kikuchi, Masao; Kaneko, Kenji
2017-04-01
A large number of morphological studies of intergranular carbides in steels have always been carried out in two dimensions without considering their dispersion manners. In this article, focused ion beam serial-sectioning tomography was carried out to study the correlation among the grain boundary characteristics, the morphologies and the dispersions of intergranular carbides in 347 austenitic stainless steel. More than hundred intergranular carbides were characterized in three dimensions and finally classified into three different types, two types of carbides probably semi-coherent to one of the neighboring grains with plate-type morphology, and one type of carbides incoherent to both grains with rod-type morphology. In addition, the rod-type carbide was found as the largest number of carbides among three types. Since large numbers of defects, such as misfit dislocations, may be present at the grain boundaries, which can be ideal nucleation sites for intergranular rod-type carbide precipitation. © The Author 2016. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved.For permissions, please e-mail: journals.permissions@oup.com.
Deposition method for producing silicon carbide high-temperature semiconductors
Hsu, George C.; Rohatgi, Naresh K.
1987-01-01
An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.
Dimensional Analysis and Extended Hydrodynamic Theory Applied to Long-Rod Penetration of Ceramics
2016-07-01
thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron carbide. Test...of confined thick ceramic targets by tungsten long rod projectiles. The ceramics are AD-995 alumina, aluminum nitride, silicon carbide, and boron ...since the mid 20th century. Popular candidate ceramics for such systems include alumina, aluminum nitride, boron carbide, silicon carbide, and titanium
MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys
NASA Astrophysics Data System (ADS)
Antonov, Stoichko; Chen, Wei; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy
2018-04-01
Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.
Tribological properties of sintered polycrystalline and single crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.; Srinivasan, M.
1982-01-01
Tribological studies and X-ray photoelectron spectroscopy analyses were conducted with sintered polycrystalline and single crystal silicon carbide surfaces in sliding contact with iron at various temperatures to 1500 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on both the friction properties and the surface chemistry of silicon carbide. The main contaminants on the as received sintered polycrystalline silicon carbide surfaces are adsorbed carbon, oxygen, graphite, and silicon dioxide. The surface revealed a low coefficient of friction. This is due to the presence of the graphite on the surface. At temperatures of 400 to 600 C graphite and copious amount of silicon dioxide were observed on the polycrystalline silicon carbide surface in addition to silicon carbide. At 800 C, the amount of the silicon dioxide decreased rapidly and the silicon carbide type silicon and carbon peaks were at a maximum intensity in the XPS spectra. The coefficients of friction were high in the temperature range 400 to 800 C. Small amounts of carbon and oxygen contaminants were observed on the as received single crystal silicon carbide surface below 250 C. Silicon carbide type silicon and carbon peaks were seen on the silicon carbide in addition to very small amount of graphite and silicon dioxide at temperatures of 450 to 800 C.
MC Carbide Characterization in High Refractory Content Powder-Processed Ni-Based Superalloys
NASA Astrophysics Data System (ADS)
Antonov, Stoichko; Chen, Wei; Huo, Jiajie; Feng, Qiang; Isheim, Dieter; Seidman, David N.; Sun, Eugene; Tin, Sammy
2018-06-01
Carbide precipitates in Ni-based superalloys are considered to be desirable phases that can contribute to improving high-temperature properties as well as aid in microstructural refinement of the material; however, they can also serve as crack initiation sites during fatigue. To date, most of the knowledge pertaining to carbide formation has originated from assessments of cast and wrought Ni-based superalloys. As powder-processed Ni-based superalloys are becoming increasingly widespread, understanding the different mechanisms by which they form becomes increasingly important. Detailed characterization of MC carbides present in two experimental high Nb-content powder-processed Ni-based superalloys revealed that Hf additions affect the resultant carbide morphologies. This morphology difference was attributed to a higher magnitude of elastic strain energy along the interface associated with Hf being soluble in the MC carbide lattice. The composition of the MC carbides was studied through atom probe tomography and consisted of a complex carbonitride core, which was rich in Nb and with slight Hf segregation, surrounded by an Nb carbide shell. The characterization results of the segregation behavior of Hf in the MC carbides and the subsequent influence on their morphology were compared to density functional theory calculations and found to be in good agreement, suggesting that computational modeling can successfully be used to tailor carbide features.
Carbide coated fibers in graphite-aluminum composites
NASA Technical Reports Server (NTRS)
Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.
1975-01-01
The study of protective-coupling layers of refractory metal carbides on the graphite fibers prior to their incorporation into composites is presented. Such layers should be directly wettable by liquid aluminum and should act as diffusion barriers to prevent the formation of aluminum carbide. Chemical vapor deposition was used to uniformly deposit thin, smooth, continuous coats of ZrC on the carbon fibers of tows derived from both rayon and polyacrylonitrile. A wet chemical coating of the fibers, followed by high-temperature treatment, was used, and showed promise as an alternative coating method. Experiments were performed to demonstrate the ability of aluminum alloys to wet carbide surfaces. Titanium carbide, zirconium carbide and carbide-coated graphite surfaces were successfully wetted. Results indicate that initial attempts to wet surfaces of ZrC-coated carbon fibers appear successful.
NASA Astrophysics Data System (ADS)
Gaballa, Osama Gaballa Bahig
Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering temperature, and hot-pressing pressure. Also, WC additions to Ta4HfC5 were found to improve densification and increase microhardness. The ability to process these materials at relatively low temperature would save energy and reduce cost. Boron-based hard materials are used in numerous applications such as industrial machining, armor plating, and wear-resistant coatings. It was often thought that in addition to strong bonding, super-hard materials must also possess simple crystallographic unit cells with high symmetry and a minimum number of crystal defects (e.g., diamond and cubic boron nitride (cBN)). However, one ternary boride, AlMgB14, deviates from this paradigm; AlMgB 14 has a large, orthorhombic unit cell (oI64) with multiple icosahedral boron units. TiB2 has been shown to be an effective reinforcing phase in AlMgB 14, raising hardness, wear resistance, and corrosion resistance. Thus, it was thought that adding other, similar phases (i.e., ZrB2 and HfB2) to AlMgB14 could lead to useful improvements in properties vis-à-vis pure AlMgB14. Group IV metal diborides (XB2, where X = Ti, Zr, or Hf) are hard, ultra-high temperature ceramics. These compounds have a primitive hexagonal crystal structure (hP3) with planes of graphite-like boride rings above and below planes of metal atoms. Unlike graphite, there is strong bonding between the planes, resulting in high hardness. For this study two-phase composites of 60 vol. % metal diborides with 40 vol. % AlMgB14 were produced and characterized.
Preparation and electrocatalytic activity of tungsten carbide and titania nanocomposite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Sujuan; Shi, Binbin; Yao, Guoxing
2011-10-15
Graphical abstract: The electrocatalytic activity of tungsten carbide and titania nanocomposite is related to the structure, crystal phase and chemical components of the nanocomposite, and is also affected by the property of electrolyte. A synergistic effect exists between tungsten carbide and titania of the composite. Highlights: {yields} Electrocatalytic activity of tungsten carbide and titania nanocomposite with core-shell structure. {yields} Activity is related to the structure, crystal phase and chemical component of the nanocomposite. {yields} The property of electrolyte affects the electrocatalytic activity. {yields} A synergistic effect exists between tungsten carbide and titania of the composite. -- Abstract: Tungsten carbide andmore » titania nanocomposite was prepared by combining a reduced-carbonized approach with a mechanochemical approach. The samples were characterized by X-ray diffraction, transmission electron microscope under scanning mode and X-ray energy dispersion spectrum. The results show that the crystal phases of the samples are composed of anatase, rutile, nonstoichiometry titanium oxide, monotungsten carbide, bitungsten carbide and nonstoichiometry tungsten carbide, and they can be controlled by adjusting the parameters of the reduced-carbonized approach; tungsten carbide particles decorate on the surface of titania support, the diameter of tungsten carbide particle is smaller than 20 nm and that of titania is around 100 nm; the chemical components of the samples are Ti, O, W and C. The electrocatalytic activity of the samples was measured by a cyclic voltammetry with three electrodes. The results indicate that the electrocatalytic activities of the samples are related to their crystal phases and the property of electrolyte in aqueous solution. A synergistic effect between titania and tungsten carbide is reported for the first time.« less
40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to discharges...
40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment ENVIRONMENTAL... CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to discharges...
Braski, David N.; Leitnaker, James M.
1980-01-01
A novel fabrication procedure prevents or eliminates the reprecipitation of segregated metal carbides such as stringers in Ti-modified Hastelloy N and stainless steels to provide a novel alloy having carbides uniformly dispersed throughout the matrix. The fabrication procedure is applicable to other alloys prone to the formation of carbide stringers. The process comprises first annealing the alloy at a temperature above the single phase temperature for sufficient time to completely dissolve carbides and then annealing the single phase alloy for an additional time to prevent the formation of carbide stringers upon subsequent aging or thermomechanical treatment.
Anisotropic Tribological Properties of Silicon Carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.
NASA Astrophysics Data System (ADS)
Aim-O, P.; Wongsawaeng, D.; Phruksarojanakun, P.; Tancharakorn, S.
2017-06-01
High-density concrete exhibits high strength and can perform an important role of gamma ray attenuation. In order to upgrade this material’s radiation-shielding performance, hydrogen-rich material can be incorporated. Waste rubber from vehicles has high hydrogen content which is the prominent characteristic to attenuate neutron. The objective of this work was to evaluate the radiation-shielding properties of this composite material against neutron and photon radiations. Monte Carlo transport simulation was conducted to simulate radiation through the composite material. Am-241/Be was utilized for neutron source and Co-60 for photon source. Parameters of the study included volume percentages of waste rubber, lead and boron carbide and thickness of the shielding material. These designs were also fabricated and the radiation shielding properties were experimentally evaluated. The best neutron and gamma ray shielding material was determined to be high-density concrete mixed with 5 vol% crumb rubber and 5 vol% lead powder. This shielding material increased the neutron attenuation by 64% and photon attenuation by 68% compared to ordinary concrete. Also, increasing the waste rubber content to greater than 5% resulted in a decrease in the radiation attenuation. This innovative composite radiation shielding material not only benefits nuclear science and engineering applications, but also helps solve the environmental issue of waste rubber.
40 CFR 424.50 - Applicability; description of the other calcium carbide furnaces subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... other calcium carbide furnaces subcategory. 424.50 Section 424.50 Protection of Environment... SOURCE CATEGORY Other Calcium Carbide Furnaces Subcategory § 424.50 Applicability; description of the other calcium carbide furnaces subcategory. The provisions of this subpart are applicable to discharges...
Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene
2007-03-01
COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Lonnie Carlson, Major...DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Presented to the Faculty Department of Engineering Physics Graduate School...DISTRIBUTION UNLIMITED AFIT/GNE/ENP/07-01 COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE Lonnie
Kinetics and mechanism of corrosion of SiC by molten salts
NASA Technical Reports Server (NTRS)
Jacobson, N. S.
1986-01-01
Corrosion of sintered alpha-SiC under thin films of Na2CO3/CO2, Na2SO4/O2, and Na2SO4/SO3 was investigated at 1000 C. Chemical analysis was used to follow silicate and silica evolution as a function of time. This information coupled with morphology observations leads to a detailed corrosion mechanism. In all cases the corrosion reactions occur primarily in the first few hours. In the Na2CO3/CO2 case, rapid oxidation and dissolution lead to a thick layer of silicate melt in about 0.25 h. After this, silica forms a protective layer on the carbide. In the Na2SO4/O2 case, a similar mechanism occurs. In the Na2SO4/SO3 case, a porous nonprotective layer of SiO2 grows directly on the carbide, and a silicate melt forms above this. In addition, SiO2 and regenerated Na2SO4 form at the melt/gas interface due to reaction of silicate with SO3 and SO2 + O2. The reaction slows when the lower silica layer becomes nonporous.
Strengthening behavior of chopped multi-walled carbon nanotube reinforced aluminum matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, S.E.; Bae, D.H., E-mail: donghyun@yonsei.ac.kr
2013-09-15
Strengthening behavior of the aluminum composites reinforced with chopped multi-walled carbon nanotubes (MWCNTs) or aluminum carbide formed during annealing at 500 °C has been investigated. The composites were fabricated by hot-rolling the powders which were ball-milled under various conditions. During the early annealing process, aluminum atoms can cluster inside the tube due to the diffusional flow of aluminum atoms into the tube, providing an increase of the strength of the composite. Further annealing induces the formation of the aluminum carbide phase, leading to an overall drop in the strength of the composites. While the strength of the composites can bemore » evaluated according to the rule of mixture, a particle spacing effect can be additionally imparted on the strength of the composites reinforced with the chopped MWCNTs or the corresponding carbides since the reinforcing agents are smaller than the submicron matrix grains. - Highlights: • Strengthening behavior of chopped CNT reinforced Al-based composites is investigated. • Chopped CNTs have influenced the strength and microstructures of the composites. • Chopped CNTs are created under Ar- 3% H2 atmosphere during mechanical milling. • Strength can be evaluated by the rule of the mixture and a particle spacing effect.« less
Reaction of methyl formate with VC(1 0 0) and TiC(1 0 0) surfaces
NASA Astrophysics Data System (ADS)
Frantz, Peter; Kim, Hyun I.; Didziulis, Stephen V.; Li, Shuang; Chen, Zhiying; Perry, Scott S.
2005-12-01
The chemistry of the (1 0 0) surface of the tribologically important materials vanadium carbide (VC) and titanium carbide (TiC) with methyl formate (CH 3OCHO) has been studied with X-ray photoelectron spectroscopy (XPS), high resolution electron energy loss spectroscopy (HREELS), and temperature programmed desorption (TPD). The molecule reacts with each surface at temperatures below 150 K, although the extent of reaction is greater on the TiC surface. XPS and HREELS results indicate that the first step in this chemistry is the cleavage of the CH 3O-CHO bond, generating surface methoxy groups (CH 3O-) and either carbon monoxide on VC or a formyl (CHO) group on TiC. The methoxy group reacts further on both surfaces via pathways expected based on previous methanol adsorption studies, primarily decomposing through a formyl intermediate on VC to generate formaldehyde and evolving methanol on TiC. The formyl group formed directly from methyl formate on TiC enables the production and evolution of formaldehyde, and also appears to break down further to the elements. These results indicate a propensity for these carbides to react with esters, leading potentially to the beneficial formation of friction lowering surface films or the deleterious degradation of ester-based lubricants.
Investigation of a Tricarbide Grooved Ring Fuel Element for a Nuclear Thermal Rocket
NASA Technical Reports Server (NTRS)
Taylor, Brian D.; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa
2017-01-01
Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the temperature limitations of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment.
Role of microstructure in caustic stress corrosion cracking of Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mertz, D.A.; Duda, P.T.; Pica, P.N.
1995-12-31
Alloy 690 has been selected for nuclear heat transport system tubing application in recent commercial reactor plants due to its resistance to multiple types of corrosion attack. Typical corn final heat treatments for this material are a mill-anneal (MA, approximately 1,070 C) to completely dissolve the carbides and develop the final grain structure plus a thermal treatment (TT, approximately 700 C) to precipitate carbides at the grain boundaries. Tubing with grain boundary carbides and no or few intragranular carbides has been found resistant to intergranular stress corrosion cracking (IGSCC) in caustic environments. In this work, first, Alloy 690 plate wasmore » subjected to a variety of MA and MA-TT heat treatments to create microstructures of carbide-decorated grain boundaries and undecorated boundaries. Caustic IGSCC test results were consistent with tubing data. Second, experiments were conducted to understand the mechanism by which caustic-corrosion resistance is imparted to Alloy 690 by grain boundary carbides. Tubing with a fully-developed MA-TT carbide microstructure was strained and heat-treated to create a mixed microstructure of new grain boundaries with no carbide precipitate decoration, intermixed with intragranular carbide strings from prior grain boundaries. Caustic SCC performance of this material was identical to that of material with the MA-TT carbide-decorated grain boundaries. This work suggests that the fundamental cause of good IGSCC resistance of MA-TT Alloy 690 in caustic does not derive solely from grain boundary carbides. It is suggested that matrix strength, as measured by yield stress, could be a controlling factor.« less
NASA Astrophysics Data System (ADS)
Yu, Wen-Tao; Li, Jing; Shi, Cheng-Bin; Zhu, Qin-Tian
2017-02-01
The effects of holding time during both austenitizing and spheroidizing on microstructure and mechanical properties of high-carbon martensitic stainless steel 8Cr13MoV were experimentally studied. The results showed that the amount of carbides and the proportion of fine carbides decrease first and then increase with the increase in austenitizing time ( t 1) in the case of short spheroidizing time ( t 2), whereas the amount of the lamellar carbides increases. In the case of long t 2, both the amount of carbides and the proportion of fine carbides decrease, and the amount of the lamellar carbides did not increase. The hardness of the steel decreases first and then increases with the increase of t 1. Under the conditions of different t 1, the change in the size of carbides and hardness of the steel show a same trend with the variation of t 2. The size of spheroidized carbides increases, whereas the hardness of the steel decreases with increasing t 2. The longer the holding time of austenitizing, the higher is the spheroidizing rate at the earlier stage. However, the spheroidizing rate shows an opposite trend with t 1 at the later stage of spheroidizing. The effect of cooling rate on microstructure is similar with t 2. With increasing cooling rate, the dimension of carbides became smaller, and the amount of lamellar carbides increased. The elongation of the sample fracture exhibits no corresponding relationship with holding time, whereas it is closely related to the precipitation of secondary carbides caused by the alloying elements segregation.
Methods for producing silicon carbide fibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garnier, John E.; Griffith, George W.
Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.
Tunable carbon nanotube-tungsten carbide nanoparticles heterostructures by vapor deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Min; Guo, Hongyan; Ge, Changchun
2014-05-14
A simple, versatile route for the synthesis of carbon nanotube (CNT)-tungsten carbide nanoparticles heterostructures was set up via vapor deposition process. For the first time, amorphous CNTs (α-CNTs) were used to immobilized tungsten carbide nanoparticles. By adjusting the synthesis and annealing temperature, α-CNTs/amorphous tungsten carbide, α-CNTs/W{sub 2}C, and CNTs/W{sub 2}C/WC heterostructures were prepared. This approach provides an efficient method to attach other metal carbides and other nanoparticles to carbon nanotubes with tunable properties.
Silicon carbide fibers and articles including same
Garnier, John E; Griffith, George W
2015-01-27
Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.
Henager, Jr., Charles H.; Brimhall, John L.
2000-01-01
According to the method of the present invention, joining a first bi-element carbide to a second bi-element carbide, has the steps of: (a) forming a bond agent containing a metal carbide and silicon; (b) placing the bond agent between the first and second bi-element carbides to form a pre-assembly; and (c) pressing and heating the pre-assembly in a non-oxidizing atmosphere to a temperature effective to induce a displacement reaction creating a metal silicon phase bonding the first and second bi-element carbides.
Low-temperature electrical resistivity of transition-metal carbides
NASA Astrophysics Data System (ADS)
Allison, C. Y.; Finch, C. B.; Foegelle, M. D.; Modine, F. A.
1988-10-01
The electrical resistivities of single crystals of ZrC 0.93, VC 0.88, NbC 0.95, and TaC 0.99 were measured from liquid helium temperature to 350 K. The Bloch-Gruneisen theory of electrical resistivity gives a good fit to the zirconium carbide and the vanadium carbide measurements. In contrast, the resistivities of the two superconducting crystals, tantalum carbide and niobium carbide, show excellent agreement with the Wilson model. The appropriate model appears to depend upon the superconducting properties of the crystals.
Chemical state of fission products in irradiated uranium carbide fuel
NASA Astrophysics Data System (ADS)
Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko
1987-12-01
The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.
Cobalt-Free Permanent Magnet Alloys.
1984-10-01
carbide co- UC CbC lumbium carbide M003 Uranium carbide - tho- UC 2 25ThC rium carbide ZrO2 MgO WOs Use of this Process for MnAlC As indicated in the...cobalt. Free World Cobal Consumption Estimated Breakdown by End Uses Magnetic alloys 20% Cemented carbides - 5% 30 SuPerolloy _ 15% Other steels and...would normally result in the formation of binary alloy of TbFe 2 and preventing the formation of amorphous alloy (Fe-B) contain- ing Tb. The
Dilatometry Analysis of Dissolution of Cr-Rich Carbides in Martensitic Stainless Steels
NASA Astrophysics Data System (ADS)
Huang, Qiuliang; Volkova, Olena; Biermann, Horst; Mola, Javad
2017-12-01
The dissolution of Cr-rich carbides formed in the martensitic constituent of a 13 pct Cr stainless steel was studied by dilatometry and correlative electron channeling contrast examinations. The dissolution of carbides subsequent to the martensite reversion to austenite was associated with a net volume expansion which in turn increased the dilatometry-based apparent coefficient of thermal expansion (CTEa) during continuous heating. The effects of carbides fraction and size on the CTEa variations during carbides dissolution are discussed.
Goeddel, W.V.
1962-06-26
An improved method is given for making the carbides of nuclear fuel material. The metal of the fuel material, which may be a fissile and/or fertile material, is transformed into a silicide, after which the silicide is comminuted to the desired particle size. This silicide is then carburized at an elevated temperature, either above or below the melting point of the silicide, to produce an intimate mixture of the carbide of the fuel material and the carbide of silicon. This mixture of the fuel material carbide and the silicon carbide is relatively stable in the presence of moisture and does not exhibit the highly reactive surface condition which is observed with fuel material carbides made by most other known methods. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Yuri, E-mail: yufi55@mail.ru; National Research Tomsk State University, 36 Lenina Str., Tomsk, 634050; National Research Tomsk Polytechnic University, 30 Lenina Str., Tomsk, 634050
The present work is devoted to numerical simulation of temperature fields and the analysis of structural and strength properties of the samples surface layer of boron carbide ceramics treated by the high-current pulsed electron-beam of the submillisecond duration. The samples made of sintered boron carbide ceramics are used in these investigations. The problem of calculating the temperature field is reduced to solving the thermal conductivity equation. The electron beam density ranges between 8…30 J/cm{sup 2}, while the pulse durations are 100…200 μs in numerical modelling. The results of modelling the temperature field allowed ascertaining the threshold parameters of the electronmore » beam, such as energy density and pulse duration. The electron beam irradiation is accompanied by the structural modification of the surface layer of boron carbide ceramics either in the single-phase (liquid or solid) or two-phase (solid-liquid) states. The sample surface of boron carbide ceramics is treated under the two-phase state (solid-liquid) conditions of the structural modification. The surface layer is modified by the high-current pulsed electron-beam produced by SOLO installation at the Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences, Tomsk, Russia. The elemental composition and the defect structure of the modified surface layer are analyzed by the optical instrument, scanning electron and transmission electron microscopes. Mechanical properties of the modified layer are determined measuring its hardness and crack resistance. Research results show that the melting and subsequent rapid solidification of the surface layer lead to such phenomena as fragmentation due to a crack network, grain size reduction, formation of the sub-grained structure due to mechanical twinning, and increase of hardness and crack resistance.« less
Boron containing multilayer coatings and method of fabrication
Makowiecki, D.M.; Jankowski, A.F.
1997-09-23
Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.
Boron containing multilayer coatings and method of fabrication
Makowiecki, Daniel M.; Jankowski, Alan F.
1997-01-01
Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Yong; Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996; Liu Fengxiao
Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered {eta}-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit ({approx}100 MPa) than the conventional ones undermore » the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides.« less
Fractographic Analysis of HfB2-SiC and ZrB2-SiC Composites
NASA Technical Reports Server (NTRS)
Mecholsky, J.J., Jr.; Ellerby, D. T.; Johnson, S. M.; Stackpoole, M. M.; Loehman, R. E.; Arnold, Jim (Technical Monitor)
2001-01-01
Hafnium diboride-silicon carbide and zirconium diboride-silicon carbide composites are potential materials for high temperature leading edge applications on reusable launch vehicles. In order to establish material constants necessary for evaluation of in-situ fracture, bars fractured in four point flexure were examined using fractographic principles. The fracture toughness was determined from measurements of the critical crack sizes and the strength values, and the crack branching constants were established to use in forensic fractography of materials for future flight applications. The fracture toughnesses range from about 13 MPam (sup 1/2) at room temperature to about 6 MPam (sup 1/2) at 1400 C for ZrB2-SiC composites and from about 11 MPam (sup 1/2) at room temperature to about 4 MPam (sup 1/2) at 1400 C for HfB2-SiC composites.
Oxidative stress in bacteria (Pseudomonas putida) exposed to nanostructures of silicon carbide.
Borkowski, Andrzej; Szala, Mateusz; Kowalczyk, Paweł; Cłapa, Tomasz; Narożna, Dorota; Selwet, Marek
2015-09-01
Silicon carbide (SiC) nanostructures produced by combustion synthesis can cause oxidative stress in the bacterium Pseudomonas putida. The results of this study showed that SiC nanostructures damaged the cell membrane, which can lead to oxidative stress in living cells and to the loss of cell viability. As a reference, micrometric SiC was also used, which did not exhibit toxicity toward cells. Oxidative stress was studied by analyzing the activity of peroxidases, and the expression of the glucose-6-phosphate dehydrogenase gene (zwf1) using real-time PCR and northern blot techniques. Damage to nucleic acid was studied by isolating and hydrolyzing plasmids with the formamidopyrimidine [fapy]-DNA glycosylase (also known as 8-oxoguanine DNA glycosylase) (Fpg), which is able to detect damaged DNA. The level of viable microbial cells was investigated by propidium iodide and acridine orange staining. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Moradian, Rostam; Behzad, Somayeh; Chegel, Raad
2009-06-01
We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.
NASA Astrophysics Data System (ADS)
Zhang, Chuanfang (John); Maloney, Ryan; Lukatskaya, Maria R.; Beidaghi, Majid; Dyatkin, Boris; Perre, Emilie; Long, Donghui; Qiao, Wenming; Dunn, Bruce; Gogotsi, Yury
2015-01-01
Herein we report on the hydrothermal synthesis of niobium pentoxide on carbide-derived carbon (Nb2O5/CDC) with a layered structure. The presence of phenylphosphonic acid guides the deposition during preparation, leading to the formation of amorphous Nb2O5 particles which are 4-10 nm in diameter and homogeneously distributed on the CDC framework. Electrochemical testing of the Nb2O5/CDC electrode indicated that the highest capacitance and Coulombic efficiency occurred using an electrolyte comprised of 1 M lithium perchlorate in ethylene carbonate/dimethyl carbonate. Subsequent heat treatment of Nb2O5/CDC in CO2 environment led to crystallization of the Nb2O5, allowing reversible Li+ intercalation/de-intercalation. For sweep rates corresponding to charging and discharging in under 3 min, a volumetric charge of 180 C cm-3 and Coulombic efficiency of 99.2% were attained.
Characterization of SiCSiC Composites in Support of Environmental Degradation Modeling
NASA Technical Reports Server (NTRS)
Kiser, Doug; Sullivan, Roy; Bhatt, Ram; Smith, Craig; Zima, John; McCue, Terry
2016-01-01
SiCSiC (silicon carbide fiber reinforced silicon carbide) composites are candidate materials for various turbine engine applications because of their high specific strength and good creep and oxidation resistance at elevated temperatures. This study was performed to characterize the microstructure of a melt infiltrated (MI) SiCSiC, and to examine environmental degradation mechanisms occurring in precracked MI SiCSiC CMC specimens under tensile stresses of 30 ksi or less at 815C in dry air or argon. In addition, the oxidation of the BN interface was characterized at815C, and crack opening displacement as a function of stress measurements were made. This material characterization is being performed to obtain data to support NASA GRC modeling of SiCSiC environmental degradation. The comparison of experimentally-observed phenomena with model predictions can lead to improved understanding of material degradation mechanisms.
Novel hard compositions and methods of preparation
Sheinberg, Haskell
1983-08-23
Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated.
NASA Astrophysics Data System (ADS)
Dépinoy, Sylvain; Toffolon-Masclet, Caroline; Urvoy, Stéphane; Roubaud, Justine; Marini, Bernard; Roch, François; Kozeschnik, Ernst; Gourgues-Lorenzon, Anne-Françoise
2017-05-01
The effect of the tempering heat treatment, including heating prior to the isothermal step, on carbide precipitation has been determined in a 2.25 Cr-1 Mo bainitic steel for thick-walled applications. The carbides were identified using their amount of metallic elements, morphology, nucleation sites, and diffraction patterns. The evolution of carbide phase fraction, morphology, and composition was investigated using transmission electron microscopy, X-ray diffraction, as well as thermodynamic calculations. Upon heating, retained austenite into the as-quenched material decomposes into ferrite and cementite. M7C3 carbides then nucleate at the interface between the cementite and the matrix, triggering the dissolution of cementite. M2C carbides precipitate separately within the bainitic laths during slow heating. M23C6 carbides precipitate at the interfaces (lath boundaries or prior austenite grain boundaries) and grow by attracting nearby chromium atoms, which results in the dissolution of M7C3 and, depending on the temperature, coarsening, or dissolution of M2C carbides, respectively.
Novel hard compositions and methods of preparation
Sheinberg, H.
1983-08-23
Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value. Photomicrographs show that the shapes of the grains of the alloy mixture with which the minor amount of carbide (or carbide-formers) is mixed are radically altered from large, rounded to small, very angular by the addition of the carbide. Superiority of one of these hard compositions of matter over cobalt-bonded tungsten carbide for ultra-high pressure anvil applications was demonstrated. 3 figs.
Effect of electroslag remelting on carbides in 8Cr13MoV martensitic stainless steel
NASA Astrophysics Data System (ADS)
Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao
2015-11-01
The effect of electroslag remelting (ESR) on carbides in 8Cr13MoV martensitic stainless steel was experimentally studied. Phases precipitated from liquid steel during solidification were calculated using the Thermo-Calc software. The carbon segregation was analyzed by original position analysis (OPA), and the carbides were analyzed by optical microscopy (OM), scanning electron microscopy (SEM), energy- dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results indicated that more uniform carbon distribution and less segregation were obtained in the case of samples subjected to the ESR process. After ESR, the amount of netty carbides decreased significantly, and the chromium and vanadium contents in the grain-boundary carbides was reduced. The total area and average size of carbides were obviously smaller after the ESR process. In the sample subjected to ESR, the morphology of carbides changed from lamellar and angular to globular or lump, whereas the types of carbides did not change; both M23C6 and M7C3 were present before and after the ESR process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongfen, E-mail: wanghongfen11@163.com; Wang, Zhiqi; Chen, Shougang
Molybdenum carbides with surfactants as carbon sources were prepared using the carbothermal reduction of the appropriate precursors (molybdenum oxides deposited on surfactant micelles) at 1023 K under hydrogen gas. The carburized products were characterized using scanning electron microscopy (SEM), X-ray diffraction and BET surface area measurements. From the SEM images, hollow microspherical and rod-like molybdenum carbides were observed. X-ray diffraction patterns showed that the annealing time of carburization had a large effect on the conversion of molybdenum oxides to molybdenum carbides. And BET surface area measurements indicated that the difference of carbon sources brought a big difference in specific surfacemore » areas of molybdenum carbides. - Graphical abstract: Molybdenum carbides having hollow microspherical and hollow rod-like morphologies that are different from the conventional monodipersed platelet-like morphologies. Highlights: Black-Right-Pointing-Pointer Molybdenum carbides were prepared using surfactants as carbon sources. Black-Right-Pointing-Pointer The kinds of surfactants affected the morphologies of molybdenum carbides. Black-Right-Pointing-Pointer The time of heat preservation at 1023 K affected the carburization process. Black-Right-Pointing-Pointer Molybdenum carbides with hollow structures had larger specific surface areas.« less
NASA Astrophysics Data System (ADS)
Limmer, Krista; Medvedeva, Julia
2013-03-01
Carbide formation and stabilization in steels is of great interest owing to its effect on the microstructure and properties of the Fe-based alloys. The appearance of carbides with different metal/C ratios strongly depends on the carbon concentration, alloy composition as well as the heat treatment. Strong carbide-forming elements such as Ti, V, and Nb have been used in microalloyed steels; with VC showing an increased solubility in the iron matrix as compared with TiC and NbC. This allows for dissolution of the VC into the steel during heating and fine precipitation during cooling. In addition to VC, the primary vanadium carbide with cubic structure, a wide range of non-stoichiometric compositions VCy with y varying from 0.72 to 0.88, has been observed. This range includes two ordered compounds, V8C7 and V6C5. In this study, first-principles density functional theory (DFT) is employed to examine the stability of the binary carbides by calculating their formation energies. We compare the local structures (atomic coordination, bond distances and angles) and the density of states in optimized geometries of the carbides. Further, the effect of alloying additions, such as niobium and titanium, on the carbide stabilization is investigated. We determine the energetically preferable substitutional atom location in each carbide and study the impurity distribution as well as its role in the carbide formation energy and electronic structure.
NASA Astrophysics Data System (ADS)
Guo, Jing; Liu, Ligang; Feng, Yunli; Liu, Sha; Ren, Xuejun; Yang, Qingxiang
2017-03-01
In this work, the morphology and structures of the eutectic and secondary carbides in a new high chromium Fe-12Cr-2.5Mo-1.5W-3V-1.25C designed for cold-rolling work roll were systematically studied. The precipitated carbides inside the grains and along the grain boundaries were investigated with optical microscope, scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscopy and X-Ray diffraction. Selected area diffraction patterns have been successfully used to identify the crystal formation and lattice constants of the carbides with different alloying elements. The results show that the eutectic carbides precipitated contain MC and M2C distributed along the grain boundaries with dendrite feature. The composition and crystal structure analysis shows that the eutectic MC carbides contain VC and WC with a cubic and hexagonal crystal lattice structures respectively, while the eutectic M2C carbides predominantly contain V2C and Mo2C with orthorhombic and hexagonal crystal lattices respectively. The secondary carbides contain MC, M2C, M7C3 formed along the grain boundaries and their sizes are much larger than the eutectic carbides ones. The secondary M23C6 is much small (0.3-0.5μm) and is distributed dispersively inside the grain. Similar to the eutectic carbides, the secondary carbides also contain VC, WC, V2C, and Mo2C. M7C3 is hexagonal (Fe,Cr)7C3, while M23C6 is indexed to be in a cubic crystal form.
A new criterion for predicting rolling-element fatigue lives of through-hardened steels
NASA Technical Reports Server (NTRS)
Chevalier, J. L.; Zaretsky, E. V.; Parker, R. J.
1972-01-01
A carbide factor was derived based upon a statistical analysis which related rolling-element fatigue life to the total number of residual carbide particles per unit area, median residual carbide size, and percent residual carbide area. An equation was experimentally determined which predicts material hardness as a function of temperature. The limiting temperatures of all of the materials studied were dependent on initial room temperature hardness and tempering temperature. An equation was derived combining the effects of material hardness, carbide factor, and bearing temperature to predict rolling-element bearing life.
METHOD OF JOINING CARBIDES TO BASE METALS
Krikorian, N.H.; Farr, J.D.; Witteman, W.G.
1962-02-13
A method is described for joining a refractory metal carbide such as UC or ZrC to a refractory metal base such as Ta or Nb. The method comprises carburizing the surface of the metal base and then sintering the base and carbide at temperatures of about 2000 deg C in a non-oxidizing atmosphere, the base and carbide being held in contact during the sintering step. To reduce the sintering temperature and time, a sintering aid such as iron, nickel, or cobait is added to the carbide, not to exceed 5 wt%. (AEC)
COATED CARBON ELEMENT FOR USE IN NUCLEAR REACTORS AND THE PROCESS OF MAKING THE ELEMENT
Pyle, R.J.; Allen, G.L.
1963-01-15
S>This patent relates to a carbide-nitride-carbide coating for carbon bodies that are to be subjected to a high temperature nuclear reactor atmosphere, and a method of applying the same. This coating is a highly efficient diffusion barrier and protects the C body from corrosion and erosion by the reactor atmosphere. Preferably, the innermost coating is Zr carbide, the middle coatlng is Zr nitride, and the outermost coating is a mixture of Zr and Nb carbide. The nitride coating acts as a diffusion barrier, while the innermost carbide bonds the nitride to the C body and prevents deleterious reaction between the nitride and C body. The outermost carbide coating protects the nitride coating from the reactor atmosphere. (AEC)
Compatibility of buffered uranium carbides with tungsten.
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1971-01-01
Results of compatibility tests between tungsten and hyperstoichiometric uranium carbide alloys run at 1800 C for 1000 and 2500 hours. These tests compared tungsten-buffered uranium carbide with tungsten-buffered uranium-zirconium carbide. The zirconium carbide addition appeared to widen the homogeneity range of the uranium carbide, making additional carbon available for reaction. Reaction layers could be formed by either of two diffusion paths, one producing UWC2, while the second resulted in the formation of W2C. UWC2 acts as a diffusion barrier for carbon and slows the growth of the reaction layer with time, while carbon diffusion is relatively rapid in W2C, allowing equilibrium to be reached in less than 2500 hours at a temperature of 1800 C.
NASA Astrophysics Data System (ADS)
Parsard, Gregory G.
Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.
Pierce, D. T.; Coughlin, D. R.; Williamson, D. L.; ...
2015-05-01
Quenching and partitioning (Q&P) produces steel microstructures with martensite and austenite that exhibit promising property combinations for third generation advanced high strength steels. Understanding the kinetics of reactions that compete for available carbon, such as carbide formation, is critical for alloying and processing design and achieving austenite enrichment and retention during Q&P. Mössbauer effect spectroscopy (MES) was used to characterize Q&P microstructures in a 0.38C-1.54Mn-1.48Si wt.% steel after quenching to 225 °C and partitioning at 400 °C for 10 or 300 s, with an emphasis on transition carbides. The recoilless fraction for η-carbide was calculated and a correction for saturationmore » of the MES absorption spectrum was applied, making quantitative measurements of small amounts of η-carbide, including non-stoichiometric η-carbide, possible in Q&P microstructures. Complementary transmission electron microscopy confirmed the presence of η-carbides, and MES and X-ray diffraction were used to characterize the austenite. The amount of η-carbide formed during Q&P ranged from 1.4 to 2.4 at.%, accounting for a substantial portion (~24% to 41%) of the bulk carbon content of the steel. The amount (5.0 at.%) of η-carbide that formed after quenching and tempering (Q&T) at 400 °C for 300 s was significantly greater than after partitioning at 400 °C for 300 s (2.4 at.%), suggesting that carbon partitioning from martensite to austenite occurs in conjunction with η-carbide formation during Q&P in these specimens.« less
A silicon carbide array for electrocorticography and peripheral nerve recording.
Diaz-Botia, C A; Luna, L E; Neely, R M; Chamanzar, M; Carraro, C; Carmena, J M; Sabes, P N; Maboudian, R; Maharbiz, M M
2017-10-01
Current neural probes have a limited device lifetime of a few years. Their common failure mode is the degradation of insulating films and/or the delamination of the conductor-insulator interfaces. We sought to develop a technology that does not suffer from such limitations and would be suitable for chronic applications with very long device lifetimes. We developed a fabrication method that integrates polycrystalline conductive silicon carbide with insulating silicon carbide. The technology employs amorphous silicon carbide as the insulator and conductive silicon carbide at the recording sites, resulting in a seamless transition between doped and amorphous regions of the same material, eliminating heterogeneous interfaces prone to delamination. Silicon carbide has outstanding chemical stability, is biocompatible, is an excellent molecular barrier and is compatible with standard microfabrication processes. We have fabricated silicon carbide electrode arrays using our novel fabrication method. We conducted in vivo experiments in which electrocorticography recordings from the primary visual cortex of a rat were obtained and were of similar quality to those of polymer based electrocorticography arrays. The silicon carbide electrode arrays were also used as a cuff electrode wrapped around the sciatic nerve of a rat to record the nerve response to electrical stimulation. Finally, we demonstrated the outstanding long term stability of our insulating silicon carbide films through accelerated aging tests. Clinical translation in neural engineering has been slowed in part due to the poor long term performance of current probes. Silicon carbide devices are a promising technology that may accelerate this transition by enabling truly chronic applications.
A silicon carbide array for electrocorticography and peripheral nerve recording
NASA Astrophysics Data System (ADS)
Diaz-Botia, C. A.; Luna, L. E.; Neely, R. M.; Chamanzar, M.; Carraro, C.; Carmena, J. M.; Sabes, P. N.; Maboudian, R.; Maharbiz, M. M.
2017-10-01
Objective. Current neural probes have a limited device lifetime of a few years. Their common failure mode is the degradation of insulating films and/or the delamination of the conductor-insulator interfaces. We sought to develop a technology that does not suffer from such limitations and would be suitable for chronic applications with very long device lifetimes. Approach. We developed a fabrication method that integrates polycrystalline conductive silicon carbide with insulating silicon carbide. The technology employs amorphous silicon carbide as the insulator and conductive silicon carbide at the recording sites, resulting in a seamless transition between doped and amorphous regions of the same material, eliminating heterogeneous interfaces prone to delamination. Silicon carbide has outstanding chemical stability, is biocompatible, is an excellent molecular barrier and is compatible with standard microfabrication processes. Main results. We have fabricated silicon carbide electrode arrays using our novel fabrication method. We conducted in vivo experiments in which electrocorticography recordings from the primary visual cortex of a rat were obtained and were of similar quality to those of polymer based electrocorticography arrays. The silicon carbide electrode arrays were also used as a cuff electrode wrapped around the sciatic nerve of a rat to record the nerve response to electrical stimulation. Finally, we demonstrated the outstanding long term stability of our insulating silicon carbide films through accelerated aging tests. Significance. Clinical translation in neural engineering has been slowed in part due to the poor long term performance of current probes. Silicon carbide devices are a promising technology that may accelerate this transition by enabling truly chronic applications.
SOLID SOLUTION CARBIDES ARE THE KEY FUELS FOR FUTURE NUCLEAR THERMAL PROPULSION
NASA Technical Reports Server (NTRS)
Panda, Binayak; Hickman, Robert R.; Shah, Sandeep
2005-01-01
Nuclear thermal propulsion uses nuclear energy to directly heat a propellant (such as liquid hydrogen) to generate thrust for space transportation. In the 1960 s, the early Rover/Nuclear Engine for Rocket Propulsion Application (NERVA) program showed very encouraging test results for space nuclear propulsion but, in recent years, fuel research has been dismal. With NASA s renewed interest in long-term space exploration, fuel researchers are now revisiting the RoverMERVA findings, which indicated several problems with such fuels (such as erosion, chemical reaction of the fuel with propellant, fuel cracking, and cladding issues) that must be addressed. It is also well known that the higher the temperature reached by a propellant, the larger the thrust generated from the same weight of propellant. Better use of fuel and propellant requires development of fuels capable of reaching very high temperatures. Carbides have the highest melting points of any known material. Efforts are underway to develop carbide mixtures and solid solutions that contain uranium carbide, in order to achieve very high fuel temperatures. Binary solid solution carbides (U, Zr)C have proven to be very effective in this regard. Ternary carbides such as (U, Zr, X) carbides (where X represents Nb, Ta, W, and Hf) also hold great promise as fuel material, since the carbide mixtures in solid solution generate a very hard and tough compact material. This paper highlights past experience with early fuel materials and bi-carbides, technical problems associated with consolidation of the ingredients, and current techniques being developed to consolidate ternary carbides as fuel materials.
Zou, Xingli; Zheng, Kai; Lu, Xionggang; Xu, Qian; Zhou, Zhongfu
2016-08-15
Silicon carbide (SiC), titanium carbide (TiC), zirconium carbide (ZrC), and tantalum carbide (TaC) have been electrochemically produced directly from their corresponding stoichiometric metal oxides/carbon (MOx/C) precursors by electrodeoxidation in molten calcium chloride (CaCl2). An assembled yttria stabilized zirconia solid oxide membrane (SOM)-based anode was employed to control the electrodeoxidation process. The SOM-assisted controllable electrochemical process was carried out in molten CaCl2 at 1000 °C with a potential of 3.5 to 4.0 V. The reaction mechanism of the electrochemical production process and the characteristics of these produced metal carbides (MCs) were systematically investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses clearly identify that SiC, TiC, ZrC, and TaC carbides can be facilely fabricated. SiC carbide can be controlled to form a homogeneous nanowire structure, while the morphologies of TiC, ZrC, and TaC carbides exhibit porous nodular structures with micro/nanoscale particles. The complex chemical/electrochemical reaction processes including the compounding, electrodeoxidation, dissolution-electrodeposition, and in situ carbonization processes in molten CaCl2 are also discussed. The present results preliminarily demonstrate that the molten salt-based SOM-assisted electrodeoxidation process has the potential to be used for the facile and controllable electrodeoxidation of MOx/C precursors to micro/nanostructured MCs, which can potentially be used for various applications.
NASA Astrophysics Data System (ADS)
Zhao, Xiaoli; Li, Chuanwei; Han, Lizhan; Gu, Jianfeng
2018-06-01
Dilatometry is a useful technique to obtain experimental data concerning transformation. In this paper, a dilation conversional model was established to calculate carbides fraction in AISI H13 hot-work tool steel based on the measured length changes. After carbides precipitation, the alloy contents in the matrix changed. In the usual models, the content of carbon atoms after precipitation is considered as the only element that affects the lattice constant and the content of the alloy elements such as Cr, Mo, Mn, V are often ignored. In the model introduced in this paper, the alloying elements (Cr, Mo, Mn, V) changes caused by carbides precipitation are incorporated. The carbides were identified using scanning electron microscope and transmission electron microscope. The relationship between lattice constant of carbides and temperature are measured by high-temperature X-ray diffraction. The results indicate that the carbides observed in all specimens cooled at different rates are V-rich MC and Cr-rich M23C6, and most of them are V-rich MC, only very few are Cr-rich M23C6. The model including the effects of substitutional alloying elements shows a good improvement on carbides fraction predictions. In addition, lower cooling rate advances the carbides precipitation for AISI H13 specimens. The results between experiments and mathematical model agree well.
1989-03-25
3887) Tantalum Carbide (TaC) 4150 (3877) Niobium Carbide 4023 (3750) Carbon (Graphite) 3970 (3697) Zirconium Carbide 3805 (3532) Tungsten 3643 3643...process. Some fibers, especially those made of tungsten , silicon carbide, and zirconia, survived the reaction conditions. However, the ceramic bodies...displayed cracks and voids. Examination by SEM of cross’sections of the reacted parts made with tungsten fibers disclosed the presence of "whiskers
Kolli, R Prakash; Seidman, David N
2014-12-01
The composition of co-precipitated and collocated NbC carbide precipitates, Fe3C iron carbide (cementite), and Cu-rich precipitates are studied experimentally by atom-probe tomography (APT). The Cu-rich precipitates located at a grain boundary (GB) are also studied. The APT results for the carbides are supplemented with computational thermodynamics predictions of composition at thermodynamic equilibrium. Two types of NbC carbide precipitates are distinguished based on their stoichiometric ratio and size. The Cu-rich precipitates at the periphery of the iron carbide and at the GB are larger than those distributed in the α-Fe (body-centered cubic) matrix, which is attributed to short-circuit diffusion of Cu along the GB. Manganese segregation is not observed at the heterophase interfaces of the Cu-rich precipitates that are located at the periphery of the iron carbide or at the GB, which is unlike those located at the edge of the NbC carbide precipitates or distributed in the α-Fe matrix. This suggests the presence of two populations of NiAl-type (B2 structure) phases at the heterophase interfaces in multicomponent Fe-Cu steels.
Austenite decomposition to carbide-rich products in Fe-0.30C-6.3W
NASA Astrophysics Data System (ADS)
Hackenberg, R. E.; Granada, D. G.; Shiflet, G. J.
2002-12-01
The kinetics, morphology, and elemental distributions associated with the decomposition of austenite in Fe-0.30C-6.3W were surveyed, especially in the bay region of the time-temperature-transformation (TTT) diagram. Carbide precipitation characteristics were of particular interest. Similar to Fe-C-Mo and Fe-C-Cr alloys, grain- and twin-boundary bainite containing sheets of alloy carbides dominated the microstructure at and above the bay, while popcorn-like bainite was observed immediately below the bay. Nonequilibrium carbide-phase combinations were obtained both above and below the bay, although W partitioning to the alloy carbides was always observed. The carbon level in the remaining austenite increased with reaction time at a given temperature, which, at the later stages of reaction, helped trigger the growth of a constituent containing a high density of nonlamellar carbides. These nonequilibrium reaction-path characteristics are considered to originate from crystallographic and interfacial structure constraints affecting the nucleation of carbides at ferrite-austenite interfaces.
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions
2015-04-17
Versatile Boron Carbide-Based Visual Obscurant Compositions for Smoke Munitions Anthony P. Shaw,*,† Giancarlo Diviacchi,‡ Ernest L. Black,‡ Jared D...have been demonstrated to produce thick white smoke clouds upon combustion. These compositions use powdered boron carbide (B4C) as a pyrotechnic...ignition and are safe to handle. KEYWORDS: Smoke, Obscurants, Pyrotechnics, Boron carbide, Sustainable chemistry ■ INTRODUCTION Visible obscuration
Method for making hot-pressed fiber-reinforced carbide-graphite composite
Riley, Robert E.; Wallace Sr., Terry C.
1979-01-01
A method for the chemical vapor deposition of a uniform coating of tantalum metal on fibers of a woven graphite cloth is described. Several layers of the coated cloth are hot pressed to produce a tantalum carbide-graphite composite having a uniformly dispersed, fine grained tantalum carbide in graphite with compositions in the range of 15 to 40 volume percent tantalum carbide.
Method of making silicon carbide-silicon composite having improved oxidation resistance
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
2002-01-01
A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.
Silicon carbide-silicon composite having improved oxidation resistance and method of making
NASA Technical Reports Server (NTRS)
Wang, Hongyu (Inventor); Luthra, Krishan Lal (Inventor)
1999-01-01
A Silicon carbide-silicon matrix composite having improved oxidation resistance at high temperatures in dry or water-containing environments is provided. A method is given for sealing matrix cracks in situ in melt infiltrated silicon carbide-silicon matrix composites. The composite cracks are sealed by the addition of various additives, such as boron compounds, into the melt infiltrated silicon carbide-silicon matrix.
Silicon Carbide Capacitive High Temperature MEMS Strain Transducer
2012-03-22
SILICON CARBIDE CAPACITIVE HIGH TEMPURATURE MEMS STRAIN TRANSDUCER THESIS Richard P. Weisenberger, DR01, USAF AFIT/GE/ENG...declared a work of the U.S. Government and is not subject to copyright protection in the United States AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE...STATEMENT A. APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED AFIT/GE/ENG/12-43 SILICON CARBIDE CAPACITIVE IDGH TEMPURATURE MEMS STRAIN TRANSDUCER
Study of the Effect of Trace Mg Additions on Carbides in Die Steel H13
NASA Astrophysics Data System (ADS)
Li, Ji; Li, Jing; Wang, Liang-liang; Zhu, Qin-tian
2016-09-01
Carbides in annealed steel H13 without magnesium and with a micro-addition of magnesium (0.0010%) are studied. Trace amounts of magnesium strengthen carbide segregation and reduce their size. Carbides phases M7C3, M6 C, and M(C, N) are detected in steel H13, and this agrees with results of thermodynamic calculations.
Characterization of boron carbide with an electron microprobe
NASA Technical Reports Server (NTRS)
Matteudi, G.; Ruste, J.
1983-01-01
Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.
Electrocatalysis using transition metal carbide and oxide nanocrystals
NASA Astrophysics Data System (ADS)
Regmi, Yagya N.
Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel molybdate showing the highest OER activities.
Development of refractory armored silicon carbide by infrared transient liquid phase processing
NASA Astrophysics Data System (ADS)
Hinoki, Tatsuya; Snead, Lance L.; Blue, Craig A.
2005-12-01
Tungsten (W) and molybdenum (Mo) were coated on silicon carbide (SiC) for use as a refractory armor using a high power plasma arc lamp at powers up to 23.5 MW/m 2 in an argon flow environment. Both tungsten powder and molybdenum powder melted and formed coating layers on silicon carbide within a few seconds. The effect of substrate pre-treatment (vapor deposition of titanium (Ti) and tungsten, and annealing) and sample heating conditions on microstructure of the coating and coating/substrate interface were investigated. The microstructure was observed by scanning electron microscopy (SEM) and optical microscopy (OM). The mechanical properties of the coated materials were evaluated by four-point flexural tests. A strong tungsten coating was successfully applied to the silicon carbide substrate. Tungsten vapor deposition and pre-heating at 5.2 MW/m 2 made for a refractory layer containing no cracks propagating into the silicon carbide substrate. The tungsten coating was formed without the thick reaction layer. For this study, small tungsten carbide grains were observed adjacent to the interface in all conditions. In addition, relatively large, widely scattered tungsten carbide grains and a eutectic structure of tungsten and silicon were observed through the thickness in the coatings formed at lower powers and longer heating times. The strength of the silicon carbide substrate was somewhat decreased as a result of the processing. Vapor deposition of tungsten prior to powder coating helped prevent this degradation. In contrast, molybdenum coating was more challenging than tungsten coating due to the larger coefficient of thermal expansion (CTE) mismatch as compared to tungsten and silicon carbide. From this work it is concluded that refractory armoring of silicon carbide by Infrared Transient Liquid Phase Processing is possible. The tungsten armored silicon carbide samples proved uniform, strong, and capable of withstanding thermal fatigue testing.
On carbide dissolution in an as-cast ASTM F-75 alloy.
Caudillo, M; Herrera-Trejo, M; Castro, M R; Ramírez, E; González, C R; Juárez, J I
2002-02-01
The solution treatment of an as-cast ASTM F-75 alloy was investigated. Microstructural evolution was followed during thermal processing, in particular with regard to the content and type of carbides formed. To evidence any probable carbide transformations occurring during the heating stage, as well as to clarify their effect on the carbide dissolution kinetics, three heating rates were studied. Image analysis and scanning electron microscopy techniques were used for microstructural characterization. For the identification of precipitates, these were electrolytically extracted from the matrix and then analyzed by X-ray diffraction. It was found that the precipitates in the as-cast alloy were constituted by both a M(23)C(6) carbide and a sigma intermetallic phase. The M(23)C(6) carbide was the only phase identified in solution-treated specimens, regardless of the heating rate employed, which indicated that this carbide dissolved directly into the matrix without being transformed first into an M(6)C carbide, as reported in the literature. It was found that the kinetics of dissolution for the M(23)C(6) carbide decreased progressively during the solution treatment, and that it was sensitive to the heating rate, decreasing whenever the latter was decreased. Because the M(23)C(6) carbide was not observed to suffer a phase transformation prior to its dissolution into the matrix, the effect of the heating rate was associated to the morphological change occurred as the specimens were heated. The occurrence of the observed phases was analyzed with the aid of phase diagrams computed for the system Co-Cr-Mo-C. Copyright 2001 John Wiley & Sons, Inc. J Biomed Mater Res 59: 378-385, 2002
Strength of inserts in titanium alloy machining
NASA Astrophysics Data System (ADS)
Kozlov, V.; Huang, Z.; Zhang, J.
2016-04-01
In this paper, a stressed state of a non-worn cutting wedge in a machined titanium alloy (Ti6Al2Mo2Cr) is analyzed. The distribution of contact loads on the face of a cutting tool was obtained experimentally with the use of a ‘split cutting tool’. Calculation of internal stresses in the indexable insert made from cemented carbide (WC8Co) was carried out with the help of ANSYS 14.0 software. Investigations showed that a small thickness of the cutting insert leads to extremely high compressive stresses near the cutting edge, stresses that exceed the ultimate compressive strength of cemented carbide. The face and the base of the insert experience high tensile stresses, which approach the ultimate tensile strength of cemented carbide and increase a probability of cutting insert destruction. If the thickness of the cutting insert is bigger than 5 mm, compressive stresses near the cutting edge decrease, and tensile stresses on the face and base decrease to zero. The dependences of the greatest normal and tangential stresses on thickness of the cutting insert were found. Abbreviation and symbols: m/s - meter per second (cutting speed v); mm/r - millimeter per revolution (feed rate f); MPa - mega Pascal (dimension of specific contact loads and stresses); γ - rake angle of the cutting tool [°] α - clearance angle of the sharp cutting tool [°].
Recent developments in turning hardened steels - A review
NASA Astrophysics Data System (ADS)
Sivaraman, V.; Prakash, S.
2017-05-01
Hard materials ranging from HRC 45 - 68 such as hardened AISI H13, AISI 4340, AISI 52100, D2 STL, D3 STEEL Steel etc., need super hard tool materials to machine. Turning of these hard materials is termed as hard turning. Hard turning makes possible direct machining of the hard materials and also eliminates the lubricant requirement and thus favoring dry machining. Hard turning is a finish turning process and hence conventional grinding is not required. Development of the new advanced super hard tool materials such as ceramic inserts, Cubic Boron Nitride, Polycrystalline Cubic Boron Nitride etc. enabled the turning of these materials. PVD and CVD methods of coating have made easier the production of single and multi layered coated tool inserts. Coatings of TiN, TiAlN, TiC, Al2O3, AlCrN over cemented carbide inserts has lead to the machining of difficult to machine materials. Advancement in the process of hard machining paved way for better surface finish, long tool life, reduced tool wear, cutting force and cutting temperatures. Micro and Nano coated carbide inserts, nanocomposite coated PCBN inserts, micro and nano CBN coated carbide inserts and similar developments have made machining of hardened steels much easier and economical. In this paper, broad literature review on turning of hardened steels including optimizing process parameters, cooling requirements, different tool materials etc., are done.
NASA Astrophysics Data System (ADS)
Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K.
2018-03-01
First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.
Square lattice honeycomb tri-carbide fuels for 50 to 250 KN variable thrust NTP design
NASA Astrophysics Data System (ADS)
Anghaie, Samim; Knight, Travis; Gouw, Reza; Furman, Eric
2001-02-01
Ultrahigh temperature solid solution of tri-carbide fuels are used to design an ultracompact nuclear thermal rocket generating 950 seconds of specific impulse with scalable thrust level in range of 50 to 250 kilo Newtons. Solid solutions of tri-carbide nuclear fuels such as uranium-zirconium-niobium carbide. UZrNbC, are processed to contain certain mixing ratio between uranium carbide and two stabilizing carbides. Zirconium or niobium in the tri-carbide could be replaced by tantalum or hafnium to provide higher chemical stability in hot hydrogen environment or to provide different nuclear design characteristics. Recent studies have demonstrated the chemical compatibility of tri-carbide fuels with hydrogen propellant for a few to tens of hours of operation at temperatures ranging from 2800 K to 3300 K, respectively. Fuel elements are fabricated from thin tri-carbide wafers that are grooved and locked into a square-lattice honeycomb (SLHC) shape. The hockey puck shaped SLHC fuel elements are stacked up in a grooved graphite tube to form a SLHC fuel assembly. A total of 18 fuel assemblies are arranged circumferentially to form two concentric rings of fuel assemblies with zirconium hydride filling the space between assemblies. For 50 to 250 kilo Newtons thrust operations, the reactor diameter and length including reflectors are 57 cm and 60 cm, respectively. Results of the nuclear design and thermal fluid analyses of the SLHC nuclear thermal propulsion system are presented. .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, D. T.; Coughlin, D. R.; Williamson, D. L.
Quenching and partitioning (Q&P) produces steel microstructures with martensite and austenite that exhibit promising property combinations for third generation advanced high strength steels. Understanding the kinetics of reactions that compete for available carbon, such as carbide formation, is critical for alloying and processing design and achieving austenite enrichment and retention during Q&P. Mössbauer effect spectroscopy (MES) was used to characterize Q&P microstructures in a 0.38C-1.54Mn-1.48Si wt.% steel after quenching to 225 °C and partitioning at 400 °C for 10 or 300 s, with an emphasis on transition carbides. The recoilless fraction for η-carbide was calculated and a correction for saturationmore » of the MES absorption spectrum was applied, making quantitative measurements of small amounts of η-carbide, including non-stoichiometric η-carbide, possible in Q&P microstructures. Complementary transmission electron microscopy confirmed the presence of η-carbides, and MES and X-ray diffraction were used to characterize the austenite. The amount of η-carbide formed during Q&P ranged from 1.4 to 2.4 at.%, accounting for a substantial portion (~24% to 41%) of the bulk carbon content of the steel. The amount (5.0 at.%) of η-carbide that formed after quenching and tempering (Q&T) at 400 °C for 300 s was significantly greater than after partitioning at 400 °C for 300 s (2.4 at.%), suggesting that carbon partitioning from martensite to austenite occurs in conjunction with η-carbide formation during Q&P in these specimens.« less
NASA Astrophysics Data System (ADS)
Fisenko, Anatoliy I.; Lemberg, Vladimir F.
2016-09-01
The knowledge of thermal radiative and thermodynamic properties of uranium and plutonium carbides under extreme conditions is essential for designing a new metallic fuel materials for next generation of a nuclear reactor. The present work is devoted to the study of the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides at their melting/freezing temperatures. The Stefan-Boltzmann law, total energy density, number density of photons, Helmholtz free energy density, internal energy density, enthalpy density, entropy density, heat capacity at constant volume, pressure, and normal total emissivity are calculated using experimental data for the frequency dependence of the normal spectral emissivity of liquid and solid uranium and plutonium carbides in the visible-near infrared range. It is shown that the thermal radiative and thermodynamic functions of uranium carbide have a slight difference during liquid-to-solid transition. Unlike UC, such a difference between these functions have not been established for plutonium carbide. The calculated values for the normal total emissivity of uranium and plutonium carbides at their melting temperatures is in good agreement with experimental data. The obtained results allow to calculate the thermal radiative and thermodynamic properties of liquid and solid uranium and plutonium carbides for any size of samples. Based on the model of Hagen-Rubens and the Wiedemann-Franz law, a new method to determine the thermal conductivity of metals and carbides at the melting points is proposed.
Extreme-Environment Silicon-Carbide (SiC) Wireless Sensor Suite
NASA Technical Reports Server (NTRS)
Yang, Jie
2015-01-01
Phase II objectives: Develop an integrated silicon-carbide wireless sensor suite capable of in situ measurements of critical characteristics of NTP engine; Compose silicon-carbide wireless sensor suite of: Extreme-environment sensors center, Dedicated high-temperature (450 deg C) silicon-carbide electronics that provide power and signal conditioning capabilities as well as radio frequency modulation and wireless data transmission capabilities center, An onboard energy harvesting system as a power source.
Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures
1997-12-15
TITLE AND SUBTITLE Low Temperature Processing of Boron Carbide Cement Composite for Tough, Wear Resistant Structures 6. AUTHOR(S) Kristen J. Law...project has developed a low temperature polymer ceramic composite consisting of boron carbide layers bonded by cement, laminated with polymer...composite have been shown to compare favorably to those of partially sintered boron carbide. Applications for this material have been identified in
Mechanical Testing of Silicon Carbide on MISSE-7
2012-07-15
JS) ii Abstract Silicon carbide ( SiC ) mechanical test specimens were included on the second Optical and Reflector Materials Experiment (ORMatE II...2. Vendor 2 EFS Weibull Results (normalized to Extra Disks Weibull parameters) 12 1. Introduction Silicon carbide ( SiC ) mechanical test...AEROSPACE REPORT NO ATR-2012(8921)-5 Mechanical Testing of Silicon Carbide on MISSE-7 Jul> 15. 2012 David B. Witkin Space Materials Laboratory
Development and Performance of Boron Carbide-Based Smoke Compositions
2013-03-06
DOI: 10.1002/prep.201200166 Development and Performance of Boron Carbide -Based Smoke Compositions Anthony P. Shaw,*[a] Jay C. Poret,[a] Robert A...volatilized and recondense to give smoke. Boron carbide was recognized as a pyrotechnic fuel many years ago, but it has since been overlooked. A 1961...Abstract : Pyrotechnic smoke compositions for visual ob- scuration containing boron carbide , potassium nitrate, po- tassium chloride, and various lubricants
Salt flux synthesis of single and bimetallic carbide nanowires
NASA Astrophysics Data System (ADS)
Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng
2016-07-01
Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.
The effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Symons, D.M.
1998-04-01
Alloy 690 is susceptible to hydrogen embrittlement where hydrogen reduces the ductility and causes the fracture morphology to change to predominantly intergranular. The role of carbide precipitation in the embrittlement behavior is not well defined. The objective of this work is to understand the effect of intergranular carbide precipitation on the hydrogen embrittlement of alloy 690. The work reported herein used tensile and compact-tension specimens in both the solution-annealed condition (minimal grain-boundary carbide precipitation) and in the solution-annealed condition followed by an aging treatment to precipitate grain-boundary carbides. By performing the mechanical tests on materials in both uncharged and hydrogen-chargedmore » conditions, it was possible to evaluate the degree of embrittlement as a function of the carbide precipitation. It is shown that the embrittlement due to hydrogen increased as the material was aged to allow grain-boundary carbide precipitation. It is proposed that the increase in embrittlement was caused by increased hydrogen at the carbide/matrix interface due to the trapping and increased stresses at the precipitate interface, which developed from strain incompatibility of the precipitate with the matrix. It is further shown that increasing the hydrostatic stress increased the tendency for intergranular fracture, as is consistent with other nickel-base alloys.« less
XPS, AES and friction studies of single-crystal silicon carbide
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
The surface chemistry and friction behavior of a single crystal silicon carbide surface parallel to the 0001 plane in sliding contact with iron at various temperatures to 1500 C in a vacuum of 3 x 10 nPa are investigated using X-ray photoelectron and Auger electron spectroscopy. Results show that graphite and carbide-type carbon are seen primarily on the silicon carbide surface in addition to silicon at temperatures to 800 C by both types of spectroscopy. The coefficients of friction for iron sliding against a silicon carbide surface parallel to the 0001 plane surface are found to be high at temperatures up to 800 C, with the silicon and carbide-type carbon at maximum intensity in the X-ray photoelectron spectroscopy at 800 C. The concentration of the graphite increases rapidly on the surface as the temperature is increased above 800 C, while the concentrations of the carbide-type carbon and silicon decrease rapidly and this presence of graphite is accompanied by a significant decrease in friction. Preheating the surfaces to 1500 C also gives dramatically lower coefficients of friction when reheating in the sliding temperature range of from room temperature to 1200 C, with this reduction in friction due to the graphite layer on the silicon carbide surface.
Method for preparing boron-carbide articles
Benton, S.T.; Masters, D.R.
1975-10-21
The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.
Intermediate Temperature Strength Degradation in SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Cawley, James D.; Levine, Stanley (Technical Monitor)
2001-01-01
Woven silicon carbide fiber-reinforced, silicon carbide matrix composites are leading candidate materials for an advanced jet engine combustor liner application. Although the use temperature in the hot region for this application is expected to exceed 1200 C, a potential life-limiting concern for this composite system exists at intermediate temperatures (800 +/- 200 C), where significant time-dependent strength degradation has been observed under stress-rupture loading. A number of factors control the degree of stress-rupture strength degradation, the major factor being the nature of the interphase separating the fiber and the matrix. BN interphases are superior to carbon interphases due to the slower oxidation kinetics of BN. A model for the intermediate temperature stress-rupture of SiC/BN/SiC composites is presented based on the observed mechanistic process that leads to strength degradation for the simple case of through-thickness matrix cracks. The approach taken has much in common with that used by Curtin and coworkers, for two different composite systems. The predictions of the model are in good agreement with the rupture data for stress-rupture of both precracked and as-produced composites. Also, three approaches that dramatically improve the intermediate temperature stress-rupture properties are described: Si-doped BN, fiber spreading, and 'outside debonding'.
Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R.
1995-01-01
A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.
NASA Astrophysics Data System (ADS)
Dolce, Gregory Martin
1997-11-01
A series of gamma-Alsb2Osb3 supported molybdenum nitrides and carbides were prepared by the temperature programmed reaction of supported molybdates with ammonia and methane/hydrogen mixtures, respectively. In the first part of this research, the effects of synthesis heating rates and molybdenum loading on the catalytic properties of the materials were examined. A significant amount of excess carbon was deposited on the surface of the carbides during synthesis. The materials consisted of small particles which were very highly dispersed. Oxygen chemisorption indicated that the nitride particles may have been two-dimensional. The dispersion of the carbides, however, appeared to decrease as the loading increased. The catalysts were evaluated for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). The molybdenum loading had the largest effect on the activity of the materials. For the nitrides, the HDN and HDS activities were inverse functions of the loading. This suggested that the most active HDN and HDS sites were located at the perimeter of the two-dimensional particles. The HDN and HDS activities of the carbides followed the same trend as the oxygen uptake. This result suggested that oxygen titrated the active sites on the supported carbides. Selected catalysts were evaluated for methylcarbazole HDN, dibenzothiophene HDS, and dibenzofuran HDO. The activity and selectivity of the nitrides and carbides were competitive with a presulfided commercial catalyst. In the second part of this work, a series of supported nitrides and carbides were prepared using a wider range of loadings (5-30 wt% Mo). Thermogravimetric analysis was used to determine the temperature at which excess carbon was deposited on the carbides. By modifying the synthesis parameters, the deposition of excess carbon was effectively inhibited. The dispersions of the supported nitrides and carbides were constant and suggested that the materials consisted of two-dimensional raft-like particles. The HDN activity of the nitrides decreased as the loading increased, while that of the carbides was relatively constant. Carbon monoxide and methylamine adsorbed on the same types of sites on the nitrides and carbides. Infrared spectroscopy and temperature programmed desorption revealed that some methylamine underwent HDN on the nitrides and carbides. Carbon monoxide appeared to adsorb on two types of sites. One type of site adsorbed CO which desorbed upon heating while the other type of site adsorbed CO which dissociated when the material was heated. The relative amounts of desorbed CO and methylamine scaled with the activity of the nitrides suggesting that CO and methylamine titrated the active sites. It appeared that the active sites of the supported carbides were different from those on the supported nitrides. It was proposed that the active sites on the supported nitrides were at the perimeter of the two-dimensional particles while the active sites of the carbides were "on top" of the particles.
Abrasive slurry composition for machining boron carbide
Duran, Edward L.
1985-01-01
An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.
Abrasive slurry composition for machining boron carbide
Duran, E.L.
1984-11-29
An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.
Crystallography of in-situ transformations of the M 7C3 carbide in the cast Fe-Cr-Ni alloy
NASA Astrophysics Data System (ADS)
Kraposhin, V. S.; Kondrat'ev, S. Yu.; Talis, A. L.; Anastasiadi, G. P.
2017-03-01
In the process of holding of the cast heat-resistant Fe-Cr-Ni (0.45C-25Cr-35Ni) alloy at 1150°C, the eutectic chromium carbide present in its structure undergoes a gradual transition M 7C3 → M 23C6. The gradual formation of domains of the M 23C6 carbide inside the particles of the M 7C3 carbide makes it possible to assume that the observed phase transition is the well-known carbide transformation of the in situ type. The mechanism of the in situ transformation of the crystal structure of the carbide from M 7C3 into M 23C6 with a change in the number of nearest metal neighbors of carbon atoms is explained within the previously developed combinatory model of polymorphic transitions in the metals.
The dependence of carbide morphology on grain boundary character in the highly twinned Alloy 690
NASA Astrophysics Data System (ADS)
Li, Hui; Xia, Shuang; Zhou, Bangxin; Chen, Wenjue; Hu, Changliang
2010-04-01
The dependence of morphology of grain boundary carbides on grain boundary character in Alloy 690 (Ni-30Cr-10Fe, mass fraction, %) with high fraction of low Σ coincidence site lattice (CSL) grain boundaries was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Some of the surface grains were removed by means of deep etching. It was observed that carbides grow dendritically at grain boundaries. The carbide bars observed near incoherent twin boundaries and twin related Σ9 grain boundaries are actually secondary dendrites of the carbides on these boundaries. Higher order dendrites could be observed on random grain boundaries, however, no bar-like dendrites were observed near Σ27 grain boundaries and random grain boundaries. The morphology difference of carbides precipitated at grain boundaries with different characters is discussed based on the experimental results in this paper.
Eutectic equilibria in the quaternary system Fe-Cr-Mn-C
NASA Technical Reports Server (NTRS)
Nowotny, H.; Wayne, S.; Schuster, J. C.
1982-01-01
The constitution of the quaternary system, Fe-Cr-Mn-C and to a lesser extent of the quinary system, Fe-Cr-Mn-Al-C were examined for in situ composite alloy candidates. Multivariant eutectic compositions were determined from phase equilibria studies wherein M7C3 carbides (approximately 30% by volume) formed from the melt within gamma iron. An extended field of the hexagonal carbide, (Cr, Fe, Mn)7 C3, was found without undergoing transformation to the orthorhombic structure. Increasing stability for this carbide was found for higher ratios of Cr/Fe(+) Cr + Mn. Aluminum additions promoted a ferritic matrix while manganese favored the desired gamma austenitic matrix. In coexistence with the matrix phase, chromium enters preferentially the carbide phase while manganese distributes equally between the gamma matrix and the M7C3 carbide. The composition and lattice parameters of the carbide and matrix phases were determined to establish their respective stabilities.
Hugoniot equation of state and dynamic strength of boron carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Dennis E.
Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Losmore » Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic difference in the processes of shock compression between the LANL data and that of the other studies is the markedly larger inelastic deformation and dissipation experienced in the shock event brought about by compaction of the substantially larger porosity LANL test ceramics. High-pressure diamond anvil cell experiments reveal extensive amorphization, reasoned to be a reversion product of a higher-pressure crystallographic phase, which is a consequence of application of both high pressure and shear deformation to the boron carbide crystal structure. A dependence of shock-induced high-pressure phase transformation in boron carbide on the extent of shear deformation experienced in the shock process offers a plausible explanation for the differences observed in the LANL Hugoniot data on porous ceramic and that of other shock data on near-full-density boron carbide.« less
NASA Astrophysics Data System (ADS)
Knight, Travis Warren
Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC showed signs of liquid phase sintering and were shown to be largely solid solutions. Pre-compaction of mixed carbide powders prior to sintering was shown to be necessary to achieve high densities. Hypostoichiometric, samples processed at 2500 K exhibited only the initial stage of sintering and solid solution formation. Based on these findings, a suggested processing methodology is proposed for producing high density, solid solution, mixed carbide fuels. Pseudo-binary, refractory carbide samples hot pressed at 3100 K and 6 MPa showed comparable densities (approximately 85% of the theoretical value) to samples processed by cold pressing and sintering at temperatures of 2800 K.
Evaluation of titanium carbide metal matrix composites deposited via laser cladding
NASA Astrophysics Data System (ADS)
Cavanaugh, Daniel Thomas
Metal matrix composites have been widely studied in terms of abrasion resistance, but a particular material system may behave differently as particle size, morphology, composition, and distribution of the hardening phase varies. The purpose of this thesis was to understand the mechanical and microstructural effects of combining titanium carbide with 431 series stainless steel to create a unique composite via laser cladding, particularly regarding wear properties. The most predominant effect in increasing abrasion resistance, measured via ASTM G65, was confirmed to be volume fraction of titanium carbide addition. Macrohardness was directly proportional to the amount of carbide, though there was an overall reduction in individual particle microhardness after cladding. The reduction in particle hardness was obscured by the effect of volume fraction carbide and did not substantially contribute to the wear resistance changes. A model evaluating effective mean free path of the titanium carbide particles was created and correlated to the measured data. The model proved successful in linking theoretical mean free path to overall abrasion resistance. The effects of the titanium carbide particle distributions were limited, while differences in particle size were noticeable. The mean free path model did not correlate well with the particle size, but it was shown that the fine carbides were completely removed by the coarse abrasive particles in the ASTM G65 test. The particle morphology showed indications of influencing the wear mode, but no statistical reduction was observed in the volume loss figures. Future studies may more specifically focus on particle morphology or compositional effects of the carbide particles.
64. INTERIOR VIEW OF THE CARBIDE COOLING SHED. VIEW IS ...
64. INTERIOR VIEW OF THE CARBIDE COOLING SHED. VIEW IS SHOWING CALCIUM CARBIDE IN COOLING CARS ON THE FLOOR. DECEMBER 26, 1918. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL
Titanium Carbide Bipolar Plate for Electrochemical Devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.
Titanium carbide comprises a corrosion resistant, electrically conductive, non-porous bipolar plate for use in an electrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.
NASA Technical Reports Server (NTRS)
Kuramoto, N.; Takiguchi, H.
1984-01-01
The production of powder which contains silicon carbide consisting of 40% of 2H-type silicon carbide, beta type silicon carbide and less than 3% of nitrogen is discussed. The reaction temperature to produce the powder containing 40% of 2H-type silicon carbide is set at above 1550 degrees C in an atmosphere of aluminum or aluminum compounds and nitrogen gas or an antioxidation atmosphere containing nitrogen gas. The mixture ratio of silicon dioxide and carbon powder is 0.55 - 1:2.0 and the contents of aluminum or aluminum compounds within silicon dioxide is less than 3% in weight.
Invited Article: Indenter materials for high temperature nanoindentation
NASA Astrophysics Data System (ADS)
Wheeler, J. M.; Michler, J.
2013-10-01
As nanoindentation at high temperatures becomes increasingly popular, a review of indenter materials for usage at high temperatures is instructive for identifying appropriate indenter-sample materials combinations to prevent indenter loss or failure due to chemical reactions or wear during indentation. This is an important consideration for nanoindentation as extremely small volumes of reacted indenter material will have a significant effect on measurements. The high temperature hardness, elastic modulus, thermal properties, and chemical reactivities of diamond, boron carbide, silicon carbide, tungsten carbide, cubic boron nitride, and sapphire are discussed. Diamond and boron carbide show the best elevated temperature hardness, while tungsten carbide demonstrates the lowest chemical reactivity with the widest array of elements.
NASA Astrophysics Data System (ADS)
Ding, Zhimin; Liang, Bo; Zhao, Ruirong; Chen, Chunhuan
2015-05-01
The methods of transmission electron microscopy (TEM) and electron diffraction are used to study the carbides precipitated in Hadfield steel Mn13 during 2-h aging at 475°C. It is shown that carbides of types (Fe, Mn, Cr)23C6 and mixed (Fe, Mn, Cr)7C3 + (Fe, Mn, Cr)3C precipitate simultaneously over austenite grain boundaries. The data on precipitation of M23C- and M7C3-type carbides in a Hadfield steel after water quenching and aging are pioneer ones. Strict orientation relations of the M23C6 carbides and of the austenite matrix are determined.
2008-01-29
be conducted to demonstrate how the confined, brittle samples behave. The study shows that silicon carbide and boron carbide are the optimal...Exposition on Advanced Ceramics and Composites - 27 JAN to 1 FEB 2008, Daytona Beach, FL, The original document contains color images. 14. ABSTRACT 15...specimens investigated were aluminum nitride, boron carbide, 9606 pyroceram, and silicon carbide. The confining sleeve was modeled with RHA and had a
2015-03-26
method has been successfully used with several materials such as silicon carbide fiber - silicon carbide matrix ( SiC / SiC ) CMCs with carbon and boron...elements [14]. These advanced ceramics include oxides, nitrides and carbides of silicon , aluminum, titanium, and zirconium [12]. One of the most...oxides over silicon carbide and other non-oxide materials. In fact, it is the inherent stability of oxides in oxidizing environments which originally
2010-06-07
the materials properties of silicon carbide plates”, S. Kenderian et al., 2009 SPIE Proceedings, vol. 7425 • Materials – 10” x 16” SiC plates...CONFERENCE PROCEEDING 3. DATES COVERED (From - To) 2008-2010 4. TITLE AND SUBTITLE Results from Mechanical Testing of Silicon Carbide for Space...for silicon carbide optical systems that covers material verification through system development. Recent laboratory results for testing of materials
Advanced High-Power Generator Research Program
1986-05-01
lOOx ............. ... 3A-6 3A-3 Carbides in the Inconel are Well Broken Up. No Continuous Networks as in Previous Bonds. Unetched. Magnified 225X.. 3A...7 3A-4 Carbides in the Inconel are Well Broken Uo. No Continuous Networks as in Previous Bonds. Unetched. Magnified 225X.. 3A-7 3A-5 Carbides are Well...3A-9 3A-8 Typical Tensile Rupture. Failure Occurred with Inconel 718 Carbide Precipitation Zone. Magnified 225X
Silicon carbide ceramic production
NASA Technical Reports Server (NTRS)
Suzuki, K.; Shinohara, N.
1984-01-01
A method to produce sintered silicon carbide ceramics in which powdery carbonaceous components with a dispersant are mixed with silicon carbide powder, shaped as required with or without drying, and fired in nonoxidation atmosphere is described. Carbon black is used as the carbonaceous component.
Titanium carbide bipolar plate for electrochemical devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaConti, Anthony B.; Griffith, Arthur E.; Cropley, Cecelia C.
A corrosion resistant, electrically conductive, non-porous bipolar plate is made from titanium carbide for use in an eletrochemical device. The process involves blending titanium carbide powder with a suitable binder material, and molding the mixture, at an elevated temperature and pressure.
Microstructural characterization of high-carbon ferrochromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lesko, A.; Navara, E.
1996-04-01
Light optical and scanning electron microscopy techniques were used for high-carbon ferrochromium microstructural analysis. Different microstructures were observed for industrially and laboratory-produced ferroalloys. Primary carbides of M{sub 7}C{sub 3} with chromium ferrite were found in the industrially produced, slowly solidified, and cooled ferroalloy, while primary M{sub 7}C{sub 3} carbides accompanied a eutectic mixture of M{sub 7}C{sub 3} carbides and chromium ferrite in the laboratory-melted and in the water-solidified and water-cooled materials. Different microstructural arrangements are directly related to the friability properties of this material, which characterizes its resistance to abrasion on handling and impact. In ferrochromium upgraded by carbon contentmore » reduction, the eutectic M{sub 7}C{sub 3} hexagonal carbides are partly replaced by M{sub 23}C{sub 6} dendritic carbides. The presence of dendritic carbides in the ferrochromium eutectic microstructure can be interpreted as a proof of a lower carbon content, raising the commercial value of the ferroalloy. The hexagonal M{sub 7}C{sub 3} carbides exhibited a central hollow along the longitudinal axis, and on metallographic samples they looked like screw nuts. A model of the solidification mechanism for such crystals is proposed.« less
Flexural strength of proof-tested and neutron-irradiated silicon carbide
NASA Astrophysics Data System (ADS)
Price, R. J.; Hopkins, G. R.
1982-08-01
Proof testing before service is a valuable method for ensuring the reliability of ceramic structures. Silicon carbide has been proposed as a very low activation first-wall and blanket structural material for fusion devices, where it would experience a high flux of fast neutrons. Strips of three types of silicon carbide were loaded in four-point bending to a stress sufficient to break about a third of the specimens. Groups of 16 survivors were irradiated to 2 × 10 26n/ m2 ( E>0.05 MeV) at 740°C and bend tested to failure. The strength distribution of chemically vapor-deposited silicon carbide (Texas Instruments) was virtually unchanged by irradiation. The mean strength of sintered silicon carbide (Carborundum Alpha) was reduced 34% by irradiation, while the Weibull modulus and the truncated strength distribution characteristic of proof-tested material were retained. Irradiation reduced the mean strength of reaction-bonded silicon carbide (Norton NC-430) by 58%, and the spread in strength values was increased. We conclude that for the chemically vapor-deposited and the sintered silicon carbide the benefits of proof testing to eliminate low strength material are retained after high neutron exposures.
Modeling of grain boundary stresses in Alloy 600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozaczek, K.J.; Sinharoy, A.; Ruud, C.O.
1995-04-01
Corrosive environments combined with high stress levels and susceptible microstructures can cause intergranular stress corrosion cracking (IGSCC) of Alloy 600 components on both primary and secondary sides of pressurized water reactors. One factor affecting the IGSCC is intergranular carbide precipitation controlled by heat treatment of Alloy 600. This study is concerned with analysis of elastic stress fields in vicinity of M{sub 7}C{sub 3} and M{sub 23}C{sub 6} carbides precipitated in the matrix and at a grain boundary triple point. The local stress concentration which can lead to IGSCC initiation was studied using a two-dimensional finite element model. The intergranular precipitatesmore » are more effective stress raisers than the intragranular precipitates. The combination of the elastic property mismatch and the precipitate shape can result in a local stress field substantially different than the macroscopic stress. The maximum local stresses in the vicinity of the intergranular precipitate were almost twice as high as the applied stress.« less
NASA Astrophysics Data System (ADS)
Oya, Yasuhisa; Sato, Misaki; Li, Xiaochun; Yuyama, Kenta; Fujita, Hiroe; Sakurada, Shodai; Uemura, Yuki; Hatano, Yuji; Yoshida, Naoaki; Ashikawa, Naoko; Sagara, Akio; Chikada, Takumi
2016-02-01
Temperature dependence on deuterium (D) retention for He+ implanted tungsten (W) was studied by thermal desorption spectroscopy (TDS) to evaluate the tritium retention behavior in W. The activation energies were evaluated using Hydrogen Isotope Diffusion and Trapping (HIDT) simulation code and found to be 0.55 eV, 0.65 eV, 0.80 eV and 1.00 eV. The heating scenarios clearly control the D retention behavior and, dense and large He bubbles could work as a D diffusion barrier toward the bulk, leading to D retention enhancement at lower temperature of less than 430 K, even if the damage was introduced by He+ implantation. By comparing the D retention for W, W with carbon deposit and tungsten carbide (WC), the dense carbon layer on the surface enhances the dynamic re-emission of D as hydrocarbons, and induces the reduction of D retention. However, by He+ implantation, the D retention was increased for all the samples.
Thermodynamic analysis of the formation of tetragonal bainite in steels
NASA Astrophysics Data System (ADS)
Mirzayev, D. A.; Mirzoev, A. A.; Buldashev, I. V.; Okishev, K. Yu.
2017-06-01
In the articles of Bkhadeshia, a new class of high-strength steels based on the structure of carbidefree bainite with an enhanced carbon content has been developed. According to Bkhadeshia, the main factor responsible for the high solubility of carbon is the occurrence of a tetragonality of the bainite lattice. To check this effect, in this article, the theory of tetragonality of martensite of iron alloys developed by Zener and Khachaturyan was applied to bainite under the assumption that the precipitation of carbides is prohibited. Equations for the chemical potentials of carbon and iron in austenite and in tetragonal ferrite have been derived. The equilibrium of these phases has been considered, and the calculations of the boundary concentrations of carbon and iron at different temperatures (300-1000 K) and at different parameters of the deformation interaction λ0 have been performed. The rigorous calculations confirmed Bkhadeshia's hypothesis that the suppression of the carbide formation during the formation of bainite leads to an increase in the carbon solubility in the bcc phase.
The effect of hydrogen on B4C coatings fabrication in inductively coupled plasma torch
NASA Astrophysics Data System (ADS)
Guo, Q. J.; Zhao, P.; Li, L.; Zhou, Q. J.; Ni, G. H.; Meng, Y. D.
2018-02-01
Boron carbide (B4C) coatings are prepared by an RF inductively coupled plasma (ICP) torch with different amounts of hydrogen introduced into the sheath gas. The effects of the added hydrogen on the characteristics of the plasma are diagnosed by optical emission spectroscopy and high speed photography. The effects on the melting of B4C particles in the plasma are studied by scanning electron microscopy (SEM). The microstructure of the B4C coatings was determined with SEM imaging and x-ray diffraction analysis. The results show that adding hydrogen to the sheath gas leads to plasma contraction, which results in higher gas temperature of plasma. It also enhances B4C particles spheroidizing and improves the compactness of B4C coatings. Plasma processing does not change the main phase of boron carbide. The obtained results on B4C coatings on Cu substrates allows for improving the B4C coatings fabrication process.
Silicon Carbide Technologies for Lightweighted Aerospace Mirrors
NASA Astrophysics Data System (ADS)
Matson, L.; Chen, M.; Deblonk, B.; Palusinski, I.
The use of monolithic glass and beryllium to produce lightweighted aerospace mirror systems has reached its limits due to the long lead times, high processing costs, environmental effects and launch load/weight requirements. New material solutions and manufacturing processes are required to meet DoD's directed energy weapons, reconnaissance/surveillance, and secured communications needs. Over the past several years the Air Force, MDA, and NASA has focused their efforts on the fabrication, lightweighting, and scale-up of numerous silicon carbide (SiC) based materials. It is anticipated that SiC can be utilized for most applications from cryogenic to high temperatures. This talk will focus on describing the SOA for these (near term) SiC technology solutions for making mirror structural substrates, figuring and finishing technologies being investigated to reduce cost time and cost, and non-destructive evaluation methods being investigated to help eliminate risk. Mirror structural substrates made out of advanced engineered materials (far term solutions) such as composites, foams, and microsphere arrays for ultra lightweighting will also be briefly discussed.
NASA Astrophysics Data System (ADS)
Wang, Xiaowo; Xu, Zhijie; Soulami, Ayoub; Hu, Xiaohua; Lavender, Curt; Joshi, Vineet
2017-12-01
Low-enriched uranium alloyed with 10 wt.% molybdenum (U-10Mo) has been identified as a promising alternative to high-enriched uranium. Manufacturing U-10Mo alloy involves multiple complex thermomechanical processes that pose challenges for computational modeling. This paper describes the application of integrated computational materials engineering (ICME) concepts to integrate three individual modeling components, viz. homogenization, microstructure-based finite element method for hot rolling, and carbide particle distribution, to simulate the early-stage processes of U-10Mo alloy manufacture. The resulting integrated model enables information to be passed between different model components and leads to improved understanding of the evolution of the microstructure. This ICME approach is then used to predict the variation in the thickness of the Zircaloy-2 barrier as a function of the degree of homogenization and to analyze the carbide distribution, which can affect the recrystallization, hardness, and fracture properties of U-10Mo in subsequent processes.
Method for producing silicon nitride/silicon carbide composite
Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.
1996-07-23
Silicon carbide/silicon nitride composites are prepared by carbothermal reduction of crystalline silica powder, carbon powder and optionally crsytalline silicon nitride powder. The crystalline silicon carbide portion of the composite has a mean number diameter less than about 700 nanometers and contains nitrogen.
Evaluation of urethane and carbide-tipped blades on wheel-supported snow plows.
DOT National Transportation Integrated Search
1997-01-01
The objective of this study was to evaluate the performance of urethane and carbide-tipped snow plow blades on wheel supported plows. Their performance was compared to that of VDOT's standard blade arrangement: carbide-tipped blades on plows without ...
Molybdenum disilicide composites reinforced with zirconia and silicon carbide
Petrovic, John J.
1995-01-01
Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.
Carbothermic Aluminum Production Using Scrap Aluminum As A Coolant
LaCamera, Alfred F.
2002-11-05
A process for producing aluminum metal by carbothermic reduction of alumina ore. Alumina ore is heated in the presence of carbon at an elevated temperature to produce an aluminum metal body contaminated with about 10-30% by wt. aluminum carbide. Aluminum metal or aluminum alloy scrap then is added to bring the temperature to about 900-1000.degree. C. and precipitate out aluminum carbide. The precipitated aluminum carbide is filtered, decanted, or fluxed with salt to form a molten body having reduced aluminum carbide content.
2015-09-16
AFRL-AFOSR-VA-TR-2015-0314 Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C...Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C 5a. CONTRACT NUMBER 5b. GRANT...with a packed bed of B4C to form boride - carbide precipitates. Although the ultimate goal of the research endeavor is to enhance significantly the
Effect of carbide distribution on rolling-element fatigue life of AMS 5749
NASA Technical Reports Server (NTRS)
Parker, R. J.; Bamberger, E. N.
1983-01-01
Endurance tests with ball bearings made of corrosion resistant bearing steel which resulted in fatigue lives much lower than were predicted are discussed. Metallurgical analysis revealed an undesirable carbide distribution in the races. It was shown in accelerated fatigue tests in the RC rig that large, banded carbides can reduce rolling element fatigue life by a factor of approximately four. The early spalling failures on the bearing raceways are attributed to the large carbide size and banded distribution.
A study on the production of titanium carbide nano-powder in the nanostate and its properties
NASA Astrophysics Data System (ADS)
Shiryaeva, L. S.; Rudneva, S. V.; Galevsky, G. V.; Garbuzova, A. K.
2016-09-01
The plasma synthesis of titanium carbide nano-powder in the conditions close to industrial was studied. Titanium carbide TiC is a wear- and corrosion-resistant, hard, chemically inert material, demanded in various fields for the production of hard alloys, metal- ceramic tools, heat-resistant products, protective metal coatings. New perspectives for application titanium carbide in the nanostate can be found in the field of alloys modification with different composition and destination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.
NASA Astrophysics Data System (ADS)
Jiao, S. Y.; Zhang, M. C.; Zheng, L.; Dong, J. X.
2010-01-01
For the purpose of studying the effect of heat treatment on carbide morphology and chromium concentration distribution, which are critical to the resistance of alloy 690 to stress corrosion cracking (SCC), a series of thermal treatments was performed. A model taking into account the intercorrelated dynamic process between the carbide precipitation and chemical diffusion of the chromium atom from matrix to grain boundary (GB) was constructed on the basis of classical nucleation theory, Kolmogorov-Johnson-Mehl-Avrami law, and diffusion theory. The validity of this model was evaluated by comparing the simulated results of the carbide average size and chromium concentration near the GB with the corresponding measured results. A discontinuous factor was introduced based on the relation linking the interdistance between the carbides and the carbide average size; thus, the carbide morphology and chromium concentration could be predicted by this model. According to the results of the experiments and simulations, a carbide discontinuous factor smaller than 2.2 together with the chromium concentration at the GB higher than a critical value (21 wt pct) were essential for the corrosion resistance ability of the alloy, and then some proper heat-treatment conditions were obtained through predicting the value of the two variables. In addition, the effects of the grain size and composition variation on the carbide discontinuous factor and chromium concentration profile were simulated. The results indicated that an intermediate grain size of approximately 31.8 to ~63.5 μm was beneficial for effectively improving the resistance of the alloy to SCC. Simultaneously, the carbon content should be adjusted near 0.02 pct, and the chromium content should be the highest possible in its chemical composition scale.
Chemical vapour deposition: Transition metal carbides go 2D
Gogotsi, Yury
2015-08-17
Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties 1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family 3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity 4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour depositionmore » with a high crystallinity and very low defect concentration.« less
NASA Technical Reports Server (NTRS)
Tanaka, Hidehiko
1987-01-01
A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.
Preliminary study of neutron absorption by concrete with boron carbide addition
NASA Astrophysics Data System (ADS)
Abdullah, Yusof; Ariffin, Fatin Nabilah Tajul; Hamid, Roszilah; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal; Ahmad, Sahrim; Mohamed, Abdul Aziz
2014-02-01
Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.
Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.
Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua
2018-02-07
Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan
2016-01-01
Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.
Molybdenum disilicide composites reinforced with zirconia and silicon carbide
Petrovic, J.J.
1995-01-17
Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.
NASA Astrophysics Data System (ADS)
Kushkhov, Kh. B.; Kardanov, A. L.; Adamokova, M. N.
2013-02-01
Nanopowders of binary tungsten-molybdenum carbide are fabricated by high-temperature electrochemical synthesis. The optimum concentration relations between electrolyte components, the current density, and the quantity of electricity are determined to synthesize binary tungsten-molybdenum carbides.
Method of making carbon fiber-carbon matrix reinforced ceramic composites
NASA Technical Reports Server (NTRS)
Williams, Brian (Inventor); Benander, Robert (Inventor)
2007-01-01
A method of making a carbon fiber-carbon matrix reinforced ceramic composite wherein the result is a carbon fiber-carbon matrix reinforcement is embedded within a ceramic matrix. The ceramic matrix does not penetrate into the carbon fiber-carbon matrix reinforcement to any significant degree. The carbide matrix is a formed in situ solid carbide of at least one metal having a melting point above about 1850 degrees centigrade. At least when the composite is intended to operate between approximately 1500 and 2000 degrees centigrade for extended periods of time the solid carbide with the embedded reinforcement is formed first by reaction infiltration. Molten silicon is then diffused into the carbide. The molten silicon diffuses preferentially into the carbide matrix but not to any significant degree into the carbon-carbon reinforcement. Where the composite is intended to operate between approximately 2000 and 2700 degrees centigrade for extended periods of time such diffusion of molten silicon into the carbide is optional and generally preferred, but not essential.
MC carbide structures in M(lc2)ar-M247. M.S. Thesis - Final Report
NASA Technical Reports Server (NTRS)
Wawro, S. W.
1982-01-01
The morphologies and distribution of the MC carbides in Mar-M247 ingot stock and castings were investigated using metallographic, X-ray diffraction and energy-dispersive X-ray analysis techniques. The MC carbides were found to form script structures during solidification. The script structures were composed of three distinct parts. The central cores and elongated arms of the MC carbide script structures had compositions (Ti, Cr, Hf, Ta, W)C and lattice parameters of 4.39 A. The elongated script arms terminated in enlarged, angular "heads". The heads had compositions (Ti, Hf, Ta, W)C and lattice parameters of approximately 4.50 A. The heads had a higher Hf content than the cores and arms. The size of the script structures, as well as the relative amount of head-type to core and arm-type MC carbide, was found to be determined by solidification conditions. No carryover of the MC carbides from the ingot stock to the remelted and cast material was observed.
NASA Astrophysics Data System (ADS)
Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.
2017-03-01
Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tingguang; Xia, Shuang, E-mail: xs@shu.edu.cn; Li, Hui
Grain boundary engineering was carried out on an aging-treated nickel based Alloy 690, which has precipitated carbides at grain boundaries. Electron backscatter diffraction technique was used to investigate the grain boundary networks. Results show that, compared with the solution-annealed samples, the aging-treated samples with pre-existing carbides at grain boundaries need longer duration or higher temperature during annealing after low-strain tensile deformation for forming high proportion of low-Σ coincidence site lattice grain boundaries (more than 75%). The reason is that the primary recrystallization is inhibited or retarded owing to that the pre-existing carbides are barriers to grain boundaries migration. - Highlights:more » • Study of GBE as function of pre-existing GB carbides, tensile strain and annealing • Recrystallization of GBE is inhibited or retarded by the pre-existing carbides. • Retained carbides after annealing show the original GB positions. • More than 80% of special GBs were formed after the modification of GBE processing. • Multiple twinning during recrystallization is the key process of GBE.« less
NASA Astrophysics Data System (ADS)
Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo
2012-08-01
Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite.
Carbide factor predicts rolling-element bearing fatigue life
NASA Technical Reports Server (NTRS)
Chevalier, J. L.; Zaretsky, E. V.
1973-01-01
Analysis was made to determine correlation between number and size of carbide particles and rolling-element fatigue. Correlation was established, and carbide factor was derived that can be used to predict fatigue life more effectively than such variables as heat treatment, chemical composition, and hardening mechanism.
Hersam, Mark C.; Lipson, Albert L.; Bandyopadhyay, Sudeshna; Karmel, Hunter J; Bedzyk, Michael J
2014-05-27
A method for enhancing the lithium-ion capacity of a doped silicon carbide is disclosed. The method utilizes heat treating the silicon carbide in an inert atmosphere. Also disclosed are anodes for lithium-ion batteries prepared by the method.
The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.
Rodriguez, José A.; Liu, Ping; Stacchiola, Dario J.; ...
2015-09-30
In this study, the high thermochemical stability of CO 2 makes it very difficult to achieve the catalytic conversion of the molecule into alcohols or other hydrocarbon compounds, which can be used as fuels or the starting point for the generation of fine chemicals. Pure metals and bimetallic systems used for the CO 2 → CH 3OH conversion usually bind CO 2 too weakly and, thus, show low catalytic activity. Here, we discuss a series of recent studies that illustrate the advantages of metal–oxide and metal–carbide interfaces when aiming at the conversion of CO2 into methanol. CeO x/Cu(111), Cu/CeO x/TiOmore » 2(110), and Au/CeO x/TiO 2(110) exhibit an activity for the CO 2 → CH 3OH conversion that is 2–3 orders of magnitude higher than that of a benchmark Cu(111) catalyst. In the Cu–ceria and Au–ceria interfaces, the multifunctional combination of metal and oxide centers leads to complementary chemical properties that open active reaction pathways for methanol synthesis. Efficient catalysts are also generated after depositing Cu and Au on TiC(001). In these cases, strong metal–support interactions modify the electronic properties of the admetals and make them active for the binding of CO 2 and its subsequent transformation into CH 3OH at the metal–carbide interfaces.« less
Colloidal characterization of ultrafine silicon carbide and silicon nitride powders
NASA Technical Reports Server (NTRS)
Whitman, Pamela K.; Feke, Donald L.
1986-01-01
The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.
Manufacture of silicon carbide using solar energy
Glatzmaier, Gregory C.
1992-01-01
A method is described for producing silicon carbide particles using solar energy. The method is efficient and avoids the need for use of electrical energy to heat the reactants. Finely divided silica and carbon are admixed and placed in a solar-heated reaction chamber for a time sufficient to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.
Dynamic Modulus and Damping of Boron, Silicon Carbide, and Alumina Fibers
NASA Technical Reports Server (NTRS)
Dicarlo, J. A.; Williams, W.
1980-01-01
The dynamic modulus and damping capacity for boron, silicon carbide, and silicon carbide coated boron fibers were measured from-190 to 800 C. The single fiber vibration test also allowed measurement of transverse thermal conductivity for the silicon carbide fibers. Temperature dependent damping capacity data for alumina fibers were calculated from axial damping results for alumina-aluminum composites. The dynamics fiber data indicate essentially elastic behavior for both the silicon carbide and alumina fibers. In contrast, the boron based fibers are strongly anelastic, displaying frequency dependent moduli and very high microstructural damping. Ths single fiber damping results were compared with composite damping data in order to investigate the practical and basic effects of employing the four fiber types as reinforcement for aluminum and titanium matrices.
Preliminary study of neutron absorption by concrete with boron carbide addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat
2014-02-12
Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates themore » most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.« less
Tribological properties of silicon carbide in metal removal process
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Material properties are considered as they relate to adhesion, friction, and wear of single crystal silicon carbide in contact with metals and alloys that are likely to be involved in a metal removal process such as grinding. Metal removal from adhesion between sliding surfaces in contact and metal removal as a result of the silicon carbide sliding against a metal, indenting into it, and plowing a series of grooves or furrows are discussed. Fracture and deformation characteristics of the silicon carbide surface are also covered. The adhesion, friction, and metal transfer to silicon carbide is related to the relative chemical activity of the metals. The more active the metal, the higher the adhesion and friction, and the greater the metal transfer to silicon carbide. Atomic size and content of alloying elements play a dominant role in controlling adhesion, friction, and abrasive wear properties of alloys. The friction and abrasive wear (metal removal) decrease linearly as the shear strength of the bulk metal increases. They decrease as the solute to solvent atomic radius ratio increases or decreases linearly from unity, and with an increase of solute content. The surface fracture of silicon carbide is due to cleavages of 0001, 10(-1)0, and/or 11(-2)0 planes.
NASA Astrophysics Data System (ADS)
Ren, Bo; Chen, Changjun; Zhang, Min
2018-04-01
Stellite 6 cobalt-based alloy powder was used to produce Co-Cr-W alloy using laser additive manufacturing technology, and then different heat treatment strategies were carried out on the deposited sample. The characteristics of microstructure under different heat treatment conditions were investigated using scanning electron microscopy with energy dispersive spectroscopy, transmission electron microscope, and x-ray diffraction. The results show that the as-deposited sample has few cracks or pores, and the microstructure is typical dendritic structure, and lamellar eutectic carbides are rich in Cr in interdendritic. The matrix mainly consists of γ phases and a few ɛ phases. Some γ phases transform into ɛ phases after 900°C/6 h aging treatment and lamellar eutectic carbides transform into blocky carbides presenting as a network, most of the carbides are rich in Cr and a few are rich in W. When heat treated at 1200°C/1 h followed by water cooling and then treated at 900°C/6 h followed by furnace cooling, it can be found that some γ phases transform into ɛ phases. The carbides transform into elliptical M23C6 carbides that are rich in Cr with the size of 1 to 3 μm and a part of W-rich carbides.
Fu, Zhiqiang; Wang, Chengbiao
2014-01-01
Ultrafine tungsten carbide-nickel (WC-Ni) cemented carbides with varied fractions of silicon carbide (SiC) nanowhisker (0–3.75 wt.%) were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC) and tantalum carbide (TaC) as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS) Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker. PMID:25003143
Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B
2011-01-01
The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1. Copyright © 2010 Elsevier Ltd. All rights reserved.
Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles
Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao
2016-01-01
A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air. PMID:26831205
Enhancement of oxidation resistance via a self-healing boron carbide coating on diamond particles.
Sun, Youhong; Meng, Qingnan; Qian, Ming; Liu, Baochang; Gao, Ke; Ma, Yinlong; Wen, Mao; Zheng, Weitao
2016-02-02
A boron carbide coating was applied to diamond particles by heating the particles in a powder mixture consisting of H3BO3, B and Mg. The composition, bond state and coverage fraction of the boron carbide coating on the diamond particles were investigated. The boron carbide coating prefers to grow on the diamond (100) surface than on the diamond (111) surface. A stoichiometric B4C coating completely covered the diamond particle after maintaining the raw mixture at 1200 °C for 2 h. The contribution of the boron carbide coating to the oxidation resistance enhancement of the diamond particles was investigated. During annealing of the coated diamond in air, the priory formed B2O3, which exhibits a self-healing property, as an oxygen barrier layer, which protected the diamond from oxidation. The formation temperature of B2O3 is dependent on the amorphous boron carbide content. The coating on the diamond provided effective protection of the diamond against oxidation by heating in air at 1000 °C for 1 h. Furthermore, the presence of the boron carbide coating also contributed to the maintenance of the static compressive strength during the annealing of diamond in air.
NASA Astrophysics Data System (ADS)
Ettienne-Modeste, Geriel A.
Total joint replacement remains one of the most successful treatments for arthritis. The most common materials used for artificial joints are metals (e.g., cobalt-chrome alloys or titanium alloys), which articulate against ultra-high molecular weight polyethylene. Wear related failures of artificial joints may be reduced with the use of novel micro-textured carbide surfaces. The micro-textured carbide surfaces were deposited on a CoCrMo alloy using microwave plasma-assisted chemical vapor deposition. Wear tests were conducted to determine wear mechanisms and properties of the micro-textured surfaces. The research presented in this thesis addresses: (1) rheolgoical behavior of bovine calf serum with and without antibacterial agents to determine whether they can be used as appropriate models for synovial fluid, (2) the wear behavior of the micro-textured CoCrMo surface system, and (3) the mechanical and material properties of the micro-textured CoCrMo alloy surface relevant to wear performance. The rheological studies showed that the apparent viscosity of bovine calf serum increased with an increase in concentration before and after the serum was used for wear testing. The wear analysis showed that the processing conditions (2hr deposition vs. 4hr deposition times) affected the wear properties. The 2hr carbide-on-carbide lubricated in 50% BCS produced the lowest wear factor and rate for the five wear couple systems containing the carbide disk or plate material. Greater wear was produced in serum without penicillin/streptomycin (P/S) compared to the serum containing P/S. A greater carbide coating thickness 10 (micrometers) was produced during the 4hr deposition time than for the 2hr deposition (˜3mum). The nano-hardness value was higher than the micro-hardness for both the 4hr and 2hr carbide surfaces. The micro-hardness results of the worn carbide surfaces showed that an increase in BCS concentration from 0% to 100% increased the micro-hardness (HV) for carbide surfaces (from 873 to 1344 HV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zinin, Pavel V.; Burgess, Katherine; Jia, Ruth
Dense BC{sub x} phases with high boron concentration are predicted to be metastable, superhard, and conductors or superconductors depending on boron concentration. However, up to this point, diamond-like boron rich carbides BC{sub x} (dl-BC{sub x}) phases have been thought obtainable only through high pressure and high temperature treatment, necessitating small specimen volume. Here, we use electron energy loss spectroscopy combined with transmission electron microscopy, Raman spectroscopy, surface Brillouin scattering, laser ultrasonics (LU) technique, and analysis of elastic properties to demonstrate that low pressure synthesis (chemical vapor deposition) of BC{sub x} phases may also lead to the creation of diamond-like boronmore » rich carbides. The elastic properties of the dl-BC{sub x} phases depend on the carbon sp²versus sp³ content, which decreases with increasing boron concentration, while the boron bonds determine the shape of the Raman spectra of the dl-BC{sub x} after high pressure-high temperature treatment. Using the estimation of the density value based on the sp³ fraction, the shear modulus μ of dl-BC₄, containing 10% carbon atoms with sp³ bonds, and dl-B₃C₂, containing 38% carbon atoms with sp³ bonds, were found to be μ = 19.3 GPa and μ = 170 GPa, respectively. The presented experimental data also imply that boron atoms lead to a creation of sp³ bonds during the deposition processes.« less
Chemical and structural characterization of boron carbide powders and ceramics
NASA Astrophysics Data System (ADS)
Kuwelkar, Kanak Anant
Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from 9 to 20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide. Vibrational mode frequencies and lattice parameter measurements from Rietveld refinement were correlated to the respective B:C ratios calculated using the developed characterization techniques. An expansion of the unit cell and change in slope in the lattice parameter-stoichiometry relationship were observed at more boron rich stoichiometries. These observations were justified through the proposal of a simplified structural model considering preferential substitution of boron atoms for carbon atoms in the icosahedra from 20 at% to 13.3 at% carbon, followed by formation of B-B bonds from 13.3 at % C to 9 at% C. Hardness measurements uncovered decreased hardness values in boron rich boron carbide which was attributed to the formation of weaker unit cells. Load induced amorphization was also detected in all the indented materials. Finally, experimental observations have shown that failure in boron carbide may be governed by a mechanism other than amorphization and synthesizing boron carbide with a modified microstructure at stoichiometries close to B4C may be the way forward to attain improved ballistic performance.
Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple
NASA Technical Reports Server (NTRS)
Gahn, R. F.; Reid, M. A.; Yang, C. Y. (Inventor)
1981-01-01
Zirconium carbide is used as a catalyst in a REDOX cell for the oxidation of chromous ions to chromic ions and for the reduction of chromic ions to chromous ions. The zirconium carbide is coated on an inert electronically conductive electrode which is present in the anode fluid of the cell.
Code of Federal Regulations, 2011 CFR
2011-07-01
... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution... with wet air pollution control devices subcategory. The provisions of this subpart are applicable to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution... with wet air pollution control devices subcategory. The provisions of this subpart are applicable to...
Code of Federal Regulations, 2013 CFR
2013-07-01
... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution... with wet air pollution control devices subcategory. The provisions of this subpart are applicable to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution... with wet air pollution control devices subcategory. The provisions of this subpart are applicable to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... covered calcium carbide furnaces with wet air pollution control devices subcategory. 424.40 Section 424.40... FERROALLOY MANUFACTURING POINT SOURCE CATEGORY Covered Calcium Carbide Furnaces With Wet Air Pollution... with wet air pollution control devices subcategory. The provisions of this subpart are applicable to...
Silicon Carbide Integrated Circuit Chip
2015-02-17
A multilevel interconnect silicon carbide integrated circuit chip with co-fired ceramic package and circuit board recently developed at the NASA GRC Smart Sensors and Electronics Systems Branch for high temperature applications. High temperature silicon carbide electronics and compatible packaging technologies are elements of instrumentation for aerospace engine control and long term inner-solar planet explorations.
Boron carbide nanostructures: A prospective material as an additive in concrete
NASA Astrophysics Data System (ADS)
Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay
2018-05-01
In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.
NASA Astrophysics Data System (ADS)
Zhang, Jie; Chen, Jinwei; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin
2016-12-01
This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe3C and Co3C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe3C, and Co3C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruemmer, Stephen M.; Olszta, Matthew J.; Toloczko, Mychailo B.
2012-10-01
Grain boundary microstructures and microchemistries are examined in cold-rolled alloy 690 tubing and plate materials and comparisons are made to intergranular stress corrosion cracking (IGSCC) behavior in PWR primary water. Chromium carbide precipitation is found to be a key aspect for materials in both the mill annealed and thermally treated conditions. Cold rolling to high levels of reduction was discovered to produce small IG voids and cracked carbides in alloys with a high density of grain boundary carbides. The degree of permanent grain boundary damage from cold rolling was found to depend directly on the initial IG carbide distribution. Formore » the same degree of cold rolling, alloys with few IG precipitates exhibited much less permanent damage. Although this difference in grain boundary damage appears to correlate with measured SCC growth rates, crack tip examinations reveal that cracked carbides appeared to blunt propagation of IGSCC cracks in many cases. Preliminary results suggest that the localized grain boundary strains and stresses produced during cold rolling promote IGSCC susceptibility and not the cracked carbides and voids.« less
Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osswald, S.; Portet, C.; Gogotsi, Y., E-mail: gogotsi@drexel.ed
2009-07-15
Carbide-derived carbons (CDC) allow a precise control over the pore size through the selection of the carbide precursor and varying of the synthesis conditions. However, their pore volume is limited by the carbide stoichiometry. While activation of carbons derived from various organic precursors has been widely studied, this process may similarly be able to increase the pore volume and specific surface area of CDC. Oxidation of carbide-derived carbon in air and CO{sub 2} at different temperatures and times allows for significant increase in pore volume and specific surface area as well as control over average pore size with subnanometer accuracy.more » The effect of activation and associated changes in the pore volume and surface area on the hydrogen uptake are also discussed. - Graphical abstract: Carbide-derived carbons (CDC) provide great potential for sorption of toxicants and gas storage applications. Activation of CDC in air and CO{sub 2} at different temperatures and times is applied in order to maximize pore volume and specific surface area, and control the average pore size with subnanometer accuracy.« less
NASA Astrophysics Data System (ADS)
Kraposhin, V. S.; Kondrat'ev, S. Yu.; Talis, A. L.; Anastasiadi, G. P.
2017-03-01
The microstructure and the phase composition of a heat-resistant Fe-Cr-Ni alloy (0. 45C-25Cr-35Ni) has been investigated in the cast state and after annealing at 1150°C for 2-100 h. After a 2-h high-temperature annealing, the fragmentation of the crystal structure of the eutectic M 7C3 carbides into domains of 500 nm in size with a partial transition into M 23C6 carbides is observed. After a 100-h holding, the complete transition of the hexagonal M 7C3 carbides into M 23C6 with a face-centered cubic structure occurs. The carbide transition M 7C3 → M 23 can be considered to be an in situ transformation.
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
Boron-carbide-aluminum and boron-carbide-reactive metal cermets
Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.
1986-01-01
Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.
Novel Carbon Films for Next Generation Rotating Equipment Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael McNallan; Ali Erdemir; Yury Gogotsi
2006-02-20
This report describes the results of research performed on a new generation of low friction, wear resistant carbon coatings for seals and bearings in high speed rotating equipment. The low friction coatings, Near Frictionless Carbon (NFC), a high hydrogen content diamondlike carbon, and Carbide Derived Carbon (CDC), a conversion coating produced on the surfaces of metal carbides by halogenation, can be applied together or separately to improve the performance of seals and bearings, with benefits to energy efficiency and environmental protection. Because hard carbide ceramics, such as silicon carbide, are widely used in the seals industry, this coating is particularlymore » attractive as a low cost method to improve performance. The technology of CDC has been licensed to an Illinois company, Carbide Derivative Technologies, Inc. (CDTI) to implement the commercialization of this material.« less
Tew, Min Wei; Nachtegaal, Maarten; Janousch, Markus; Huthwelker, Thomas; van Bokhoven, Jeroen A
2012-04-28
The catalytically active phase of silica-supported palladium catalysts in the selective and non-selective hydrogenation of 1-pentyne was determined using in situ X-ray absorption spectroscopy at the Pd K and L(3) edges. Upon exposure to alkyne, a palladium carbide-like phase rapidly forms, which prevents hydrogen to diffuse into the bulk of the nano-sized particles. Both selective and non-selective hydrogenation occur over carbided particles. The palladium carbide-like phase is stable under reaction conditions and only partially decomposes under high hydrogen partial pressure. Non-selective hydrogenation to pentane is not indicative of hydride formation. The palladium carbide phase was detected in the EXAFS analysis and the K edge XANES showed representative features. This journal is © the Owner Societies 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.
Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantationmore » and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.« less
Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al
Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.
1985-05-06
Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.
Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1978-01-01
Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.
Effect of rotary instrumentation on composite bond strength with simulated pulpal pressure.
Gupta, Ruchi; Tewari, Sanjay
2006-01-01
This study evaluated the effect of cutting teeth with different types of burs at various speeds on shear bond strength using Prime and Bond NT (Dentsply/DeTrey). A simulated pulpal pressure of 25-mmHg, equivalent to 34 cmH2O, was created in a false pulpal chamber filled with distilled water and maintained for seven days. The human teeth were divided into six groups of 10 teeth each: fine grit straight fissure diamond bur in air rotor (DA), fine grit straight fissure diamond bur in micromotor (DM), crosscut fissure carbide bur in air rotor (CCA), crosscut fissure carbide bur in micromotor (CCM), plain fissure carbide bur in micromotor (CM) and #600-grit silicon carbide paper (SiC). The tooth surfaces in these groups were cut under copious air-water spray and treated with Prime and Bond NT after etching with 38% phosphoric acid. Composite restorations were then prepared with TPH spectrum (Dentsply/ DeTrey). After soaking in water at 37 degrees C for 24 hours, the specimens were loaded at a 45 degrees angle to their longitudinal axes by using a Z 010 Universal Testing Machine (Zwick), and shear bond strengths were determined at a crosshead speed of 2 mm/minute. All of the specimens were then observed under Stereomicroscope at 10x. Statistical analysis was made using one-way and two-way ANOVA and t-test (p < 0.05). The bond strengths achieved with a fine grit straight fissure diamond bur, a crosscut fissure carbide bur in air rotor and a crosscut fissure carbide bur in micromotor, were significantly higher than a fine grit straight fissure diamond bur, a plain fissure carbide bur and #600-grit silicon carbide abrasive paper in the micromotor. Therefore, selecting an appropriate bur and its speed may improve bonding for adhesive systems, although crosscut fissure carbide burs produced high bond strengths at either speed used.
Plasma Enabled Fabrication of Silicon Carbide Nanostructures
NASA Astrophysics Data System (ADS)
Fang, Jinghua; Levchenko, Igor; Aramesh, Morteza; Rider, Amanda E.; Prawer, Steven; Ostrikov, Kostya (Ken)
Silicon carbide is one of the promising materials for the fabrication of various one- and two-dimensional nanostructures. In this chapter, we discuss experimental and theoretical studies of the plasma-enabled fabrication of silicon carbide quantum dots, nanowires, and nanorods. The discussed fabrication methods include plasma-assisted growth with and without anodic aluminium oxide membranes and with or without silane as a source of silicon. In the silane-free experiments, quartz was used as a source of silicon to synthesize the silicon carbide nanostructures in an environmentally friendly process. The mechanism of the formation of nanowires and nanorods is also discussed.
Peterson, George R.
1976-01-01
Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molodets, A. M., E-mail: molodets@icp.ac.ru; Golyshev, A. A.; Shakhrai, D. V.
We have constructed the equations of state for crystalline boron carbide B{sub 11}C (C–B–C) and its melt under high dynamic and static pressures. A kink on the shock adiabat for boron carbide has been revealed in the pressure range near 100 GPa, and the melting curve with negative curvature in the pressure range 0–120 GPa has been calculated. The results have been used for interpreting the kinks on the shock adiabat for boron carbide in the pressure range of 0–400 GPa.
NASA Astrophysics Data System (ADS)
Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.
2015-09-01
Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.
2016-03-01
Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) Using 2-mil Gallium Nitride (GaN) on Silicon Carbide (SiC) by John E Penn...for Fabrication with 0.09-µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide by John E Penn...µm High-Electron-Mobility Transistors (HEMTs) using 2-mil Gallium Nitride (GaN) on Silicon Carbide 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c
Metal matrix composite of an iron aluminide and ceramic particles and method thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneibel, Joachim H.
A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1450.degree. C. for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
Metal matrix composite of an iron aluminide and ceramic particles and method thereof
Schneibel, J.H.
1997-06-10
A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
Metal matrix composite of an iron aluminide and ceramic particles and method thereof
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneibel, J.H.
A metal matrix composite comprising an iron aluminide binder phase and a ceramic particulate phase such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide is made by heating a mixture of iron aluminide powder and particulates of one of the ceramics such as titanium diboride, zirconium diboride, titanium carbide and tungsten carbide in a alumina crucible at about 1,450 C for about 15 minutes in an evacuated furnace and cooling the mixture to room temperature. The ceramic particulates comprise greater than 40 volume percent to about 99 volume percent of the metal matrix composite.
LIQUID PHASE SINTERING OF METALLIC CARBIDES
Hammond, J.; Sease, J.D.
1964-01-21
An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)
Creep behavior of uranium carbide-based alloys
NASA Technical Reports Server (NTRS)
Seltzer, M. S.; Wright, T. R.; Moak, D. P.
1975-01-01
The present work gives the results of experiments on the influence of zirconium carbide and tungsten on the creep properties of uranium carbide. The creep behavior of high-density UC samples follows the classical time-dependence pattern of (1) an instantaneous deformation, (2) a primary creep region, and (3) a period of steady-state creep. Creep rates for unalloyed UC-1.01 and UC-1.05 are several orders of magnitude greater than those measured for carbide alloys containing a Zr-C and/or W dispersoid. The difference in creep strength between alloyed and unalloyed materials varies with temperature and applied stress.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1980-01-01
Friction studies were conducted with a silicon carbide (0001) surface contacting polycrystalline iron. The surface of silicon carbide was pretreated: (1) by bombarding it with argon ions for 30 minutes at a pressure of 1.3 pascals; (2) by heating it at 800 C for 3 hours in vacuum at a pressure of 10 to the minus eighth power pascal; or (3) by heating it at 1500 C for 3 hours in a vacuum of 10 to the minus eighth power pascal. Auger emission spectroscopy was used to determine the presence of silicon and carbon and the form of the carbon. The surfaces of silicon carbide bombarded with argon ions or preheated to 800 C revealed the main Si peak and a carbide type of C peak in the Auger spectra. The surfaces preheated to 1500 C revealed only a graphite type of C peak in the Auger spectra, and the Si peak had diminished to a barely perceptible amount. The surfaces of silicon carbide preheated to 800 C gave a 1.5 to 3 times higher coefficient of friction than did the surfaces of silicon carbide preheated to 1500 C. The coefficient of friction was lower in the 11(-2)0 direction than in the 10(-1)0 direction; that is, it was lower in the preferred crystallographic slip direction.
2012-08-01
interior, and carbides and borides at the grain boundaries. Blocky carbide particles can also be seen in the grain interior (Figure 1b). The borides ...can be seen distributed (b) higher magnification image of a typical grain boundary decorated with carbide and boride particles. Bi-modal distribution
Size dependence of nanoscale wear of silicon carbide
Chaiyapat Tangpatjaroen; David Grierson; Steve Shannon; Joseph E. Jakes; Izabela Szlufarska
2017-01-01
Nanoscale, single-asperity wear of single-crystal silicon carbide (sc- SiC) and nanocrystalline silicon carbide (nc-SiC) is investigated using single-crystal diamond nanoindenter tips and nanocrystalline diamond atomic force microscopy (AFM) tips under dry conditions, and the wear behavior is compared to that of single-crystal silicon with both thin and thick native...
Method of coating graphite tubes with refractory metal carbides
Wohlberg, C.
1973-12-11
A method of coating graphite tubes with a refractory metal carbide is described. An alkali halide is reacted with a metallic oxide, the metallic portion being selected from the IVth or Vth group of the Periodic Table, the resulting salt reacting in turn with the carbon to give the desired refractory metal carbide coating. (Official Gazette)
Effect of carbide precipitation on the corrosion behavior of Inconel alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarver, J.M.; Crum, J.R.; Mankins, W.L.
1987-01-01
Intergranular carbide precipitation reactions have been shown to affect the stress corrosion cracking (SCC) resistance of nickel-chromium-iron alloys in environments relative to nuclear steam generators. Carbon solubility curves, time-temperature-sensitization plots and other carbide precipitation data are presented for alloy 690 as an aid in developing heat treatments for improved SCC resistance.
Carbide derived carbon from MAX-phases and their separation applications
NASA Astrophysics Data System (ADS)
Hoffman, Elizabeth N.
Improved sorbents with increased selectivity and permeability are needed to meet growing energy and environmental needs. New forms of carbon based sorbents have been discovered recently, including carbons produced by etching metals from metal carbides, known as carbide derived carbons (CDCs). A common method for the synthesis of CDC is by chlorination at elevated temperatures. The goal of this work is to synthesize CDC from ternary carbides and to explore the links between the initial carbide chemistry and structure with the resulting CDCs properties, including porosity. CDC was produced from MAX-phase carbides, in particular Ti3SiC 2, Ti3AlC2, Ti2AlC, and Ta2AlC. Additionally, CDC was produced from Ta-based binary carbides, TaC and Ta 2C, and one carbo-nitride Ti2AlC0.5N0.5. The CDC structure was characterized using XRD, Raman microspectroscopy, and HRTEM. Porosity characterization was performed using sorption analysis with both Ar and N2 as adsorbates. It was determined the microporosity of CDC is related to the density of the initial carbide. The layered structure of the MAX-phase carbides lent toward the formation of larger mesopores within the resulting CDCs, while the amount of mesopores was dependent on the chemistry of the carbide. Furthermore, CDC produced from carbides with extremely high theoretical porosity resulted in small specific surface areas due to a collapse of the carbon structure. To expand the potential applications for CDC beyond powder and bulk forms, CDC membranes were produced from a thin film of TiC deposited by magnetron sputtering onto porous ceramic substrates. The TiC thin film was subsequently chlorinated to produce a bilayer membrane with CDC as the active layer. Both gases and liquids are capable of passing the membrane. The membrane separates based on selective adsorption, rather than a size separation molecular sieving effect. Two applications for CDC produced from MAX-phases were investigated: protein adsorption and gas separation. Sorbents capable of adsorbing large protein molecules efficiently are desirable for many medical applications, including the treatment of sepsis. Primarily mesoporous Ti2AlC-CDC and Ti3AlC2-CDC were proven to adsorb a significant amount of proteins compared to two current carbon adsorbents. When tested for gas separation, CDC was capable of selectively adsorbing gases including SF6, CO2, CH4, and H2. However, the gases were not separated based on their size, but rather on their interaction with the CDC surface.
NASA Astrophysics Data System (ADS)
Berthod, Patrice
2018-06-01
Nickel-based cast alloys rich in chromium and reinforced by TaC carbides are potentially very interesting alloys for applications at elevated temperatures. Unfortunately, unlike cobalt-chromium and iron-chromium alloys, it is difficult to obtain exclusively TaC as primary carbides in Ni-Cr alloys. In alloys containing 30 wt pct Cr tantalum, carbides coexist with chromium carbides. The latter tend to weaken the alloy at elevated temperatures because they become rapidly spherical and then quickly lose their reinforcing effect. In this work, we attempted to stabilize TaC as a single carbide phase by testing different chromium contents in the [0, 50 wt pct] range. Six alloys containing 0.4C and 6Ta, weight contents corresponding to equivalent molar contents, were elaborated by foundry, and their as-cast microstructures were characterized. Samples of all alloys were exposed to 1127 °C and 1237 °C for 24 hours to characterize their stabilized microstructures. The surface fractions of chromium carbides and tantalum carbides were measured by image analysis, and their evolutions vs the chromium content were studied. For the chosen C and Ta contents, it appears that obtaining TaC only is possible by decreasing the chromium content to 10 wt pct. At the same time, TaC fractions are unfortunately too low because a large portion of tantalum integrates into the solid solution in the matrix. A second consequence is a critical decrease in oxidation resistance. Other possible methods to stabilize TaC as a single carbide are evocated, such as the simultaneous increase in Ta and decrease in chromium from 30 wt pct Cr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Dean T.; Coughlin, D. R.; Clarke, Kester D.
Here, the influence of Cr and Ni additions and quench and partition (Q&P) processing parameters on the microstructural development, including carbide formation and austenite retention during Q&P, was studied in two steels with a base composition of 0.2C-1.5Mn-1.3Si wt.% and additions of 1.5 wt.% Cr (1.5Cr) or Ni (1.5Ni). Additions of 1.5 wt.% Cr significantly slowed the kinetics of austenite decomposition relative to the 1.5Ni alloy at all partitioning temperatures, promoting greater austenite retention, lower retained austenite carbon (C) contents, and reduced sensitivity of the retained austenite amounts to processing variables. In the 1.5Cr alloy after partitioning at 400 °Cmore » for 300 s, η-carbides were identified by transmission electron microscopy (TEM) and atom probe tomography (APT) revealed no significant enrichment of substitutional elements in the carbides. In the 1.5Ni alloy after partitioning at 450 °C for 300 s, both plate-like and globular carbides were observed by TEM. APT analysis of the globular carbides clearly revealed significant Si rejection and Mn enrichment. Mössbauer effect spectroscopy was used to quantify the amount of carbides after Q&P. In general, carbide amounts below ~0.3% of Fe were measured in both alloys after partitioning for short times (10 s), irrespective of quench or partitioning temperature, which corresponds to a relatively small portion of the bulk C. With increasing partitioning time, carbide amounts remained approximately constant or increased, depending on the alloy, quench temperature, and/or partitioning temperature.« less
Processing and characterization of boron carbide-hafnium diboride ceramics
NASA Astrophysics Data System (ADS)
Brown-Shaklee, Harlan James
Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.
Pierce, Dean T.; Coughlin, D. R.; Clarke, Kester D.; ...
2018-03-08
Here, the influence of Cr and Ni additions and quench and partition (Q&P) processing parameters on the microstructural development, including carbide formation and austenite retention during Q&P, was studied in two steels with a base composition of 0.2C-1.5Mn-1.3Si wt.% and additions of 1.5 wt.% Cr (1.5Cr) or Ni (1.5Ni). Additions of 1.5 wt.% Cr significantly slowed the kinetics of austenite decomposition relative to the 1.5Ni alloy at all partitioning temperatures, promoting greater austenite retention, lower retained austenite carbon (C) contents, and reduced sensitivity of the retained austenite amounts to processing variables. In the 1.5Cr alloy after partitioning at 400 °Cmore » for 300 s, η-carbides were identified by transmission electron microscopy (TEM) and atom probe tomography (APT) revealed no significant enrichment of substitutional elements in the carbides. In the 1.5Ni alloy after partitioning at 450 °C for 300 s, both plate-like and globular carbides were observed by TEM. APT analysis of the globular carbides clearly revealed significant Si rejection and Mn enrichment. Mössbauer effect spectroscopy was used to quantify the amount of carbides after Q&P. In general, carbide amounts below ~0.3% of Fe were measured in both alloys after partitioning for short times (10 s), irrespective of quench or partitioning temperature, which corresponds to a relatively small portion of the bulk C. With increasing partitioning time, carbide amounts remained approximately constant or increased, depending on the alloy, quench temperature, and/or partitioning temperature.« less
Effects of anode material on arcjet performance
NASA Technical Reports Server (NTRS)
Sankovic, John M.; Curran, Frank M.; Larson, C. A.
1992-01-01
Anodes fabricated from four different materials were tested in a modular arcjet thruster at 1 kW power level on nitrogen/hydrogen mixtures. A two-percent thoriated tungsten anode served as the control. Graphite was chosen for its ease in fabrication, but experienced severe erosion in the constrictor and diverging side. Hafnium carbide and lanthanum hexaboride were chosen for their low work functions but failed due to thermal stress and reacted with the propellant. When compared to the thoriated tungsten nozzle, thruster performance was significantly lower for the lanthanum hexaboride insert and the graphite nozzle, but was slightly higher for the hafnium carbide nozzle. Both the lanthanum hexaboride and hafnium carbide nozzle operated at higher voltages. An attempt was made to duplicate higher performance hafnium carbide results, but repeated attempts at machining a second anode insert were unsuccessful. Graphite, hafnium carbide, and lanthanum hexaboride do not appear viable anode materials for low power arcjet thrusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagle, Denis; Zhang, Dajie
2015-10-22
The focus of this research was concerned with developing materials technology that supports the evolution of Generation IV Advanced High Temperature Reactor (AHTR) concepts. Specifically, we investigate refractory carbide coatings for 1) nickel alloys, and 2) commercial carbon-carbon composites (CCCs). Numerous compelling reasons have driven us to focus on carbon and carbide materials. First, unlike metals, the strength and modulus of CCCs increase with rising temperature. Secondly, graphite and carbon composites have been proven effective for resisting highly corrosive fluoride melts such as molten cryolite [Na₃AlF₆] at ~1000°C in aluminum reduction cells. Thirdly, graphite and carbide materials exhibit extraordinary radiationmore » damage tolerance and stability up to 2000°C. Finally, carbides are thermodynamically more stable in liquid fluoride salt than the corresponding metals (i.e. Cr and Zr) found in nickel based alloys.« less
Carbide-reinforced metal matrix composite by direct metal deposition
NASA Astrophysics Data System (ADS)
Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.
Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.
NASA Astrophysics Data System (ADS)
Tamura, Hideki; Itaya, Masanobu
2000-09-01
Tungsten carbide and tantalum carbide were sprayed onto substrates of mild steel by the electrothermally exploded powder spray (ELTEPS) process. High-speed x-ray radiography revealed that tungsten-carbide jets of molten particles guided inside a nozzle exhibited denser flow than unguided jets at the substrate. The velocity of the jet was approximately 800 m/s at the early stage of jetting. The ceramic coatings obtained from the guided spray consisted of carbides of a few to tens of micrometers in size, which were saturated by the base metal up to the top of the coating. The coatings exhibited diffusion of the sprayed ceramics and base metal at the interface of the deposit and substrate. The enhancement of the jet flow formed a microstructure of the ceramic coating, which was saturated by the base metal even without post heat treatment.
Magneto-Resistance in thin film boron carbides
NASA Astrophysics Data System (ADS)
Echeverria, Elena; Luo, Guangfu; Liu, J.; Mei, Wai-Ning; Pasquale, F. L.; Colon Santanta, J.; Dowben, P. A.; Zhang, Le; Kelber, J. A.
2013-03-01
Chromium doped semiconducting boron carbide devices were fabricated based on a carborane icosahedra (B10C2H12) precursor via plasma enhanced chemical vapor deposition, and the transition metal atoms found to dope pairwise on adjacent icosahedra site locations. Models spin-polarized electronic structure calculations of the doped semiconducting boron carbides indicate that some transition metal (such as Cr) doped semiconducting boron carbides may act as excellent spin filters when used as the dielectric barrier in a magnetic tunnel junction structure. In the case of chromium doping, there may be considerable enhancements in the magneto-resistance of the heterostructure. To this end, current to voltage curves and magneto-transport measurements were performed in various semiconducting boron carbide both in and out plane. The I-V curves as a function of external magnetic field exhibit strong magnetoresistive effects which are enhanced at liquid Nitrogen temperatures. The mechanism for these effects will be discussed in the context of theoretical calculations.
NASA Astrophysics Data System (ADS)
Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.
2017-09-01
Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.
Breaking the icosahedra in boron carbide
Xie, Kelvin Y.; An, Qi; Sato, Takanori; Breen, Andrew J.; Ringer, Simon P.; Goddard, William A.; Cairney, Julie M.; Hemker, Kevin J.
2016-01-01
Findings of laser-assisted atom probe tomography experiments on boron carbide elucidate an approach for characterizing the atomic structure and interatomic bonding of molecules associated with extraordinary structural stability. The discovery of crystallographic planes in these boron carbide datasets substantiates that crystallinity is maintained to the point of field evaporation, and characterization of individual ionization events gives unexpected evidence of the destruction of individual icosahedra. Statistical analyses of the ions created during the field evaporation process have been used to deduce relative atomic bond strengths and show that the icosahedra in boron carbide are not as stable as anticipated. Combined with quantum mechanics simulations, this result provides insight into the structural instability and amorphization of boron carbide. The temporal, spatial, and compositional information provided by atom probe tomography makes it a unique platform for elucidating the relative stability and interactions of primary building blocks in hierarchically crystalline materials. PMID:27790982
2010-07-01
response to the tip causes a redistribution of charge on the tip in order to maintain the equipotential surface of the sphere, and also results in a shift...can be obtained. In some instances these treatments lead to uncapping of nanotubes. Geng et al. [25] have shown that the surfaces of SWNT bundles...20] discovered a new and catalyst-free method for the growth of CNTs: surface decomposition of silicon carbide (SiC). This thermal decomposition
Improved fiber retention by the use of fillers in graphite fiber/resin matrix composites
NASA Technical Reports Server (NTRS)
Gluyas, R. E.; Bowles, K. J.
1980-01-01
A variety of matrix fillers were tested for their ability to prevent loss of fiber from graphite fiber/PMR polyimide and graphite fiber/epoxy composites in a fire. The fillers tested included powders of boron, boron carbide lime glass, lead glass, and aluminum. Boron was the most effective and prevented any loss of graphite fiber during burning. Mechanical properties of composites containing boron filler were measured and compared to those of composites containing no filler.
METHOD OF FORMING A PROTECTIVE COATING ON FERROUS METAL SURFACES
Schweitzer, D.G.; Weeks, J.R.; Kammerer, O.F.; Gurinsky, D.H.
1960-02-23
A method is described of protecting ferrous metal surfaces from corrosive attack by liquid metals, such as liquid bismuth or lead-bismuth alloys. The nitrogen content of the ferrous metal surface is first reduced by reacting the metal surface with a metal which forms a stable nitride. Thereafter, the surface is contacted with liquid metal containing at least 2 ppm zirconium at a temperature in the range of 550 to 1100 deg C to form an adherent zirconium carbide layer on the ferrous surface.
Influence of microscopic strain heterogeneity on the formability of martensitic stainless steel
NASA Astrophysics Data System (ADS)
Bettanini, Alvise Miotti; Delannay, Laurent; Jacques, Pascal J.; Pardoen, Thomas; Badinier, Guillaume; Mithieux, Jean-Denis
2017-10-01
Both finite element modeling and mean field (Mori-Tanaka) modeling are used to predict the strain partitioning in the martensite-ferrite microstructure of an AISI 410 martensitic stainless steel. Numerical predictions reproduce experimental trends according to which macroscopic strength is increased when the dissolution of carbides leads to carbon enrichment of martensite. However, the increased strength contrast of ferrite and martensite favours strain localization and high stress triaxiality in ferrite, which in turn promotes ductile damage development.
New Polymeric Precursors of Silicon Carbide
NASA Technical Reports Server (NTRS)
Litt, M.; Kumar, K.
1987-01-01
Silicon carbide made by pyrolizing polymers. Method conceived for preparation of poly(decamethylcyclohexasilanes) as precursors for preparation of silicon carbide at high yield. Technical potential of polysilanes as precursors of SiC ceramics being explored. Potential limited by intractability of some polysilanes; formation of small, cyclic polycarbosilane fragments during pyrolysis; and overall low char yield and large shrinkage in conversion to ceramics.
Understanding Thermal Transport in Graded, Layered and Hybrid Materials
2014-04-01
interfacial chemistries, including metallic and carbide layers, and; (iv) mimic the observed interface structure on a TDTR specimen by manipulating the...surface carbides , which were extracted from several different composites via acid dissolution of Cu, continued throughout the last 12 months of the...effort. The previously-reported electron probe microanalysis (EPMA) based techniques were employed to estimate the interfacial carbide layer thickness
Silicon nitride/silicon carbide composite powders
Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.
1996-06-11
Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.
Method of forming impermeable carbide coats on graphite
Wohlberg, C.
1973-12-11
A method of forming an impermeable refractory metal carbide coating on graphite is described in which a metal containing oxidant and a carbide former are applied to the surface of the graphite, heated to a temperature of between 1200 and 1500 deg C in an inert gas, under a vacuum and continuing to heat to about 2300 deg C. (Official Gazette)
Materials Analysis of Transient Plasma-Wall Interactions
2014-05-13
such as copper, aluminum, zirconium, titanium, and tungsten) and ceramics (beryllia, aluminum nitride, silicon carbide , etc.). These materials were...formation of silicon carbide . Therefore, a flat Macor disk was polished, and prepared for deuterium exposure by sonicating the sample in both methanol...of silicon constituents whereas the exposed sample clearly shows the addition of carbide and silicon segregation on the surface. 10 AFOSR
Plasma metallurgical production of nanocrystalline borides and carbides
NASA Astrophysics Data System (ADS)
Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.
2016-09-01
he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.
Dispersion toughened ceramic composites and method for making same
Stinton, David P.; Lackey, Walter J.; Lauf, Robert J.
1986-01-01
Ceramic composites exhibiting increased fracture toughness are produced by the simultaneous codeposition of silicon carbide and titanium disilicide by chemical vapor deposition. A mixture of hydrogen, methyltrichlorosilane and titanium tetrachloride is introduced into a furnace containing a substrate such as graphite or silicon carbide. The thermal decomposition of the methyltrichlorosilane provides a silicon carbide matrix phase and the decomposition of the titanium tetrachloride provides a uniformly dispersed second phase of the intermetallic titanium disilicide within the matrix phase. The fracture toughness of the ceramic composite is in the range of about 6.5 to 7.0 MPa.sqroot.m which represents a significant increase over that of silicon carbide.
Dispersion toughened ceramic composites and method for making same
Stinton, D.P.; Lackey, W.J.; Lauf, R.J.
1984-09-28
Ceramic composites exhibiting increased fracture toughness are produced by the simultaneous codeposition of silicon carbide and titanium disilicide by chemical vapor deposition. A mixture of hydrogen, methyltrichlorosilane and titanium tetrachloride is introduced into a furnace containing a substrate such as graphite or silicon carbide. The thermal decomposition of the methyltrichlorosilane provides a silicon carbide matrix phase and the decomposition of the titanium tetrachloride provides a uniformly dispersed second phase of the intermetallic titanium disilicide within the matrix phase. The fracture toughness of the ceramic composite is in the range of about 6.5 to 7.0 MPa..sqrt..m which represents a significant increase over that of silicon carbide.
Metal Matrix Composite Material by Direct Metal Deposition
NASA Astrophysics Data System (ADS)
Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.
Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.
Tungsten carbide: Crystals by the ton
NASA Astrophysics Data System (ADS)
Smith, E. N.
1988-06-01
A comparison is made of the conventional process of making tungsten carbide by carburizing tungsten powder and the Macro Process wherein the tungsten carbide is formed directly from the ore concentrate by an exothermic reaction of ingredients causing a simultaneous reduction and carburization. Tons of tungsten monocarbide crystals are formed in a very rapid reaction. The process is unique in that it is self regulating and produces a tungsten carbide compound with the correct stoichiometry. The high purity with respect to oxygen and nitrogen is achieved because the reactions occur beneath the molten metal. The morphology and hardness of these crystals has been studied by various investigators and reported in the listed references.
NASA Astrophysics Data System (ADS)
Amini, Kamran; Akhbarizadeh, Amin; Javadpour, Sirus
2012-09-01
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-flat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples.
NASA Technical Reports Server (NTRS)
Cagliostro, Domenick E.; Riccitiello, Salvatore R.; Carswell, Marty G.
1990-01-01
A study of the products and reactions occurring during the chemical vapor deposition of silicon carbide from dimethyldichlorosilane in argon is presented. Reaction conditions were as follows: 700 to 1100 C, a contact time of about 1 min, and a pressure of 1 atm. At these conditions, the gases that formed were mainly methane, hydrogen, silicon tetrachloride, trichlorosilane, and methyltrichlorosilane. The silicon carbide solid that formed showed the presence of hydrogen and chloride as impurities, which might degrade the silicon carbide properties. These impurities were eliminated slowly, even at 1100 C, forming hydrogen, trichlorosilane, and silicon tetrachloride.
Phase formation during the carbothermic reduction of eudialyte concentrate
NASA Astrophysics Data System (ADS)
Krasikov, S. A.; Upolovnikova, A. G.; Sitnikova, O. A.; Ponomarenko, A. A.; Agafonov, S. N.; Zhidovinova, S. V.; Maiorov, D. V.
2013-07-01
The phase transformations of eudialyte concentrate during the carbothermic reduction in the temperature range 25-2000°C are studied by thermodynamic simulation, differential thermal analysis, and X-ray diffraction. As the temperature increases to 1500°C, the following phases are found to form sequentially: iron and manganese carbides, free iron, niobium carbide, iron silicides, silicon and titanium carbides, and free silicon. Strontium, yttrium, and uranium in the temperature range under study are not reduced and are retained in an oxide form, and insignificant reduction of zirconium oxides with the formation of carbide ZrC is possible only at temperatures above 1500°C.
Thermal shock and erosion resistant tantalum carbide ceramic material
NASA Technical Reports Server (NTRS)
Honeycutt, L., III; Manning, C. R. (Inventor)
1978-01-01
Ceramic tantalum carbide artifacts with high thermal shock and mechanical erosion resistance are provided by incorporating tungsten-rhenium and carbon particles in a tantalum carbide matrix. The mix is sintered by hot pressing to form the ceramic article which has a high fracture strength relative to its elastic modulus and thus has an improved thermal shock and mechanical erosion resistance. The tantalum carbide is preferable less than minus 100 mesh, the carbon particles are preferable less than minus 100 mesh, and the tungsten-rhenium particles are preferable elongate, having a length to thickness ratio of at least 2/1. Tungsten-rhenium wire pieces are suitable as well as graphite particles.
NASA Astrophysics Data System (ADS)
Nurjaman, F.; Sumardi, S.; Shofi, A.; Aryati, M.; Suharno, B.
2016-02-01
In this experiment, the effect of the addition carbide forming elements on high chromium white cast iron, such as molybdenum, vanadium and boron on its mechanical properties and microstructure was investigated. The high chromium white cast iron was produced by casting process and formed in 50 mm size of grinding balls with several compositions. Characterization of these grinding balls was conducted by using some testing methods, such as: chemical and microstructure analysis, hardness, and impact test. From the results, the addition of molybdenum, vanadium, and boron on high chromium white cast iron provided a significant improvement on its hardness, but reduced its toughness. Molybdenum induced fully austenitic matrix and Mo2C formation among eutectic M7C3 carbide. Vanadium was dissolved in the matrix and carbide. While boron was played a role to form fine eutectic carbide. Grinding balls with 1.89 C-13.1 Cr-1.32 Mo-1.36 V-0.00051 B in as-cast condition had the highest hardness, which was caused by finer structure of eutectic carbide, needle like structure (upper bainite) matrix, and martensite on its carbide boundary.
Converting a carbon preform object to a silicon carbide object
NASA Technical Reports Server (NTRS)
Levin, Harry (Inventor)
1990-01-01
A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.
Analysis of a Turbine Blade Failure in a Military Turbojet Engine
NASA Astrophysics Data System (ADS)
Sahoo, Benudhar; Satpathy, R. K.; Panigrahi, S. K.
2016-06-01
This paper deals with failure analysis of a low-pressure turbine blade of a straight flow turbojet engine. The blade is made of a wrought precipitation hardened Nickel base superalloy with oxidation-resistant diffusion aluminizing coating. The failure mode is found to be fatigue with multiple cracks inside the blade having crack origin at metal carbides. In addition to the damage in the coating, carbide banding has been observed in few blades. Carbide banding may be defined as inclusions in the form of highly elongated along deformation direction. The size, shape and banding of carbides and their location critically affect the failure of blades. Carbon content needs to be optimized to reduce interdendritic segregation and thereby provide improved fatigue and stress rupture life. Hence, optimization of size, shape and distribution of carbides in the billet and forging parameters during manufacturing of blade play a vital role to eliminate/reduce extent of banding. Reference micrographs as acceptance criteria are essential for evaluation of raw material and blade. There is a need to define the acceptance criteria for carbide bandings and introduce more sensitive ultrasonic check during billet and on finished blade inspection.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1982-01-01
X-ray photoelectron and Auger electron spectroscopy analyses and morphological studies of wear and metal transfer were conducted with a single-crystal silicon carbide 0001 surface in contact with iron at various temperatures to 1500 C in a vacuum of 10 to the minus 8th power pascal. The results indicate that below 800 C, carbide-carbon and silicon are primarily seen on the silicon carbide surface. Above 800 C the graphite increases rapidly with increase in temperature. The outermost surficial layer, which consists mostly of graphite and little silicon at temperatures above 1200 C is about 2 nm thick. A thicker layer, which consists of a mixture of graphite, carbide, and silicon is approximately 100 nm thick. The closer the surface sliding temperature is to 800 C, the more the metal transfer produced. Above 800 C, there was a transfer of rough, discontinuous, and thin iron debris instead of smooth, continuous and thin iron film which was observed to transfer below 800 C. Two kinds of fracture pits were observed on the silicon carbide surface: (1) a pit with a spherical asperity; and (2) multiangular shaped pits.
Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin; ...
2017-08-18
Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhenglong; Choi, Jae-Soon; Wang, Huamin
Low-temperature hydrogenation of carbonyl fractions can greatly improve the thermal stability of fast pyrolysis bio-oil which is crucial to achieve long-term operation of high-temperature upgrading reactors. The current state of the art, precious metals such as ruthenium, although highly effective in carbonyl hydrogenation, rapidly loses performance due to sulfur sensitivity. The present work showed that molybdenum carbides were active and sulfur-tolerant in low-temperature conversion carbonyl compounds. Furthermore, due to surface bifunctionality (presence of both metallic and acid sites), carbides catalyzed both C=O bond hydrogenation and C-C coupling reactions retaining most of carbon atoms in liquid products as more stable andmore » higher molecular weight oligomeric compounds while consuming less hydrogen than ruthenium. The carbides proved to be resistant to other deactivation mechanisms including hydrothermal aging, oxidation, coking and leaching. These properties enabled carbides to achieve and maintain good catalytic performance in both aqueous-phase furfural conversion and real bio-oil stabilization with sulfur present. This finding strongly suggests that molybdenum carbides can provide a catalyst solution necessary for the development of commercially viable bio-oil stabilization technology.« less
Effects of the LDEF orbital environment on the reflectance of optical mirror materials
NASA Technical Reports Server (NTRS)
Herzig, Howard; Fleetwood, Charles, Jr.
1995-01-01
Specimens of eight different optical mirror materials were flown in low earth orbit as part of the Long Duration Exposure Facility (LDEF) manifest to determine their ability to withstand exposure to the residual atomic oxygen and other environmental effects at those altitudes. Optical thin films of aluminum, gold, iridium, osmium, platinum, magnesium fluoride-overcoated aluminum and reactively deposited, silicon monoxide-protected aluminum, all of which were vacuum deposited on polished fused silica substrates, were included as part of Experiment S0010, Exposure of Spacecraft Coatings. Two specimens of polished, chemical vapor deposited (CVD) silicon carbide were installed in sites available in Experiment A0114, Interaction of Atomic Oxygen with Solid Surfaces at Orbital Altitudes, which included trays in two of the spacecraft bays, one on the leading edge and the other on the trailing edge. One of the silicon carbide samples was located in each of these trays. This paper will compare specular reflectance data from the preflight and postflight measurements made on each of these samples and attempt to explain the changes in light of the specific environments to which the experiments were exposed.
Correlations between properties and applications of the CVD amorphous silicon carbide films
NASA Astrophysics Data System (ADS)
Kleps, Irina; Angelescu, Anca
2001-12-01
The aim of this paper is to emphasise the correlation between film preparation conditions, film properties and their applications. Low pressure chemical vapour deposition amorphous silicon carbide (a-SiC) and silicon carbonitride (SiCN) films obtained from liquid precursors have different structure and composition depending on deposition conditions. Thus, the films deposited under kinetic working conditions reveal a stable structure and composition. Deposition at moderate temperature leads to stoichiometric SiC, while the films deposited at high temperatures have a composition closer to Si 1- xC x, with x=0.75. These films form a very reactive interface with metallic layers. The films realised under kinetic working regime can be used in Si membrane fabrication process or as coating films for field emission applications. SiC layers field emission properties were investigated; the field emission current density of the a-SiC/Si structures was 2.4 mA/cm 2 at 25 V/μm. An Si membrane technology based on moderate temperatures (770-850 °C) a-SiC etching mask is presented.
Investigation of exotic stable calcium carbides using theory and experiment
Li, Yan-Ling; Wang, Sheng-Nan; Oganov, Artem R.; ...
2015-05-11
It is well known that pressure causes profound changes in the properties of atoms and chemical bonding, leading to the formation of many unusual materials. Here we systematically explore all stable calcium carbides at pressures from ambient to 100 GPa using variable-composition evolutionary structure predictions. We find that Ca 5C 2, Ca 2C, Ca 3C 2, CaC, Ca 2C 3, and CaC 2 have stability fields on the phase diagram. Among these, Ca2C and Ca2C3 are successfully synthesized for the first time via high-pressure experiments with excellent structural correspondence to theoretical predictions. Of particular significance are the base-centered monoclinic phasemore » (space group C 2/m) of Ca 2C, a quasi-two-dimensional metal with layers of negatively charged calcium atoms, and the primitive monoclinic phase (space group P21/c) of CaC with zigzag C 4 groups. Interestingly, strong interstitial charge localization is found in the structure of R-3m-Ca 5C 2 with semimetallic behaviour.« less
Thermal residual stresses in silicon-carbide/titanium (0/90) laminate
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1992-01-01
The current work formulated a micromechanical analysis of a cross-ply laminate and calculated the thermal residual stress in a very thick (0/90)(sub 2n) silicon-carbide/titanium laminate. Results were also shown for a unidirectional laminate of the same material. Discrete fiber-matrix models assuming a rectangular array of fibers with a fiber volume fraction of 32.5 percent and a three-dimensional, finite-element analysis were used. Significant differences in the trends and magnitudes for the fiber, matrix, and interface stresses were calculated for unidirectional and (0/90) models. Larger hoop stresses calculated for the (0/90) model indicate that it may be more susceptible to radial cracking when subjected to mechanical loading than the unidirectional model. The axial stresses in the matrix were calculated to be slightly larger for the (0/90) model. The compressive axial stresses in the fiber were significantly larger in the (0/90) model. The presence of the cross-ply in the (0/90) model reduced the constraint on the fiber, producing radial interface stresses that were less compressive, which could lead to earlier failure of the fiber-matrix interface.
Inoue, Kenichiro; Kawamoto, Katsuya
2005-08-01
Carbonaceous adsorbents such as activated carbon have been used to reduce the emission of organic pollutants from incineration plants. However, with this method, the amount and type of adsorbent to be used are based only on empirical results, which may lead to overuse of the adsorbents. The fundamental adsorption characteristics of several kinds of activated carbon, activated coke, and carbide wood were examined using 1 ,2,3,4-tetrachlorobenzene as an adsorbate. The removal performance and various equilibrium adsorption characteristics of these adsorbents were analyzed using laboratory-scale adsorption equipment. The equilibrium adsorption amount increased by a factor of 1.9-3.2 at 150 degrees C compared with that at 190 degrees C. The effect of the moisture content on adsorption capacity was relatively small in comparison with that of the temperature. The micropore volume for pore diameters of 2 nm or less was the most important factor governing the adsorption capacity for all adsorbents. Activated carbon showed superior adsorption ability compared to activated coke and carbide wood, although all adsorbents were sufficient for practical use.
Recent advances and issues in development of silicon carbide composites for fusion applications
NASA Astrophysics Data System (ADS)
Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.
2009-04-01
Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.
NASA Astrophysics Data System (ADS)
Deloume, Jean-Pierre; Marote, Pedro; Sigala, Catherine; Matei, Cristian
2003-08-01
WC is tested as precursor to synthesize metal tungstates by reaction in molten alkali metal nitrates. This constitutes a complex redox system with two reducing agents, W and C, and an oxidizer having several oxidation states. The mass loss due to the evolution of gases reveals the reaction steps. The infrared analyses of the gas phase show what kind of reaction develops according to the temperature. WC produces a water-soluble alkali metal tungstate. The reaction of a mixture of WC and a divalent metal chloride (Mg, Ca, Ba, Ni, Cu, Zn) leads to water-insoluble metal tungstates. As the reactivity of the cations increases in the order Zn, Ni, Cu, the reaction of WC is modified by their presence. The physico-chemical characterizations of the products show that some of them are contaminated either by WC or by metal oxide. Some others are rather pure products. These differences, in relationship with the other analyses, allow to propose first reaction pathways of the tungsten carbide in molten salts.
Hong, Sheng; Wu, Yuping; Zhang, Jianfeng; Zheng, Yugui; Qin, Yujiao; Lin, Jinran
2015-09-01
The high-velocity oxygen-fuel (HVOF) spraying process was used to prepare near-nanostructured WC-10Co-4Cr coating. The cavitation erosion behavior and mechanism of the coating in 3.5 wt.% NaCl solution were analyzed in detail. The results showed that the amorphous phase and WC grain were present in the coating. The cavitation erosion resistance of the coating was about 1.27 times that of the stainless steel 1Cr18Ni9Ti under the same testing conditions. The effects of erosion time on the microstructural evolution were discussed. It was revealed that cracks initiated at the edge of pre-existing pores and propagated along the carbide-binder interface, leading to the pull-out of carbide particle and the formation of pits and craters on the surface. The main failure mechanism of the coating was erosion of the binder phases, brittle detachment of hard phases and formation of pitting corrosion products. Copyright © 2015 Elsevier B.V. All rights reserved.
Very Hard Corrosion-Resistant Roll-Bonded Cr Coating on Mild Steel in Presence of Graphite
NASA Astrophysics Data System (ADS)
Kumar, Pankaj; Khara, S.; Shekhar, S.; Mondal, K.
2017-12-01
The present work discusses the development of very hard Cr and Cr-carbide coating by roll bonding of Cr powder on a mild steel followed by annealing at 800, 1000, 1100 and 1200 °C with and without the presence of graphite powder packing in argon environment. In addition, the effect of a roll skin pass of 5% prior to the application of coating was studied. The presence of graphite allows diffusion of both carbon and Cr in the mild steel substrate, leading to the formation of Cr-carbide on the outer surface, making the surface very hard (VHN 1800). Depending on the annealing temperature and processing condition, diffusion layer thickness of Cr is found to be in the range of 10-250 μm with Cr content of 12.5-15 wt.% across the diffusion layer. Excellent stable passivity of the coated surface is observed in 0.2 N H2SO4, which is comparable to a highly passivating 304 stainless steel, and very low corrosion rate of the coating is observed as compared to the substrate mild steel.
NASA Astrophysics Data System (ADS)
Winardi, Y.; Triyono; Muhayat, N.
2018-03-01
The aim of the present study was to investigate the effect temperature of heat treatment process on the interfacial microstructure and mechanical properties of cemented carbide/carbon steel single lap joint brazed using Ag based alloy filler metal. The brazing process was carried out using torch brazing. Heat treatment process was carried out in induction furnace on the temperature of 700, 725, and 750°C, for 30 minutes. Microstructural examinations and phase analysis were performed using scanning electron microscopy (SEM) equipped with energy dispersion spectrometry (EDS). Shear strength of the joints was measured by the universal testing machine. The results of the microstructural analyses of the brazed area indicate that the increase temperature of treatment lead to the increase of solid solution phase of enrichted Cu. Based on EDS test, the carbon elements spread to all brazed area, which is disseminated by base metals. Shear strength joint is increased with temperature treatment. The highest shear strength of the brazed joint was 214,14 MPa when the heated up at 725°C.
Phenomenon of Energy Focusing in Explosive Systems which include High Modulus Elastic Elements
NASA Astrophysics Data System (ADS)
Balagansky, I.; Hokamoto, K.; Manikandan, P.; Matrosov, A.; Stadnichenko, I.; Miyoshi, H.
2009-06-01
The phenomenon was observed in a passive HE charge of cast Comp. B without cumulative shape under shock wave loading by explosion of an active HE charge through water after preliminary compression by a leading wave in silicon carbide insert. The phenomenon manifested itself as a hole in identification steel specimen with depth of about 10 mm and diameter of about 5 mm. Results of experiments on studying of conditions of implementation of this phenomenon for SEP and Comp. B are presented. For each HE a number of experiments has been executed at various length of silicon carbide insert. Presence or absence of a hole in the steel specimen was determined. Also a number of optical registrations of process in framing mode with record step of 1 μs have been executed. Digital video camera SHIMADZU HPV-1 was used for optical registration. Results of experiments testify that the phenomenon is reproduced both for SEP, and for Comp. B. Focusing process is observed in conditions close to critical conditions of transfer of a detonation from active to a passive HE charge.
Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa
2018-01-01
Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nuclear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are discussed. The authors demonstrated success in reaching desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and define a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.
Study of a Tricarbide Grooved Ring Fuel Element for Nuclear Thermal Propulsion
NASA Technical Reports Server (NTRS)
Taylor, Brian; Emrich, Bill; Tucker, Dennis; Barnes, Marvin; Donders, Nicolas; Benensky, Kelsa
2018-01-01
Deep space exploration, especially that of Mars, is on the horizon as the next big challenge for space exploration. Nuclear propulsion, through which high thrust and efficiency can be achieved, is a promising option for decreasing the cost and logistics of such a mission. Work on nu- clear thermal engines goes back to the days of the NERVA program. Currently, nuclear thermal propulsion is under development again in various forms to provide a superior propulsion system for deep space exploration. The authors have been working to develop a concept nuclear thermal engine that uses a grooved ring fuel element as an alternative to the traditional hexagonal rod design. The authors are also studying the use of carbide fuels. The concept was developed in order to increase surface area and heat transfer to the propellant. The use of carbides would also raise the operating temperature of the reactor. It is hoped that this could lead to a higher thrust to weight nuclear thermal engine. This paper describes the modeling of neutronics, heat transfer, and fluid dynamics of this alternative nuclear fuel element geometry. Fabrication experiments of grooved rings from carbide refractory metals are also presented along with material characterization and interactions with a hot hydrogen environment. Results of experiments and associated analysis are desired densities with some success in material distribution and reaching a solid solution. Future work is needed to improve distribution of material, minimize oxidation during the milling process, and de ne a fabrication process that will serve for constructing grooved ring fuel rods for large system tests.
NASA Astrophysics Data System (ADS)
Bourg, S.; Péron, F.; Lacquement, J.
2007-01-01
The structure of the fuels for the future Gen IV nuclear reactors will be totally different from those of PWR, especially for the GFR concept including a closed cycle. In these reactors, fissile materials (carbides or nitrides of actinides) should be surrounded by an inert matrix. In order to build a reprocessing process scheme, the behavior of the potential inert matrices (silicon carbide, titanium nitride, and zirconium carbide and nitride) was studied by hydro- and pyrometallurgy. This paper deals with the chlorination results at high temperature by pyrometallurgy. For the first time, the reactivity of the matrix towards chlorine gas was assessed in the gas phase. TiN, ZrN and ZrC are very reactive from 400 °C whereas it is necessary to be over 900 °C for SiC to be as fast. In molten chloride melts, the bubbling of chlorine gas is less efficient than in gas phase but it is possible to attack the matrices. Electrochemical methods were also used to dissolve the refractory materials, leading to promising results with TiN, ZrN and ZrC. The massive SiC samples used were not conductive enough to be studied and in this case specific SiC-coated carbon electrodes were used. The key point of these studies was to find a method to separate the matrix compounds from the fissile material in order to link the head to the core of the process (electrochemical separation or liquid-liquid reductive extraction in the case of a pyrochemical reprocessing).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke
2015-02-23
Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysismore » also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.« less
Digital image analysis to quantify carbide networks in ultrahigh carbon steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hecht, Matthew D.; Webler, Bryan A.; Picard, Yoosuf N., E-mail: ypicard@cmu.edu
A method has been developed and demonstrated to quantify the degree of carbide network connectivity in ultrahigh carbon steels through digital image processing and analysis of experimental micrographs. It was shown that the network connectivity and carbon content can be correlated to toughness for various ultrahigh carbon steel specimens. The image analysis approach first involved segmenting the carbide network and pearlite matrix into binary contrast representations via a grayscale intensity thresholding operation. Next, the carbide network pixels were skeletonized and parceled into braches and nodes, allowing the determination of a connectivity index for the carbide network. Intermediate image processing stepsmore » to remove noise and fill voids in the network are also detailed. The connectivity indexes of scanning electron micrographs were consistent in both secondary and backscattered electron imaging modes, as well as across two different (50 × and 100 ×) magnifications. Results from ultrahigh carbon steels reported here along with other results from the literature generally showed lower connectivity indexes correlated with higher Charpy impact energy (toughness). A deviation from this trend was observed at higher connectivity indexes, consistent with a percolation threshold for crack propagation across the carbide network. - Highlights: • A method for carbide network analysis in steels is proposed and demonstrated. • ImageJ method extracts a network connectivity index from micrographs. • Connectivity index consistent in different imaging conditions and magnifications. • Impact energy may plateau when a critical network connectivity is exceeded.« less
Damascus steel ledeburite class
NASA Astrophysics Data System (ADS)
Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.
2017-02-01
Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.
Single-Event Effects in Silicon Carbide Power Devices
NASA Technical Reports Server (NTRS)
Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.
2015-01-01
This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.
Penetration Resistance of Armor Ceramics: Dimensional Analysis and Property Correlations
2015-08-01
been reported in experimental studies. Particular ceramics analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon...analyzed here are low- and high-purity alumina, aluminum nitride, boron carbide, silicon carbide, and titanium diboride. Data for penetration depth...include high hardness, high elastic stiffness, high strengths (static/dynamic compressive, shear, and bending), and low density relative to armor steels
Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed-Energy Capability
2017-03-01
Relating Silicon Carbide Avalanche Breakdown Diode Design to Pulsed- Energy Capability Damian Urciuoli, Miguel Hinojosa, and Ronald Green US...were pulse tested in an inductive load circuit at peak powers of over 110 kW. Total pulsed- energy dissipation was kept nearly the same among the...voltages about which design provides the highest pulsed- energy capability. Keywords: Avalanche; Breakdown; Diode; Silicon Carbide Introduction
Process for preparing fine-grain metal carbide powder
Kennedy, C.R.; Jeffers, F.P.
Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.
Silicon nitride/silicon carbide composite densified materials prepared using composite powders
Dunmead, S.D.; Weimer, A.W.; Carroll, D.F.; Eisman, G.A.; Cochran, G.A.; Susnitzky, D.W.; Beaman, D.R.; Nilsen, K.J.
1997-07-01
Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.
Fundamental Studies and Isolation Strategies for Metal Compound Nanoclusters
2009-02-28
probe nanocluster structure, bonding and stability, metal oxide, carbide and silicide clusters with up to 50 atoms were investigated with mass...transition metal compounds (carbides, oxides, silicides ) that are expected to have high stability, an essential property for their isolation...Metal carbide, oxide and silicide nanoclusters are studied in the size range from a few up to about 300 atoms. New infrared laser spectroscopy
METHOD OF COATING GRAPHITE WITH STABLE METAL CARBIDES AND NITRIDES
Gurinsky, D.H.
1959-10-27
A method is presented for forming protective stable nitride and carbide compounds on the surface of graphite. This is accomplished by contacting the graphite surface with a fused heavy liquid metal such as bismuth or leadbismuth containing zirconium, titanium, and hafnium dissolved or finely dispersed therein to form a carbide and nitride of at least one of the dissolved metals on the graphite surface.
SiC Design Guide: Manufacture of Silicon Carbide Products (Briefing charts)
2010-06-08
DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES Presented at Mirror Technology Days, Boulder...coatings. 15. SUBJECT TERMS Mirrors , structures, silicon carbide, design, inserts, coatings, pockets, ribs, bonding, threads 16. SECURITY...Prescribed by ANSI Std. 239.18 purify protect transport SiC Design Guide Manufacture of Silicon Carbide Products Mirror Technology Days June 7 to 9, 2010
Characterization of Ceramic Vane Materials for 10KW Turboalternator.
1983-04-01
eide if necessary end identify by block number) Silicon nitride Gas turbine engine Failure analysis Silicon carbide Mechanical properties Ceramics...silicon carbide, and sil- iconized silicon carbide, being considered for use in a small turbine engine . Chemistry, phase content, and room-temperature...sponsored by USAMERADCOK, Ft. Belvoir, Va., and the engine testing and development was done by Solar Turbines International, San Diego, Calif. ANMHRC
Development of Spacecraft Materials and Structures Fundamentals.
1985-08-01
900. This is comparable to the dihedral angle observed in uranium dioxide’ ° and silicon carbide ,’ 2 which...necesjary and identify by bigich numberp FIELD GROUP I suB. GR. Boron carbide , sintering, grain growth, microstructure, microcracking, mechanical...Compacts of boron carbide powders with specific surface area >, 8 m2 / were sintered in argon at temperatures near 2200*C. Several of these powders were
New Icosahedral Boron Carbide Semiconductors
NASA Astrophysics Data System (ADS)
Echeverria Mora, Elena Maria
Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto-resistance, however, these results suggest practical device applications, especially as such effects are manifested in nanoscale films with facile fabrication. Overall, the greater negative magneto-resistance, when undoped with an aromatic, suggests a material with more defects and is consistent with a shorter carrier lifetime.
Method for silicon carbide production by reacting silica with hydrocarbon gas
Glatzmaier, G.C.
1994-06-28
A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400 C to 1000 C where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100 C to 1600 C to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process. 5 figures.
Method for silicon carbide production by reacting silica with hydrocarbon gas
Glatzmaier, Gregory C.
1994-01-01
A method is described for producing silicon carbide particles using a silicon source material and a hydrocarbon. The method is efficient and is characterized by high yield. Finely divided silicon source material is contacted with hydrocarbon at a temperature of 400.degree. C. to 1000.degree. C. where the hydrocarbon pyrolyzes and coats the particles with carbon. The particles are then heated to 1100.degree. C. to 1600.degree. C. to cause a reaction between the ingredients to form silicon carbide of very small particle size. No grinding of silicon carbide is required to obtain small particles. The method may be carried out as a batch process or as a continuous process.
Joining of porous silicon carbide bodies
Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.
1990-05-01
A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.
Transformation process for production of ultrahigh carbon steels and new alloys
Strum, M.J.; Goldberg, A.; Sherby, O.D.; Landingham, R.L.
1995-08-29
Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50 C above the A{sub 1} transformation temperature, soaking the steel above the A{sub 1} temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature. 9 figs.
Transformation process for production of ultrahigh carbon steels and new alloys
Strum, Michael J.; Goldberg, Alfred; Sherby, Oleg D.; Landingham, Richard L.
1995-01-01
Ultrahigh carbon steels with superplastic properties are produced by heating a steel containing ferrite and carbide phases to a soaking temperature approximately 50.degree. C. above the A.sub.1 transformation temperature, soaking the steel above the A.sub.1 temperature for a sufficient time that the major portion of the carbides dissolve into the austenite matrix, and then cooling the steel in a controlled manner within predetermined limits of cooling rate or transformation temperature, to obtain a steel having substantially spheroidal carbides. New alloy compositions contain aluminum and solute additions which promote the formation of a fine grain size and improve the resistance of the carbides to coarsening at the forming temperature.
Methods for making a porous nuclear fuel element
Youchison, Dennis L; Williams, Brian E; Benander, Robert E
2014-12-30
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Fabrication of thorium bearing carbide fuels
Gutierrez, Rueben L.; Herbst, Richard J.; Johnson, Karl W. R.
1981-01-01
Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.
NASA Astrophysics Data System (ADS)
Du, Hang; Song, Ci; Li, Shengyi
2018-01-01
In order to obtain high precision and high surface quality silicon carbide mirrors, the silicon carbide mirror substrate is subjected to surface modification treatment. In this paper, the problem of Silicon Carbide (SiC) mirror surface roughness deterioration by MRF is studied. The reasons of surface flaws of “Comet tail” are analyzed. Influence principle of MRF polishing depth and the surface roughness of modified SiC mirrors is obtained by experiments. On this basis, the united process of modified SiC mirrors is proposed which is combined MRF with the small grinding head CCOS. The united process makes improvement in the surface accuracy and surface roughness of modified SiC mirrors.
Elevated Temperature Properties of Titanium Carbide Base Ceramals Containing Nickel or Iron
NASA Technical Reports Server (NTRS)
Cooper, A L; Colteryahn, L E
1951-01-01
Elevated-temperature properties of titanium carbide base ceramals containing nickel or iron were determined in oxidation, modulus of rupture, tensile strength, and thermal-shock resistance. These materials followed the general growth law and exhibited two stages in oxidation. The following tensile strengths were found at 2000 degrees F: 13.3 weight percent nickel, 16, 150 pounds per square inch; 11.8 weight percent iron, 12,500 pounds per square inch; unalloyed titanium carbide, 16,450 pounds per square inch. Nickel or iron additions to titanium carbide improved the thermal-shock resistance, nickel more. The path of fracture in tensile and thermal-shock specimens was found to progress approximately 50 percent intergranularly and 50 percent transgranularly.
Semiconducting boron carbide polymers devices for neutron detection
NASA Astrophysics Data System (ADS)
Echeverria, Elena; Pasquale, Frank L.; James, Robinson; Colón Santana, Juan A.; Adenwalla, Shireen; Kelber, Jeffry A.; Dowben, Peter A.
2014-03-01
Boron carbide materials, with aromatic compounds included, prove to be effective materials as solid state neutron detector detectors. The I-V characteristic curves for these heterojunction diodes with silicon show that these modified boron carbides, in the presence of these linking groups such as 1,4-diaminobenzene (DAB) and pyridine, are p-type. Cadmium was used as shield to discriminate between neutron-induced signals and thermal neutrons, and thermal neutron capture is evident, while gamma detection was not realized. Neutron detection signals for these heterojunction diode were observed, a measurable zero bias current noted, even without complete electron-hole collection. This again illustrates that boron carbide devices can be considered a neutron voltaic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gogotsi, Yury
Here, the research community has been steadily expanding the family of few-atom-thick crystals beyond graphene, discovering new materials or producing known materials in a 2D state and demonstrating their unique properties 1, 2. Recently, nanometre-thin 2D transition metal carbides have also joined this family 3. Writing in Nature Materials, Chuan Xu and colleagues now report a significant advance in the field, showing the synthesis of large-area, high-quality, nanometre-thin crystals of molybdenum carbide that demonstrate low-temperature 2D superconductivity 4. Moreover, they also show that other ultrathin carbide crystals, such as tungsten and tantalum carbides, can be grown by chemical vapour depositionmore » with a high crystallinity and very low defect concentration.« less
Characterization of individual straight and kinked boron carbide nanowires
NASA Astrophysics Data System (ADS)
Cui, Zhiguang
Boron carbides represent a class of ceramic materials with p-type semiconductor natures, complex structures and a wide homogeneous range of carbon compositions. Bulk boron carbides have long been projected as promising high temperature thermoelectric materials, but with limited performance. Bringing the bulk boron carbides to low dimensions (e.g., nanowires) is believed to be an option to enhance their thermoelectric performance because of the quantum size effects. However, the fundamental studies on the microstructure-thermal property relation of boron carbide nanowires are elusive. In this dissertation work, systematic structural characterization and thermal conductivity measurement of individual straight and kinked boron carbide nanowires were carried out to establish the true structure-thermal transport relation. In addition, a preliminary Raman spectroscopy study on identifying the defects in individual boron carbide nanowires was conducted. After the synthesis of single crystalline boron carbide nanowires, straight nanowires accompanied by the kinked ones were observed. Detailed structures of straight boron carbide nanowires have been reported, but not the kinked ones. After carefully examining tens of kinked nanowires utilizing Transmission Electron Microscopy (TEM), it was found that they could be categorized into five cases depending on the stacking faults orientations in the two arms of the kink: TF-TF, AF-TF, AF-AF, TF-IF and AF-IF kinks, in which TF, AF and IF denotes transverse faults (preferred growth direction perpendicular to the stacking fault planes), axial faults (preferred growth direction in parallel with the stacking fault planes) and inclined faults (preferred growth direction neither perpendicular to nor in parallel with the stacking fault planes). Simple structure models describing the characteristics of TF-TF, AF-TF, AF-AF kinked nanowires are constructed in SolidWorks, which help to differentiate the kinked nanowires viewed from the zone axes where stacking faults are invisible. In collaboration with the experts in the field of thermal property characterization of one dimensional nanostructures, thermal conductivities of over 60 nanowires including both straight and kinked ones have been measured in the temperature range of 20 - 420 K and the parameters (i.e., carbon contents, diameters, stacking faults densities/orientations and kinks) affecting the phonon transport were explored. The results disclose strong carbon content and diameter dependence of thermal conductivities of boron carbide nanowires, which decreases as lowering the carbon content and diameter. Stacking fault orientations do modulate the phonon transport (kappaTF < kappa AF), while stacking fault densities seems to only have obvious effects on phonon transport when meeting certain threshold ( 39%). The most interesting discovery is significant reduction of thermal conductivity (15% - 40%) in kinked boron carbide nanowires due to phonon mode conversions and scattering at the kink site. Last but not least, micro-Raman spectroscopy study on individual boron carbide nanowires has been performed for the first time, to the best of our knowledge. Based on the preliminary data, it is found that the stacking fault orientations have no apparent effect on the Raman scattering, but the stacking fault densities do. In addition, up as the size going down to nanoscale, some Raman modes are inactive while some new ones show up, which is largely ascribed to the quantum confinement effects. One more important finding is that the carbon content also plays important role in the Raman scattering of boron carbide nanowires in the low frequency region (< 600 cm-1), which mainly comes from the 3-atom chains (C-B-C or C-B-B).
NASA Astrophysics Data System (ADS)
Lim, Yun Soo; Kim, Joung Soo; Kim, Hong Pyo; Cho, Hai Dong
2004-10-01
The precipitation characteristics of chromium carbides on various types of grain boundaries in Alloy 690 thermally treated at 720 °C for 10 h were studied through transmission electron microscopy. Precipitation of the intergranular chromium carbides, identified as Cr-rich M 23C 6, was retarded on the low angle grain boundaries, compared to that on the random high angle grain boundaries on which coarse and discrete ones were found. They were rarely found on the coherent twin boundaries, however, needle-like ones were evolved on the incoherent twin and twin related Σ9 boundaries. Precipitation of the chromium carbides was also suppressed on the nearly exact coincidence site lattice boundaries such as Σ11 and Σ15, for which the Brandon criterion was fulfilled. The results of the intergranular M 23C 6 carbide precipitation were explained in terms of the influence of the grain boundary energy.
NASA Astrophysics Data System (ADS)
Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan
2018-05-01
Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.
NASA Technical Reports Server (NTRS)
Dellacorte, C.; Sliney, H. E.
1986-01-01
This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.
The development of silicon carbide-based power electronics devices
NASA Astrophysics Data System (ADS)
Hopkins, Richard H.; Perkins, John F.
1995-01-01
In 1989 Westinghouse created an internally funded initiative to develop silicon carbide materials and device technology for a variety of potential commercial and military applications. Westinghouse saw silicon carbide as having the potential for dual use. For space applications, size and weight reductions could be achieved, together with increased reliability. Terrestrially, uses in harsh-temperature environments would be enabled. Theoretically, the physical and electrical properties of silicon carbide were highly promising for high-power, high-temperature, radiation-hardened electronics. However, bulk material with the requisite electronic qualities was not available, and the methods needed to produce a silicon carbide wafer—to fabricate high-quality devices—and to transition these technologies into a commercial product were considered to be a high-risk investment. It was recognized that through a collaborative effort, the CCDS could provide scientific expertise in several areas, thus reducing this risk. These included modeling of structures, electrical contacts, dielectrics, and epitaxial growth. This collaboration has been very successful, with developed technologies being transferred to Westinghouse.
Carbide-derived carbons - From porous networks to nanotubes and graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Presser, V.; Heon, M.; Gogotsi, Y.
2011-02-09
Carbide-derived carbons (CDCs) are a large family of carbon materials derived from carbide precursors that are transformed into pure carbon via physical (e.g., thermal decomposition) or chemical (e.g., halogenation) processes. Structurally, CDC ranges from amorphous carbon to graphite, carbon nanotubes or graphene. For halogenated carbides, a high level of control over the resulting amorphous porous carbon structure is possible by changing the synthesis conditions and carbide precursor. The large number of resulting carbon structures and their tunability enables a wide range of applications, from tribological coatings for ceramics, or selective sorbents, to gas and electrical energy storage. In particular, themore » application of CDC in supercapacitors has recently attracted much attention. This review paper summarizes key aspects of CDC synthesis, properties, and applications. It is shown that the CDC structure and properties are sensitive to changes of the synthesis parameters. Understanding of processing–structure–properties relationships facilitates tuning of the carbon material to the requirements of a certain application.« less
NASA Technical Reports Server (NTRS)
Dellacorte, Chris; Sliney, Harold E.
1987-01-01
This paper describes new compositions of self-lubricating coatings that contain chromium carbide. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The coating constituents were treated as a ternary system consisting of: (1) the bonded carbide base material, (2) silver, and (3) the eutectic. A study to determine the optimum amounts of each constituent was performed. The various compositions were prepared by powder blending. The blended powders were then plasma sprayed onto superalloy substrates and diamond ground to the desired coating thickness. Friction and wear studies were performed at temperatures from 25 to 760 C in helium and hydrogen. A variety of counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications such as piston ring/cylinder liner couples for Stirling engines.
NASA Astrophysics Data System (ADS)
Wang, Xinhong; Zhang, Min; Qu, Shiyao
2010-09-01
In this study, in situ multiple carbides reinforced Fe-based surface composite coatings were fabricated successfully by laser cladding a precursor mixture of graphite, ferrotitanium (Fe-Ti) and ferromolybdenum (Fe-Mo) powders. The results showed that (Ti, Mo)C particles with flower-like and cuboidal shapes were in situ formed during the solidification and most shapes of (Ti, Mo)C particles were diversiform according to different contents of Fe-Mo powder in the Fe-Ti-Mo-C system. The growth morphology of the reinforcing (Ti, Mo)C carbide has typically faceted features, indicating that the lateral growth mechanism is still predominant growth mode under rapid solidification conditions. Increasing the amount of Fe-Mo in the reactants led to a decrease of carbide size and an increase of volume fraction of carbides. The coatings had good cracking resistance when the amounts of Fe-Mo were controlled within a range of 15 wt%.
High-pressure phase transition makes B 4.3 C boron carbide a wide-gap semiconductor
Hushur, Anwar; Manghnani, Murli H.; Werheit, Helmut; ...
2016-01-11
Single-crystal B4.3C boron carbide is investigated concerning the pressure-dependence of optical properties and of Raman-active phonons up to ~70 GPa. The high concentration of structural defects determining the electronic properties of boron carbide at ambient conditions initially decrease and finally vanish with pressure increasing. We obtain this immediately from transparency photos, allowing to estimate the pressure-dependent variation of the absorption edge rapidly increasing around 55 GPa. Glass-like transparency at pressures exceeding 60 GPa indicate that the width of the band exceeds ~3.1 eV thus making boron carbide a wide-gap semiconductor. Furthermore, the spectra of Raman–active phonons indicate a pressure-dependent phasemore » transition in single-crystal natB4.3C boron carbide near 35 GPa., particularly related to structural changes in connection with the C-B-C chains, while the basic icosahedral structure remains largely unaffected.« less
Electroextraction of boron from boron carbide scrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.
2013-10-15
Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less
Nanocrystalline ordered vanadium carbide: Superlattice and nanostructure
NASA Astrophysics Data System (ADS)
Kurlov, A. S.; Gusev, A. I.; Gerasimov, E. Yu.; Bobrikov, I. A.; Balagurov, A. M.; Rempel, A. A.
2016-02-01
The crystal structure, micro- and nanostructure of coarse- and nanocrystalline powders of ordered vanadium carbide V8C7 have been examined by X-ray and neutron diffraction and electron microscopy methods. The synthesized coarse-crystalline powder of ordered vanadium carbide has flower-like morphology. It was established that the real ordered phase has the composition V8C7-δ (δ ≅ 0.03) deviating from perfect stoichiometric composition V8C7. The vanadium atoms forming the octahedral environment □V6 of vacant sites in V8C7-δ are displaced towards the vacancy □. The presence of carbon onion-like structures was found in the vanadium carbide powders with a small content of free (uncombined) carbon. The nanopowders of V8C7-δ carbide with average particle size of 20-30 nm produced by high-energy milling of coarse-crystalline powder retain the crystal structure of the initial powder, but differ in the lattice deformation distortion anisotropy.
Particle Characteristics and Densification of W6Mo5Cr4V2Co5Nb Overspray Powder
NASA Astrophysics Data System (ADS)
Pi, Ziqiang; Lu, Xin; Yang, Fei; Liu, Bowen; Jia, Chengchang; Qu, Xuanhui; Zheng, Wei; Wu, Lizhi; Shao, Qingli
2018-05-01
W6Mo5Cr4V2Co5Nb (825 K) alloy was prepared by a two-step sintering process from overspray 825 K alloy powder. The overspray powder characteristics and the microstructure and mechanical properties of the as-sintered 825 K alloy were investigated. Results showed that two types of carbides formed a network structure in the overspray powder, which had spherical or quasispherical shape: one was MC carbide that was rich in vanadium (V), and the other was M2C carbide enriched with vanadium (V) and tungsten (W). The sintered 825 K alloy contained M6C and MC carbides, of which M6C was rich in tungsten (W) and molybdenum (Mo), and both of these two carbides were uniformly distributed in the alloy matrix. The alloy had relative density of 98.43%, hardness of HRC 51.8, and superior bending strength of 2042 MPa. These mechanical properties can meet the requirements of most engineering applications.
Carbide fuels for nuclear thermal propulsion
NASA Astrophysics Data System (ADS)
Matthews, R. B.; Blair, H. T.; Chidester, K. M.; Davidson, K. V.; Stark, W. E.; Storms, E. K.
1991-09-01
A renewed interest in manned exploration of space has revitalized interest in the potential for advancing nuclear rocket technology developed during the 1960's. Carbide fuel performance, melting point, stability, fabricability and compatibility are key technology issues for advanced Nuclear Thermal Propulsion reactors. The Rover fuels development ended with proven carbide fuel forms with demonstrated operating temperatures up to 2700 K for over 100 minutes. The next generation of nuclear rockets will start where the Rover technology ended, but with a more rigorous set of operating requirements including operating lifetime to 10 hours, operating temperatures greater that 3000 K, low fission product release, and compatibility. A brief overview of Rover/NERVA carbide fuel development is presented. A new fuel form with the highest potential combination of operating temperature and lifetime is proposed that consists of a coated uranium carbide fuel sphere with built-in porosity to contain fission products. The particles are dispersed in a fiber reinforced ZrC matrix to increase thermal shock resistance.
NASA Technical Reports Server (NTRS)
Sudbrack, Chantal K.; Draper, Susan L.; Gorman, Timothy T.; Telesman, Jack; Gab, Timothy P.; Hull, David R.
2012-01-01
Oxidation and the effects of high temperature exposures on notched fatigue life were considered for a powder metallurgy processed supersolvus heat-treated ME3 disk superalloy. The isothermal static oxidation response at 704 C, 760 C, and 815 C was consistent with other chromia forming nickel-based superalloys: a TiO2-Cr2O3 external oxide formed with a branched Al2O3 internal subscale that extended into a recrystallized - dissolution layer. These surface changes can potentially impact disk durability, making layer growth rates important. Growth of the external scales and dissolution layers followed a cubic rate law, while Al2O3 subscales followed a parabolic rate law. Cr- rich M23C6 carbides at the grain boundaries dissolved to help sustain Cr2O3 growth to depths about 12 times thicker than the scale. The effect of prior exposures was examined through notched low cycle fatigue tests performed to failure in air at 704 C. Prior exposures led to pronounced debits of up to 99 % in fatigue life, where fatigue life decreased inversely with exposure time. Exposures that produced roughly equivalent 1 m thick external scales at the various isotherms showed statistically equivalent fatigue lives, establishing that surface damage drives fatigue debit, not exposure temperature. Fractographic evaluation indicated the failure mode for the pre-exposed specimens involved surface crack initiations that shifted with exposure from predominately single intergranular initiations with transgranular propagation to multi-initiations from the cracked external oxide with intergranular propagation. Weakened grain boundaries at the surface resulting from the M23C6 carbide dissolution are partially responsible for the intergranular cracking. Removing the scale and subscale while leaving a layer where M23C6 carbides were dissolved did not lead to a significant fatigue life improvement, however, also removing the M23C6 carbide dissolution layer led to nearly full recovery of life, with a transgranular initiation typical to that observed in unexposed specimens.
Electro-Thermal Transient Simulation of Silicon Carbide Power Mosfet
2013-06-01
ionization rate than electron in silicon carbide , the breakdown voltage almost remains constant even at elevated temperatures . This is due to the positive... temperature coefficient of holes in case of silicon carbide as discussed in [7, 8]. The higher ambient temperature influences the leakage current...in the RLC ring down circuit . E. Power Dissipation and Lattice Temperature The power dissipation for any switching device is dependent on the
2012-02-01
the presence of somewhat randomly-distributed carbides and borides (white particles in BSE images), this grain size was comparable to that observed...pinned by carbide/ boride particles (imaging white in Figure 8c). The very fine gamma-prime precipitates likely produced during magnetron sputtering...sputtered material. First, the carbide/ boride particles were nucleated and hence located preferentially at the grain boundaries in the sputtered
Alloying-Element Loss during High-Temperature Processing of a Nickel-Base Superalloy (Preprint)
2013-01-01
precipitates, and the fine white/gray particles are carbides and borides . ............................................. 23 Figure 2. Aluminum...comparable size, and submicron carbides and borides . A fifteen-minute heat treatment at the subsolvus temperature used in the present work (i.e...precipitates, and ~0.3 volume pct. of carbides and borides with an average diameter of ~0.3 m (Figure 1) [5, 6]. B. Procedures To establish the
Selective etching of silicon carbide films
Gao, Di; Howe, Roger T.; Maboudian, Roya
2006-12-19
A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.
Edge on Impact Simulations and Experiments
2013-09-01
silicon carbide ( SiC ) and aluminum oxynitride (AlON) ceramics are predicted using the Kayenta macroscopic constitutive model. Aspects regarding...damage propagation. 2.1. Silicon Carbide SiC is an opaque ceramic explored by the armor community. It is perhaps the most extensively characterized...the Weibull modulus for SiC . 4.1. Silicon Carbide Figures 3 and 4 compare experimental images with model predictions of EOI of SiC targets at respective
Multifunctional Ceramic Nanostructured Coatings
2010-12-01
silicon carbide composites // J. Europ. Cer. Soc. − 2004. − Vol. 24. − P. 2169−2179. 22. Yu. P. Udalov, E. E. Valova, S. S. Ordanian. Fabrication and...by the titanium and tungsten borides and carbides . The analysis was done using the X-ray and electron-optical methods. This information expands our...coating compositions should be based on limited solubility materials. Such systems include carbides , nitrides, borides and silicides based on
Minimizing Actuator-Induced Residual Error in Active Space Telescope Primary Mirrors
2010-09-01
actuator geometry, and rib-to-facesheet intersection geometry are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A...are exploited to achieve improved performance in silicon carbide ( SiC ) mirrors . A parametric finite element model is used to explore the trade space...MOST) finite element model. The move to lightweight actively-controlled silicon carbide ( SiC ) mirrors is traced back to previous generations of space
Chemical-Vapor Deposition Of Silicon Carbide
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Riccitiello, S. R.; Ren, J.; Zaghi, F.
1993-01-01
Report describes experiments in chemical-vapor deposition of silicon carbide by pyrolysis of dimethyldichlorosilane in hydrogen and argon carrier gases. Directed toward understanding chemical-kinetic and mass-transport phenomena affecting infiltration of reactants into, and deposition of SiC upon, fabrics. Part of continuing effort to develop method of efficient and more nearly uniform deposition of silicon carbide matrix throughout fabric piles to make improved fabric/SiC-matrix composite materials.
R&D100: 6.5kV Enhancement-Mode Silicon Carbide JFET Switch
Dries, Chris; Hostetler, John; Atcitty, Stan
2018-06-12
Researchers at Sandia National Laboratories have partnered with United Silicon Carbide, Inc. to combine advanced materials with novel manufacturing ideas to build a new product for significantly more efficient power conversion. Harnessing the unique features of silicon carbide, this first of its kind device allows higher voltage switching, and reductions in switching losses to significantly boost the efficiency and reliability of power generation and power conversion.
NASA Astrophysics Data System (ADS)
Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.
2016-11-01
Carbide signatures are ubiquitous in the surface analyses of industrially sputter-deposited transition metal nitride thin films grown with carbon-less source materials in typical high-vacuum systems. We use high-energy-resolution photoelectron spectroscopy to reveal details of carbon temporal chemical state evolution, from carbide formed during film growth to adventitious carbon adsorbed upon contact with air. Using in-situ grown Al capping layers that protect the as-deposited transition metal nitride surfaces from oxidation, it is shown that the carbide forms during film growth rather than as a result of post deposition atmosphere exposure. The XPS signature of carbides is masked by the presence of adventitious carbon contamination, appearing as soon as samples are exposed to atmosphere, and eventually disappears after one week-long storage in lab atmosphere. The concentration of carbon assigned to carbide species varies from 0.28 at% for ZrN sample, to 0.25 and 0.11 at% for TiN and HfN, respectively. These findings are relevant for numerous applications, as unintentionally formed impurity phases may dramatically alter catalytic activity, charge transport and mechanical properties by offsetting the onset of thermally-induced phase transitions. Therefore, the chemical state of C impurities in PVD-grown films should be carefully investigated.
NASA Astrophysics Data System (ADS)
Lin, Chi-Ming; Chang, Chia-Ming; Chen, Jie-Hao; Hsieh, Chih-Chun; Wu, Weite
2009-05-01
A series of high-carbon Cr-based hard-facing alloys were successfully fabricated on a substrate of 0.45 pct C carbon steel by gas tungsten arc welding (GTAW) process using various alloy fillers with chromium and chromium carbide, CrC (Cr:C = 4:1) powders. These claddings were designed to observe hypoeutectic, near-eutectic, and hypereutectic structures with various (Cr,Fe)23C6 and (Cr,Fe)7C3 carbides at room temperature. According to X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and optical microscopy (OM), in 3.8 pct C cladding, the microstructure consisted of the primary carbides with outer shells (Cr,Fe)23C6 surrounding (Cr,Fe)7C3 cores and [ α + (Cr,Fe)23C6] eutectic structures. In 5.9 pct C cladding, the composite comprised primary (Cr,Fe)7C3 as the reinforcing phase and [α + (Cr,Fe)7C3] eutectic structures as matrix. Various morphologies of carbides were found in primary and eutectic (Cr,Fe)7C3 carbides, which included bladelike and rodlike (with a hexagonal cross section). The 5.9C cladding with great amounts of primary (Cr,Fe)7C3 carbides had the highest hardness (approximately HRC 63.9) of the all conditions.
Kang, Jin Soo; Kim, Jin; Lee, Myeong Jae; Son, Yoon Jun; Jeong, Juwon; Chung, Dong Young; Lim, Ahyoun; Choe, Heeman; Park, Hyun S; Sung, Yung-Eun
2017-05-04
Photoelectrochemical (PEC) cells are promising tools for renewable and sustainable solar energy conversion. Currently, their inadequate performance and high cost of the noble metals used in the electrocatalytic counter electrode have postponed the practical use of PEC cells. In this study, we report the electrochemical synthesis of nanoporous tungsten carbide and its application as a reduction catalyst in PEC cells, namely, dye-sensitized solar cells (DSCs) and PEC water splitting cells, for the first time. The method employed in this study involves the anodization of tungsten foil followed by post heat treatment in a CO atmosphere to produce highly crystalline tungsten carbide film with an interconnected nanostructure. This exhibited high catalytic activity for the reduction of cobalt bipyridine species, which represent state-of-the-art redox couples for DSCs. The performance of tungsten carbide even surpassed that of Pt, and a substantial increase (∼25%) in energy conversion efficiency was achieved when Pt was substituted by tungsten carbide film as the counter electrode. In addition, tungsten carbide displayed decent activity as a catalyst for the hydrogen evolution reaction, suggesting the high feasibility for its utilization as a cathode material for PEC water splitting cells, which was also verified in a two-electrode water photoelectrolyzer.
Malina, Ondřej; Jakubec, Petr; Kašlík, Josef; Tuček, Jiří; Zbořil, Radek
2017-07-27
Iron carbides are of eminent interest in both fundamental scientific research and in the industry owing to their properties such as excellent mechanical strength and chemical inertness. They have been found very effective in Fischer-Tropsch synthesis exploring heterogeneous catalysis for the production of chemicals such as liquid fuel and they have also been employed as successful promoters for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). However, so far there have been only a few reports on the application of iron carbide nanoparticles in the field of electrochemical sensing. Here, we present a stable form of Hägg carbide nanoparticles synthesized from a rare form of iron(iii) oxide (β-Fe 2 O 3 ). The as-prepared nanomaterial was characterized employing X-ray powder diffraction and Mössbauer spectroscopy to prove its composition as well as an extraordinary high purity level. It turned out that Hägg carbide nanoparticles prepared by thermally treated β-Fe 2 O 3 exhibited excellent electrochemical properties including low charge transfer resistivity (R ct ) compared to the other tested materials. Moreover, the Hägg carbide nanoparticles were tested as a promising electrocatalyst for voltammetric detection of the antibiotic metronidazole proving its practical applicability.
Atomic scale study of grain boundary segregation before carbide nucleation in Ni-Cr-Fe Alloys
NASA Astrophysics Data System (ADS)
Li, Hui; Xia, Shuang; Liu, Wenqing; Liu, Tingguang; Zhou, Bangxin
2013-08-01
Three dimensional chemical information concerning grain boundary segregation before carbide nucleation was characterized by atom probe tomography in two Ni-Cr-Fe alloys which were aged at 500 °C for 0.5 h after homogenizing treatment. B, C and Si atoms segregation at grain boundary in Alloy 690 was observed. B, C, N and P atoms segregation at grain boundary in 304 austenitic stainless steel was observed. C atoms co-segregation with Cr atoms at the grain boundaries both in Alloy 690 and 304 austenitic stainless steel was found, and its effect on the carbide nucleation was discussed. The amount of each segregated element at grain boundaries in the two Ni-Cr-Fe alloys were analyzed quantitatively. Comparison of the grain boundary segregation features of the two Ni-Cr-Fe alloys were carried out based on the experimental results. The impurity and solute atoms segregate inhomogeneously in the same grain boundary both in 304 SS and Alloy 690. The grain boundary segregation tendencies (Sav) are B (11.8 ± 1.4) > P (5.4 ± 1.4) > N (4.7 ± 0.3) > C (3.7 ± 0.4) in 304 SS, and B (6.9 ± 0.9) > C (6.7 ± 0.4) > Si (1.5 ± 0.2) in Alloy 690. Cr atoms may co-segregate with C atoms at grain boundaries before carbide nucleation at the grain boundaries both in 304 SS and Alloy 690. Ni atoms generally deplete at grain boundary both in 304 SS and Alloy 690. The literature shows that the Ni atoms may co-segregate with P atoms at grain boundaries [28], but the P atoms segregation do not leads to Ni segregation in the current study. In the current study, Fe atoms may segregate or deplete at grain boundary in Alloy 690. But Fe atoms generally deplete at grain boundary in 304 SS. B atoms have the strongest grain boundary segregation tendency both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of B in 304 SS is higher than in Alloy 690. C atoms are easy to segregate at grain boundaries both in 304 SS and Alloy 690. The grain boundary segregation tendency and Gibbs free energy of C in Alloy 690 is higher than in 304 SS, due to the higher bulk C concentration and the site competition of P atoms which segregate at grain boundary [29,30]. It is imply that the segregation tendency is influenced by the bulk concentration of the segregates. Si atoms slightly segregate at grain boundaries in Alloy 690, but do not segregate at grain boundaries in 304 SS. N and P atoms segregate at grain boundary in 304 SS, and their segregation Gibbs free energy are similar. N atoms may be exhausted by the TiN precipitated in the matrix and can not be observed in the grain boundary of Alloy 690 [19]. Mn atoms deplete at grain boundary in 304 SS. This phenomenon is similar to that of proton irradiation induced segregation in 304 SS [32]. B, C, N, P segregation Gibbs energies are similar both in 304 SS and Alloy 690. B and C atoms segregate at grain boundary both in Alloy 690 and 304 SS, P and N segregate at grain boundary in 304 SS. Si atoms segregate at grain boundary in Alloy 690, but do not segregate at grain boundary in 304 SS. Cr enriches at grain boundary both in Alloy 690 and 304 SS, although carbide does not nucleate. Ni and Fe may segregate, deplete or homogeneously distribute at grain boundary in Alloy 690, but they deplete at grain boundary in 304 SS. C and Cr atoms co-segregate at grain boundaries before carbide nucleation in Alloy 690 and 304 SS. Combination with other results in literatures, the evolution of Cr concentration at grain boundary should be enrichment at grain boundary before carbide nucleation, depletion at grain boundary after carbide precipitation, and healing after obvious growth of carbide. After aging treatment at 500 °C for 0.5 h, the total reduction of grain boundary free energy due to segregation is 27.489 kJ/mol for Alloy 690 and 45.207 kJ/mol for 304.
Wear and corrosion behaviour of tungsten carbide based coatings with different metallic binder
NASA Astrophysics Data System (ADS)
Kamdi, Z.; Apandi, M. N. M.; Ibrahim, M. D.
2017-12-01
Tungsten carbide based coating has been well known as wear and corrosion resistance materials. However, less study is done on comparing the coating with different binder. Thus, in this work the wear and corrosion behaviour of high velocity oxy-fuel (HVOF) coatings, namely (i) tungsten carbide cobalt and (ii) tungsten carbide nickel will be evaluated. Both coatings were characterised using X-ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The wear behaviour has been examined using the modified grinder machine by weight loss measurement. Two types of abrasive have been used that include 3 g by weight alumina and silica. While for the corrosion behaviour, it is monitored by three electrodes of electrochemical test and immersion test for 30 days in an acidic environment. The electrolyte used was 0.5 M sulphuric acids (H2SO4). It was found that the cobalt binder shows higher wear resistance compares to the nickel binder for both slurry types. The harder alumina compared to silica results in higher wear rate with removal of carbide and binder is about the same rate. For silica abrasive, due to slightly lower hardness compared to the carbide, the wear is dominated by binder removal followed by carbide detachment. For corrosion, the nickel binder shows four times higher wear resistance compared to the cobalt binder as expected due to its natural behaviour. These finding demonstrate that the selection of coating to be used in different application in this case, wear and corrosion shall be chosen carefully to maximize the usage of the coating.
Li, Yunhua; Cai, Xiaohu; Chen, Sijing; Zhang, Hua; Zhang, Kevin H L; Hong, Jinqing; Chen, Binghui; Kuo, Dong-Hau; Wang, Wenju
2018-03-22
Catalytic conversion of CO 2 into chemicals is a critical issue for energy and environmental research. Among such reactions, converting CO 2 into CO has been regarded as a significant foundation to generate a liquid fuels and chemicals on a large scale. In this work, zeolitic imidazolate framework-derived N-doped carbon-supported metal carbide catalysts (M/ZIF-8-C; M=Ni, Fe, Co and Cu) with highly dispersed metal carbide were prepared for selective CO 2 hydrogenation. Under the same metal loadings, catalytic activity for CO 2 hydrogenation to CO follows the order: Ni/ZIF-8-C≈Fe/ZIF-8-C>Co/ZIF-8-C>Cu/ZIF-8-C. These catalysts are composed of carbide or metal supported on pyridinic N sites within the N-doped carbon structure. ZIF-8-derived pyridinic nitrogen and carbide effect CO 2 adsorption, whereas dispersed Ni or Fe carbide and metal species serve as an active site for CO 2 hydrogenation. The supported Ni catalyst exhibits extraordinary catalytic performance, which results from high dispersion of the metal and exposure of the carbide. Based on high-sensitivity low-energy ion scattering (HS-LEIS) and line scan results, density functional theory (DFT) was used to understand reaction mechanism of selective CO 2 hydrogenation over Ni/ZIF-8-C. The product CO is derived mainly from the direct cleavage of C-O bonds in CO 2 * rather than decomposition of COOH*. The CO* desorption energy on Ni/ZIF-8-C is lower than that for further hydrogenation and dissociation. Comparison of Ni/ZIF-8-C with ZIF-8-C indicates that the combined effects of the highly dispersed metal or carbide and weak CO adsorption result in high CO selectivity for CO 2 hydrogenation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bolobov, V. I.; BinhLe, Thanh
2018-03-01
It is shown that shallow cryogenic treatment at -75°C (SCT) of the materials of hydraulic breaker chisels - P20, 1080 and D2 steels leads to a decrease (44 ÷ 82%) in the amount of retained austenite and an increase (26 ÷ 99%) in the amount of carbides in the structure of hardened steel, which is accompanied by an increase in its hardness (1.4 ÷ 2.1%) and abrasive wear resistance (10 ÷ 31%) with a simultaneous decrease in impact toughness (19 ÷ 24%). Deep cryogenic treatment at -196°C (DCT) and subsequent low-temperature tempering of D2 steel leads to a significant increase in its wear resistance (98%) and impact toughness (32%).
Evaluation of an alternative shielding materials for F-127 transport package
NASA Astrophysics Data System (ADS)
Gual, Maritza R.; Mesquita, Amir Z.; Pereira, Cláubia
2018-03-01
Lead is used as radiation shielding material for the Nordion's F-127 source shipping container is used for transport and storage of the GammaBeam -127's cobalt-60 source of the Nuclear Technology Development Center (CDTN) located in Belo Horizonte, Brazil. As an alternative, Th, Tl and WC have been evaluated as radiation shielding material. The goal is to check their behavior regarding shielding and dosing. Monte Carlo MCNPX code is used for the simulations. In the MCNPX calculation was used one cylinder as exclusion surface instead one sphere. Validation of MCNPX gamma doses calculations was carried out through comparison with experimental measurements. The results show that tungsten carbide WC is better shielding material for γ-ray than lead shielding.
Alternative Solder Bond Packaging Approach for High-Voltage (HV) Pulsed Power Devices
2016-09-01
DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The silicon carbide...the pulse evaluation circuit used to evaluate a SiC SGTO device under extreme pulsed current switching conditions. 15. SUBJECT TERMS silicon carbide...development effort. We would also like to thank Dr Sei-Hyung Ryu and Dr Jon Zhang of Cree, Inc., for providing the silicon carbide “super” gate-turn
NASA Astrophysics Data System (ADS)
Somogyi, Bálint; Zólyomi, Viktor; Gali, Adam
2012-11-01
Molecule-sized fluorescent emitters are much sought-after to probe biomolecules in living cells. We demonstrate here by time-dependent density functional calculations that the experimentally achievable 1-2 nm sized silicon carbide nanocrystals can emit light in the near-infrared region after introducing appropriate color centers in them. These near-infrared luminescent silicon carbide nanocrystals may act as ideal fluorophores for in vivo bioimaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habermehl, Scott D.
Described methods are useful for depositing a silicon carbide film including Alpha-SiC at low temperatures (e.g., below about 1400.degree. C.), and resulting multi-layer structures and devices. A method includes introducing a chlorinated hydrocarbon gas and a chlorosilicon gas into a reaction chamber, and reacting the chlorinated hydrocarbon gas with the chlorosilicon gas at a temperature of less than about 1400.degree. C. to grow the silicon carbide film. The silicon carbide film so-formed includes Alpha-SiC.
NASA Technical Reports Server (NTRS)
Creagh, J. W. R.; Smith, J. R.
1973-01-01
Uranium carbide fueled, thermionic emitter configurations were encapsulated and irradiated. One capsule contained a specimen clad with fluoride derived chemically vapor deposited (CVD) tungsten. The other capsule used a duplex clad specimen consisting of chloride derived on floride derived CVD tungsten. Both fuel pins were 16 millimeters in diameter and contained a 45.7-millimeter length of fuel.
Henager, Jr., Charles W [Kennewick, WA; Brimhall, John L [West Richland, WA
2001-08-21
According to the present invention, a joined product is at least two ceramic parts, specifically bi-element carbide parts with a bond joint therebetween, wherein the bond joint has a metal silicon phase. The bi-element carbide refers to compounds of MC, M.sub.2 C, M.sub.4 C and combinations thereof, where M is a first element and C is carbon. The metal silicon phase may be a metal silicon carbide ternary phase, or a metal silicide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Airapetov, A. A.; Begrambekov, L. B., E-mail: lbb@plasma.mephi.ru; Buzhinskiy, O. I.
2015-12-15
A device intended for boron carbide coating deposition and material testing under high heat loads is presented. A boron carbide coating 5 μm thick was deposited on the tungsten substrate. These samples were subjected to thermocycling loads in the temperature range of 400–1500°C. Tungsten layers deposited on tungsten substrates were tested in similar conditions. Results of the surface analysis are presented.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, David T.; Troup, Robert L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.
Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Dickerson, R. M.
1996-01-01
Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA
2011-03-01
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.
2013-09-03
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Novel hard compositions and methods of preparation
Sheinberg, H.
1981-02-03
Novel very hard compositions of matter are prepared by using in all embodiments only a minor amount of a particular carbide (or materials which can form the carbide in situ when subjected to heat and pressure); and no strategic cobalt is needed. Under a particular range of conditions, densified compositions of matter of the invention are prepared having hardnesses on the Rockwell A test substantially equal to the hardness of pure tungsten carbide and to two of the hardest commercial cobalt-bonded tungsten carbides. Alternately, other compositions of the invention which have slightly lower hardnesses than those described above in one embodiment also possess the advantage of requiring no tungsten and in another embodiment possess the advantage of having a good fracture toughness value.
NASA Astrophysics Data System (ADS)
Bayraktar, S.; Hekimoglu, A. P.; Turgut, Y.; Haciosmanoglu, M.
2018-01-01
In this study, Al-35Zn alloy was produced by permanent mold casting. To investigate the cutting performance of uncoated and TiAlN coated carbide end mills on this alloy, a series of tests were carried out in the CNC vertical machining center at a constant cutting speed, feed rate and depth of cut. The results obtained from the tests showed that uncoated carbide end mill have lower cutting force and surface roughness than TiAlN coated carbide end mill. These observations are discussed in terms of the alloys properties, cutting tool surfaces, and friction and wear behavior between the cutting tool and the material.
METHOD FOR COATING GRAPHITE WITH METALLIC CARBIDES
Steinberg, M.A.
1960-03-22
A method for producing refractory coatings of metallic carbides on graphite was developed. In particular, the graphite piece to be coated is immersed in a molten solution of 4 to 5% by weight of zirconium, titanium, or niobium dissolved in tin. The solution is heated in an argon atmosphere to above 1400 deg C, whereby the refractory metal reacts with the surface of the graphite to form a layer of metalic carbide. The molten solution is cooled to 300 to 400 deg C, and the graphite piece is removed. Excess tin is wiped from the graphite, which is then heated in vacuum to above 2300 deg C. The tin vaporizes from the graphite surface, leaving the surface coated with a tenacious layer of refractory metallic carbide.
Semi-solid processing of high-chromium tool steel to obtain microstructures without carbide network
NASA Astrophysics Data System (ADS)
Jirková, H.; Aišman, D.; Rubešová, K.; Opatová, K.; Mašek, B.
2017-02-01
Treatment of high-alloy tool steels that involves transition to the semi-solid state can transform the sharp-edged primary carbides which usually form during solidification. These carbides severely impair toughness and are virtually impossible to eliminate by conventional treatment routes. Upon classical semi-solid processing which dissolves these carbides, the resulting microstructure consists of polyhedral and super-saturated austenite embedded in lamellar austenite-carbide network. This type of microstructure reflects in the mechanical properties, predominantly in material behaviour under tensile loading. Such a network, however, can be removed by appropriate thermomechanical treatment. In the present experiment, various procedures involving heating to the semi-solid state were tested on X210Cr12 tool steel. The feedstock was heated to the temperature range of 1220 - 1280 °C. The heating was followed by procedures involving either water quenching to the forming temperature, room temperature or temperature from the range from 500 °C to 1000 °C followed by reheating to the forming temperature. It was found that the development of the lamellar network strongly depends on the temperature of heating to semi-solid state. Thermomechanical treatment produced microstructures in which the matrix consisted of a mixture of polyhedral austenite grains and the M-A constituent. In addition, the initial lamellar eutectic network was partially or even completely melted and substituted with a mixture of very fine recrystallized austenite grains and precipitates of chromium carbides. Some fine M7C3 carbides were present in the austenitic-martensitic matrix as well. When appropriate processing parameters were chosen, very good mechanical properties were obtained, among them a hardness of 860 HV10.
The growth mechanism of grain boundary carbide in Alloy 690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui, E-mail: huili@shu.edu.cn; Institute of Materials, Shanghai University, Shanghai 200072; Xia, Shuang
2013-07-15
The growth mechanism of grain boundary M{sub 23}C{sub 6} carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M{sub 23}C{sub 6} and matrix was curved, and did not lie on any specific crystal plane. The M{sub 23}C{sub 6} carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M{sub 23}C{submore » 6} carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M{sub 23}C{sub 6}: (111){sub matrix}//(0001){sub transition}//(111){sub carbide}, <112{sup ¯}>{sub matrix}//<21{sup ¯}10>{sub transition}//<112{sup ¯}>{sub carbide}. The crystal lattice constants of transition phase are c{sub transition}=√(3)×a{sub matrix} and a{sub transition}=√(6)/2×a{sub matrix}. Based on the experimental results, the growth mechanism of M{sub 23}C{sub 6} and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M{sub 23}C{sub 6} and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M{sub 23}C{sub 6}. • The M{sub 23}C{sub 6} transforms from the matrix directly at the incoherent phase interface.« less
NASA Astrophysics Data System (ADS)
Diaz-Cano, Andres
Boron carbide (B4C) is the third hardest material after diamond and cubic boron nitride. It's unique combination of properties makes B4C a highly valuable material. With hardness values around 35 MPa, a high melting point, 2450°C, density of 2.52 g/cm3, and high chemical inertness, boron carbide is used in severe wear components, like cutting tools and sandblasting nozzles, nuclear reactors' control rots, and finally and most common application, armor. Production of complex-shaped ceramic component is complex and represents many challenges. Present research presents a new and novel approach to produce complex-shaped B4C components. Proposed approach allows forming to be done at room temperatures and under very low forming pressures. Additives and binder concentrations are kept as low as possible, around 5Vol%, while ceramics loadings are maximized above 50Vol%. Given that proposed approach uses water as the main solvent, pieces drying is simple and environmentally safe. Optimized formulation allows rheological properties to be tailored and adjust to multiple processing approaches, including, injection molding, casting, and additive manufacturing. Boron carbide samples then were pressureless sintered. Due to the high covalent character of boron carbide, multiples sintering aids and techniques have been proposed in order to achieve high levels of densification. However, is not possible to define a clear sintering methodology based on literature. Thus, present research developed a comprehensive study on the effect of multiple sintering aids on the densification of boron carbide when pressureless sintered. Relative densities above 90% were achieved with values above 30MPa in hardness. Current research allows extending the uses and application of boron carbide, and other ceramic systems, by providing a new approach to produce complex-shaped components with competitive properties.
NASA Astrophysics Data System (ADS)
Puji Hastuty, Ika; Roesyanto; Novia Sari, Intan; Simanjuntak, Oberlyn
2018-03-01
Clay is a type of soil which is often used for stabilization. This is caused by its properties which are very hard in dry conditions and plastic in the medium content of water. However, at a higher level of water, clay will be cohesive and very lenient causing a large volume change due to the influence of water and also causing the soil to expand and shrink for a short period of time. These are the reasons why stabilization is needed in order to increase bearing capacity value of the clay. Stabilization is one of the ways to the conditon of soil that has the poor index properties, for example by adding chemical material to the soil. One of the chemical materials than can be added to the soil is calsium carbide residue. The purpose of this research is to know the fixation of index properties as the effect of adding 2% PC and calsium carbide residue to the clay, and to know the bearing capacity value of CBR (California Bearing Ratio) as the effect of adding the stabilization agent and to know the optimum content of adding calsium carbide residue. The result of the research shows that the usage of 2% cement in the soil that has CBR value 5,76%, and adding 2% cement and 9% calsium carbide residue with a period of curing 14 days has the lagerst of CBR value that is 9,95%. The unsoaked CBR value shows the increase of CBR value upto the mixture content of calsium carbide residue 9% and, decreases at the mixture content of calsium carbide residue 10% and 11%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bedekar, Vikram; Poplawsky, Jonathan D.; Guo, Wei
In grain finement and non-equilibrium there is carbon segregation within grain boundaries alters the mechanical performance of hard turning layers in carburized bearing steel. Moreover, an atom probe tomography (APT) study on the nanostructured hard turning layers reveals carbon migration to grain boundaries as a result of carbide decomposition during severe plastic deformation. In addition, samples exposed to different cutting speeds show that the carbon migration rate increases with the cutting speed. For these two effects lead to an ultrafine carbon network structure resulting in increased hardness and thermal stability in the severely deformed surface layer.
NASA Technical Reports Server (NTRS)
Schlichting, J.
1981-01-01
The oxidation and corrosion behavior of SiC (in the form of a SiC powder) and hot-pressed and reaction-bound material were studied. The excellent stability of SiC in an oxidizing atmosphere is due to the development of protective SiO2 coatings. Any changes in these protective layers (e.g., due to impurities, reaction with corrosive media, high porosity of SiC, etc.) lead in most cases to increased rates of oxidation and thus restrict the field of SiC application.
Dynamic Behavior and Optimization of Advanced Armor Ceramics: January-December 2012 Annual Report
2015-03-01
tasks are reviewed: Nanostructured Armor Ceramics: Focus on Boron Carbide; The Role of Microstructure in the Impact Resistance for Silicon Carbide...Task 2: The Role of Microstructure in the Impact Resistance for Silicon Carbide (SiC), Core Program 22 3.1 Long-Range Goals 22 3.2 Background 22 3.3...from a 2-gr drop test using corn starch as a C source; D(0.9) = 1.27 μm ....................................................................12 Fig
Density Determination and Metallographic Surface Preparation of Electron Beam Melted Ti6Al4V
2015-06-02
Electron Microscopy SiC Silicon Carbide Ti6Al4V Titanium-6Aluminum-4Vanadium WRNMMC Walter Reed National Military Medical Center Wd Dry...polishing with silicon carbide ( SiC ) papers and colloidal silica suspension to produce samples with varying surface topographies. Surfaces were...manufacturing process. For titanium alloys, the grinding media typically used is silicon carbide ( SiC ) paper. Table 1 lists grades of SiC papers that are
Gleeble Testing of Tungsten Samples
2013-02-01
as a diffusion barrier to prevent the tungsten samples from fusing to the tungsten carbide inserts at elevated temperatures. After the anvils were...anvils with removable tungsten carbide inserts. The inserts were 19.05 mm (0.75 in) in diameter and 25.4 mm (1 in) long; they were purchased from...rhenium are shown in tables 6 and 7 and figure 7. The sample tested at 1300 °C, T4, partially embedded into the tungsten carbide (WC) inserts during
Fabrication of thorium bearing carbide fuels
Gutierrez, R.L.; Herbst, R.J.; Johnson, K.W.R.
Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750/sup 0/C and 2000/sup 0/C were used during the reduction cycle. Sintering temperatures of 1800/sup 0/C and 2000/sup 0/C were used to prepare fuel pellet densities of 87% and > 94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproductibility of chemical and phase composition.
Joining of materials using laser heating
Cockeram, Brian V.; Hicks, Trevor G.; Schmid, Glenn C.
2003-07-01
A method for diffusion bonding ceramic layers such as boron carbide, zirconium carbide, or silicon carbide uses a defocused laser beam to heat and to join ceramics with the use of a thin metal foil insert. The metal foil preferably is rhenium, molybdenum or titanium. The rapid, intense heating of the ceramic/metal/ceramic sandwiches using the defocused laser beam results in diffusive conversion of the refractory metal foil into the ceramic and in turn creates a strong bond therein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
Amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphous silicon carbide beingmore » shown to surpass amorphous silicon for temperatures above 300 °C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boccard, Mathieu; Holman, Zachary C.
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
NASA Astrophysics Data System (ADS)
Xiao, Xiangjun; Xi, Xiaoli; Nie, Zuoren; Zhang, Liwen; Ma, Liwen
2017-02-01
A novel process of preparing cobalt, tungsten, and tungsten carbide powders from cemented carbide scrap by molten salt electrolysis has been investigated in this paper. In this experiment, WC-6Co and NaCl-KCl salt were used as sacrificial anode and electrolyte, respectively. The dissolution potential of cobalt and WC was determined by linear sweep voltammetry to be 0 and 0.6 V ( vs Ag/AgCl), respectively. Furthermore, the electrochemical behavior of cobalt and tungsten ions was investigated by a variety of electrochemical techniques. Results of cyclic voltammetry (CV) and square-wave voltammetry show that the cobalt and tungsten ions existed as Co2+ and W2+ on melts, respectively. The effect of applied voltage, electrolysis current, and electrolysis times on the composition of the product was studied. Results showed that pure cobalt powder can be obtained when the electrolysis potential is lower than 0.6 V or during low current and short times. Double-cathode and two-stage electrolysis was utilized for the preparation of cobalt, tungsten carbide, and tungsten powders. Additionally, X-ray diffraction results confirm that the product collected at cathodes 1 and 2 is pure Co and WC, respectively. Pure tungsten powder was obtained after electrolysis of the second part. Scanning electron microscope results show that the diameters of tungsten, tungsten carbide, and cobalt powder are smaller than 100, 200, and 200 nm, respectively.
Boccard, Mathieu; Holman, Zachary C.
2015-08-14
With this study, amorphous silicon enables the fabrication of very high-efficiency crystalline-silicon-based solar cells due to its combination of excellent passivation of the crystalline silicon surface and permeability to electrical charges. Yet, amongst other limitations, the passivation it provides degrades upon high-temperature processes, limiting possible post-deposition fabrication possibilities (e.g., forcing the use of low-temperature silver pastes). We investigate the potential use of intrinsic amorphous silicon carbide passivating layers to sidestep this issue. The passivation obtained using device-relevant stacks of intrinsic amorphous silicon carbide with various carbon contents and doped amorphous silicon are evaluated, and their stability upon annealing assessed, amorphousmore » silicon carbide being shown to surpass amorphous silicon for temperatures above 300°C. We demonstrate open-circuit voltage values over 700 mV for complete cells, and an improved temperature stability for the open-circuit voltage. Transport of electrons and holes across the hetero-interface is studied with complete cells having amorphous silicon carbide either on the hole-extracting side or on the electron-extracting side, and a better transport of holes than of electrons is shown. Also, due to slightly improved transparency, complete solar cells using an amorphous silicon carbide passivation layer on the hole-collecting side are demonstrated to show slightly better performances even prior to annealing than obtained with a standard amorphous silicon layer.« less
NASA Astrophysics Data System (ADS)
Fantozzi, D.; Matikainen, V.; Uusitalo, M.; Koivuluoto, H.; Vuoristo, P.
2018-01-01
Highly corrosion- and wear-resistant thermally sprayed chromium carbide (Cr3C2)-based cermet coatings are nowadays a potential highly durable solution to allow traditional fluidized bed combustors (FBC) to be operated with ecological waste and biomass fuels. However, the heat input of thermal spray causes carbide dissolution in the metal binder. This results in the formation of carbon saturated metastable phases, which can affect the behavior of the materials during exposure. This study analyses the effect of carbide dissolution in the metal matrix of Cr3C2-50NiCrMoNb coatings and its effect on chlorine-induced high-temperature corrosion. Four coatings were thermally sprayed with HVAF and HVOF techniques in order to obtain microstructures with increasing amount of carbide dissolution in the metal matrix. The coatings were heat-treated in an inert argon atmosphere to induce secondary carbide precipitation. As-sprayed and heat-treated self-standing coatings were covered with KCl, and their corrosion resistance was investigated with thermogravimetric analysis (TGA) and ordinary high-temperature corrosion test at 550 °C for 4 and 72 h, respectively. High carbon dissolution in the metal matrix appeared to be detrimental against chlorine-induced high-temperature corrosion. The microstructural changes induced by the heat treatment hindered the corrosion onset in the coatings.
NASA Technical Reports Server (NTRS)
Yun, Hee Mann; Titran, Robert H.
1993-01-01
The tensile strain rate sensitivity and the stress-rupture strength of Mo-base and W-base alloy wires, 380 microns in diameter, were determined over the temperature range from 1200 K to 1600 K. Three molybdenum alloy wires; Mo + 1.1w/o hafnium carbide (MoHfC), Mo + 25w/o W + 1.1w/o hafnium carbide (MoHfC+25W) and Mo + 45w/o W + 1.1w/o hafnium carbide (MoHfC+45W), and a W + 0.4w/o hafnium carbide (WHfC) tungsten alloy wire were evaluated. The tensile strength of all wires studied was found to have a positive strain rate sensitivity. The strain rate dependency increased with increasing temperature and is associated with grain broadening of the initial fibrous structures. The hafnium carbide dispersed W-base and Mo-base alloys have superior tensile and stress-rupture properties than those without HfC. On a density compensated basis the MoHfC wires exhibit superior tensile and stress-rupture strengths to the WHfC wires up to approximately 1400 K. Addition of tungsten in the Mo-alloy wires was found to increase the long-term stress rupture strength at temperatures above 1400 K. Theoretical calculations indicate that the strength and ductility advantage of the HfC dispersed alloy wires is due to the resistance to recrystallization imparted by the dispersoid.
NASA Astrophysics Data System (ADS)
Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.
2010-01-01
Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruska, Karen; Zhai, Ziqing; Bruemmer, Stephen M.
Due to its superior resistance to corrosion and stress corrosion cracking (SCC), high Cr, Ni-base Alloy 690 is now commonly used in pressurized water reactors (PWRs). Even though highly cold-worked (CW) Alloy 690 has been shown to be susceptible to SCC crack growth in PWR primary water environments, an open question remains whether SCC initiation was possible for these materials under constant load test conditions. Testing has been performed on a series of CW alloy 690 CRDM tubing specimens at constant load for up to 9,220 hours in 360°C simulated PWR primary water. A companion paper will discuss the overallmore » testing approach and describe results on different alloy 690 heats and cold work levels. The focus of the current paper is to illustrate the use of focused ion beam (FIB), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the high-resolution investigation of precursor damage and intergranular (IG) crack nucleation in these specimens. Three-dimensional (3D) FIB/SEM imaging has been conducted on a series of grain boundary (GB) damage precursors, such as IG small cavities, local corrosion and even shallow cracks observed at the specimen surface. Contrast variations and EDS mapping were used to distinguish oxides, carbides and cavities from the matrix material. Nanometer-sized cavities were observed associated with GB carbides in the highly CW specimens. Shallow IG cracks were present in the 30%CW specimens and exhibited oxidized crack flanks and a higher density of cavities ahead of the oxide front in all cases. The shape and distribution of carbides and cavities in the plane of the cracked GBs was analyzed in 3D to gain a mechanistic understanding of the processes that may be leading to crack initiation in highly CW alloy 690.« less
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Salem, J. A.; Gray, Hugh R. (Technical Monitor)
2002-01-01
Silicon carbide based, environment friendly, biomorphic ceramics have been fabricated by the pyrolysis and infiltration of natural wood (maple and mahogany) precursors. This technology provides an eco-friendly route to advanced ceramic materials. These biomorphic silicon carbide ceramics have tailorable properties and behave like silicon carbide based materials manufactured by conventional approaches. The elastic moduli and fracture toughness of biomorphic ceramics strongly depend on the properties of starting wood preforms and the degree of molten silicon infiltration. Mechanical properties of silicon carbide ceramics fabricated from maple wood precursors indicate the flexural strengths of 3441+/-58 MPa at room temperature and 230136 MPa at 1350C. Room temperature fracture toughness of the maple based material is 2.6 +/- 0.2 MPa(square root of)m while the mahogany precursor derived ceramics show a fracture toughness of 2.0 +/- 0.2 Mpa(square root of)m. The fracture toughness and the strength increase as the density of final material increases. Fractographic characterization indicates the failure origins to be pores and chipped pockets of silicon.
Precipitate Redistribution during Creep of Alloy 617
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. Schlegel; S. Hopkins; E. Young
2009-12-01
Nickel-based superalloys are being considered for applications within advanced nuclear power generation systems due to their high temperature strength and corrosion resistance. Alloy 617, a candidate for use in heat exchangers, derives its strength from both solid solution strengthening and the precipitation of carbide particles. However, during creep, carbides that are supposed to retard grain boundary motion are found to dissolve and re-precipitate on boundaries in tension. To quantify the redistribution, we have used electron backscatter diffraction and energy dispersive spectroscopy to analyze the microstructure of 617 after creep testing at 900 and 1000°C. The data were analyzed with respectmore » to location of the carbides (e.g., intergranular vs. intragranular), grain boundary character, and precipitate type (i.e., Cr-rich or Mo-rich). We find that grain boundary character is the most important factor in carbide distribution; some evidence of preferential distribution to boundaries in tension is also observed at higher applied stresses. Finally, the results suggest that the observed redistribution is due to the migration of carbides to the boundaries and not the migration of boundaries to the precipitates.« less
On predicting the extent of magnetic aging in electrical steels
NASA Astrophysics Data System (ADS)
Ray, Santanu Kumar; Mohanty, Omkar Nath
1989-02-01
Magnetic aging of steels is essentially the result of an increase in coercive force, inhibition of ferrite domain wall movement by precipitated carbide particles being the main cause of this increase. In the present work, the nature of the carbides precipitating in four grades of electrical steels has been looked into. Existing postulations have been invoked to predict the extent of coercive force enhancement due to metastable (ɛ) and stable (cementite) carbides which have been observed to precipitate in these steels. The model of Drabecki and Wyslocki when applied to the case of metastable carbide predicts its contribution to the coercive force fairly accurately. None of the existing models, however, succeeds in suggesting the extent of the increases accruing from the presence of the stable carbide (cementite) particles. Each of the models takes into account only one or two of the isolated aspects of magnetic interaction between matrix and precipitate. It appears that for cementite, whose several magnetic characteristics are quite different from those of the ferrite matrix, all possible interaction parameters have to be taken into account to determine the actual mechanism.
Phase Transformations of an Fe-0.85 C-17.9 Mn-7.1 Al Austenitic Steel After Quenching and Annealing
NASA Astrophysics Data System (ADS)
Cheng, Wei-Chun
2014-09-01
Low-density Mn-Al steels could potentially be substitutes for commercial Ni-Cr stainless steels. However, the development of the Mn-Al stainless steels requires knowledge of the phase transformations that occur during the steel making processes. Phase transformations of an Fe-0.85 C-17.9 Mn-7.1 Al (wt.%) austenitic steel, which include spinodal decomposition, precipitation transformations, and cellular transformations, have been studied after quenching and annealing. The results show that spinodal decomposition occurs prior to the precipitation transformation in the steel after quenching and annealing at temperatures below 1023 K and that coherent fine particles of L12-type carbide precipitate homogeneously in the austenite. The cellular transformation occurs during the transformation of high-temperature austenite into lamellae of austenite, ferrite, and kappa carbide at temperatures below 1048 K. During annealing at temperatures below 923 K, the austenite decomposes into lamellar austenite, ferrite, κ-carbide, and M23C6 carbide grains for another cellular transformation. Last, when annealing at temperatures below 873 K, lamellae of ferrite and κ-carbide appear in the austenite.
NASA Astrophysics Data System (ADS)
Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.
2017-08-01
This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.
Experimental evaluation of chromium-carbide-based solid lubricant coatings for use to 760 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher
1987-01-01
A research program is described which further developed and investigated chromium carbide based self-lubricating coatings for use to 760 C. A bonded chromium carbide was used as the base stock because of the known excellent wear resistance and the chemical stability of chromium carbide. Additives were silver and barium fluoride/calcium fluoride eutectic. The three coating components were blended in powder form, applied to stainless steel substrates by plasma spraying and then diamond ground to the desired coating thickness. A variety of coating compositions was tested to determine the coating composition which gave optimum tribological results. Coatings were tested in air, helium, and hydrogen at temperatures from 25 to 760 C. Several counterface materials were evaluated with the objective of discovering a satisfactory metal/coating sliding combination for potential applications, such as piston ring/cylinder liner couples for Stirling engines. In general, silver and fluoride additions to chromium carbide reduced the friction coefficient and increased the wear resistance relative to the unmodified coating. The lubricant additives acted synergistically in reducing friction and wear.
NASA Technical Reports Server (NTRS)
Sliney, Harold E.
1986-01-01
A new chromium carbide-based coating (PS 200) is described. This coating is shown to have good friction and wear properties over a wide temperature range. A nickel alloy-bonded chromium carbide coating was used as a baseline material for comparison with experimentally formulated coatings. Coatings were plasma sprayed onto metal disks, then diamond ground to a thickness of 0.025 cm. Friction and wear were determined using a pin on disk tribometer at temperatures from 25 to 900 C in hydrogen, helium, and air. Pin materials included several metallic alloys and silicon carbide. It was found that appropriate additions of metallic silver and of barium fluoride/calcium fluoride eutectic to the baseline carbide composition significantly reduced friction coefficients while preserving, and in some cases, even enhancing wear resistance. The results of this study demonstrate that PS 200 is a promising coating composition to consider for high temperature aerospace and advanced heat engine applications. The excellent results in hydrogen make this coating of particular interest for use in the Stirling engine.
NASA Technical Reports Server (NTRS)
Sliney, H. E.
1986-01-01
A new chromium carbide-based coating (PS 200) is described. This coating is shown to have good friction and wear properties over a wide temperature range. A nickel alloy-bonded chromium carbide coating was used as a baseline material for comparison with experimental formulated coatings. Coatings were plasma sprayed onto metal disks, then diamond ground to a thickness of 0.025 cm. Friction and wear were determined using a pin on disk tribometer at temperatures from 25 to 900 C in hydrogen, helium, and air. Pin materials included several metallic alloys and silicon carbide. It was found that appropriate additions of metallic silver and of barium fluoride/calcium fluoride eutectic to the baseline carbide composition significantly reduced friction coefficients while preserving, and in some cases, even enhancing wear resistance. The results of this study demonstrate that PS 200 is a promising coating composition to consider for high temperature aerospace and advanced heat engine applications. The excellent results in hydrogen make this coating of particular interest for use in the Stirling engine.
Modeling of point defects and rare gas incorporation in uranium mono-carbide
NASA Astrophysics Data System (ADS)
Chartier, A.; Van Brutzel, L.
2007-02-01
An embedded atom method (EAM) potential has been established for uranium mono-carbide. This EAM potential was fitted on structural properties of metallic uranium and uranium mono-carbide. The formation energies of point defects, as well as activation energies for self migration, have been evaluated in order to cross-check the suitability of the potential. Assuming that the carbon vacancies are the main defects in uranium mono-carbide compounds, the migration paths and energies are consistent with experimental data selected by Catlow[C.R.A. Catlow, J. Nucl. Mater. 60 (1976) 151]. The insertion and migration energies for He, Kr and Xe have also been evaluated with available inter-atomic potentials [H.H. Andersen, P. Sigmund, Nucl. Instr. and Meth. B 38 (1965) 238]. Results show that the most stable defect configuration for rare gases is within uranium vacancies. The migration energy of an interstitial Xe is 0.5 eV, in agreement with the experimental value of 0.5 eV [Hj. Matzke, Science of advanced LMFBR fuels, Solid State Physics, Chemistry and Technology of Carbides, Nitrides and Carbonitrides of Uranium and Plutonium, North-Holland, 1986].
Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay; Dickerson, Robert M.
1995-01-01
Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.
The antifungal efficiency of carbide lime slurry compared with the commercial lime efficiency
NASA Astrophysics Data System (ADS)
Strigac, J.; Mikusinec, J.; Strigacova, J.; Stevulova, N.
2017-10-01
The article deals with studying the antifungal efficiency of carbide lime slurry compared to industrially manufactured commercial lime. Antifungal efficiency expressed as mould proofness properties was tested on the fungi using the procedure given in standard CSN 72 4310. A mixture of fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was utilized for testing. The scale for evaluating mould proofness properties according to CSN 72 4310 is from 0 to 5 in degree of fungi growth, where 0 means that no fungi growth occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of carbide lime slurry as well as industrially manufactured commercial lime. However, carbide lime slurry and industrially manufactured commercial lime possess no fungicidal effect.
NASA Astrophysics Data System (ADS)
Palazzo, Benjamin; Norris, Zach; Taylor, Greg; Yu, Lei; Lofland, Samuel; Hettinger, Jeffrey
2015-03-01
Binary carbides with hexagonal and cubic crystal structures have been synthesized by reactive magnetron sputtering of vanadium and other transition metals in acetylene or methane gas mixed with argon. The binary carbides are converted to carbide-derived carbon (CDC) films using chlorine gas in a post-deposition process in an external vacuum reaction furnace. Residual chlorine has been removed using an annealing step in a hydrogen atmosphere. The CDC materials have been characterized by x-ray diffraction, x-ray fluorescence, and scanning electron microscopy. The performance of the CDC materials in electrochemical device applications has been measured with the hexagonal phase precursor demonstrating a significantly higher specific capacitance in comparison to that of the cubic phase. We report these results and pore-size distributions of these and similar materials.
NASA Astrophysics Data System (ADS)
Gusev, Aleksandr I.
2000-01-01
Data on order-disorder phase transformations in strongly nonstoichiometric carbides and nitrides MXy (X=C, N) of Group IV and V transition metals at temperatures below 1300-1400 K are reviewed. The order-parameter functional method as applied to atomic and vacancy ordering in strongly nonstoichiometric MXy compounds and to phase equilibrium calculations for M-X systems is discussed. Phase diagram calculations for the Ti-C, Zr-C, Hf-C, V-C, Nb-C, Ta-C, Ti-N, and Ti-B-C systems (with the inclusion of the ordering of nonstoichiometric carbides and nitrides) and those for pseudobinary carbide M(1)C-M(2)C systems are presented. Heat capacity, electrical resistivity and magnetic susceptibility changes at reversible order-disorder phase transformations in nonstoichiometric carbides are considered.
Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys
Stevenson, D.T.; Troup, R.L.
1985-01-01
Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.
Some observations on uranium carbide alloy/tungsten compatibility
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1972-01-01
Chemical compatibility between both pure and thoriated tungsten and uranium carbide alloys was studied at 1800 C for up to 3300 hours. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, dependent upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. The presence of a thermal gradient had no effect on the reactions observed nor did the presence of thoria in the tungsten clad.
Some observations on uranium carbide alloy/tungsten compatibility.
NASA Technical Reports Server (NTRS)
Phillips, W. M.
1972-01-01
Results of chemical compatibility tests between both pure tungsten and thoriated tungsten run at 1800 C for up to 3300 hours with uranium carbide alloys. Alloying with zirconium carbide appeared to widen the homogeneity range of uranium carbide, making additional carbon available for reaction with the tungsten. Reaction layers were formed both by vapor phase reaction and by physical contact, producing either or both UWC2 and W2C, depending upon the phases present in the starting fuel alloy. Formation of UWC2 results in slow growth of the reaction layer with time, while W2C reaction layers grow rapidly, allowing equilibrium to be reached in less than 2500 hours at 1800 C. Neither the presence of a thermal gradient nor the presence of thoria in the tungsten clad affect the reactions observed.
Method of depositing a high-emissivity layer
Wickersham, Charles E.; Foster, Ellis L.
1983-01-01
A method of depositing a high-emissivity layer on a substrate comprising RF sputter deposition of a carbide-containing target in an atmosphere of a hydrocarbon gas and a noble gas. As the carbide is deposited on the substrate the hydrocarbon gas decomposes to hydrogen and carbon. The carbon deposits on the target and substrate causing a carbide/carbon composition gradient to form on the substrate. At a sufficiently high partial pressure of hydrocarbon gas, a film of high-emissivity pure carbon will eventually form over the substrate.
Mechanical Property Evaluation at Elevated Temperatures of Sintered Beta Silicon Carbide.
1986-03-01
a co mercial- sintered product. 1-7 It is fabricated from a submicron (beta) silicon carbide powder with small additions (f-0.5 wtZ each) of goron and...majority of the material-is beta silicon carbide with a small percentage of the alpha phase and a small amount of graphite. In a parallel study being...surface-connected porosity (Figures 12 and 13). This porosity was often an area of small interconnected porosity and not necessarily a discrete void
NASA Technical Reports Server (NTRS)
Lei, Jih-Fen
1987-01-01
The objective was to study the electrical resistances of materials that are potentially useful as resistance strain gages at 1000 C. Transition metal carbides and nitrides, boron carbide and silicon carbide were selected for the experimental phase of this research. Due to their low temperature coefficient of resistance and good stability, TiC, ZrC, B sub 4 C and beta-SiC are suggested as good candidates for high temperature resistance strain gage applications.
Methods for producing reinforced carbon nanotubes
Ren, Zhifen [Newton, MA; Wen, Jian Guo [Newton, MA; Lao, Jing Y [Chestnut Hill, MA; Li, Wenzhi [Brookline, MA
2008-10-28
Methods for producing reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials are disclosed. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.
Ultrathin fiber poly-3-hydroxybutyrate, modified by silicon carbide nanoparticles
NASA Astrophysics Data System (ADS)
Olkhov, A. A.; Krutikova, A. A.; Goldshtrakh, M. A.; Staroverova, O. V.; Iordanskii, A. L.; Ischenko, A. A.
2016-11-01
The article presents the results of studies the composite fibrous material based on poly-3-hydroxybutyrate (PHB) and nano-size silicon carbide obtained by the electrospinning method. Size distribution of the silicon carbide nanoparticles in the fiber was estimated by X-ray diffraction technique. It is shown that immobilization of the SiC nanoparticles to the PHB fibers contributes to obtaining essentially smaller diameter of fibers, high physical-mechanical characteristics and increasing resistance to degradation in comparison with the fibers of PHB.
2012-02-21
passive oxidation of zirconium diboride forms zirconia and boron oxide, and the passive oxidation of silicon carbide forms silica and carbon monoxide: ZrB2... silicon carbide composites in the ICP wind tunnels. However, this concept has never been explored as an in situ diagnostic for UHTC materials systems...Process- ing, properties, and arc jet oxidation of hafnium diboride/ silicon carbide ultra high temperature ceramics. J Mater Sci 2004;39:5925–37. 12
Thermal conductivity behavior of boron carbides
NASA Technical Reports Server (NTRS)
Wood, C.; Zoltan, A.; Emin, D.; Gray, P. E.
1983-01-01
Knowledge of the thermal conductivity of boron carbides is necessary to evaluate its potential for high temperature thermoelectric energy conversion applications. The thermal diffusivity of hot pressed boron carbide B/sub 1-x/C/sub x/ samples as a function of composition, temperature and temperature cycling was measured. These data in concert with density and specific heat data yield the thermal conductivities of these materials. The results in terms of a structural model to explain the electrical transport data and novel mechanisms for thermal conduction are discussed.
The Physics and Chemistry of carbides, Nitrides and Borides. Volume 185
1990-01-01
and C-B-C chains [15,17]. Clearly, the use of boron-rich solids as electronic materials will place new demands on the quality of materials. In this...first heated in a pyrolytic boron nitride (PBN) crucible ( Union Carbide Corp.) under high vacuum (< 50 mTorr) to 1900°C. This removed surface...contamination of the sample. The powders were loaded into a graphite die with a high-purity BN die liner ( Union Carbide Grade HBC) with inner diameter of 3/8
Displacement Damage Induced Catastrophic Second Breakdown in Silicon Carbide Schottky Power Diodes
NASA Technical Reports Server (NTRS)
Scheick, Leif; Selva, Luis; Selva, Luis
2004-01-01
A novel catastrophic breakdown mode in reversed biased Silicon carbide diodes has been seen for low LET particles. These particles are too low in LET to induce SEB, however SEB was seen from particles of higher LET. The low LET mechanism correlates with second breakdown in diodes due to increase leakage and assisted charge injection from incident particles. Percolation theory was used to predict some basic responses of the devices, but the inherent reliability issue with silicon carbide have proven challenging.
Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)
2001-01-01
A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.
Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor
NASA Technical Reports Server (NTRS)
Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)
2000-01-01
A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.
Whatever happened to silicon carbide. [semiconductor devices
NASA Technical Reports Server (NTRS)
Campbell, R. B.
1981-01-01
The progress made in silicon carbide semiconductor devices in the 1955 to 1975 time frame is examined and reasons are given for the present lack of interest in the material. Its physical and chemical properties and methods of preparation are discussed. Fabrication techniques and the characteristics of silicon carbide devices are reviewed. It is concluded that a combination of economic factors and the lack of progress in fabrication techniques leaves no viable market for SiC devices in the near future.
1978-10-09
melting point is around 4000*K. An exceedingly interesting feature of these solidification composites is the formation of fibrous MC type carbide ...the matrix could be refractory metal binary alloys with copper or uranium and the eutectic phase could be carbide of tungsten, * molybdenum, tantalum or...42 Accs -n or - *DTTI Tf Avn ! -7ll ’ i CrDi t , l’’*i,;. LIST OF FIGURES FIG. 1 Flow Diagram of Cemented Carbide Manufacture
Process for preparing fine grain titanium carbide powder
Janney, M.A.
1985-03-12
A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.
Process for preparing fine grain titanium carbide powder
Janey, Mark A.
1986-01-01
A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samsonov, G. V.; Vitryanyuk, V. K.; Voronkin, M. A.
Physicomechanical properties of the hard alloy TiC -Ni--Mo (with content 3. 5, 10, and 25 mol.% relative to TiC) were studied as affected by its carbide phase alloying with niobium carbide. It is shown that an increase in the NbC content favors a rise in the bending strength to 132 kg/mm/sup 2/ and impact strength at practically unchanged hardness (91 HR.4), which is explained by some rise in the grain plasticity of the solid phase presenting the complex carbide TiC -NbC.
M(2)C Carbide Precipitation in Martensitic Cobalt - Steels.
NASA Astrophysics Data System (ADS)
Montgomery, Jonathan Scott
1990-01-01
M_2C carbide precipitation was investigated in martensitic Co-Ni steels, including the commercial AF1410 steel and a series of higher-strength model alloys. Results of TEM (from both thin foils and extraction replicas) and X-ray diffraction were combined with results of collaborative SANS and APFIM studies to determine phase fractions, compositions, and lattice parameters throughout precipitation, including estimation of carbide initial critical nucleus properties. The composition dependence of the M_2C lattice parameters was modelled to predict the composition-dependent transformation eigen-strains for coherent precipitation; this was input into collaborative numerical calculations of both the coherent carbide elastic self energy and the dislocation interaction energy during heterogeneous precipitation. The observed overall precipitation behavior is consistent with theoretically-predicted behavior at high supersaturations where nucleation and coarsening compete such that the average particle size remains close to the critical size as supersaturation drops. However, the coarsening in this system follows a t^{1over 5} rate law consistent with heterogeneous precipitation on dislocations. Initial precipitation appears to be coherent, the carbides tending toward a rod shape with major axis oriented along the minimum principal strain direction. At initial nucleation, particles are Fe-rich and C-deficient, diminishing the transformation eigenstrains to a near invariant-line strain condition. The observed relation between carbide volume fraction and the shape -dependent capillarity parameter partialS/ partialV implies a coherency loss transition in AF1410 reached at 8hr tempering at 510 ^circC. The precipitation in AF1410 at 510^ circC exhibits a "renucleation" phenomenon in which a second stage of nucleation occurs beyond the precipitation half-completion time (1-2hrs). It appears that the carbide composition during precipitation follows a trajectory of increasing interfacial energy and nearly constant volume driving force. This may contribute to the renucleation phenomenon, but the computed barrier for heterogeneous nucleation on the dislocations is at this point an order of magnitude too high. An alternative possibility is that renucleation may represent autocatalytic heterogeneous nucleation in the stress field of coherent carbides, once they have grown to sufficient size to act as potent nucleation sites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Gopa, E-mail: gopa_mjs@igcar.gov.in; Das, C.R.; Albert, S.K.
Martensitic stainless steels find extensive applications due to their optimum combination of strength, hardness and wear-resistance in tempered condition. However, this class of steels is susceptible to embrittlement during tempering if it is carried out in a specific temperature range resulting in significant reduction in toughness. Embrittlement of as-normalised AISI 410 martensitic stainless steel, subjected to tempering treatment in the temperature range of 673–923 K was studied using Charpy impact tests followed by metallurgical investigations using field emission scanning electron and transmission electron microscopes. Carbides precipitated during tempering were extracted by electrochemical dissolution of the matrix and identified by X-raymore » diffraction. Studies indicated that temper embrittlement is highest when the steel is tempered at 823 K. Mostly iron rich carbides are present in the steel subjected to tempering at low temperatures of around 723 K, whereas chromium rich carbides (M{sub 23}C{sub 6}) dominate precipitation at high temperature tempering. The range 773–823 K is the transition temperature range for the precipitates, with both Fe{sub 2}C and M{sub 23}C{sub 6} types of carbides coexisting in the material. The nucleation of Fe{sub 2}C within the martensite lath, during low temperature tempering, has a definite role in the embrittlement of this steel. Embrittlement is not observed at high temperature tempering because of precipitation of M{sub 23}C{sub 6} carbides, instead of Fe{sub 2}C, preferentially along the lath and prior austenite boundaries. Segregation of S and P, which is widely reported as one of the causes for temper embrittlement, could not be detected in the material even through Auger electron spectroscopy studies. - Highlights: • Tempering behaviour of AISI 410 steel is studied within 673–923 K temperature range. • Temperature regime of maximum embrittlement is identified as 773–848 K. • Results show that type of carbide precipitation varies with temperature of tempering. • Mostly iron rich Fe{sub 2}C carbides are present in the embrittlement temperature range. • With the precipitation of M{sub 23}C{sub 6} carbides, recovery from the embrittlement begins.« less
NASA Astrophysics Data System (ADS)
Pal, Ranu; Akhtar, M. J.; Kar, Kamal K.
2018-05-01
In this work, the dielectric properties of epoxy-based composites are significantly improved with the help of the silicon carbide (SiC) filler at an operating frequency of 2.45 GHz to make them ideal candidates for microwave curing. The improvement is due to enhancement of the interfacial polarization because of the presence of the SiC filler. The dielectric properties are measured using the microwave cavity perturbation method. The cavity structure is simulated using the COMSOL@Multiphysics software to verify the measured data in terms of the resonant frequency. Finally, all the SiC-based composites including the neat epoxy resin are heated in the 2.45 GHz microwave oven at 300 W for 20 min. The thermal and mechanical properties of all the cured composites are measured, and the data are compared with their room temperature pre-cured counterparts. The dielectric properties of composite samples using SiC as a reinforcing agent in the epoxy are found to be substantially improved compared with those of the pure epoxy sample, which actually leads to better curing of these composite using the 2.45 GHz microwave system.
Governa, M; Valentino, M; Amati, M; Visonà, I; Botta, G C; Marcer, G; Gemignani, C
1997-06-01
A sample of silicon carbide dust taken in the field from a plant producing abrasives was studied in vitro. The SiC particles (part unmilled and part milled) were able to disturb the structure of erythrocyte membranes and to lead to blood red-cell lysis; they also either interfered with complement and activated the alternate pathway, or interacted with biological media and polymorphonuclear leucocyte membranes, thus eliciting reactive oxygen species production. These in vitro properties were detected both in original large particles and unmilled particles, over 40% of which were of respirable size. The ability of these SiC particles to produce complement activation in vitro lends support to the previous hypothesis, that the radiographic opacities found in two workers employed in the same area of the plant from which the dust tested was taken are due to a reaction by pulmonary interstitial structures to SiC particle inhalation. It is speculated that SiC particles could act like asbestos, the ability of which to activate complement through the alternate pathway is considered to be one of the mechanisms by which the initial asbestotic lesions and subsequent fibrotic inflammatory infiltrates are generated in the lung.
Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khodak, A.; Zhai, Y.; Wang, W.
As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less
Relationship between microstructure and ductility of investment cast ASTM F-75 implant alloy.
Gómez, M; Mancha, H; Salinas, A; Rodríguez, J L; Escobedo, J; Castro, M; Méndez, M
1997-02-01
Hip replacement implants fabricated using the ASTM F-75 alloy sometimes fail in a sudden catastrophic way. In general, fractures start at microstructural defects subjected to stress-corrosion under chemical attack by body fluids. In this paper the results of a study on the effect of casting parameters on the microstructure of ASTM F-75 are presented. The preheating mold temperature and the liquid temperature were varied between 900 and 1000 degrees C, and 1410 and 1470 degrees C, respectively. Optimum static strength and ductility were obtained when shrinkage microporosity and the volume fraction of M23C6 "eutectic" carbides precipitated at grain boundaries were minimized by increasing the preheating mold temperature to 1000 degrees C and by using intermediate pouring temperatures of 1455 degrees C. Under these casting conditions, however, the solidification rates are low, leading to large grain sizes, which, in turn, reduce the strength of the material under dynamic loading conditions. The volume fraction of the M23C6 "blocky" carbides appears to be independent of the casting conditions; however, their size and spatial distributions determine the strength of the as-cast alloys.
NASA Astrophysics Data System (ADS)
Taiwade, R. V.; Patil, A. P.; Patre, S. J.; Dayal, R. K.
2013-06-01
In general, as-received (AR) austenitic stainless steels (ASSs) contain complex carbide precipitates due to manufacturing operations, subsequent annealing treatment, or due to the fabrication processes such as welding. The presence of pre-existing carbides leads to cumulative sensitization and make the steel susceptible to intercrystalline corrosion (ICC)/intergranular corrosion (IGC) which causes premature failure during service. Solution annealing (SA) is one of the ways to deal with such situations. In this present investigation, the AR (hot rolled and mill annealed) chromium-nickel (Cr-Ni) ASS is compared with SA Cr-Ni ASS. The extent of ICC/IGC was evaluated qualitatively and quantitatively by various electrochemical tests including ASTM standard A-262 Practice A and Practice E, double loop electrochemical potentiokinetic reactivation and electrochemical impedance spectroscopy. The degree of sensitization for hot rolled mill annealed AR condition is found to be substantially higher (51.55%) than that of SA condition (26.9%) for thermally aged samples (at 700 °C). The chemical composition across the grain boundary was measured using electron probe micro-analyzer for both (AR and SA) conditions and confirms that the pre-sensitization effect was completely removed after SA treatment.
Parametric Thermal and Flow Analysis of ITER Diagnostic Shield Module
Khodak, A.; Zhai, Y.; Wang, W.; ...
2017-06-19
As part of the diagnostic port plug assembly, the ITER Diagnostic Shield Module (DSM) is designed to provide mechanical support and the plasma shielding while allowing access to plasma diagnostics. Thermal and hydraulic analysis of the DSM was performed using a conjugate heat transfer approach, in which heat transfer was resolved in both solid and liquid parts, and simultaneously, fluid dynamics analysis was performed only in the liquid part. ITER Diagnostic First Wall (DFW) and cooling tubing were also included in the analysis. This allowed direct modeling of the interface between DSM and DFW, and also direct assessment of themore » coolant flow distribution between the parts of DSM and DFW to ensure DSM design meets the DFW cooling requirements. Design of the DSM included voids filled with Boron Carbide pellets, allowing weight reduction while keeping shielding capability of the DSM. These voids were modeled as a continuous solid with smeared material properties using analytical relation for thermal conductivity. Results of the analysis lead to design modifications improving heat transfer efficiency of the DSM. Furthermore, the effect of design modifications on thermal performance as well as effect of Boron Carbide will be presented.« less
Silicon Carbide Transistor For Detecting Hydrocarbon Gases
NASA Technical Reports Server (NTRS)
Shields, Virgil B.; Ryan, Margaret A.; Williams, Roger M.
1996-01-01
Proposed silicon carbide variable-potential insulated-gate field-effect transistor specially designed for use in measuring concentrations of hydrocarbon gases. Devices like this prove useful numerous automotive, industrial, aeronautical, and environmental monitoring applications.
Neutron Detection using Amorphous Boron-Carbide Hetero-Junction Diodes
2012-03-22
Parameter Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 B.1.1 UMKC Built-in Voltage...Electronic properties of boron carbide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2. Diode Material/Geometric Parameters ...42 6. Material parameters for Davinci model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 x List of
NASA Astrophysics Data System (ADS)
Zakharova, E. S.; Markova, I. Yu; Maslov, A. L.; Polushin, N. I.; Laptev, A. I.
2017-05-01
Modern drill bits have high abrasive wear in the area of contact with the rock and removed sludge. Currently, these bits have a protective layer on the bit body, which consists of a metal matrix with inclusions of carbide particles. The research matrix of this coating and the wear-resistant particles is a prerequisite in the design and production of drill bits. In this work, complex investigation was made for various carbide powders of the grades Relit (tungsten carbide produced by Ltd “ROSNAMIS”) which are used as wear-resistant particles in the coating of the drill bit body. The morphology and phase composition of the chosen powders as well as the influence of a particle shape on prospects of their application in wear-resistance coating presented in this work.
Hu, Yang; Jensen, Jens Oluf; Zhang, Wei; Cleemann, Lars N; Xing, Wei; Bjerrum, Niels J; Li, Qingfeng
2014-04-01
Nonprecious metal catalysts for the oxygen reduction reaction are the ultimate materials and the foremost subject for low-temperature fuel cells. A novel type of catalysts prepared by high-pressure pyrolysis is reported. The catalyst is featured by hollow spherical morphologies consisting of uniform iron carbide (Fe3 C) nanoparticles encased by graphitic layers, with little surface nitrogen or metallic functionalities. In acidic media the outer graphitic layers stabilize the carbide nanoparticles without depriving them of their catalytic activity towards the oxygen reduction reaction (ORR). As a result the catalyst is highly active and stable in both acid and alkaline electrolytes. The synthetic approach, the carbide-based catalyst, the structure of the catalysts, and the proposed mechanism open new avenues for the development of ORR catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures
NASA Astrophysics Data System (ADS)
Godec, M.; Skobir Balantič, D. A.
2016-07-01
High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth, and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix.
Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films
NASA Astrophysics Data System (ADS)
Kumar, D. Dinesh; Kumar, N.; Panda, Kalpataru; Kamalan Kirubaharan, A. M.; Kuppusami, P.
2018-07-01
Transition metal carbides (TMC) are known for their improved tribological properties and are sensitive to the tribo-atmospheric environment. Nanocrystalline molybdenum carbide (MoC) thin films were deposited by DC magnetron sputtering technique using reactive CH4 gas. The friction and wear resistance properties of MoC thin films were significantly improved in humid-atmospheric condition as compared to high-vacuum tribo-condition. A comprehensive chemical analysis of deformed contact interfaces was carried out by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. XPS and Raman spectroscopy showed the formation of stable molybdenum-oxide (MoO), molybdenum carbide (MoC) and amorphous carbon (a-C) tribo-phases. Moreover, during the sliding in humid-atmospheric condition, these phases were extensively deposited on the sliding steel ball counter body which significantly protected against undesirable friction and wear.
A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials
NASA Technical Reports Server (NTRS)
Hurley, John S.
1990-01-01
Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.
The Hot-Pressing of Hafnium Carbide (Melting Point, 7030 F)
NASA Technical Reports Server (NTRS)
Sanders, William A.; Grisaffe, Salvatore J.
1960-01-01
An investigation was undertaken to determine the effects of the hot-pressing variables (temperature, pressure, and time) on the density and grain size of hafnium carbide disks. The purpose was to provide information necessary for the production of high-density test shapes for the determination of physical and mechanical properties. Hot-pressing of -325 mesh hafnium carbide powder was accomplished with a hydraulic press and an inductively heated graphite die assembly. The ranges investigated for each variable were as follows: temperature, 3500 to 4870 F; pressure, 1000 to 6030 pounds per square inch; and time, 5 to 60 minutes. Hafnium carbide bodies of approximately 98 percent theoretical density can be produced under the following minimal conditions: 4230 F, 3500 pounds per square inch, and 15 minutes. Further increases in temperature and time resulted only in greater grain size.
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1977-01-01
Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.
Dash, Satyabrata; Swain, Sarat K
2013-09-12
Starch/silicon carbide (starch/SiC) bionanocomposites were synthesized by solution method using different wt% of silicon carbide with starch matrix. The interaction between starch and silicon carbide was studied by Fourier transform infrared (FTIR) spectroscopy. The structure of the bionanocomposites was investigated by X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). Thermal property of starch/SiC bionanocomposites was measured and a significant enhancement of thermal resistance was noticed. The oxygen barrier property of the composites was studied and a substantial reduction in permeability was observed as compared to the virgin starch. The reduction of oxygen permeability with enhancement of thermal stability of prepared bionanocomposites may enable the materials suitable for thermal resistant packaging and adhesive applications. Copyright © 2013 Elsevier Ltd. All rights reserved.